On the Existence of Low-Luminosity Cataclysmic Variables Beyond the Orbital Period Minimum
NASA Technical Reports Server (NTRS)
Howell, Steve B.; Rappaport, Saul; Politano, Michael
1997-01-01
Models of the present-day intrinsic population of cataclysmic variables predict that 99 per cent of these systems should be of short orbital period. The Galaxy is old enough that approx. 70 per cent of these stars will have already reached their orbital period minimum (approx. 80 min), and should be evolving back toward longer periods. Mass-transfer rates in these highly evolved binaries are predicted to be less or equal to 10(exp -11), leading to M(sub V) of approx. 10 or fainter, and the secondaries would be degenerate, brown dwarf-like stars. Recent observations of a group of low-luminosity dwarf novae (TOADS) provide observational evidence for systems with very low intrinsic M,. and possibly low-mass secondaries. We carry out population synthesis and evolution calculations for a range of assumed ages of the Galaxy in order to study P(sub orb) and M distributions for comparison with the TOAD observations. We speculate that at least some of the TOADs are the predicted very low- luminosity, post-period-minimum cataclysmic variables containing degenerate (brown dwarf-like) secondaries having masses between 0.02 and 0.06 M, and radii near 0.1 R., We show that these low-luminosity systems are additionally interesting in that they can be used to set a lower limit on the age of the Galaxy. The TOAD with the longest orbital period currently known (123 min), corresponds to a Galaxy age of at least 8.6 x 10(exp 9) yr.
Does tidal capture produce cataclysmic variables?
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Grindlay, Jonathan E.; Garcia, Michael R.
1990-01-01
It is shown that earlier estimates of the number of cataclysmic variables (CVs) to be expected from tidal capture in globular clusters may have been considerably too high, since many such binaries will result in unstable mass transfer, and thus not become CVs after all. In particular, CVs with white dwarf masses less than or obout 1.0 solar mass will be supressed. Such unstable mass transfer events may produce some of the cluster mass loss required to stabilize the cluster core. The smaller number of stable CVs predicted may suggest a reconsideration of the nature of some of the low-luminosity cluster X-ray sources.
High-velocity winds from a dwarf nova during outburst
NASA Technical Reports Server (NTRS)
Cordova, F. A.; Mason, K. O.
1982-01-01
An ultraviolet spectrum of the dwarf nova TW Vir during an optical outburst shows shortward-shifted absorption features with edge velocities as high as 4800 km/s, about the escape velocity of a white dwarf. A comparison of this spectrum with the UV spectra of other cataclysmic variables suggests that mass loss is evident only for systems with relatively high luminosities (more than about 10 solar luminosities) and low inclination angles with respect to the observer's line of sight. The mass loss rate for cataclysmic variables is of order 10 to the -11th solar mass per yr; this is from 0.01 to 0.001 of the mass accretion rate onto the compact star in the binary. The mass loss may occur by a mechanism similar to that invoked for early-type stars, i.e., radiation absorbed in the lines accelerates the accreting gas to the high velocities observed.
Globular cluster x-ray sources
Pooley, David
2010-01-01
Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 1036 ergs-1) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 1033 ergs-1) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth—low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)—but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters. PMID:20404204
1ES 1113+432: Luminous, soft X-ray outburst from a nearby cataclysmic variable (AR Ursae Majoris)
NASA Technical Reports Server (NTRS)
Remillard, R. A.; Schachter, J. F.; Silber, A. D.; Slane, P.
1994-01-01
A remarkable X-ray transient from the Einstein Slew Survey, 1 ES 1113+432, is identified with a nearby, short-period cataclysmic variable. Wenzel (1993) has confirmed that the optical counterpart is the variable star, AR UMa (cataloged as 'semiregular'), erroneously reported 5.7 min southeast of the true position. One of the Einstein slew observations recorded a flux of 43 IPC counts/s, which is an order of magnitude above the flux observed from the brightest cataclysmic variables in other X-ray surveys. The outburst spectrum is extremely 'soft,' with an implied blackbody temperature of approximately 22 eV. The optical counterpart (V = 16.5) exhibits a strong UV component, TiO bands from an M star, and broadened Balmer emission lines. Optical states as bright as V approx. 13 were found on photographs from the Harvard Plate Library, confirming outburst behavior in the optical counterpart. The historical photographic record suggests that 1ES 1113+432 remains in a low-accretion state most of the time. Both of the soft X-ray spectrum and the transitions between high and low-accretion states are suggestive of the AM Her (magnetic) subclass. Photometric observations in the I band show 0.18 mag modulations at a period of 0.966 hr. These are interpreted as ellipsiodal variations in the secondary star for a binary period of 1.932 hr, which is near the lower boundary of the 'period gap' in the histogram, of orbital periods of accreting white dwarfs. Thus 1ES 1113+432 provides the rare opportunity to study a secondary star in a cataclysmic binary that has evolved through the period gap. The optical spectral features from the secondary imply a spectral type of approximately M6 and a distance of approximately 88 pc. The peak luminosity in the soft X-ray component (unabsorbed) is then estimated to be 3 X 10(exp 33) ergs/s, assuming emission from a blackbody slab with a temperature of 22 eV. While this luminosity is higher than previous measures of the soft X-ray component, it does not exceed the amount of radiation that could be emitted from the accretion-heated surface of a white dwarf.
VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)
NASA Astrophysics Data System (ADS)
Ritter, H.; Kolb, U.
2004-03-01
Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 522 cataclysmic binaries, 75 low-mass X-ray binaries and 117 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 695 of the 714 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 31 December 2003 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).
VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)
NASA Astrophysics Data System (ADS)
Ritter, H.; Kolb, U.
2005-03-01
Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 572 cataclysmic binaries, 80 low-mass X-ray binaries and 142 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 761 of the 794 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 31 December 2004 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue ) and the updated lists by Ritter and Kolb (1995; catalogue ) (1998; catalogue ). (10 data files).
Observational constraints on the inter-binary stellar flare hypothesis for the gamma-ray bursts
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1994-01-01
The Gamma Ray Observatory/Burst and Transient Source Experiment (GRO/BATSE) results on the Gamma Ray Bursts (GRBs) have given an internally consistent set of observations of about 260 GRBs which have been released for analysis by the BATSE team. Using this database we investigate our earlier suggestion (Vahia and Rao, 1988) that GRBs are inter-binary stellar flares from a group of objects classified as Magnetically Active Stellar Systems (MASS) which includes flare stars, RS CVn binaries and cataclysmic variables. We show that there exists an observationally consistent parameter space for the number density, scale height and flare luminosity of MASS which explains the complete log(N) - log(P) distribution of GRBs as also the observed isotropic distribution. We further use this model to predict anisotropy in the GRB distribution at intermediate luminosities. We make definite predictions under the stellar flare hypothesis that can be tested in the near future.
VizieR Online Data Catalog: Cataclysmic Binaries, LMXBs, and related objects (Ritter+, 2003)
NASA Astrophysics Data System (ADS)
Ritter, H.; Kolb, U.
2003-08-01
Cataclysmic Binaries are semi-detached binaries consisting of a white dwarf or a white dwarf precursor primary and a low-mass secondary which is filling its critical Roche lobe. The secondary is not necessarily unevolved, it may even be a highly evolved star as for example in the case of the AM CVn-type stars. Low-Mass X-Ray Binaries are semi-detached binaries consisting of either a neutron star or a black hole primary, and a low-mass secondary which is filling its critical Roche lobe. Related Objects are detached binaries consisting of either a white dwarf or a white dwarf precursor primary and of a low-mass secondary. The secondary may also be a highly evolved star. The catalogue lists coordinates, apparent magnitudes, orbital parameters, stellar parameters of the components and other characteristic properties of 501 cataclysmic binaries, 74 low-mass X-ray binaries and 114 related objects with known or suspected orbital periods together with a comprehensive selection of the relevant recent literature. In addition the catalogue contains a list of references to published finding charts for 651 of the 689 objects. A cross-reference list of alias object designations concludes the catalogue. Literature published before 30 June 2003 has, as far as possible, been taken into account. This catalogue supersedes the 5th edition (catalogue
Evolution of magnetic cataclysmic binaries
NASA Technical Reports Server (NTRS)
Lamb, Don Q.; Melia, F.
1988-01-01
The evolution of magnetic cataclysmic binaries is reviewed, with emphasis on the synchronization process by which DQ Herculis stars become AM Herculis stars. The various mechanisms that are thought to drive the evolution of cataclysmic binaries are discussed, and the criterion for stream versus disk accretion, the physics of the accretion and synchronization torques, and the conditions required for synchronization are described. The different physical regimes to which magnetic cataclysmic binaries belong are summarized, and how synchronization may be achieved, and how it may be broken, are considered.
Predictions of a population of cataclysmic variables in globular clusters
NASA Technical Reports Server (NTRS)
Di Stefano, R.; Rappaport, S.
1994-01-01
We have studied the number of cataclysmic variables (CVs) that should be active in globular clusters during the present epoch as a result of binary formation via two-body tidal capture. We predict the orbital period and luminosity distributions of CVs in globular clusters. The results arebased on Monte Carlo simulations combined with evolution calculations appropriate to each system formed during the lifetime of two specific globular clusters, omega Cen and 47 Tuc. From our study of these two clusters, which represent the range of core densities and states of mass segregation that are likely to be interesting, we extrapolate our results to the Galactic globlular cluster system. Although there is at present little direct observational evidence of CVs in globular clusters, we find that there should be a large number of active systems. We predict that there should be more than approximately 100 CVs in both 47 Tuc and omega Cen and several thousand in the Galactic globular cluster system. These numbers are based on two-body processes alone and represent a lower bound on the number of systems that may have been formed as a result of stellar interaction within globular clusters. The relation between these calculations and the paucity of optically detected CVs in globular clusters is discussed. Should future observations fail to find convincing evidence of a substantial population of cluster CVs, then the two-body tidal capture scenario is likely to be seriously constrained. Of the CVs we espect in 47 Tuc and omega Cen, approximately 45 and 20, respectively, should have accretion luminosities above 10(exp 33) ergs/s. If one utilizes a relation for converting accretion luminosity to hard X-ray luminosity that is based on observations of Galactic plane CVs, even these sources will not exhibit X-ray luminosities above 10(exp 33) ergs/s. While we cannot account directly for the most luminous subset of the low-luminosity globular cluster X-ray sources without assuming an evolutionary pattern that is different from that of the majority of CVs in the disk, we are able to account for all of the observed lower luminosity subset of these sources, many of which have been recently discovered through ROSAT observations. In order for our predicted integrated cluster X-ray luminosities to be consistent with observational upper limits, the relation between accretion and X-ray luminosities should be something like that inferred from the Galactic plane population of CVs. Our calculations predict a large number of systems with L(sub acc) is less than 10(exp 32) ergs/s. Although our calculations imply that globular clusters should have an enhancement of CVs relative to the number thought to be present in the Galactic disk, this enhancement is at most roughly an order of magnitude, not comparable to the factor of approximately 100 for low-mass X-ray binaries (LMXBs).
An X-ray survey of nine historical novae. [HEAO 2 observations
NASA Technical Reports Server (NTRS)
Becker, R. H.; Marshall, F. E.
1980-01-01
The Einstein Observatory imaging proportional counter was used to search for X-ray emission from nine nearby historical novae. Six of the novae were detected with estimated X-ray intensities between .1 to 4 keV of 10 to the -13th power to 10 to the -11th power ergs/sq cm-s, comparable to the intensities of previously detected cataclysmic variables. The X-ray intensity of one of the novae, V603 Aql, varies over times of several hundred seconds. The data suggest a correlation between the decay rate of the historical outburst and the current X-ray luminosity. Alternatively, the X-ray luminosity may be related to the inclination of the binary system.
NASA Technical Reports Server (NTRS)
Drechsel, H. (Editor); Rahe, J. (Editor); Kondo, Y. (Editor)
1987-01-01
Papers are presented on the formation and evolution of low-mass close binaries with compact components, the periods of cataclysmic variables, multiwavelength observations of dwarf novae during outbursts, and radio emission from cataclysmic variables. Also considered are long-term optical photometry of the dwarf nova VW Hyi, periodic modulations in the optical light curves of EX Hydrae, and Echelle-Mepsicron time-resolved spectroscopy of the dwarf nova SS Cygni. Other topics include UV and X-ray observations of cataclysmic variables, new EXOSAT observations of TV Columbae, accretion disk evolution, and the boundary layer in cataclysmic variables.
X-Ray source populations in old open clusters: Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen; Wijnands, Rudy
2014-09-01
We are carrying out an X-ray survey of old open clusters with the Chandra X-ray Observatory. Single old stars, being slow rotators, are very faint in X-rays (L_X < 1×10^27 erg/s). Hence, X-rays produced by mass transfer in cataclysmic variables (CVs) or by rapid rotation of the stars in tidally locked, detached binaries (active binaries; ABs) can be detected, without contamination from single stars. By comparing the properties of various types of interacting binaries in different environments (the Galactic field, old open clusters, globular clusters), we aim to study binary evolution and how it may be affected by dynamical encounters with other cluster stars. Stellar clusters are good targets to study binaries, as age, distance, chemical composition, are well constrained. Collinder (Cr) 261 is an old open cluster (age ~ 7 Gyr), with one of the richest populations inferred of close binaries and blue stragglers of all open clusters and is therefore an obvious target to study the products of close encounters in open clusters. We will present the first results of this study, detailing the low-luminosity X-ray population of Cr 261, in conjunction with other open clusters in our survey (NGC 188, Berkeley 17, NGC 6253, M67, NGC 6791) and in comparison with populations in globular clusters.
The infrared counterpart of the eclipsing X-ray binary HO253 + 193
NASA Technical Reports Server (NTRS)
Zuckerman, B.; Becklin, E. E.; Mclean, I. S.; Patterson, Joseph
1992-01-01
We report the identification of the infrared counterpart of the pulsating X-ray source HO253 + 193. It is a highly reddened star varying in K light with a period near 3 hr, but an apparent even-odd effect in the light curve implies that the true period is 6.06 hr. Together with the recent report of X-ray eclipses at the latter period, this establishes the close binary nature of the source. Infrared minimum occurs at X-ray minimum, certifying that the infrared variability arises from the tidal distortion of the lobe-filling secondary. The absence of a point source at radio wavelengths, plus the distance derived from the infrared data, suggests that the binary system is accidentally located behind the dense core of the molecular cloud Lynds 1457. The eclipses and pulsations in the X-ray light curve, coupled with the hard X-ray spectrum and low luminosity, demonstrate that HO253 + 193 contains an accreting magnetic white dwarf, and hence belongs to the 'DQ Herculis' class of cataclysmic variables.
X-RAY SOURCES IN THE DWARF SPHEROIDAL GALAXY DRACO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sonbas, E.; Rangelov, B.; Kargaltsev, O.
2016-04-10
We present the spectral analysis of an 87 ks XMM-Newton observation of Draco, a nearby dwarf spheroidal galaxy. Of the approximately 35 robust X-ray source detections, we focus our attention on the brightest of these sources, for which we report X-ray and multiwavelength parameters. While most of the sources exhibit properties consistent with active galactic nuclei, few of them possess the characteristics of low-mass X-ray binaries (LMXBs) and cataclysmic variable (CVs). Our analysis places constraints on the population of X-ray sources with L{sub X} > 3 × 10{sup 33} erg s{sup −1} in Draco, suggesting that there are no actively accreting black hole andmore » neutron star binaries. However, we find four sources that could be quiescent state LMXBs/CVs associated with Draco. We also place constraints on the central black hole luminosity and on a dark matter decay signal around 3.5 keV.« less
Assisted stellar suicide: the wind-driven evolution of the recurrent nova T Pyxidis
NASA Astrophysics Data System (ADS)
Knigge, Ch.; King, A. R.; Patterson, J.
2000-12-01
We show that the extremely high luminosity of the short-period recurrent nova T Pyx in quiescence can be understood if this system is a wind-driven supersoft x-ray source (SSS). In this scenario, a strong, radiation-induced wind is excited from the secondary star and accelerates the binary evolution. The accretion rate is therefore much higher than in an ordinary cataclysmic binary at the same orbital period, as is the luminosity of the white dwarf primary. In the steady state, the enhanced luminosity is just sufficient to maintain the wind from the secondary. The accretion rate and luminosity predicted by the wind-driven model for T Pyx are in good agreement with the observational evidence. X-ray observations with Chandra or XMM may be able to confirm T Pyx's status as a SSS. T Pyx's lifetime in the wind-driven state is on the order of a million years. Its ultimate fate is not certain, but the system may very well end up destroying itself, either via the complete evaporation of the secondary star, or in a Type Ia supernova if the white dwarf reaches the Chandrasekhar limit. Thus either the primary, the secondary, or both may currently be committing assisted stellar suicide.
A Chandra X-ray census of the interacting binaries in old open clusters - NGC 188
NASA Astrophysics Data System (ADS)
Vats, Smriti; Van Den Berg, Maureen
2017-01-01
We present a new X-ray study of NGC 188, one of the oldest open clusters known in the Milky Way (7 Gyr). Our X-ray observation using the Chandra X-ray Observatory is aimed at uncovering the population of close interacting binaries in the cluster. We detect 84 X-ray sources with a limiting X-ray luminosity, LX ~ 4×1029 erg s-1 (0.3-7 keV), of which 28 are within the half-mass radius. Of these, 13 are proper-motion or radial-velocity cluster members, wherein we identify a mix of active binaries (ABs) and blue straggler stars (BSSs). We also identify one tentative cataclysmic variable (CV) candidate which is a known short-period photometric variable, but whose membership to NGC 188 is unknown. We have compared the X-ray luminosity per unit of cluster mass (i.e. the X-ray emissivity) of NGC 188 with those of other old Galactic open clusters and dense globular clusters (47 Tuc, NGC 6397). Our findings confirm the earlier result that old open clusters have higher X-ray emissivities than the globular clusters (LX ≥1×1030 erg s-1). This may be explained by dynamical encounters in globulars, which could have a net effect of destroying binaries, or the typically higher metallicities of open clusters. We find one intriguing X-ray source in NGC 188 that is a BSS and cluster member, whose X-ray luminosity cannot be explained by its currently understood binary configuration. Its X-ray detection invokes the need for a third companion in the system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovmassian, G.; González–Buitrago, D.; Zharikov, S.
We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from themore » active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.« less
A Study of Precataclysmic Binaries Through Theoretic Modeling of Light Curves and Spectra
NASA Astrophysics Data System (ADS)
Mitrofanova, A. A.; Shimansky, V. V.; Borisov, N. V.
2017-06-01
The article presents results of three pre-cataclysmic binaries (PN G068.1+11.0, TW Crv and RE J2013+4002) investigation. Spectroscopic and photometric observations were obtained on BTA and Zeiss-1000 of SAO RAS and on RTT-150. We used the modeling of light curves and spectra to determine the fundamental parameters for all three systems. The PN G068.1+11.0 parameters were obtained with the use of the evolutionary tracks for the nuclei of planetary nebulae of different masses. According to the results of the study, it was found that the secondary components of PN G068.1+11.0 and TW Crv have luminosity excess, but secondary component of RE J2013+4002 doesn't have one.
Is WD 1437-008 a cataclysmic variable?
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Nurtdinova, D. N.; Borisov, N. V.; Spiridonova, O. I.
2011-10-01
Comprehensive observations of a close binary candidate WD 1437-008 are performed. The shape and amplitude of the observed brightness variations are shown to be inconsistent with the hypothesis of reflection effects, and the photometric period of the system, P phot = 0. d 2775, is found to differ from the period of spectral variations, P sp = 0. d 272060. As a result, WD 1437-008 has been preliminarily classified as a low-inclination cataclysmic variable.
NASA Astrophysics Data System (ADS)
Tovmassian, G.; González–Buitrago, D.; Zharikov, S.; Reichart, D. E.; Haislip, J. B.; Ivarsen, K. M.; LaCluyze, A. P.; Moore, J. P.; Miroshnichenko, A. S.
2016-03-01
We studied two objects identified as cataclysmic variables (CVs) with periods exceeding the natural boundary for Roche-lobe-filling zero-age main sequence (ZAMS) secondary stars. We present observational results for V1082 Sgr with a 20.82 hr orbital period, an object that shows a low luminosity state when its flux is totally dominated by a chromospherically active K star with no signs of ongoing accretion. Frequent accretion shutoffs, together with characteristics of emission lines in a high state, indicate that this binary system is probably detached, and the accretion of matter on the magnetic white dwarf takes place through stellar wind from the active donor star via coupled magnetic fields. Its observational characteristics are surprisingly similar to V479 And, a 14.5 hr binary system. They both have early K-type stars as donor stars. We argue that, similar to the shorter-period prepolars containing M dwarfs, these are detached binaries with strong magnetic components. Their magnetic fields are coupled, allowing enhanced stellar wind from the K star to be captured and channeled through the bottleneck connecting the two stars onto the white dwarf’s magnetic pole, mimicking a magnetic CV. Hence, they become interactive binaries before they reach contact. This will help to explain an unexpected lack of systems possessing white dwarfs with strong magnetic fields among detached white+red dwarf systems.
A Search for Novae in the M31 Globular Cluster System
NASA Astrophysics Data System (ADS)
Tomaney, Austin; Crotts, Arlin; Shafter, Allen
1992-12-01
Roughly 10% of all low mass X-ray binaries (LMXB's, neutron star - low mass sequence close binaries) are found in Galactic globular clusters (GC's) implying an enhancement per unit mass of roughly three orders of magnitude of these objects inside GC's compared with the field. Fabian, Pringle and Rees (1975) suggested that these lcose binary systems may be formed via tidal capture in the dense cluster cores. Similar arguments are likely to apply to nova systems which are cataclysmic variables (CV's) consisting of a close binary white dwarf - low mass main sequence star. Supporting arguments include the discovery over the past century of two novae in Galactic GC's, and the existence of low luminosity X-ray sources in GC's (Hertz and Grindlay 1983). In addition, surveys for novae in M31 indicate that the specfic density of novae in its bulge is an order of magnitude higher than its disk and it has been argued by Ciardullo et al. (1987) that novae in the bulge of M31 have been spawned inside GC's and subsequently ejected into the field. We present the results of a search (during 1988 and 1989) of over 200 M31 GC's using a fibre multi-object spectrograph to detect Hα emission, a signature of a potential nova eruptions. No eruptions were detected over an effective survey time of one year for the entire known M31 GC system. Although the lower mass of white dwarfs compared with neutron stars implies their effective capture cross section is smaller, we argue that since novae occur much more frequently on high mass white dwarfs this survey provides a sensitive test to the number of high mass CV's in GC's and their enhancement is unlikely to be as high as LMXB's.
A search for cataclysmic binaries containing strongly magnetic white dwarfs
NASA Technical Reports Server (NTRS)
Bond, H. E.; Chanmugam, G.
1982-01-01
The AM Herculis type binaries which contain accreting white dwarfs with surface magnetic fields of a few times 10 to the seventh power gauss were studied. If white dwarfs in cataclysmic binaries have a range of field strengths similar to that among single white dwarfs. AM Her like systems should exist with fields as high as 3 x 10 to the eighth power gauss. It is suggested that such objects will not have the strong optical polarization of the AM Her variables; however, they exhibit high harmonic cyclotron emission, making them spectacular UV sources. We made IUE observations of seven candidate cataclysmic variables selected for optical similarity to AM Her binaries. Although all seven objects were detected in the UV, none display unusually strong UV continua. It is suggested that the distribution of magnetic field strengths among single white dwarfs may be different from that among binaries.
Detection of Accretion X-Rays from QS Vir: Cataclysmic or a Lot of Hot Air?
NASA Astrophysics Data System (ADS)
Matranga, Marco; Drake, Jeremy J.; Kashyap, Vinay; Steeghs, Danny
2012-03-01
An XMM-Newton observation of the nearby "pre-cataclysmic" short-period (P orb = 3.62 hr) binary QS Vir (EC 13471-1258) revealed regular narrow X-ray eclipses when the white dwarf passed behind its M2-4 dwarf companion. The X-ray emission provides a clear signature of mass transfer and accretion onto the white dwarf. The low-resolution XMM-Newton EPIC spectra are consistent with a cooling flow model and indicate an accretion rate of \\dot{M} = 1.7 \\times 10^{-13} \\,M_\\odot yr-1. At 48 pc distant, QS Vir is then the second nearest accreting cataclysmic variable known, with one of the lowest accretion rates found to date for a non-magnetic system. To feed this accretion through a wind would require a wind mass-loss rate of \\dot{M}\\sim 2\\times 10^{-12}\\,M_\\odot yr-1 if the accretion efficiency is of the order of 10%. Consideration of likely mass-loss rates for M dwarfs suggests this is improbably high and pure wind accretion unlikely. A lack of accretion disk signatures also presents some difficulties for direct Roche lobe overflow. We speculate that QS Vir is on the verge of Roche lobe overflow, and that the observed mass transfer could be supplemented by upward chromospheric flows on the M dwarf, analogous to spicules and mottles on the Sun, that escape the Roche surface to be subsequently swept up into the white dwarf Roche lobe. If so, QS Vir would be in a rare evolutionary phase lasting only a million years. The X-ray luminosity of the M dwarf estimated during primary eclipse is LX = 3 × 1028 erg s-1, which is consistent with that of rapidly rotating "saturated" K and M dwarfs.
Parallaxes and Distance Estimates for Eleven Cataclysmic Binary Stars
NASA Astrophysics Data System (ADS)
Thorstensen, John R.; Lepine, S.; Shara, M.; Peters, C. S.
2007-12-01
We will present new distance estimates for eleven cataclysmic binary stars, based on trigonometric parallaxes measured with the 2.4m Hiltner telescope at MDM Observatory. The MDM parallaxes have typical uncertainties of 1 mas. A Bayesian formalism is used to find the most likely distance given the parallax, proper motion, and prior information. Results will be reported for the eclipsing dwarf nova HT Cas, for which our parallax favors a relatively short distance; KT Per, which proves to have a K-dwarf physical companion; the 65-minute double-degenerate system V396 Hya (CE 315); and the low accretion rate-polar MQ Dra (SDSS 1553). We gratefully acknowledge funding from the NSF through grants AST-9987334, AST-0307413, and AST-0708810.
NASA Technical Reports Server (NTRS)
Hertz, Paul; Wood, Kent S.; Cominsky, Lynn
1995-01-01
EXO 0748-676, an eclipsing low-mass X-ray binary, is one of only about four or five low-mass X-ray binaries for which orbital period evolution has been reported. We observed a single eclipse egress with ROSAT . The time of this egress is consistent with the apparent increase in P(sub orb) previously reported on the basis of EXOSAT and Ginga observations. Standard analysis, in which O-C (observed minus calculated) timing residuals are examined for deviations from a constant period, implicitly assume that the only uncertainty in each residual is measurement error and that these errors are independent. We argue that the variable eclipse durations and profiles observed in EXO 0748-676 imply that there is an additional source of uncertainty in timing measurements, that this uncertainty is intrinsic to the binary system, and that it is correlated from observation to observation with a variance which increases as a function of the number of binary cycles between observations. This intrinsic variability gives rise to spurious trends in O-C residuals which are misinterpreted as changes in the orbital period. We describe several statistics tests which can be used to test for the presence of intrinsic variability. We apply those statistical tests which are suitable to the EXO 0748-676 observations. The apparent changes in the orbital period of EXO 0748-676 can be completely accounted for by intrinsic variability with an rms variability of approximately 0.35 s per orbital cycle. The variability appears to be correlated from cycle-to-cycle on timescales of less than 1 yr. We suggest that the intrinsic variability is related to slow changes in either the source's X-ray luminosity or the structure of the companion star's atmosphere. We note that several other X-ray binaries and cataclysmic variables have previously reported orbital period changes which may also be due to intrinsic variability rather than orbital period evolution.
NASA Astrophysics Data System (ADS)
Shara, Michael M.; Drissen, Laurent; Martin, Thomas; Alarie, Alexandre; Stephenson, F. Richard
2017-02-01
The Z Cam-type dwarf nova AT Cancri (AT Cnc) displays a classical nova (CN) shell, demonstrating that mass transfer in cataclysmic binaries decreases substantially after a CN eruption. The hibernation scenario of cataclysmic binaries predicts such a decrease, on a time-scale of a few centuries. In order to measure the time since AT Cnc's last CN eruption, we have measured the radial velocities of a hundred clumps in its ejecta with SITELLE, Canada-France-Hawaii Telescope's recently commissioned imaging Fourier transform spectrometer. These range from -455 to +490 km s-1. Coupled with the known distance to AT Cnc of 460 pc, the size of AT Cnc's shell, and a simple model of nova ejecta deceleration, we determine that the last CN eruption of this system occurred 330_{-90}^{+135} yr ago. This is the most rapid transition from a high mass-transfer rate, nova-like variable to a low mass-transfer rate, dwarf nova yet measured, and in accord with the hibernation scenario of cataclysmic binaries. We conclude by noting the similarity in the deduced outburst date (within a century of 1686 CE) of AT Cnc to a `guest star' reported in the constellation Cancer by Korean observers in 1645 CE.
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Schreiber, Matthias R.; Zorotovic, Mónica; Iłkiewicz, Krystian; Hurley, Jarrod R.; Giersz, Mirek; Lagos, Felipe
2018-06-01
The predicted and observed space density of cataclysmic variables (CVs) have been for a long time discrepant by at least an order of magnitude. The standard model of CV evolution predicts that the vast majority of CVs should be period bouncers, whose space density has been recently measured to be ρ ≲ 2 × 10-5 pc-3. We performed population synthesis of CVs using an updated version of the Binary Stellar Evolution (BSE) code for single and binary star evolution. We find that the recently suggested empirical prescription of consequential angular momentum loss (CAML) brings into agreement predicted and observed space densities of CVs and period bouncers. To progress with our understanding of CV evolution it is crucial to understand the physical mechanism behind empirical CAML. Our changes to the BSE code are also provided in details, which will allow the community to accurately model mass transfer in interacting binaries in which degenerate objects accrete from low-mass main-sequence donor stars.
A Chandra Survey of Milky Way Globular Clusters. I. Emissivity and Abundance of Weak X-Ray Sources
NASA Astrophysics Data System (ADS)
Cheng, Zhongqun; Li, Zhiyuan; Xu, Xiaojie; Li, Xiangdong
2018-05-01
Based on archival Chandra data, we have carried out an X-ray survey of 69, or nearly half the known population of, Milky Way globular clusters (GCs), focusing on weak X-ray sources, mainly cataclysmic variables (CVs) and coronally active binaries (ABs). Using the cumulative X-ray luminosity per unit stellar mass (i.e., X-ray emissivity) as a proxy of the source abundance, we demonstrate a paucity (lower by 41% ± 27% on average) of weak X-ray sources in most GCs relative to the field, which is represented by the Solar Neighborhood and Local Group dwarf elliptical galaxies. We also revisit the mutual correlations among the cumulative X-ray luminosity (L X), cluster mass (M), and stellar encounter rate (Γ), finding {L}{{X}}\\propto {M}0.74+/- 0.13, {L}{{X}}\\propto {{{Γ }}}0.67+/- 0.07 and {{Γ }}\\propto {M}1.28+/- 0.17. The three quantities can further be expressed as {L}{{X}}\\propto {M}0.64+/- 0.12 {{{Γ }}}0.19+/- 0.07, which indicates that the dynamical formation of CVs and ABs through stellar encounters in GCs is less dominant than previously suggested, and that the primordial formation channel has a substantial contribution. Taking these aspects together, we suggest that a large fraction of primordial, soft binaries have been disrupted in binary–single or binary–binary stellar interactions before they could otherwise evolve into X-ray-emitting close binaries, whereas the same interactions also have led to the formation of new close binaries. No significant correlations between {L}{{X}}/{L}K and cluster properties, including dynamical age, metallicity, and structural parameters, are found.
PG 1316+678: A young pre-cataclysmic binary with weak reflection effects
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.; Shimanskaya, N. N.; Spiridonova, O. I.; Irtuganov, E. N.
2013-03-01
The PG 1316+678 star is classified as a pre-cataclysmic binary, as is evidenced by its photometric and spectroscopic observations. Its orbital period is determined to be P orb = 3.3803d, which coincides with the photometric period. The intensities of the emission HI and HeI lines are shown to vary synchronously with the brightness of the object (Δ m V = 0.065 m , Δ m R = 0.08 m ). These variations arise as the UV radiation from the DAO white dwarf is reflected from the surface of the cold companion. The parameters of the binary are estimated and the time of its evolution after the common-envelope phase is determined to be t ≈ 240 000 years. Thus, PG 1316+678 is a young pre-cataclysmic NN Ser variable with the smallest known photometric reflection effect.
On the long term evolution of white dwarfs in cataclysmic variables and their recurrence times
NASA Technical Reports Server (NTRS)
Sion, E. M.; Starrfield, S. G.
1985-01-01
The relevance of the long term quasi-static evolution of accreting white dwarfs to the outbursts of Z Andromeda-like symbiotics; the masses and accretion rates of classical nova white dwarfs; and the observed properties of white dwarfs detected optically and with IUE in low M dot cataclysmic variables is discussed. A surface luminosity versus time plot for a massive, hot white dwarf bears a remarkable similarity to the outburst behavior of the hot blue source in Z Andromeda. The long term quasi-static models of hot accreting white dwarfs provide convenient constraints on the theoretically permissible parameters to give a dynamical (nova-like) outburst of classic white dwarfs.
The Ultracompact Nature of the Black Hole Candidate X-Ray Binary 47 Tuc X9
NASA Technical Reports Server (NTRS)
Bahramian, Arash; Heinke, Craig O.; Tudor, Vlad; Miller-Jones, James C. A.; Bogdanov, Slavko; Maccarone, Thomas J.; Knigge, Christian; Sivakoff, Gregory R.; Chomiuk, Laura; Strader, J.;
2017-01-01
47 Tuc X9 is a low-mass X-ray binary (LMXB) in the globular cluster 47 Tucanae, and was previously thought to be a cataclysmic variable. However, Miller-Jones et al. recently identified a radio counterpart to X9 (inferring a radio X-ray luminosity ratio consistent with black hole LMXBs), and suggested that the donor star might be a white dwarf. We report simultaneous observations of X9 performed by Chandra, NuSTAR and Australia Telescope Compact Array. We find a clear 28.18+/- 0.02-min periodic modulation in the Chandra data, which we identify as the orbital period, confirming this system as an ultracompact X-ray binary. Our X-ray spectral fitting provides evidence for photoionized gas having a high oxygen abundance in this system, which indicates a CO white dwarf donor. We also identify reflection features in the hard X-ray spectrum, making X9 the faintest LMXB to show X-ray reflection. We detect an approx. 6.8-d modulation in the X-ray brightness by a factor of 10, in archival Chandra, Swift and ROSAT data. The simultaneous radio X-ray flux ratio is consistent with either a black hole primary or a neutron star primary, if the neutron star is a transitional millisecond pulsar. Considering the measured orbital period (with other evidence of a white dwarf donor), and the lack of transitional millisecond pulsar features in the X-ray light curve, we suggest that this could be the first ultracompact black hole X-ray binary identified in our Galaxy.
Investigation of the new cataclysmic variable 1RXS J180834.7+101041
NASA Astrophysics Data System (ADS)
Yakin, D. G.; Suleimanov, V. F.; Borisov, N. V.; Shimanskii, V. V.; Bikmaev, I. F.
2011-12-01
We present the results of our photometric and spectroscopic studies of the new eclipsing cataclysmic variable star 1RXS J180834.7+101041. Its spectrum exhibits double-peaked hydrogen and helium emission lines. The Doppler maps constructed from hydrogen lines show a nonuniform distribution of emission in the disk similar to that observed in IP Peg. This suggests that the object can be a cataclysmic variable with tidal density waves in the disk. We have determined the component masses ( M WD = 0.8 ± 0.22 M ⊙ and M RD = 0.14 ± 0.02 M ⊙) and the binary inclination ( i = 78° ± 1.5°) based on well-known relations between parameters for cataclysmic variable stars. We have modeled the binary light curves and showed that the model of a disk with two spots is capable of explaining the main observed features of the light curves.
A Study of Low-mass X-Ray Binaries in the Low-luminosity Regime
NASA Astrophysics Data System (ADS)
Sonbas, E.; Dhuga, K. S.; Göğüş, E.
2018-02-01
A recent study of a small sample of X-ray binaries (XRBs) suggests a significant softening of spectra of neutron star (NS) binaries as compared to black hole (BH) binaries in the luminosity range 1034–1037 erg s‑1. This softening is quantified as an anticorrelation between the spectral index and the 0.5–10 keV X-ray luminosity. We extend the study to significantly lower luminosities (i.e., ∼a few × 1030 erg s‑1) for a larger sample of XRBs. We find evidence for a significant anticorrelation between the spectral index and the luminosity for a group of NS binaries in the luminosity range 1032–1033 erg s‑1. Our analysis suggests a steep slope for the correlation i.e., ‑2.12 ± 0.63. In contrast, BH binaries do not exhibit the same behavior. We examine the possible dichotomy between NS and BH binaries in terms of a Comptonization model that assumes a feedback mechanism between an optically thin hot corona and an optically thick cool source of soft photons. We gauge the NS–BH dichotomy by comparing the extracted corona temperatures, Compton-y parameters, and the Comptonization amplification factors: the mean temperature of the NS group is found to be significantly lower than the equivalent temperature for the BH group. The extracted Compton-y parameters and the amplification factors follow the theoretically predicted relation with the spectral index.
New cataclysmic variables and other exotic binaries in the globular cluster 47 Tucanae*
NASA Astrophysics Data System (ADS)
Rivera Sandoval, L. E.; van den Berg, M.; Heinke, C. O.; Cohn, H. N.; Lugger, P. M.; Anderson, J.; Cool, A. M.; Edmonds, P. D.; Wijnands, R.; Ivanova, N.; Grindlay, J. E.
2018-04-01
We present 22 new (+3 confirmed) cataclysmic variables (CVs) in the non-core-collapsed globular cluster 47 Tucanae (47 Tuc). The total number of CVs in the cluster is now 43, the largest sample in any globular cluster so far. For the identifications we used near-ultraviolet (NUV) and optical images from the Hubble Space Telescope, in combination with X-ray results from the Chandra X-ray Observatory. This allowed us to build the deepest NUV CV luminosity function of the cluster to date. We found that the CVs in 47 Tuc are more concentrated towards the cluster centre than the main-sequence turn-off stars. We compared our results to the CV populations of the core-collapsed globular clusters NGC 6397 and NGC 6752. We found that 47 Tuc has fewer bright CVs per unit mass than those two other clusters. That suggests that dynamical interactions in core-collapsed clusters play a major role creating new CVs. In 47 Tuc, the CV population is probably dominated by primordial and old dynamically formed systems. We estimated that the CVs in 47 Tuc have total masses of ˜1.4 M⊙. We also found that the X-ray luminosity function of the CVs in the three clusters is bimodal. Additionally, we discuss a possible double degenerate system and an intriguing/unclassified object. Finally, we present four systems that could be millisecond pulsar companions given their X-ray and NUV/optical colours. For one of them we present very strong evidence for being an ablated companion. The other three could be CO or He white dwarfs.
Mass loss from interacting close binary systems
NASA Technical Reports Server (NTRS)
Plavec, M. J.
1981-01-01
The three well-defined classes of evolved binary systems that show evidence of present and/or past mass loss are the cataclysmic variables, the Algols, and Wolf-Rayet stars. It is thought that the transformation of supergiant binary systems into the very short-period cataclysmic variables must have been a complex process. The new evidence that has recently been obtained from the far ultraviolet spectra that a certain subclass of the Algols (the Serpentids) are undergoing fairly rapid evolution is discussed. It is thought probable that the remarkable mass outflow observed in them is connected with a strong wind powered by accretion. The origin of the circumbinary clouds or flat disks that probably surround many strongly interacting binaries is not clear. Attention is also given to binary systems with hot white dwarf or subdwarf components, such as the symbiotic objects and the BQ stars; it is noted that in them both components may be prone to an enhanced stellar wind.
The primary role of the SW Sextantis stars in the evolution of cataclysmic variables
NASA Astrophysics Data System (ADS)
Torres, Manuel; Gaensicke, Boris; Rodriguez-Gil, Pablo; Long, Knox; Marsh, Tom; Steeghs, Danny; Munoz-Darias, Teodoro; Shahbaz, Tariq; Schmidtobreick, Linda; Schreiber, Matthias
2009-02-01
SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) which plays a fundamental role in our understanding of CV structure and evolution. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the binary parameters, white dwarf temperature, and distance to the system for a SW Sex star for the first time. The measured stellar masses and radii will especially be a precious input to the theory of compact binary evolution as a whole.
X-Ray Emissions from Accreting White Dwarfs: A Review
NASA Technical Reports Server (NTRS)
Mukai, K.
2017-01-01
Interacting binaries in which a white dwarf accretes material from a companion-cataclysmic variables (CVs) in which the mass donor is a Roche-lobe filling star on or near the main sequence, and symbiotic stars in which the mass donor is a late type giant-are relatively commonplace. They display a wide range of behaviors in the optical, X-rays, and other wavelengths, which still often baffle observers and theorists alike. Here I review the existing body of research on X-ray emissions from these objects for the benefits of both experts and newcomers to the field. I provide introductions to the past and current X-ray observatories, the types of known X-ray emissions from these objects, and the data analysis techniques relevant to this field. I then summarize of our knowledge regarding the X-ray emissions from magnetic CVs, non-magnetic CVs and symbiotic stars, and novae in eruption. I also discuss space density and the X-ray luminosity functions of these binaries and their contribution to the integrated X-ray emission from the Galaxy. I then discuss open questions and future prospects.
An Ultradeep Chandra Catalog of X-Ray Point Sources in the Galactic Center Star Cluster
NASA Astrophysics Data System (ADS)
Zhu, Zhenlin; Li, Zhiyuan; Morris, Mark R.
2018-04-01
We present an updated catalog of X-ray point sources in the inner 500″ (∼20 pc) of the Galactic center (GC), where the nuclear star cluster (NSC) stands, based on a total of ∼4.5 Ms of Chandra observations taken from 1999 September to 2013 April. This ultradeep data set offers unprecedented sensitivity for detecting X-ray sources in the GC, down to an intrinsic 2–10 keV luminosity of 1.0 × 1031 erg s‑1. A total of 3619 sources are detected in the 2–8 keV band, among which ∼3500 are probable GC sources and ∼1300 are new identifications. The GC sources collectively account for ∼20% of the total 2–8 keV flux from the inner 250″ region where detection sensitivity is the greatest. Taking advantage of this unprecedented sample of faint X-ray sources that primarily traces the old stellar populations in the NSC, we revisit global source properties, including long-term variability, cumulative spectra, luminosity function, and spatial distribution. Based on the equivalent width and relative strength of the iron lines, we suggest that in addition to the arguably predominant population of magnetic cataclysmic variables (CVs), nonmagnetic CVs contribute substantially to the detected sources, especially in the lower-luminosity group. On the other hand, the X-ray sources have a radial distribution closely following the stellar mass distribution in the NSC, but much flatter than that of the known X-ray transients, which are presumably low-mass X-ray binaries (LMXBs) caught in outburst. This, together with the very modest long-term variability of the detected sources, strongly suggests that quiescent LMXBs are a minor (less than a few percent) population.
A search for novae in M 31 globular clusters
NASA Astrophysics Data System (ADS)
Ciardullo, Robin; Tamblyn, Peter; Phillips, A. C.
1990-10-01
By combining a local sky-fitting algorithm with a Fourier point-spread-function matching technique, nova outbursts have been searched for inside 54 of the globular clusters contained on the Ciardullo et al. (1987 and 1990) H-alpha survey frames of M 31. Over a mean effective survey time of about 2.0 years, no cluster exhibited a magnitude increase indicative of a nova explosion. If the cataclysmic variables (CVs) contained within globular clusters are similar to those found in the field, then these data imply that the overdensity of CVs within globulars is at least several times less than that of the high-luminosity X-ray sources. If tidal capture is responsible for the high density of hard binaries within globulars, then the probability of capturing condensed objects inside globular clusters may depend strongly on the mass of the remnant.
A Chandra X-Ray Census of the Interacting Binaries in Old Open Clusters—Collinder 261
NASA Astrophysics Data System (ADS)
Vats, Smriti; van den Berg, Maureen
2017-03-01
We present the first X-ray study of Collinder 261 (Cr 261), which at an age of 7 Gyr is one of the oldest open clusters known in the Galaxy. Our observation with the Chandra X-Ray Observatory is aimed at uncovering the close interacting binaries in Cr 261, and reaches a limiting X-ray luminosity of {L}X≈ 4× {10}29 {erg} {{{s}}}-1 (0.3-7 keV) for stars in the cluster. We detect 107 sources within the cluster half-mass radius r h , and we estimate that among the sources with {L}X≳ {10}30 {erg} {{{s}}}-1, ˜26 are associated with the cluster. We identify a mix of active binaries and candidate active binaries, candidate cataclysmic variables, and stars that have “straggled” from the main locus of Cr 261 in the color-magnitude diagram. Based on a deep optical source catalog of the field, we estimate that Cr 261 has an approximate mass of 6500 M ⊙, roughly the same as the old open cluster NGC 6791. The X-ray emissivity of Cr 261 is similar to that of other old open clusters, supporting the trend that they are more luminous in X-rays per unit mass than old populations of higher (globular clusters) and lower (the local neighborhood) stellar density. This implies that the dynamical destruction of binaries in the densest environments is not solely responsible for the observed differences in X-ray emissivity.
On the implications of the period distributions of subclasses of cataclysmic variables
NASA Astrophysics Data System (ADS)
Verbunt, Frank
1997-09-01
The period distributions of dwarf novae and nova-like variables above the period gap are different if the VY Scl systems are classed with the nova-like variables, but the same when the VY Scl phenomenon is classed with the dwarf nova outbursts. For the remaining nova-like variables, the period gap is no longer significant. Classification of the VY Scl phenomenon with dwarf novae suggests that dwarf nova outbursts are caused by variation in mass transfer from the donor. Absence of the period gap obviates the need for models explaining it, and invalidates one piece of evidence for the importance of magnetic braking for the evolution of cataclysmic variables and of low-mass binaries in general.
NASA Technical Reports Server (NTRS)
Mukai, Koji; Smale, Alan; Stahle, Caroline K.; Schlegel, Eric M.; Wijnands, Rudy; White, Nicholas E. (Technical Monitor)
2001-01-01
MS 1603.6+2600 is a high-latitude X-ray binary with a 111 min orbital period, thought to be either an unusual cataclysmic variable or an unusual low-mass X-ray binary. In an ASCA observation in 1997 August, we find a burst whose light curve suggests a Type 1 (thermonuclear flash) origin. We also find an orbital X-ray modulation in MS 1603.6+2600, which is likely to be periodic dips, presumably due to azimuthal structure in the accretion disk. Both are consistent with this system being a normal low-mass X-ray binary harboring a neutron star, but at a great distance. We tentatively suggest that MS 1603.6+2600 is located in the outer halo of the Milky Way, perhaps associated with the globular cluster Palomar 14, 11 deg away from MS 1603.6+2600 on the sky at an estimated distance of 73.8 kpc.
NASA Astrophysics Data System (ADS)
Hellier, Coel
2001-01-01
Cataclysmic variable stars are the most variable stars in the night sky, fluctuating in brightness continually on timescales from seconds to hours to weeks to years. The changes can be recorded using amateur telescopes, yet are also the subject of intensive study by professional astronomers. That study has led to an understanding of cataclysmic variables as binary stars, orbiting so closely that material transfers from one star to the other. The resulting process of accretion is one of the most important in astrophysics. This book presents the first account of cataclysmic variables at an introductory level. Assuming no previous knowledge of the field, it explains the basic principles underlying the variability, while providing an extensive compilation of cataclysmic variable light curves. Aimed at amateur astronomers, undergraduates, and researchers, the main text is accessible to those with no mathematical background, while supplementary boxes present technical details and equations.
NASA Astrophysics Data System (ADS)
Edmonds, Peter D.; Gilliland, Ronald L.; Heinke, Craig O.; Grindlay, Jonathan E.
2003-10-01
We report time series and variability information for the optical identifications of X-ray sources in 47 Tucanae reported in Paper I (at least 22 cataclysmic variables [CVs] and 29 active binaries). The radial distribution of the CVs is indistinguishable from that of the millisecond pulsars (MSPs) detected by Freire et al. A study of the eight CVs with secure orbital periods (two obtained from the Chandra study of Grindlay et al.) shows that the 47 Tuc CVs have fainter accretion disks, in the V band, than field CVs with similar periods. These faint disks and the faint absolute magnitudes (MV) of the 47 Tuc CVs suggests they have low accretion rates. One possible explanation is that the 47 Tuc objects may be a more representative sample of CVs, down to our detection threshold, than the CVs found in the field (where many low accretion rate systems are believed to be undiscovered), showing the advantages of deep globular cluster observations. The median FX/Fopt value for the 47 Tuc CVs is higher than that of all known classes of field CV, partly because of the faint MV values and partly because of the relatively high X-ray luminosities (LX). The latter are only seen in DQ Her systems in the field, but the 47 Tuc CVs are much fainter optically than most field DQ Her's. Previous work by Edmonds et al. has shown that the four brightest CVs in NGC 6397 have optical spectra and broadband colors that are consistent with DQ Her's having lower than average accretion rates. Some combination of magnetic behavior and low accretion rates may be able to explain our observations, but the results at present are ambiguous, since no class of field CV has distributions of both LX and MV that are consistent with those of the 47 Tuc CVs. The radial distribution of the X-ray detected active binaries is indistinguishable from that of the much larger sample of optical variables (eclipsing and contact binaries and BY Dra variables) detected in previous Wide Field Planetary Camera 2 (WFPC2) studies by Albrow et al. The X-ray properties of these objects (luminosity, hardness ratios, and variability) are consistent with those of active binaries found in field studies, and the FX/Fopt distribution is significantly different from those of the CVs and the MSPs that are detected (or possibly detected) in the optical. Despite these results, we examine the possibility that a few of the active binaries are MSPs with main-sequence companions resulting from double exchanges in the crowded core of 47 Tuc. No solid evidence is found for a significant population of such objects, and therefore, using the methods of Grindlay et al., we estimate that the number of MSPs in 47 Tuc with luminosities above 1030 ergs s-1 is ~30-40, near the previous lower limit. We present the results of a new, deeper search for faint low-mass X-ray binaries (LMXBs) in quiescence. One reasonable and one marginal candidate for optical identification of a quiescent LMXB was found (one is already known). Finally, it is shown that the periods of the blue variables showing little or no evidence for X-ray emission are too long for Roche lobe filling (if the variations are ellipsoidal). These blue variables also show no evidence for the large flickering levels seen in comparably bright CVs. At present we have no satisfactory explanation for these objects, although some may be detached white dwarf-main-sequence star binaries. Based on observations with the NASA/ESA Hubble Space Telescope obtained at STScI, which is operated by AURA, Inc. under NASA contract NAS 5-26555.
Analysis of fundamental parameters for V477 Lyr
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Pozdnyakova, S. A.; Borisov, N. V.; Bikmaev, I. F.; Galeev, A. I.; Sakhibullin, N. A.; Spiridonova, O. I.
2008-06-01
We analyze the photometric and spectroscopic observations of the young pre-cataclysmic variable (pre-CV) V477 Lyr. The masses of both binary components have been corrected by analyzing their radial velocity curves. We show that agreement between the theoretical and observed light curves of the object is possible for several sets of its physical parameters corresponding to the chosen temperature of the primary component. The final parameters of V477 Lyr have been established by comparing observational data with evolutionary tracks for planetary nebula nuclei. The derived effective temperature of the O subdwarf is higher than that estimated by analyzing the object’s ultraviolet spectra by more than 10000 K. This is in agreement with the analogous results obtained previously for the young pre-CVs V664 Cas and UU Sge. The secondary component of V477 Lyr has been proven to have a more than 25-fold luminosity excess compared to main-sequence stars of similar mass. Comparison of the physical parameters for the cool stars in young pre-CVs indicates that their luminosities do not correlate with the masses of the objects. The observed luminosity excesses in such stars show a close correlation with the post-common-envelope lifetime of the systems and should be investigated within the framework of the theory of their relaxation to the state of main-sequence stars.
The SW Sex Phenomenon as an Evolutionary Stage of Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Schmidtobreick, L.
From recent large observing campaigns, one finds that nearly all non- or weakly magnetic cataclysmic variables in the orbital period range between 2.8 and 4 hours are of SW Sex type and as such experience very high mass transfer rates. The evolution of cataclysmic variables as for any interacting binary is driven by angular momentum loss which results in a decrease of the orbital period on evolutionary time scales. In particular, all long-period systems need to cross the SW Sex regime of the orbital period distribution before entering the period gap. This makes the SW Sex phenomenon an evolutionary stage in the life of a cataclysmic variable. Here, I present a short overview of the current state of research on these systems.
On the nature of the symbiotic binary AX Persei
NASA Technical Reports Server (NTRS)
Mikolajewska, Joanna; Kenyon, Scott J.
1992-01-01
Photometric and spectroscopic observations of the symbiotic binary AX Persei are presented. This system contains a red giant that fills its tidal lobe and transfers material into an accretion disk surrounding a low-mass main-sequence star. The stellar masses - 1 solar mass for the red giant and about 0.4 solar mass for the companion - suggest AX Per is poised to enter a common envelope phase of evolution. The disk luminosity increases from L(disk) about 100 solar luminosity in quiescence to L(disk) about 5700 solar luminosity in outburst for a distance of d = 2.5 kpc. Except for visual maximum, high ionization permitted emission lines - such as He II - imply an EUV luminosity comparable to the disk luminosity. High-energy photons emitted by a hot boundary layer between the disk and central star ionize a surrounding nebula to produce this permitted line emission. High ionization forbidden lines form in an extended, shock-excited region well out of the binary's orbital plane and may be associated with mass loss from the disk.
A Chandra Study of the Stellar X-Ray Emissivity of Globular Clusters in the M31 Bulge
NASA Astrophysics Data System (ADS)
Xu, Xiao-jie; Li, Zhiyuan
2018-03-01
The X-ray emissivity (i.e., luminosity per unit stellar mass) of globular clusters (GCs) is an important indicator of their dynamical evolution history. Based on deep archival Chandra observations, we report a stacking analysis of 44 GCs with 0.5–8 keV luminosities L X ≲ 1035 erg s‑1 in the M31 bulge, which are supposed to be dominated by cataclysmic variables (CVs) and coronally active binaries (ABs). We obtain a significant detection at the 5σ level in 0.5–8 keV band. The average X-ray luminosity per GC and the average X-ray emissivity are determined to be 5.3 ± 1.6 × 1033 erg s‑1 and 13.2 ± 4.3 × 1027 erg s‑1 {M}ȯ -1, respectively. Both of these values are consistent with those of Milky Way GCs. Moreover, the measured emissivity of M31 GCs is also consistent with that of the Milky Way field stars. Massive GCs have X-ray luminosities that are marginally higher than those of less massive ones. Massive GCs also show a lower emissivity (5.0+/- 2.5× {10}27 {erg} {{{s}}}-1 {M}ȯ -1) than less massive ones (26.5+/- 14.3× {10}27 {erg} {{{s}}}-1 {M}ȯ -1), which is consistent with the scenario that the (progenitors of) CVs and ABs were more efficiently destroyed via stellar encounters in the more massive GCs. No dependence of the X-ray emissivity on GC color or on the projected galactocentric distance of GCs is found.
Anti-correlated X-ray and Radio Variability in the Transitional Millisecond Pulsar PSR J1023+0038
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Deller, Adam; Miller-Jones, James; Archibald, Anne; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D'Angelo, Caroline
2018-01-01
The PSR J1023+0038 binary system hosts a 1.69-ms neutron star and a low-mass, main-sequence-like star. The system underwent a transformation from a rotation-powered to a low-luminosity accreting state in 2013 June, in which it has remained since. We present an unprecedented set of strictly simultaneous Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations, which for the first time reveal a highly reproducible, anti-correlated variability pattern. Rapid declines in X-ray flux are always accompanied by a radio brightening with duration that closely matches the low X-ray flux mode intervals. We discuss these findings in the context of accretion and jet outflow physics and their implications for using the radio/X-ray luminosity plane to distinguish low-luminosity candidate black hole binary systems from accreting transitional millisecond pulsars.
The nature of the cataclysmic variable PT Per
NASA Astrophysics Data System (ADS)
Watson, M. G.; Bruce, A.; MacLeod, C.; Osborne, J. P.; Schwope, A. D.
2016-08-01
We present a study of the cataclysmic variable star PT Per based on archival XMM-Newton X-ray data and new optical spectroscopy from the William Herschel Telescope (WHT) with Intermediate dispersion Spectrograph and Imaging System (ISIS). The X-ray data show deep minima which recur at a period of 82 min and a hard, unabsorbed X-ray spectrum. The optical spectra of PT Per show a relatively featureless blue continuum. From an analysis of the X-ray and optical data we conclude that PT Per is likely to be a magnetic cataclysmic variable of the polar class in which the minima correspond to those phase intervals when the accretion column rotates out of the field of view of the observer. We suggest that the optical spectrum, obtained around 4 yr after the X-ray coverage, is dominated by the white dwarf in the system, implying that PT Per was in a low accretion state at the time of the observations. An analysis of the likely system parameters for PT Per suggests a distance of ≈90 pc and a very low mass secondary, consistent with the idea that PT Per is a `period-bounce' binary. Matching the observed absorption features in the optical spectrum with the expected Zeeman components constrains the white dwarf polar field to be Bp ≈ 25-27 MG.
A magnetic accretion switch in pre-cataclysmic binaries
NASA Astrophysics Data System (ADS)
Drake, Jeremy J.; Garraffo, Cecilia; Takei, Dai; Gaensicke, Boris
2014-02-01
We have investigated the mass accretion rate implied by published surface abundances of Si and C in the white dwarf component of the 3.62 h period pre-cataclysmic binary and planet host candidate QS Vir (DA+M2-4). Diffusion time-scales for gravitational settling imply dot{M} ˜ 10^{-16} M_{odot } yr-1 for the 1999 epoch of the observations, which is three orders of magnitude lower than measured from a 2006 XMM-Newton observation. This is the first time that large accretion rate variations have been seen in a detached pre-cataclysmic variable (pre-CV). A third body in a 14 yr eccentric orbit suggested in a recent eclipse timing study is too distant to perturb the central binary sufficiently to influence accretion. A hypothetical coronal mass ejection just prior to the XMM-Newton observation might explain the higher accretion rate, but the implied size and frequency of such events appear too great. We suggest accretion is most likely modulated by a magnetic cycle on the secondary acting as a wind `accretion switch', a mechanism that can be tested by X-ray and ultraviolet monitoring. If so, QS Vir and similar pre-CVs could provide powerful insights into hitherto inscrutable CV and M dwarf magnetospheres, and mass- and angular-momentum-loss rates.
Investigation relative to the Roentgen Satellite (ROSAT)
NASA Technical Reports Server (NTRS)
Elvis, Martin S.; Primini, Francis A.; Fabbiano, Guiseppina; Harris, Daniel E.; Jones-Foreman, Christine; Trinchieri, Ginevra; Golub, Leon; Bookbinder, Jay; Seward, Frederick D.; Zombeck, Martin V.
1994-01-01
Reports include: High Resolution Observations of the Central Region of M31; The X-ray Emission of Low-X-ray-Luminosity Early-Type Galaxies: Gas Versus Compact Sources; Interaction Between Cluster Gas and Radio Features of Cygnus A; Hot Gas and Dark Halos in Early-Type Galaxies; A Gravitational Lens in X-rays - 0957+461; How Massive are Early-Type Galaxies?; Three Crab-Like SNR in the Large Magellanic Cloud; and Soft X-ray Emission from Boundary Layers in Cataclysmic Variables. Papers submitted to the Astrophysical Journal are attached.
XMM Astronomy Abundances Ages AGN Associations Asteroseismology Atomic_Data Binaries:cataclysmic astronomy) CDS cross-match service : fast cross-identification between any 2 tables, including VizieR
Theory of magnetic cataclysmic binary X-ray sources
NASA Technical Reports Server (NTRS)
Lamb, Don Q.
1988-01-01
The theory of magnetic cataclysmic binary X-ray sources is reviewed. The physics of the accretion torque for disk and for stream accretion is described, and the magnetic field strengths of DQ Her stars inferred from their spin behavior and of AM Her stars from direct measurement are discussed. The implications of disk and stream accretion for the geometry of the emission region and for the X-ray pulse profiles are considered. The physicl properties of the X-ray emission region and the expected infrared, optical, soft X-ray, and hard X-ray spectra are described. The orientations of the magnetic moment in AM Her stars inferred from the circular and linear polarization of the optical light and the optical light curve are commented on.
Highlights of Odessa Branch of AN in 2017
NASA Astrophysics Data System (ADS)
Andronov, I. L.
2017-12-01
An annual report with a list of publications. Our group works on the variable star research within the international campaign "Inter-Longitude Astronomy" (ILA) based on temporarily working groups in collaboration with Poland, Slovakia, Korea, USA and other countries. A recent self-review on highlights was published in 2017. Our group continues the scientific school of Prof. Vladymir P. Tsesevich (1907 - 1983). Another project we participate is "AstroInformatics". The unprecedented photo-polarimetric monitoring of a group of AM Her - type magnetic cataclysmic variable stars was carried out since 1989 (photometry in our group - since 1978). A photometric monitoring of the intermediate polars (MU Cam, V1343 Her, V2306 Cyg et al.) was continued to study rotational evolution of magnetic white dwarfs. The super-low luminosity state was discovered in the outbursting intermediate polar = magnetic dwarf nova DO Dra. Previously typical low state was some times interrupted by outbursts, which are narrower than usual dwarf nova outbursts. Once there were detected TPO - "Transient Periodic Oscillations". The orbital and quasi-periodic variability was recently studied. Such super-low states are characteristic for nova-like variables (e.g. MV Lyr, TT Ari) or intermediate polars, but unusual for the dwarf novae. The electronic "Catalogue of Characteristics and Atlas of the Light Curves of Newly-Discovered Eclipsing Binary Stars" was compiled and is being prepared for publication. The software NAV ("New Algol Variable") with specially developed algorithms was used. It allows to determine the begin and end of the eclipses even in EB and EW - type stars, whereas the current classification (GCVS, VSX) claims that the begin and end of eclipses only in the EA - type objects. The further improvements of the NAV algorithm were comparatively studied. The "Wall-Supported Polynomial" (WSP) algoritms were implemented in the software MAVKA for statistically optimal modeling of flat eclipses and exoplanet transitions. MAVKA was used for studies of effects of the mass transfer and presence of the third components in close binary stellar systems and analysis of the poorly studied eclipsing binary 2MASS J20355082+5242136. Atlas of the Light Curves and Phase Plane Portraits of Selected Long-Period Variables was compiled.
LUMINOSITY FUNCTIONS OF LMXBs IN CENTAURUS A: GLOBULAR CLUSTERS VERSUS THE FIELD
DOE Office of Scientific and Technical Information (OSTI.GOV)
Voss, Rasmus; Gilfanov, Marat; Sivakoff, Gregory R.
2009-08-10
We study the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXB) in the nearby early-type galaxy Centaurus A, concentrating primarily on two aspects of binary populations: the XLF behavior at the low-luminosity limit and the comparison between globular cluster and field sources. The 800 ksec exposure of the deep Chandra VLP program allows us to reach a limiting luminosity of {approx}8 x 10{sup 35} erg s{sup -1}, about {approx}2-3 times deeper than previous investigations. We confirm the presence of the low-luminosity break of the overall LMXB XLF at log(L{sub X} ) {approx} 37.2-37.6, below which the luminosity distribution followsmore » a dN/d(ln L) {approx} const law. Separating globular cluster and field sources, we find a statistically significant difference between the two luminosity distributions with a relative underabundance of faint sources in the globular cluster population. This demonstrates that the samples are drawn from distinct parent populations and may disprove the hypothesis that the entire LMXB population in early-type galaxies is created dynamically in globular clusters. As a plausible explanation for this difference in the XLFs, we suggest an enhanced fraction of helium-accreting systems in globular clusters, which are created in collisions between red giants and neutron stars. Due to the four times higher ionization temperature of He, such systems are subject to accretion disk instabilities at {approx}20 times higher mass accretion rate and, therefore, are not observed as persistent sources at low luminosities.« less
Proper-motion age dating of the progeny of Nova Scorpii AD 1437.
Shara, M M; Iłkiewicz, K; Mikołajewska, J; Pagnotta, A; Bode, M F; Crause, L A; Drozd, K; Faherty, J; Fuentes-Morales, I; Grindlay, J E; Moffat, A F J; Pretorius, M L; Schmidtobreick, L; Stephenson, F R; Tappert, C; Zurek, D
2017-08-30
'Cataclysmic variables' are binary star systems in which one star of the pair is a white dwarf, and which often generate bright and energetic stellar outbursts. Classical novae are one type of outburst: when the white dwarf accretes enough matter from its companion, the resulting hydrogen-rich atmospheric envelope can host a runaway thermonuclear reaction that generates a rapid brightening. Achieving peak luminosities of up to one million times that of the Sun, all classical novae are recurrent, on timescales of months to millennia. During the century before and after an eruption, the 'novalike' binary systems that give rise to classical novae exhibit high rates of mass transfer to their white dwarfs. Another type of outburst is the dwarf nova: these occur in binaries that have stellar masses and periods indistinguishable from those of novalikes but much lower mass-transfer rates, when accretion-disk instabilities drop matter onto the white dwarfs. The co-existence at the same orbital period of novalike binaries and dwarf novae-which are identical but for their widely varying accretion rates-has been a longstanding puzzle. Here we report the recovery of the binary star underlying the classical nova eruption of 11 March AD 1437 (refs 12, 13), and independently confirm its age by proper-motion dating. We show that, almost 500 years after a classical-nova event, the system exhibited dwarf-nova eruptions. The three other oldest recovered classical novae display nova shells, but lack firm post-eruption ages, and are also dwarf novae at present. We conclude that many old novae become dwarf novae for part of the millennia between successive nova eruptions.
Irradiation-driven Mass Transfer Cycles in Compact Binaries
NASA Astrophysics Data System (ADS)
Büning, A.; Ritter, H.
2005-08-01
We elaborate on the analytical model of Ritter, Zhang, & Kolb (2000) which describes the basic physics of irradiation-driven mass transfer cycles in semi-detached compact binary systems. In particular, we take into account a contribution to the thermal relaxation of the donor star which is unrelated to irradiation and which was neglected in previous studies. We present results of simulations of the evolution of compact binaries undergoing mass transfer cycles, in particular also of systems with a nuclear evolved donor star. These computations have been carried out with a stellar evolution code which computes mass transfer implicitly and models irradiation of the donor star in a point source approximation, thereby allowing for much more realistic simulations than were hitherto possible. We find that low-mass X-ray binaries (LMXBs) and cataclysmic variables (CVs) with orbital periods ⪉ 6hr can undergo mass transfer cycles only for low angular momentum loss rates. CVs containing a giant donor or one near the terminal age main sequence are more stable than previously thought, but can possibly also undergo mass transfer cycles.
NASA Astrophysics Data System (ADS)
Bhattacharyya, Sudip
2002-02-01
We calculate the accretion disc temperature profiles, disc luminosities and boundary layer luminosities for rapidly rotating neutron stars considering the full effect of general relativity. We compare the theoretical values of these quantities with their values inferred from EXOSAT data for four low mass X-ray binary sources: XB 1820-30, GX 17+2, GX 9+1 and GX 349+2 and constrain the values of several properties of these sources. According to our calculations, the neutron stars in GX 9+1 and GX 349+2 are rapidly rotating and stiffer equations of state are unfavoured.
Research of Precataclysmic Variables with Radius Excesses
NASA Astrophysics Data System (ADS)
Deminova, N. R.; Shimansky, V. V.; Borisov, N. V.; Gabdeev, M. M.; Shimanskaya, N. N.
2017-06-01
The results of spectroscopic observations of the pre-cataclysmic variable NSVS 14256825, which is a HW Vir binary system, were analyzed. The chemical composition is determined, the radial velocities and equivalent widths of a given star are measured. The fundamental parameters of the components were determined (R1 = 0.166 R⊙ , M2 = 0.100 M⊙ , R2 = 0.122 R⊙). It is shown that the secondary component has a mass close to the mass of brown dwarfs. A comparison of two close binary systems is made: HS 2333 + 3927 and NSVS 14256825. A radius-to-mass relationship for the secondary components of the studied pre-cataclysmic variables is constructed. It is concluded that an excess of radii relative to model predictions for MS stars is observed in virtually all systems.
Studies of an x ray selected sample of cataclysmic variables. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Silber, Andrew D.
1986-01-01
Just prior to the thesis research, an all-sky survey in hard x rays with the HEAO-1 satellite and further observations in the optical resulted in a catalog of about 700 x-ray sources with known optical counterparts. This sample includes 43 cataclysmic variables, which are binaries consisting of a detached white-dwarf and a Roche lobe filling companion star. This thesis consists of studies of the x-ray selected sample of catalcysmic variables.
Can comet clouds around neutron stars explain gamma-ray bursts?
NASA Technical Reports Server (NTRS)
Tremaine, S.; Zytkow, A. N.
1986-01-01
The proposal of Harwit and Salpeter (1973) that gamma-ray bursts are due to impacts of comets onto neutron stars is examined further. It is assumed that most stars are formed with comet clouds similar to the Oort comet cloud which surrounds the sun, and it is suggested that there are at least four mechanisms by wich neutron stars may be formed while retaining their comet clouds: a spherically symmetric supernova explosion in an isolated star, accretion-induced collapse of a white dwarf in a cataclysmic variable with a very low mass secondary, accretion-induced collapse of a white dwarf in a wide binary with a low-mass giant companion, and coalescence of a close binary composed of two white dwarfs. Estimates are given of the cometary impact rates for such systems. It is suggested that if the wide binary scenario is correct, optical bursts may arise from the impact of comets onto the white dwarf remnant of the giant companion.
The cataclysmic variables from the Palomar-Green survey
NASA Astrophysics Data System (ADS)
Ringwald, F. A.
1993-09-01
This thesis explores the cataclysmic variables (CVs) found by the Palomar-Green (PG) survey. This is the first compilation of a statistically complete sample of CVs found by ultraviolet color excess, and not outburst behavior. Blue and red follow-up spectrophotometry suggests that 22 of 68 objects classified originally as CVs are hot subdwarfs. Cool companions may be mimicking CVs' flat energy distributions, although the possibility remains that some are face-on CVs. Spectra taken with the International Ultraviolet Explorer satellite prove useful for distinguishing difficult cases. With the CV sample defined, the orbital periods for eleven systems are investigated with radial velocity studies. At 16th magnitude, CV number counts increase by 2.3 mag-1, although this may level off. The luminosity function is examined for the first time, and a trend toward higher space density at low luminosity is suspected. Outburst properties are compiled, and low-luminosity dwarf novae inflate the total space density to 6 x 10-6 pc-3. I describe all the PG CVs and candidate objects, and show spectra for most. This sample should be useful for population studies, such as measuring the space density with trigonometric parallaxes, or finding the fraction of eclipsing CVs. A new class of nova-likes, the SW Sextantis stars, is characterized by absorption events of the emission lines at spectroscopic phase 0.5, accompanied by large phase lags between the lightcurves and the radial velocity curves and strong high-excitation emission. There are at least six such CVs in this sample of 33, so this mysterious behavior must be common and not peculiar, as previously thought. Five of these six objects eclipse. Serendipitous results for individual CVs include finding low-frequency quasi-periodic variations in the radial velocity curve of the dwarf nova BZ Ursae Majoris. While erratic from epoch to epoch, these are too coherent to be pure noise. Another dwarf nova, HX Pegasi, is caught with time-resolved spectrophotometry on the rise to outburst. This is the second-ever such observation, and the first with red spectra. HX Pegasi is also confirmed as having a novel subdwarf-K red star.
Infrared Detection of Very Low Mass Stars.
NASA Astrophysics Data System (ADS)
Probst, Ronald George
We present in this thesis a review of very-low -mass ((TURN)0.1 M(,0)) star research, and results of two observational programs directed at the photometric detection of low mass binary companions in the infrared. Present theoretical desiderata are model atmospheres for very cool dwarf stars and determination of the minimum protostellar mass with all relevant physics included. Luminosities for these stars are well determined, but the effective temperature scale is uncertain and abundance analyses are lacking. Masses are known for very few, and with large relative errors. The luminosity function for M(,v) > 13 is very uncertain. Astrometric methods provide at present the only means of detecting very low mass objects in significant numbers. Completion of the near-star parallax catalogue and measurement of additional low-mass binaries are important observational programs. The potential of photometric selection of red dwarf binaries is explored in Chapter II. Separation of binaries from single stars by color anomalies alone is found impractical. Detection by overluminosity in the HR diagram is hampered by the intrinsic spread of the field star population. However, we find that application of both kinematic and photometric criteria allows binaries to be detected with only moderate contamination by single stars; we discuss several binary suspects selected in this way. Our approach uses an infrared bandpass to provide temperature resolution in the color baseline, and we present JHK photometry for 60 stars, including recent parallax stars with M(,v)>14. We examine the status of the least luminous stars; there is no conclusive evidence that they are not hydrogen-burning objects. Chapter III presents a survey of (TURN)100 white dwarfs at 2 (mu) for infrared excess indicative of low -luminosity cool companions. White dwarf-red dwarf composites are detectable by infared color anomalies down to M(,v)(TURN)21 for the red dwarf component, and our survey is complete to absolute magnitudes on this level. Candidates for astrometric mass determination are suggested. Several stars are found to be composites containing an accretion disk or a hot subdwarf + dK secondary. We find very few new low-luminosity companions to normal white dwarfs. This does not appear to be a selection effect, nor is there reason to believe that all parent systems have been altered or destroyed in the mass loss phase. Our strongly negative result constrains the luminosity function for red dwarf companions to decline steeply past M(,v) (DBLTURN) 13. This may reflect a general decline in the initial mass function for star formation, or a failure of systems with large mass ratios to form or remain bound in the parent star-forming regions.
Backyard Telescopes Watch an Expanding Binary
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2018-01-01
What can you do with a team of people armed with backyard telescopes and a decade of patience? Test how binary star systems evolve under Einsteins general theory of relativity!Unusual VariablesCataclysmic variables irregularly brightening binary stars consisting of an accreting white dwarf and a donor star are a favorite target among amateur astronomers: theyre detectable even with small telescopes, and theres a lot we can learn about stellar astrophysics by observing them, if were patient.Diagram of a cataclysmic variable. In an AM CVn, the donor is most likely a white dwarf as well, or a low-mass helium star. [Philip D. Hall]Among the large family of cataclysmic variables is one unusual type: the extremely short-period AM Canum Venaticorum (AM CVn) stars. These rare variables (only 40 are known) are unique in having spectra dominated by helium, suggesting that they contain little or no hydrogen. Because of this, scientists have speculated that the donor stars in these systems are either white dwarfs themselves or very low-mass helium stars.Why study AM CVn stars? Because their unusual configuration allows us to predict the behavior of their orbital evolution. According to the general theory of relativity, the two components of an AM CVn will spiral closer and closer as the system loses angular momentum to gravitational-wave emission. Eventually they will get so close that the low-mass companion star overflows its Roche lobe, beginning mass transfer to the white dwarf. At this point, the orbital evolution will reverse and the binary orbit will expand, increasing its period.CBA member Enrique de Miguel, lead author on the study, with his backyard telescope in Huelva, Spain. [Enrique de Miguel]Backyard Astronomy Hard at WorkMeasuring the evolution of an AM CVns orbital period is the best way to confirm this model, but this is no simple task! To observe this evolution, we first need a system with a period that can be very precisely measured best achieved with an eclipsing binary system. Then the system must be observed regularly over a very long period of time.Though such a feat is challenging, a team of astronomers has done precisely this. The Center for Backyard Astrophysics (CBA) a group of primarily amateur astronomers located around the world has collectively observed the AM CVn star system ES Ceti using seven different telescopes over more than a decade. In total, they now have measurements of ES Cetis period spanning 20012017. Now, in a publication led by Enrique de Miguel (CBA-Huelva and University of Huelva, Spain), the group details the outcomes of their patience.Testing the ModelThis OC diagram of the timings of minimum light relative to a test ephemeris demonstrates that ES Cetis orbital period is steadily increasing over time. [de Miguel et al. 2017]De Miguel and collaborators find that ES Cetis 10.3-minute orbital period has indeed increased over time as predicted by the model at a relatively rapid rate: the timescale for change, described by P/(dP/dt), is 10 million years. This outcome is consistent with the hypothesis that the mass transfer and binary evolution of such systems is driven by gravitational radiation marking one of the first such demonstrations with a cataclysmic variable.Whats next for ES Ceti? Systems such as this one will make for interesting targets for the Laser Interferometer Space Antenna (LISA; planned for a 2034 launch). The gravitational radiation emitted by AM CVns like ES Ceti should be strong enough and in the right frequency range to be detected by LISA, providing another test of our models for how these star systems evolve.CitationEnrique de Miguel et al 2018 ApJ 852 19. doi:10.3847/1538-4357/aa9ed6
NASA Technical Reports Server (NTRS)
Markowitz, A.; Uttley, P.
2005-01-01
We present a broadband power spectral density function (PSD) measured from extensive RXTE monitoring data of the low-luminosity AGN NGC 4258, which has an accurate, maser-determined black hole mass of (3.9 plus or minus 0.1) x 10(exp 7) solar mass. We constrain the PSD break time scale to be greater than 4.5 d at greater than 90% confidence, which appears to rule out the possibility that NGC 4258 is an analogue of black hole X-ray binaries (BHXRBs) in the high/soft state. In this sense, the PSD of NGC 4258 is different to that of some more-luminous Seyferts, which appear similar to the PSDs of high/soft state X-ray binaries. This result supports previous analogies between LLAGN and X-ray binaries in the low/hard state based on spectral energy distributions, indicating that the AGN/BHXRB analogy is valid across a broad range of accretion rates.
Broad-band characteristics of seven new hard X-ray selected cataclysmic variables
NASA Astrophysics Data System (ADS)
Bernardini, F.; de Martino, D.; Mukai, K.; Russell, D. M.; Falanga, M.; Masetti, N.; Ferrigno, C.; Israel, G.
2017-10-01
We present timing and spectral analysis of a sample of seven hard X-ray selected cataclysmic variable candidates based on simultaneous X-ray and optical observations collected with XMM-Newton, complemented with Swift/BAT and INTEGRAL /IBIS hard X-ray data and ground-based optical photometry. For six sources, X-ray pulsations are detected for the first time in the range of ˜296-6098 s, identifying them as members of the magnetic class. Swift J0927.7-6945, Swift J0958.0-4208, Swift J1701.3-4304, Swift J2113.5+5422 and possibly PBC J0801.2-4625 are intermediate polars (IPs), while Swift J0706.8+0325 is a short (1.7 h) orbital period polar, the 11th hard X-ray-selected identified so far. X-ray orbital modulation is also observed in Swift J0927.7-6945 (5.2 h) and Swift J2113.5+5422 (4.1 h). Swift J1701.3-4304 is discovered as the longest orbital period (12.8 h) deep eclipsing IP. The spectra of the magnetic systems reveal optically thin multitemperature emission between 0.2 and 60 keV. Energy-dependent spin pulses and the orbital modulation in Swift J0927.7-6945 and Swift J2113.5+5422 are due to intervening local high-density absorbing material (NH ˜ 1022 - 23 cm-2). In Swift J0958.0-4208 and Swift J1701.3-4304, a soft X-ray blackbody (kT ˜ 50 and ˜80 eV) is detected, adding them to the growing group of `soft' IPs. White dwarf masses are determined in the range of ˜ 0.58-1.18 M⊙, indicating massive accreting primaries in five of them. Most sources accrete at rates lower than the expected secular value for their orbital period. Formerly proposed as a long-period (9.4 h) nova-like CV, Swift J0746.3-1608 shows peculiar spectrum and light curves suggesting either an atypical low-luminosity CV or a low-mass X-ray binary.
Up and Down the Black Hole Radio/X-Ray Correlation: The 2017 Mini-outbursts from Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Plotkin, R. M.; Bright, J.; Miller-Jones, J. C. A.; Shaw, A. W.; Tomsick, J. A.; Russell, T. D.; Zhang, G.-B.; Russell, D. M.; Fender, R. P.; Homan, J.; Atri, P.; Bernardini, F.; Gelfand, J. D.; Lewis, F.; Cantwell, T. M.; Carey, S. H.; Grainge, K. J. B.; Hickish, J.; Perrott, Y. C.; Razavi-Ghods, N.; Scaife, A. M. M.; Scott, P. F.; Titterington, D. J.
2017-10-01
The candidate black hole X-ray binary Swift J1753.5-0127 faded to quiescence in 2016 November after a prolonged outburst that was discovered in 2005. Nearly three months later, the system displayed renewed activity that lasted through 2017 July. Here, we present radio and X-ray monitoring over ≈ 3 months of the renewed activity to study the coupling between the jet and the inner regions of the disk/jet system. Our observations cover low X-ray luminosities that have not historically been well-sampled ({L}{{X}}≈ 2× {10}33{--}{10}36 {erg} {{{s}}}-1; 1-10 keV), including time periods when the system was both brightening and fading. At these low luminosities, Swift J1753.5-0127 occupies a parameter space in the radio/X-ray luminosity plane that is comparable to “canonical” systems (e.g., GX 339-4), regardless of whether the system was brightening or fading, even though during its ≳11 year outburst, Swift J1753.5-0127 emitted less radio emission from its jet than expected. We discuss implications for the existence of a single radio/X-ray luminosity correlation for black hole X-ray binaries at the lowest luminosities ({L}{{X}}≲ {10}35 {erg} {{{s}}}-1), and we compare to supermassive black holes. Our campaign includes the lowest luminosity quasi-simultaneous radio/X-ray detection to date for a black hole X-ray binary during its rise out of quiescence, thanks to early notification from optical monitoring combined with fast responses from sensitive multiwavelength facilities.
NASA Technical Reports Server (NTRS)
Maoz, Eyal; Grindlay, Jonathan E.
1995-01-01
The incompatibility of the properties of the X-ray background (XRB) with active galactic nuclei (AGNs) contributing approximately greater than 60% at energies of a few keV has often been interpreted as being due to a substantial contribution of a new population of yet unrecognized X-ray sources. The existence of such population has been recently suggested also by an analysis of very deep ROSAT observations which revealed a considerable excess of faint X-ray sources over that expected from QSO evolution models, and that the average spectrum of the resolved sources becomes harder with decreasing flux limit. These sources could be extragalactic in origin, but if they make a substantial contribution to the XRB then they must exhibit much weaker clustering than galaxies or QSOs in order to be consistent with the stringent constraints on source clustering imposed by autocorrelation analyses of the unresolved XRB. We investigate the possibility that the indicated new population of X-ray sources is Galactic in origin. Examining spherical halo and thick disk distributions, we derive the allowed properties of such populations which would resolve the discrepancy found in the number counts of faint sources and be consistent with observational constraints on the total background intensity, the XRB anisotropy, the number of unidentified bright sources, the Galaxy's total X-ray luminosity, and with the results of fluctuation analyses of the unresolved XRB. We find that a flattened Galactic halo (or a thick disk) distribution with a scale height of a few kpc is consistent with all the above requirements. The typical X-ray luminosity of the sources is approximately equal to 10(exp 30-31)ergs/s in the 0.5-2 keV band, the number density of sources in the solar vicinity is approximately 10(exp -4.5)pc(exp -3), their total number in the Galaxy is approximately 10(exp 8.5), and their total contribution to the Galaxy's X-ray luminosity is approximately 10(exp 39) ergs/s. We discuss the possible nature of these soures, including their being subdwarfs, low mass x-ray binaries (LMXBs), massive black holes, and old neutron stars. We argue that the inferred X-ray and optical luminosities of these sources, the slope of their energy spectrum, and the derived local number density and spatial distribution are all consistent with their being intrinsically faint cataclysmic variables with low accretion rates. We suggest a few possibilities for the origin of such population, including an origin from disrupted globular clusters or dark clusters. We make predictions and suggest tests that could either confirm or rule out our proposal in the near future.
Introductory Overview of Intermediate-luminosity X-ray Objects
NASA Astrophysics Data System (ADS)
Colbert, E. J. M.
2001-05-01
Intermediate-luminosity X-ray Objects (IXOs) are defined as compact objects having X-ray luminosities between those of X-ray binaries and low-luminosity AGNs (i.e., 1039.0 erg s-1 < ~ LX [IXOs] < ~ 1041.0 erg s-1). It is not currently known if these objects are intermediate-mass (M ~ 102-104 Msun) black holes accreting near the Eddington limit, near-solar-mass black holes in a super-Eddington state, or are, in some cases, just supermassive black holes accreting at very low rates. However, the first idea has been popularized by recent press coverage. IXOs are quite common (present in about half of spiral galaxies) and are typically found displaced from the optical nucleus, reducing the likelihood that they are low-luminosity AGN. Nearly all of our knowledge of these objects comes from X-ray observations, as observations of optical, NIR and radio counterparts are not widely known. In this session, we will address (1) the phenomenology of the objects, (2) possible geometry and accretion mechanisms for these objects (i.e., are they more similar to black hole X-ray binaries or AGNs), (3) the central black hole masses, and (4) the formation mechanism for these black holes, if they are of intermediate mass. In this talk, I will focus primarily on giving background information of these fascinating objects.
Episodic accretion in binary protostars emerging from self-gravitating solar mass cores
NASA Astrophysics Data System (ADS)
Riaz, R.; Vanaverbeke, S.; Schleicher, D. R. G.
2018-06-01
Observations show a large spread in the luminosities of young protostars, which are frequently explained in the context of episodic accretion. We tested this scenario with numerical simulations that follow the collapse of a solar mass molecular cloud using the GRADSPH code, thereby varying the strength of the initial perturbations and temperature of the cores. A specific emphasis of this paper is to investigate the role of binaries and multiple systems in the context of episodic accretion and to compare their evolution to the evolution in isolated fragments. Our models form a variety of low-mass protostellar objects including single, binary, and triple systems in which binaries are more active in exhibiting episodic accretion than isolated protostars. We also find a general decreasing trend in the average mass accretion rate over time, suggesting that the majority of the protostellar mass is accreted within the first 105 years. This result can potentially help to explain the surprisingly low average luminosities in the majority of the protostellar population.
BOKS 45906: a CV with an orbital period of 56.6 min in the Kepler field?
NASA Astrophysics Data System (ADS)
Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.
2014-02-01
BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 mag outburst lasting ˜5 d. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 min sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 ± 0.0014 min and a semi-amplitude of ˜3 per cent. Since we can phase all the 1 min cadence data on a common ephemeris using this period, it is probable that 56.56 min is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the `period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.
Multi-wavelength Observations of Accreting Compact Objects
NASA Astrophysics Data System (ADS)
Hernandez Santisteban, Juan Venancio
2016-11-01
The study of compact binaries invokes core astrophysical concepts ranging from stellar and sub-stellar atmospheres and interiors, stellar and binary evolution to physics of accretion. All of these systems are hosts to a compact object a white dwarf, neutron star or black hole ???? which produces a wide variety of exotic and energetic phenomena across the full electromagnetic spectrum. In this thesis, I will make use of multi-wavelength observations ranging from far-ultraviolet to nearinfrared in order to investigate two main topics: a) the late evolution of cataclysmic variables, and b) the accreting state of transitional millisecond pulsars. Firstly, I analyse the Very Large Telescope X-Shooter time-resolved spectroscopy of the short orbital period cataclysmic variable, SDSS J1433+1011, in Chapter 2. The wide wavelength coverage allowed me to perform a detailed characterisation of the system, as well as a direct mass measurement of the brown dwarf companion. I show that the donor in SDSS J1433+1011 successfully transitioned from the stellar to sub-stellar regime, as predicted by evolutionary models. Further light-curve modelling allowed me to show that a low albedo as well as a low heat circulation efficiency is present in the atmosphere of the sub-stellar donor. In Chapter 3, I analyse data from large synoptic surveys, such as SDSS and PTF, to search for the predicted population of dead cataclysmic variables. Following the non-detection of dead CVs, I was able to estimate the space density (?0 < 2?10????5 pc????3) of this hidden population via a Monte Carlo simulation of the Galactic CV population. In Chapter 4, I present Hubble Space Telescope ultraviolet observations of the transitional millisecond pulsar PSR J1023+0038, during its latest accretion state. In combination with optical and near-infrared data, I show that a standard accretion disc does not reach the magnetosphere of the neutron star. Instead, the overall spectrum is consistent with a truncated disc at ? 2:3 ? 109 cm away from the compact object. Furthermore, the ultraviolet data shares remarkable similarities with the only accreting white dwarf in a propeller regime, AE Aqr. Finally, I summarise my results in Chapter 5 and provide future lines of research in accreting compact binaries based on this work.
A Deep X-ray Survey of the Globular Cluster Omega Centauri
NASA Astrophysics Data System (ADS)
Henleywillis, Simon; Cool, Adrienne M.; Haggard, Daryl; Heinke, Craig; Callanan, Paul; Zhao, Yue
2018-03-01
We identify 233 X-ray sources, of which 95 are new, in a 222 ks exposure of Omega Centauri with the Chandra X-ray Observatory's ACIS-I detector. The limiting unabsorbed flux in the core is fX(0.5-6.0 keV) ≃ 3×10-16 erg s-1 cm-2 (Lx ≃ 1×1030 erg s-1 at 5.2 kpc). We estimate that ˜60 ± 20 of these are cluster members, of which ˜30 lie within the core (rc = 155 arcsec), and another ˜30 between 1-2 core radii. We identify four new optical counterparts, for a total of 45 likely identifications. Probable cluster members include 18 cataclysmic variables (CVs) and CV candidates, one quiescent low-mass X-ray binary, four variable stars, and five stars that are either associated with ω Cen's anomalous red giant branch, or are sub-subgiants. We estimate that the cluster contains 40 ± 10 CVs with Lx > 1031 erg s-1, confirming that CVs are underabundant in ω Cen relative to the field. Intrinsic absorption is required to fit X-ray spectra of six of the nine brightest CVs, suggesting magnetic CVs, or high-inclination systems. Though no radio millisecond pulsars (MSPs) are currently known in ω Cen, more than 30 unidentified sources have luminosities and X-ray colours like those of MSPs found in other globular clusters; these could be responsible for the Fermi-detected gamma-ray emission from the cluster. Finally, we identify a CH star as the counterpart to the second-brightest X-ray source in the cluster and argue that it is a symbiotic star. This is the first such giant/white dwarf binary to be identified in a globular cluster.
NASA Astrophysics Data System (ADS)
Soszyński, I.; Pawlak, M.; Pietrukowicz, P.; Udalski, A.; Szymański, M. K.; Wyrzykowski, Ł.; Ulaczyk, K.; Poleski, R.; Kozłowski, S.; Skowron, D. M.; Skowron, J.; Mróz, P.; Hamanowicz, A.
2016-12-01
We present a collection of 450 598 eclipsing and ellipsoidal binary systems detected in the OGLE fields toward the Galactic bulge. The collection consists of binary systems of all types: detached, semi-detached, and contact eclipsing binaries, RS CVn stars, cataclysmic variables, HW Vir binaries, double periodic variables, and even planetary transits. For all stars we provide the I- and V-band time-series photometry obtained during the OGLE-II, OGLE-III, and OGLE-IV surveys. We discuss methods used to identify binary systems in the OGLE data and present several objects of particular interest.
The First Simultaneous X-Ray/Radio Detection of the First Be/BH System MWC 656
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ribó, M.; Paredes, J. M.; Marcote, B.
2017-02-01
MWC 656 is the first known Be/black hole (BH) binary system. Be/BH binaries are important in the context of binary system evolution and sources of detectable gravitational waves because they are possible precursors of coalescing neutron star/BH binaries. X-ray observations conducted in 2013 revealed that MWC 656 is a quiescent high-mass X-ray binary (HMXB), opening the possibility to explore X-ray/radio correlations and the accretion/ejection coupling down to low luminosities for BH HMXBs. Here we report on a deep joint Chandra /VLA observation of MWC 656 (and contemporaneous optical data) conducted in 2015 July that has allowed us to unambiguously identifymore » the X-ray counterpart of the source. The X-ray spectrum can be fitted with a power law with Γ ∼ 2, providing a flux of ≃4 × 10{sup −15} erg cm{sup −2} s{sup −1} in the 0.5–8 keV energy range and a luminosity of L {sub X} ≃ 3 × 10{sup 30} erg s{sup −1} at a 2.6 kpc distance. For a 5 M{sub ⊙} BH this translates into ≃5 × 10{sup −9} L {sub Edd}. These results imply that MWC 656 is about 7 times fainter in X-rays than it was two years before and reaches the faintest X-ray luminosities ever detected in stellar-mass BHs. The radio data provide a detection with a peak flux density of 3.5 ± 1.1 μ Jy beam{sup −1}. The obtained X-ray/radio luminosities for this quiescent BH HMXB are fully compatible with those of the X-ray/radio correlations derived from quiescent BH low-mass X-ray binaries. These results show that the accretion/ejection coupling in stellar-mass BHs is independent of the nature of the donor star.« less
Are Some Pre-Cataclysmic Variables also Post-Cataclysmic Variables?
NASA Astrophysics Data System (ADS)
Sarna, M. J.; Marks, P. B.; Smith, R. C.
1995-10-01
We propose an evolutionary scenario in which post-common-envelope binaries (PCEBs) with secondary component masses between 0.8 Msun and 1.2 M0 start semi-detached evolution almost immediately after the common-envelope (CE) phase. These systems detach due to unstable mass transfer when the secondary develops a thick convective envelope. The duration of the detached phase is a few times 108 yr, depending on the efficiency of magnetic braking and gravitational radiation. We suggest that some of the systems that have been classified as PCEBs may be in this stage of evolution and hence would be more realistically classified as pre-cataclysmic variables (PreCVs). We also propose an observational test based on measurements of the carbon and oxygen isotopic ratios from the infrared CO bands.
The intermediate-age pre-cataclysmic variables SDSS J172406+562003 and RE J2013+4002
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Mitrofanova, A. A.; Vlasyuk, V. V.; Spiridonova, O. I.
2012-06-01
We have analyzed the physical status of the pre-cataclysmic variables SDSSJ172406+562003 and RE J2013+4002, which have evolved after their common-envelope stage a time t = 106-107 years. Spectroscopy and photometry of these systems were performed with the 6-m and 1-m telescopes of the Special Astrophysical Observatory. We demonstrate that emission lines in the spectra were formed solely by the reflection of radiation emitted by the white dwarfs on the surfaces of their cool companions, under conditions close to local thermodynamic equilibrium. These effects are also responsible for most of the objects' photometric variability amplitude. However, comparing the light curves of SDSS 172406 from different epochs, we find aperiodic brightness variations, probably due to spottedness of the surface of the secondary. Jointly analyzing the spectra, radial-velocity curves, and light curves of the pre-cataclysmic variables and modeling the reflection effects, we have derived their fundamental parameters. We demonstrate that the secondaries in these systems are consistent with evolutionary models for main-sequence stars and do not have the luminosity excesses characteristic of cool stars in young pre-cataclysmic variables.
Black holes in short period X-ray binaries and the transition to radiatively inefficient accretion
NASA Astrophysics Data System (ADS)
Knevitt, G.; Wynn, G. A.; Vaughan, S.; Watson, M. G.
2014-02-01
By comparing the orbital period distributions of black hole and neutron star low-mass X-ray binaries (LMXBs) in the Ritter-Kolb catalogue we show that there is statistical evidence for a dearth of black hole systems at short orbital periods (Porb < 4 h). This could either be due to a true divergence in orbital period distributions of these two types of system, or to black hole LMXBs being preferentially hidden from view at short orbital periods. We explore the latter possibility, by investigating whether black hole LMXBs could be concealed by a switch to radiatively inefficient accretion at low luminosities. The peak luminosity and the duration of X-ray binary outbursts are related to the disc radius and, hence, the orbital period. At short periods, where the peak outburst luminosity drops close to the threshold for radiatively inefficient accretion, black hole LMXBs have lower outburst luminosities, shorter outburst durations and lower X-ray duty cycles than comparable neutron star systems. These factors can combine to severely reduce the detection probability of short period black hole LMXBs relative to those containing neutron stars. We estimate the outburst properties and orbital period distribution of black hole LMXBs using two models of the transition to radiatively inefficient accretion: an instantaneous drop in accretion efficiency (η) to zero, at a fraction (f) of the Eddington luminosity (LEdd) and a power-law efficiency decrease, η ∝ dot{M}^n, for L < f LEdd. We show that a population of black hole LMXBs at short orbital periods can only be hidden by a sharp drop in efficiency, either instantaneous or for n ≳ 3. This could be achieved by a genuine drop in luminosity or through abrupt spectral changes that shift the accretion power out of a given X-ray band.
Gamma-ray emission from Cataclysmic variables. 1: The Compton EGRET survey
NASA Technical Reports Server (NTRS)
Schlegel, Eric M.; Barrett, Paul E.; De Jager, O. C.; Chanmugam, G.; Hunter, S.; Mattox, J.
1995-01-01
We report the results of the first gamma-ray survey of cataclysmic variables (CVs) using observations obtained with the Energetic Gamma Ray Experiment Telescope (EGRET) instrument on the Compton Observatory. We briefly describe the theoretical models that are applicable to gamma-ray emission from CVs. These models are particularly relevant to magnetic CVs containing asynchronously rotating white dwarfs. No magnetic CV was detected with an upper limit on the flux at 1 GeV of approximately 2 x 10(exp -8)/sq cm/sec, which corresponds to an upper limit on the gamma-ray luminosity of approximately 10(exp 31) ergs/sec, assuming a typical CV distance of 100 pc.
The Impact of Accurate Distances on UV Spectroscopy of White Dwarfs and Cataclysmic Variables
2009-01-01
evolution. Four instability strips in the HR diagram are associated with planetary nebulae nuclei (PNN) and white dwarfs (WDs). The rst instability...strip occurs during the high luminosity planetary nebula phase. The second is during the pre- WD stars of the PG 1159 spectral type, which are direct
The first sub-70 min non-interacting WD-BD system: EPIC212235321
NASA Astrophysics Data System (ADS)
Casewell, S. L.; Braker, I. P.; Parsons, S. G.; Hermes, J. J.; Burleigh, M. R.; Belardi, C.; Chaushev, A.; Finch, N. L.; Roy, M.; Littlefair, S. P.; Goad, M.; Dennihy, E.
2018-05-01
We present the discovery of the shortest period, non-interacting, white dwarf-brown dwarf post-common-envelope binary known. The K2 light curve shows the system, EPIC 21223532 has a period of 68.2 min and is not eclipsing, but does show a large reflection effect due to the irradiation of the brown dwarf by the white dwarf primary. Spectra show hydrogen, magnesium, and calcium emission features from the brown dwarf's irradiated hemisphere, and the mass indicates the spectral type is likely to be L3. Despite having a period substantially lower than the cataclysmic variable period minimum, this system is likely a pre-cataclysmic binary, recently emerged from the common-envelope. These systems are rare, but provide limits on the lowest mass object that can survive common-envelope evolution, and information about the evolution of white dwarf progenitors, and post-common-envelope evolution.
On the orbital period of the magnetic cataclysmic variable HU Aquarii
NASA Astrophysics Data System (ADS)
Vogel, J.; Schwope, A.; Schwarz, R.; Kanbach, G.; Dhillon, V. S.; Marsh, T. R.
2008-02-01
We present an analysis of ULTRACAM light curves of the magnetic cataclysmic variable HU Aquarii which were taken at the VLT in May 2005. Since the light curves were serendipitously obtained during a low state, they allowed us to determine the binary and the stellar parameters with high accuracy. The light curve was decomposed into the components originating from the accretion spot, the photosphere surrounding it and the white dwarf itself, which allowed us to extract the eclipse light curve for the pure white dwarf. Combined with high-time resolution observations with different instruments over a 12 year baseline it was possible to get exact eclipse timings of the white dwarf and thus establish a significant deviation from a linear ephemeris. If described by a quadratic term, the period decreases by -1.13×10-11 ss-1. Interpreting this change in period as a pure angular momentum loss (AML) effect, the rate of J˙ = -4.9×1035 erg is much too high to be explained by gravitational radiation alone.
CXOGBS J173620.2-293338: A candidate symbiotic X-ray binary associated with a bulge carbon star
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hynes, Robert I.; Britt, C. T.; Johnson, C. B.
2014-01-01
The Galactic Bulge Survey (GBS) is a wide but shallow X-ray survey of regions above and below the Plane in the Galactic Bulge. It was performed using the Chandra X-ray Observatory's ACIS camera. The survey is primarily designed to find and classify low luminosity X-ray binaries. The combination of the X-ray depth of the survey and the accessibility of optical and infrared counterparts makes this survey ideally suited to identification of new symbiotic X-ray binaries (SyXBs) in the Bulge. We consider the specific case of the X-ray source CXOGBS J173620.2-293338. It is coincident to within 1 arcsec with a verymore » red star, showing a carbon star spectrum and irregular variability in the Optical Gravitational Lensing Experiment data. We classify the star as a late C-R type carbon star based on its spectral features, photometric properties, and variability characteristics, although a low-luminosity C-N type cannot be ruled out. The brightness of the star implies it is located in the Bulge, and its photometric properties are overall consistent with the Bulge carbon star population. Given the rarity of carbon stars in the Bulge, we estimate the probability of such a close chance alignment of any GBS source with a carbon star to be ≲ 10{sup –3}, suggesting that this is likely to be a real match. If the X-ray source is indeed associated with the carbon star, then the X-ray luminosity is around 9 × 10{sup 32} erg s{sup –1}. Its characteristics are consistent with a low luminosity SyXB, or possibly a low accretion rate white dwarf symbiotic.« less
Models for various aspects of dwarf novae and nova-like stars
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
The first attempts to explain the nature of dwarf novae were based on the assumption of single-star phenomena, in which emission lines were assumed to be caused by circumstellar gas shells. The outburst behavior was tentatively ascribed to the kind of (also not understood) mechanism leading to nova outbursts. The realization that some, and possibly all, dwarf novae and nova-like stars (and novae) are binaries eventually led to models which bore more and more similarities to the modern interpretation on the basis of the Roche model. Not all cataclysmic variables are known binaries. In fact, with respect to the entire number of known objects, the proven binaries are still the minority, but all the brightest variables are in fact known to binaries. Not a single system is known which exhibits the usual characteristics of a cataclysmic variable and at the same time can be declared with certainty to be a single star. Two systems are known, the dwarf nova EY Cyg and the recurrent nova V1017 Sgr, in which, in spite of intensive search, no radial velocity variations have been found; but they still exhibit composite spectra consisting of a bright continuum, an emission spectrum, and a cool absorption spectrum. If the Roche model is correct, it is to be expected that a small percentage of objects is viewed pole-on, so orbital motions do not make themselves felt as Doppler shifts of spectral lines. So even these two systems support the hypothesis that all cataclysmic variables (with the possible exception of symbiotic stars) are binaries. In cataclysmic variables, it seems that the brightness changes observed in dwarf novae and nova-like stars in the optical and the UV are due directly to changes in the accretion disks. The study and understanding of accretion disks in these systems can bear potentially valuable consequences for many other fields in astronomy. The observed spectra of dwarf novae and nova-like stars comprise a fairly large range: pure emission spectra, pure absorption spectra, a mixture of both, asymmetric line profiles, very different slopes of the continuous flux distribution -- and one single system may exhibit all of these features at different times. Agreement and disagreement between computed and observed spectra should show whether or not the Roche model is applicable and where it probably will have to be modified and improved. Except for their outburst behavior and its immediate consequences, novae, dwarf novae, and nova-like stars cannot be physically distinguished from each other.
Discovery of a 3.6-hr Eclipsing Luminous X-Ray Binary in the Galaxy NGC 4214
NASA Technical Reports Server (NTRS)
Ghosh, Kajal K.; Rappaport, Saul; Tennant, Allyn F.; Swartz, Douglas A.; Pooley, David; Madhusudhan, N.
2006-01-01
We report the discovery of an eclipsing X-ray binary with a 3.62-hr period within 24 arcsec of the center of the dwarf starburst galaxy NGC 4214. The orbital period places interesting constraints on the nature of the binary, and allows for a few very different interpretations. The most likely possibility is that the source lies within NGC 4214 and has an X-ray luminosity of up to 7e38. In this case the binary may well be comprised of a naked He-burning donor star with a neutron-star accretor, though a stellar-mass black-hole accretor cannot be completely excluded. There is no obvious evidence for a strong stellar wind in the X-ray orbital light curve that would be expected from a massive He star; thus, the mass of the He star should be <3-4 solar masses. If correct, this would represent a new class of very luminous X-ray binary----perhaps related to Cyg X-3. Other less likely possibilities include a conventional low-mass X-ray binary that somehow manages to produce such a high X-ray luminosity and is apparently persistent over an interval of years; or a foreground AM Her binary of much lower luminosity that fortuitously lies in the direction of NGC 4214. Any model for this system must accommodate the lack of an optical counterpart down to a limiting magnitude of 22.6 in the visible.
Spectral types of four binaries based on photometric observations
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Bikmaev, I. F.; Borisov, N. V.; Vlasyuk, V. V.; Galeev, A. I.; Sakhibullin, N. A.; Spiridonova, O. I.
2008-09-01
We present results of photometric and spectroscopic observations of four close binaries with subdwarf B components: PG 0918+029, PG 1000+408, PG 1116+301, PG 0001+275. We discovered that PG 1000+408 is a close binary, with the most probable orbital period being P orb = 1.041145 day. Based on a comparison of the observed light curves at selected orbital phases and theoretical predictions for their variations, all the systems are classified as doubly degenerate binaries with low-luminosity white-dwarf secondaries.
NASA Astrophysics Data System (ADS)
Belloni, Diogo; Zorotovic, Mónica; Schreiber, Matthias R.; Leigh, Nathan W. C.; Giersz, Mirek; Askar, Abbas
2017-06-01
In this third of a series of papers related to cataclysmic variables (CVs) and related objects, we analyse the population of CVs in a set of 12 globular cluster models evolved with the MOCCA Monte Carlo code, for two initial binary populations (IBPs), two choices of common-envelope phase (CEP) parameters, and three different models for the evolution of CVs and the treatment of angular momentum loss. When more realistic models and parameters are considered, we find that present-day cluster CV duty cycles are extremely low (≲0.1 per cent) that makes their detection during outbursts rather difficult. Additionally, the IBP plays a significant role in shaping the CV population properties, and models that follow the Kroupa IBP are less affected by enhanced angular momentum loss. We also predict from our simulations that CVs formed dynamically in the past few Gyr (massive CVs) correspond to bright CVs (as expected) and that faint CVs formed several Gyr ago (dynamically or not) represent the overwhelming majority. Regarding the CV formation rate, we rule out the notion that it is similar irrespective of the cluster properties. Finally, we discuss the differences in the present-day CV properties related to the IBPs, the initial cluster conditions, the CEP parameters, formation channels, the CV evolution models and the angular momentum loss treatments.
BOKS 45906: a CV with an Orbital Period of 56.6 Min in the Kepler Field?
NASA Technical Reports Server (NTRS)
Ramsay, Gavin; Howell, Steve B.; Wood, Matt A.; Smale, Alan; Barclay, Thomas; Seebode, Sally A.; Gelino, Dawn; Still, Martin; Cannizzo, John K.
2013-01-01
BOKS 45906 was found to be a blue source in the Burrell-Optical-Kepler Survey which showed a 3 magnitude outburst lasting approximately 5 days. We present the Kepler light curve of this source which covers nearly 3 years. We find that it is in a faint optical state for approximately half the time and shows a series of outbursts separated by distinct dips in flux. Using data with 1 minute sampling, we find clear evidence that in its low state BOKS 45906 shows a flux variability on a period of 56.5574 plus or minus 0.0014 minutes and a semi-amplitude of approximately 3 percent. Since we can phase all the 1 minute cadence data on a common ephemeris using this period, it is probable that 56.56 minutes is the binary orbital period. Optical spectra of BOKS 45906 show the presence of Balmer lines in emission indicating it is not an AM CVn (pure Helium) binary. Swift data show that it is a weak X-ray source and is weakly detected in the bluest of the UVOT filters. We conclude that BOKS 45906 is a cataclysmic variable with a period shorter than the 'period-bounce' systems and therefore BOKS 45906 could be the first helium-rich cataclysmic variable detected in the Kepler field.
NASA Astrophysics Data System (ADS)
Pooley, David Aaron
2003-09-01
This thesis comprises the results of two distinct areas of research, namely, X-ray studies of Galactic globular clusters and X-ray studies of recent core collapse supernovae. My analyses of the Chandra X-ray Observatory observations of the globular clusters NGC 6752 and NGC 6440 revealed as many low- luminosity X-ray sources as was in the entire census of globular cluster sources with the previous best X-ray imaging instrument, Röntgensatellit. In the observation of NGC 6752, I detect 6 X-ray sources within the 10''.5 core radius and 13 more within the 115' half-mass radius down to a limiting luminosity of Lx ≈ 1030 ergs s -1 for cluster sources. Based on a reanalysis of archival data from the Hubble Space Telescope and the Australia Telescope Compact Array, I make 12 optical identifications and one radio identification. Based on X- ray and optical properties of the identifications, I find 10 likely cataclysmic variables (CVs), 1 3 likely RS CVn or BY Dra systems, and 1 or 2 possible background objects. Of the 7 sources for which no optical identifications were made, one was detected in the archival radio data, and another was found to be a millisecond pulsar. Of the remaining sources, I expect that ˜2 4 are background objects and that the rest are either CVs or millisecond pulsars whose radio emission has not been detected. These and other Chandra results on globular clusters indicate that the dozens of CVs per cluster expected by theoretical arguments are being found. Based upon X-ray luminosities and colors, I conclude that there are 4 5 likely quiescent low-mass X-ray binaries and that most of the other sources are cataclysmic variables. I compare these results to Chandra results from other globular clusters and find the X-ray luminosity functions differ among the clusters. Observations of the Type II-P (plateau) Supernova (SN) 1999em and Type IIn (narrow emission line) SN 1998S have enabled estimation of the profile of the SN ejecta, the structure of the circumstellar medium (CSM) established by the pre-SN stellar wind, and the nature of the shock interaction. SN 1999em is the first Type II-P detected at both X-ray and radio wavelengths. It is the least radio luminous and one of the least X-ray luminous SNe ever detected (except for the unusual and very close SN 1987A). My analysis of the Chandra X- ray data indicate non-radiative interaction of SN ejecta with a power-law density profile (ρ ∝ r-n with n ˜ 7) for a pre-SN wind with a low mass-loss rate of ˜2 × 10-6 M⊙ yr-1 for a wind velocity of 10 km s-1 , in agreement with radio mass-loss rate estimates. The Chandra data show an unexpected, temporary rise in the 0.4 2.0 keV X-ray flux at ˜100 days after explosion. My analysis of SN 1998S yielded the first X-ray spectrum of a supernova in which numerous heavy element emission features (Ne, Al, Si, S, Ar, Fe) were present. Spectral fits to the Chandra data show that these heavy elements are overabundant with respect to solar values. I compare the observed elemental abundances and abundance ratios to theoretical calculations and find that our data are consistent with a progenitor mass of approximately 15 20 M⊙ if the heavy element ejecta are radially mixed out to a high velocity. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.) (Abstract shortened by UMI.)
Photometric detection of a candidate low-mass giant binary system at the Milky Way Galactic Center
NASA Astrophysics Data System (ADS)
Krishna Gautam, Abhimat; Do, Tuan; Ghez, Andrea; Sakai, Shoko; Morris, Mark; Lu, Jessica; Witzel, Gunther; Jia, Siyao; Becklin, Eric Eric; Matthews, Keith
2018-01-01
We present the discovery of a new periodic variable star at the Milky Way Galactic Center (GC). This study uses laser guide-star adaptive optics data collected with the W. M. Keck 10 m telescope in the K‧-band (2.2 µm) over 35 nights spanning an 11 year time baseline, and 5 nights of additional H-band (1.6 µm) data. We implemented an iterative photometric calibration and local correction technique, resulting in a photometric uncertainty of Δm_K‧ ∼ 0.03 to a magnitude of m_K‧ ∼ 16.The periodically variable star has a 39.42 day period. We find that the star is not consistent with known periodically variable star classes in this period range with its observed color and luminosity, nor with an eclipsing binary system. The star's color and luminosity are however consistent with an ellipsoidal binary system at the GC, consisting of a K-giant and a dwarf component with an orbital period of 78.84 days. If a binary system, it represents the first detection of a low-mass giant binary system in the central half parsec of the GC. Such long-period binary systems can easily evaporate in the dense environment of the GC due to interactions with other stars. The existence and properties of a low-mass, long-period binary system can thus place valuable constraints on dynamical models of the GC environment and probe the density of the hypothesized dark cusp of stellar remnants at the GC.
NASA Astrophysics Data System (ADS)
Giovannelli, Franco; Sabau-Graziati, Lola
This paper is the updated version of that published in the proceedings of the Integral/Bart Workshop 2011 (Giovannelli & Sabau-Graziati, 2012a). SS Cyg is a cataclysmic variable usually classified as dwarf nova, a subclass of the non-magnetic cataclysmic variables. The goal of this paper is to demonstrate -- on the basis of the many arguments and circumstantial proofs derived from the numerous multifrequency data obtained from the SS Cyg binary system -- that such classification is wrong and that the intermediate polar nature of SS Cyg is the most probable. We derive the magnetic field intensity at the surface of the white dwarf in SS Cyg as B ≃ 1.6 ± 0.7 MG. This value is in complete agreement with the evaluation made by Fabbiano et al. (1981) (B< 1.9 MG) using simultaneous X-ray, UV, and optical data.
Effects of variability of X-ray binaries on the X-ray luminosity functions of Milky Way
NASA Astrophysics Data System (ADS)
Islam, Nazma; Paul, Biswajit
2016-08-01
The X-ray luminosity functions of galaxies have become a useful tool for population studies of X-ray binaries in them. The availability of long term light-curves of X-ray binaries with the All Sky X-ray Monitors opens up the possibility of constructing X-ray luminosity functions, by also including the intensity variation effects of the galactic X-ray binaries. We have constructed multiple realizations of the X-ray luminosity functions (XLFs) of Milky Way, using the long term light-curves of sources obtained in the 2-10 keV energy band with the RXTE-ASM. The observed spread seen in the value of slope of both HMXB and LMXB XLFs are due to inclusion of variable luminosities of X-ray binaries in construction of these XLFs as well as finite sample effects. XLFs constructed for galactic HMXBs in the luminosity range 1036-1039 erg/sec is described by a power-law model with a mean power-law index of -0.48 and a spread due to variability of HMXBs as 0.19. XLFs constructed for galactic LMXBs in the luminosity range 1036-1039 erg/sec has a shape of cut-off power-law with mean power-law index of -0.31 and a spread due to variability of LMXBs as 0.07.
Binary Systems and the Initial Mass Function
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2017-07-01
In the present paper we discuss advantages and disadvantages of binary stars, which are important for star formation history determination. We show that to make definite conclusions of the initial mass function shape, it is necessary to study binary population well enough to correct the luminosity function for unresolved binaries; to construct the mass-luminosity relation based on wide binaries data, and to separate observational mass functions of primaries, of secondaries, and of unresolved binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Tien-Hao; Lai, Shih-Ping; Belloche, Arnaud
2016-07-20
The formation mechanism of brown dwarfs (BDs) is one of the long-standing problems in star formation because the typical Jeans mass in molecular clouds is too large to form these substellar objects. To answer this question, it is crucial to study a BD in the embedded phase. IRAS 16253–2429 is classified as a very low-luminosity object (VeLLO) with an internal luminosity of <0.1 L {sub ⊙}. VeLLOs are believed to be very low-mass protostars or even proto-BDs. We observed the jet/outflow driven by IRAS 16253–2429 in CO (2–1), (6–5), and (7–6) using the IRAM 30 m and Atacama Pathfinder Experimentmore » telescopes and the Submillimeter Array (SMA) in order to study its dynamical features and physical properties. Our SMA map reveals two protostellar jets, indicating the existence of a proto-binary system as implied by the precessing jet detected in H{sub 2} emission. We detect a wiggling pattern in the position–velocity diagrams along the jet axes, which is likely due to the binary orbital motion. Based on this information, we derive the current mass of the binary as ∼0.032 M{sub ⊙}. Given the low envelope mass, IRAS 16253–2429 will form a binary that probably consist of one or two BDs. Furthermore, we found that the outflow force as well as the mass accretion rate are very low based on the multi-transition CO observations, which suggests that the final masses of the binary components are at the stellar/substellar boundary. Since IRAS 16253 is located in an isolated environment, we suggest that BDs can form through fragmentation and collapse, similar to low-mass stars.« less
Orbital Period Increase in ES Ceti
NASA Astrophysics Data System (ADS)
de Miguel, Enrique; Patterson, Joseph; Kemp, Jonathan; Myers, Gordon; Rea, Robert; Krajci, Thomas; Monard, Berto; Cook, Lewis M.
2018-01-01
We report a long-term study of the eclipse times in the 10 minute helium binary ES Ceti. The binary period increases rapidly, with P/\\dot{P}=6.2× {10}6 years. This is consistent with the assumption that gravitational radiation (GR) drives the mass transfer, and it appears to be the first dynamical evidence that GR is indeed the driver of evolution in this class of very old cataclysmic variables—the AM Canum Venaticorum stars.
Period changes of the long-period cataclysmic binary EX Draconis
NASA Astrophysics Data System (ADS)
Pilarčík, L.; Wolf, M.; Dubovský, P. A.; Hornoch, K.; Kotková, L.
2012-03-01
The cataclysmic variable star EX Dra is a relatively faint but frequently investigated eclipsing dwarf nova. In total 35 new eclipses were measured photometrically as part of our long-term monitoring of interesting eclipsing systems. Using published and new mid-eclipse times obtained between 2004 and 2011 we constructed the observed-minus-calculated diagram. The current data present 21 years of period modulation with a semi-amplitude of 2.5 min. The eclipse timings show significant deviations from the best sinusoidal fit, which indicates that this ephemeris is not a complete description of the data. The fractional period change is roughly ΔP/P = 3 × 10-6.
Origin of superluminal radio jets in microquasars
NASA Astrophysics Data System (ADS)
Yadav, J. S.; Bhandare, R. S.
In Microquasars, superluminal radio jets are seen at large distances from few hundred AU to 5000 AU with very high radio luminosity. We suggest that these superluminal jets are due to internal shocks which form in the previously generated slowly moving wind (from the accretion disk or the companion star) with beta < 0.01 as the fast moving discrete jet with beta sim 1 catches up and interacts with it. The black hole X-ray binaries with transient radio emission (mostly LMXBs) produce superluminal jets with beta_app > 1 when the accretion rate is high and the bolometric luminosity, L_bol approaches the Eddington Luminosity, L_Edd. On the other hand, the black hole X-ray binaries with persistent radio emission (mostly HMXBs) produce superluminal jets with beta_app < 1 at relatively low accretion rate. Our work here brings Galactic microquasars closer to extragalactic AGNs and quasars as the environment plays an important role in the formation of superluminal jets.
Multiwavength Observations of the Black Hole X-Ray Binary A0620-00 in Quiescence
NASA Astrophysics Data System (ADS)
Dinçer, Tolga; Bailyn, Charles D.; Miller-Jones, James C. A.; Buxton, Michelle; MacDonald, Rachel K. D.
2018-01-01
We present results from simultaneous multiwavelength X-ray, radio, and optical/near-infrared observations of the quiescent black hole X-ray binary A0620-00 performed in 2013 December. We find that the Chandra flux has brightened by a factor of 2 since 2005, and by a factor of 7 since 2000. The spectrum has not changed significantly over this time, being consistent with a power law of {{Γ }}=2.07+/- 0.13 and a hydrogen column of {N}H=(3.0+/- 0.5)× {10}21 {{cm}}-2. Very Large Array observations of A0620-00 at three frequencies, over the interval of 5.25–22.0 GHz, have provided us with the first broadband radio spectrum of a quiescent stellar mass black hole system at X-ray luminosities as low as 10‑8 times the Eddington luminosity. Compared to previous observations, the source has moved to lower radio and higher X-ray luminosity, shifting it perpendicular to the standard track of the radio/X-ray correlation for X-ray binaries. The radio spectrum is inverted with a spectral index α =0.74+/- 0.19 ({S}ν \\propto {ν }α ). This suggests that the peak of the spectral energy distribution is likely to be between 1012 and 1014 Hz, and that the near-IR and optical flux contain significant contributions from the star, the accretion flow, and from the outflow. Decomposing these components may be difficult, but holds the promise of revealing the interplay between accretion and jet in low luminosity systems.
Mass-Luminosity Relations for Rapid and Slow Rotators.
NASA Astrophysics Data System (ADS)
Malkov, O. Yu.
2006-08-01
Comparing the radii of eclipsing binaries components and single stars we have found a noticeable difference between observational parameters of B0V-G0V components of eclipsing binaries and those of single stars of the corresponding spectral type. This difference was confirmed by re-analysing the results of independent investigations published in the literature. Larger radii and higher temperatures of A-F eclipsing binaries can be explained by synchronization of such stars in close systems that prevents them to rotate rapidly. So, we have found that the mass-luminosity relation based on eclipsing binary data cannot be used to derive the initial mass function of single stars. While our current knowledge of the empirical mass-luminosity relation for intermediate-mass (1.5 to 10 m[*]) stars is based exclusively on data from eclipsing binaries, knowledge of the mass-luminosity relation should come from dynamical mass determinations of visual binaries, combined with spatially resolved precise photometry. Then the initial mass function should be revised for m>1.5m[*]. Data were collected on fundamental parameters of stars with masses m > 1.5.m [*]). They are components of binaries with P > 15^d and consequently are not synchronised with the orbital periods and presumably are rapid rotators. These stars are believed to evolve similarly with single stars, so these data allow us to construct mass-luminosity and other relations that can more confidently be used for statistical and astrophysical investigations of single stars than so called standard relations, based on data on detached main-sequence double-lined short-period eclipsing binaries. Mass-luminosity, mass-temperature and mass-radius relations of single stars are presented, as well as their HR diagram.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers
NASA Astrophysics Data System (ADS)
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-01
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Gravitational-Wave Luminosity of Binary Neutron Stars Mergers.
Zappa, Francesco; Bernuzzi, Sebastiano; Radice, David; Perego, Albino; Dietrich, Tim
2018-03-16
We study the gravitational-wave peak luminosity and radiated energy of quasicircular neutron star mergers using a large sample of numerical relativity simulations with different binary parameters and input physics. The peak luminosity for all the binaries can be described in terms of the mass ratio and of the leading-order post-Newtonian tidal parameter solely. The mergers resulting in a prompt collapse to black hole have the largest peak luminosities. However, the largest amount of energy per unit mass is radiated by mergers that produce a hypermassive neutron star or a massive neutron star remnant. We quantify the gravitational-wave luminosity of binary neutron star merger events, and set upper limits on the radiated energy and the remnant angular momentum from these events. We find that there is an empirical universal relation connecting the total gravitational radiation and the angular momentum of the remnant. Our results constrain the final spin of the remnant black hole and also indicate that stable neutron star remnant forms with super-Keplerian angular momentum.
Neutron stars and millisecond pulsars from accretion-induced collapse in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Grindlay, Jonathan E.
1990-01-01
This paper examines the limits on the number of millisecond pulsars which could be formed in globular clusters by the generally accepted scenario (in which a neutron star is created by the supernova of an initially massive star and subsequently captures a companion to form a low-mass X-ray binary which eventually becomes a millisecond pulsar). It is found that, while the number of observed low-mass X-ray binaries can be adequately explained in this way, the reasonable assumption that the pulsar luminosity function in clusters extends below the current observational limits down to the luminosity of the faintest millisecond pulsars in the field suggests a cluster population of millisecond pulsars which is substantially larger than the standard model can produce. Alleviating this problem by postulating much shorter lifetimes for the X-ray binaries requires massive star populations sufficiently large that the mass loss resulting from their evolution would be likely to unbind the cluster. It is argued that neutron star formation in globular clusters by accretion-induced collapse of white dwarfs may resolve the discrepancy in birthrates.
A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127
NASA Astrophysics Data System (ADS)
Shaw, A. W.; Gandhi, P.; Altamirano, D.; Uttley, P.; Tomsick, J. A.; Charles, P. A.; Fürst, F.; Rahoui, F.; Walton, D. J.
2016-05-01
We present results from the spectral fitting of the candidate black hole X-ray binary Swift J1753.5-0127 in an accretion state previously unseen in this source. We fit the 0.7-78 keV spectrum with a number of models, however the preferred model is one of a multitemperature disc with an inner disc temperature kTin = 0.252 ± 0.003 keV scattered into a steep power-law with photon index Γ =6.39^{+0.08}_{-0.02} and an additional hard power-law tail (Γ = 1.79 ± 0.02). We report on the emergence of a strong disc-dominated component in the X-ray spectrum and we conclude that the source has entered the soft state for the first time in its ˜10 yr prolonged outburst. Using reasonable estimates for the distance to the source (3 kpc) and black hole mass (5 M⊙), we find the unabsorbed luminosity (0.1-100 keV) to be ≈0.60 per cent of the Eddington luminosity, making this one of the lowest luminosity soft states recorded in X-ray binaries. We also find that the accretion disc extended towards the compact object during its transition from hard to soft, with the inner radius estimated to be R_{in}=28.0^{+0.7}_{-0.4} R_g or ˜12Rg, dependent on the boundary condition chosen, assuming the above distance and mass, a spectral hardening factor f = 1.7 and a binary inclination I = 55°.
Magnetic Fields in Interacting Binaries
NASA Astrophysics Data System (ADS)
Briggs, G.; Ferrario, L.; Tout, C. A.; Wickramasinghe, D. T.
2018-01-01
Wickramasinghe et al. (2014) and Briggs et al. (2015) have proposed that the strong magnetic fields observed in some single white dwarfs (MWDs) are formed by an α—Ω dynamo driven by differential rotation when two stars, the more massive one with a degenerate core, merge during common envelope (CE) evolution (Ferrario et al., 2015b). We synthesise a population of binaries to investigate if fields in the magnetic cataclysmic variables (MCVs) may also originate during stellar interaction in the CE phase.
EVOLUTION OF CATACLYSMIC VARIABLES AND RELATED BINARIES CONTAINING A WHITE DWARF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalomeni, B.; Rappaport, S.; Molnar, M.
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43more » donor-star masses (0.1–4.7 M {sub ⊙}), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass ( P {sub orb}– M {sub don}) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P {sub orb}( M {sub wd}) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P {sub orb}– M {sub don} the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.« less
Evolution of Cataclysmic Variables and Related Binaries Containing a White Dwarf
NASA Astrophysics Data System (ADS)
Kalomeni, B.; Nelson, L.; Rappaport, S.; Molnar, M.; Quintin, J.; Yakut, K.
2016-12-01
We present a binary evolution study of cataclysmic variables (CVs) and related systems with white dwarf (WD) accretors, including for example, AM CVn systems, classical novae, supersoft X-ray sources (SXSs), and systems with giant donor stars. Our approach intentionally avoids the complications associated with population synthesis algorithms, thereby allowing us to present the first truly comprehensive exploration of all of the subsequent binary evolution pathways that zero-age CVs might follow (assuming fully non-conservative, Roche-lobe overflow onto an accreting WD) using the sophisticated binary stellar evolution code MESA. The grid consists of 56,000 initial models, including 14 WD accretor masses, 43 donor-star masses (0.1-4.7 M ⊙), and 100 orbital periods. We explore evolution tracks in the orbital period and donor-mass (P orb-M don) plane in terms of evolution dwell times, masses of the WD accretor, accretion rate, and chemical composition of the center and surface of the donor star. We report on the differences among the standard CV tracks, those with giant donor stars, and ultrashort period systems. We show where in parameter space one can expect to find SXSs, present a diagnostic to distinguish among different evolutionary paths to forming AM CVn binaries, quantify how the minimum orbital period in CVs depends on the chemical composition of the donor star, and update the P orb(M wd) relation for binaries containing WDs whose progenitors lost their envelopes via stable Roche-lobe overflow. Finally, we indicate where in the P orb-M don the accretion disks will tend to be stable against the thermal-viscous instability, and where gravitational radiation signatures may be found with LISA.
VizieR Online Data Catalog: Dwarf novae outbursts properties (Otulakowska-Hypka+, 2016)
NASA Astrophysics Data System (ADS)
Otulakowska-Hypka, M.; Olech, A.; Patterson, J.
2017-11-01
In this study, we used the following available catalogue data sources. The catalogue and atlas of CVs (https://archive.stsci.edu/prepds/cvcat/) by Downes et al. (2001PASP..113..764D, Cat. V/123) which contains 1830 objects that have been classified as a CV before 2006 February 1, when the catalogue was frozen. Catalogue of cataclysmic binaries, low-mass X-ray binaries and related objects (http://www.mpa-garching.mpg.de/RKcat/) by Ritter & Kolb (2003A&A...404..301R, Cat. B/cb). Although the reference corresponds to a catalogue which is over 10yr old, its newest edition 7.21 (2013 December 31) has been used in this study. This catalogue contains 1094 CVs. Catalogue of J. Patterson, that is the supplementary electronic material to the publication Patterson (2011) containing properties of 292 non-magnetic CVs with orbital periods smaller than 3h (http://cbastro.org/dwarfnovashort/) (1 data file).
A DEEP CHANDRA OBSERVATION OF THE WOLF-RAYET + BLACK HOLE BINARY NGC 300 X-1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Binder, B.; Williams, B. F.; Anderson, S. F.
We have obtained a 63 ks Chandra ACIS-I observation of the Wolf-Rayet + black hole binary NGC 300 X-1. We measure rapid low-amplitude variability in the 0.35-8 keV light curve. The power density spectrum has a power-law index {gamma} = 1.02 {+-} 0.15 consistent with an accreting black hole in a steep power-law state. When compared to previous studies of NGC 300 X-1 performed with XMM-Newton, we find the source at the low end of the previously measured 0.3-10 keV luminosity. The spectrum of NGC 300 X-1 is dominated by a power law ({Gamma} = 2.0 {+-} 0.3) with amore » contribution at low energies by a thermal component. We estimate the 0.3-10 keV luminosity to be 2.6{sup +0.8}{sub -1.0} Multiplication-Sign 10{sup 38} erg s{sup -1}. The timing and spectroscopic properties of NGC 300 X-1 are consistent with being in a steep power-law state, similar to earlier observations performed with XMM-Newton. We additionally compare our observations to known high-mass X-ray binaries and ultraluminous X-ray sources, and find the properties of NGC 300 X-1 are most consistent with black hole high-mass X-ray binaries.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yaji, Kentaro; Yamada, Shinya; Masai, Kuniaki
We propose a mechanism of state transition in wind-fed black hole (BH) binaries (high-mass X-ray binaries) such as Cyg X-1 and LMC X-1. Modeling a line-driven stellar wind from the companion by two-dimensional hydrodynamical calculations, we investigate the processes of wind capture by, and accretion onto, the BH. We assume that the wind acceleration is terminated at the He ii ionization front because ions responsible for line-driven acceleration are ionized within the front, i.e., the He iii region. It is found that the mass accretion rate inferred from the luminosity is remarkably smaller than the capture rate. Considering the difference,more » we construct a model for the state transition based on the accretion flow being controlled by magnetorotational instability. The outer flow is torus-like, and plays an important role to trigger the transition. The model can explain why state transition does occur in Cyg X-1, while not in LMC X-1. Cyg X-1 exhibits a relatively low luminosity, and then the He ii ionization front is located and can move between the companion and BH, depending on its ionizing photon flux. On the other hand, LMC X-1 exhibits too high luminosity for the front to move considerably; the front is too close to the companion atmosphere. The model also predicts that each state of high-soft or low-hard would last fairly long because the luminosity depends weakly on the wind velocity. In the context of the model, the state transition is triggered by a fluctuation of the magnetic field when its amplitude becomes comparable to the field strength in the torus-like outer flow.« less
NASA Astrophysics Data System (ADS)
Tazzari, M.; Lodato, G.
2015-05-01
In this paper, we revisit the issue of estimating the `fossil' disc mass in the circumprimary disc, during the merger of a supermassive black hole binary. As the binary orbital decay speeds up due to the emission of gravitational waves, the gas in the circumprimary disc might be forced to accrete rapidly and could in principle provide a significant electromagnetic counterpart to the gravitational wave emission. Since the luminosity of such flare is proportional to the gaseous mass in the circumprimary disc, estimating such mass accurately is important. Previous investigations of this issue have produced contradictory results, with some authors estimating super-Eddington flares and large disc mass, while others suggesting that the `fossil' disc mass is very low, even less than a Jupiter mass. Here, we perform simple 1D calculations to show that such very low estimates of the disc mass are an artefact of the specific implementation of the tidal torque in 1D models. In particular, for moderate mass ratios of the binary, the usual formula for the torque used in 1D models significantly overestimates the width of the gap induced by the secondary and this artificially leads to a very small leftover circumprimary disc. Using a modified torque, calibrated to reproduce the correct gap width as estimated by 3D models, leads to fossil disc masses of the order of one solar mass. The rapid accretion of the whole circumprimary disc would produce peak luminosities of the order of 1-20 times the Eddington luminosity. Even if a significant fraction of the gas escapes accretion by flowing out the secondary orbit during the merger (an effect not included in our calculations), we would still predict close to Eddington luminosities that might be easily detected.
Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations
NASA Astrophysics Data System (ADS)
Servillat, M.
2009-05-01
Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).
X-RAY OUTBURSTS OF ESO 243-49 HLX-1: COMPARISON WITH GALACTIC LOW-MASS X-RAY BINARY TRANSIENTS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Zhen; Zhang, Wenda; Yu, Wenfei
2015-09-20
We studied the outburst properties of the hyper-luminous X-ray source ESO 243-49 HLX-1, using the full set of Swift monitoring observations. We quantified the increase in the waiting time, recurrence time, and e-folding rise timescale along the outburst sequence, and the corresponding decrease in outburst duration, total radiated energy, and e-folding decay timescale, which confirms previous findings. HLX-1 spends less and less time in outburst and more and more time in quiescence, but its peak luminosity remains approximately constant. We compared the HLX-1 outburst properties with those of bright Galactic low-mass X-ray binary transients (LMXBTs). Our spectral analysis strengthens themore » similarity between state transitions in HLX-1 and those in Galactic LMXBTs. We also found that HLX-1 follows the nearly linear correlations between the hard-to-soft state transition luminosity and the peak luminosity, and between the rate of change of X-ray luminosity during the rise phase and the peak luminosity, which indicates that the occurrence of the hard-to-soft state transition of HLX-1 is similar to those of Galactic LMXBTs during outbursts. We found that HLX-1 does not follow the correlations between total radiated energy and peak luminosity, and between total radiated energy and e-folding rise/decay timescales we had previously identified in Galactic LMXBTs. HLX-1 would follow those correlations if the distance were several hundreds of kiloparsecs. However, invoking a much closer distance for HLX-1 is not a viable solution to this problem, as it introduces other, more serious inconsistencies with the observations.« less
Quasi-spherical accretion in High Mass X-ray Binaries
NASA Astrophysics Data System (ADS)
Postnov, Konstantin
2016-07-01
Quasi-spherical accreion onto magnetized neutron stars from stellar winds in high-mass X-ray binaries is discussed. Depending on the X-ray luminosity of the neutron star, the accretion can proceed in two regimes (modes): at L_x ≳ 4× 10^{36} erg/s, Compton cooling of accreting matter near magnetosphere leads to a supersonic (Bondi) accretion, while at smaller X-ray luminosity the Compton cooling is ineffective, and subsonic settling accretion regime sets in. In this regime, a hot convective shell is formed around the magnetosphere, and the plasma entry rate into magnetosphere is controlled by less effective radiative plasma cooling. The shell mediates the angular momentum transfer from/to the neutron star magnetosphere. Observational evidences for the different accretion regimes in slowly rotating X-ray pulsars with moderate and low X-ray luminosity, as well as possible manifestations of non-stationary quasi-spherical settling accretion due to the magnetospheric shell instability in Supergiant Fast X-ray Transients will be presented.
The mass spectrum of the white dwarfs in cataclysmic binaries - Supplementary computations
NASA Astrophysics Data System (ADS)
Ritter, H.; Ozkan, M. T.
1986-10-01
Numerical computations supplementing those of Ritter and Burkert (1986) for the study of observational selection in favor of massive white dwarfs among cataclysmic binaries (CBs) are presented. In particular the contribution of CBs beyond the period minimum and the influence of the inclination and of limb-darkening of the accretion disk are investigated. It is found that: (1) the main conclusions of Ritter and Burkert remain unchanged; (2) neither the inclusion of CBs containing a black-dwarf secondary nor the variation of the inclination or limb-darkening change the selection significantly; (3) in a magnitude-limited sample, about 22 percent of the ultra-short-period CBs contain a degenerate secondary; (4) the mean inclination of the accretion disk in a magnitude-limited sample is always close to 60 deg; (5) the fraction of eclipsing systems is of order 10-15 percent at m(v) = 10.0; (6) the mean inclination and the fraction of eclipsing systems increases with the limiting magnitude; and (7) the intrinsic space density of CBs is n(CB) approximately .0001-.0002/cu pc.
Stellar and Circumstellar Properties of Low-Mass, Young, Subarcsecond Binaries
NASA Astrophysics Data System (ADS)
Bruhns, Sara; Prato, L. A.
2014-01-01
We present a study of the stellar and circumstellar characteristics of close (< 1''), young (< 2 to 3 Myr), low-mass (<1 solar mass) binary stars in the Taurus star forming region. Low-resolution (R ~ 2000) spectra were taken in the K-band using adaptive optics to separate the observations for each component and identify the individual spectral types, extinction, and K-band excess. Combining these data with stellar luminosities allows us to estimate the stellar masses and ages. We also measured equivalent widths of the hydrogen Brackett gamma line in order to estimate the strength of gas accretion. We obtained spectra for six binary systems with separations from 1'' down to 0.3''. In the CZ Tau binary we found that the fainter secondary star spectrum appears to be of earlier spectral type than the primary; we speculate on the origin of this inversion.
Multiplicity of the Galactic Senior Citizens: A high-resolution search for cool subdwarf companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.
2015-01-01
Cool subdwarfs, with spectral types late K and M, are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low metallicity and high proper-motions. Understanding their binary fraction could give key insights into the star formation process early in the Milky Way's history. However, because of their low luminosity and relative rarity in the solar neighborhood, binary surveys of cool subdwarfs have suffered from small sample sizes and large incompleteness gaps. It appears, however, that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs yet. We find from 349 target cool subdwarfs, 39 are in multiple systems, 13 newly discovered, for a binary fraction of 11 ± 1.8%.
NASA Technical Reports Server (NTRS)
Wood, Brian E.; Brown, Alexander; Linsky, Jeffrey L.; Kellett, Barry J.; Bromage, Gordon E.; Hodgkin, Simon T.; Pye, John P.
1994-01-01
We report the results of a volume-limited ROSAT Wide Field Camera (WFC) survey of all nondegenerate stars within 10 pc. Of the 220 known star systems within 10 pc, we find that 41 are positive detections in at least one of the two WFC filter bandpasses (S1 and S2), while we consider another 14 to be marginal detections. We compute X-ray luminosities for the WFC detections using Einstein Imaging Proportional Counter (IPC) data, and these IPC luminosities are discussed along with the WFC luminosities throughout the paper for purposes of comparison. Extreme ultraviolet (EUV) luminosity functions are computed for single stars of different spectral types using both S1 and S2 luminosities, and these luminosity functions are compared with X-ray luminosity functions derived by previous authors using IPC data. We also analyze the S1 and S2 luminosity functions of the binary stars within 10 pc. We find that most stars in binary systems do not emit EUV radiation at levels different from those of single stars, but there may be a few EUV-luminous multiple-star systems which emit excess EUV radiation due to some effect of binarity. In general, the ratio of X-ray luminosity to EUV luminosity increases with increasing coronal emission, suggesting that coronally active stars have higher coronal temperatures. We find that our S1, S2, and IPC luminosities are well correlated with rotational velocity, and we compare activity-rotation relations determined using these different luminosities. Late M stars are found to be significantly less luminous in the EUV than other late-type stars. The most natural explanation for this results is the concept of coronal saturation -- the idea that late-type stars can emit only a limited fraction of their total luminosity in X-ray and EUV radiation, which means stars with very low bolometric luminosities must have relatively low X-ray and EUV luminosities as well. The maximum level of coronal emission from stars with earlier spectral types is studied also. To understand the saturation levels for these stars, we have compiled a large number of IPC luminosities for stars with a wide variety of spectral types and luminosity classes. We show quantitatively that if the Sun were completely covered with X-ray-emitting coronal loops, it would be near the saturation limit implied by this compilation, supporting the idea that stars near upper limits in coronal activity are completely covered with active regions.
NASA Technical Reports Server (NTRS)
Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.;
2014-01-01
We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.
On the luminosity function, lifetimes, and origin of blue stragglers in globular clusters
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Pinsonneault, Marc H.
1995-01-01
We compute theoretical evolutionary tracks of blue stragglers created by mergers. Two formation scenarios are considered: mergers of primordial binaries, and stellar collisions. These two scenarios predict strikingly different luminosity functions, which are potentially distinguishable observationally. Tabulated theoretical luminosity functions and lifetimes are presented for blue stragglers formed under a variety of input conditions. We compare our results with observations of the blue straggler sequences in 47 Tucanae and M3. In the case of 47 Tuc, the luminosity function and the formation rate are compatible with the hypothesis that the blue stragglers formed through the collision of single stars. Mergers of primordial binaries are only marginally cosistent with the data, and a significant enhancement of the collision cross section by binary-single-star encounters appears to be ruled out. In the case of M3, we find that the innermost blue stragglers have a luminosity function significantly different from that of the outer stragglers, thus confirming earlier suggestions that there are two distinct populations of blue stragglers in this cluster. The inner stragglers are preferentially brighter and bluer, as would be expected if they were made by collisions, but there are so many of them that the collision rate would need to be enhanced by interactions involving wide binaries. The luminosity function of the outer stragglers is almost identical to the predictions of mergers from primordial binaries and is inconsistent with the collision hypothesis.
Mind the Gap when Data Mining the Ritter-Kolb Cataclysmic Variable Catalogue
NASA Astrophysics Data System (ADS)
Sparks, Warren M.; Sion, Edward M.
2017-01-01
The cataclysmic variable (CV) binary consists of a white dwarf primary and a low-mass secondary which overflows its Roche lobe. The Ritter-Kolb catalogue (2003, A&A, 404, 301) is a collection (~1000) of CV binaries and related objects. We have mined this catalogue for CVs with unevolved secondaries whose mass ratio (secondary/primary) is known (~130). A plot of the secondary mass verses the log of the orbital period exhibits the well-known period gap at 2-3 hrs. In addition, this plot shows that the secondary masses just above the period gap are collectively much larger than those just below. The average of the first ten secondary masses above the period is 180% larger than the average below the gap.The disrupted magnetic braking hypothesis (Howell, Nelson, and Rappaport 2001, ApJ, 550, 897 [HNR]) predicts that when the secondary becomes fully convective, the magnetic braking, which has driven the secondary out of thermal equilibrium, stops. In adjusting to thermal equilibrium the secondary shrinks below its Roche lobe and no longer loses mass. The binary system ceases to appear as a CV until gravitational radiation loss brings the secondary back in contact with its Roche lobe. This scenario is at odds with the apparent secondary mass loss across the period gap. Either the secondary continues to lose mass while crossing the period gap or the secondary masses are miscalculated!Magnetic braking causes the secondary to expand or inflate larger than its single star counterpart. Any orbital parameter calculation which assumes a radius-mass relationship based on single main-sequence stars will overestimate the mass of the secondary. We can approximate this mass overestimation from calculations by HNR which take into account the thermal heating from magnetic braking. Using this approximation as a first-order correction to the secondary mass, we replot the deflated secondary mass versus the binary period. The deflated masses immediately above and below the period gap are similar and do not indicate secondary mass loss across the gap. Thus, magnetic braking not only explains the period gap but the apparent secondary mass shift across it. Orbital parameters must be based upon actual secondary mass-radius observations.
Multiplicity of the Galactic Senior Citizens: A High-resolution Search for Cool Subdwarf Companions
NASA Astrophysics Data System (ADS)
Ziegler, Carl; Law, Nicholas M.; Baranec, Christoph; Riddle, Reed L.; Fuchs, Joshua T.
2015-05-01
Cool subdwarfs are the oldest members of the low-mass stellar population. Mostly present in the galactic halo, subdwarfs are characterized by their low-metallicity. Measuring their binary fraction and comparing it to solar-metallicity stars could give key insights into the star formation process early in the Milky Way’s history. However, because of their low luminosity and relative rarity in the solar neighborhood, binarity surveys of cool subdwarfs have suffered from small sample sizes and incompleteness. Previous surveys have suggested that the binary fraction of red subdwarfs is much lower than for their main-sequence cousins. Using the highly efficient Robo-AO system, we present the largest high-resolution survey of subdwarfs, sensitive to angular separations (ρ ≥slant 0.″ 15) and contrast ratios ({Δ }{{m}i} ≤slant 6) invisible in past surveys. Of 344 target cool subdwarfs, 43 are in multiple systems, 19 of which are newly discovered, for a binary fraction of 12.5 ± 1.9%. We also discovered seven triple star systems for a triplet fraction of 2.0 ± 0.8%. Comparisons to similar surveys of solar-metallicity dwarf stars gives a ∼3σ disparity in luminosity between companion stars, with subdwarfs displaying a shortage of low-contrast companions. We also observe a lack of close subdwarf companions in comparison to similar-mass dwarf multiple systems.
X ray spectra of cataclysmic variables
NASA Technical Reports Server (NTRS)
Patterson, Joseph; Halpern, Jules
1990-01-01
X ray spectral parameters of cataclysmic variables observed with the 'Einstein' imaging proportional counter were determined by fitting an optically thin, thermal bremsstrahlung spectrum to the raw data. Most of the sources show temperatures of order a few keV, while a few sources exhibit harder spectra with temperatures in excess of 10 keV. Estimated 0.1 to 3.5 keV luminosities are generally in the range from 10(exp 30) to 10(exp 32) erg/sec. The results are consistent with the x rays originating in a disk/white dwarf boundary layer of non-magnetic systems, or in a hot, post-shock region in the accretion column of DQ Her stars, with a negligible contribution from the corona of the companion. In a few objects column densities were found that are unusually high for interstellar material. It was suggested that the absorption occurs in the system itself.
The new eclipsing magnetic binary system E 1114 + 182
NASA Technical Reports Server (NTRS)
Biermann, P.; Schmidt, G. D.; Liebert, J.; Tapia, S.; Strittmatter, P. A.; West, S.; Stockman, H. S.; Kuehr, H.; Lamb, D. Q.
1985-01-01
A comprehensive analysis of E 1114 + 182, the first eclipsing AM Herculis binary system and the shortest-period eclipsing cataclysmic variable known, is presented. The time-resolved X-ray observations which led to the system's recognition as an AM Her system with a roughly 90 minute orbital period are reported. The current optical photometric and polarimetric ephemeris and a description of the system's phase-modulated properties are given. The detailed photometric eclipse profile and the highly variable spectroscopic behavior are addressed. This information is used to determine systemic parameters and derive new information on the line emission regions. The data put severe constraints on current torque models for keeping the binary and white dwarf rotation in phase.
Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf
NASA Technical Reports Server (NTRS)
Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.
Simulating the X-ray luminosity of Be X-ray binaries: the case for black holes versus neutron stars
NASA Astrophysics Data System (ADS)
Brown, R. O.; Ho, W. C. G.; Coe, M. J.; Okazaki, A. T.
2018-04-01
There are over 100 Be stars that are known to have neutron star companions but only one such system with a black hole. Previous theoretical work suggests this is not due to their formation but due to differences in X-ray luminosity. It has also been proposed that the truncation of the Be star's circumstellar disc is dependent on the mass of the compact object. Hence, Be star discs in black hole binaries are smaller. Since accretion onto the compact object from the Be star's disc is what powers the X-ray luminosity, a smaller disc in black hole systems leads to a lower luminosity. In this paper, simulations are performed with a range of eccentricities and compact object mass. The disc's size and density are shown to be dependent on both quantities. Mass capture and, in turn, X-ray luminosity are heavily dependent on the size and density of the disc. Be/black hole binaries are expected to be up to ˜10 times fainter than Be/neutron star binaries when both systems have the same eccentricity and can be 100 times fainter when comparing systems with different eccentricity.
NASA Astrophysics Data System (ADS)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2011-12-01
The M31 X-ray source RX J0042.3+4115 was originally identified as a black hole (BH) binary because it displayed characteristic low-state variability at conspicuously high luminosities; unfortunately, this variability was later found to be artificial. However, analysis of 84 Chandra ACIS observations, a Hubble Space Telescope Advanced Camera for Surveys (ACS)/WFC observation, and a 60 ks XMM-Newton observation has supplied new evidence that RX J0042.3+4115 is indeed a BH binary. The brightest optical star within 3σ of the position of RXJ0042.3+4115 had a F435W (~B) magnitude of 25.4 ± 0.2; M B > -0.4, hence we find a low-mass donor likely. RX J0042.3+4115 was persistently bright over ~12 years. Spectral fits revealed characteristic BH binary states: a low/hard state at 2.08 ± 0.08 × 1038 erg s-1 and a steep power-law state at 2.41 ± 0.05 × 1038 erg s-1 (0.3-10 keV). The high-luminosity low state suggests a ~20 M ⊙ primary; this is high, but within the range of known stellar BH masses. The inner disk temperature during the steep power-law state is 2.24 ± 0.15 keV, high but strikingly similar to that of GRS 1915+105, the only known Galactic BH binary with a low-mass donor to be persistently bright. Therefore, RX J0042.3+4115 may be an analog for GRS 1915+105; however, other mechanisms may account for its behavior. We find compelling evidence for an extended corona during the steep power-law state, because compact corona models where the seed photons for Comptonization are tied to the inner disk temperature are rejected.
Observations and Light Curve Solutions of Ultrashort-Period Eclipsing Binaries
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Dimitrov, Dinko P.; Ibryamov, Sunay I.; Vasileva, Doroteya L.
2018-02-01
Photometric observations in V and I bands and low-dispersion spectra of 10 ultrashort-period binaries (NSVS 2175434, NSVS 2607629, NSVS 5038135, NSVS 8040227, NSVS 9747584, NSVS 4876238, ASAS 071829-0336.7, SWASP 074658.62+224448.5, NSVS 2729229, NSVS 10632802) are presented. One of them, NSVS 2729229, is newly discovered target. The results from modelling and analysis of our observations revealed that (i) eight targets have overcontact configurations with considerable fill-out factor (up to 0.5), while NSVS 4876238 and ASAS 0718-03 have almost contact configurations; (ii) NSVS 4876238 is rare ultrashort-period binary of detached type; (iii) all stellar components are late dwarfs; (iv) the temperature difference of the components of each target does not exceed 400 K; (v) NSVS 2175434 and SWASP 074658.62 + 224448.5 exhibit total eclipses and their parameters could be assumed as well determined; (v) NSVS 2729229 shows emission in the Hα line. Masses, radii, and luminosities of the stellar components were estimated by the empirical relation `period, orbital axis' for short- and ultrashort-period binaries. We found linear relations mass-luminosity and mass-radius for the stellar components of our targets.
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.; Leggett, S. K.; Ireland, Michael J.; Chiu, Kuenley; Golimowski, David A.
2015-05-01
We have discovered that SDSS J105213.51+442255.7 (T0.5 ± 1.0) is a binary in Keck laser guide star adaptive optics imaging, displaying a large J- to K-band flux reversal ({Δ }J=-0.45+/- 0.09 mag, {Δ }K=0.52+/- 0.05 mag). We determine a total dynamical mass from Keck orbital monitoring (88 ± 5 {{M}Jup}) and a mass ratio by measuring the photocenter orbit from CFHT/WIRCam absolute astrometry ({{M}B}/{{M}A}=0.78+/- 0.07). Combining these provides the first individual dynamical masses for any field L or T dwarfs, 49 ± 3 {{M}Jup} for the L6.5±1.5 primary and 39 ± 3 {{M}Jup} for the T1.5±1.0 secondary. Such a low mass ratio for a nearly equal luminosity binary implies a shallow mass-luminosity relation over the L/T transition ({Δ }log {{L}bol}/{Δ }log M=0.6-0.8+0.6). This provides the first observational support that cloud dispersal plays a significant role in the luminosity evolution of substellar objects. Fully cloudy models fail our coevality test for this binary, giving ages for the two components that disagree by 0.2 dex (2.0σ). In contrast, our observed masses and luminosities can be reproduced at a single age by “hybrid” evolutionary tracks where a smooth change from a cloudy to cloudless photosphere around 1300 K causes slowing of luminosity evolution. Remarkably, such models also match our observed JHK flux ratios and colors well. Overall, it seems that the distinguishing features SDSS J1052+4422AB, like a J-band flux reversal and high-amplitude variability, are normal for a field L/T binary caught during the process of cloud dispersal, given that the age (1.11-0.20+0.17 Gyr) and surface gravity (log g = 5.0-5.2) of SDSS J1052+4422AB are typical for field ultracool dwarfs. Based on data obtained with WIRCam, a joint project of CFHT, Taiwan, Korea, Canada, France, at the Canada-France-Hawaii Telescope, which is operated by the National Research Council of Canada, the Institute National des Sciences de l’Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.
Modeling the Redshift Evolution of the Normal Galaxy X-Ray Luminosity Function
NASA Technical Reports Server (NTRS)
Tremmel, M.; Fragos, T.; Lehmer, B. D.; Tzanavaris, P.; Belczynski, K.; Kalogera, V.; Basu-Zych, A. R.; Farr, W. M.; Hornschemeier, A.; Jenkins, L.;
2013-01-01
Emission from X-ray binaries (XRBs) is a major component of the total X-ray luminosity of normal galaxies, so X-ray studies of high-redshift galaxies allow us to probe the formation and evolution of XRBs on very long timescales (approximately 10 Gyr). In this paper, we present results from large-scale population synthesis models of binary populations in galaxies from z = 0 to approximately 20. We use as input into our modeling the Millennium II Cosmological Simulation and the updated semi-analytic galaxy catalog by Guo et al. to self-consistently account for the star formation history (SFH) and metallicity evolution of each galaxy. We run a grid of 192 models, varying all the parameters known from previous studies to affect the evolution of XRBs. We use our models and observationally derived prescriptions for hot gas emission to create theoretical galaxy X-ray luminosity functions (XLFs) for several redshift bins. Models with low common envelope efficiencies, a 50% twins mass ratio distribution, a steeper initial mass function exponent, and high stellar wind mass-loss rates best match observational results from Tzanavaris & Georgantopoulos, though they significantly underproduce bright early-type and very bright (L(sub x) greater than 10(exp 41)) late-type galaxies. These discrepancies are likely caused by uncertainties in hot gas emission and SFHs, active galactic nucleus contamination, and a lack of dynamically formed low-mass XRBs. In our highest likelihood models, we find that hot gas emission dominates the emission for most bright galaxies. We also find that the evolution of the normal galaxy X-ray luminosity density out to z = 4 is driven largely by XRBs in galaxies with X-ray luminosities between 10(exp 40) and 10(exp 41) erg s(exp -1).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asai, K.; Matsuoka, M.; Mihara, T.
2013-08-20
We present the luminosity dwell-time distributions during the hard states of two low-mass X-ray binaries containing a neutron star (NS), 4U 1608-52 and Aql X-1, observed with MAXI/GSC. The luminosity distributions show a steep cutoff on the low-luminosity side at {approx}1.0 Multiplication-Sign 10{sup 36} erg s{sup -1} in both sources. The cutoff implies a rapid luminosity decrease in their outburst decay phases and this decrease can be interpreted as being due to the propeller effect. We estimate the surface magnetic field of 4U 1608-52 to be (0.5-1.6) Multiplication-Sign 10{sup 8} G and Aql X-1 to be (0.6-1.9) Multiplication-Sign 10{sup 8}more » G from the cutoff luminosity and apply the same propeller mechanism to the similar rapid luminosity decrease observed in the transient Z source, XTE J1701-462, with RXTE/ASM. Assuming that the spin period of the NS is on the order of milliseconds, the observed cutoff luminosity implies a surface magnetic field on the order of 10{sup 9} G.« less
New calibrators for the Cepheid period-luminosity relation
NASA Technical Reports Server (NTRS)
Evans, Nancy R.
1992-01-01
IUE spectra of six Cepheids have been used to determine their absolute magnitudes from the spectral types of their binary companions. The stars observed are U Aql, V659 Cen, Y Lac, S Nor, V350 Sgr, and V636 Sco. The absolute magnitude for V659 Cen is more uncertain than for the others because its reddening is poorly determined and the spectral type is hotter than those of the others. In addition, a reddening law with extra absorption in the 2200 A region is necessary, although this has a negligible effect on the absolute magnitude. For the other Cepheids, and also Eta Aql and W Sgr, the standard deviation from the Feast and Walker period-luminosity-color (PLC) relation is 0.37 mag, confirming the previously estimated internal uncertainty. The absolute magnitudes for S Nor from the binary companion and from cluster membership are very similar. The preliminary PLC zero point is less than 2 sigma (+0.21 mag) different from that of Feast and Walker. The same narrowing of the instability strip at low luminosities found by Fernie is seen.
OPTICAL STUDIES OF 13 HARD X-RAY SELECTED CATACLYSMIC BINARIES FROM THE SWIFT-BAT SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halpern, Jules P.; Thorstensen, John R.
2015-12-15
From a set of 13 cataclysmic binaries that were discovered in the Swift Burst Alert Telescope (BAT) survey, we conducted time-resolved optical spectroscopy and/or time-series photometry of 11, with the goal of measuring their orbital periods and searching for spin periods. Seven of the objects in this study are new optical identifications. Orbital periods are found for seven targets, ranging from 81 minutes to 20.4 hr. PBC J0706.7+0327 is an AM Herculis star (polar) based on its emission-line variations and large amplitude photometric modulation on the same period. Swift J2341.0+7645 may be a polar, although the evidence here is lessmore » secure. Coherent pulsations are detected from two objects, Swift J0503.7−2819 (975 s) and Swift J0614.0+1709 (1412 s and 1530 s, spin and beat periods, respectively), indicating that they are probable intermediate polars (DQ Herculis stars). For two other stars, longer spin periods are tentatively suggested. We also present the discovery of a 2.00 hr X-ray modulation from RX J2015.6+3711, possibly a contributor to Swift J2015.9+3715, and likely a polar.« less
The space density of post-period minimum Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Hernández Santisteban, J. V.; Knigge, C.; Pretorius, M. L.; Sullivan, M.; Warner, B.
2018-01-01
Binary evolution theory predicts that accreting white dwarfs with substellar companions dominate the Galactic population of cataclysmic variables (CVs). In order to test these predictions, it is necessary to identify these systems, which may be difficult if the signatures of accretion become too weak to be detected. The only chance to identify such 'dead' CVs is by exploiting their close binary nature. We have therefore searched the Sloan Digital Sky Survey (SDSS) Stripe 82 area for apparently isolated white dwarfs that undergo eclipses by a dark companion. We found no such eclipses in either the SDSS or Palomar Transient Factory data sets among our sample of 2264 photometrically selected white dwarf candidates within Stripe 82. This null result allows us to set a firm upper limit on the space density, ρ0, of dead CVs. In order to determine this limit, we have used Monte Carlo simulations to fold our selection criteria through a simple model of the Galactic CV distribution. Assuming a TWD = 7500 K, the resulting 2σ limit on the space density of dead CVs is ρ0 ≲ 2 × 10-5 pc-3, where TWD is the typical effective temperature of the white dwarf in such systems.
An X-Ray Survey of the Open Cluster NGC 6475 (M7) with ROSAT
NASA Technical Reports Server (NTRS)
Prosser, Charles F.; Stauffer, John R.; Caillault, J.-P.; Balachandran, Suchitra; Stern, Robert A.; Randich, Sofia
1995-01-01
A ROSAT x-ray survey, with complimentary optical photometry, of the open cluster NGC 6475 has enabled the detection of approx. 50 late-F to K0 and approx. 70 K/M dwarf new candidate members, providing the first reliable detection of low-mass stars in this low. galactic latitude, 220 Myr old cluster. The x-ray observations reported here have a typical limiting sensitivity of L(sub x) approx. equal to 10(exp 29) erg/s. The detection frequency of early type cluster members is consistent with the hypothesis that the x-ray emitting early type stars are binary systems with an unseen, low-mass secondary producing the x rays. The ratio between x-ray and bolometric luminosity among NGC 6475 members saturates at a spectral-type/color which is intermediate between that in much younger and in much older clusters, consistent with rotational spindown of solar-type stars upon their arrival on the ZAMS. The upper envelope of x-ray luminosity as a function of spectral type is comparable to that of the Pleiades, with the observed spread in x-ray luminosity among low-mass members being likely due to the presence of binaries and relatively rapid rotators. However, the list of x-ray selected candidate members is likely biased against low-mass, slowly rotating single stars. While some preliminary spectroscopic information is given in an appendix, further spectroscopic observations of the new candidate members will aid in interpreting the coronal activity among solar-type NGC 6475 members and their relation to similar stars in older and younger open clusters.
IUE spectra of the eclipsing binary NN Serpentis
NASA Technical Reports Server (NTRS)
Wood, Janet H.; Marsh, Thomas R.
1991-01-01
Low-resolution SWP and LWP IUE spectra are used to fit the temperature and angular radius of the white dwarf in the detached eclipsing binary NN Ser. It is found that the redenning to the system has E(B-V) of 0.05 +/-0.05, the white dwarf temperature is 60,000 +/-10,000 K, and the age of the white dwarf is less than 10 exp 7. The shape of eclipse and the K-magnitude of the secondary star are used to constrain the inclination of the binary and the masses and radii of the two stars. The size of the secondary star relative to its Roche lobe and the age of the white dwarf indicate that mass transfer has not yet occurred and that the system is a precataclysmic variable rather than a cataclysmic variable which has entered the period gap. Fitting the observed magnitude of the sinusoidal modulation with a reprocessing model shows that only when i is approximately equal to 90 deg is the required temperature of the secondary star consistent with these results. For this solution the white dwarf temperature is also consistent with those obtained from the IUE spectra.
Physics of systems containing neutron stars
NASA Technical Reports Server (NTRS)
Ruderman, Malvin
1996-01-01
This grant dealt with several topics related to the dynamics of systems containing a compact object. Most of the research dealt with systems containing Neutron Stars (NS's), but a Black Hole (BH) or a White Dwarf (WD) in situations relevant to NS systems were also addressed. Among the systems were isolated regular pulsars, Millisecond Pulsars (MSP's) that are either Single (SMP's) or in a binary (BMP's), Low Mass X-Ray Binaries (LMXB's) and Cataclysmic Variables (CV's). Also dealt with was one aspect of NS structure, namely NS superfluidity. A large fraction of the research dealt with irradiation-driven winds from companions which turned out to be of importance in the evolution of LMXB's and MSP's, be they SMP's or BMP's. While their role during LMXB evolution (i.e. during the accretion phase) is not yet clear, they may play an important role in turning BMP's into SMP's and also in bringing about the formation of planets around MSP's. Work was concentrated on the following four problems: The Windy Pulsar B197+20 and its Evolution; Wind 'Echoes' in Tight Binaries; Post Nova X-ray Emission in CV's; and Dynamics of Pinned Superfluids in Neutron Stars.
The X-Ray Globular Cluster Population in NGC 1399
NASA Technical Reports Server (NTRS)
Angelini, Lorella; Loewenstein, Michael; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)
2001-01-01
We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.
A ROSAT Survey of Contact Binary Stars
NASA Astrophysics Data System (ADS)
Geske, M. T.; Gettel, S. J.; McKay, T. A.
2006-01-01
Contact binary stars are common variable stars that are all believed to emit relatively large fluxes of X-rays. In this work we combine a large new sample of contact binary stars derived from the ROTSE-I telescope with X-ray data from the ROSAT All Sky Survey (RASS) to estimate the X-ray volume emissivity of contact binary stars in the Galaxy. We obtained X-ray fluxes for 140 contact binaries from the RASS, as well as two additional stars observed by the XMM-Newton observatory. From these data we confirm the emission of X-rays from all contact binary systems, with typical luminosities of approximately 1.0×1030 ergs s-1. Combining calculated luminosities with an estimated contact binary space density, we find that contact binaries do not have strong enough X-ray emission to account for a significant portion of the Galactic X-ray background.
X-ray binary formation in low-metallicity blue compact dwarf galaxies
NASA Astrophysics Data System (ADS)
Brorby, M.; Kaaret, P.; Prestwich, A.
2014-07-01
X-rays from binaries in small, metal-deficient galaxies may have contributed significantly to the heating and reionization of the early Universe. We investigate this claim by studying blue compact dwarfs (BCDs) as local analogues to these early galaxies. We constrain the relation of the X-ray luminosity function (XLF) to the star formation rate (SFR) using a Bayesian approach applied to a sample of 25 BCDs. The functional form of the XLF is fixed to that found for near-solar metallicity galaxies and is used to find the probability distribution of the normalization that relates X-ray luminosity to SFR. Our results suggest that the XLF normalization for low-metallicity BCDs (12+log(O/H) < 7.7) is not consistent with the XLF normalization for galaxies with near-solar metallicities, at a confidence level 1-5 × 10- 6. The XLF normalization for the BCDs is found to be 14.5± 4.8 ({M}_{⊙}^{-1} yr), a factor of 9.7 ± 3.2 higher than for near-solar metallicity galaxies. Simultaneous determination of the XLF normalization and power-law index result in estimates of q = 21.2^{+12.2}_{-8.8} ({M}_{⊙}^{-1} yr) and α = 1.89^{+0.41}_{-0.30}, respectively. Our results suggest a significant enhancement in the population of high-mass X-ray binaries in BCDs compared to the near-solar metallicity galaxies. This suggests that X-ray binaries could have been a significant source of heating in the early Universe.
Combined ultraviolet studies of astronomical source
NASA Technical Reports Server (NTRS)
Dupress, A. K.; Baliunas, S. L.; Blair, W. P.; Hartmann, L. W.; Huchra, J. P.; Raymond, J. C.; Smith, G. H.; Soderblom, D. R.
1985-01-01
As part of its Ultraviolet Studies of Astronomical Sources the Smithsonian Astrophysical Observatory for the period 1 Feb. 1985 to 31 July 1985 observed the following: the Cygnus Loop; oxygen-rich supernova remnants in 1E0102-72; the Large Magellanic Cloud supernova remnants; P Cygni profiles in dwarf novae; soft X-ray photoionization of interstellar gas; spectral variations in AM Her stars; the mass of Feige 24; atmospheric inhomogeneities in Lambda Andromedae and FF Aquarii; photometric and spectroscopic observation of Capella; Alpha Orionis; metal deficient giant stars; M 67 giants; high-velocity winds from giant stars; accretion disk parameters in cataclysmic variables; chromospheric emission of late-type dwarfs in visual binaries; chromospheres and transient regions of stars in the Ursa Major group; and low-metallicity blue galaxies.
The awakening of a classical nova from hibernation.
Mróz, Przemek; Udalski, Andrzej; Pietrukowicz, Paweł; Szymański, Michał K; Soszyński, Igor; Wyrzykowski, Łukasz; Poleski, Radosław; Kozłowski, Szymon; Skowron, Jan; Ulaczyk, Krzysztof; Skowron, Dorota; Pawlak, Michał
2016-09-29
Cataclysmic variable stars-novae, dwarf novae, and nova-likes-are close binary systems consisting of a white dwarf star (the primary) that is accreting matter from a low-mass companion star (the secondary). From time to time such systems undergo large-amplitude brightenings. The most spectacular eruptions, with a ten-thousandfold increase in brightness, occur in classical novae and are caused by a thermonuclear runaway on the surface of the white dwarf. Such eruptions are thought to recur on timescales of ten thousand to a million years. In between, the system's properties depend primarily on the mass-transfer rate: if it is lower than a billionth of a solar mass per year, the accretion becomes unstable and the matter is dumped onto the white dwarf during quasi-periodic dwarf nova outbursts. The hibernation hypothesis predicts that nova eruptions strongly affect the mass-transfer rate in the binary, keeping it high for centuries after the event. Subsequently, the mass-transfer rate should significantly decrease for a thousand to a million years, starting the hibernation phase. After that the nova awakes again-with accretion returning to the pre-eruption level and leading to a new nova explosion. The hibernation model predicts cyclical evolution of cataclysmic variables through phases of high and low mass-transfer. The theory gained some support from the discovery of ancient nova shells around the dwarf novae Z Camelopardalis and AT Cancri, but direct evidence for considerable mass-transfer changes prior, during and after nova eruptions has not hitherto been found. Here we report long-term observations of the classical nova V1213 Cen (Nova Centauri 2009) covering its pre- and post-eruption phases and precisely documenting its evolution. Within the six years before the explosion, the system revealed dwarf nova outbursts indicative of a low mass-transfer rate. The post-nova is two orders of magnitude brighter than the pre-nova at minimum light with no trace of dwarf nova behaviour, implying that the mass-transfer rate increased considerably as a result of the nova explosion.
Hydrodynamical simulations of the tidal stripping of binary stars by massive black holes
NASA Astrophysics Data System (ADS)
Mainetti, Deborah; Lupi, Alessandro; Campana, Sergio; Colpi, Monica
2016-04-01
In a galactic nucleus, a star on a low angular momentum orbit around the central massive black hole can be fully or partially disrupted by the black hole tidal field, lighting up the compact object via gas accretion. This phenomenon can repeat if the star, not fully disrupted, is on a closed orbit. Because of the multiplicity of stars in binary systems, also binary stars may experience in pairs such a fate, immediately after being tidally separated. The consumption of both the binary components by the black hole is expected to power a double-peaked flare. In this paper, we perform for the first time, with GADGET2, a suite of smoothed particle hydrodynamics simulations of binary stars around a galactic central black hole in the Newtonian regime. We show that accretion luminosity light curves from double tidal disruptions reveal a more prominent knee, rather than a double peak, when decreasing the impact parameter of the encounter and when elevating the difference between the mass of the star which leaves the system after binary separation and the mass of the companion. The detection of a knee can anticipate the onset of periodic accretion luminosity flares if one of the stars, only partially disrupted, remains bound to the black hole after binary separation. Thus knees could be precursors of periodic flares, which can then be predicted, followed up and better modelled. Analytical estimates in the black hole mass range 105-108 M⊙ show that the knee signature is enhanced in the case of black holes of mass 106-107 M⊙.
Astrophysical parameters and orbital solution of the peculiar X-ray transient IGR J00370+6122
NASA Astrophysics Data System (ADS)
González-Galán, A.; Negueruela, I.; Castro, N.; Simón-Díaz, S.; Lorenzo, J.; Vilardell, F.
2014-06-01
Context. BD + 60° 73 is the optical counterpart of the X-ray source IGR J00370+6122, a probable accretion-powered X-ray pulsar. The X-ray light curve of this binary system shows clear periodicity at 15.7 d, which has been interpreted as repeated outbursts around the periastron of an eccentric orbit. Aims: We aim to characterise the binary system IGR J00370+6122 by deriving its orbital and physical parameters. Methods: We obtained high-resolution spectra of BD + 60° 73 at different epochs. We used the fastwind code to generate a stellar atmosphere model to fit the observed spectrum and obtain physical magnitudes. The synthetic spectrum was used as a template for cross-correlation with the observed spectra to measure radial velocities. The radial velocity curve provided an orbital solution for the system. We also analysed the RXTE/ASM and Swift/BAT light curves to confirm the stability of the periodicity. Results: BD + 60° 73 is a BN0.7 Ib low-luminosity supergiant located at a distance ~3.1 kpc, in the Cas OB4 association. We derive Teff = 24 000 K and log gc = 3.0, and chemical abundances consistent with a moderately high level of evolution. The spectroscopic and evolutionary masses are consistent at the 1-σ level with a mass M∗ ≈ 15 M⊙. The recurrence time of the X-ray flares is the orbital period of the system. The neutron star is in a high-eccentricity (e = 0.56 ± 0.07) orbit, and the X-ray emission is strongly peaked around orbital phase φ = 0.2, though the observations are consistent with some level of X-ray activity happening at all orbital phases. Conclusions: The X-ray behaviour of IGR J00370+6122 is reminiscent of "intermediate" supergiant X-ray transients, though its peak luminosity is rather low. The orbit is somewhat wider than those of classical persistent supergiant X-ray binaries, which when combined with the low luminosity of the mass donor, explains the low X-ray luminosity. IGR J00370+6122 will very likely evolve towards a persistent supergiant system, highlighting the evolutionary connection between different classes of wind-accreting X-ray sources.
Spectroscopic classification of X-ray sources in the Galactic Bulge Survey
NASA Astrophysics Data System (ADS)
Wevers, T.; Torres, M. A. P.; Jonker, P. G.; Nelemans, G.; Heinke, C.; Mata Sánchez, D.; Johnson, C. B.; Gazer, R.; Steeghs, D. T. H.; Maccarone, T. J.; Hynes, R. I.; Casares, J.; Udalski, A.; Wetuski, J.; Britt, C. T.; Kostrzewa-Rutkowska, Z.; Wyrzykowski, Ł.
2017-10-01
We present the classification of 26 optical counterparts to X-ray sources discovered in the Galactic Bulge Survey. We use (time-resolved) photometric and spectroscopic observations to classify the X-ray sources based on their multiwavelength properties. We find a variety of source classes, spanning different phases of stellar/binary evolution. We classify CX21 as a quiescent cataclysmic variable (CV) below the period gap, and CX118 as a high accretion rate (nova-like) CV. CXB12 displays excess UV emission, and could contain a compact object with a giant star companion, making it a candidate symbiotic binary or quiescent low-mass X-ray binary (although other scenarios cannot be ruled out). CXB34 is a magnetic CV (polar) that shows photometric evidence for a change in accretion state. The magnetic classification is based on the detection of X-ray pulsations with a period of 81 ± 2 min. CXB42 is identified as a young stellar object, namely a weak-lined T Tauri star exhibiting (to date unexplained) UX Ori-like photometric variability. The optical spectrum of CXB43 contains two (resolved) unidentified double-peaked emission lines. No known scenario, such as an active galactic nucleus or symbiotic binary, can easily explain its characteristics. We additionally classify 20 objects as likely active stars based on optical spectroscopy, their X-ray to optical flux ratios and photometric variability. In four cases we identify the sources as binary stars.
Testing Ultracool Models with Precise Luminosities and Masses
NASA Astrophysics Data System (ADS)
Dupuy, Trent; Cushing, Michael; Liu, Michael; Burningham, Ben; Leggett, Sandy; Albert, Loic; Delorme, Philippe
2011-05-01
After years of patient orbital monitoring, there is a growing sample of brown dwarfs with well-determined dynamical masses, representing the gold standard for testing substellar models. A key element of our model tests to date has been the use of integrated-light photometry to provide accurate total luminosity measurements for these binaries. However, some of the ultracool binaries with the most promising orbit motion for yielding dynamical in the masses lack the mid-infrared photometry needed to constrain their SEDs. This is especially crucial for the latest type binaries (spectral types >T5) that will probe the coldest temperature regimes previously untested with dynamical masses. We propose to use IRAC to obtain the needed mid-infrared photometry for a sample of binaries that are part of our ongoing orbital monitoring program with Keck laser guide star adaptive optics. The observational effort needed to characterize these binaries' luminosities using Spitzer is much less daunting in than the years of orbital monitoring needed to measure precise dynamical masses, but it is equally vital for robust tests of theory.
Analysis of reflection effects in HS 2333+3927
NASA Astrophysics Data System (ADS)
Shimanskii, V. V.; Yakin, D. G.; Borisov, N. V.; Bikmaev, I. F.
2012-11-01
The results of photometric and spectroscopic observations of the pre-cataclysmic variable HS 2333+3927, which is a HW Vir binary system, are analyzed. The parameters of the sdB subdwarf companion ( T eff = 37 500 ± 500 K, log g = 5.7 ± 0.05) and the chemical composition of its atmosphere are refined using a spectrum of the binary system obtained at minimum brightness. Reflection effects can fully explain the observed brightness variations of HS 2333+3927, changes in the HI and HeI line profiles, and distortions of the radial-velocity curve of the primary star. A new method for determining the component-mass ratios in HW Vir binaries, based on their radial-velocity curves and models of irradiated atmospheres, is proposed. The set of parameters obtained for the binary components corresponds to models of horizontal-branch sdB subdwarfs and main-sequence stars.
NASA Technical Reports Server (NTRS)
Mukai, Koji; Smale, Alan P.
1999-01-01
The Low Mass X-ray Binary (LMXB) X1832-330 in NGC 6652 is one of about 10 bright X-ray sources to have been discovered in Globular Clusters. We report on a serendipitous ASCA observation of this Globular Cluster LMXB, during which a Type I burst was detected and the persistent, non-burst emission of the source was at its brightest level recorded to date. No orbital modulation was detected, which argues against a high inclination for the X1832-330 system. The spectrum of the persistent emission can be fit with a power law plus a partial covering absorber, although other models are not ruled out. Our time-resolved spectral analysis through the burst shows, for the first time, clear evidence for spectral cooling from kT = 2.4 +/- 0.6 keV to kT = 1.0 +/- 0.1 keV during the decay. The measured peak flux during the burst is approximately 10% of the Eddington luminosity for a 1.4 Solar Mass neutron star. These are characteristic of a Type I burst, in the context of the relatively low quiescent luminosity of X1832-330.
Spectroscopic observations of the symbiotic binary RW Hydrae
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Fernandez-Castro, Telmo
1987-01-01
Ultraviolet/optical spectrophotometry and infrared photometry show that the symbiotic binary RW Hya is comprised of an M giant (with L of about 1000 solar luminosities) and a compact object (with L of about 200 solar luminosities) which resembles the central star of a planetary nebula. The luminosity of the hot component is produced by a nuclear shell source which is replenished by the wind of the red giant at a rate of about 10 to the -8th solar mass/yr. Results indicate that the binary is surrounded by an H II region (of radius of about 10 AU) which gives rise to the observed emission lines and radio emission. The He(2+) and O(2+) regions are found to be confined to the immediate vicinity of the hot component.
Resonant Tidal Forcing in Close Binaries: Implications for CVs
NASA Astrophysics Data System (ADS)
Ford, K. E. Saavik; McKernan, Barry; Schwab, Elliana
2018-01-01
Resonant tidal forcing occurs when the tidal forcing frequency of a binary matches a quadrupolar oscillation mode of one of the binary members and energy is transferred from the orbit of the binary to the mode. Tidal locking permits ongoing resonant driving of modes even as binary orbital parameters change. At small binary separations during tidal lock, a significant fraction of binary orbital energy can be deposited quickly into a resonant mode and the binary decays faster than via the emission of gravitational radiation alone. Here we discuss some of the implications of resonant tidal forcing for the class of binaries known as Cataclysmic Variable (CV) stars. We show that resonant tidal forcing of the donor’s Roche lobe could explain the observed 2‑3hr period gap in CVs, assuming modest orbital eccentricities are allowed (eb ∼ 0.03), and can be complementary or an alternative to, existing models. Sudden collapse of the companion orbit, yielding a Type Ia supernova is disfavoured, since Hydrogen is not observed in Type Ia supernova spectra. Therefore, resonance must generally be truncated, probably via mass loss from the Roche lobe or orbital perturbation, ultimately producing a short period CV containing an ’overheated’ white dwarf.
SPECTROSCOPIC ORBITAL PERIODS FOR 29 CATACLYSMIC VARIABLES FROM THE SLOAN DIGITAL SKY SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thorstensen, John R.; Taylor, Cynthia J.; Peters, Christopher S.
2015-04-15
We report follow-up spectroscopy of 29 cataclysmic variables from the Sloan Digital Sky Survey (SDSS), 22 of which were discovered by SDSS and seven of which are previously known systems that were recovered in SDSS. The periods for 16 of these objects were included in the tabulation by Gänsicke et al. While most of the systems have periods less than 2 hr, only one has a period in the 80–86 minutes “spike” found by Gänsicke et al., and 11 have periods longer than 3 hr, indicating that the present sample is skewed toward longer-period, higher-luminosity objects. Seven of the objectsmore » have spectra resembling dwarf novae, but have apparently never been observed in outburst, suggesting that many cataclysmics with relatively low variability amplitude remain to be discovered. Some of the objects are notable. SDSS J07568+0858 and SDSS J08129+1911 were previously known to have deep eclipses; in addition to spectroscopy, we use archival data from the Catalina Real Time Transient Survey to refine their periods. We give a parallax-based distance of 195 (+54, −39) pc for LV Cnc (SDSS J09197+0857), which at P{sub orb} = 81 m has the shortest orbital period in our sample. SDSS J08091+3814 shows both the spectroscopic phase offset and phase-dependent absorption found in SW Sextantis stars. The average spectra of SDSS J08055+0720 and SDSS J16191+1351 show contributions from K-type secondaries, and SDSS J080440+0239 shows a contribution from an early M star. We use these to constrain the distances. SDSS J09459+2922 has characteristics typical of a magnetic system. SDSS11324+6249 may be a novalike variable, and if so, its orbital period (99 minutes) is unusually short for that subclass.« less
A transient radio jet in an erupting dwarf nova.
Körding, Elmar; Rupen, Michael; Knigge, Christian; Fender, Rob; Dhawan, Vivek; Templeton, Matthew; Muxlow, Tom
2008-06-06
Astrophysical jets seem to occur in nearly all types of accreting objects, from supermassive black holes to young stellar objects. On the basis of x-ray binaries, a unified scenario describing the disc/jet coupling has evolved and been extended to many accreting objects. The only major exceptions are thought to be cataclysmic variables: Dwarf novae, weakly accreting white dwarfs, show similar outburst behavior to x-ray binaries, but no jet has yet been detected. Here we present radio observations of a dwarf nova in outburst showing variable flat-spectrum radio emission that is best explained as synchrotron emission originating in a transient jet. Both the inferred jet power and the relation to the outburst cycle are analogous to those seen in x-ray binaries, suggesting that the disc/jet coupling mechanism is ubiquitous.
NASA Astrophysics Data System (ADS)
Church, M. J.; Gibiec, A.; Bałucińska-Church, M.
2014-03-01
We propose an explanation of the island and banana states and the relation between atoll and Z-track sources, constituting a unified model for low-mass X-ray binaries (LMXB). We find a dramatic transition at a luminosity of 1-2 × 1037 erg s-1 above which the high-energy cut-off ECO of the Comptonized emission in all sources is low at a few keV. There is thermal equilibrium between the neutron star at ˜2 keV and the Comptonizing accretion disc corona (ADC) causing the low ECO in the banana state of atolls and all states of the Z-track sources. Below this luminosity, ECO increases towards 100 keV causing the hardness of the island state. Thermal equilibrium is lost, the ADC becoming much hotter than the neutron star via an additional coronal heating mechanism. This suggests a unified model of LMXB: the banana state is a basic state with the mass accretion rate dot{M} increasing, corresponding to the normal branch of Z-track sources. The island state has high ADC temperature, this state not existing in the Z-sources with luminosities much greater than the critical value. The Z-track sources have an additional flaring branch consistent with unstable nuclear burning on the neutron star at high dot{M}. This burning regime does not exist at low dot{M} so this branch is not seen in atolls (except GX atolls). The horizontal branch in Z-track sources has a strong increase in radiation pressure disrupting the inner disc and launching relativistic jets.
Hydrodynamics on Supercomputers: Interacting Binary Stars
NASA Astrophysics Data System (ADS)
Blondin, J. M.
1997-05-01
The interaction of close binary stars accounts for a wide variety of peculiar objects scattered throughout our Galaxy. The unique features of Algols, Symbiotics, X-ray binaries, cataclysmic variables and many others are linked to the dynamics of the circumstellar gas which can take forms from tidal streams and accretion disks to colliding stellar winds. As in many other areas of astrophysics, large scale computing has provided a powerful new tool in the study of interacting binaries. In the research to be described, hydrodynamic simulations are used to create a "laboratory", within which one can "experiment": change the system and observe (and predict) the effects of those changes. This type of numerical experimentation, when buttressed by analytic studies, provides a means of interpreting observations, identifying and understanding the relevant physics, and visualizing the physical system. The results of such experiments will be shown, including the structure of tidal streams in Roche lobe overflow systems, mass accretion in X-ray binaries, and the formation of accretion disks.
A magnetically driven origin for the low luminosity GRB 170817A associated with GW170817
NASA Astrophysics Data System (ADS)
Tong, Hao; Yu, Cong; Huang, Lei
2018-06-01
The gamma-ray burst GR170817A associated with GW170817 is subluminous and subenergetic compared with other typical short gamma-ray bursts. It may be due to a relativistic jet viewed off-axis, or a structured jet or cocoon emission. Giant flares from magnetars may possibly be ruled out. However, the luminosity and energetics of GRB 170817A are coincident with those of magnetar giant flares. After the coalescence of a binary neutron star, a hypermassive neutron star may be formed. The hypermassive neutron star may have a magnetar-strength magnetic field. During the collapse of this hypermassive neutron star, magnetic field energy will also be released. This giant-flare-like event may explain the luminosity and energetics of GRB 170817A. Bursts with similar luminosity and energetics are expected in future neutron star-neutron star or neutron star-black hole mergers.
The Reverberation Lag in the Low-mass X-ray Binary H1743-322
NASA Astrophysics Data System (ADS)
De Marco, Barbara; Ponti, Gabriele
2016-07-01
The evolution of the inner accretion flow of a black hole X-ray binary during an outburst is still a matter of active research. X-ray reverberation lags are powerful tools for constraining disk-corona geometry. We present a study of X-ray lags in the black hole transient H1743-322. We compared the results obtained from analysis of all the publicly available XMM-Newton observations. These observations were carried out during two different outbursts that occurred in 2008 and 2014. During all the observations the source was caught in the hard state and at similar luminosities ({L}3-10{keV}/{L}{Edd}˜ 0.004). We detected a soft X-ray lag of ˜60 ms, most likely due to thermal reverberation. We did not detect any significant change of the lag amplitude among the different observations, indicating a similar disk-corona geometry at the same luminosity in the hard state. On the other hand, we observe significant differences between the reverberation lag detected in H1743-322 and in GX 339-4 (at similar luminosities in the hard state), which might indicate variations of the geometry from source to source.
NASA Astrophysics Data System (ADS)
Zhang, Hui; Yu, Wen-Fei
2018-03-01
Observations of black hole and neutron star X-ray binaries show that the luminosity of the hard-to-soft state transition is usually higher than that of the soft-to-hard state transition, indicating additional parameters other than mass accretion rate are required to interpret spectral state transitions. It has been found in some individual black hole or neutron star soft X-ray transients that the luminosity corresponding to the hard-to-soft state transition is positively correlated with the peak luminosity of the following soft state. In this work, we report the discovery of the same correlation in the single persistent neutron star low mass X-ray binary (LMXB) 4U 1636–536 based on data from the All Sky Monitor (ASM) on board RXTE, the Gas Slit Camera (GSC) on board MAXI and the Burst Alert Telescope (BAT) on board Swift. We also found such a positive correlation holds in this persistent neutron star LMXB in a luminosity range spanning about a factor of four. Our results indicate that non-stationary accretion also plays an important role in driving X-ray spectral state transitions in persistent accreting systems with small accretion flares, which is much less dramatic compared with the bright outbursts seen in many Galactic LMXB transients.
The black hole binary V404 Cygni: a highly accreting obscured AGN analogue
NASA Astrophysics Data System (ADS)
Motta, S. E.; Kajava, J. J. E.; Sánchez-Fernández, C.; Giustini, M.; Kuulkers, E.
2017-06-01
Typical black hole binaries in outburst show spectral states and transitions, characterized by a clear connection between the inflow on to the black hole and outflows from its vicinity. The transient stellar mass black hole binary V404 Cyg apparently does not fit in this picture. Its outbursts are characterized by intense flares and intermittent plateau and low-luminosity states, with a dynamical intensity range of several orders of magnitude on time-scales of hours. During the 2015 June-July X-ray outburst a joint Swift and INTEGRAL observing campaign captured V404 Cyg in one of these plateau states. The simultaneous Swift/XRT + INTRGRAL/JEM-X + INTEGRAL/IBIS-ISGRI spectrum is reminiscent of that of obscured/absorbed active galactic nuclei (AGN). It can be modelled as a Comptonization spectrum, heavily absorbed by a partial covering, high column density material (NH ≈ 1-3 × 1024 cm-2), and a dominant reprocessed component, including a narrow iron Kα line. Such spectral distribution can be produced by a geometrically thick accretion flow able to launch a clumpy outflow, likely responsible for both the high intrinsic absorption and the intense reprocessed emission observed. Similarly to what happens in certain obscured AGN, the low-flux states might not be (solely) related to a decrease in the intrinsic luminosity, but could instead be caused by an almost complete obscuration of the inner accretion flow.
V and K-band Mass-Luminosity Relations for M Dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, George Frederick; Henry, Todd J.; McArthur, Barbara E.; Franz, Otto; Wasserman, Larry H.; Dieterich, Sergio
2015-08-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2% error for 28 components of 14 M dwarf binary star systems. With these and other published masses we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. 1999, ApJ, 512, 864. We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter. These relations can be used to estimate the masses of the ubiquitous red dwarfs (75% of all stars) to an accuracy of better than 5%.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Shao, Y.
2017-07-01
X-ray binaries are a class of binary systems, in which the accretor is a compact star (i.e., black hole, neutron star, or white dwarf). They are one of the most important objects in the universe, which can be used to study not only binary evolution but also accretion disks and compact stars. Statistical investigations of these binaries help to understand the formation and evolution of galaxies, and sometimes provide useful constraints on the cosmological models. The goal of this thesis is to investigate the formation and evolution processes of X-ray binaries including Be/X-ray binaries, low-mass X-ray binaries (LMXBs), ultraluminous X-ray sources (ULXs), and cataclysmic variables. In Chapter 1 we give a brief review on the basic knowledge of the binary evolution. In Chapter 2 we discuss the formation of Be stars through binary interaction. In this chapter we investigate the formation of Be stars resulting from mass transfer in binaries in the Galaxy. Using binary evolution and population synthesis calculations, we find that in Be/neutron star binaries the Be stars have a lower limit of mass ˜ 8 M⊙ if they are formed by a stable (i.e., without the occurrence of common envelope evolution) and nonconservative mass transfer. We demonstrate that the isolated Be stars may originate from both mergers of two main-sequence stars and disrupted Be binaries during the supernova explosions of the primary stars, but mergers seem to play a much more important role. Finally the fraction of Be stars produced by binary interactions in all B type stars can be as high as ˜ 13%-30% , implying that most of Be stars may result from binary interaction. In Chapter 3 we show the evolution of intermediate- and low-mass X-ray binaries (I/LMXBs) and the formation of millisecond pulsars. Comparing the calculated results with the observations of binary radio pulsars, we report the following results: (1) The allowed parameter space for forming binary pulsars in the initial orbital period-donor mass plane increases with the increasing neutron star mass. This may help to explain why some millisecond pulsars with orbital periods longer than ˜ 60 d seem to have less massive white dwarfs than expected. Alternatively, some of these wide binary pulsars may be formed through mass transfer driven by planet/brown dwarf-involved common envelope evolution; (2) Some of the pulsars in compact binaries might have evolved from intermediate-mass X-ray binaries with an anomalous magnetic braking; (3) The equilibrium spin periods of neutron stars in low-mass X-ray binaries are in general shorter than the observed spin periods of binary pulsars by more than one order of magnitude, suggesting that either the simple equilibrium spin model does not apply, or there are other mechanisms/processes spinning down the neutron stars. In Chapter 4, angular momentum loss mechanisms in the cataclysmic variables below the period gap are presented. By considering several kinds of consequential angular momentum loss mechanisms, we find that neither isotropic wind from the white dwarf nor outflow from the L1 point can explain the extra angular momentum loss rate, while an ouflow from the L2 point or a circumbinary disk can effectively extract the angular momentum provided that ˜ 15%-45% of the transferred mass is lost from the binary. A more promising mechanism is a circumbinary disk exerting a gravitational torque on the binary. In this case the mass loss fraction can be as low as ≲ 10-3. In Chapter 5 we present a study on the population of ultraluminous X-ray sources with an accreting neutron star. Most ULXs are believed to be X-ray binary systems, but previous observational and theoretical studies tend to prefer a black hole rather than a neutron star accretor. The recent discovery of 1.37 s pulsations from the ULX M82 X-2 has established its nature as a magnetized neutron star. In this chapter we model the formation history of neutron star ULXs in an M82- or Milky Way-like galaxy, by use of both binary population synthesis and detailed binary evolution calculations. We find that the birthrate is around 10-4 yr-1 for the incipient X-ray binaries in both cases. We demonstrate the distribution of the ULX population in the donor mass - orbital period plane. Our results suggest that, compared with black hole X-ray binaries, neutron star X-ray binaries may significantly contribute to the ULX population, and high/intermediate-mass X-ray binaries dominate the neutron star ULX population in M82/Milky Way-like galaxies, respectively. In Chapter 6, the population of intermediate- and low-mass X-ray binaries in the Galaxy is explored. We investigate the formation and evolutionary sequences of Galactic intermediate- and low-mass X-ray binaries by combining binary population synthesis (BPS) and detailed stellar evolutionary calculations. Using an updated BPS code we compute the evolution of massive binaries that leads to the formation of incipient I/LMXBs, and present their distribution in the initial donor mass vs. initial orbital period diagram. We then follow the evolution of I/LMXBs until the formation of binary millisecond pulsars (BMSPs). We show that during the evolution of I/LMXBs they are likely to be observed as relatively compact binaries. The resultant BMSPs have orbital periods ranging from about 1 day to a few hundred days. These features are consistent with observations of LMXBs and BMSPs. We also confirm the discrepancies between theoretical predictions and observations mentioned in the literature, that is, the theoretical average mass transfer rates of LMXBs are considerably lower than observed, and the number of BMSPs with orbital periods ˜ 0.1-1 \\unit{d} is severely underestimated. Both imply that something is missing in the modeling of LMXBs, which is likely to be related to the mechanisms of the orbital angular momentum loss. Finally in Chapter 7 we summarize our results and give the prospects for the future work.
Fast transient X-rays from flare stars and RS CVn binaries
NASA Astrophysics Data System (ADS)
Rao, A. R.; Vahia, M. N.
1987-12-01
The authors have studied the fast transient X-ray (FTX) observations of the Ariel V satellite. They find that the FTX have characteristics very similar to the stellar flares detected in flare stars and RS CVn binaries by other satellites. It is found that, of the possible candidate objects, only the flare stars and RS CVn binaries can be associated with the Ariel V observations. 11 new flare stars and RS CVn binaries are associated with the FTX. This brings the total number of identifications with the flare stars and RS CVn binaries to 17. The authors further study the flare properties and correlate the peak X-ray luminosity of these Ariel V sources with the bolometric luminosity of the candidate stars. They discuss a solar flare model and show that the observed correlation can be explained under the assumption of constant temperature loops of binary sizes.
Three years of ULTRASPEC at the Thai 2.4-m telescope: Capabilities and scientific highlights
NASA Astrophysics Data System (ADS)
Yadav, Ram Kesh; Richichi, Andrea; Irawati, Puji; Dhillon, Vikram Singh; Marsh, Thomas R.; Soonthornthum, Boonrucksar
2018-04-01
High temporal resolution observations enable the study of rapid phenomena such as the flux variations in binary system objects, e.g. cataclysmic variables, compact binary systems, the flux variations in young star clusters, stellar occultations and more. The 2.4-m Thai National Telescope (TNT) is ideally suited for this niche research, being the largest facility in Southeast Asia and being equipped with ULTRASPEC, a high-speed imager based on a low-noise frame transfer electron-multiplying CCD. In the sub-window mode, ULTRASPEC can record uninterrupted sequences with frame rates as fast as few milliseconds. We present some of the key results obtained in the area of high time resolution with ULTRASPEC. We also present the results of a recent worldwide campaign to observe the current series of lunar occultations of Aldebaran (α Tauri) carried out in close collaboration with the Devasthal facilities, the out-of-eclipse variations on the post common-envelope system J1021+1744, and pre-main-sequence variables in young open cluster Stock 8.
An Astrometric Analysis of eta Carinae’s Eruptive History Using HST WF/PC2 and ACS Observations
2007-07-11
Std Z39-18 to address the question of binarity. Based on an astrometric analysis of the data, binary reflex motion is detected in the primary and, by...Measurement Results 96 5.1 Primary Luminosity and Mass . . . . . . . . . . . . . . . . . . . . . . 96 5.2 Secondary Mass and Luminosity...Binary Models . . . . . . . . . . . 100 5.5 Primary –Secondary Distance . . . . . . . . . . . . . . . . . . . . . . . 102 5.6 Periastron passage
Shapiro, Stuart L
2017-05-15
We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~10 52±1 erg s -1 . A similar result applies to their BH accretion rates upon jet launch, which is ~0.1-10 M ⊙ s -1 . We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB.
Shapiro, Stuart L.
2018-01-01
We have performed magnetohydrodynamic simulations in general relativity of binary neutron star and binary black hole-neutron star mergers, as well as the magnetorotational collapse of supermassive stars. In many cases the outcome is a spinnng black hole (BH) immersed in a magnetized disk, with a jet emanating from the poles of the BH. While their formation scenarios differ and their BH masses, as well as their disk masses, densities, and magnetic field strengths, vary by orders of magnitude, these features conspire to generate jet Poynting luminosities that all lie in the same, narrow range of ~1052±1 erg s−1. A similar result applies to their BH accretion rates upon jet launch, which is ~0.1–10 M⊙ s−1. We provide a simple model that explains these unanticipated findings. Interestingly, these luminosities reside in the same narrow range characterizing the observed luminosity distributions of over 400 short and long GRBs with distances inferred from spectroscopic redshifts or host galaxies. This result, together with the GRB lifetimes predicted by the model, supports the belief that a compact binary merger is the progenitor of an SGRB, while a massive, stellar magnetorotational collapse is the progenitor of an LGRB. PMID:29881790
The high-energy X-ray spectrum of Centaurus XR-3 observed from OSO 8
NASA Technical Reports Server (NTRS)
Dolan, J. F.; Crannell, C. J.; Dennis, B. R.; Frost, K. J.; Orwig, L. E.
1984-01-01
Observations of the X-ray binary Cen XR-3 in the 20-120 keV energy range by means of OSO 8's high energy X-ray spectrometer, during July 16-19, 1975, and July 5-14 and 28-29, 1978, indicate that the source was in a high luminosity state during 1975 and a low luminosity one in 1978. While mean orbital light curves appear similar in shape in both years, orbit-to-orbit intensity variations are noted. Spectral, luminosity, and the 4.84 sec modulation are characterized. Cen XR-3 may be a system in which mass transfer by Roche lobe overflow, and by accretion from a stellar wind, are both effective in the production of observable X-ray radiation.
EC 10246-2707: an eclipsing subdwarf B + M dwarf binary
NASA Astrophysics Data System (ADS)
Barlow, B. N.; Kilkenny, D.; Drechsel, H.; Dunlap, B. H.; O'Donoghue, D.; Geier, S.; O'Steen, R. G.; Clemens, J. C.; LaCluyze, A. P.; Reichart, D. E.; Haislip, J. B.; Nysewander, M. C.; Ivarsen, K. M.
2013-03-01
We announce the discovery of a new eclipsing hot subdwarf B + M dwarf binary, EC 10246-2707, and present multicolour photometric and spectroscopic observations of this system. Similar to other HW Vir-type binaries, the light curve shows both primary and secondary eclipses, along with a strong reflection effect from the M dwarf; no intrinsic light contribution is detected from the cool companion. The orbital period is 0.118 507 9936 ± 0.000 000 0009 d, or about 3 h. Analysis of our time series spectroscopy reveals a velocity semi-amplitude of K1 = 71.6 ± 1.7 km s-1 for the sdB and best-fitting atmospheric parameters of Teff = 28 900 ± 500 K, log g = 5.64 ± 0.06 and log N(He)/N(H) = -2.5 ± 0.2. Although we cannot claim a unique solution from modelling the light curve, the best-fitting model has an sdB mass of 0.45 M⊙ and a cool companion mass of 0.12 M⊙. These results are roughly consistent with a canonical-mass sdB and M dwarf separated by a ˜ 0.84 R⊙. We find no evidence of pulsations in the light curve and limit the amplitude of rapid photometric oscillations to <0.08 per cent. Using 15 yr of eclipse timings, we construct an observed minus calculated (O - C) diagram but find no statistically significant period changes; we rule out |dot{P}| > 7.2 × 10^{-12}. If EC 10246-2707 evolves into a cataclysmic variable, its period should fall below the famous cataclysmic variable period gap.
NASA Astrophysics Data System (ADS)
van den Berg, Maureen C.
2015-08-01
The binaries in the core of a star cluster are the energy source that prevents the cluster from experiencing core collapse. To model the dynamical evolution of a cluster, it is important to have constraints on the primordial binary content. X-ray observations of old star clusters are very efficient in detecting the close interacting binaries among the cluster members. The X-ray sources in star clusters are a mix of binaries that were dynamically formed and primordial binaries. In massive, dense star clusters, dynamical encounters play an important role in shaping the properties and numbers of the binaries. In contrast, in the low-density clusters the impact of dynamical encounters is presumed to be very small, and the close binaries detected in X-rays represent a primordial population. The lowest density globular clusters have current masses and central densities similar to those of the oldest open clusters in our Milky Way. I will discuss the results of studies with the Chandra X-ray Observatory that have nevertheless revealed a clear dichotomy: far fewer (if any at all) X-ray sources are detected in the central regions of the low-density globular clusters compared to the number of secure cluster members that have been detected in old open clusters (above a limiting X-ray luminosity of typically 4e30 erg/s). The low stellar encounter rates imply that dynamical destruction of binaries can be ignored at present, therefore an explanation must be sought elsewhere. I will discuss several factors that can shed light on the implied differences between the primordial close binary populations in the two types of star clusters.
NASA Astrophysics Data System (ADS)
Sandoval, L. E. Rivera; Wijnands, R.; Degenaar, N.; Cavecchi, Y.; Heinke, C. O.; Cackett, E. M.; Homan, J.; Altamirano, D.; Bahramian, A.; Sivakoff, G. R.; Miller, J. M.; Parikh, A. S.
2018-06-01
EXO 1745-248 is a transient neutron-star low-mass X-ray binary that resides in the globular cluster Terzan 5. We studied the transient during its quiescent state using 18 Chandra observations of the cluster acquired between 2003 and 2016. We found an extremely variable source, with a luminosity variation in the 0.5-10 keV energy range of ˜3 orders of magnitude (between 3 × 1031 erg s-1 and 2 × 1034 erg s-1) on time scales from years down to only a few days. Using an absorbed power-law model to fit its quiescent spectra, we obtained a typical photon index of ˜1.4, indicating that the source is even harder than during outburst and much harder than typical quiescent neutron stars if their quiescent X-ray spectra are also described by a single power-law model. This indicates that EXO 1745-248 is very hard throughout the entire observed X-ray luminosity range. At the highest luminosity, the spectrum fits better when an additional (soft) component is added to the model. All these quiescent properties are likely related to strong variability in the low-level accretion rate in the system. However, its extreme variable behavior is strikingly different from the one observed for other neutron star transients that are thought to still accrete in quiescence. We compare our results to these systems. We also discuss similarities and differences between our target and the transitional millisecond pulsar IGR J18245-2452, which also has hard spectra and strong variability during quiescence.
X-Ray Probes of Cosmic Star Formation History
NASA Technical Reports Server (NTRS)
Ghosh, Pranab; White, Nicholas E.
2001-01-01
We discuss the imprints left by a cosmological evolution of the star formation rate (SFR) on the evolution of X-ray luminosities Lx of normal galaxies, using the scheme earlier proposed by us, wherein the evolution of LX of a galaxy is driven by the evolution of its X-ray binary population. As indicated in our earlier work, the profile of Lx with redshift can both serve as a diagnostic probe of the SFR profile and constrain evolutionary models for X-ray binaries. We report here the first calculation of the expected evolution of X-ray luminosities of galaxies, updating our work by using a suite of more recently developed SFR profiles that span the currently plausible range. The first Chandra deep imaging results on Lx evolution are beginning to probe the SFR profile of bright spiral galaxies; the early results are consistent with predictions based on current SFR models. Using these new SFR profiles, the resolution of the "birthrate problem" of low-mass X-ray binaries and recycled, millisecond pulsars in terms of an evolving global SFR is more complete. We discuss the possible impact of the variations in the SFR profile of individual galaxies and galaxy types.
Studies of Binary Pulsar Evolution Through Hubble Space Telescope Imaging of White Dwarf Companions
NASA Astrophysics Data System (ADS)
Lundgren, S. C.; Foster, R. S.; Camilo, F.
1995-12-01
In observations of six binary millisecond pulsars with the Hubble Space Telescope, we have discovered white dwarf companions to PSRs J0034-0534, J1022+1001, and J1713+0747 and improved photometry on PSRs J1640+2224 and J2145-0750. The companion to PSR J2019+2425 was not detected down to m_I=25.4. For the five companions detected, effective temperatures were estimated for the colors measured. Two of the white dwarfs, J0034-0534 and J1713+0747, are among the coolest and oldest known. Using distance estimates to the pulsars, the absolute luminosities were determined. Constrains on the masses and cooling times were obtained from the luminosities and temperatures. The results for each pulsar were related to expectations based on models for white dwarf cooling, Roche lobe overflow in the preceding low-mass X-ray binary phase, and mass accretion rate/neutron star spin period relations. Precision pulsar astrophysics at the Naval Research Laboratory is supported by the Office of Naval Research. SL is supported by a post-doctoral fellowship through the National Research Council. FC acknowledges support from NSF grant AST 91-15103 and a fellowship under the auspices of the European Commission.
Evolution of the X-ray luminosity in young HII galaxies
NASA Astrophysics Data System (ADS)
Rosa González, D.; Terlevich, E.; Jiménez Bailón, E.; Terlevich, R.; Ranalli, P.; Comastri, A.; Laird, E.; Nandra, K.
2009-10-01
In an effort to understand the correlation between X-ray emission and present star formation rate, we obtained XMM-Newton data to estimate the X-ray luminosities of a sample of actively star-forming HII galaxies. The obtained X-ray luminosities are compared to other well-known tracers of star formation activity such as the far-infrared and the ultraviolet luminosities. We also compare the obtained results with empirical laws from the literature and with recently published analysis applying synthesis models. We use the time delay between the formation of the stellar cluster and that of the first X-ray binaries, in order to put limits on the age of a given stellar burst. We conclude that the generation of soft X-rays, as well as the Hα or infrared luminosities is instantaneous. The relation between the observed radio and hard X-ray luminosities, on the other hand, points to the existence of a time delay between the formation of the stellar cluster and the explosion of the first massive stars and the consequent formation of supernova (SN) remnants and high-mass X-ray binaries, which originate the radio and hard X-ray fluxes, respectively. When comparing hard X-rays with a star formation indicator that traces the first million years of evolution (e.g. Hα luminosities), we found a deficit in the expected X-ray luminosity. This deficit is not found when the X-ray luminosities are compared with infrared luminosities, a star formation tracer that represents an average over the last 108yr. The results support the hypothesis that hard X-rays are originated in X-ray binaries which, as SN remnants, have a formation time delay of a few mega years after the star-forming burst. Partially based on observations obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member States and NASA. E-mail: danrosa@inaoep.mx ‡ Visiting Fellow, IoA, Cambridge, UK.
THE NuSTAR Hard X-Ray Survey of the Norma Arm Region
NASA Technical Reports Server (NTRS)
Fornasini, Francesca M.; Tomsick, John A.; Hong, Jaesub; Gotthelf, Eric V.; Bauer, Franz; Rahoui, Farid; Stern, Daniel K.; Bodaghee, Arash; Chiu, Jeng-Lun; Clavel, Maïca;
2017-01-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array (NuSTAR) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10(exp -14) and 4 x 10(exp -14) ergs/s/sq cm in the 3-10 and 10-20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected to be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of approx. 10-20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR logN-logS distribution in the 10-20keV band is consistent with the distribution measured by Chandra at 2-10 keV if the average source spectrum is assumed to be a thermal model with kT approx. =15 keV, as observed for the CV candidates.
The NuSTAR Hard X-Ray Survey of the Norma Arm Region
Fornasini, Francesca M.; Tomsick, John A.; Hong, JaeSub; ...
2017-04-06
We present a catalog of hard X-ray sources in a square-degree region surveyed by NuSTAR in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and typical and maximum exposure depths of 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 x 10 -14 and 4 x 10-14 erg s -1 cm -2 in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected and ten are detected with low significance; eight of the 38 sources are expected to be activemore » galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multi-wavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic Ridge X-ray emission spectrum but lower than temperatures of CVs near the Galactic Center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic Center. The NuSTAR logN-logS distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.« less
On the formation of TW Crv optical radiation
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Mitrofanova, A. A.; Borisov, N. V.; Fabrika, S. N.; Galeev, A. I.
2016-10-01
We present the analysis of the optical radiation of the young pre-cataclysmic variable TW Crv. Spectroscopic and photometric observations were obtained at the SAO RAS 6-m BTA telescope and at the Russian-Turkish RTT-150 telescope. The light curves of the system posses nearly sinusoidal shapes with the amplitudes of Δ m > 0.m7, what is typical for young pre-cataclysmic variables with sdO-subdwarfs and orbit inclinations of less than 45◦. The optical spectrum contains dominant radiation of the hot subdwarf with the HI and He II absorption lines and strong emission lines, which are formed in the atmosphere of the secondary owing to the reflection effects. Radial velocities of the cool star were measured by analyzing the λλ 4630-4650 Å Bowen blend, which for the first time allowed to determine the component masses. A numerical simulation of the light curves and spectra of TW Crv, obtaining a complete set of systems fundamental parameters was carried out. The hot star parameters prompt its belonging to the sdOsubdwarf class at the stage of transition to the cooling white dwarf sequence. The absence of its observable planetary nebula is caused by a long-lasting evolution of the system after the common envelope state. The secondary component has a luminosity excess, which is typical for other young sdO-subdwarf precataclysmic variables. Its position on the " age-luminosity excess" diagram points at the accuracy of the obtained set of TW Crv fundamental parameters and at the similarity of its evolutionary and physical conditions with that of other BE UMa-type objects.
Follow up Observations of SDSS and CRTS Candidate Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Szkody, Paula; Everett, Mark E.; Howell, Steve B.; Landolt, Arlo U.; Bond, Howard E.; Silva, David R.; Vasquez-Soltero, Stephanie
2014-10-01
We present photometry and spectroscopy of 11 and 35 potential cataclysmic variables, respectively, from the Sloan Digital Sky Survey, the Catalina Real-Time Transient Survey, and vsnet alerts. The photometry results include quasi-periodic oscillations during the decline of V1363 Cyg, nightly accretion changes in the likely Polar (AM Herculis binary) SDSS J1344+20, eclipses in SDSS J2141+05 with an orbital period of 76 ± 2 minutes, and possible eclipses in SDSS J2158+09 at an orbital period near 100 minutes. Time-resolved spectra reveal short orbital periods near 80 minutes for SDSS J0206+20, 85 minutes for SDSS J1502+33, and near 100 minutes for CSS J0015+26, RXS J0150+37, SDSS J1132+62, SDSS J2154+15, and SDSS J2158+09. The prominent He II line and velocity amplitude of SDSS J2154+15 are consistent with a Polar nature for this object, while the absence of this line and a low velocity amplitude argue against this classification for RXS J0150+37. Single spectra of 10 objects were obtained near outburst and the rest near quiescence, confirming the dwarf novae nature of these objects. Based on observations obtained with the Apache Point Observatory (APO) 3.5 m telescope, which is owned and operated by the Astrophysical Research Consortium.
Formation Mechanisms for Helium White Dwarfs in Binaries
NASA Astrophysics Data System (ADS)
Sandquist, E. L.; Taam, R. E.; Burkert, A.
1999-05-01
We discuss the constraints that can be placed on formation mechanisms for helium degenerate stars in binary systems, as well as the orbital parameters of the progenitor binaries, by using observed systems and numerical simulations of common envelope evolution. For pre-cataclysmic variable stars having a helium white dwarf, common envelope simulations covering the range of observed companion masses indicate that the initial mass of the red giant (parent of the white dwarf) can be constrained by the final period of the system. The formation mechanisms for double helium degenerate systems are also restricted. Using energy arguments, we find that there are almost no parameter combinations for which such a system can be formed using two successive common envelope phases. Observed short-period systems appear to favor an Algol-like phase of stable mass transfer followed by a common envelope phase. However, theory predicts that the brighter component is also the most massive, which is not observed in at least one system. This may require that nuclear burning must have occurred on the white dwarf that formed first, but after its formation. Systems which instead go through a common envelope episode, followed by a phase of nonconservative mass transfer from secondary to primary, would tend to form double degenerates with low mass ratios, which have not been observed to date. Finally, we discuss a new mechanism for producing subdwarf B stars in binaries. This work was supported by NSF grants AST-9415423 and AST-9727875.
A VLA radio continuum survey of active late-type giants in binary systems - Preliminary results
NASA Technical Reports Server (NTRS)
Drake, S. A.; Simon, T.; Linsky, J. L.
1985-01-01
Preliminary results of a 6 cm continuum survey using the NRAO VLA of binary systems with 10-100 day orbital period containing an 'active' giant component are reported. The results show that strong radio continuum emission at centimeter wavelengths is a common but not universal property of this class of stars. Possible correlations between radio luminosity and other properties, such as X-ray luminosity, rotational period, and type of companion are discussed. Several binary systems which have been detected for the first time as radio sources are reported, and sensitive upper limits are presented for five other systems, including Capella.
A Repeating Fast Radio Burst: Radio and X-ray Follow-up Observations of FRB 121102
NASA Astrophysics Data System (ADS)
Scholz, Paul; Spitler, Laura; Hessels, Jason; Bogdanov, Slavko; Brazier, Adam; Camilo, Fernando; Chatterjee, Shami; Cordes, James M.; Crawford, Fronefield; Deneva, Julia S.; Ferdman, Robert; Freire, Paulo; Kaspi, Victoria M.; Lazarus, Patrick; Lynch, Ryan; Madsen, Erik; McLaughlin, Maura; Patel, Chitrang; Ransom, Scott M.; Seymour, Andrew; Stairs, Ingrid H.; Stappers, Benjamin; van Leeuwen, Joeri; Zhu, Weiwei
2016-04-01
A new phenomenon has emerged in high-energy astronomy in the past few years: the Fast Radio Burst. Fast Radio Bursts (FRBs) are millisecond-duration radio bursts whose dispersion measures imply that they originate from far outside of the Galaxy. Their origin is as yet unknown; their durations and energetics imply that they involve compact objects, such as neutron stars or black holes. Due to their extreme luminosities implied by their distances and the previous absence of any repeat burst in follow-up observations, many potential explanations involve one-time cataclysmic events. However, in our Arecibo telescope follow-up observations of FRB 121102 (discovered in the PALFA survey; Spitler et al. 2014), we find additional bursts at the same location and dispersion measure as the original burst. We also present the results of Swift and Chandra X-ray observations of the field. This result shows that, for at least a sub-set of the FRB population, the source can repeat and thus cannot be explained by a cataclysmic origin.
SWIFT REVEALS A ∼5.7 DAY SUPER-ORBITAL PERIOD IN THE M31 GLOBULAR CLUSTER X-RAY BINARY XB158
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnard, R.; Garcia, M. R.; Murray, S. S.
2015-03-01
The M31 globular cluster X-ray binary XB158 (a.k.a. Bo 158) exhibits intensity dips on a 2.78 hr period in some observations, but not others. The short period suggests a low mass ratio, and an asymmetric, precessing disk due to additional tidal torques from the donor star since the disk crosses the 3:1 resonance. Previous theoretical three-dimensional smoothed particle hydrodynamical modeling suggested a super-orbital disk precession period 29 ± 1 times the orbital period, i.e., ∼81 ± 3 hr. We conducted a Swift monitoring campaign of 30 observations over ∼1 month in order to search for evidence of such a super-orbital period. Fitting the 0.3-10 keV Swift X-Ray Telescopemore » luminosity light curve with a sinusoid yielded a period of 5.65 ± 0.05 days, and a >5σ improvement in χ{sup 2} over the best fit constant intensity model. A Lomb-Scargle periodogram revealed that periods of 5.4-5.8 days were detected at a >3σ level, with a peak at 5.6 days. We consider this strong evidence for a 5.65 day super-orbital period, ∼70% longer than the predicted period. The 0.3-10 keV luminosity varied by a factor of ∼5, consistent with variations seen in long-term monitoring from Chandra. We conclude that other X-ray binaries exhibiting similar long-term behavior are likely to also be X-ray binaries with low mass ratios and super-orbital periods.« less
NASA Astrophysics Data System (ADS)
Karczmarek, P.; Wiktorowicz, G.; Iłkiewicz, K.; Smolec, R.; Stępień, K.; Pietrzyński, G.; Gieren, W.; Belczynski, K.
2017-04-01
Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass (0.26 M⊙) RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as binary evolution pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass-loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (losing up to 90 per cent of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 M⊙, and the orbital period in range 10-2 500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8 and 5 per cent, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Yamoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2011-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than or equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observations of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35 R(sub g) at i = 0 degrees and R(sub in) greater than 175 R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically dominated accretion flows.
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Deller, Adam T.; Miller-Jones, James C. A.; Archibald, Anne M.; Hessels, Jason W. T.; Jaodand, Amruta; Patruno, Alessandro; Bassa, Cees; D’Angelo, Caroline
2018-03-01
We present coordinated Chandra X-ray Observatory and Karl G. Jansky Very Large Array observations of the transitional millisecond pulsar PSR J1023+0038 in its low-luminosity accreting state. The unprecedented five hours of strictly simultaneous X-ray and radio continuum coverage for the first time unambiguously show a highly reproducible, anti-correlated variability pattern. The characteristic switches from the X-ray high mode into a low mode are always accompanied by a radio brightening with a duration that closely matches the X-ray low mode interval. This behavior cannot be explained by a canonical inflow/outflow accretion model where the radiated emission and the jet luminosity are powered by, and positively correlated with, the available accretion energy. We interpret this phenomenology as alternating episodes of low-level accretion onto the neutron star during the X-ray high mode that are interrupted by rapid ejections of plasma by the active rotation-powered pulsar, possibly initiated by a reconfiguration of the pulsar magnetosphere, that cause a transition to a less X-ray luminous mode. The observed anti-correlation between radio and X-ray luminosity has an additional consequence: transitional MSPs can make excursions into a region of the radio/X-ray luminosity plane previously thought to be occupied solely by black hole X-ray binary sources. This complicates the use of this luminosity relation for identifying candidate black holes, suggesting the need for additional discriminants when attempting to establish the true nature of the accretor.
Two bodies with high eccentricity around the cataclysmic variable QS Vir
NASA Astrophysics Data System (ADS)
Almeida, Leonardo A.; Jablonski, Francisco
2011-11-01
QS Vir is an eclipsing cataclysmic variable with 3.618 hrs orbital period. This system has the interesting characteristics that it does not show mass transfer between the components through the L1 Lagrangian point and shows a complex orbital period variation history. Qian et al. (2010) associated the orbital period variations to the presence of a giant planet in the system plus angular momentum loss via magnetic braking. Parsons et al. (2010) obtained new eclipse timings and observed that the orbital period variations associated to a hypothetical giant planet disagree with their measurements and concluded that the decrease in orbital period is part of a cyclic variation with period ~16 yrs. In this work, we present 28 new eclipse timings of QS Vir and suggest that the orbital period variations can be explained by a model with two circumbinary bodies. The best fitting gives the lower limit to the masses M1 sin(i) ~ 0.0086 M⊙ and M2 sin(i) ~ 0.054 M⊙ orbital periods P1 ~ 14.4 yrs and P2 ~ 16.99 yrs, and eccentricities e1 ~ 0.62 and e2~0.92 for the two external bodies. Under the assumption of coplanarity among the two external bodies and the inner binary, we obtain a giant planet with ~0.009 M⊙ and a brown dwarf with ~ 0.056 M⊙ around the eclipsing binary QS Vir.
Burgay, M; D'Amico, N; Possenti, A; Manchester, R N; Lyne, A G; Joshi, B C; McLaughlin, M A; Kramer, M; Sarkissian, J M; Camilo, F; Kalogera, V; Kim, C; Lorimer, D R
2003-12-04
The merger of close binary systems containing two neutron stars should produce a burst of gravitational waves, as predicted by the theory of general relativity. A reliable estimate of the double-neutron-star merger rate in the Galaxy is crucial in order to predict whether current gravity wave detectors will be successful in detecting such bursts. Present estimates of this rate are rather low, because we know of only a few double-neutron-star binaries with merger times less than the age of the Universe. Here we report the discovery of a 22-ms pulsar, PSR J0737-3039, which is a member of a highly relativistic double-neutron-star binary with an orbital period of 2.4 hours. This system will merge in about 85 Myr, a time much shorter than for any other known neutron-star binary. Together with the relatively low radio luminosity of PSR J0737-3039, this timescale implies an order-of-magnitude increase in the predicted merger rate for double-neutron-star systems in our Galaxy (and in the rest of the Universe).
Studying the accretion geometry of EXO 2030+375 at luminosities close to the propeller regime
NASA Astrophysics Data System (ADS)
Fürst, F.; Kretschmar, P.; Kajava, J. J. E.; Alfonso-Garzón, J.; Kühnel, M.; Sanchez-Fernandez, C.; Blay, P.; Wilson-Hodge, C. A.; Jenke, P.; Kreykenbohm, I.; Pottschmidt, K.; Wilms, J.; Rothschild, R. E.
2017-10-01
The Be X-ray binary EXO 2030+375was in an extended low-luminosity state during most of 2016. We observed this state with NuSTARand Swift, supported by INTEGRALobservations and optical spectroscopy with the Nordic Optical Telescope (NOT). We present a comprehensive spectral and timing analysis of these data here to study the accretion geometry and investigate a possible onset of the propeller effect. The Hα data show that the circumstellar disk of the Be-star is still present. We measure equivalent widths similar to values found during more active phases in the past, indicating that the low-luminosity state is not simply triggered by a smaller Be disk. The NuSTARdata, taken at a 3-78 keV luminosity of 6.8 × 1035 erg s-1 (for a distance of 7.1 kpc), are nicely described by standard accreting pulsar models such as an absorbed power law with a high-energy cutoff. We find that pulsations are still clearly visible at these luminosities, indicating that accretion is continuing despite the very low mass transfer rate. In phase-resolved spectroscopy we find a peculiar variation of the photon index from 1.5 to 2.5 over only about 3% of the rotational period. This variation is similar to that observed with XMM-Newtonat much higher luminosities. It may be connected to the accretion column passing through our line of sight. With Swift/XRT we observe luminosities as low as 1034 erg s-1 where the data quality did not allow us to search for pulsations, but the spectrum is much softer and well described by either a blackbody or soft power-law continuum. This softer spectrum might be due to the accretion being stopped by the propeller effect and we only observe the neutron star surface cooling.
A luminous hot accretion flow in the low-luminosity active galactic nucleus NGC 7213
NASA Astrophysics Data System (ADS)
Xie, Fu-Guo; Zdziarski, Andrzej A.; Ma, Renyi; Yang, Qi-Xiang
2016-12-01
The active galactic nucleus (AGN) NGC 7213 shows a complex correlation between the monochromatic radio luminosity LR and the 2-10 keV X-ray luminosity LX, I.e. the correlation is unusually weak with p ˜ 0 (in the form L_R∝ L_X^p) when LX is below a critical luminosity, and steep with p > 1 when LX is above that luminosity. Such a hybrid correlation in individual AGNs is unexpected as it deviates from the Fundamental Plane of AGN activity. Interestingly, a similar correlation pattern is observed in the black hole X-ray binary H1743-322, where it has been modelled by switching between different modes of accretion. We propose that the flat LR-LX correlation of NGC 7213 is due to the presence of a luminous hot accretion flow, an accretion model whose radiative efficiency is sensitive to the accretion rate. Given the low luminosity of the source, LX ˜ 10-4 of the Eddington luminosity, the viscosity parameter is determined to be small, α ≈ 0.01. We also modelled the broad-band spectrum from radio to γ-rays, the time lag between the radio and X-ray light curves, and the implied size and the Lorentz factor of the radio jet. We predict that NGC 7213 will enter into a two-phase accretion regime when LX ≳ 1.5 × 1042 erg s- 1. When this happens, we predict a softening of the X-ray spectrum with the increasing flux and a steep radio/X-ray correlation.
NASA Astrophysics Data System (ADS)
Antoniou, Vallia; Zezas, Andreas; Drake, Jeremy J.; Badenes, Carles; Hong, Jaesub; SMC XVP Collaboration
2018-01-01
Nearby star-forming galaxies offer a unique environment to study the populations of young (<100 Myr) X-ray binaries, which consist of a compact object - typically a neutron star or a black hole - powered by accretion from a companion star. These systems are tracers of past populations of massive stars that heavily affect their immediate environment and parent galaxies. The Small Magellanic Cloud (SMC) is the ideal environment for population studies of young X-ray binaries by providing us with what the Milky Way cannot: A complete sample of X-ray sources within a galaxy. Using a Chandra X-ray Visionary program, we investigate the young neutron-star binary population in this low-metallicity, nearby, star-forming galaxy by reaching quiescent X-ray luminosity levels (~few times 1032 erg/s). In this talk, I will present the first measurement of the formation efficiency of high-mass X-ray binaries (HMXBs) as a function of the age of their parent stellar populations. We use three indicators of the formation efficiency of young accreting binaries in the low SMC metallicity: the number ratio of the HMXBs, N(HMXBs), to the number of OB stars, to the star-formation rate (SFR), and to the stellar mass produced during the specific star-formation burst they are associated with, all as a function of the age of their parent stellar populations. In all cases, we find that the HMXB formation efficiency increases as a function of time up to ~40—60 Myr, and then gradually decreases. The peak formation efficiency N(HMXB)/SFR is in good agreement with previous estimates of the average formation efficiency in the broad ~20—60 Myr age range, and a factor of at least ~8 and ~4 higher than the formation efficiency in earlier (~10 Myr) and later (~260 Myr) epochs. I will also present the deepest luminosity function ever recorded for a galaxy, and discuss the X-ray properties of the largest sample of extragalactic accreting pulsars as well.
A Deep Chandra ACIS Survey of M51
NASA Astrophysics Data System (ADS)
Kuntz, K. D.; Long, Knox S.; Kilgard, Roy E.
2016-08-01
We have obtained a deep X-ray image of the nearby galaxy M51 using Chandra. Here we present the catalog of X-ray sources detected in these observations and provide an overview of the properties of the point-source population. We find 298 sources within the D 25 radii of NGC 5194/5, of which 20% are variable, a dozen are classical transients, and another half dozen are transient-like sources. The typical number of active ultraluminous X-ray sources in any given observation is ˜5, and only two of those sources persist in an ultraluminous state over the 12 yr of observations. Given reasonable assumptions about the supernova remnant population, the luminosity function is well described by a power law with an index between 1.55 and 1.7, only slightly shallower than that found for populations dominated by high-mass X-ray binaries (HMXBs), which suggests that the binary population in NGC 5194 is also dominated by HMXBs. The luminosity function of NGC 5195 is more consistent with a low-mass X-ray binary dominated population. Based on observations made with NASA's Chandra X-ray Observatory, which is operated by the Smithsonian Astrophysical Observatory under contract #NAS83060, and the data were obtained through program GO1-12115.
Discovery of the binary nature of SMC X-1 from Uhuru.
NASA Technical Reports Server (NTRS)
Schreier, E.; Giacconi, R.; Gursky, H.; Kellogg, E.; Tananbaum, H.
1972-01-01
The X-ray source in the Small Magellanic Cloud SMC X-1 was observed by Uhuru on numerous occasions from December 1970 through April 1972. As previously reported by Leong et al. (1971), the source was seen to be variable. It was found that SMC X-1 occults with a period of 3.8927 days. The energy spectrum is cut off at low energies and flat. There is no large-amplitude periodic pulsation. The luminosity observed makes the binary source SMC X-1 comparable in strength to both the stronger galactic sources and the discrete sources in the Large Magellanic Cloud.
V and K-band Mass-Luminosity Relations for M dwarf Stars
NASA Astrophysics Data System (ADS)
Benedict, G. Fritz; Henry, Todd J.; McArthur, Barbara; Franz, Otto G.; Wasserman, Lawrence H.; Dieterich, Sergio
2015-01-01
Applying Hubble Space Telescope Fine Guidance Sensor astrometric techniques developed to establish relative orbits for binary stars (Franz et al. 1998, AJ, 116, 1432), determine masses of binary components (Benedict et al. 2001, AJ, 121, 1607), and measure companion masses of exoplanet host stars (McArthur et al. 2010, ApJ, 715, 1203), we derive masses with an average 2.1% error for 24 components of 12 M dwarf binary star systems. Masses range 0.08 to 0.40 solar masses. With these we update the lower Main Sequence V-band Mass-Luminosity Relation first shown in Henry et al. (1999, ApJ, 512, 864). We demonstrate that a Mass-Luminosity Relation in the K-band has far less scatter than in the V-band. For the eight binary components for which we have component magnitude differences in the K-band the RMS residual drops from 0.5 magnitude in the V-band to 0.05 magnitude in the K-band. These relations can be used to estimate the masses of the ubiquitous red dwarfs that account for 75% of all stars, to an accuracy of 5%, which is much better than ever before.
Can binary stars test solar models?
NASA Technical Reports Server (NTRS)
Popper, D. M.; Ulrich, R. K.
1986-01-01
The position in the H-R diagram of the approximately solar-mass component of the Hyades eclipsing binary, HD 27130, is compared with the predictions of stellar structure theory. The stellar models are calibrated by matching a model with the solar heavy element composition and age to the solar radius and luminosity. The comparison to the Hyades binary then is a test of the prediction that the initial solar luminosity was only about 0.7 times the present solar luminosity. The agreement is satisfactory, lending a measure of confidence to the solar model employed, provided that the initial helium abundance of the Hyades stars is not greater than that of the sun and is not less by more than about 0.03 in Y. Unless the model is grossly incorrect, the inference of Stromgren, Olsen, and Gustafsson (1982) from the 'Hyades anomaly' in intermediate-band photometry that Y(Hyades) is less than Y(solar) by 0.1 or 0.15 is rejected by the observed properties of HD 27130.
A deep survey of the X-ray binary populations in the SMC
NASA Astrophysics Data System (ADS)
Zezas, A.; Antoniou, V.
2017-10-01
The Small Magellanic Cloud (SMC) has been the subject of systematic X-ray surveys over the past two decades, which have yielded a rich population of high-mass X-ray binaries consisting predominantly of Be/X-ray binaries. We present results from our deep Chandra survey of the SMC which targeted regions with stellar populations ranging between ˜10-100 Myr. X-ray luminosities down to ˜3×10^{32} erg/s were reached, probing all active accreting binaries and extending well into the regime of quiescent accreting binaries and X-ray emitting normal stars. We measure the dependence of the formation efficiency of X-ray binaries on age. We also detect pulsations from 19 known and one new candidate pulsar. We construct the X-ray luminosity function in different regions of the SMC, which shows clear evidence for the propeller effect the centrifugal inhibition of accretion due to the interaction of the accretion flow with the pulsar's magnetic field. Finally we compare these results with predictions for the formation efficiency of X-ray binaries as a function of age from X-ray binary population synthesis models.
Irradiation and Enhanced Magnetic Braking in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
McCormick, P. J.; Frank, J.
1998-12-01
In previous work we have shown that irradiation driven mass transfer cycles can occur in cataclysmic variables at all orbital periods if an additional angular momentum loss mechanism is assumed. Earlier models simply postulated that the enhanced angular momentum loss was proportional to the mass transfer rate without any specific physical model. In this paper we present a simple modification of magnetic braking which seems to have the right properties to sustain irradiation driven cycles at all orbital periods. We assume that the wind mass loss from the irradiated companion consists of two parts: an intrinsic stellar wind term plus an enhancement that is proportional to the irradiation. The increase in mass flow reduces the specific angular momentum carried away by the flow but nevertheless yields an enhanced rate of magnetic braking. The secular evolution of the binary is then computed numerically with a suitably modified double polytropic code (McCormick & Frank 1998). With the above model and under certain conditions, mass transfer oscillations occur at all orbital periods.
NASA Technical Reports Server (NTRS)
Holt, S. S.; Mushotzky, R. F.
1979-01-01
An overview of X-ray astronomical spectroscopy in general is presented and results obtained by HEAO 1 and 2 as well as earlier spacecraft are examined. Particular emphasis is given to the spectra of supernova remnants; galactic binary X-ray sources, cataclysmic variables, bulges, pulsars, and stars; the active nuclei of Seyfert 1 galaxy, BL Lac, and quasars; the diffuse X-ray background; and galactic clusters.
Exploring X-Ray Binary Populations in Compact Group Galaxies With Chandra
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Hornschemeier, A. E..; Gallagher, S. C.; Lenkic, L.; Desjardins, T. D.; Walker, L. M.; Johnson, K. E.; Mulchaey, J. S.
2016-01-01
We obtain total galaxy X-ray luminosities, LX, originating from individually detected point sources in a sample of 47 galaxies in 15 compact groups of galaxies (CGs). For the great majority of our galaxies, we find that the detected point sources most likely are local to their associated galaxy, and are thus extragalactic X-ray binaries (XRBs) or nuclear active galactic nuclei (AGNs). For spiral and irregular galaxies, we find that, after accounting for AGNs and nuclear sources, most CG galaxies are either within the +/-1s scatter of the Mineo et al. LX-star formation rate (SFR) correlation or have higher LX than predicted by this correlation for their SFR. We discuss how these "excesses" may be due to low metallicities and high interaction levels. For elliptical and S0 galaxies, after accounting for AGNs and nuclear sources, most CG galaxies are consistent with the Boroson et al. LX-stellar mass correlation for low-mass XRBs, with larger scatter, likely due to residual effects such as AGN activity or hot gas. Assuming non-nuclear sources are low- or high-mass XRBs, we use appropriate XRB luminosity functions to estimate the probability that stochastic effects can lead to such extreme LX values. We find that, although stochastic effects do not in general appear to be important, for some galaxies there is a significant probability that high LX values can be observed due to strong XRB variability.
Thermal winds in stellar mass black hole and neutron star binary systems
NASA Astrophysics Data System (ADS)
Done, Chris; Tomaru, Ryota; Takahashi, Tadayuki
2018-01-01
Black hole binaries show equatorial disc winds at high luminosities, which apparently disappear during the spectral transition to the low/hard state. This is also where the radio jet appears, motivating speculation that both wind and jet are driven by different configurations of the same magnetic field. However, these systems must also have thermal winds, as the outer disc is clearly irradiated. We develop a predictive model of the absorption features from thermal winds, based on pioneering work of Begelman, McKee & Shields. We couple this to a realistic model of the irradiating spectrum as a function of luminosity to predict the entire wind evolution during outbursts. We show that the column density of the thermal wind scales roughly with luminosity, and does not shut off at the spectral transition, though its visibility will be affected by the abrupt change in ionizing spectrum. We re-analyse the data from H1743-322, which most constrains the difference in wind across the spectral transition, and show that these are consistent with the thermal wind models. We include simple corrections for radiation pressure, which allows stronger winds to be launched from smaller radii. These winds become optically thick around Eddington, which may even explain the exceptional wind seen in one observation of GRO J1655-40. These data can instead be fit by magnetic wind models, but similar winds are not seen in this or other systems at similar luminosities. Hence, we conclude that the majority (perhaps all) of current data can be explained by thermal or thermal-radiative winds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, Slavko
I present a 40 ks Nuclear Spectroscopic Telescope Array observation of the recently identified low-luminosity X-ray binary and transitional millisecond pulsar (tMSP) candidate 1RXS J154439.4 112820, which is associated with the high-energy γ -ray source 3FGL J1544.6 1125. The system is detected up to ∼30 keV with an extension of the same power-law spectrum and rapid large-amplitude variability between two flux levels observed in soft X-rays. These findings provide further evidence that 1RXS J154439.4 112820 belongs to the same class of objects as the nearby bona fide tMSPs PSR J1023+0038 and XSS J12270 4859 and therefore almost certainly hosts amore » millisecond pulsar accreting at low luminosity. I also examine the long-term accretion history of 1RXS J154439.4 112820 based on archival optical, ultraviolet, X-ray, and γ -ray light curves covering approximately the past decade. Throughout this period, the source has maintained similar flux levels at all wavelengths, which is an indication that it has not experienced prolonged episodes of a non-accreting radio pulsar state but may spontaneously undergo such events in the future.« less
The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited
NASA Astrophysics Data System (ADS)
Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri
2017-05-01
In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.
NASA Technical Reports Server (NTRS)
Hintzen, Paul; Oswalt, Terry D.; Liebert, James; Sion, Edward M.
1989-01-01
During the course of a spectroscopic study of Luyten common proper motion (CPM) stars, spectrophotometric observations have been obtained of three binaries containing degenerate stars with estimated absolute magnitudes M(V) of about 16. Each of the three pairs consists of a yellow degenerate star primary and a DC 13 + secondary 1.4-2.3 mag fainter. One of the primary stars is spectral class DC 7, another is a sharp-lined DA 8, and the third shows peculiar broad absorption features which we interpret as pressure-shifted C2 Swan bands. The LP 701 - 69/70 system has survived for over 8 billion years without disruption by passing stars, despite its 1500 a.u. orbital major axis. The three cool degenerate companions nearly double the available sample of stars at the low-luminosity terminus of the white dwarf cooling sequence. These findings appear consistent with the conclusion that degenerate stars in the old disk population have not had time to evolve to a luminosity fainter than M(V) about 16.2.
First photometric study of the W UMa system GSC 1042-2191
NASA Astrophysics Data System (ADS)
Bulut, A.; Bulut, İ.; Demircan, O.
2016-04-01
We present new photometric observations covering eight minima times for the eclipsing binary GSC 1042-2191. The light curves in BVRI colors were analyzed by using WD-code for the system parameters. Eight minima times were obtained from the new observations. The system is found a low mass ratio (q = 0.148), A-type over-contact binary with a fill out parameter of f = 65.01 ± 12.18%. The preliminary absolute dimensions (M1= 1.26 ± 0.06 M⊙, M2 = 0.18 ± 0.06 M⊙, R1 = 1.54 ± 0.20 R⊙, R2 = 0.69 ± 0.01 R⊙, L1 =3.30 ± 0.30 L⊙ and L2 = 0.59 ± 0.20 L⊙) indicate the very much oversized and over-luminous secondary component, by assuming the present luminosity of the secondary is its main sequence luminosity, we predict the original mass is about 0.8 M⊙, this means the present secondary could be transferred and/or lost 77% of its original mass and only its core is left.
A dark jet dominates the power output of the stellar black hole Cygnus X-1.
Gallo, Elena; Fender, Rob; Kaiser, Christian; Russell, David; Morganti, Raffaella; Oosterloo, Tom; Heinz, Sebastian
2005-08-11
Black holes undergoing accretion are thought to emit the bulk of their power in the X-ray band by releasing the gravitational potential energy of the infalling matter. At the same time, they are capable of producing highly collimated jets of energy and particles flowing out of the system with relativistic velocities. Here we show that the 10-solar-mass (10M(o)) black hole in the X-ray binary Cygnus X-1 (refs 3-5) is surrounded by a large-scale (approximately 5 pc in diameter) ring-like structure that appears to be inflated by the inner radio jet. We estimate that in order to sustain the observed emission of the ring, the jet of Cygnus X-1 has to carry a kinetic power that can be as high as the bolometric X-ray luminosity of the binary system. This result may imply that low-luminosity stellar-mass black holes as a whole dissipate the bulk of the liberated accretion power in the form of 'dark', radiatively inefficient relativistic outflows, rather than locally in the X-ray-emitting inflow.
Truncation of the Inner Accretion Disk Around a Black Hole at Low Luminosity
NASA Technical Reports Server (NTRS)
Tomsick, John A.; Yamaoka, Kazutaka; Corbel, Stephane; Kaaret, Philip; Kalemci, Emrah; Migliari, Simone
2009-01-01
Most black hole binaries show large changes in X-ray luminosity caused primarily by variations in mass accretion rate. An important question for understanding black hole accretion and jet production is whether the inner edge of the accretion disk recedes at low accretion rate. Measurements of the location of the inner edge (R(sub in)) can be made using iron emission lines that arise due to fluorescence of iron in the disk, and these indicate that R(sub in) is very close to the black hole at high and moderate luminosities (greater than approximately equal to 1% of the Eddington luminosity, L(sub Edd). Here, we report on X-ray observation of the black hole GX 339-4 in the hard state by Suzaku and the Rossi X-ray Timing Explorer (RXTE) that extend iron line studies to 0.14% L(sub Edd) and show that R(sub in) increases by a factor of greater than 27 over the value found when GX 339-4 was bright. The exact value of R(sub in) depends on the inclination of the inner disk (i), and we derive 90% confidence limits of R(sub in) greater than 35R(sub g) at i = 0 degrees and R(sub in) greater than 175R(sub g) at i = 30 degrees. This provides direct evidence that the inner portion of the disk is not present at low luminosity, allowing for the possibility that the inner disk is replaced by advection- or magnetically-dominated accretion flows.
NASA Astrophysics Data System (ADS)
Dittenber, Benjamin; Hodges-Kluck, Edmund J.; Gallo, Elena
2018-06-01
Supermassive black holes (SMBHs) are known to commonly reside in the centers of large galaxies, but it is unclear whether they reside in smaller galaxies (M_* < M_sun x 10^10). X-rays are the most efficient way to detect low-level accretion, and provide the best measurement of the occupation fraction. X-ray binaries can be nearly as bright as SMBHs that have sub-Eddington accretion rates. High-mass XRBs (HMXBs) are especially problematic because they can get brighter than low-mass XRBs. However, previous estimates of HMXB contamination (based on the optical continuum to get the fraction of HMXBs expected in the nucleus) may be too high. A better approach is to use FUV or H-alpha, which directly trace ongoing star formation. We did this in a sample of 30 late-type galaxies with Chandra data. We calculate the total Expected X-ray Luminosity from XRBs (L_x) for each sample galaxy using existing relationships between X-ray luminosity and SFR. We estimate the fraction of the stellar formation in the nucleus by measuring the fraction of nuclear UV or H-alpha light there (total SFR is from the far infrared). Our Galex data is scaled with a sample of 6 Swift UVOT galaxies to measure with the same aperture size that previous works have used in the B-band. We found that the mean L_x,c for Swift scaled FUV ratios is ~2.025 x 10^36 and the mean L_x,c for H-alpha ratios is 7.693 x 10^35. These luminosities are 1.9 and 5 times smaller than B-band measured luminosities respectively. These results suggest that HMXBs do not contribute as much contamination in these galaxies as previously thought. Therefore, with a lower contamination, estimates of the occupation fraction from late-type galaxies are more reliable.
Chandra reveals a black hole X-ray binary within the ultraluminous supernova remnant MF 16
NASA Astrophysics Data System (ADS)
Roberts, T. P.; Colbert, E. J. M.
2003-06-01
We present evidence, based on Chandra ACIS-S observations of the nearby spiral galaxy NGC 6946, that the extraordinary X-ray luminosity of the MF 16 supernova remnant actually arises in a black hole X-ray binary. This conclusion is drawn from the point-like nature of the X-ray source, its X-ray spectrum closely resembling the spectrum of other ultraluminous X-ray sources thought to be black hole X-ray binary systems, and the detection of rapid hard X-ray variability from the source. We briefly discuss the nature of the hard X-ray variability, and the origin of the extreme radio and optical luminosity of MF 16 in light of this identification.
NASA Technical Reports Server (NTRS)
Savin, D. W.; Gwinner, G.; Schwalm, D.; Wolf, A.; Mueller, A.; Schippers, S.
2002-01-01
Low temperature dielectronic recombination (DR) is the dominant recombination mechanism for most ions in X-ray photoionized cosmic plasmas. Reliably modeling and interpreting spectra from these plasmas requires accurate low temperature DR rate Coefficients. Of particular importance are the DR rate coefficients for the iron L-shell ions (Fe XVII-Fe XXIV). These ions are predicted to play an important role in determining the thermal structure and line emission of X-ray photoionized plasmas, which form in the media surrounding accretion powered sources such as X-ray binaries (XRBs), active galactic nuclei (AGN), and cataclysmic variables (Savin et al., 2000). The need for reliable DR data of iron L-shell ions has become particularly urgent after the launches of Chandra and XMM-Newton. These satellites are now providing high-resolution X-ray spectra from a wide range of X-ray photoionized sources. Interpreting the spectra from these sources requires reliable DR rate coefficients. However, at the temperatures relevant, for X-ray photoionized plasmas, existing theoretical DR rate coefficients can differ from one another by factors of two to orders of magnitudes.
A Physical Parameterization of the Evolution of X-ray Binary Emission
NASA Astrophysics Data System (ADS)
Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael
2018-01-01
The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.
Discovery of a Probable BH-HMXB and Cyg X-1 Progenitor System
NASA Astrophysics Data System (ADS)
Grindlay, Jonathan E.; Gomez, Sebastian; Hong, Jaesub; Zhang, Shuo; Hailey, Charles; Mori, Kaya; Tomsick, John
2017-08-01
We report the discovery of a probable black hole High Mass X-ray Binary (BH-HMXB), a 5.3d single line spectroscopic binary (SB1) HD96670 in the Carina OB association. We initiated a search for such systems for which the O star primary was still on the main sequence, in stark contrast to Cyg X-1 with its evolved supergiant O star companion, since such systems must be ~10-30 times more numerous given their longer lifetimes. HD96670 had been found to be a SB1 with binary period ~5.5d and mass function ~0.125Msun. With a ~150ksec NuSTAR observation of HD96670 over 3 segments, we found a significant detection of a variable source best fit with a PL spectrum with photon index between 2.4 and 2.6 for the brightest vs. faintest observations. Weak 6.4 - 6.7 keV emission was also detected. We conducted extensive optical photometry and spectroscopy to better measure the binary system parameters and have fit the the combined data with an ellipsoidal modulation code (Wilson and Devinney) to find that the binary companion is best fit by a ~4.5 Msun BH accreting from the weak wind primary O star with luminosity Lx ~3 x 10^32 erg/s, which cannot be due to a colliding wind or intrinsic Ostar emission. . A B4V or B5V main sequence star companion can be ruled out by the very low accretion luminosity and lack of colliding wind expected. Full details, including the direct measurement of a triple companion B1V star previously reported (Sanna et al 2014) for HD96670, will appear in two forthcoming papers to be summarized in this talk.
GW170608: Observation of a 19 Solar-mass Binary Black Hole Coalescence
NASA Astrophysics Data System (ADS)
Abbott, B. P.; Abbott, R.; Abbott, T. D.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Adya, V. B.; Affeldt, C.; Afrough, M.; Agarwal, B.; Agathos, M.; Agatsuma, K.; Aggarwal, N.; Aguiar, O. D.; Aiello, L.; Ain, A.; Ajith, P.; Allen, B.; Allen, G.; Allocca, A.; Altin, P. A.; Amato, A.; Ananyeva, A.; Anderson, S. B.; Anderson, W. G.; Angelova, S. V.; Antier, S.; Appert, S.; Arai, K.; Araya, M. C.; Areeda, J. S.; Arnaud, N.; Arun, K. G.; Ascenzi, S.; Ashton, G.; Ast, M.; Aston, S. M.; Astone, P.; Atallah, D. V.; Aufmuth, P.; Aulbert, C.; AultONeal, K.; Austin, C.; Avila-Alvarez, A.; Babak, S.; Bacon, P.; Bader, M. K. M.; Bae, S.; Baker, P. T.; Baldaccini, F.; Ballardin, G.; Ballmer, S. W.; Banagiri, S.; Barayoga, J. C.; Barclay, S. E.; Barish, B. C.; Barker, D.; Barkett, K.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barta, D.; Bartlett, J.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.; Bawaj, M.; Bayley, J. C.; Bazzan, M.; Bécsy, B.; Beer, C.; Bejger, M.; Belahcene, I.; Bell, A. S.; Berger, B. K.; Bergmann, G.; Bero, J. J.; Berry, C. P. L.; Bersanetti, D.; Bertolini, A.; Betzwieser, J.; Bhagwat, S.; Bhandare, R.; Bilenko, I. A.; Billingsley, G.; Billman, C. R.; Birch, J.; Birney, R.; Birnholtz, O.; Biscans, S.; Biscoveanu, S.; Bisht, A.; Bitossi, M.; Biwer, C.; Bizouard, M. A.; Blackburn, J. K.; Blackman, J.; Blair, C. D.; Blair, D. G.; Blair, R. M.; Bloemen, S.; Bock, O.; Bode, N.; Boer, M.; Bogaert, G.; Bohe, A.; Bondu, F.; Bonilla, E.; Bonnand, R.; Boom, B. A.; Bork, R.; Boschi, V.; Bose, S.; Bossie, K.; Bouffanais, Y.; Bozzi, A.; Bradaschia, C.; Brady, P. R.; Branchesi, M.; Brau, J. E.; Briant, T.; Brillet, A.; Brinkmann, M.; Brisson, V.; Brockill, P.; Broida, J. E.; Brooks, A. F.; Brown, D. A.; Brown, D. D.; Brunett, S.; Buchanan, C. C.; Buikema, A.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Buskulic, D.; Buy, C.; Byer, R. L.; Cabero, M.; Cadonati, L.; Cagnoli, G.; Cahillane, C.; Calderón Bustillo, J.; Callister, T. A.; Calloni, E.; Camp, J. B.; Canepa, M.; Canizares, P.; Cannon, K. C.; Cao, H.; Cao, J.; Capano, C. D.; Capocasa, E.; Carbognani, F.; Caride, S.; Carney, M. F.; Casanueva Diaz, J.; Casentini, C.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C. B.; Cerdá-Durán, P.; Cerretani, G.; Cesarini, E.; Chamberlin, S. J.; Chan, M.; Chao, S.; Charlton, P.; Chase, E.; Chassande-Mottin, E.; Chatterjee, D.; Chatziioannou, K.; Cheeseboro, B. D.; Chen, H. Y.; Chen, X.; Chen, Y.; Cheng, H.-P.; Chia, H.; Chincarini, A.; Chiummo, A.; Chmiel, T.; Cho, H. S.; Cho, M.; Chow, J. H.; Christensen, N.; Chu, Q.; Chua, A. J. K.; Chua, S.; Chung, A. K. W.; Chung, S.; Ciani, G.; Ciolfi, R.; Cirelli, C. E.; Cirone, A.; Clara, F.; Clark, J. A.; Clearwater, P.; Cleva, F.; Cocchieri, C.; Coccia, E.; Cohadon, P.-F.; Cohen, D.; Colla, A.; Collette, C. G.; Cominsky, L. R.; Constancio, M., Jr.; Conti, L.; Cooper, S. J.; Corban, P.; Corbitt, T. R.; Cordero-Carrión, I.; Corley, K. R.; Cornish, N.; Corsi, A.; Cortese, S.; Costa, C. A.; Coughlin, M. W.; Coughlin, S. B.; Coulon, J.-P.; Countryman, S. T.; Couvares, P.; Covas, P. B.; Cowan, E. E.; Coward, D. M.; Cowart, M. J.; Coyne, D. C.; Coyne, R.; Creighton, J. D. E.; Creighton, T. D.; Cripe, J.; Crowder, S. G.; Cullen, T. J.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dal Canton, T.; Dálya, G.; Danilishin, S. L.; D’Antonio, S.; Danzmann, K.; Dasgupta, A.; Da Silva Costa, C. F.; Dattilo, V.; Dave, I.; Davier, M.; Davis, D.; Daw, E. J.; Day, B.; De, S.; DeBra, D.; Degallaix, J.; De Laurentis, M.; Deléglise, S.; Del Pozzo, W.; Demos, N.; Denker, T.; Dent, T.; De Pietri, R.; Dergachev, V.; De Rosa, R.; DeRosa, R. T.; De Rossi, C.; DeSalvo, R.; de Varona, O.; Devenson, J.; Dhurandhar, S.; Díaz, M. C.; Di Fiore, L.; Di Giovanni, M.; Di Girolamo, T.; Di Lieto, A.; Di Pace, S.; Di Palma, I.; Di Renzo, F.; Doctor, Z.; Dolique, V.; Donovan, F.; Dooley, K. L.; Doravari, S.; Dorrington, I.; Douglas, R.; Dovale Álvarez, M.; Downes, T. P.; Drago, M.; Dreissigacker, C.; Driggers, J. C.; Du, Z.; Ducrot, M.; Dupej, P.; Dwyer, S. E.; Edo, T. B.; Edwards, M. C.; Effler, A.; Eggenstein, H.-B.; Ehrens, P.; Eichholz, J.; Eikenberry, S. S.; Eisenstein, R. A.; Essick, R. C.; Estevez, D.; Etienne, Z. B.; Etzel, T.; Evans, M.; Evans, T. M.; Factourovich, M.; Fafone, V.; Fair, H.; Fairhurst, S.; Fan, X.; Farinon, S.; Farr, B.; Farr, W. M.; Fauchon-Jones, E. J.; Favata, M.; Fays, M.; Fee, C.; Fehrmann, H.; Feicht, J.; Fejer, M. M.; Fernandez-Galiana, A.; Ferrante, I.; Ferreira, E. C.; Ferrini, F.; Fidecaro, F.; Finstad, D.; Fiori, I.; Fiorucci, D.; Fishbach, M.; Fisher, R. P.; Fitz-Axen, M.; Flaminio, R.; Fletcher, M.; Fong, H.; Font, J. A.; Forsyth, P. W. F.; Forsyth, S. S.; Fournier, J.-D.; Frasca, S.; Frasconi, F.; Frei, Z.; Freise, A.; Frey, R.; Frey, V.; Fries, E. M.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Gabbard, H.; Gadre, B. U.; Gaebel, S. M.; Gair, J. R.; Gammaitoni, L.; Ganija, M. R.; Gaonkar, S. G.; Garcia-Quiros, C.; Garufi, F.; Gateley, B.; Gaudio, S.; Gaur, G.; Gayathri, V.; Gehrels, N.; Gemme, G.; Genin, E.; Gennai, A.; George, D.; George, J.; Gergely, L.; Germain, V.; Ghonge, S.; Ghosh, Abhirup; Ghosh, Archisman; Ghosh, S.; Giaime, J. A.; Giardina, K. D.; Giazotto, A.; Gill, K.; Glover, L.; Goetz, E.; Goetz, R.; Gomes, S.; Goncharov, B.; González, G.; Gonzalez Castro, J. M.; Gopakumar, A.; Gorodetsky, M. L.; Gossan, S. E.; Gosselin, M.; Gouaty, R.; Grado, A.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greco, G.; Green, A. C.; Gretarsson, E. M.; Groot, P.; Grote, H.; Grunewald, S.; Gruning, P.; Guidi, G. M.; Guo, X.; Gupta, A.; Gupta, M. K.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Halim, O.; Hall, B. R.; Hall, E. D.; Hamilton, E. Z.; Hammond, G.; Haney, M.; Hanke, M. M.; Hanks, J.; Hanna, C.; Hannam, M. D.; Hannuksela, O. A.; Hanson, J.; Hardwick, T.; Harms, J.; Harry, G. M.; Harry, I. W.; Hart, M. J.; Haster, C.-J.; Haughian, K.; Healy, J.; Heidmann, A.; Heintze, M. C.; Heitmann, H.; Hello, P.; Hemming, G.; Hendry, M.; Heng, I. S.; Hennig, J.; Heptonstall, A. W.; Heurs, M.; Hild, S.; Hinderer, T.; Hoak, D.; Hofman, D.; Holt, K.; Holz, D. E.; Hopkins, P.; Horst, C.; Hough, J.; Houston, E. A.; Howell, E. J.; Hreibi, A.; Hu, Y. M.; Huerta, E. A.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh-Dinh, T.; Indik, N.; Inta, R.; Intini, G.; Isa, H. N.; Isac, J.-M.; Isi, M.; Iyer, B. R.; Izumi, K.; Jacqmin, T.; Jani, K.; Jaranowski, P.; Jawahar, S.; Jiménez-Forteza, F.; Johnson, W. W.; Johnson-McDaniel, N. K.; Jones, D. I.; Jones, R.; Jonker, R. J. G.; Ju, L.; Junker, J.; Kalaghatgi, C. V.; Kalogera, V.; Kamai, B.; Kandhasamy, S.; Kang, G.; Kanner, J. B.; Kapadia, S. J.; Karki, S.; Karvinen, K. S.; Kasprzack, M.; Katolik, M.; Katsavounidis, E.; Katzman, W.; Kaufer, S.; Kawabe, K.; Kéfélian, F.; Keitel, D.; Kemball, A. J.; Kennedy, R.; Kent, C.; Key, J. S.; Khalili, F. Y.; Khan, I.; Khan, S.; Khan, Z.; Khazanov, E. A.; Kijbunchoo, N.; Kim, Chunglee; Kim, J. C.; Kim, K.; Kim, W.; Kim, W. S.; Kim, Y.-M.; Kimbrell, S. J.; King, E. J.; King, P. J.; Kinley-Hanlon, M.; Kirchhoff, R.; Kissel, J. S.; Kleybolte, L.; Klimenko, S.; Knowles, T. D.; Koch, P.; Koehlenbeck, S. M.; Koley, S.; Kondrashov, V.; Kontos, A.; Korobko, M.; Korth, W. Z.; Kowalska, I.; Kozak, D. B.; Krämer, C.; Kringel, V.; Krishnan, B.; Królak, A.; Kuehn, G.; Kumar, P.; Kumar, R.; Kumar, S.; Kuo, L.; Kutynia, A.; Kwang, S.; Lackey, B. D.; Lai, K. H.; Landry, M.; Lang, R. N.; Lange, J.; Lantz, B.; Lanza, R. K.; Lartaux-Vollard, A.; Lasky, P. D.; Laxen, M.; Lazzarini, A.; Lazzaro, C.; Leaci, P.; Leavey, S.; Lee, C. H.; Lee, H. K.; Lee, H. M.; Lee, H. W.; Lee, K.; Lehmann, J.; Lenon, A.; Leonardi, M.; Leroy, N.; Letendre, N.; Levin, Y.; Li, T. G. F.; Linker, S. D.; Littenberg, T. B.; Liu, J.; Lo, R. K. L.; Lockerbie, N. A.; London, L. T.; Lord, J. E.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lough, J. D.; Lousto, C. O.; Lovelace, G.; Lück, H.; Lumaca, D.; Lundgren, A. P.; Lynch, R.; Ma, Y.; Macas, R.; Macfoy, S.; Machenschalk, B.; MacInnis, M.; Macleod, D. M.; Magaña Hernandez, I.; Magaña-Sandoval, F.; Magaña Zertuche, L.; Magee, R. M.; Majorana, E.; Maksimovic, I.; Man, N.; Mandic, V.; Mangano, V.; Mansell, G. L.; Manske, M.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Markakis, C.; Markosyan, A. S.; Markowitz, A.; Maros, E.; Marquina, A.; Martelli, F.; Martellini, L.; Martin, I. W.; Martin, R. M.; Martynov, D. V.; Mason, K.; Massera, E.; Masserot, A.; Massinger, T. J.; Masso-Reid, M.; Mastrogiovanni, S.; Matas, A.; Matichard, F.; Matone, L.; Mavalvala, N.; Mazumder, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McCuller, L.; McGuire, S. C.; McIntyre, G.; McIver, J.; McManus, D. J.; McNeill, L.; McRae, T.; McWilliams, S. T.; Meacher, D.; Meadors, G. D.; Mehmet, M.; Meidam, J.; Mejuto-Villa, E.; Melatos, A.; Mendell, G.; Mercer, R. A.; Merilh, E. L.; Merzougui, M.; Meshkov, S.; Messenger, C.; Messick, C.; Metzdorff, R.; Meyers, P. M.; Miao, H.; Michel, C.; Middleton, H.; Mikhailov, E. E.; Milano, L.; Miller, A. L.; Miller, B. B.; Miller, J.; Millhouse, M.; Milovich-Goff, M. C.; Minazzoli, O.; Minenkov, Y.; Ming, J.; Mishra, C.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moffa, D.; Moggi, A.; Mogushi, K.; Mohan, M.; Mohapatra, S. R. P.; Montani, M.; Moore, C. J.; Moraru, D.; Moreno, G.; Morriss, S. R.; Mours, B.; Mow-Lowry, C. M.; Mueller, G.; Muir, A. W.; Mukherjee, Arunava; Mukherjee, D.; Mukherjee, S.; Mukund, N.; Mullavey, A.; Munch, J.; Muñiz, E. A.; Muratore, M.; Murray, P. G.; Napier, K.; Nardecchia, I.; Naticchioni, L.; Nayak, R. K.; Neilson, J.; Nelemans, G.; Nelson, T. J. N.; Nery, M.; Neunzert, A.; Nevin, L.; Newport, J. M.; Newton, G.; Ng, K. K. Y.; Nguyen, T. T.; Nichols, D.; Nielsen, A. B.; Nissanke, S.; Nitz, A.; Noack, A.; Nocera, F.; Nolting, D.; North, C.; Nuttall, L. K.; Oberling, J.; O’Dea, G. D.; Ogin, G. H.; Oh, J. J.; Oh, S. H.; Ohme, F.; Okada, M. A.; Oliver, M.; Oppermann, P.; Oram, Richard J.; O’Reilly, B.; Ormiston, R.; Ortega, L. F.; O’Shaughnessy, R.; Ossokine, S.; Ottaway, D. J.; Overmier, H.; Owen, B. J.; Pace, A. E.; Page, J.; Page, M. A.; Pai, A.; Pai, S. A.; Palamos, J. R.; Palashov, O.; Palomba, C.; Pal-Singh, A.; Pan, Howard; Pan, Huang-Wei; Pang, B.; Pang, P. T. H.; Pankow, C.; Pannarale, F.; Pant, B. C.; Paoletti, F.; Paoli, A.; Papa, M. A.; Parida, A.; Parker, W.; Pascucci, D.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patil, M.; Patricelli, B.; Pearlstone, B. L.; Pedraza, M.; Pedurand, R.; Pekowsky, L.; Pele, A.; Penn, S.; Perez, C. J.; Perreca, A.; Perri, L. M.; Pfeiffer, H. P.; Phelps, M.; Piccinni, O. J.; Pichot, M.; Piergiovanni, F.; Pierro, V.; Pillant, G.; Pinard, L.; Pinto, I. M.; Pirello, M.; Pitkin, M.; Poe, M.; Poggiani, R.; Popolizio, P.; Porter, E. K.; Post, A.; Powell, J.; Prasad, J.; Pratt, J. W. W.; Pratten, G.; Predoi, V.; Prestegard, T.; Prijatelj, M.; Principe, M.; Privitera, S.; Prodi, G. A.; Prokhorov, L. G.; Puncken, O.; Punturo, M.; Puppo, P.; Pürrer, M.; Qi, H.; Quetschke, V.; Quintero, E. A.; Quitzow-James, R.; Raab, F. J.; Rabeling, D. S.; Radkins, H.; Raffai, P.; Raja, S.; Rajan, C.; Rajbhandari, B.; Rakhmanov, M.; Ramirez, K. E.; Ramos-Buades, A.; Rapagnani, P.; Raymond, V.; Razzano, M.; Read, J.; Regimbau, T.; Rei, L.; Reid, S.; Reitze, D. H.; Ren, W.; Reyes, S. D.; Ricci, F.; Ricker, P. M.; Rieger, S.; Riles, K.; Rizzo, M.; Robertson, N. A.; Robie, R.; Robinet, F.; Rocchi, A.; Rolland, L.; Rollins, J. G.; Roma, V. J.; Romano, R.; Romel, C. L.; Romie, J. H.; Rosińska, D.; Ross, M. P.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Rutins, G.; Ryan, K.; Sachdev, S.; Sadecki, T.; Sadeghian, L.; Sakellariadou, M.; Salconi, L.; Saleem, M.; Salemi, F.; Samajdar, A.; Sammut, L.; Sampson, L. M.; Sanchez, E. J.; Sanchez, L. E.; Sanchis-Gual, N.; Sandberg, V.; Sanders, J. R.; Sassolas, B.; Sathyaprakash, B. S.; Saulson, P. R.; Sauter, O.; Savage, R. L.; Sawadsky, A.; Schale, P.; Scheel, M.; Scheuer, J.; Schmidt, J.; Schmidt, P.; Schnabel, R.; Schofield, R. M. S.; Schönbeck, A.; Schreiber, E.; Schuette, D.; Schulte, B. W.; Schutz, B. F.; Schwalbe, S. G.; Scott, J.; Scott, S. M.; Seidel, E.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sequino, V.; Sergeev, A.; Shaddock, D. A.; Shaffer, T. J.; Shah, A. A.; Shahriar, M. S.; Shaner, M. B.; Shao, L.; Shapiro, B.; Shawhan, P.; Sheperd, A.; Shoemaker, D. H.; Shoemaker, D. M.; Siellez, K.; Siemens, X.; Sieniawska, M.; Sigg, D.; Silva, A. D.; Singer, L. P.; Singh, A.; Singhal, A.; Sintes, A. M.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Smith, R. J. E.; Somala, S.; Son, E. J.; Sonnenberg, J. A.; Sorazu, B.; Sorrentino, F.; Souradeep, T.; Spencer, A. P.; Srivastava, A. K.; Staats, K.; Staley, A.; Steinke, M.; Steinlechner, J.; Steinlechner, S.; Steinmeyer, D.; Stevenson, S. P.; Stone, R.; Stops, D. J.; Strain, K. A.; Stratta, G.; Strigin, S. E.; Strunk, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sun, L.; Sunil, S.; Suresh, J.; Sutton, P. J.; Swinkels, B. L.; Szczepańczyk, M. J.; Tacca, M.; Tait, S. C.; Talbot, C.; Talukder, D.; Tanner, D. B.; Tápai, M.; Taracchini, A.; Tasson, J. D.; Taylor, J. A.; Taylor, R.; Tewari, S. V.; Theeg, T.; Thies, F.; Thomas, E. G.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Tiwari, S.; Tiwari, V.; Tokmakov, K. V.; Toland, K.; Tonelli, M.; Tornasi, Z.; Torres-Forné, A.; Torrie, C. I.; Töyrä, D.; Travasso, F.; Traylor, G.; Trinastic, J.; Tringali, M. C.; Trozzo, L.; Tsang, K. W.; Tse, M.; Tso, R.; Tsukada, L.; Tsuna, D.; Tuyenbayev, D.; Ueno, K.; Ugolini, D.; Unnikrishnan, C. S.; Urban, A. L.; Usman, S. A.; Vahlbruch, H.; Vajente, G.; Valdes, G.; van Bakel, N.; van Beuzekom, M.; van den Brand, J. F. J.; Van Den Broeck, C.; Vander-Hyde, D. C.; van der Schaaf, L.; van Heijningen, J. V.; van Veggel, A. A.; Vardaro, M.; Varma, V.; Vass, S.; Vasúth, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Venkateswara, K.; Venugopalan, G.; Verkindt, D.; Vetrano, F.; Viceré, A.; Viets, A. D.; Vinciguerra, S.; Vine, D. J.; Vinet, J.-Y.; Vitale, S.; Vo, T.; Vocca, H.; Vorvick, C.; Vyatchanin, S. P.; Wade, A. R.; Wade, L. E.; Wade, M.; Walet, R.; Walker, M.; Wallace, L.; Walsh, S.; Wang, G.; Wang, H.; Wang, J. Z.; Wang, W. H.; Wang, Y. F.; Ward, R. L.; Warner, J.; Was, M.; Watchi, J.; Weaver, B.; Wei, L.-W.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wessel, E. K.; Weßels, P.; Westerweck, J.; Westphal, T.; Wette, K.; Whelan, J. T.; Whiting, B. F.; Whittle, C.; Wilken, D.; Williams, D.; Williams, R. D.; Williamson, A. R.; Willis, J. L.; Willke, B.; Wimmer, M. H.; Winkler, W.; Wipf, C. C.; Wittel, H.; Woan, G.; Woehler, J.; Wofford, J.; Wong, K. W. K.; Worden, J.; Wright, J. L.; Wu, D. S.; Wysocki, D. M.; Xiao, S.; Yamamoto, H.; Yancey, C. C.; Yang, L.; Yap, M. J.; Yazback, M.; Yu, Hang; Yu, Haocun; Yvert, M.; Zadrożny, A.; Zanolin, M.; Zelenova, T.; Zendri, J.-P.; Zevin, M.; Zhang, L.; Zhang, M.; Zhang, T.; Zhang, Y.-H.; Zhao, C.; Zhou, M.; Zhou, Z.; Zhu, S. J.; Zhu, X. J.; Zimmerman, A. B.; Zucker, M. E.; Zweizig, J.; (LIGO Scientific Collaboration; Virgo Collaboration
2017-12-01
On 2017 June 8 at 02:01:16.49 UTC, a gravitational-wave (GW) signal from the merger of two stellar-mass black holes was observed by the two Advanced Laser Interferometer Gravitational-Wave Observatory detectors with a network signal-to-noise ratio of 13. This system is the lightest black hole binary so far observed, with component masses of {12}-2+7 {M}ȯ and {7}-2+2 {M}ȯ (90% credible intervals). These lie in the range of measured black hole masses in low-mass X-ray binaries, thus allowing us to compare black holes detected through GWs with electromagnetic observations. The source’s luminosity distance is {340}-140+140 {Mpc}, corresponding to redshift {0.07}-0.03+0.03. We verify that the signal waveform is consistent with the predictions of general relativity.
DISCOVERY OF 14 NEW SLOWLY PULSATING B STARS IN THE OPEN CLUSTER NGC 7654
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Y. P.; Han, Z. W.; Zhang, X. B.
2012-02-10
We carried out time-series BV CCD photometric observations of the open cluster NGC 7654 (Messier 52) to search for variable stars. Eighteen slowly pulsating B (SPB) stars have been detected, among which 14 candidates are newly discovered, three known ones are confirmed, and a previously found {delta} Scuti star is also identified as an SPB candidate. Twelve SPBs are probable cluster members based on membership analysis. This makes NGC 7654 the richest galactic open cluster in terms of SPB star content. It is also a new discovery that NGC 7654 hosts three {gamma} Dor star candidates. We found that allmore » these stars (18 SPB and 3 {gamma} Dor stars) have periods longer than their corresponding fundamental radial mode. With such a big sample of g-mode pulsators in a single cluster, it is clear that multi-mode pulsation is more common in the upper part of the main sequence than in the lower part. All the stars span a narrow strip on the period-luminosity plane, which also includes the {gamma} Dor stars at the low-luminosity extension. This result implies that there may be a single period-luminosity relation applicable to all g-mode main-sequence pulsators. As a by-product, three EA-type eclipsing binaries and an EW-type eclipsing binary are also discovered.« less
MULTI-WAVELENGTH STUDY OF HESS J1741–302
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hare, Jeremy; Rangelov, Blagoy; Sonbas, Eda
2016-01-10
We present the results of two Chandra X-ray Observatory (CXO) observations of TeV γ-ray source HESS J1741–302. We investigate whether there is any connection between HESS J1741−302 and the sources seen at lower energies. One of the brightest X-ray sources in the HESS J1741–302 field, CXOU J174112.1−302908, appears to be associated with a low-mass star (possibly representing a quiescent low-mass X-ray binary or cataclysmic variable (CV)), hence, it is unlikely to be a source of TeV γ-rays. In the same field we have potentially detected X-rays from WR 98a, which is likely to be a colliding wind binary with massive stars. Nomore » TeV emission has been reported so far from such systems although predictions have been made. Finally, we found that the previously reported Suzaku source, Suzaku J1740.5–3014 (which is not covered by the CXO observations), appears to be a hard X-ray source detected by INTERGAL ISGRI, which supports the magnetized CV classification but makes its association with the TeV emission unlikely. The young pulsar PSR B1737–30, so far undetected in X-rays and projected on the sky near the CV, may be the contributor of relativistic particles responsible for the TeV emission.« less
Simulations of polarization from accretion disks
NASA Astrophysics Data System (ADS)
Schultz, J.
2000-12-01
The Monte Carlo Method was used to estimate the level of polarization from axisymmetric accretion disks similar to those in low-mass X-ray binaries and some classes of cataclysmic variables. In low-mass X-ray binaries electron scattering is supposed to be the dominant opacity source in the inner disk, and most of the optical light is produced in the disk. Thompson scattering occuring in the disk corona produces linear polarization. Detailed theoretical models of accretion disks are numerous, but simple mathematical disk models were used, as the accuracy of polarization measurements does not allow distinction of the fine details of disk models. Stokes parameters were used for the radiative transfer. The simulations indicate that the vertical distribution of emissivity has the greatest effect on polarization, and variations of radial emissivity distribution have no detectable effect on polarization. Irregularities in the disk may reduce the degree of polarization. The polarization levels produced by simulations are detectable with modern instruments. Polarization measurements could be used to get rough constraints on the vertical emissivity distribution of an accretion disk, provided that a reasonably accurate disk model can be constructed from photometric or spectrosopic observations in optical and/or X-ray wavelengths. Mainly based on observations taken at the Observatoire de Haute-Provence, France, and on some observations obtained at the European Southern Observatory, Chile (ESO Prog. IDs: 57.C-0492, 59.C-0293, 61.C-0512).
New Eclipsing Contact Binary System in Auriga
NASA Astrophysics Data System (ADS)
Austin, S. J.; Robertson, J. W.; Justice, C.; Campbell, R. T.; Hoskins, J.
2004-05-01
We present data on a newly discovered eclipsing binary system. The serendipitous discovery of this variable star was made by J.W. Robertson analyzing inhomogeneous ensemble photometry of stars in the field of the cataclysmic variable FS Aurigae from Indiana University RoboScope data. We obtained differential time-series BVR photometry during 2003 of this field variable using an ensemble of telescopes including the university observatories at ATU, UCA and joint ventures with amateur observatories in the state of Arkansas (Whispering Pines Observatory and Nubbin Ridge Observatory). The orbital period of this eclipsing system is 0.2508 days. The B-V light curve indicates colors of 1.2 around quadrature, to nearly 1.4 at primary eclipse. Binary star light curve models that best fit the BVR differential photometry suggest that the system is a contact binary overfilling the inner Roche Lobe by 12%, a primary component with a temperature of 4350K, a secondary component with a temperature of 3500K, a mass ratio of 0.37, and an inclination of 83 degrees. We present BVR light curves, an ephemeris, and best fit model parameters for the physical characteristics of this new eclipsing binary system.
Modeling Gravitational Radiation Waveforms from Black Hole Mergers
NASA Technical Reports Server (NTRS)
Baker, J. G.; Centrelia, J. M.; Choi, D.; Koppitz, M.; VanMeter, J.
2006-01-01
Gravitational radiation from merging binary black hole systems is anticipated as a key source for gravitational wave observations. Ground-based instruments, such as the Laser Interferometer Gravitational-wave Observatory (LIGO) may observe mergers of stellar-scale black holes, while the space-based Laser Interferometer Space Antenna (LISA) observatory will be sensitive to mergers of massive galactic-center black holes over a broad range of mass scales. These cataclysmic events may emit an enormous amount of energy in a brief time. Gravitational waves from comparable mass mergers carry away a few percent of the system's mass-energy in just a few wave cycles, with peak gravitational wave luminosities on the order of 10^23 L_Sun. Optimal analysis and interpretation of merger observation data will depend on developing a detailed understanding, based on general relativistic modeling, of the radiation waveforms. We discuss recent progress in modeling radiation from equal mass mergers using numerical simulations of Einstein's gravitational field equations, known as numerical relativity. Our simulations utilize Adaptive Mesh Refinement (AMR) to allow high-resolution near the black holes while simultaneously keeping the outer boundary of the computational domain far from the black holes, and making it possible to read out gravitational radiation waveforms in the weak-field wave zone. We discuss the results from simulations beginning with the black holes orbiting near the system's innermost stable orbit, comparing the recent simulations with earlier "Lazarus" waveform estimates based on an approximate hybrid numerical/perturbative technique.
NASA Technical Reports Server (NTRS)
Thorstensen, John R.; Ringwald, F. A.; Wade, Richard A.; Schmidt, Gary D.; Norsworthy, Jane E.
1991-01-01
This paper reports extensive optical observations on the PG0027 + 260 binary, carried out on August 1984 with the 1.3 McGraw-Hill telescope and Mark II spectrometer at Michigan-Dartmouth-MIT Observatory on Kitt Peak. It is shown that this object is an eclipsing novalike variable with an orbital period of 3.51 hr. The PG0027 + 260 displays several unexplained phenomena which are remarkably similar to those of the SW Sex, DW UMa, and V1315 Aql, which are eclipsing novalike stars with periods between 3 and 4 hrs. The eclipse of the PG0027 + 260 is modeled, and it is shown that, while the mean eclipse light curve is easy to match, there is no simple explanation for the variable depth.
Restablished Accretion in Post-outburst Classical Novae Revealed by X-rays
NASA Astrophysics Data System (ADS)
Hernanz, Margarita; Ferri, Carlo; Sala, Glòria
2009-05-01
Classical novae are explosions on accreting white dwarfs (hereinafter WDs) in cataclysmic variables (hereinafter CVs) a hydrogen thermonuclear runaway on top of the WD is responsible for the outburst. X-rays provide a unique way to study the turn-off of H-burning, because super soft X-rays reveal the hot WD photosphere, but also to understand how accretion is established again in the binary system. Observations with XMM-Newton of some post-outburst novae have revealed such a process, but a coverage up to larger energies -as Simbol-X will provide- is fundamental to well understand the characteristics of the binary system and of the nova ejecta. We present a brief summary of our results up to now and prospects for the Simbol-X mission.
How to Model Super-Soft X-ray Sources?
NASA Astrophysics Data System (ADS)
Rauch, Thomas
2012-07-01
During outbursts, the surface temperatures of white dwarfs in cataclysmic variables exceed by far half a million Kelvin. In this phase, they may become the brightest super-soft sources (SSS) in the sky. Time-series of high-resolution, high S/N X-ray spectra taken during rise, maximum, and decline of their X-ray luminosity provide insights into the processes following such outbursts as well as in the surface composition of the white dwarf. Their analysis requires adequate NLTE model atmospheres. The Tuebingen Non-LTE Model-Atmosphere Package (TMAP) is a powerful tool for their calculation. We present the application of TMAP models to SSS spectra and discuss their validity.
NASA Astrophysics Data System (ADS)
Barret, D.; Olive, J.-F.; Miller, M. Coleman
2005-11-01
Using all available archival data from the Rossi X-ray Timing Explorer (RXTE), we follow the frequency of the kilo-Hz QPOs in three low luminosity neutron star low mass X-ray binaries; namely 4U 1636-536, 4U 1608-522, and 4U 1735-44. Following earlier work by Barret et al. (2005a,b), we focus our analysis on the lower kilo-Hz QPO, for which we study the dependency of its quality factor (Q=\
The iron complex in high mass X-ray binaries
NASA Astrophysics Data System (ADS)
Giménez-García, A.; Torrejón, J. M.; Martínez-Núñez, S.; Rodes-Rocas, J. J.; Bernabéu, G.
2013-05-01
An X-ray binary system consists of a compact object (a white dwarf, a neutron star or a black hole) accreting material from an optical companion star. The spectral type of the optical component strongly affects the mass transfer to the compact object. This is the reason why X-ray binary systems are usually divided in High Mass X-ray Binaries (companion O or B type, denoted HMXB) and Low Mass X-ray Binaries (companion type A or later). The HMXB are divided depending on the partner's luminosity class in two main groups: the Supergiant X-ray Binaries (SGXB) and Be X-ray Binaries (BeXB). We introduce the spectral characterization of a sample of 9 High Mass X-ray Binaries in the iron complex (˜ 6-7 keV). This spectral range is a fundamental tool in the study of the surrounding material of these systems. The sources have been divided into three main groups according to their current standard classification: SGXB, BeXB and γ Cassiopeae-like. The purpose of this work is to look for qualitative patterns in the iron complex, around 6-7 keV, in order to discern between current different classes that make up the group of HMXB. We find significant spectral patterns for each of the sets, reflecting differences in accretion physics thereof.
Identifying Bright X-Ray Beasts
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-10-01
Ultraluminous X-ray sources (ULXs) are astronomical sources of X-rays that, while dimmer than active galactic nuclei, are nonetheless brighter than any known stellar process. What are these beasts and why do they shine so brightly?Exceeding the LimitFirst discovered in the 1980s, ULXs are rare sources that have nonetheless been found in all types of galaxies. Though the bright X-ray radiation seems likely to be coming from compact objects accreting gas, theres a problem with this theory: ULXs outshine the Eddington luminosity for stellar-mass compact objects. This means that a stellar-mass object couldnt emit this much radiation isotropically without blowing itself apart.There are two alternative explanations commonly proposed for ULXs:Rather than being accreting stellar-mass compact objects, they are accreting intermediate-mass black holes. A hypothetical black hole of 100 solar masses or more would have a much higher Eddington luminosity than a stellar-mass black hole, making the luminosities that we observe from ULXs feasible.An example of one of the common routes the authors find for a binary system to become a ULX. In this case, the binary begins as two main sequence stars. As one star evolves off the main sequence, the binary undergoes a common envelope phase and a stage of mass transfer. The star ends its life as a supernova, and the resulting neutron star then accretes matter from the main sequence star as a ULX. [Wiktorowicz et al. 2017]They are ordinary X-ray binaries (a stellar-mass compact object accreting matter from a companion star), but they are undergoing a short phase of extreme accretion. During this time, their emission is beamed into jets, making them appear brighter than the Eddington luminosity.Clues from a New DiscoveryA few years ago, a new discovery shed some light on ULXs: M82 X-2, a pulsing ULX. Two more pulsing ULXs have been discovered since then, demonstrating that at least some ULXs contain pulsars i.e., neutron stars as the accreting object. This provided strong support for the second model of ULXs as X-ray binaries with super-Eddington luminosity.But could this model in fact account for all ULXs? A team of authors led by Grzegorz Wiktorowicz (Kavli Institute for Theoretical Physics, UC Santa Barbara and Warsaw University, Poland) says yes.Time evolution of the number of ULXs since the beginning of star formation, for a star formation burst (left panels) and continuous star formation (right panels), and for solar-metallicity (top panels) and low-metallicity (bottom panels) environments. The heavy solid line shows ULXs with black-hole accretors, the dashed line ULXs with neutron-star accretors, and the solid line the total. [Wiktorowicz et al. 2017]No Exotic Objects NeededWiktorowicz and collaborators performed a massive suite of simulations made possible by donated computer time from the Universe@Home project to examine how 20 million binary systems evolve into X-ray binaries. They then determined the number and nature of the ones that could appear as ULXs to us. The authors results show that the vast majority of the observed population of ULXs can be accounted for with super-Eddington compact binaries, without needing to invoke intermediate-mass black holes.Wiktorowicz and collaborators demonstrate that in environments with short star-formation bursts, black-hole accretors are the most common ULX source in the early periods after the burst, but neutron-star accretors dominate the ULX population after a few 100 Myr. In the case of prolonged and continuous star formation, neutron-star accretors dominate ULXs if the environment is solar metallicity, whereas black-hole accretors dominate in low-metallicity environments.The authors results present very clear and testable relations between the companion and donor star evolutionary stage and the age of the system, which we will hopefully be able to use to test this model with future observations of ULXs.CitationGrzegorz Wiktorowicz et al 2017 ApJ 846 17. doi:10.3847/1538-4357/aa821d
NASA Technical Reports Server (NTRS)
Tweedy, R. W.; Holberg, J. B.; Barstow, M. A.; Bergeron, P.; Grauer, A. D.; Liebert, James; Fleming, T. A.
1993-01-01
Photometric observations and analysis of the optical, UV, EUV, and X-ray spectra are presented for the EUV/X-ray source RE 1016-53. Multiwavelength observations of RE 1016-53 point out that it is a precataclysmic binary. Optical spectra exhibit the steep blue continuum and Balmer absorption typical of a hot white dwarf, but there are bright, narrow emission lines of H I, He I, and Ca II superimposed on this. The white dwarf component, with T (eff) = 55,800 +/- 1000 K and log g = 7.81 +/- 0.007, dominates the spectrum from the optical to the EUV/X-ray. An He II 4686 A absorption line suggests that the white dwarf is a hydrogen-helium (DAO) hybrid star. Four of the five precataclysmic binaries with white dwarfs with T(eff) greater than 40,000 K appear to be DAOs. A mass of 0.57 +/- 0.003 solar mass has been derived.
Swift observations of GS 1826-238
NASA Astrophysics Data System (ADS)
Ji, L.; Santangelo, A.; Zhang, S.; Ducci, L.; Suleimanov, V.
2018-02-01
GS 1826-238 is a well-studied low-mass X-ray binary neutron star. This source was in a persistent hard state since its discovery in 1988 and until 2014 June. After that, the source exhibited several softer periods of enhanced intensity in the energy range 2-20 keV. We studied the long-term light curves of MAXI (Monitor of All Sky X-ray Image) and Swift/BAT, and found clearly two branches in the MAXI-BAT and hardness-intensity diagrams, which correspond to the persistent state and softer periods, respectively. We analysed 21 Swift/XRT observations, of which four were located in the persistent state while the others were in softer periods or in a state between them. The XRT spectra could be generally fitted by using an absorbed Comptonization model with no other components required. We found a peculiar relationship between the luminosity and the hardness in the energy range of 0.6-10 keV: when the luminosity is larger (smaller) than 4 per cent-6 per cent Ledd, the hardness is anti-correlated (correlated) with luminosity. We also estimated the variability for each observation by using the fractional rms in the 0.1-10 Hz range. We found that the observations in the persistent state had a large fractional rms of ˜25 per cent, similar to other low-mass X-ray binaries. However, the variability is mainly found in the range of 5 per cent-20 per cent during softer periods. We suggest that GS 1826-238 did not evolve into the soft state of atoll sources, and all the observed XRT observations during the softer periods resemble a peculiar intermediate state of atoll sources.
TRACING THE REVERBERATION LAG IN THE HARD STATE OF BLACK HOLE X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Marco, B.; Ponti, G.; Nandra, K.
2015-11-20
We report results obtained from a systematic analysis of X-ray lags in a sample of black hole X-ray binaries, with the aim of assessing the presence of reverberation lags and studying their evolution during outburst. We used XMM-Newton and simultaneous Rossi X-ray Timing Explorer (RXTE) observations to obtain broadband energy coverage of both the disk and the hard X-ray Comptonization components. In most cases the detection of reverberation lags is hampered by low levels of variability-power signal-to-noise ratio (typically when the source is in a soft state) and/or short exposure times. The most detailed study was possible for GX 339-4more » in the hard state, which allowed us to characterize the evolution of X-ray lags as a function of luminosity in a single source. Over all the sampled frequencies (∼0.05–9 Hz), we observe the hard lags intrinsic to the power-law component, already well known from previous RXTE studies. The XMM-Newton soft X-ray response allows us to detail the disk variability. At low frequencies (long timescales) the disk component always leads the power-law component. On the other hand, a soft reverberation lag (ascribable to thermal reprocessing) is always detected at high frequencies (short timescales). The intrinsic amplitude of the reverberation lag decreases as the source luminosity and the disk fraction increase. This suggests that the distance between the X-ray source and the region of the optically thick disk where reprocessing occurs gradually decreases as GX 339-4 rises in luminosity through the hard state, possibly as a consequence of reduced disk truncation.« less
NASA Astrophysics Data System (ADS)
Pejcha, Ondřej; Metzger, Brian D.; Tomida, Kengo
2016-09-01
We study mass-loss from the outer Lagrange point (L2) in binary stellar mergers and their luminous transients by means of radiative hydrodynamical simulations. Previously, we showed that for binary mass ratios 0.06 ≲ q ≲ 0.8, synchronous L2 mass-loss results in a radiatively inefficient, dust-forming unbound equatorial outflow. A similar outflow exists irrespective of q if the ratio of the sound speed to the orbital speed at the injection point is sufficiently large, ε ≡ cT/vorb ≳ 0.15. By contrast, for cold L2 mass-loss (ε ≲ 0.15) from binaries with q ≲ 0.06 or q ≳ 0.8, the equatorial outflow instead remains marginally bound and falls back to the binary over tens to hundreds of binary orbits, where it experiences additional tidal torquing and shocking. As the bound gas becomes virialized with the binary, the luminosity of the system increases slowly at approximately constant photosphere radius, causing the temperature to rise. Subsequent evolution depends on the efficiency of radiative cooling. If the bound atmosphere is able to cool efficiently, as quantified by radiative diffusion time being shorter than the advection time (tdiff/tadv ≪ 1), then the virialized gas collapses to an excretion disc, while for tdiff/tadv ≳ 1 an isotropic wind is formed. Between these two extremes, an inflated envelope transports the heat generated near the binary to the surface by meridional flows. In all cases, the radiated luminosity reaches a fraction ˜10-2 to 10-1 of dot{M}v_orb^2/2, where dot{M} is the mass outflow rate. We discuss the implications of our results for transients in the luminosity gap between classical novae and supernovae, such as V1309 Sco and V838 Mon.
Cecilia Payne-Gaposchkin, Henry Norris Russell Lecture: Fifty Years of Novae
NASA Astrophysics Data System (ADS)
Burbidge, E. M.
1999-05-01
It is easy to pick out my most memorable meeting of the AAS: the 149th meeting held in January, 1977, and hosted by the University of Hawaii, in Honolulu, HI. It was the meeting at which two traditions of the Society were broken, and we moved into the era of equal opportunity for women astronomers. Cecilia Payne-Gaposchkin received the highest award of the AAS: the Henry Norris Russell Lectureship. This award had never before been available to women, otherwise Cecilia would, years earlier, have been honored for the many achievements in her lifetime of renowned astronomical research. And I, the first woman to be elected President of the AAS, had the honor of presenting the illuminated scroll to Cecilia, and of introducing her on the platform where she delivered the Henry Norris Russell Prize Lecture, entitled ``Fifty Years of Novae"(1) . Cecilia opened by comparing the experience of young and old scientists in achieving exciting results from their research, and then led us through the history of the discoveries of and about some famous novae. She described the physical picture that emerged from studies of their light curves, their spectra, and the discovery of their binary nature. Three important tables were included, listing data on cataclysmic binaries (dwarf novae) and their link to the nova phenomenon in general. She recalled that she and Sergei Gaposchkin had hesitated between the names catastrophic and cataclysmic for the dwarf novae, and decided on the latter, from the dictionary definitions of those two terms: ``a cataclysm is a great and general flood" while a catastrophe ``is a final event". The nova phenomenon is recurrent, as are the dwarf novae, and both involve an outpouring of a flood of energy. She concluded by describing her 50 years' experience with novae as presenting ``the contemporary portrait of a nova", rather than a final picture, and by forecasting that the next 50 years of discovering and studying novae will be as full of surprises as the last. (1) Cecilia H. Payne-Gaposchkin, 1977, AJ, 82, 665.
NASA Astrophysics Data System (ADS)
Khruzina, T.; Dimitrov, D.; Kjurkchieva, D.
2013-03-01
Context. Cataclysmic variables (CVs) present a short evolutional stage of binary systems. The nova-like stars are rare objects, especially those with eclipses (only several tens). But precisely these allow to determine the global parameters of their configurations and to learn more about the late stage of stellar evolution. Aims: The light curve solution allows one to determine the global parameters of the newly discovered nova-like eclipsing star 2MASS J01074282+4845188 and to estimate the contribution of the different light sources. Methods: We present new photometric and spectral observations of 2MASS J01074282+4845188. To obtain a light curve solution we used a model of a nova-like star whose emission sources are a white dwarf surrounded by an accretion disk, a secondary star filling its Roche lobe, a hot spot and a hot line. The obtained global parameters are compared with those of the eclipsing nova-like UX UMa. Results: 2MASS J01074282+4845188 shows the deepest permanent eclipse among the known nova-like stars. It is reproduced by covering the very bright accretion disk by the secondary component. The luminosity of the disk is much bigger than that of the rest light sources. The determined high temperature of the disk is typical for that observed during the outbursts of CVs. The primary of 2MASS J01074282+4845188 is one of the hottest white dwarfs in CVs. The temperature of 5090 K of its secondary is also quite high and more appropriate for a long-period SW Sex star. It might be explained by the intense heating from the hot white dwarf and the hot accretion disk of the target. Conclusions: The high mass accretion rate Ṁ = 8 × 10-9 M⊙ yr-1, the broad and single-peaked Hα emission profile, and the presence of an S-wave are sure signs for the SW Sex classification of 2MASS J01074282+4845188. The obtained flat temperature distribution along the disk radius as well as the deviation of the energy distribution from the black-body law are evidence of the non-steady emission of the disk. It can be attributed to the low viscosity of the disk matter due to its unusual high temperature. The close values of the disk temperature and the parameter αg of 2MASS J01074282+4845188 and those of the cataclysmic stars at eruptions might be considered as an additional argument for the permanent active state of nova-like stars. Based on data collected with telescopes at Rozhen National Astronomical Observatory.
The NuSTAR Hard X-Ray Survey of the Norma Arm Region
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fornasini, Francesca M.; Tomsick, John A.; Chiu, Jeng-Lun
2017-04-01
We present a catalog of hard X-ray sources in a square-degree region surveyed by the Nuclear Spectroscopic Telescope Array ( NuSTAR ) in the direction of the Norma spiral arm. This survey has a total exposure time of 1.7 Ms, and the typical and maximum exposure depths are 50 ks and 1 Ms, respectively. In the area of deepest coverage, sensitivity limits of 5 × 10{sup −14} and 4 × 10{sup −14} erg s{sup −1} cm{sup −2} in the 3–10 and 10–20 keV bands, respectively, are reached. Twenty-eight sources are firmly detected, and 10 are detected with low significance; 8 of the 38 sources are expected tomore » be active galactic nuclei. The three brightest sources were previously identified as a low-mass X-ray binary, high-mass X-ray binary, and pulsar wind nebula. Based on their X-ray properties and multiwavelength counterparts, we identify the likely nature of the other sources as two colliding wind binaries, three pulsar wind nebulae, a black hole binary, and a plurality of cataclysmic variables (CVs). The CV candidates in the Norma region have plasma temperatures of ≈10–20 keV, consistent with the Galactic ridge X-ray emission spectrum but lower than the temperatures of CVs near the Galactic center. This temperature difference may indicate that the Norma region has a lower fraction of intermediate polars relative to other types of CVs compared to the Galactic center. The NuSTAR log N –log S distribution in the 10–20 keV band is consistent with the distribution measured by Chandra at 2–10 keV if the average source spectrum is assumed to be a thermal model with kT ≈ 15 keV, as observed for the CV candidates.« less
MS 1603.6 + 2600, an unusual X-ray selected binary system at high Galactic latitude
NASA Technical Reports Server (NTRS)
Morris, Simon L.; Liebert, James; Stocke, John T.; Gioia, Isabella M.; Schild, Rudy E.
1990-01-01
The discovery of an eclipsing binary system at Galactic latitude 47 deg, found as a serendipitous X-ray source in the Einstein Extended Medium Sensitivity Survey, is described. The object has X-ray flux 1.1 x 10 to the -12th ergs/sq cm s (0.3-3.5 keV) and mean magnitude R = 19.4. An orbital period of 111 minutes is found. The problem discussed is whether the system has a white dwarf or neutron star primary, in the end preferring the neutron star primary model. If the system has either optical or X-ray luminosities typical of low mass X-ray binaries (LMXB), it must be at a very large distance (30-80 kpc). Blueshifted He I absorption is seen, indicating cool outflowing material, similar to that seen in the LMXB AC 211 in the globular cluster M15.
A test of the massive binary black hole hypothesis - Arp 102B
NASA Technical Reports Server (NTRS)
Helpern, J. P.; Filippenko, Alexei V.
1988-01-01
The emission-line spectra of several AGN have broad peaks which are significantly displaced in velocity with respect to the host galaxy. An interpretation of this effect in terms of orbital motion of a binary black hole predicts periods of a few centuries. It is pointed out here that recent measurements of the masses and sizes of many low-luminosity AGN imply orbital periods much shorter than this. In particular, it is found that the elliptical galaxy Arp 102B is the most likely candidate for observation of radial velocity variations; its period is expected to be about 3 yr. The H-alpha line profile of Arp 102B has been measured for 5 yr without detecting any change in velocity, and it is thus found that a rather restrictive observational test of the massive binary black hole hypothesis already exists, albeit for this one object.
Evolution of Post-accretion-induced Collapse Binaries: The Effect of Evaporation
NASA Astrophysics Data System (ADS)
Liu, Wei-Min; Li, Xiang-Dong
2017-12-01
Accretion-induced collapse (AIC) is widely accepted to be one of the formation channels for millisecond pulsars (MSPs). Since the MSPs have high spin-down luminosities, they can immediately start to evaporate their companion stars after birth. In this paper, we present a detailed investigation on the evolution of the post-AIC binaries, taking into account the effect of evaporation both before and during the Roche-lobe overflow process. We discuss the possible influence of the input parameters including the evaporation efficiency, the initial spin period, and the initial surface magnetic field of the newborn neutron star. We compare the calculated results with the traditional low-mass X-ray binary evolution and suggest that they may reproduce at least part of the observed redbacks and black widows in the companion mass–orbital period plane depending on the mechanisms of angular momentum loss associated with evaporation.
Resolving the X-ray emission from the Lyman-continuum emitting galaxy Tol 1247-232
NASA Astrophysics Data System (ADS)
Kaaret, P.; Brorby, M.; Casella, L.; Prestwich, A. H.
2017-11-01
Chandra observations of the nearby, Lyman-continuum (LyC) emitting galaxy Tol 1247-232 resolve the X-ray emission and show that it is dominated by a point-like source with a hard spectrum (Γ = 1.6 ± 0.5) and a high luminosity [(9 ± 2) × 1040 erg s- 1]. Comparison with an earlier XMM-Newton observation shows flux variation of a factor of 2. Hence, the X-ray emission likely arises from an accreting X-ray source: a low-luminosity active galactic nucleus or one or a few X-ray binaries. The Chandra X-ray source is similar to the point-like, hard spectrum (Γ = 1.2 ± 0.2), high-luminosity (1041 erg s- 1) source seen in Haro 11, which is the only other confirmed LyC-emitting galaxy that has been resolved in X-rays. We discuss the possibility that accreting X-ray sources contribute to LyC escape.
Ultra-precise Masses and Magnitudes for the Gliese 268 M-dwarf Binary
NASA Astrophysics Data System (ADS)
Barry, R. K.; Demory, B. O.; Ségransan, D.; Forveille, T.; Danchi, W. C.; di Folco, E.; Queloz, D.; Torres, G.; Traub, W. A.; Delfosse, X.; Mayor, M.; Perrier, C.; Udry, S.
2009-02-01
Recent advances in astrometry using interferometry and precision radial velocity techniques combined allow for a significant improvement in the precision of masses of M-dwarf stars in visual systems. We report recent astrometric observations of Gliese 268, an M-dwarf binary with a 10.4 day orbital period, with the IOTA interferometer and radial velocity observations with the ELODIE instrument. Combining these measurements leads to preliminary masses of the constituent stars with uncertainties of 0.4%. The masses of the components are 0.22596+/-0.00084 Msolar for the primary and 0.19230+/-0.00071 Msolar for the secondary. The system parallax is determined by these observations to be 0.1560+/-.0030 arcsec (2.0% uncertainty) and is within Hipparcos error bars (0.1572+/-.0033). We tested these physical parameters, along with the near-infrared luminosities of the stars, against stellar evolution models for low-mass stars. Discrepancies between the measured and theoretical values point toward a low-level departure from the predictions. These results are among the most precise masses measured for visual binaries.
NASA Astrophysics Data System (ADS)
Xiao, Di; Liu, Liang-Duan; Dai, Zi-Gao; Wu, Xue-Feng
2017-12-01
Very recently, the gravitational-wave (GW) event GW170817 was discovered to be associated with the short gamma-ray burst (GRB) 170817A. Multi-wavelength follow-up observations were carried out, and X-ray, optical, and radio counterparts to GW170817 were detected. The observations undoubtedly indicate that GRB 170817A originates from a binary neutron star merger. However, the GRB falls into the low-luminosity class that could have a higher statistical occurrence rate and detection probability than the normal (high-luminosity) class. This implies the possibility that GRB 170817A is intrinsically powerful, but we are off-axis and only observe its side emission. In this Letter, we provide a timely modeling of the multi-wavelength afterglow emission from this GRB and the associated kilonova signal from the merger ejecta, under the assumption of a structured jet, a two-component jet, and an intrinsically less-energetic quasi-isotropic fireball, respectively. Comparing the afterglow properties with the multi-wavelength follow-up observations, we can distinguish between these three models. Furthermore, a few model parameters (e.g., the ejecta mass and velocity) can be constrained.
Discovery of a New Classical Nova Shell Around a Nova-like Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Guerrero, Martín A.; Sabin, Laurence; Tovmassian, Gagik; Santamaría, Edgar; Michel, Raul; Ramos-Larios, Gerardo; Alarie, Alexandre; Morisset, Christophe; Bermúdez Bustamante, Luis C.; González, Chantal P.; Wright, Nicholas J.
2018-04-01
The morphology and optical spectrum of IPHASX J210204.7+471015, a nebula classified as a possible planetary nebula are, however, strikingly similar to those of AT Cnc, a classical nova shell around a dwarf nova. To investigate its true nature, we have obtained high-resolution narrowband [O III] and [N II] images and deep optical spectra. The nebula shows an arc of [N II]-bright knots notably enriched in nitrogen, while an [O III]-bright bow shock is progressing throughout the ISM. Diagnostic line ratios indicate that shocks are associated with the arc and bow shock. The central star of this nebula has been identified by its photometric variability. Time-resolved photometric and spectroscopic data of this source reveal a period of 4.26 hr, which is attributed to a binary system. The optical spectrum is notably similar to that of RW Sex, a cataclysmic variable star (CV) of the UX UMa nova-like (NL) type. Based on these results, we propose that IPHASX J210204.7 + 471015 is a classical nova shell observed around a CV-NL system in quiescence.
CHANDRA CHARACTERIZATION OF X-RAY EMISSION IN THE YOUNG F-STAR BINARY SYSTEM HD 113766
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lisse, C. M.; Christian, D. J.; Wolk, S. J.
Using Chandra , we have obtained imaging X-ray spectroscopy of the 10–16 Myr old F-star binary HD 113766. We individually resolve the 1.″4 separation binary components for the first time in the X-ray and find a total 0.3–2.0 keV luminosity of 2.2 × 10{sup 29} erg s{sup −1}, consistent with previous RASS estimates. We find emission from the easternmost, infrared-bright, dusty member HD 113766A to be only ∼10% that of the western, infrared-faint member HD 113766B. There is no evidence for a 3rd late-type stellar or substellar member of HD 113766 with L {sub x} > 6 × 10{sup 25} erg s{sup −1} within 2′ ofmore » the binary pair. The ratio of the two stars’ X-ray luminosity is consistent with their assignments as F2V and F6V by Pecaut et al. The emission is soft for both stars, kT {sub Apec} = 0.30–0.50 keV, suggesting X-rays produced by stellar rotation and/or convection in young dynamos, but not accretion or outflow shocks, which we rule out. A possible 2.8 ± 0.15 (2 σ ) hr modulation in the HD 113766B X-ray emission is seen, but at very low confidence and of unknown provenance. Stellar wind drag models corresponding to L {sub x} ∼ 2 × 10{sup 29} erg s{sup −1} argue for a 1 mm dust particle lifetime around HD 113766B of only ∼90,0000 years, suggesting that dust around HD 113766B is quickly removed, whereas 1 mm sized dust around HD 113766A can survive for >1.5 × 10{sup 6} years. At 10{sup 28}–10{sup 29} erg s{sup −1} X-ray luminosity, astrobiologically important effects, like dust warming and X-ray photolytic organic synthesis, are likely for any circumstellar material in the HD 113766 systems.« less
EVIDENCE FOR SIMULTANEOUS JETS AND DISK WINDS IN LUMINOUS LOW-MASS X-RAY BINARIES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Homan, Jeroen; Neilsen, Joseph; Allen, Jessamyn L.
Recent work on jets and disk winds in low-mass X-ray binaries (LMXBs) suggests that they are to a large extent mutually exclusive, with jets observed in spectrally hard states and disk winds observed in spectrally soft states. In this paper we use existing literature on jets and disk winds in the luminous neutron star (NS) LMXB GX 13+1, in combination with archival Rossi X-ray Timing Explorer data, to show that this source is likely able to produce jets and disk winds simultaneously. We find that jets and disk winds occur in the same location on the source’s track in itsmore » X-ray color–color diagram. A further study of literature on other luminous LMXBs reveals that this behavior is more common, with indications for simultaneous jets and disk winds in the black hole LMXBs V404 Cyg and GRS 1915+105 and the NS LMXBs Sco X-1 and Cir X-1. For the three sources for which we have the necessary spectral information, we find that simultaneous jets/winds all occur in their spectrally hardest states. Our findings indicate that in LMXBs with luminosities above a few tens of percent of the Eddington luminosity, jets and disk winds are not mutually exclusive, and the presence of disk winds does not necessarily result in jet suppression.« less
The Properties of Short Gamma-Ray Burst Jets Triggered by Neutron Star Mergers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, Ariadna; Ramirez-Ruiz, Enrico; Montes, Gabriela
The most popular model for short gamma-ray bursts (sGRBs) involves the coalescence of binary neutron stars. Because the progenitor is actually hidden from view, we must consider under which circumstances such merging systems are capable of producing a successful sGRB. Soon after coalescence, winds are launched from the merger remnant. In this paper, we use realistic wind profiles derived from global merger simulations in order to investigate the interaction of sGRB jets with these winds using numerical simulations. We analyze the conditions for which these axisymmetric winds permit relativistic jets to break out and produce an sGRB. We find thatmore » jets with luminosities comparable to those observed in sGRBs are only successful when their half-opening angles are below ≈20°. This jet collimation mechanism leads to a simple physical interpretation of the luminosities and opening angles inferred for sGRBs. If wide, low-luminosity jets are observed, they might be indicative of a different progenitor avenue such as the merger of a neutron star with a black hole. We also use the observed durations of sGRB to place constraints on the lifetime of the wind phase, which is determined by the time it takes the jet to break out. In all cases we find that the derived limits argue against completely stable remnants for binary neutron star mergers that produce sGRBs.« less
Outflow from the outer Lagrangian point - Observations and models of 4U 2127 + 12 in M15
NASA Technical Reports Server (NTRS)
Bailyn, Charles D.; Garcia, Michael R.; Grindlay, Jonathan
1989-01-01
MMT observations of AC 211, the optical counterpart of the high-luminosity X-ray source in globular cluster M15, are presented. The observation of Naylor et al. (1988) that the He I absorption is blueshifted by more than 100 km/s with respect to the mean velocity of the cluster is confirmed. It is shown that if the absorption occurs in a stream of gas outflowing from the L2 point of a binary system, as might be expected for a common envelope binary, both the blueshift and the unexpectedly low velocity variations of the He I lines can be understood. The model predicts that the He I velocity curve is not sinusoidal.
Investigating ChaMPlane X-Ray Sources in the Galactic Bulge with Magellan LDSS2 Spectra
NASA Astrophysics Data System (ADS)
Koenig, Xavier; Grindlay, Jonathan E.; van den Berg, Maureen; Laycock, Silas; Zhao, Ping; Hong, JaeSub; Schlegel, Eric M.
2008-09-01
We have carried out optical and X-ray spectral analyses on a sample of 136 candidate optical counterparts of X-ray sources found in five Galactic bulge fields included in our Chandra Multiwavelength Plane Survey. We use a combination of optical spectral fitting and quantile X-ray analysis to obtain the hydrogen column density toward each object, and a three-dimensional dust model of the Galaxy to estimate the most probable distance in each case. We present the discovery of a population of stellar coronal emission sources, likely consisting of pre-main-sequence, young main-sequence, and main-sequence stars, as well as a component of active binaries of RS CVn or BY Dra type. We identify one candidate quiescent low-mass X-ray binary with a subgiant companion; we note that this object may also be an RS CVn system. We report the discovery of three new X-ray-detected cataclysmic variables (CVs) in the direction of the Galactic center (at distances lesssim2 kpc). This number is in excess of predictions made with a simple CV model based on a local CV space density of lesssim10-5 pc-3, and a scale height ~200 pc. We discuss several possible reasons for this observed excess.
Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane
NASA Astrophysics Data System (ADS)
Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob
2018-07-01
Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy cannot be fully accounted for by the mass or bolometric correction gap, or by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.
Hard state neutron star and black hole X-ray binaries in the radio:X-ray luminosity plane
NASA Astrophysics Data System (ADS)
Gallo, Elena; Degenaar, Nathalie; van den Eijnden, Jakob
2018-05-01
Motivated by the large body of literature around the phenomenological properties of accreting black hole (BH) and neutron star (NS) X-ray binaries in the radio:X-ray luminosity plane, we carry out a comparative regression analysis on 36 BHs and 41 NSs in hard X-ray states, with data over 7 dex in X-ray luminosity for both. The BHs follow a radio to X-ray (logarithmic) luminosity relation with slope β = 0.59 ± 0.02, consistent with the NSs' slope (β =0.44^{+0.05}_{-0.04}) within 2.5σ. The best-fitting intercept for the BHs significantly exceeds that for the NSs, cementing BHs as more radio loud, by a factor ˜22. This discrepancy can not be fully accounted for by the mass or bolometric correction gap, nor by the NS boundary layer contribution to the X-rays, and is likely to reflect physical differences in the accretion flow efficiency, or the jet powering mechanism. Once importance sampling is implemented to account for the different luminosity distributions, the slopes of the non-pulsating and pulsating NS subsamples are formally inconsistent (>3σ), unless the transitional millisecond pulsars (whose incoherent radio emission mechanism is not firmly established) are excluded from the analysis. We confirm the lack of a robust partitioning of the BH data set into separate luminosity tracks.
Classical Cepheid luminosities from binary companions
NASA Technical Reports Server (NTRS)
Evans, Nancy Remage
1991-01-01
Luminosities for the classical Cepheids Eta Aql, W Sgr, and SU Cas are determined from IUE spectra of their binary companions. Spectral types of the companions are determined from the spectra by comparison with the spectra of standard stars. The absolute magnitude inferred from these spectral types is used to determine the absolute magnitude of the Cepheid, either directly or from the magnitude difference between the two stars. For the temperature range of the companions (A0 V), distinctions of a quarter of a spectral subclass can be made in the comparison between the companions and standard stars. The absolute magnitudes for Eta Aql and W Sgr agree well with the period-luminosity-color relation of Feast and Walker (1987). Random errors are estimated to be 0.3 mag. SU Cas, however, is overluminous for pulsation in the fundamental mode, implying that it is pulsating in an overtone.
LFsGRB: Binary neutron star merger rate via the luminosity function of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-04-01
LFsGRB models the luminosity function (LF) of short Gamma Ray Bursts (sGRBs) by using the available catalog data of all short GRBs (sGRBs) detected till 2017 October, estimating the luminosities via pseudo-redshifts obtained from the Yonetoku correlation, and then assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. The data are fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs is derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks.
ROSAT X-ray luminosity functions of the Hyades dK and dM stars
NASA Astrophysics Data System (ADS)
Pye, John P.; Hodgkin, Simon T.; Stern, Robert A.; Stauffer, John R.
1994-02-01
Long-duration ROSAT PSPC pointed observations of the Hyades open star cluster are performed. The Hyades dK and XLFs from the present observations are compared with published Einstein dK/dM XLFs. The Hyades dK binaries have significantly higher L(X) than the Hyades dK stars. However, all these binaries have relatively long periods (greater than about 1 yr), and hence the L(X) levels cannot be attributed to the enhanced activity expected in short-period, 'BY Dra-type' systems. It is also shown that the effect cannot be due simply to the summed luminosities of the component stars.
A homogeneous sample of binary galaxies: Basic observational properties
NASA Technical Reports Server (NTRS)
Karachentsev, I. D.
1990-01-01
A survey of optical characteristics for 585 binary systems, satisfying a condition of apparent isolation on the sky, is presented. Influences of various selection effects distorting the average parameters of the sample are noted. The pair components display mutual similarity over all the global properties: luminosity, diameter, morphological type, mass-to-luminosity ratio, angular momentum etc., which is not due only to selection effects. The observed correlations must be caused by common origin of pair members. Some features (nuclear activity, color index) could acquire similarity during synchronous evolution of double galaxies. Despite the observed isolation, the sample of double systems is seriously contaminated by accidental pairs, and also by members of groups and clusters. After removing false pairs estimates of orbital mass-to-luminosity ratio range from 0 to 30 f(solar), with the mean value (7.8 plus or minus 0.7) f(solar). Binary galaxies possess nearly circular orbits with a typical eccentrity e = 0.25, probably resulting from evolutionary selection driven by component mergers under dynamical friction. The double-galaxy population with space abundance 0.12 plus or minus 0.02 and characteristic merger timescale 0.2 H(exp -1) may significantly influence the rate of dynamical evolution of galaxies.
Radiative Reverse Shock Laser Experiments Relevant to Accretion Processes in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Krauland, Christine
2012-10-01
We present results from experiments that explore radiative reverse shock waves and their contribution to the evolving dynamics of the cataclysmic variable (CV) system in which they reside. CVs are close binary star systems containing a white dwarf (WD) that accretes matter from its late-type main sequence companion star. In the process of accretion, a reverse shock forms when the supersonic infalling plasma is impeded. It provides the main source of radiation in the binary systems. In the case of a non-magnetic CV, the impact on an accretion disk produces this ``hot spot,'' where the flow obliquely strikes the rotating accretion disk. This collision region has many ambiguities as a radiation hydrodynamic system, but shock development in the infalling flow can be modeled [1]. We discuss the production of radiative reverse shocks in experiments at the Omega-60 laser facility. The ability of this high-intensity laser to create large energy densities in targets having millimeter-scale volumes makes it feasible to create supersonic plasma flows. Obtaining a radiative reverse shock in the laboratory requires a sufficiently fast flow (> 60 km/s) within a material whose opacity is large enough to produce energetically significant emission from experimentally achievable layers. We will show the radiographic and emission data from three campaigns on Omega-60 with accompanying CRASH [2] simulations, and will discuss the implications in the context of the CV system. [4pt] [1] Armitage, P. J. and Livio, M., ApJ, 493, 898 (1998).[0pt] [2] van der Holst, B., Toth, G., Sokolov, I.V., et al., ApJS, 194, 23 (2011).
NASA Astrophysics Data System (ADS)
Brorby, M.; Kaaret, P.; Feng, H.
2015-04-01
We examine the X-ray spectra of VII Zw 403, a nearby low-metallicity blue compact dwarf (BCD) galaxy. The galaxy has been observed to contain an X-ray source, likely a high-mass X-ray binary (HMXB), with a luminosity of 1.3-23 × 1038 erg s-1 in the 0.3-8 keV energy range. A new Suzaku observation shows a transition to a luminosity of 1.7 × 1040 erg s-1 [0.3-8 keV], higher by a factor of 7-130. The spectra from the high-flux state are hard, best described by a disc plus Comptonization model, and exhibit curvature at energies above 5 keV. This is consistent with many high-quality ultraluminous X-ray source spectra which have been interpreted as stellar mass black holes accreting at super-Eddington rates. However, this lies in contrast to another HMXB in a low-metallicity BCD, I Zw 18, that exhibits a soft spectrum at high flux, similar to Galactic black hole binaries and has been interpreted as a possible intermediate-mass black hole. Determining the spectral properties of HMXBs in BCDs has important implications for models of the Epoch of Reionization. It is thought that the main component of X-ray heating in the early Universe was dominated by HMXBs within the first galaxies. Early galaxies were small, metal-deficient, star-forming galaxies with large H I mass fractions - properties shared by local BCDs we see today. Understanding the spectral evolution of HMXBs in early Universe analogue galaxies, such as BCDs, is an important step in estimating their contribution to the heating of the intergalactic medium during the Epoch of Reionization. The strong contrast between the properties of the only two spectroscopically studied HMXBs within BCDs motivates further study on larger samples of HMXBs in low-metallicity environments in order to properly estimate the X-ray heating in the early Universe.
Jetted tidal disruptions of stars as a flag of intermediate mass black holes at high redshifts
NASA Astrophysics Data System (ADS)
Fialkov, Anastasia; Loeb, Abraham
2017-11-01
Tidal disruption events (TDEs) of stars by single or binary supermassive black holes (SMBHs) brighten galactic nuclei and reveal a population of otherwise dormant black holes. Adopting event rates from the literature, we aim to establish general trends in the redshift evolution of the TDE number counts and their observable signals. We pay particular attention to (I) jetted TDEs whose luminosity is boosted by relativistic beaming and (II) TDEs around binary black holes. We show that the brightest (jetted) TDEs are expected to be produced by massive black hole binaries if the occupancy of intermediate mass black holes (IMBHs) in low-mass galaxies is high. The same binary population will also provide gravitational wave sources for the evolved Laser Interferometer Space Antenna. In addition, we find that the shape of the X-ray luminosity function of TDEs strongly depends on the occupancy of IMBHs and could be used to constrain scenarios of SMBH formation. Finally, we make predictions for the expected number of TDEs observed by future X-ray telescopes finding that a 50 times more sensitive instrument than the Burst Alert Telescope (BAT) on board the Swift satellite is expected to trigger ˜10 times more events than BAT, while 6-20 TDEs are expected in each deep field observed by a telescope 50 times more sensitive than the Chandra X-ray Observatory if the occupation fraction of IMBHs is high. Because of their long decay times, high-redshift TDEs can be mistaken for fixed point sources in deep field surveys and targeted observations of the same deep field with year-long intervals could reveal TDEs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jacoby, George H.; Marco, Orsola De; Davies, James
The globular cluster (GC) system of our Galaxy contains four planetary nebulae (PNe): K 648 (or Ps 1) in M15, IRAS 18333-2357 in M22, JaFu 1 in Pal 6, and JaFu 2 in NGC 6441. Because single-star evolution at the low stellar mass of present-epoch GCs was considered incapable of producing visible PNe, their origin presented a puzzle. We imaged the PN JaFu 1 with the Hubble Space Telescope (HST) to obtain photometry of its central star (CS) and high-resolution morphological information. We imaged IRAS 18333-2357 with better depth and resolution, and we analyzed its archival HST spectra to constrainmore » its CS temperature and luminosity. All PNe in Galactic GCs now have quality HST data, allowing us to improve CS mass estimates. We find reasonably consistent masses between 0.53 and 0.58 M {sub ⊙} for all four objects, though estimates vary when adopting different stellar evolutionary calculations. The CS mass of IRAS 18333-2357, though, depends strongly on its temperature, which remains elusive due to reddening uncertainties. For all four objects, we consider their CS and nebula masses, their morphologies, and other incongruities to assess the likelihood that these objects formed from binary stars. Although generally limited by uncertainties (∼0.02 M {sub ⊙}) in post-AGB tracks and core mass versus luminosity relations, the high-mass CS in K 648 indicates a binary origin. The CS of JaFu 1 exhibits compact, bright [O iii] and H α emission, like EGB 6, suggesting a binary companion or disk. Evidence is weaker for a binary origin of JaFu 2.« less
A Be-type star with a black-hole companion.
Casares, J; Negueruela, I; Ribó, M; Ribas, I; Paredes, J M; Herrero, A; Simón-Díaz, S
2014-01-16
Stellar-mass black holes have all been discovered through X-ray emission, which arises from the accretion of gas from their binary companions (this gas is either stripped from low-mass stars or supplied as winds from massive ones). Binary evolution models also predict the existence of black holes accreting from the equatorial envelope of rapidly spinning Be-type stars (stars of the Be type are hot blue irregular variables showing characteristic spectral emission lines of hydrogen). Of the approximately 80 Be X-ray binaries known in the Galaxy, however, only pulsating neutron stars have been found as companions. A black hole was formally allowed as a solution for the companion to the Be star MWC 656 (ref. 5; also known as HD 215227), although that conclusion was based on a single radial velocity curve of the Be star, a mistaken spectral classification and rough estimates of the inclination angle. Here we report observations of an accretion disk line mirroring the orbit of MWC 656. This, together with an improved radial velocity curve of the Be star through fitting sharp Fe II profiles from the equatorial disk, and a refined Be classification (to that of a B1.5-B2 III star), indicates that a black hole of 3.8 to 6.9 solar masses orbits MWC 656, the candidate counterpart of the γ-ray source AGL J2241+4454 (refs 5, 6). The black hole is X-ray quiescent and fed by a radiatively inefficient accretion flow giving a luminosity less than 1.6 × 10(-7) times the Eddington luminosity. This implies that Be binaries with black-hole companions are difficult to detect in conventional X-ray surveys.
The binary system containing the classical Cepheid T Mon
NASA Technical Reports Server (NTRS)
Evans, Nancy Remage; Lyons, Ronald W.
1994-01-01
Several new results are presented for the binary system containing the 27(sup d) classical Cepheid T Mon. New radial velocities for the Cepheid have been obtained, which confirm the decreasing orbital motion at the current epoch. The spectral type of the companion (B9.8 V) has been determined from an International Ultraviolet Explorer (IUE) low resolution spectrum. An IUE high resolution spectrum has been measured to search for the velocity of the companion. A velocity signal at +36 km/s on JD 2,446,105.21 has been tentatively identified as the velocity of the companion, but confirmation of this velocity would be very valuable. Results based on this tentative identification of the velocity are that the companion does not have a high projected rotation velocity, that the companion is unlikely to be a short period binary, and that the gamma velocity of the system is between 20 and 36 km/s. The luminosity and temperature of both the Cepheid and the companion are well determined from the satellite and ground-based observations and the Cepheid PLC relation. However, the companion is above the ZAMS in the H-R diagram, which is inconsistent with the large luminosity difference between the two stars. High rotation for the companion (viewed pole-on) is a possible explanation. The lower limit to the mass function (from the lower limits to the orbital period and amplitude) requires a very high eccentricity for the system for reasonable estimates for the masses of the two stars.
NASA Technical Reports Server (NTRS)
Ford, E.; Kaaret, P.; Tavani, M.; Barret, D.; Bloser, P.; Grindlay, J.; Harmon, B. A.; Paciesas, W. S.; Zhang, S. N.
1997-01-01
We have detected quasi-periodic oscillations (QPOs) near 1 kHz from the low mass X-ray binary 4U 0614+091 in observations with RXTE. The observations span several months and sample the source over a large range of X-ray luminosity. In every interval QPOs are present above 400 Hz with fractional RMS amplitudes from 3 to 12% over the full PCA band. At high count rates, two high frequency QPOs are detected simultaneously. The difference of their frequency centroids is consistent with a constant value of 323 Hz in all observations. During one interval a third signal is detected at 328 +/- 2 Hz. This suggests the system has a stable 'clock' which is most likely the neutron star with spin period 3.1 msec. Thus, our observations of 4U 0614+091 and those of 4U 1728-34 provide the first evidence for millisecond pulsars within low-mass X-ray binary systems and reveal the 'missing-link' between millisecond radiopulsars and the late stages of binary evolution in low mass X-ray binaries. The constant difference of the high frequency QPOs sug,,ests a beat-frequency interpretation. In this model, the high frequency QPO is associated with the Keplerian frequency of the inner accretion disk and the lower frequency QPO is a 'beat' between the differential rotation frequency of the inner disk and the spinning neutron star. Assuming the high frequency QPO is a Keplerian orbital frequency for the accretion disk, we find a maximum mass of 1.9 solar mass and a maximum radius of 17 km for the neutron star.
Radio-loudness in black hole transients: evidence for an inclination effect
NASA Astrophysics Data System (ADS)
Motta, S. E.; Casella, P.; Fender, R.
2018-06-01
Accreting stellar-mass black holes appear to populate two branches in a radio:X-ray luminosity plane. We have investigated the X-ray variability properties of a large number of black hole low-mass X-ray binaries, with the aim of unveiling the physical reasons underlying the radio-loud/radio-quiet nature of these sources, in the context of the known accretion-ejection connection. A reconsideration of the available radio and X-ray data from a sample of black hole X-ray binaries confirms that being radio-quiet is the more normal mode of behaviour for black hole binaries. In the light of this we chose to test, once more, the hypothesis that radio loudness could be a consequence of the inclination of the X-ray binary. We compared the slope of the `hard-line' (an approximately linear correlation between X-ray count rate and rms variability, visible in the hard states of active black holes), the orbital inclination, and the radio-nature of the sources of our sample. We found that high-inclination objects show steeper hard-lines than low-inclination objects, and tend to display a radio-quiet nature (with the only exception of V404 Cyg), as opposed to low-inclination objects, which appear to be radio-loud(er). While in need of further confirmation, our results suggest that - contrary to what has been believed for years - the radio-loud/quiet nature of black-hole low mass X-ray binaries might be an inclination effect, rather than an intrinsic source property. This would solve an important issue in the context of the inflow-outflow connection, thus providing significant constraints to the models for the launch of hard-state compact jets.
Classification of X-ray sources in the direction of M31
NASA Astrophysics Data System (ADS)
Vasilopoulos, G.; Hatzidimitriou, D.; Pietsch, W.
2012-01-01
M31 is our nearest spiral galaxy, at a distance of 780 kpc. Identification of X-ray sources in nearby galaxies is important for interpreting the properties of more distant ones, mainly because we can classify nearby sources using both X-ray and optical data, while more distant ones via X-rays alone. The XMM-Newton Large Project for M31 has produced an abundant sample of about 1900 X-ray sources in the direction of M31. Most of them remain elusive, giving us little signs of their origin. Our goal is to classify these sources using criteria based on properties of already identified ones. In particular we construct candidate lists of high mass X-ray binaries, low mass X-ray binaries, X-ray binaries correlated with globular clusters and AGN based on their X-ray emission and the properties of their optical counterparts, if any. Our main methodology consists of identifying particular loci of X-ray sources on X-ray hardness ratio diagrams and the color magnitude diagrams of their optical counterparts. Finally, we examined the X-ray luminosity function of the X-ray binaries populations.
Dynamical Modeling of NGC 6397: Simulated HST Imaging
NASA Astrophysics Data System (ADS)
Dull, J. D.; Cohn, H. N.; Lugger, P. M.; Slavin, S. D.; Murphy, B. W.
1994-12-01
The proximity of NGC 6397 (2.2 kpc) provides an ideal opportunity to test current dynamical models for globular clusters with the HST Wide-Field/Planetary Camera (WFPC2)\\@. We have used a Monte Carlo algorithm to generate ensembles of simulated Planetary Camera (PC) U-band images of NGC 6397 from evolving, multi-mass Fokker-Planck models. These images, which are based on the post-repair HST-PC point-spread function, are used to develop and test analysis methods for recovering structural information from actual HST imaging. We have considered a range of exposure times up to 2.4times 10(4) s, based on our proposed HST Cycle 5 observations. Our Fokker-Planck models include energy input from dynamically-formed binaries. We have adopted a 20-group mass spectrum extending from 0.16 to 1.4 M_sun. We use theoretical luminosity functions for red giants and main sequence stars. Horizontal branch stars, blue stragglers, white dwarfs, and cataclysmic variables are also included. Simulated images are generated for cluster models at both maximal core collapse and at a post-collapse bounce. We are carrying out stellar photometry on these images using ``DAOPHOT-assisted aperture photometry'' software that we have developed. We are testing several techniques for analyzing the resulting star counts, to determine the underlying cluster structure, including parametric model fits and the nonparametric density estimation methods. Our simulated images also allow us to investigate the accuracy and completeness of methods for carrying out stellar photometry in HST Planetary Camera images of dense cluster cores.
The Nature and Evolutionary History of GRO J1744-28
NASA Technical Reports Server (NTRS)
Rappaport, S.
1997-01-01
GRO J1744-28 is the first known X-ray source to display bursts, periodic pulsations, and quasi-periodic oscillations. This source may thus provide crucial clues that will lead to an understanding of the differences in the nature of the X-ray variability from various accreting neutron stars. The orbital period is 11.8 days, and the measured mass function of 1.31 x 10(exp -4) solar mass is one of the smallest among all known binaries. If we assume that the donor star is a low-mass giant transferring matter through the inner Lagrange point, then we can show that its mass is lower than approximately 0.7 solar mass and probably closer to 0.25 solar mass. Higher mass, but unevolved, donor stars are shown to be implausible. We also demonstrate that the current He core mass of the donor star lies in the range of 0.20-0.25 solar mass. Thus, this system is most likely in the final stages of losing its hydrogen-rich envelope, with only a small amount of mass remaining in the envelope. If this picture is correct, then GRO J1744-28 may well represent the closest observational link that we have between the low-mass X-ray binaries and recycled binary pulsars in wide orbits. We have carried out a series of binary evolution calculations and explored, both systematically and via a novel Monte Carlo approach, the range of initial system parameters and input physics that can lead to the binary parameters of the present-day GRO J1744-28 system. The input parameters include both the initial total mass and the core mass of the donor star, the neutron-star mass, the strength of the magnetic braking, the mass-capture fraction, and the specifics of the core mass/radius relation for giants. Through these evolution calculations, we compute probability distributions for the current binary system parameters (i.e., the total mass, core mass, radius, luminosity, and K-band magnitude of the donor star, the neutron star mass, the orbital inclination angle, and the semimajor axis of the binary). Our calculations yield the following values for the GRO J1744-28 system parameters (with 95% confidence limits in parentheses): donor star mass: 0.24 solar mass (0.2-0.7 solar mass); He core mass of the donor star: 0.22 solar mass (0.20-0.25 solar mass); neutron-star mass: 1.7 solar mass (1.39-1.96 solar mass); orbital inclination angle: 18deg (7deg-22deg); semi- major axis: 64 lt-s (60-67 lt-s); radius of the donor star: 6.2 solar radius(6-9 solar radius); luminosity of donor star: 23 solar luminosity (15-49 solar luminosity), and long-term mass transfer rate at the current epoch: 5 x 10(exp -10)solar mass/yr (2 x 10(exp -10) to 5 x 10(exp -9)solar mass/yr). We deduce that the magnetic field of the underlying neutron star lies in the range of approximately 1.8 x 10(exp 11)G to approximately 7 x 10(exp 11)G, with a most probable value of 2.7 x 10(exp 11)G. This is evidently sufficiently strong to funnel the accretion flow onto the magnetic polar caps and suppress the thermonuclear flashes that would otherwise give rise to the type 1 X-ray bursts observed in most X-ray bursters. We present a simple paradigm for magnetic accreting neutron stars where X-ray pulsars, GRO J1744-28, the Rapid Burster, and the type 1 X-ray bursters may form a continuum of possible behaviors among accreting neutron stars, with the strength of the neutron-star magnetic field serving as a crucial parameter that determines the mode of X-ray variability from a given object.
A search for X-ray binary stars in their quiescent phase
NASA Technical Reports Server (NTRS)
Helfand, D. J.
1980-01-01
Fourteen early-type stars representative of systems which may be harboring a neutron star companion and are thus potential progenitors of massive X-ray binaries have been examined for X-ray emission with the HEAO A-1 experiment. Limits on the 0.5-20 keV luminosity for these objects lie in the range 10 to the 31-33 erg/sec. In several cases, the hypothesis of a collapsed companion, in combination with the X-ray limit, places a serious constraint on the mass-loss rate of the primary star. In one instance, an X-ray source was discovered coincident with a candidate star, although the luminosity of 5 x 10 to the 31 is consistent with that expected from a single star of the same spectral type. The prospects for directly observing the quiescent phase of a binary X-ray source with the Einstein Observatory are discussed in the context of these results.
VizieR Online Data Catalog: Excess CaII H&K emission in active binaries (Montes+, 1996)
NASA Astrophysics Data System (ADS)
Montes, D.; Fernandez-Figueroa, M. J.; Cornide, M.; de Castro, E.
1996-05-01
In this work we analyze the behaviour of the excess CaII H & K and H_epsilon emissions in a sample of 73 chromospherically active binary systems (RS CVn and BY Dra classes), of different activity levels and luminosity classes. This sample includes the 53 stars analyzed by Fernandez-Figueroa et al. (1994) and the observations of 28 systems described by Montes et al. (1995). By using the spectral subtraction technique (subtraction of a synthesized stellar spectrum constructed from reference stars of spectral type and luminosity class similar to those of the binary star components) we obtain the active-chromosphere contribution to the CaII H & K lines in these 73 systems. We have determined the excess CaII H & K emission equivalent widths and converted them into surface fluxes. The emissions arising from each component were obtained when it was possible to deblend both contributions. (4 data files).
Radio emission from RS CVn binaries. II - Polarization and spectral properties
NASA Technical Reports Server (NTRS)
Mutel, R. L.; Morris, D. H.; Doiron, D. J.; Lestrade, J. F.
1987-01-01
Multiepoch radio observations of circular polarization and spectral characteristics of several close, late-type stellar binaries are reported. The median luminosity of four well-studied systems ranged from 16.2 to 17.1 ergs/s/Hz. For individual systems, the fractional circular polarization decreases with increasing luminosity, particularly at frequencies above 5 GHz. Eclipsing binaries have significantly lower average circular polarization compared with noneclipsing systems. Helicity reversal is almost always observed between 1.4 and 4.9 GHz for systems with high orbital inclination. Comparison with ten years of previously published polarization observations for two RS CVn stellar systems show that the same helicity occurs at a given frequency for a given source, indicating a very stable, large-scale magnetic field geometry. These spectral and polarization characteristics strongly support a model of inhomogeneous gyrosynchrotron emission arising from electrons with power law energy spectra interacting with inhomogeneous magnetic fields.
Formation and Evolution of X-ray Binaries
NASA Astrophysics Data System (ADS)
Fragkos, Anastasios
X-ray binaries - mass-transferring binary stellar systems with compact object accretors - are unique astrophysical laboratories. They carry information about many complex physical processes such as star formation, compact object formation, and evolution of interacting binaries. My thesis work involves the study of the formation and evolution of Galactic and extra-galacticX-ray binaries using both detailed and realistic simulation tools, and population synthesis techniques. I applied an innovative analysis method that allows the reconstruction of the full evolutionary history of known black hole X-ray binaries back to the time of compact object formation. This analysis takes into account all the available observationally determined properties of a system, and models in detail four of its evolutionary evolutionary phases: mass transfer through the ongoing X-ray phase, tidal evolution before the onset of Roche-lobe overflow, motion through the Galactic potential after the formation of the black hole, and binary orbital dynamics at the time of core collapse. Motivated by deep extra-galactic Chandra survey observations, I worked on population synthesis models of low-mass X-ray binaries in the two elliptical galaxies NGC3379 and NGC4278. These simulations were targeted at understanding the origin of the shape and normalization of the observed X-ray luminosity functions. In a follow up study, I proposed a physically motivated prescription for the modeling of transient neutron star low-mass X-ray binary properties, such as duty cycle, outburst duration and recurrence time. This prescription enabled the direct comparison of transient low-mass X-ray binary population synthesis models to the Chandra X-ray survey of the two ellipticals NGC3379 and NGC4278. Finally, I worked on population synthesismodels of black holeX-ray binaries in the MilkyWay. This work was motivated by recent developments in observational techniques for the measurement of black hole spin magnitudes in black hole X-ray binaries. The accuracy of these techniques depend on misalignment of the black hole spin with respect to the orbital angular momentum. In black hole X-ray binaries, this misalignment can occur during the supernova explosion that forms the compact object. In this study, I presented population synthesis models of Galactic black hole X-ray binaries, and examined the distribution of misalignment angles, and its dependence on the model parameters.
The Ultra-Luminous X-ray Source Population from the Chandra Archive of Galaxies
NASA Technical Reports Server (NTRS)
Swartz, Douglas A.; Ghosh, Kajal K.; Tennant, Allen F.; Wu, Kinwah
2004-01-01
One hundred fifty-four discrete non-nuclear Ultra-Luminous X-ray (ULX) sources, with spectroscopically-determined intrinsic X-ray luminosities greater than 1 e39 ergs/s, are identified in 82 galaxies observed with Chandra's Advanced CCD Imaging Spectrometer. Source positions, X-ray luminosities, and spectral and timing characteristics are tabulated. Statistical comparisons between these X-ray properties and those of the weaker discrete sources in the same fields (mainly neutron star and stellar-mass black hole binaries) are made. Sources above approximately le38 ergs per second display similar spatial, spectral, color, and variability distributions. In particular, there is no compelling evidence in the sample for a new and distinct class of X-ray object such as the intermediate-mass black holes. 83% of ULX candidates have spectra that can be described as absorbed power laws with index
OV Bootis: Forty Nights Of World-Wide Photometry
NASA Astrophysics Data System (ADS)
Patterson, Joseph; de Miguel, Enrique; Barret, Douglas; Brincat, Stephen; Boardman, James, Jr.; Buczynski, Denis; Campbell, Tut; Cejudo, David; Cook, Lew; Cook, Michael J.; Collins, Donald; Cooney, Walt; Dubois, Franky; Dvorak, Shawn; Halpern, Jules P.; Kroes, Anthony J.; Lemay, Damien; Licchelli, Domenico; Mankel, Dylan; Marshall, Matt; Novak, Rudolf; Oksanen, Arto; Roberts, George; Seargeant, Jim; Sears, Huei; Silcox, Austin; Slauson, Douglas; Stone, Geoff; Thorstensen, J. R.; Ulowetz, Joe; Vanmunster, Tonny; Wallgren, John; Wood, Matt
2017-06-01
Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo" - the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody...... and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!
On Magnetic Dynamos in Thin Accretion Disks around Compact and Young Stars
NASA Technical Reports Server (NTRS)
Stepinski, T. F.
1993-01-01
A variety of geometrically thin accretion disks commonly associated with such astronomical objects as X-ray binaries, cataclysmic variables, and protostars are likely to be seats of MHD dynamo actions. Thin disk geometry and the particular physical environment make accretion disk dynamos different from stellar, planetary, or even galactic dynamos. We discuss those particular features of disk dynamos with emphasis on the difference between protoplanetary disk dynamos and those associated with compact stars. We then describe normal mode solutions for thin disk dynamos and discuss implications for the dynamical behavior of dynamo-magnetized accretion disks.
Flare Activity of Wide Binary Stars with Kepler
NASA Astrophysics Data System (ADS)
Clarke, Riley W.; Davenport, James R. A.; Covey, Kevin R.; Baranec, Christoph
2018-01-01
We present an analysis of flare activity in wide binary stars using a combination of value-added data sets from the NASA Kepler mission. The target list contains a set of previously discovered wide binary star systems identified by proper motions in the Kepler field. We cross-matched these systems with estimates of flare activity for ∼200,000 stars in the Kepler field, allowing us to compare relative flare luminosity between stars in coeval binaries. From a sample of 184 previously known wide binaries in the Kepler field, we find 58 with detectable flare activity in at least 1 component, 33 of which are similar in mass (q > 0.8). Of these 33 equal-mass binaries, the majority display similar (±1 dex) flare luminosity between both stars, as expected for stars of equal mass and age. However, we find two equal-mass pairs where the secondary (lower mass) star is more active than its counterpart, and two equal-mass pairs where the primary star is more active. The stellar rotation periods are also anomalously fast for stars with elevated flare activity. Pairs with discrepant rotation and activity qualitatively seem to have lower mass ratios. These outliers may be due to tidal spin-up, indicating these wide binaries could be hierarchical triple systems. We additionally present high-resolution adaptive optics images for two wide binary systems to test this hypothesis. The demographics of stellar rotation and magnetic activity between stars in wide binaries may be useful indicators for discerning the formation scenarios of these systems.
The effect of starspots on the radii of low-mass pre-main-sequence stars
NASA Astrophysics Data System (ADS)
Jackson, R. J.; Jeffries, R. D.
2014-07-01
A polytropic model is used to investigate the effects of dark photospheric spots on the evolution and radii of magnetically active, low-mass (M < 0.5 M⊙), pre-main-sequence (PMS) stars. Spots slow the contraction along Hayashi tracks and inflate the radii of PMS stars by a factor of (1 - β)-N compared to unspotted stars of the same luminosity, where β is the equivalent covering fraction of dark starspots and N ≃ 0.45 ± 0.05. This is a much stronger inflation than predicted by Spruit & Weiss for main-sequence stars with the same β, where N ˜ 0.2-0.3. These models have been compared to radii determined for very magnetically active K- and M-dwarfs in the young Pleiades and NGC 2516 clusters, and the radii of tidally locked, low-mass eclipsing binary components. The binary components and zero-age main-sequence K-dwarfs have radii inflated by ˜10 per cent compared to an empirical radius-luminosity relation that is defined by magnetically inactive field dwarfs with interferometrically measured radii; low-mass M-type PMS stars, that are still on their Hayashi tracks, are inflated by up to ˜40 per cent. If this were attributable to starspots alone, we estimate that an effective spot coverage of 0.35 < β < 0.51 is required. Alternatively, global inhibition of convective flux transport by dynamo-generated fields may play a role. However, we find greater consistency with the starspot models when comparing the loci of active young stars and inactive field stars in colour-magnitude diagrams, particularly for the highly inflated PMS stars, where the large, uniform temperature reduction required in globally inhibited convection models would cause the stars to be much redder than observed.
Cosmological perturbation effects on gravitational-wave luminosity distance estimates
NASA Astrophysics Data System (ADS)
Bertacca, Daniele; Raccanelli, Alvise; Bartolo, Nicola; Matarrese, Sabino
2018-06-01
Waveforms of gravitational waves provide information about a variety of parameters for the binary system merging. However, standard calculations have been performed assuming a FLRW universe with no perturbations. In reality this assumption should be dropped: we show that the inclusion of cosmological perturbations translates into corrections to the estimate of astrophysical parameters derived for the merging binary systems. We compute corrections to the estimate of the luminosity distance due to velocity, volume, lensing and gravitational potential effects. Our results show that the amplitude of the corrections will be negligible for current instruments, mildly important for experiments like the planned DECIGO, and very important for future ones such as the Big Bang Observer.
Swift Observations of SMC X-3 during Its 2016-2017 Super-Eddington Outburst
NASA Astrophysics Data System (ADS)
Weng, Shan-Shan; Ge, Ming-Yu; Zhao, Hai-Hui; Wang, Wei; Zhang, Shuang-Nan; Bian, Wei-Hao; Yuan, Qi-Rong
2017-07-01
The Be X-ray pulsar SMC X-3 underwent a giant outburst from 2016 August to 2017 March, which was monitored with the Swift satellite. During the outburst, its broadband flux increased dramatically, and the unabsorbed X-ray luminosity reached an extreme value of ˜ {10}39 erg s-1 around August 24. Using the Swift/XRT data, we measured the observed pulse frequency of the neutron star to compute the orbital parameters of the binary system. After applying the orbital corrections to Swift observations, we found that the spin frequency increased steadily from 128.02 mHz on August 10 and approached the spin equilibrium of ˜128.74 mHz in 2017 January with an unabsorbed luminosity of {L}{{X}}˜ 2× {10}37 erg s-1, indicating a strong dipolar magnetic field of B˜ 6.8× {10}12 G at the neutron star surface. The spin-up rate is tightly correlated with its X-ray luminosity during the super-Eddington outburst. The pulse profile in the Swift/XRT data is variable, showing double peaks at the early stage of outburst and then merging into a single peak at low luminosity. Additionally, we report that a low-temperature ({kT}˜ 0.2 keV) thermal component emerges in the phase-averaged spectra as the flux decays, and it may be produced from the outer truncated disk or the boundary layer between the exterior flow and the magnetosphere.
Three close binaries in different evolutionary stages in the old open cluster NGC 188
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, L. Y.; Qian, S. B.; Liu, L.
2014-02-01
NGC 188 is a good laboratory for studying the formation and evolution of W UMa type contact binaries due to its rich populations of them. We present a detailed photometric study of three short-period close binaries, EP Cep, ES Cep, and V369 Cep, in the old open cluster NGC 188 based on our two-set photometric observations. We discovered that both EP Cep and ES Cep are shallow-contact binaries with continuously decreasing periods. The difference is in their mass ratios. EP Cep has an extremely low-mass ratio, q = 0.15, while ES Cep has a relatively high-mass ratio, q = 0.69,more » indicating that they lie in different evolutionary stages. ES Cep is likely a newly formed contact binary via a Case A mass transfer, while EP Cep is an evolved system and may be on the oscillations caused by the combined effect of the thermal relaxation oscillation and the variable angular momentum loss. For another system, V369 Cep, we found that it is a primary-filling near-contact binary. Both the semidetached configuration and the continuous decrease in the orbital period indicate that it is undergoing a mass transfer from the primary component to the secondary one. This conclusion is in agreement with the excess luminosity seen in the light curves on the ingress of the secondary minimum produced by the impact of the mass transfer. All of the results suggest that V369 Cep is evolving into contact, and a shallow-contact high-mass ratio system similar to ES Cep will be formed. Then, it will evolve into a low-mass ratio contact binary just like EP Cep, and finally merge into a rapidly rotating single star.« less
Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS
NASA Astrophysics Data System (ADS)
Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A.; Basu-Zych, A. R.
2013-09-01
We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey. For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of the oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or that XRB modeling requires calibration on larger observational samples. Given these limitations, we find that the best models are consistent with a product of common envelope ejection efficiency and central donor concentration ~= 0.1, and a 50% uniform-50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor, and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the LX -star formation rate and LX -stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution of both XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.
Modeling X-Ray Binary Evolution in Normal Galaxies: Insights from SINGS
NASA Technical Reports Server (NTRS)
Tzanavaris, P.; Fragos, T.; Tremmel, M.; Jenkins, L.; Zezas, A.; Lehmer, B. D.; Hornschemeier, A.; Kalogera, V.; Ptak, A; Basu-Zych, A.
2013-01-01
We present the largest-scale comparison to date between observed extragalactic X-ray binary (XRB) populations and theoretical models of their production. We construct observational X-ray luminosity functions (oXLFs) using Chandra observations of 12 late-type galaxies from the Spitzer Infrared Nearby Galaxy Survey (SINGS). For each galaxy, we obtain theoretical XLFs (tXLFs) by combining XRB synthetic models, constructed with the population synthesis code StarTrack, with observational star formation histories (SFHs). We identify highest-likelihood models both for individual galaxies and globally, averaged over the full galaxy sample. Individual tXLFs successfully reproduce about half of oXLFs, but for some galaxies we are unable to find underlying source populations, indicating that galaxy SFHs and metallicities are not well matched and/or XRB modeling requires calibration on larger observational samples. Given these limitations, we find that best models are consistent with a product of common envelope ejection efficiency and central donor concentration approx.. = 0.1, and a 50% uniform - 50% "twins" initial mass-ratio distribution. We present and discuss constituent subpopulations of tXLFs according to donor, accretor and stellar population characteristics. The galaxy-wide X-ray luminosity due to low-mass and high-mass XRBs, estimated via our best global model tXLF, follows the general trend expected from the L(sub X) - star formation rate and L(sub X) - stellar mass relations of Lehmer et al. Our best models are also in agreement with modeling of the evolution both of XRBs over cosmic time and of the galaxy X-ray luminosity with redshift.
Extreme Ultraviolet Explorer observations of the magnetic cataclysmic variable RE 1938-461
NASA Technical Reports Server (NTRS)
Warren, John K.; Vallerga, John V.; Mauche, Christopher W.; Mukai, Koji; Siegmund, Oswald H. W.
1993-01-01
The magnetic cataclysmic variable RE 1938-461 was observed by the Extreme Ultraviolet Explorer (EUVE) Deep Survey instrument on 1992 July 8-9 during in-orbit calibration. It was detected in the Lexan/ boron (65-190 A) band, with a quiescent count rate of 0.0062 +/- 0.0017/s, and was not detected in the aluminum/carbon (160-360 A) band. The Lexan/boron count rate is lower than the corresponding ROSAT wide-field camera Lexan/boron count rate. This is consistent with the fact that the source was in a low state during an optical observation performed just after the EUVE observation, whereas it was in an optical high state during the ROSAT observation. The quiescent count rates are consistent with a virtual cessation of accretion. Two transient events lasting about 1 hr occurred during the Lexan/boron pointing, the second at a count rate of 0.050 +/- 0.006/s. This appears to be the first detection of an EUV transient during the low state of a magnetic cataclysmic variable. We propose two possible explanations for the transient events.
X-ray astronomy from Uhuru to HEAO-1
NASA Technical Reports Server (NTRS)
Clark, G. W.
1981-01-01
The nature of galactic and extragalactic X-ray sources is investigated using observations made with nine satellites and several rockets. The question of X-ray pulsars being neutron stars or white dwarfs is considered, as is the nature of Population II and low-luminosity X-ray stars, the diffuse X-ray emission from clusters of galaxies, the unidentified high-galactic-latitude (UHGL) sources, and the unresolved soft X-ray background. The types of sources examined include binary pulsars, Population II X-ray stars (both nonbursters and bursters) inside and outside globular clusters, coronal X-ray emitters, and active galactic nuclei. It is concluded that: (1) X-ray pulsars are strongly magnetized neutron stars formed in the evolution of massive close binaries; (2) all Population II X-ray stars are weakly magnetized or nonmagnetic neutron stars accreting from low-mass companions in close binary systems; (3) the diffuse emission from clusters is thermal bremsstrahlung of hot matter processed in stars and swept out by ram pressure exerted by the intergalactic gas; (4) most or all of the UHGL sources are active galactic nuclei; and (5) the soft X-ray background is emission from a hot component of the interstellar medium.
Accretion Processes in Cosmic Sources
NASA Astrophysics Data System (ADS)
2016-10-01
Accretion is a universal phenomenon that takes place in the vast majority of astrophysical objects. The progress of ground-based and space-borne observational facilities has resulted in the great amount of information on various accreting astrophysical objects, collected within the last decades. The accretion is accompanied by the process of extensive energy release that takes place on the surface of an accreting object and in various gaseous envelopes, accretion disk, jets and other elements of the flow pattern. The results of observations inspired the intensive development of accretion theory, which, in turn, enabled us to study unique properties of accreting objects and physical conditions in the surrounding environment. One of the most interesting outcomes of this intensive study is the fact that accretion processes are, in a sense, self-similar on various spatial scales from planetary systems to galaxies. This fact gives us new opportunities to investigate objects that, by various reasons, are not available for direct study. Cataclysmic variable stars are unique natural laboratories where one can conduct the detailed observational study of accretion processes and accretion disks. This is the main reason why several participants and a few members of the Organizing Committee of the conference "The Golden Age of Cataclysmic Variables and Related Objects - III" (September 7-12, 2015, Palermo, Italy) have decided to hold a special conference, focused on accretion processes, as a branch of that series. Main topics: Young Stellar Objects, protoplanetary discs, exoplanets in binary stars Accretion on white dwarfs (Cataclysmic variables and related objects) Accretion on neutron stars (X-ray Binary Systems and related objects) Accretion on black holes (stellar BH and AGN) The workshop will include a few 35-minute general review talks to introduce the current problems, and 20-minute talks to discuss new experimental and theoretical results. A series of 15-minute talks will discuss the ongoing and planned ground- based and space-based experiments. There will also be some general talks about the future directions of scientific research on cosmic sources. The papers will pass a peer-review process and the workshop proceedings will be edited by Franco Giovannelli & Lola Sabau-Graziati. The location of the workshop is the Ambassador Hotel, located in Saint Petersburg, Russian Federation, a venue that will provide a friendly and collaborative atmosphere.
NASA Astrophysics Data System (ADS)
Tetarenko, A. J.; Bahramian, A.; Wijnands, R.; Heinke, C. O.; Maccarone, T. J.; Miller-Jones, J. C. A.; Strader, J.; Chomiuk, L.; Degenaar, N.; Sivakoff, G. R.; Altamirano, D.; Deller, A. T.; Kennea, J. A.; Li, K. L.; Plotkin, R. M.; Russell, T. D.; Shaw, A. W.
2018-02-01
We present Karl G. Jansky Very Large Array radio frequency observations of the new accreting millisecond X-ray pulsar (AMXP), IGR J16597‑3704, located in the globular cluster NGC 6256. With these data, we detect a radio counterpart to IGR J16597‑3704, and determine an improved source position. Pairing our radio observations with quasi-simultaneous Swift/XRT X-ray observations, we place IGR J16597‑3704 on the radio–X-ray luminosity plane, where we find that IGR J16597‑3704 is one of the more radio-quiet neutron star low-mass X-ray binaries known to date. We discuss the mechanisms that may govern radio luminosity (and in turn jet production and evolution) in AMXPs. Furthermore, we use our derived radio position to search for a counterpart in archival Hubble Space Telescope and Chandra X-ray Observatory data, and estimate an upper limit on the X-ray luminosity of IGR J16597‑3704 during quiescence.
NASA Technical Reports Server (NTRS)
Kenyon, Scott J.; Mikolajewska, Joanna; Mikolajewski, Maciej; Polidan, Ronald S.; Slovak, Mark H.
1993-01-01
We present an analysis of new and existing photometric and spectroscopic observations of the ongoing eruption in the symbiotic star AG Pegasi, showing that this binary has evolved considerably since the turn of the century. Recent dramatic changes in both the UV continuum and the wind from the hot component allow a more detailed analysis than in previous papers. AG Peg is composed of a normal M3 giant and a hot, compact star embedded in a dense, ionized nebula. The hot component powers the activity observed in this system, including a dense wind and a photoionized region within the outer atmosphere of the red giant. The hot component contracted in radius at roughly constant luminosity from 1850 to 1985. Its bolometric luminosity declined by a factor of about 4 during the past 5 yr. Both the mass loss rate from the hot component and the emission activity decreased in step with the hot component's total luminosity, while photospheric radiation from the red giant companion remained essentially constant.
X-ray Follow-ups of XSS J12270-4859: A Low-mass X-ray Binary with Gamma-ray Fermi-LAT Association
NASA Technical Reports Server (NTRS)
deMartino, D.; Belloni, T.; Falanga, M.; Papitto, A.; Motta, S.; Pellizzoni, A.; Evangelista, Y.; Piano, G.; Masetti, N.; Mouchet, M.;
2013-01-01
Context. XSS J1227.0-4859 is a peculiar, hard X-ray source recently positionally associated to the Fermi-LAT source 1FGL J1227.9- 4852/2FGL J1227.7-4853. Multi-wavelength observations have added information on this source, indicating a low-luminosity lowmass X-ray binary (LMXB), but its nature is still unclear. Aims. To progress in our understanding, we present new X-ray data from a monitoring campaign performed in 2011 with the XMM-Newton, RXTE, and Swift satellites and combine them with new gamma-ray data from the Fermi and AGILE satellites. We complement the study with simultaneous near-UV photometry from XMM-Newton and with previous UV/optical and near-IR data. Methods. We analysed the temporal characteristics in the X-rays, near-UV, and gamma rays and studied the broad-band spectral energy distribution from radio to gamma rays. Results. The X-ray history of XSS J1227 over 7 yr shows a persistent and rather stable low-luminosity (6 × 1033 d2 1 kpcerg s-1) source, with flares and dips being peculiar and permanent characteristics. The associated Fermi-LAT source 2FGL J1227.7-4853 is also stable over an overlapping period of 4.7 yr. Searches for X-ray fast pulsations down to msec give upper limits to pulse fractional amplitudes of 15-25% that do not rule out a fast spinning pulsar. The combined UV/optical/near-IR spectrum reveals a hot component at approximately 13 kK and a cool one at approximately 4.6 kK. The latter would suggest a late-type K2-K5 companion star, a distance range of 1.4-3.6 kpc, and an orbital period of 7-9 h. A near-UV variability (6 h) also suggests a longer orbital period than previously estimated. Conclusions. The analysis shows that the X-ray and UV/optical/near-IR emissions are more compatible with an accretion-powered compact object than with a rotational powered pulsar. The X-ray to UV bolometric luminosity ratio could be consistent with a binary hosting a neutron star, but the uncertainties in the radio data may also allow an LMXB black hole with a compact jet. In this case, it would be the first associated with a high-energy gamma-ray source.
High-speed photometry of Gaia14aae: an eclipsing AM CVn that challenges formation models
NASA Astrophysics Data System (ADS)
Green, M. J.; Marsh, T. R.; Steeghs, D. T. H.; Kupfer, T.; Ashley, R. P.; Bloemen, S.; Breedt, E.; Campbell, H. C.; Chakpor, A.; Copperwheat, C. M.; Dhillon, V. S.; Hallinan, G.; Hardy, L. K.; Hermes, J. J.; Kerry, P.; Littlefair, S. P.; Milburn, J.; Parsons, S. G.; Prasert, N.; van Roestel, J.; Sahman, D. I.; Singh, N.
2018-05-01
AM CVn-type systems are ultracompact, hydrogen-deficient accreting binaries with degenerate or semidegenerate donors. The evolutionary history of these systems can be explored by constraining the properties of their donor stars. We present high-speed photometry of Gaia14aae, an AM CVn with a binary period of 49. 7 min and the first AM CVn in which the central white dwarf is fully eclipsed by the donor star. Modelling of the light curves of this system allows for the most precise measurement to date of the donor mass of an AM CVn, and relies only on geometric and well-tested physical assumptions. We find a mass ratio q = M2/M1 = 0.0287 ± 0.0020 and masses M1 = 0.87 ± 0.02 M⊙ and M2 = 0.0250 ± 0.0013 M⊙. We compare these properties to the three proposed channels for AM CVn formation. Our measured donor mass and radius do not fit with the contraction that is predicted for AM CVn donors descended from white dwarfs or helium stars at long orbital periods. The donor properties we measure fall in a region of parameter space in which systems evolved from hydrogen-dominated cataclysmic variables are expected, but such systems should show spectroscopic hydrogen, which is not seen in Gaia14aae. The evolutionary history of this system is therefore not clear. We consider a helium-burning star or an evolved cataclysmic variable to be the most likely progenitors, but both models require additional processes and/or fine-tuning to fit the data. Additionally, we calculate an updated ephemeris which corrects for an anomalous time measurement in the previously published ephemeris.
Optical Studies of 15 Hard X-Ray Selected Cataclysmic Binaries
NASA Astrophysics Data System (ADS)
Halpern, Jules P.; Thorstensen, John R.; Cho, Patricia; Collver, Gabriel; Motsoaledi, Mokhine; Breytenbach, Hannes; Buckley, David A. H.; Woudt, Patrick A.
2018-06-01
We conducted time-resolved optical spectroscopy and/or time-series photometry of 15 cataclysmic binaries that were discovered in hard X-ray surveys by the Swift Burst Alert Telescope and the International Gamma-Ray Astrophysics Laboratory, with the goal of measuring their orbital periods and searching for spin periods. Four of the objects in this study are new optical identifications: Swift J0535.2+2830, Swift J2006.4+3645, IGR J21095+4322, and Swift J2116.5+5336. Coherent pulsations are detected from three objects for the first time, Swift J0535.2+2830 (1523 s), 2PBC J1911.4+1412 (747 s), and 1SWXRT J230642.7+550817 (464 s), indicating that they are intermediate polars (IPs). We find two new eclipsing systems in time-series photometry: 2PBC J0658.0‑1746, a polar with a period of 2.38 hr, and Swift J2116.5+5336, a disk system that has an eclipse period of 6.56 hr. Exact or approximate spectroscopic orbital periods are found for six additional targets. Of note is the long 4.637-day orbit for Swift J0623.9‑0939, which is revealed by the radial velocities of the photospheric absorption lines of the secondary star. We also discover a 12.76 hr orbital period for RX J2015.6+3711, which confirms that the previously detected 2.00 hr X-ray period from this star is the spin period of an IP, as inferred by Coti Zelati et al. These results support the conclusion that hard X-ray selection favors magnetic CVs, with IPs outnumbering polars.
Stellar wind measurements for Colliding Wind Binaries using X-ray observations
NASA Astrophysics Data System (ADS)
Sugawara, Yasuharu; Maeda, Yoshitomo; Tsuboi, Yohko
2017-11-01
We report the results of the stellar wind measurement for two colliding wind binaries. The X-ray spectrum is the best measurement tool for the hot postshock gas. By monitoring the changing of the the X-ray luminosity and column density along with the orbital phases, we derive the mass-loss rates of these stars.
X-rays across the galaxy population - I. Tracing the main sequence of star formation
NASA Astrophysics Data System (ADS)
Aird, J.; Coil, A. L.; Georgakakis, A.
2017-03-01
We use deep Chandra imaging to measure the distribution of X-ray luminosities (LX) for samples of star-forming galaxies as a function of stellar mass and redshift, using a Bayesian method to push below the nominal X-ray detection limits. Our luminosity distributions all show narrow peaks at LX ≲ 1042 erg s-1 that we associate with star formation, as opposed to AGN that are traced by a broad tail to higher LX. Tracking the luminosity of these peaks as a function of stellar mass reveals an 'X-ray main sequence' with a constant slope ≈0.63 ± 0.03 over 8.5 ≲ log {M}_{ast }/M_{⊙} ≲ 11.5 and 0.1 ≲ z ≲ 4, with a normalization that increases with redshift as (1 + z)3.79 ± 0.12. We also compare the peak X-ray luminosities with UV-to-IR tracers of star formation rates (SFRs) to calibrate the scaling between LX and SFR. We find that LX ∝ SFR0.83 × (1 + z)1.3, where the redshift evolution and non-linearity likely reflect changes in high-mass X-ray binary populations of star-forming galaxies. Using galaxies with a broader range of SFR, we also constrain a stellar-mass-dependent contribution to LX, likely related to low-mass X-ray binaries. Using this calibration, we convert our X-ray main sequence to SFRs and measure a star-forming main sequence with a constant slope ≈0.76 ± 0.06 and a normalization that evolves with redshift as (1 + z)2.95 ± 0.33. Based on the X-ray emission, there is no evidence for a break in the main sequence at high stellar masses, although we cannot rule out a turnover given the uncertainties in the scaling of LX to SFR.
Fast Radio Bursts and Radio Transients from Black Hole Batteries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara; Levin, Janna; Lazio, Joseph
2016-03-01
Most black holes (BHs) will absorb a neutron star (NS) companion fully intact, without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally the luminosity was expected in high-energy X-rays or gamma-rays, however we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs), NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose the transients form a FRB sub-population, distinguishable by a double peak. The main burst is from the peak luminosity before merger, while the post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are desirable for ground-based gravitational wave (GW) observatories since the pair might not be detected any other way, with EM counterparts augmenting the scientific leverage beyond the GW signal. Valuably, EM signal can break degeneracies in the parameters encoded in the GW as well as probe the NS magnetic field strength, yielding insights into open problems in NS magnetic field decay.
MESA models of the evolutionary state of the interacting binary epsilon Aurigae
NASA Astrophysics Data System (ADS)
Gibson, Justus L.; Stencel, Robert E.
2018-06-01
Using MESA code (Modules for Experiments in Stellar Astrophysics, version 9575), an evaluation was made of the evolutionary state of the epsilon Aurigae binary system (HD 31964, F0Iap + disc). We sought to satisfy several observational constraints: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C/13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 M⊙, with a 100 d initial period, produces a 1.2 + 10.6 M⊙ result having a 547 d period, and a single digit 12C/13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main-sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long-period binary stars.
SPECTRAL PROPERTIES OF X-RAY BINARIES IN CENTAURUS A
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burke, Mark J.; Raychaudhury, Somak; Kraft, Ralph P.
2013-04-01
We present a spectral investigation of X-ray binaries (XBs) in NGC 5128 (Cen A), using six 100 ks Chandra observations taken over two months in 2007. We divide our sample into thermally and non-thermally dominated states based on the behavior of the fitted absorption column N{sub H}, and present the spectral parameters of sources with L{sub x} {approx}> 2 Multiplication-Sign 10{sup 37} erg s{sup -1}. The majority of sources are consistent with being neutron star low-mass X-ray binaries (NS LMXBs) and we identify three transient black hole (BH) LMXB candidates coincident with the dust lane, which is the remnant ofmore » a small late-type galaxy. Our results also provide tentative support for the apparent 'gap' in the mass distribution of compact objects between {approx}2-5 M{sub Sun }. We propose that BH LMXBs are preferentially found in the dust lane, and suggest this is because of the younger stellar population. The majority ({approx}70%-80%) of potential Roche lobe filling donors in the Cen A halo are {approx}> 12 Gyr old, while BH LMXBs require donors {approx}> 1 M{sub Sun} to produce the observed peak luminosities. This requirement for more massive donors may also explain recent results that claim a steepening of the X-ray luminosity function with age at L{sub x} {>=} 5 Multiplication-Sign 10{sup 38} erg s{sup -1} for the XB population of early-type galaxies; for older stellar populations, there are fewer stars {approx}> 1 M{sub Sun }, which are required to form the more luminous sources.« less
The Widest-separation Substellar Companion Candidate to a Binary T Tauri Star
NASA Astrophysics Data System (ADS)
Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R.
2011-04-01
The results of near-infrared imaging and spectroscopy of a substellar companion (SR12 C), with a possible planetary mass, of a binary T Tauri star (SR12 AB) in the ρ Ophiuchi star-forming region are presented. The object is separated by ~8farcs7, corresponding to ~1100 AU at 125 pc, and has an H-band brightness of 15.2 mag and infrared spectra suggesting a spectral type of M9.0 ± 0.5. It is confirmed that SR12 C is physically related to the ρ Ophiuchi star-forming region from its common proper motion with SR12 AB and its youth is confirmed by a gravity-sensitive spectral feature. Furthermore, based on the number of known members of the ρ Ophiuchi star-forming region in the area in which SR12 AB exists, the probability of a chance alignment is ~1% and it is therefore likely that SR12 C is physically associated with SR12 AB. The mass of SR12 C is estimated by comparing its estimated luminosity and assumed age with the theoretical age-luminosity relation. SR12 C is identified as an extremely low-mass (0.013 ± 0.007 M sun) object, but its separation from its parent star is the widest among planetary-mass companion (PMC) candidates imaged to date. In addition, SR12 C is the first PMC candidate directly imaged around a binary star. This discovery suggests that PMCs form via multiple star formation processes including disk gravitational instability and cloud core fragmentation.
Modeling the optical radiation of the precataclysmic variable SDSS J212531-010745
NASA Astrophysics Data System (ADS)
Shimansky, V. V.; Borisov, N. V.; Nurtdinova, D. N.; Solovyeva, Yu. N.; Sakhibullin, N. A.; Spiridonova, O. I.
2015-03-01
Optical observations are analyzed to derive a set of basic parameters for the precataclysmic variable star SDSS J212531-010745, whose primary is a PG1159-type star. Spectroscopic and multiband photometric observations of the star were performed in 2008-2011 with the 6-m telescope and the Zeiss-1000 telescope of the Special Astrophysical Observatory. The shape of the binary's orbital light curves is nearly sinusoidal, with the amplitude increasing with wavelength from Δ m = 0.40 m in the B band to Δ m = 0.73 m in the R band. The spectra contain absorption lines of HeII and neutral atoms, along with HI, HeI, CII, MgII, FeII emission lines, whose intensity increases synchronously with the brightness of the system. The optical radiation from SDSS J212531-010745 has a composite nature, corresponding to a model for a pre-cataclysmic variable with strong reflection effects. Cross-correlation techniques are used to measure the radial velocities and derive the component masses. Numerical modeling of the binary's light curves, radial velocities, and spectra is performed, and a complete set of parameters determined. Considerable abundance anomalies (to 1 dex) were detected for the secondary. The primary's characteristics correspond to the evolutionary predictions for DAO dwarfs with masses M ≈ 0.5 M ⊙, and the secondary's characteristics to low-mass, main-sequence stars with the solar metallicity.
NASA Technical Reports Server (NTRS)
Jones, Therese M.; Kriek, Mariska; vanDokkum, Peter G.; Brammer, Gabriel; Franx, Marijn; Greene, Jenny E.; Labbe, Ivo; Whitaker, Katherine E.
2014-01-01
We examine how the total X-ray luminosity correlates with stellar mass, stellar population, and redshift for a K-band limited sample of approximately 3500 galaxies at 0.5 < z < 2.0 from the NEWFIRM Medium Band Survey in the COSMOS field. The galaxy sample is divided into 32 different galaxy types, based on similarities between the spectral energy distributions. For each galaxy type, we further divide the sample into bins of redshift and stellar mass, and perform an X-ray stacking analysis using the Chandra COSMOS data. We find that full band X-ray luminosity is primarily increasing with stellar mass, and at similar mass and spectral type is higher at larger redshifts. When comparing at the same stellar mass, we find that the X-ray luminosity is slightly higher for younger galaxies (i.e., weaker 4000 angstrom breaks), but the scatter in this relation is large. We compare the observed X-ray luminosities to those expected from low- and high-mass X-ray binaries (XRBs). For blue galaxies, XRBs can almost fully account for the observed emission, while for older galaxies with larger 4000 angstrom breaks, active galactic nuclei (AGN) or hot gas dominate the measured X-ray flux. After correcting for XRBs, the X-ray luminosity is still slightly higher in younger galaxies, although this correlation is not significant. AGN appear to be a larger component of galaxy X-ray luminosity at earlier times, as the hardness ratio increases with redshift. Together with the slight increase in X-ray luminosity this may indicate more obscured AGNs or higher accretion rates at earlier times.
NASA Astrophysics Data System (ADS)
Jiang, Dengkai; Chen, Xuefei; Li, Lifang; Han, Zhanwen
2017-11-01
Two blue-straggler sequences discovered in globular cluster M30 provide a strong constraint on the formation mechanisms of blue stragglers. We study the formation of blue-straggler binaries through binary evolution, and find that binary evolution can contribute to the blue stragglers in both of the sequences. Whether a blue-straggler is located in the blue sequence or red sequence depends on the contribution of the mass donor to the total luminosity of the binary, which is generally observed as a single star in globular clusters. The blue stragglers in the blue sequence have a cool white dwarf companion, while the majority (˜60%) of the objects in the red sequence are binaries that are still experiencing mass transfer. However, there are also some objects for which the donors have just finished the mass transfer (the stripped-core stars, ˜10%) or the blue stragglers (the accretors) have evolved away from the blue sequence (˜30%). Meanwhile, W UMa contact binaries found in both sequences may be explained by various mass ratios, that is, W UMa contact binaries in the red sequence have two components with comparable masses (e.g., mass ratio q ˜ 0.3-1.0), while those in the blue sequence have low mass ratios (e.g., q< 0.3). However, the fraction of the blue sequence in M30 cannot be reproduced by binary population synthesis if we assumed the initial parameters of a binary sample to be the same as those of the field. This possibly indicates that dynamical effects on binary systems are very important in globular clusters.
NASA Technical Reports Server (NTRS)
Gallagher, J. S.; Webbink, R. F.; Holm, A. V.; Anderson, C. M.
1979-01-01
Ultraviolet broadband photometry obtained with the Wisconsin Experiment Package on OAO 2 is presented for the symbiotic binary star AG Peg. The hot component of the binary is found to be a luminous ultraviolet source, with an energy distribution consistent with its WN6 optical spectral type. Total luminosities of 1000 and 17,000 suns are found for the hot star by assuming, respectively, that the giant primary of AG Peg is a normal M3 III star and that it fills its Roche lobe. The eruptive behavior of AG Peg is shown to require the higher luminosity, and the activity in AG Peg is discussed in terms of a very slow novalike nuclear-powered event.
The dynamical mass of a classical Cepheid variable star in an eclipsing binary system.
Pietrzyński, G; Thompson, I B; Gieren, W; Graczyk, D; Bono, G; Udalski, A; Soszyński, I; Minniti, D; Pilecki, B
2010-11-25
Stellar pulsation theory provides a means of determining the masses of pulsating classical Cepheid supergiants-it is the pulsation that causes their luminosity to vary. Such pulsational masses are found to be smaller than the masses derived from stellar evolution theory: this is the Cepheid mass discrepancy problem, for which a solution is missing. An independent, accurate dynamical mass determination for a classical Cepheid variable star (as opposed to type-II Cepheids, low-mass stars with a very different evolutionary history) in a binary system is needed in order to determine which is correct. The accuracy of previous efforts to establish a dynamical Cepheid mass from Galactic single-lined non-eclipsing binaries was typically about 15-30% (refs 6, 7), which is not good enough to resolve the mass discrepancy problem. In spite of many observational efforts, no firm detection of a classical Cepheid in an eclipsing double-lined binary has hitherto been reported. Here we report the discovery of a classical Cepheid in a well detached, double-lined eclipsing binary in the Large Magellanic Cloud. We determine the mass to a precision of 1% and show that it agrees with its pulsation mass, providing strong evidence that pulsation theory correctly and precisely predicts the masses of classical Cepheids.
CVs and millisecond pulsar progenitors in globular clusters
NASA Technical Reports Server (NTRS)
Grindlay, J. E.; Cool, A. M.; Bailyn, C. D.
1991-01-01
The recent discovery of a large population of millisecond pulsars in globular clusters, together with earlier studies of both low luminosity X-ray sources and LMXBs in globulars, suggest there should be significant numbers of CVs in globulars. Although they have been searched for without success in selected cluster X-ray source fields, systematic surveys are lacking and would constrain binary production and both stellar and dynamical evolution in globular clusters. We describe the beginnings of such a search, using narrow band H-alpha imaging, and the sensitivities it might achieve.
Probing Ultracool Atmospheres and Substellar Interiors with Dynamical Masses
NASA Astrophysics Data System (ADS)
Dupuy, Trent
2010-09-01
After years of patient orbital monitoring, there is now a large sample of very low-mass stars and brown dwarfs with precise { 5%} dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to use NICMOS and STIS to characterize this first large sample of ultracool binaries with well-determined dynamical masses. We will use NICMOS multi-band photometry to measure the SEDs of the binary components and thereby precisely estimate their spectral types and effective temperatures. We will use STIS to obtain resolved spectroscopy of the Li I doublet at 6708 A for a subset of three binaries whose masses lie very near the theoretical mass limit for lithium burning. The STIS data will provide the first ever resolved lithium measurements for brown dwarfs of known mass, enabling a direct probe of substellar interiors. Our proposed HST observations to characterize the components of these binaries is much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these HST data are equally vital for robust tests of theory.
Colliding winds from early-type stars in binary systems
NASA Technical Reports Server (NTRS)
Stevens, Ian R.; Blondin, John M.; Pollock, A. M. T.
1992-01-01
The dynamics of the wind and shock structure formed by the wind collision in early-type binary systems is examined by means of a 2D hydrodynamics code, which self-consistently accounts for radiative cooling, and represents a significant improvement over previous attempts to model these systems. The X-ray luminosity and spectra of the shock-heated region, accounting for wind attenuation and the influence of different abundances on the resultant level and spectra of X-ray emission are calculated. A variety of dynamical instabilities that are found to dominate the intershock region is examined. These instabilities are found to be particularly important when postshock material is able to cool. These instabilities disrupt the postshock flow and add a time variability of order 10 percent to the X-ray luminosity. The X-ray spectrum of these systems is found to vary with the nuclear abundances of winds. These theoretical models are used to study several massive binary systems, in particular V444 Cyg and HD 193793.
NASA Astrophysics Data System (ADS)
Parikh, A. S.; Wijnands, R.; Degenaar, N.; Ootes, L. S.; Page, D.; Altamirano, D.; Cackett, E. M.; Deller, A. T.; Gusinskaia, N.; Hessels, J. W. T.; Homan, J.; Linares, M.; Miller, J. M.; Miller-Jones, J. C. A.
2017-04-01
We have monitored the transient neutron star low-mass X-ray binary 1RXS J180408.9-342058 in quiescence after its ˜4.5 month outburst in 2015. The source has been observed using Swift and XMM-Newton. Its X-ray spectra were dominated by a thermal component. The thermal evolution showed a gradual X-ray luminosity decay from ˜18 × 1032 to ˜4 × 1032 (D/5.8 kpc)2 erg s-1 between ˜8 and ˜379 d in quiescence, and the inferred neutron star surface temperature (for an observer at infinity; using a neutron star atmosphere model) decreased from ˜100 to ˜71 eV. This can be interpreted as cooling of an accretion-heated neutron star crust. Modelling the observed temperature curve (using nscool) indicated that the source required ˜1.9 MeV per accreted nucleon of shallow heating in addition to the standard deep crustal heating to explain its thermal evolution. Alternatively, the decay could also be modelled without the presence of deep crustal heating, only having a shallow heat source (again ˜1.9 MeV per accreted nucleon was required). However, the XMM-Newton data statistically required an additional power-law component. This component contributed ˜30 per cent of the total unabsorbed flux in 0.5-10 keV energy range. The physical origin of this component is unknown. One possibility is that it arises from low-level accretion. The presence of this component in the spectrum complicates our cooling crust interpretation because it might indicate that the smooth luminosity and temperature decay curves we observed may not be due to crust cooling but due to some other process.
X-ray Spectral Analysis of the Cataclysmic Variable LS Peg using XMM-Newton Observatory Data
NASA Astrophysics Data System (ADS)
Talebpour Sheshvan, N.; Nabizadeh, A.; Balman, S.
2017-10-01
LS Peg is a Cataclysmic Variable (CV) suggested as Intermediate Polar (IP) because of similar properties to those observed in IP systems. We used archival XMM-Newton observation of LS Peg in order to study the X-ray characteristics of the system. We show LS Peg light curves in several different energy bands, and discuss about orbital modulations and power spectral analysis. Unlike the previous spectral analysis of the EPIC-MOS data by fitting a hot optically thin plasma emission model with a single temperature, we simultaneously fit EPIC spectrum (pn+MOS) using a composite model of absorption (tbabs) along with two different partial covering absorbers plus a multi-temperature plasma emission component in XSPEC. In addition, we find a Gaussian emission line at 6.4 keV. For LS Peg the maximum temperature of the plasma distribution is found to be ˜ 17.8 keV with a luminosity of ˜ 7.4×10^{32}erg s^{-1} translating to an accretion rate of ˜ 1.7×10 ^{-10} M_{⊙} yr^{-1}. We present spectra for orbital minimum and orbital maximum. In addition, we use SWIFT observations of the source in order to make a comparison. We elaborate on the geometry of accretion and absorption in the X-ray emitting region with articulation on the magnetic nature.
Testing Ultracool Atmospheres with Mass Benchmarks
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.
2011-08-01
After years of patient orbital monitoring, there is now a sample of ~10 very low-mass stars and brown dwarfs with precise (~5%) dynamical masses. These binaries represent the gold standard for testing substellar theoretical models. Work to date has identified problems with the model-predicted broad-band colors, effective temperatures, and possibly even luminosity evolution with age. However, our ability to test models is currently limited by how well the individual components of these highly prized binaries are characterized. To solve this problem, we propose to obtain narrow-band imaging with Keck/OSIRIS LGS to measure resolved SEDs for this first sizable sample of ultracool binaries with well-determined dynamical masses. This multi- band photometry will enable us to precisely estimate spectral types and effective temperatures of individual binary components, providing the strongest constraints to date on widely used evolutionary and atmospheric models. Our proposed Keck observations are much less daunting in comparison to the years of orbital monitoring needed to yield dynamical masses, but these data are equally vital for robust tests of theory. (Note: Our proposed time is intended to replace the 1 night awarded by NOAO to carry out this program in 2010B, which was completely lost due to weather.)
Probing the X-Ray Binary Populations of the Ring Galaxy NGC 1291
NASA Technical Reports Server (NTRS)
Luo, B.; Fabbiano, G.; Fragos, T.; Kim, D. W.; Belczynski, K.; Brassington, N. J.; Pellegrini, S.; Tzanavaris, P.; Wang, J.; Zezas, A.
2012-01-01
We present Chandra studies of the X-ray binary (XRB) populations in the bulge and ring regions of the ring galaxy NGC 1291. We detect 169 X-ray point sources in the galaxy, 75 in the bulge and 71 in the ring, utilizing the four available Chandra observations totaling an effective exposure of 179 ks. We report photometric properties of these sources in a point-source catalog. There are approx. 40% of the bulge sources and approx. 25% of the ring sources showing > 3(sigma) long-term variability in their X-ray count rate. The X-ray colors suggest that a significant fraction of the bulge (approx. 75%) and ring (approx. 65%) sources are likely low-mass X-ray binaries (LMXBs). The spectra of the nuclear source indicate that it is a low-luminosity AGN with moderate obscuration; spectral variability is observed between individual observations. We construct 0.3-8.0 keV X-ray luminosity functions (XLFs) for the bulge and ring XRB populations, taking into account the detection incompleteness and background AGN contamination. We reach 90% completeness limits of approx.1.5 x 10(exp 37) and approx. 2.2 x 10(exp 37) erg/s for the bulge and ring populations, respectively. Both XLFs can be fit with a broken power-law model, and the shapes are consistent with those expected for populations dominated by LMXBs. We perform detailed population synthesis modeling of the XRB populations in NGC 1291 , which suggests that the observed combined XLF is dominated by aD old LMXB population. We compare the bulge and ring XRB populations, and argue that the ring XRBs are associated with a younger stellar population than the bulge sources, based on the relative over-density of X-ray sources in the ring, the generally harder X-ray color of the ring sources, the overabundance of luminous sources in the combined XLF, and the flatter shape of the ring XLF.
Galactic Sources Detected in the NuSTAR Serendipitous Survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomsick, John A.; Clavel, Maïca; Chiu, Jeng-Lun
The Nuclear Spectroscopic Telescope Array (NuSTAR) provides an improvement in sensitivity at energies above 10 keV by two orders of magnitude over non-focusing satellites, making it possible to probe deeper into the Galaxy and universe. Lansbury and collaborators recently completed a catalog of 497 sources serendipitously detected in the 3–24 keV band using 13 deg{sup 2} of NuSTAR coverage. Here, we report on an optical and X-ray study of 16 Galactic sources in the catalog. We identify 8 of them as stars (but some or all could have binary companions), and use information from Gaia to report distances and X-ray luminositiesmore » for 3 of them. There are 4 CVs or CV candidates, and we argue that NuSTAR J233426–2343.9 is a relatively strong CV candidate based partly on an X-ray spectrum from XMM-Newton . NuSTAR J092418–3142.2, which is the brightest serendipitous source in the Lansbury catalog, and NuSTAR J073959–3147.8 are low-mass X-ray binary candidates, but it is also possible that these 2 sources are CVs. One of the sources is a known high-mass X-ray binary (HMXB), and NuSTAR J105008–5958.8 is a new HMXB candidate that has strong Balmer emission lines in its optical spectrum and a hard X-ray spectrum. We discuss the implications of finding these HMXBs for the surface density (log N –log S ) and luminosity function of Galactic HMXBs. We conclude that with the large fraction of unclassified sources in the Galactic plane detected by NuSTAR in the 8–24 keV band, there could be a significant population of low-luminosity HMXBs.« less
OV Bootis: Forty Nights of World-Wide Photometry (Abstract)
NASA Astrophysics Data System (ADS)
Patterson, J.; de Miguel, E.; Barret, D.; Brincat, S.; Boardman, J., Jr.; Buczynski, D.; Campbell, T.; Cejudo, D.; Cook, L.; Cook, M. J.; Collins, D.; Cooney, W.; Dubois, F.; Dvorak, S.; Halpern, J. P.; Kroes, A. J.; Lemay, D.; Licchelli, D.; Mankel, D.; Marshall, M.; Novak, R.; Oksanen, A.; Roberts, G.; Seargeant, J.; Sears, H.; Silcox, A.; Slauson, D.; Stone, G.; Thorstensen, J. R.; Ulowetz, J.; Vanmunster, T.; Wallgren, J.; Wood, M.
2017-12-01
(Abstract only) Among the 1000 known cataclysmic variables, only one appears to belong to the "Galactic halo"-the Population II stars. We report round-the-world photometry of this star (OV Boo) during March-April 2017, when it staged its first certified dwarf-nova outburst. The star is remarkable for its short binary period (66 minutes), high proper motion, metal-poor composition, substellar secondary, sharp white-dwarf eclipses, and nonradial pulsations. Something for everybody - and it even had the good manners to erupt in northern springtime, when it transits near local midnight. Move over, SS Cyg and WZ Sge; there's a new celebrity in town!
STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.
2013-04-01
The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profilesmore » to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.« less
Amuse-Virgo: Downsizing In Black Hole Accretion
NASA Astrophysics Data System (ADS)
Gallo, Elena
2010-03-01
An issue of fundamental importance in understanding the galaxy-black hole connection is the duty cycle of accretion. If black holes are indeed ubiquitous in galactic nuclei, little is known about the frequency and intensity of their activity, the more so at the low-mass/low-luminosity end. I will present new results from AMUSE-Virgo, a Chandra survey of (formally) inactive early type galaxies in the Virgo cluster. Out of 100 objects, 32 show a nuclear X-ray source, including 6 hybrid nuclei which also host a massive nuclear cluster as visible from archival HST images. After carefully accounting for contamination from nuclear low mass X-ray binaries based on the shape and normalization of their X-ray luminosity function, we conclude that between 24-34% of the galaxies in our sample host a X-ray active super-massive black hole. This sets a firm lower limit to the black hole occupation fraction in nearby bulges within a cluster environment. At face value, the active fraction is found to increase with host stellar mass. However, taking into account selection effects, we find that the average Eddington-scaled X-ray luminosity scales with black hole mass to the power -0.62, with an intrinsic scatter of 0.46 dex. This represents the first observational evidence for down-sizing of black hole accretion in local early types, that is, the fraction of active galaxies, defined as those above a fixed X-ray Eddington ratio, decreases with increasing host galaxy mass.
Fast Radio Bursts and Radio Transients from Black Hole Batteries
NASA Astrophysics Data System (ADS)
Mingarelli, Chiara M. F.; Levin, Janna; Lazio, T. Joseph W.
2015-12-01
Most black holes (BHs) will absorb a neutron star (NS) companion fully intact without tidal disruption, suggesting the pair will remain dark to telescopes. Even without tidal disruption, electromagnetic (EM) luminosity is generated from the battery phase of the binary when the BH interacts with the NS magnetic field. Originally, the luminosity was expected to be in high-energy X-rays or gamma-rays, however, we conjecture that some of the battery power is emitted in the radio bandwidth. While the luminosity and timescale are suggestive of fast radio bursts (FRBs; millisecond-scale radio transients) NS-BH coalescence rates are too low to make these a primary FRB source. Instead, we propose that the transients form a FRB sub-population, distinguishable by a double peak with a precursor. The rapid ramp-up in luminosity manifests as a precursor to the burst which is 20%-80% as luminous given 0.5 ms timing resolution. The main burst arises from the peak luminosity before the merger. The post-merger burst follows from the NS magnetic field migration to the BH, causing a shock. NS-BH pairs are especially desirable for ground-based gravitational wave (GW) observatories since the pair might not otherwise be detected, with EM counterparts greatly augmenting the scientific leverage beyond the GW signal. The EM signal’s ability to break degeneracies in the parameters encoded in the GW and probe the NS magnetic field strength is quite valuable, yielding insights into open problems in NS magnetic field decay.
Optical identification of X-ray source 1RXS J180431.1-273932 as a magnetic cataclysmic variable
NASA Astrophysics Data System (ADS)
Masetti, N.; Nucita, A. A.; Parisi, P.
2012-08-01
The X-ray source 1RXS J180431.1-273932 has been proposed as a new member of the symbiotic X-ray binary (SyXB) class of systems, which are composed of a late-type giant that loses matter to an extremely compact object, most likely a neutron star. In this paper, we present an optical campaign of imaging plus spectroscopy on selected candidate counterparts of this object. We also reanalyzed the available archival X-ray data collected with XMM-Newton. We find that the brightest optical source inside the 90% X-ray positional error circle is spectroscopically identified as a magnetic cataclysmic variable (CV), most likely of intermediate polar type, through the detection of prominent Balmer, He i, He ii, and Bowen blend emissions. On either spectroscopic or statistical grounds, we discard as counterparts of the X-ray source the other optical objects in the XMM-Newton error circle. A red giant star of spectral type M5 III is found lying just outside the X-ray position: we consider this latter object as a fore-/background one and likewise rule it out as a counterpart of 1RXS J180431.1-273932. The description of the X-ray spectrum of the source using a bremsstrahlung plus black-body model gives temperatures of kTbr ~ 40 keV and kTbb ~ 0.1 keV for these two components. We estimate a distance of d ~ 450 pc and a 0.2-10 keV X-ray luminosity of LX ~ 1.7 × 1032 erg s-1 for this system and, using the information obtained from the X-ray spectral analysis, a mass MWD ~ 0.8 M⊙ for the accreting white dwarf (WD). We also confirm an X-ray periodicity of 494 s for this source, which we interpret as the spin period of the WD. In summary, 1RXS J180431.1-273932 is identified as a magnetic CV and its SyXB nature is excluded. Partly based on observations collected at the Italian Telescopio Nazionale Galileo, located at the Observatorio del Roque de los Muchachos (Canary Islands, Spain).Reduced data used for imaging and spectra is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/544/A114
Understanding The Time Evolution Of Luminosity And Associated Accretion Structures In X-Ray Pulsars
NASA Astrophysics Data System (ADS)
Laycock, Silas
We propose to analyze the large archive of RXTE, XMM-Newton and Chandra observations of X-ray Binary Pulsars in the Magellanic Clouds and Milky Way. There are some 2000 individual RXTE PCA pointings on the SMC spanning 15 years, and a smaller number on the LMC. Each PCA observation covers a large fraction of the whole SMC (or LMC) population, and we are able to deconvolve the sometimes simultaneous signals to create an unrivaled record of pulsar temporal behavior. More than 200 XMM- Newton and Chandra observations of the SMC/LMC and individual Galactic pulsars provide information at lower luminosity levels. Together, these datasets cover the entire range of variability timescales and accretion regimes in High Mass X-ray Binaries. We will produce a comprehensive library of energy- resolved pulse profiles covering the entire luminosity and spin-period parameter space, and make this available to the community. We will then model these pulse profiles using state of the art techniques to parameterize the morphology, and publish the resulting data-cube. This result will include for example the distribution of offsets between magnetic and spin axes. These products are needed for the next generation of advances in neutron star theory and modeling. The unique dataset will also enable us to determine the upper and lower limits of accretion powered luminosity in a large statistically complete sample of neutron stars, and hence make several direct tests of fundamental NS parameters and accretion physics. In addition the long-duration of the dataset and "whole-galaxy" nature of the SMC sample make possible a new statistical approach to uncover the duty-cycle distribution and hence population demographics of transient High Mass X-ray Binary (HMXB) populations.
The Swift Supergiant Fast X-ray Transient Project
NASA Astrophysics Data System (ADS)
Romano, P.; Barthelmy, S.; Bozzo, E.; Burrows, D.; Ducci, L.; Esposito, P.; Evans, P.; Kennea, J.; Krimm, H.; Vercellone, S.
2017-10-01
We present the Swift Supergiant Fast X-ray Transients project, a systematic study of SFXTs and classical supergiant X-ray binaries (SGXBs) through efficient long-term monitoring of 17 sources including SFXTs and classical SGXBs across more than 4 orders of magnitude in X-ray luminosity on timescales from hundred seconds to years. We derived dynamic ranges, duty cycles, and luminosity distributions to highlight systematic differences that help discriminate between different theoretical models proposed to explain the differences between the wind accretion processes in SFXTs and classical SGXBs. Our follow-ups of the SFXT outbursts provide a steady advancement in the comprehension of the mechanisms triggering the high X-ray level emission of these sources. In particular, the observations of the outburst of the SFXT prototype IGR J17544-2619, when the source reached a peak X-ray luminosity of 3×10^{38} erg s^{-1}, challenged for the first time the maximum theoretical luminosity achievable by a wind-fed neutron star high mass X-ray binary. We propose that this giant outburst was due to the formation of a transient accretion disc around the compact object. We also created a catalogue of over 1000 BAT flares which we use to predict the observability and perspectives with future missions.
NuSTAR Hard X-Ray Survey of the Galactic Center Region. II. X-Ray Point Sources
NASA Technical Reports Server (NTRS)
Hong, Jaesub; Mori, Kaya; Hailey, Charles J.; Nynka, Melania; Zhang, Shou; Gotthelf, Eric; Fornasini, Francesca M.; Krivonos, Roman; Bauer, Franz; Perez, Kerstin;
2016-01-01
We present the first survey results of hard X-ray point sources in the Galactic Center (GC) region by NuSTAR. We have discovered 70 hard (3-79 keV) X-ray point sources in a 0.6 deg(sup 2) region around Sgr?A* with a total exposure of 1.7 Ms, and 7 sources in the Sgr B2 field with 300 ks. We identify clear Chandra counterparts for 58 NuSTAR sources and assign candidate counterparts for the remaining 19. The NuSTAR survey reaches X-ray luminosities of approx. 4× and approx. 8 ×10(exp 32) erg/s at the GC (8 kpc) in the 3-10 and 10-40 keV bands, respectively. The source list includes three persistent luminous X-ray binaries (XBs) and the likely run-away pulsar called the Cannonball. New source-detection significance maps reveal a cluster of hard (>10 keV) X-ray sources near the Sgr A diffuse complex with no clear soft X-ray counterparts. The severe extinction observed in the Chandra spectra indicates that all the NuSTAR sources are in the central bulge or are of extragalactic origin. Spectral analysis of relatively bright NuSTAR sources suggests that magnetic cataclysmic variables constitute a large fraction (>40%-60%). Both spectral analysis and logN-logS distributions of the NuSTAR sources indicate that the X-ray spectra of the NuSTAR sources should have kT > 20 keV on average for a single temperature thermal plasma model or an average photon index of Lambda = 1.5-2 for a power-law model. These findings suggest that the GC X-ray source population may contain a larger fraction of XBs with high plasma temperatures than the field population.
NASA Astrophysics Data System (ADS)
Lucas, P. W.; Smith, L. C.; Contreras Peña, C.; Froebrich, D.; Drew, J. E.; Kumar, M. S. N.; Borissova, J.; Minniti, D.; Kurtev, R.; Monguió, M.
2017-12-01
We present a catalogue of 618 high-amplitude infrared variable stars (1 < ΔK < 5 mag) detected by the two widely separated epochs of 2.2 μm data in the UKIDSS Galactic plane survey, from searches covering ∼1470 deg2. Most were discovered by a search of all fields at 30 < l < 230°. Sources include new dusty Mira variables, three new cataclysmic variable candidates, a blazar and a peculiar source that may be an interacting binary system. However, ∼60 per cent are young stellar obbjects (YSOs), based on spatial association with star-forming regions at distances ranging from 300 pc to over 10 kpc. This confirms our initial result in Contreras Peña et al. (Paper I) that YSOs dominate the high-amplitude infrared variable sky in the Galactic disc. It is also supported by recently published VISTA Variables in the Via Lactea (VVV) results at 295 < l < 350°. The spectral energy distributions of the YSOs indicate class I or flat-spectrum systems in most cases, as in the VVV sample. A large number of variable YSOs are associated with the Cygnus X complex and other groups are associated with the North America/Pelican nebula, the Gemini OB1 molecular cloud, the Rosette complex, the Cone nebula, the W51 star-forming region and the S86 and S236 H II regions. Most of the YSO variability is likely due to variable/episodic accretion on time-scales of years, albeit usually less extreme than classical FUors and EXors. Luminosities at the 2010 Wide-field Infrared Survey Explorer epoch range from ∼0.1 to 103 L⊙ but only rarely exceed 102.5 L⊙.
The very faint X-ray binary IGR J17062-6143: a truncated disc, no pulsations, and a possible outflow
NASA Astrophysics Data System (ADS)
van den Eijnden, J.; Degenaar, N.; Pinto, C.; Patruno, A.; Wette, K.; Messenger, C.; Hernández Santisteban, J. V.; Wijnands, R.; Miller, J. M.; Altamirano, D.; Paerels, F.; Chakrabarty, D.; Fabian, A. C.
2018-04-01
We present a comprehensive X-ray study of the neutron star low-mass X-ray binary IGR J17062-6143, which has been accreting at low luminosities since its discovery in 2006. Analysing NuSTAR, XMM-Newton, and Swift observations, we investigate the very faint nature of this source through three approaches: modelling the relativistic reflection spectrum to constrain the accretion geometry, performing high-resolution X-ray spectroscopy to search for an outflow, and searching for the recently reported millisecond X-ray pulsations. We find a strongly truncated accretion disc at 77^{+22}_{-18} gravitational radii (˜164 km) assuming a high inclination, although a low inclination and a disc extending to the neutron star cannot be excluded. The high-resolution spectroscopy reveals evidence for oxygen-rich circumbinary material, possibly resulting from a blueshifted, collisionally ionized outflow. Finally, we do not detect any pulsations. We discuss these results in the broader context of possible explanations for the persistent faint nature of weakly accreting neutron stars. The results are consistent with both an ultra-compact binary orbit and a magnetically truncated accretion flow, although both cannot be unambiguously inferred. We also discuss the nature of the donor star and conclude that it is likely a CO or O-Ne-Mg white dwarf, consistent with recent multiwavelength modelling.
IGR J14257-6117, a magnetic accreting white dwarf with a very strong strong X-ray orbital modulation
NASA Astrophysics Data System (ADS)
Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M.
2018-04-01
IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable of the magnetic type. We present the first high S/N X-ray observation performed by XMM-Newton at 0.3-10 keV, complemented with 10-80 keV coverage by Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5 s and a longer periodic variability at 4.05 h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the Intermediate Polar (IP) type. The energy resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching ˜100% in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (NH ˜ 1022 - 23 cm-2), partially covering the X-ray source. These are likely localised in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy dependent spin and orbital variabilities, respectively. IGR J14257-6117, joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate (50o ≲ i ≲ 70o). Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.
Radio Pulse Search and X-Ray Monitoring of SAX J1808.4−3658: What Causes Its Orbital Evolution?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patruno, Alessandro; King, Andrew R.; Jaodand, Amruta
The accreting millisecond X-ray pulsar SAX J1808.4−3658 shows a peculiar orbital evolution that proceeds at a very fast pace. It is important to identify the underlying mechanism responsible for this behavior because it can help to understand how this system evolves and which physical processes (such as mass loss or spin–orbit coupling) are occurring in the binary. It has also been suggested that, when in quiescence, SAX J1808.4−3658 turns on as a radio pulsar, a circumstance that might provide a link between accreting millisecond pulsars and black-widow (BW) radio pulsars. In this work, we report the results of a deepmore » radio pulsation search at 2 GHz using the Green Bank Telescope in 2014 August and an X-ray study of the 2015 outburst with Chandra , Swift XRT, and INTEGRAL . In quiescence, we detect no radio pulsations and place the strongest limit to date on the pulsed radio flux density of any accreting millisecond pulsar. We also find that the orbit of SAX J1808.4−3658 continues evolving at a fast pace. We compare the orbital evolution of SAX J1808.4−3658 to that of several other accreting and nonaccreting binaries, including BWs, redbacks, cataclysmic variables, black holes, and neutron stars in low-mass X-ray binaries. We discuss two possible scenarios: either the neutron star has a large moment of inertia and is ablating the donor, generating mass loss with an efficiency of 40%, or the donor star has a strong magnetic field of at least 1 kG and is undergoing quasi-cyclic variations due to spin–orbit coupling.« less
CAN THE SUBSONIC ACCRETION MODEL EXPLAIN THE SPIN PERIOD DISTRIBUTION OF WIND-FED X-RAY PULSARS?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Shao, Yong; Li, Xiang-Dong, E-mail: lixd@nju.edu.cn
Neutron stars in high-mass X-ray binaries (HMXBs) generally accrete from the wind matter of their massive companion stars. Recently, Shakura et al. suggested a subsonic accretion model for low-luminosity (<4 × 10{sup 36} erg s{sup −1}), wind-fed X-ray pulsars. To test the feasibility of this model, we investigate the spin period distribution of wind-fed X-ray pulsars with a supergiant companion star, using a population synthesis method. We find that the modeled distribution of supergiant HMXBs in the spin period–orbital period diagram is consistent with observations, provided that the winds from the donor stars have relatively low terminal velocities (≲1000 kmmore » s{sup −1}). The measured wind velocities in several supergiant HMXBs seem to favor this viewpoint. The predicted number ratio of wind-fed X-ray pulsars with persistent X-ray luminosities that are higher and lower than 4 × 10{sup 36} erg s{sup −1} is about 1:10.« less
NASA Astrophysics Data System (ADS)
Keitel, David; Forteza, Xisco Jiménez; Husa, Sascha; London, Lionel; Bernuzzi, Sebastiano; Harms, Enno; Nagar, Alessandro; Hannam, Mark; Khan, Sebastian; Pürrer, Michael; Pratten, Geraint; Chaurasia, Vivek
2017-07-01
For a brief moment, a binary black hole (BBH) merger can be the most powerful astrophysical event in the visible Universe. Here we present a model fit for this gravitational-wave peak luminosity of nonprecessing quasicircular BBH systems as a function of the masses and spins of the component black holes, based on numerical relativity (NR) simulations and the hierarchical fitting approach introduced by X. Jiménez-Forteza et al. [Phys. Rev. D 95, 064024 (2017)., 10.1103/PhysRevD.95.064024]. This fit improves over previous results in accuracy and parameter-space coverage and can be used to infer posterior distributions for the peak luminosity of future astrophysical signals like GW150914 and GW151226. The model is calibrated to the ℓ≤6 modes of 378 nonprecessing NR simulations up to mass ratios of 18 and dimensionless spin magnitudes up to 0.995, and includes unequal-spin effects. We also constrain the fit to perturbative numerical results for large mass ratios. Studies of key contributions to the uncertainty in NR peak luminosities, such as (i) mode selection, (ii) finite resolution, (iii) finite extraction radius, and (iv) different methods for converting NR waveforms to luminosity, allow us to use NR simulations from four different codes as a homogeneous calibration set. This study of systematic fits to combined NR and large-mass-ratio data, including higher modes, also paves the way for improved inspiral-merger-ringdown waveform models.
Very hard states in neutron star low-mass X-ray binaries
NASA Astrophysics Data System (ADS)
Parikh, A. S.; Wijnands, R.; Degenaar, N.; Altamirano, D.; Patruno, A.; Gusinskaia, N. V.; Hessels, J. W. T.
2017-07-01
We report on unusually very hard spectral states in three confirmed neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) at a luminosity between ˜1036 and 1037 erg s-1. When fitting the Swift X-ray spectra (0.5-10 keV) in those states with an absorbed power-law model, we found photon indices of Γ ˜ 1, significantly lower than the Γ = 1.5-2.0 typically seen when such systems are in their so called hard state. For individual sources, very hard spectra were already previously identified, but here we show for the first time that likely our sources were in a distinct spectral state (I.e. different from the hard state) when they exhibited such very hard spectra. It is unclear how such very hard spectra can be formed; if the emission mechanism is similar to that operating in their hard states (I.e. up-scattering of soft photons due to hot electrons), then the electrons should have higher temperatures or a higher optical depth in the very hard state compared to those observed in the hard state. By using our obtained Γ as a tracer for the spectral evolution with luminosity, we have compared our results with those obtained by Wijnands et al. Our sample of sources follows the same track as the other neutron star systems in Wijnands et al., confirming their general results. However, we do not find that the accreting millisecond pulsars are systematically harder than the non-pulsating systems.
NASA Technical Reports Server (NTRS)
Wheeler, J. Craig
1992-01-01
Spectral calculations show that a model based on the thermonuclear explosion of a degenerate carbon/oxygen white dwarf provides excellent agreement with observations of Type Ia supernovae. Identification of suitable evolutionary progenitors remains a severe problem. General problems with estimation of supernova rates are outlined and the origin of Type Ia supernovae from double degenerate systems are discussed in the context of new rates of explosion per H band luminosity, the lack of observed candidates, and the likely presence of H in the vicinity of some SN Ia events. Re-examination of the problems of triggering Type Ia by accretion of hydrogen from a companion shows that there may be an avenue involving cataclysmic variables, especially if extreme hibernation occurs. Novae may channel accreting white dwarfs to a unique locus in accretion rate/mass space. Systems that undergo secular evolution to higher mass transfer rates could lead to just the conditions necessary for a Type Ia explosion. Tests involving fluorescence or absorption in a surrounding circumstellar medium and the detection of hydrogen stripped from a companion, which should appear at low velocity inside the white dwarf ejecta, are suggested. Possible observational confirmation of the former is described.
NuSTAR AND SWIFT Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii
NASA Technical Reports Server (NTRS)
Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.;
2014-01-01
AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.
NuStar and Swift Observations of the Fast Rotating Magnetized White Dwarf AE Aquarii
NASA Technical Reports Server (NTRS)
Kitaguchi, Takao; An, Hongjun; Beloborodov, Andrei M.; Gotthelf, Eric V.; Hayashi, Takayuki; Kaspi, Victoria M.; Rana, Vikram R.; Boggs, Steven E.; Christensen, Finn E.; Craig, William W.;
2014-01-01
AE Aquarii is a cataclysmic variable with the fastest known rotating magnetized white dwarf (P(sub spin) = 33.08 s). Compared to many intermediate polars, AE Aquarii shows a soft X-ray spectrum with a very low luminosity (LX (is) approximately 10(exp 31) erg per second). We have analyzed overlapping observations of this system with the NuSTAR and the Swift X-ray observatories in 2012 September. We find the 0.5-30 keV spectra to be well fitted by either an optically thin thermal plasma model with three temperatures of 0.75(+0.18 / -0.45), 2.29(+0.96 / -0.82), and 9.33 (+6.07 / -2.18) keV, or an optically thin thermal plasma model with two temperatures of 1.00 (+0.34 / -0.23) and 4.64 (+1.58 / -0.84) keV plus a power-law component with photon index of 2.50 (+0.17 / -0.23). The pulse profile in the 3-20 keV band is broad and approximately sinusoidal, with a pulsed fraction of 16.6% +/- 2.3%. We do not find any evidence for a previously reported sharp feature in the pulse profile.
The population of single and binary white dwarfs of the Galactic bulge
NASA Astrophysics Data System (ADS)
Torres, S.; García-Berro, E.; Cojocaru, R.; Calamida, A.
2018-05-01
Recent Hubble Space Telescope observations have unveiled the white dwarf cooling sequence of the Galactic bulge. Although the degenerate sequence can be well fitted employing the most up-to-date theoretical cooling sequences, observations show a systematic excess of red objects that cannot be explained by the theoretical models of single carbon-oxygen white dwarfs of the appropriate masses. Here, we present a population synthesis study of the white dwarf cooling sequence of the Galactic bulge that takes into account the populations of both single white dwarfs and binary systems containing at least one white dwarf. These calculations incorporate state-of-the-art cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolutionary history of binary systems. Our Monte Carlo simulator also incorporates all the known observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. We find that the observed excess of red stars can be partially attributed to white dwarf plus main sequence binaries, and to cataclysmic variables or dwarf novae. Our best fit is obtained with a higher binary fraction and an initial mass function slope steeper than standard values, as well as with the inclusion of differential reddening and blending. Our results also show that the possible contribution of double degenerate systems or young and thick-discbulge stars is negligible.
NASA Astrophysics Data System (ADS)
Britt, Christopher T.; Strader, Jay; Chomiuk, Laura; Halpern, Jules P.; Tremou, Evangelina; Peacock, Mark; Salinas, Ricardo
2018-01-01
We present the orbital solution for the donor star of the candidate transitional millisecond pulsar 3FGL J1544.6-1125, currently observed as an accreting low-mass X-ray binary. The orbital period is 0.2415361(36) days, entirely consistent with the spectral classification of the donor star as a mid to late K dwarf. The semi-amplitude of the radial velocity curve is exceptionally low at K2=39.3+/-1.5 km s-1, implying a remarkably face-on inclination in the range 5-8o, depending on the neutron star and donor masses. After determining the veiling of the secondary, we derive a distance to the binary of 3.8+/-0.7 kpc, yielding a 0.3-10 keV X-ray luminosity of 6.1+/-1.9 x1033 erg s-1, similar to confirmed transitional millisecond pulsars. As face-on binaries rarely occur by chance, we discuss the possibility that Fermi-selected samples of transitional milli-second pulsars in the sub-luminous disk state are affected by beaming. By phasing emission line strength on the spectroscopic ephemeris, we find coherent variations, and argue that some optical light originates from emission from an asymmetric shock originating near the inner disk.
NASA Astrophysics Data System (ADS)
Bogdanov, Slavko; Halpern, Jules P.
2015-04-01
We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4-112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6-1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ˜10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270-4859, which are also associated with γ-ray sources. Based on the available observational evidence, we conclude that 1RXS J154439.4-112820 and 3FGL J1544.6-1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4-112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.
The 4U 0115+63: Another energetic gamma ray binary pulsar
NASA Technical Reports Server (NTRS)
Chadwick, P. M.; Dipper, N. A.; Dowthwaite, J. C.; Kirkman, I. W.; Mccomb, T. J. L.; Orford, K. J.; Turver, K. E.
1985-01-01
Following the discovery of Her X-1 as a source of pulsed 1000 Gev X-rays, a search for emission from an X-ray binary containing a pulsar with similar values of period, period derivative and luminosity was successful. The sporadic X-ray binary 4U 0115-63 has been observed, with probability 2.5 x 10 to the minus 6 power ergs/s to emit 1000 GeV gamma-rays with a time averaged energy flux of 6 to 10 to the 35th power.
A ROTSE-I/ROSAT Survey of X-ray Emission from Contact Binary Stars
NASA Astrophysics Data System (ADS)
Geske, M.; McKay, T.
2005-05-01
Using public data from the ROSAT All Sky Survey (RASS) and the ROTSE-I Sky Patrols, the incidence of strong x-ray emissions from contact binary systems was examined. The RASS data was matched to an expanded catalog of contact binary systems from the ROTSE-I data, using a 35 arc second radius. X-ray luminosities for matching objects were then determined. This information was then used to evaluate the total x-ray emissions from all such objects, in order to determine their contribution to the galactic x-ray background.
Mass transfer cycles in cataclysmic variables
NASA Technical Reports Server (NTRS)
King, A. R.; Frank, J.; Kolb, U.; Ritter, H.
1995-01-01
It is well known that in cataclysmic variables the mass transfer rate must fluctuate about the evolutionary mean on timescales too long to be directly observable. We show that limit-cycle behavior can occur if the radius change of the secondary star is sensitive to the instantaneous mass transfer rate. The only reasonable way in which such a dependence can arise is through irradiation of this star by the accreting component. The system oscillates between high states, in which irradiation causes slow expansion of the secondary and drives an elevated transfer rate, and low states, in which this star contracts.
Searching For Low-mass Companions Of Cepheids
NASA Astrophysics Data System (ADS)
Remage Evans, Nancy; Bond, H.; Schaefer, G.; Karovska, M.; Mason, B.; DePasquale, J.; Pillitteri, I.; Guinan, E.; Engle, S.
2011-05-01
The role played by binary and multiple stars in star formation is receiving a great deal of attention, both theoretically and observationally. Two questions under discussion are how wide physical companions can be and how frequently massive stars have low mass companions. An important new observational tool is the development of high resolution imaging, both from space and from the ground (Adaptive Optics and interferometry). We are conducting a snapshot survey of the nearest Cepheids using the Hubble Space Telescope Wide Field Camera 3 (WFC3). The aim is to discover possible resolved low mass companions. Results from this survey will be discussed, including images of Eta Aql. X-ray luminosity can confirm or refute that putative low mass companions are young enough to be physical companions. This project tests the reality of both wide and low mass companions of these intermediate-mass stars.
Nonparametric statistical modeling of binary star separations
NASA Technical Reports Server (NTRS)
Heacox, William D.; Gathright, John
1994-01-01
We develop a comprehensive statistical model for the distribution of observed separations in binary star systems, in terms of distributions of orbital elements, projection effects, and distances to systems. We use this model to derive several diagnostics for estimating the completeness of imaging searches for stellar companions, and the underlying stellar multiplicities. In application to recent imaging searches for low-luminosity companions to nearby M dwarf stars, and for companions to young stars in nearby star-forming regions, our analyses reveal substantial uncertainty in estimates of stellar multiplicity. For binary stars with late-type dwarf companions, semimajor axes appear to be distributed approximately as a(exp -1) for values ranging from about one to several thousand astronomical units. About one-quarter of the companions to field F and G dwarf stars have semimajor axes less than 1 AU, and about 15% lie beyond 1000 AU. The geometric efficiency (fraction of companions imaged onto the detector) of imaging searches is nearly independent of distances to program stars and orbital eccentricities, and varies only slowly with detector spatial limitations.
Searching for Partners of Cool Senior Citizens
NASA Astrophysics Data System (ADS)
Jao, Wei-Chun; Henry, T. J.
2012-01-01
Mass is one of the most fundamental parameters in stellar astronomy. In order to measure dynamical masses, one needs to find nearby binary systems that can be resolved and monitored, ideally with orbital periods that completely wrap in a reasonable amount of time. Many surveys have been made of nearby main sequence dwarfs, and their mass-luminosity relation is well established. As part of our Cool Subdwarf Investigations (CSI) program, we are searching for subdwarf binaries of spectral types K and M within 60 parsecs to measure their multiplicity rate and to reveal binaries appropriate for mass determinations. Here we present results of our CSI work using HST's Fine Guidance Sensors. When combined with previous CSI work and results in the literature, we find the multiplicity rate of subdwarfs, 21%, to be surprisingly low compared to that of similar main sequence K and M stars, 37%. This work has several implications, including that the star formation and/or evolution history of subdwarfs is different than for dwarfs, and that ideal systems for subdwarf mass determinations are difficult to find. This work is supported by HST grant GO-11943.
WNL Stars - the Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; Moffat, Anthony F. J.; St-Louis, Nicole; Skalkowski, Gwenael; Niemela, Virpi; Shara, Michael M.
2001-08-01
We propose to carry out an intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
WNLh Stars - The Most Massive Stars in the Universe?
NASA Astrophysics Data System (ADS)
Schnurr, Olivier; St-Louis, Nicole; Moffat, Anthony F. J.; Foellmi, Cedric
2002-08-01
We propose to conclude our intensive and complete time-dependent spectroscopic study of all 47 known WNL stars in the LMC, an ideal laboratory to study the effect of lower ambient metallicity, Z, on stellar evolution. WNL stars are luminous, cooler WR stars of the nitrogen sequence. This will allow us to: 1) determine the binary frequency. The Roche-lobe overflow (RLOF) mechanism in close binaries is predicted to be responsible for the formation of a significant fraction of WR stars in low Z environments such as the LMC. 2) determine the masses. Since some of these stars (denoted WNL(h) or WNLh) are supposed to be hydrogen-burning and thus main-sequence stellar objects of the highest luminosity, they may be the most massive stars known. 3) study wind-wind collision (WWC) effects in WR+O binaries involving very luminous WNL stars with strong winds. Interesting in itself as a high-energy phenomenon, WWC is in competition with conservative RLOF (i.e. mass transfer to the secondary star), and therefore has to be taken into account in this context.
VizieR Online Data Catalog: Adiabatic mass loss in binary stars. II. (Ge+, 2015)
NASA Astrophysics Data System (ADS)
Ge, H.; Webbink, R. F.; Chen, X.; Han, Z.
2016-02-01
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z=0.02) of mass 0.10M⊙-100M⊙ from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. For intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio qad (throughout this paper, we follow the convention of defining the binary mass ratio as q{equiv}Mdonor/Maccretor) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, qad plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with qad declining with decreasing mass, and asymptotically approaching qad=2/3, appropriate to a classical isentropic n=3/2 polytrope. Our calculated qad values agree well with the behavior of time-dependent models by Chen & Han (2003MNRAS.341..662C) of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in qad as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution. (3 data files).
The Evolution of GX 339-4 in the Low-hard State as Seen by NuSTAR and Swift
NASA Astrophysics Data System (ADS)
Wang-Ji, Jingyi; García, Javier A.; Steiner, James F.; Tomsick, John A.; Harrison, Fiona A.; Bambi, Cosimo; Petrucci, Pierre-Olivier; Ferreira, Jonathan; Chakravorty, Susmita; Clavel, Maïca
2018-03-01
We analyze 11 Nuclear Spectroscopic Telescope Array and Swift observations of the black hole X-ray binary GX 339–4 in the hard state, 6 of which were taken during the end of the 2015 outburst and 5 during a failed outburst in 2013. These observations cover luminosities from 0.5% to 5% of the Eddington luminosity. Implementing the most recent version of the reflection model relxillCp, we perform simultaneous spectral fits on both data sets to track the evolution of the properties in the accretion disk, including the inner edge radius, the ionization, and the temperature of the thermal emission. We also constrain the photon index and electron temperature of the primary source (the “corona”). We observe a maximum truncation radius of 37 R g in the preferred fit for the 2013 data set, and a marginal correlation between the level of truncation and luminosity. We also explore a self-consistent model under the framework of coronal Comptonization, and find consistent results regarding the disk truncation in the 2015 data, providing a more physical preferred fit for the 2013 observations.
A study of the cross-correlation and time lag in black hole X-ray binary XTE J1859+226
NASA Astrophysics Data System (ADS)
Pei, Songpeng; Ding, Guoqiang; Li, Zhibing; Lei, Yajuan; Yuen, Rai; Qu, Jinlu
2017-07-01
With Rossi X-ray Timing Explorer (RXTE) data, we systematically study the cross-correlation and time lag in all spectral states of black hole X-ray binary (BHXB) XTE J1859+226 in detail during its entire 1999-2000 outburst that lasted for 166 days. Anti-correlations and positive correlations and their respective soft and hard X-ray lags are only detected in the first 100 days of the outburst when the luminosity is high. This suggests that the cross-correlations may be related to high luminosity. Positive correlations are detected in every state of XTE J1859+226, viz., hard state, hard-intermediate state (HIMS), soft-intermediate state (SIMS) and soft state. However, anti-correlations are only detected in HIMS and SIMS, anti-correlated hard lags are only detected in SIMS, while anti-correlated soft lags are detected in both HIMS and SIMS. Moreover, the ratio of the observations with anti-correlated soft lags to hard lags detected in XTE J1859+226 is significantly different from that in neutron star low-mass X-ray binaries (NS LMXBs). So far, anti-correlations are never detected in the soft state of BHXBs but detected in every branch or state of NS LMXBs. This may be due to the origin of soft seed photons in BHXBs is confined to the accretion disk and, for NS LMXBs, from both accretion disk and the surface of the NS. We notice that the timescale of anti-correlated time lags detected in XTE J1859+226 is similar with that of other BHXBs and NS LMXBs. We suggest that anti-correlated soft lag detected in BHXB may result from fluctuation in the accretion disk as well as NS LMXB.
Supergiant X-Ray Binaries Observed by Suzaku
NASA Technical Reports Server (NTRS)
Bodaghee, A.; Tomsick, J. A.; Rodriquez, J.; Chaty, S.; Pottschmidt, K.; Walter, R.; Romano, P.
2011-01-01
Suzaku observations are presented for the high-mass X-ray binaries IGR 116207-5129 and IGR 117391-3021. For IGR 116207-5129, we provide the first X-ray broadband (0.5-60 keV) spectrum from which we confirm a large intrinsic column density (N(sub H) = 1.6 x 10(exp 23)/sq cm), and we constrain the cutoff energy for the first time (E(sub cut) = 19 keV). A prolonged (> 30 ks) attenuation of the X-ray flux was observed which we tentatively attribute to an eclipse of the probable neutron star by its massive companion, in a binary system with an orbital period between 4 and 9 days, and inclination angles> 50 degrees. For IGRJ17391-3021, we witnessed a transition from quiescence to a low-activity phase punctuated by weak flares whose peak luminosities in the 0.5-10keV band are only a factor of 5 times that of the pre-flare emission. These micro flares are accompanied by an increase in NH which suggests the accretion of obscuring clumps of wind. We now recognize that these low-activity epochs constitute the most common emission phase for this system, and perhaps in other supergiant fast X-ray transients (SFXTs) as well. We close with an overview of our upcoming program in which Suzaku will provide the first ever observation of an SFXT (IGRJ16479-4514) during a binary orbit enabling us to probe the accretion wind at every phase.
AN OFF-CENTERED ACTIVE GALACTIC NUCLEUS IN NGC 3115
DOE Office of Scientific and Technical Information (OSTI.GOV)
Menezes, R. B.; Steiner, J. E.; Ricci, T. V., E-mail: robertobm@astro.iag.usp.br
2014-11-20
NGC 3115 is an S0 galaxy that has always been considered to have a pure absorption-line spectrum. Some recent studies have detected a compact radio-emitting nucleus in this object, coinciding with the photometric center and with a candidate for the X-ray nucleus. This is evidence of the existence of a low-luminosity active galactic nucleus (AGN) in the galaxy, although no emission line has ever been observed. We report the detection of an emission-line spectrum of a type 1 AGN in NGC 3115, with an Hα luminosity of L {sub Hα} = (4.2 ± 0.4) × 10{sup 37} erg s{sup –1}. Our analysismore » revealed that this AGN is located at a projected distance of ∼0.''29 ± 0.''05 (corresponding to ∼14.3 ± 2.5 pc) from the stellar bulge center, which is coincident with the kinematic center of this object's stellar velocity map. The black hole corresponding to the observed off-centered AGN may form a binary system with a black hole located at the stellar bulge center. However, it is also possible that the displaced black hole is the merged remnant of the binary system coalescence, after the ''kick'' caused by the asymmetric emission of gravitational waves. We propose that certain features in the stellar velocity dispersion map are the result of perturbations caused by the off-centered AGN.« less
NASA Astrophysics Data System (ADS)
Krauland, Christine; Drake, R.; Loupias, B.; Falize, E.; Busschaert, C.; Ravasio, A.; Yurchak, R.; Pelka, A.; Koenig, M.; Kuranz, C. C.; Plewa, T.; Huntington, C. M.; Kaczala, D. N.; Klein, S.; Sweeney, R.; Villete, B.; Young, R.; Keiter, P. A.
2012-05-01
We present results from high-energy-density (HED) laboratory experiments that explore the contribution of radiative shock waves to the evolving dynamics of the cataclysmic variable (CV) systems in which they reside. CVs can be classified under two main categories, non-magnetic and magnetic. In the process of accretion, both types involve strongly radiating shocks that provide the main source of radiation in the binary systems. This radiation can cause varying structure to develop depending on the optical properties of the material on either side of the shock. The ability of high-intensity lasers to create large energy densities in targets of millimeter-scale volume makes it feasible to create similar radiative shocks in the laboratory. We provide an overview of both CV systems and their connection to the designed and executed laboratory experiments preformed on two laser facilities. Available data and accompanying simulations will likewise be shown. Funded by the NNSA-DS and SC-OFES Joint Prog. in High-Energy-Density Lab. Plasmas, by the Nat. Laser User Facility Prog. in NNSA-DS and by the Predictive Sci. Acad. Alliances Prog. in NNSA-ASC, under grant numbers are DE-FG52-09NA29548, DE-FG52-09NA29034, and DE-FC52-08NA28616.
Anomalous Low States and Long Term Variability in the Black Hole Binary LMC X-3
NASA Technical Reports Server (NTRS)
Smale, Alan P.; Boyd, Patricia T.
2012-01-01
Rossi X-my Timing Explorer observations of the black hole binary LMC X-3 reveal an extended very low X-ray state lasting from 2003 December 13 until 2004 March 18, unprecedented both in terms of its low luminosity (>15 times fainter than ever before seen in this source) and long duration (approx 3 times longer than a typical low/hard state excursion). During this event little to no source variability is observed on timescales of approx hours-weeks, and the X-ray spectrum implies an upper limit of 1.2 x 10(exp 35) erg/s, Five years later another extended low state occurs, lasting from 2008 December 11 until 2009 June 17. This event lasts nearly twice as long as the first, and while significant variability is observed, the source remains reliably in the low/hard spectral state for the approx 188 day duration. These episodes share some characteristics with the "anomalous low states" in the neutron star binary Her X-I. The average period and amplitude of the Variability of LMC X-3 have different values between these episodes. We characterize the long-term variability of LMC X-3 before and after the two events using conventional and nonlinear time series analysis methods, and show that, as is the case in Her X-I, the characteristic amplitude of the variability is related to its characteristic timescale. Furthermore, the relation is in the same direction in both systems. This suggests that a similar mechanism gives rise to the long-term variability, which in the case of Her X-I is reliably modeled with a tilted, warped precessing accretion disk.
Low-mass stars in globular clusters. III. The mass function of 47 Tucanae.
NASA Astrophysics Data System (ADS)
de Marchi, G.; Paresce, F.
1995-12-01
We have used the WFPC2 on board HST to investigate the stellar population in a field located 4'6 E of the center of the globular cluster 47 Tuc (NGC 104), close to the half-mass radius, through wide band imaging at 606 and 812nm. A total of ~3000 stars are accurately classified by two-color photometry to form a color-magnitude diagram extending down to a limiting magnitude m_814_=~m_I_=~24. A rich cluster main sequence is detected spanning the range from m_814_=~18 through m_814_=~23, where it spreads considerably due to the increasing photometric uncertainty and galaxy contamination. A secondary sequence of objects is also detected, parallel to the main sequence, as expected for a population of binary stars. The measured binary fraction in the range 19
NASA Astrophysics Data System (ADS)
Armas Padilla, M.; Ponti, G.; De Marco, B.; Muñoz-Darias, T.; Haberl, F.
2018-01-01
We report on a detailed study of the spectral and temporal properties of the neutron star low-mass X-ray binary SLX 1737-282, which is located only ∼1° away from Sgr A*. The system is expected to have a short orbital period, even within the ultracompact regime, given its persistent nature at low X-ray luminosities and the long duration thermonuclear burst that it has displayed. We have analysed a Suzaku (18 ks) observation and an XMM-Newton (39 ks) observation taken 7 yr apart. We infer (0.5-10 keV) X-ray luminosities in the range of 3-6 × 1035ergs-1, in agreement with previous findings. The spectra are well described by a relatively cool (kTbb = 0.5 keV) blackbody component plus a Comptonized emission component with Γ ∼ 1.5-1.7. These values are consistent with the source being in a faint hard state, as confirmed by the ∼20 per cent fractional root-mean-square amplitude of the fast variability (0.1-7 Hz) inferred from the XMM-Newton data. The electron temperature of the corona is ≳7 keV for the Suzaku observation, but it is measured to be as low as ∼2 keV in the XMM-Newton data at higher flux. The latter is significantly lower than expected for systems in the hard state. We searched for X-ray pulsations and imposed an upper limit to their semi-amplitude of 2 per cent (0.001-7 Hz). Finally, we investigated the origin of the low-frequency variability emission present in the XMM-Newton data and ruled out an absorption dip origin. This constraint the orbital inclination of the system to ≲65° unless the orbital period is longer than 11 h (i.e. the length of the XMM-Newton observation).
Probing massive stars around gamma-ray burst progenitors
NASA Astrophysics Data System (ADS)
Lu, Wenbin; Kumar, Pawan; Smoot, George F.
2015-10-01
Long gamma-ray bursts (GRBs) are produced by ultra-relativistic jets launched from core collapse of massive stars. Most massive stars form in binaries and/or in star clusters, which means that there may be a significant external photon field (EPF) around the GRB progenitor. We calculate the inverse-Compton scattering of EPF by the hot electrons in the GRB jet. Three possible cases of EPF are considered: the progenitor is (I) in a massive binary system, (II) surrounded by a Wolf-Rayet-star wind and (III) in a dense star cluster. Typical luminosities of 1046-1050 erg s-1 in the 1-100 GeV band are expected, depending on the stellar luminosity, binary separation (I), wind mass-loss rate (II), stellar number density (III), etc. We calculate the light curve and spectrum in each case, taking fully into account the equal-arrival time surfaces and possible pair-production absorption with the prompt γ-rays. Observations can put constraints on the existence of such EPFs (and hence on the nature of GRB progenitors) and on the radius where the jet internal dissipation process accelerates electrons.
Surprising dissimilarities in a newly formed pair of `identical twin' stars
NASA Astrophysics Data System (ADS)
Stassun, Keivan G.; Mathieu, Robert D.; Cargile, Phillip A.; Aarnio, Alicia N.; Stempels, Eric; Geller, Aaron
2008-06-01
The mass and chemical composition of a star are the primary determinants of its basic physical properties-radius, temperature and luminosity-and how those properties evolve with time. Accordingly, two stars born at the same time, from the same natal material and with the same mass, are `identical twins,' and as such might be expected to possess identical physical attributes. We have discovered in the Orion nebula a pair of stellar twins in a newborn binary star system. Each star in the binary has a mass of 0.41+/-0.01 solar masses, identical to within 2per cent. Here we report that these twin stars have surface temperatures differing by ~300K (~10per cent) and luminosities differing by ~50per cent, both at high confidence level. Preliminary results indicate that the stars' radii also differ, by 5-10per cent. These surprising dissimilarities suggest that one of the twins may have been delayed by several hundred thousand years in its formation relative to its sibling. Such a delay could only have been detected in a very young, definitively equal-mass binary system. Our findings reveal cosmic limits on the age synchronization of young binary stars, often used as tests for the age calibrations of star-formation models.
Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1
NASA Astrophysics Data System (ADS)
Maitra, Dipankar
2016-09-01
The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.
Probing Radiatively Inefficient Accretion Flow in the Neutron Star X-ray Binary System Aquila X-1
NASA Astrophysics Data System (ADS)
Maitra, Dipankar
2017-09-01
The nature of radiatively inefficient accretion flows (RIAF) near neutron stars and black holes remains largely enshrouded in mystery, primarily due to their low luminosity. Long term monitoring of Aql X-1 has revealed that during certain outbursts, the system goes into a relatively bright RIAF state for periods lasting several weeks. These low-intensity states offer a unique opportunity to probe radiatively inefficient flows. We request a 75 ksec Chandra/HETG ToO observation of Aql X-1 during a low-intensity state. Emission line diagnostics of the observed spectrum will be used to test different RIAF models and constrain flow properties such as the radial temperature and density profile, existence of an outflowing wind, spatial extent of the RIAF, and gas dynamics within the flow.
The large outbursts studied by small telescopes - the case of RS Oph
NASA Astrophysics Data System (ADS)
Kundra, E.; Hric, L.
2014-03-01
Cataclysmic variables (CVs) are one of the dominant part in astronomical research. Small telescopes are widely used to search for the sudden brightening of such stars. We present our experience with observations of the RS Ophiuchi (RS Oph) and analyses of the light curves. RS Oph is a binary system with 6 recorded outbursts classified as a recurrent nova (RN). We used the telescopes of AI SAS to measure the brightness of RS Oph after its last outburst occurred on February 12, 2006. The new observations indicate the ongoing mass transfer. % and the estimation of the mass transfer rate allow to make a prediction of the %next outburst of this RN.
1.4 GHz on the Fundamental Plane of black hole activity
NASA Astrophysics Data System (ADS)
Saikia, Payaswini; Körding, Elmar; Dibi, Salome
2018-06-01
The Fundamental Plane (FP) of black hole activity is an empirical relationship between the O III/X-ray luminosity depicting the accretion power, the radio luminosity as a probe of the instantaneous jet power and the mass of the black hole. For the first time, we use the 1.4 GHz FIRST radio luminosities on the optical FP, to investigate whether or not Faint Images of the Radio Sky at Twenty-Centimetres (FIRST) fluxes can trace nuclear activity. We use an SDSS-FIRST cross-correlated sample of 10 149 active galaxies and analyse their positioning on the optical FP. We focus on various reasons that can cause the discrepancy between the observed FIRST radio fluxes and the theoretically expected core radio fluxes, and show that FIRST fluxes are heavily contaminated by non-nuclear, extended components and other environmental factors. We show that the subsample of `compact sources', which should have negligible lobe contribution, statistically follow the FP when corrected for relativistic beaming, while all the other sources lie above the plane. The sample of low-ionization nuclear emission-line regions (LINERs), which should have negligible lobe and beaming contribution, also follow the FP. A combined fit of the low-luminosity AGN and the X-ray binaries, with the LINERs, results in the relation log LR = 0.77 log L_{O III} + 0.69 log M. Assuming that the original FP relation is correct, we conclude that 1.4 GHz FIRST fluxes do not trace the pure `core' jet and instantaneous nuclear activity in the AGN, and one needs to be careful while using it on the FP of black hole activity.
Variability Selected Low-Luminosity Active Galactic Nuclei in the 4 Ms Chandra Deep Field-South
NASA Technical Reports Server (NTRS)
Young, M.; Brandt, W. N.; Xue, Y. Q.; Paolillo, D. M.; Alexander, F. E.; Bauer, F. E.; Lehmer, B. D.; Luo, B.; Shemmer, O.; Schneider, D. P.;
2012-01-01
The 4 Ms Chandra Deep Field-South (CDF-S) and other deep X-ray surveys have been highly effective at selecting active galactic nuclei (AGN). However, cosmologically distant low-luminosity AGN (LLAGN) have remained a challenge to identify due to significant contribution from the host galaxy. We identify long-term X ray variability (approx. month years, observed frame) in 20 of 92 CDF-S galaxies spanning redshifts approx equals 00.8 - 1.02 that do not meet other AGN selection criteria. We show that the observed variability cannot be explained by X-ray binary populations or ultraluminous X-ray sources, so the variability is most likely caused by accretion onto a supermassive black hole. The variable galaxies are not heavily obscured in general, with a stacked effective power-law photon index of Gamma(sub Stack) approx equals 1.93 +/- 0.13, and arc therefore likely LLAGN. The LLAGN tend to lie it factor of approx equal 6-89 below the extrapolated linear variability-luminosity relation measured for luminous AGN. This may he explained by their lower accretion rates. Variability-independent black-hole mass and accretion-rate estimates for variable galaxies show that they sample a significantly different black hole mass-accretion-rate space, with masses a factor of 2.4 lower and accretion rates a factor of 22.5 lower than variable luminous AGNs at the same redshift. We find that an empirical model based on a universal broken power-law power spectral density function, where the break frequency depends on SMBH mass and accretion rate, roughly reproduces the shape, but not the normalization, of the variability-luminosity trends measured for variable galaxies and more luminous AGNs.
New red jewels in Coma Berenices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terrien, Ryan C.; Mahadevan, Suvrath; Deshpande, Rohit
2014-02-20
We have used Sloan Digital Sky Survey-III (SDSS-III) Apache Point Observatory Galactic Evolution Experiment (APOGEE) radial velocity observations in the near-infrared H-band to explore the membership of the nearby (86.7 ± 0.9 pc) open cluster Coma Berenices (Melotte 111), concentrating on the poorly populated low-mass end of the main sequence. Using SDSS-III APOGEE radial velocity measurements, we confirm the membership of eight K/M dwarf members, providing the first confirmed low-mass members of the Coma Berenices cluster. Using R ∼ 2000 spectra from IRTF-SpeX, we confirm the independently luminosity classes of these targets, and find their metallicities to be consistent withmore » the known solar mean metallicity of Coma Berenices and of M dwarfs in the solar neighborhood. In addition, the APOGEE spectra have enabled measurement of vsin i for each target and detection for the first time of the low-mass secondary components of the known binary systems Melotte 111 102 and Melotte 111 120, as well as identification of the previously unknown binary system 2MASS J12214070+2707510. Finally, we use Kilodegree Extremely Little Telescope photometry to measure photometric variability and rotation periods for a subset of the Coma Berenices members.« less
Low-mass Active Galactic Nuclei on the Fundamental Plane of Black Hole Activity
NASA Astrophysics Data System (ADS)
Qian, Lei; Dong, Xiao-Bo; Xie, Fu-Guo; Liu, Wenjuan; Li, Di
2018-06-01
It is widely known that in active galactic nuclei (AGNs) and black hole X-ray binaries (BHXBs), there is a tight correlation among their radio luminosity (L R ), X-ray luminosity (L X), and BH mass ({M}BH}), the so-called “fundamental plane” (FP) of BH activity. Yet the supporting data are very limited in the {M}BH} regime between stellar mass (i.e., BHXBs) and 106.5 {M}ȯ (namely, the lower bound of supermassive BHs in common AGNs). In this work, we developed a new method to measure the 1.4 GHz flux directly from the images of the VLA FIRST survey, and apply it to the type-1 low-mass AGNs in the Dong et al. sample. As a result, we obtained 19 new low-mass AGNs for FP research with both {M}BH} estimates ({M}BH} ≈ 105.5–6.5 {M}ȯ ), reliable X-ray measurements, and (candidate) radio detections, tripling the number of such candidate sources in the literature. Most (if not all) of the low-mass AGNs follow the standard radio/X-ray correlation and the universal FP relation fitted with the combined data set of BHXBs and supermassive AGNs by Gültekin et al.; the consistency in the radio/X-ray correlation slope among those accretion systems supports the picture that the accretion and ejection (jet) processes are quite similar in all accretion systems of different {M}BH}. In view of the FP relation, we speculate that the radio loudness { \\mathcal R } (i.e., the luminosity ratio of the jet to the accretion disk) of AGNs depends not only on Eddington ratio, but probably also on {M}BH}.
NASA Astrophysics Data System (ADS)
Dálya, G.; Galgóczi, G.; Dobos, L.; Frei, Z.; Heng, I. S.; Macas, R.; Messenger, C.; Raffai, P.; de Souza, R. S.
2018-06-01
We introduce a value-added full-sky catalogue of galaxies, named as Galaxy List for the Advanced Detector Era, or GLADE. The purpose of this catalogue is to (i) help identifications of host candidates for gravitational-wave events, (ii) support target selections for electromagnetic follow-up observations of gravitational-wave candidates, (iii) provide input data on the matter distribution of the local universe for astrophysical or cosmological simulations, and (iv) help identifications of host candidates for poorly localised electromagnetic transients, such as gamma-ray bursts observed with the InterPlanetary Network. Both being potential hosts of astrophysical sources of gravitational waves, GLADE includes inactive and active galaxies as well. GLADE was constructed by cross-matching and combining data from five separate (but not independent) astronomical catalogues: GWGC, 2MPZ, 2MASS XSC, HyperLEDA and SDSS-DR12Q. GLADE is complete up to d_L=37^{+3}_{-4} Mpc in terms of the cumulative B-band luminosity of galaxies within luminosity distance dL, and contains all of the brightest galaxies giving half of the total B-band luminosity up to dL = 91 Mpc. As B-band luminosity is expected to be a tracer of binary neutron star mergers (currently the prime targets of joint GW+EM detections), our completeness measures can be used as estimations of completeness for containing all binary neutron star merger hosts in the local universe.
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy
NASA Astrophysics Data System (ADS)
Hailey, Charles J.; Mori, Kaya; Bauer, Franz E.; Berkowitz, Michael E.; Hong, Jaesub; Hord, Benjamin J.
2018-04-01
The existence of a ‘density cusp’—a localized increase in number—of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
A density cusp of quiescent X-ray binaries in the central parsec of the Galaxy.
Hailey, Charles J; Mori, Kaya; Bauer, Franz E; Berkowitz, Michael E; Hong, Jaesub; Hord, Benjamin J
2018-04-04
The existence of a 'density cusp'-a localized increase in number-of stellar-mass black holes near a supermassive black hole is a fundamental prediction of galactic stellar dynamics. The best place to detect such a cusp is in the Galactic Centre, where the nearest supermassive black hole, Sagittarius A*, resides. As many as 20,000 black holes are predicted to settle into the central parsec of the Galaxy as a result of dynamical friction; however, so far no density cusp of black holes has been detected. Low-mass X-ray binary systems that contain a stellar-mass black hole are natural tracers of isolated black holes. Here we report observations of a dozen quiescent X-ray binaries in a density cusp within one parsec of Sagittarius A*. The lower-energy emission spectra that we observed in these binaries is distinct from the higher-energy spectra associated with the population of accreting white dwarfs that dominates the central eight parsecs of the Galaxy. The properties of these X-ray binaries, in particular their spatial distribution and luminosity function, suggest the existence of hundreds of binary systems in the central parsec of the Galaxy and many more isolated black holes. We cannot rule out a contribution to the observed emission from a population (of up to about one-half the number of X-ray binaries) of rotationally powered, millisecond pulsars. The spatial distribution of the binary systems is a relic of their formation history, either in the stellar disk around Sagittarius A* (ref. 7) or through in-fall from globular clusters, and constrains the number density of sources in the modelling of gravitational waves from massive stellar remnants, such as neutron stars and black holes.
SETI at X-energies - parasitic searches from astrophysical observations.
NASA Astrophysics Data System (ADS)
Corbet, R. H. D.
1997-01-01
If a sufficiently advanced civilization can either modulate the emission from an X-ray binary, or make use of the natural high luminosity to power an artificial transmitter, these can serve as good beacons for interstellar communication without involving excessive energy costs to the broadcasting civilization. In addition, the small number of X-ray binaries in the Galaxy considerably reduces the number of targets that must be investigated compared to searches in other energy bands. Low mass X-ray binaries containing neutron stars in particular are considered as prime potential natural and artificial beacons and high time resolution (better than 1ms) observations are encouraged. All sky monitors provide the capability of detecting brief powerful artificial signals from isolated neutron stars. New capabilities of X-ray astronomy satellites developed for astrophysical purposes are enabling SETI in new parameter regimes. For example, the X-ray Timing Explorer satellite provides the capability of exploring the sub-millisecond region. Other planned X-ray astronomy satellites should provide significantly improved spectral resolution. While SETI at X-ray energies is highly speculative (and rather unfashionable) by using a parasitic approach little additional cost is involved. The inclusion of X-ray binaries in target lists for SETI at radio and other wavebands is also advocated.
Exploring the Overabundance of ULXs in Metal- and Dust-Poor Local Lyman Break Analogs
NASA Technical Reports Server (NTRS)
Basu-Zych, Antara R.; Lehmer, Bret; Fragos, Tassos; Hornschemeier, Ann; Yukita, Mihoko; Zezas, Andreas; Ptak, Andy
2016-01-01
We have studied high-mass X-ray binary (HMXB) populations within two low-metallicity, starburst galaxies, Haro 11 and VV 114. These galaxies serve as analogs to high-redshift (z greater than 2) Lyman break galaxies and, within the larger sample of Lyman break analogs (LBAs), they are sufficiently nearby (less than 87 Mpc) to be spatially resolved by Chandra. Previous studies of the X-ray emission in LBAs have found that the 2-10 keV luminosity per star formation rate (SFR) in these galaxies is elevated, potentially because of their low metallicities (12 + log[O/H] = 8.3-8.4). Theoretically, the progenitors of XRBs forming in lower metallicity environments lose less mass from stellar winds over their lifetimes, producing more massive compact objects (i.e., neutron stars and black holes), and thus resulting in more numerous and luminous HMXBs per SFR. In this paper, we have performed an in-depth study of the only two LBAs that have spatially resolved 2-10 keV emission with Chandra to present the bright end of the X-ray luminosity distribution of HMXBs (L(sub X) approximately greater than 10(exp 39) erg s(exp -1); ultraluminous X-ray sources, ULXs) in these low-metallicity galaxies, based on eight detected ULXs. Compared with the star-forming galaxy X-ray luminosity function (XLF) presented by Mineo et al., Haro 11 and VV 114 host approximately equal to 4 times more L(sub X) greater than 10(exp 40) erg s(exp -1) sources than expected given their SFRs. We simulate the effects of source blending from crowded lower-luminosity HMXBs using the star-forming galaxy XLF and then vary the XLF normalizations and bright-end slopes until we reproduce the observed point source luminosity distributions. We find that these LBAs have a shallower bright-end slope (gamma(sub 2) = 1.90) than the standard XLF (gamma(sub 2) 2.73). If we conservatively assume that the brightest X-ray source from each galaxy is powered by an accreting supermassive black hole rather than an HMXB and eliminate these sources from consideration, the luminosity distribution becomes poorly constrained but does appear to be consistent with a standard XLF.
The Anomalous Accretion Disk of the Cataclysmic Variable RW Sextantis
NASA Astrophysics Data System (ADS)
Linnell, Albert P.; Godon, P.; Hubeny, I.; Sion, E. M.; Szkody, P.
2011-01-01
The standard model for stable Cataclysmic Variable (CV) accretion disks (Frank, King and Raine 1992) derives an explicit analytic expression for the disk effective temperature as function of radial distance from the white dwarf (WD). That model specifies that the effective temperature, Teff(R), varies with R as ()0.25, where () represents a combination of parameters including R, the mass transfer rate M(dot), and other parameters. It is well known that fits of standard model synthetic spectra to observed CV spectra find almost no instances of agreement. We have derived a generalized expression for the radial temperature gradient, which preserves the total disk luminosity as function of M(dot) but permits a different exponent from the theoretical value of 0.25, and have applied it to RW Sex (Linnell et al.,2010,ApJ, 719,271). We find an excellent fit to observed FUSE and IUE spectra for an exponent of 0.125, curiously close to 1/2 the theoretical value. Our annulus synthetic spectra, combined to represent the accretion disk, were produced with program TLUSTY, were non-LTE and included H, He, C, Mg, Al, Si, and Fe as explicit ions. We illustrate our results with a plot showing the failure to fit RW Sex for a range of M(dot) values, our model fit to the observations, and a chi2 plot showing the selection of the exponent 0.125 as the best fit for the M(dot) range shown. (For the final model parameters see the paper cited.)
Unusual Black Hole Binary LMC X-3: A Transient High-mass X-Ray Binary That Is Almost Always On?
NASA Astrophysics Data System (ADS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-11-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi-Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with {{Γ }}=1.41+/- 0.65 and a luminosity of 7.97× {10}33 erg s-1 (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of ˜8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of ˜4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always “on.”
Unusual Black Hole Binary LMC X-3: A Transient High-Mass X-Ray Binary That Is Almost Always On?
NASA Technical Reports Server (NTRS)
Torpin, Trevor J.; Boyd, Patricia T.; Smale, Alan P.; Valencic, Lynne A.
2017-01-01
We have analyzed a rich, multimission, multiwavelength data set from the black hole X-ray binary (BHXB) LMC X-3, covering a new anomalous low state (ALS), during which the source flux falls to an unprecedentedly low and barely detectable level, and a more normal low state. Simultaneous X-ray and UV/optical monitoring data from Swift are combined with pointed observations from the Rossi X-ray Timing Explorer (RXTE) and X-ray Multi- Mirror Mission (XMM-Newton) and light curves from the Monitor of All-Sky X-ray Image (MAXI) instrument to compare the source characteristics during the ALS with those seen during the normal low state. An XMM-Newton spectrum obtained during the ALS can be modeled using an absorbed power law with Gamma = 1.41‚+/- 0.65 and a luminosity of 7.97 x 10(exp 33) erg/s (0.6-5 keV). The Swift X-ray and UV light curves indicate an X-ray lag of approx. 8 days as LMC X-3 abruptly exits the ALS, suggesting that changes in the mass accretion rate from the donor drive the X-ray lag. The normal low state displays an asymmetric profile in which the exit occurs more quickly than the entry, with minimum X-ray flux a factor of approx. 4300 brighter than during the ALS. The UV brightness of LMC X-3 in the ALS is also fainter and less variable than during normal low states. The existence of repeated ALSs in LMC X-3, as well as a comparison with other BHXBs, implies that it is very close to the transient/persistent X-ray source dividing line. We conclude that LMC X-3 is a transient source that is almost always "on."
Theories of white dwarf oscillations
NASA Technical Reports Server (NTRS)
Vanhorn, H. M.
1980-01-01
The current status of theoretical understanding of the oscillations observed in the ZZ Ceti stars and cataclysmic variables is briefly reviewed. Nonradial g-mode oscillations appear to provide a satisfactory explanation for the low amplitude variables such as R548, with periods in the range of approximately 200 to 300 seconds, but for the longer period (800 to 1000 seconds) oscillators, the situation is still unclear. Rotation may play an important role in this problem, and the effects of both slow and fast rotation upon the mode structure are discussed. In the cataclysmic variables, both accretion and thermonuclear burning may act to excite oscillations of the white dwarf.
Observations of cataclysmic variables with IUE
NASA Technical Reports Server (NTRS)
Hartmann, L.; Raymond, J.
1981-01-01
Observations are reported of the cataclysmic variables AN UMa, 2AO311-227, VV Pup, DQ Her, and GK Per. Continuum emission was detected in the short wavelength region in DQ Her. This object exhibits a quasi-blackbody spectrum at short wavelengths, such blackbody components are a common property of the variables AM Her, SS Cyg, and U Gem, suggesting an underlying similarity in the activity of these diverse systems. Flat continuum components at longer wavelengths in general are not compatible with standard disk models. The emission line ratios in AE Aqr are anomalous in that C IV is absent to a very low level relative to N V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perley, D. A.; Tanvir, N. R.; Hjorth, J.
2016-01-20
We present rest-frame near-IR (NIR) luminosities and stellar masses for a large and uniformly selected population of gamma-ray burst (GRB) host galaxies using deep Spitzer Space Telescope imaging of 119 targets from the Swift GRB Host Galaxy Legacy Survey spanning 0.03 < z < 6.3, and we determine the effects of galaxy evolution and chemical enrichment on the mass distribution of the GRB host population across cosmic history. We find a rapid increase in the characteristic NIR host luminosity between z ∼ 0.5 and z ∼ 1.5, but little variation between z ∼ 1.5 and z ∼ 5. Dust-obscured GRBs dominate the massive host population but are only rarely seen associated withmore » low-mass hosts, indicating that massive star-forming galaxies are universally and (to some extent) homogeneously dusty at high redshift while low-mass star-forming galaxies retain little dust in their interstellar medium. Comparing our luminosity distributions with field surveys and measurements of the high-z mass–metallicity relation, our results have good consistency with a model in which the GRB rate per unit star formation is constant in galaxies with gas-phase metallicity below approximately the solar value but heavily suppressed in more metal-rich environments. This model also naturally explains the previously reported “excess” in the GRB rate beyond z ≳ 2; metals stifle GRB production in most galaxies at z < 1.5 but have only minor impact at higher redshifts. The metallicity threshold we infer is much higher than predicted by single-star models and favors a binary progenitor. Our observations also constrain the fraction of cosmic star formation in low-mass galaxies undetectable to Spitzer to be small at z < 4.« less
A New Catalog of Contact Binary Stars from ROTSE-I Sky Patrols
NASA Astrophysics Data System (ADS)
Gettel, S. J.; McKay, T. A.; Geske, M. T.
2005-05-01
Over 65,000 variable stars have been detected in the data from the ROTSE-I Sky Patrols. Using period-color and light curve selection techniques, about 5000 objects have been identified as contact binaries. This selection is tested for completeness against EW objects in the GCVS. By utilizing infrared color data from 2MASS, we fit a period-color-luminosity relation to these stars and estimate their distances.
The Anomalous Low State of LMC X-3
NASA Technical Reports Server (NTRS)
Smale, A. P.; Boyd, P. T.; Markwardt, C. B.
2009-01-01
Archival RXTE ASM and PCA observations of the black hole binary LMC X-3 reveal a dramatic and extended low state lasting from December 8, 2003 until March 18, 2004, unprecedented both in its Low luminosity (Lx(2-10keV)=4.2x 1035 ergs s-1, approximately 4 times fainter than ever before seen from LMC X-3 in its low/hard state, and representing 0.15% of its X-ray luminosity during the high/soft state); and Long duration (approximately equal to 100 days, as compared with 5-20 days for 'normal' low/hard state excursions). During this anomalous low state no significant variability is observed on timescales of days-weeks, and the spectrum is well described by a simple power law with index 1.7 plus or minus 0.2. We examine the variability characteristics of LMC X-3 before and after this event using conventional and topological methods, and show that with the exception of the anomalous low state itself the long-term behavior of the source in topological phase space can be completely described in terms of a well-understood nonlinear dynamics system known as the Duffing oscillator, implying that the accretion disk in LMC X-3 is a driven, dissipative system with two solutions competing for control of its time evolution. This work shows that dynamical information and constraints revealed by topological analysis methods can provide a valuable addition to traditional studies of accretion disk behavior.
A SUBSTELLAR COMPANION TO THE WHITE DWARF-RED DWARF ECLIPSING BINARY NN Ser
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Dai, Z.-B.; Liao, W.-P.
2009-11-20
NN Ser is a short-period (P = 3.12 hr) close binary containing a very hot white dwarf primary with a mass of 0.535 M{sub sun} and a fully convective secondary with a mass of 0.111 M{sub sun}. The changes in the orbital period of the eclipsing binary were analyzed based on our five newly determined eclipse times together with those compiled from the literature. A small-amplitude (0fd00031) cyclic period variation with a period of 7.56 years was discovered to be superimposed on a possible long-term decrease. The periodic change was plausibly explained as the light-travel time effect via the presencemore » of a tertiary companion. The mass of the tertiary companion is determined to be M{sub 3}sin i' = 0.0107(+-0.0017) M{sub sun} when a total mass of 0.646 M{sub sun} for NN Ser is adopted. For orbital inclinations i' >= 49.{sup 0}56, the mass of the tertiary component was calculated to be M {sub 3} <= 0.014 M{sub sun}; thus it would be an extrasolar planet. The third body is orbiting the white dwarf-red dwarf eclipsing binary at a distance shorter than 3.29 AU. Since the observed decrease rate of the orbital period is about two orders larger than that caused by gravitational radiation, it can be plausibly interpreted by magnetic braking of the fully convective component, which is driving this binary to evolve into a normal cataclysmic variable.« less
NASA Astrophysics Data System (ADS)
Zhang, Liyun; Lu, Hongpeng; Han, Xianming L.; Jiang, Linyan; Li, Zhongmu; Zhang, Yong; Hou, Yonghui; Wang, Yuefei; Cao, Zihuang
2018-05-01
The LAMOST spectral survey provides a rich databases for studying stellar spectroscopic properties and chromospheric activity. We cross-matched a total of 105,287 periodic variable stars from several photometric surveys and databases (CSS, LINEAR, Kepler, a recently updated eclipsing star catalogue, ASAS, NSVS, some part of SuperWASP survey, variable stars from the Tsinghua University-NAOC Transient Survey, and other objects from some new references) with four million stellar spectra published in the LAMOST data release 2 (DR2). We found 15,955 spectra for 11,469 stars (including 5398 eclipsing binaries). We calculated their equivalent widths (EWs) of their Hα, Hβ, Hγ, Hδ and Caii H lines. Using the Hα line EW, we found 447 spectra with emission above continuum for a total of 316 stars (178 eclipsing binaries). We identified 86 active stars (including 44 eclipsing binaries) with repeated LAMOST spectra. A total of 68 stars (including 34 eclipsing binaries) show chromospheric activity variability. We also found LAMOST spectra of 12 cataclysmic variables, five of which show chromospheric activity variability. We also made photometric follow-up studies of three short period targets (DY CVn, HAT-192-0001481, and LAMOST J164933.24+141255.0) using the Xinglong 60-cm telescope and the SARA 90-cm and 1-m telescopes, and obtained new BVRI CCD light curves. We analyzed these light curves and obtained orbital and starspot parameters. We detected the first flare event with a huge brightness increase of more than about 1.5 magnitudes in R filter in LAMOST J164933.24+141255.0.
What we learn from eclipsing binaries in the ultraviolet
NASA Technical Reports Server (NTRS)
Guinan, Edward F.
1990-01-01
Recent results on stars and stellar physics from IUE (International Ultraviolet Explorer) observations of eclipsing binaries are discussed. Several case studies are presented, including V 444 Cyg, Aur stars, V 471 Tau and AR Lac. Topics include stellar winds and mass loss, stellar atmospheres, stellar dynamos, and surface activity. Studies of binary star dynamics and evolution are discussed. The progress made with IUE in understanding the complex dynamical and evolutionary processes taking place in W UMa-type binaries and Algol systems is highlighted. The initial results of intensive studies of the W UMa star VW Cep and three representative Algol-type binaries (in different stages of evolution) focused on gas flows and accretion, are included. The future prospects of eclipsing binary research are explored. Remaining problems are surveyed and the next challenges are presented. The roles that eclipsing binaries could play in studies of stellar evolution, cluster dynamics, galactic structure, mass luminosity relations for extra galactic systems, cosmology, and even possible detection of extra solar system planets using eclipsing binaries are discussed.
The disappearance and reformation of the accretion disc during a low state of FO Aquarii
NASA Astrophysics Data System (ADS)
Hameury, J.-M.; Lasota, J.-P.
2017-09-01
Context. FO Aquarii, an asynchronous magnetic cataclysmic variable (intermediate polar) went into a low state in 2016, from which it slowly and steadily recovered without showing dwarf nova outbursts. This requires explanation since in a low state, the mass-transfer rate is in principle too low for the disc to be fully ionised and the disc should be subject to the standard thermal and viscous instability observed in dwarf novae. Aims: We investigate the conditions under which an accretion disc in an intermediate polar could exhibit a luminosity drop of two magnitudes in the optical band without showing outbursts. Methods: We use our numerical code for the time evolution of accretion discs, including other light sources from the system (primary, secondary, hot spot). Results: We show that although it is marginally possible for the accretion disc in the low state to stay on the hot stable branch, the required mass-transfer rate in the normal state would then have to be extremely high, of the order of 1019 g s-1 or even larger. This would make the system so intrinsically bright that its distance should be much larger than allowed by all estimates. We show that observations of FO Aqr are well accounted for by the same mechanism that we have suggested as explaining the absence of outbursts during low states of VY Scl stars: during the decay, the magnetospheric radius exceeds the circularisation radius, so that the disc disappears before it enters the instability strip for dwarf nova outbursts. Conclusions: Our results are unaffected, and even reinforced, if accretion proceeds both via the accretion disc and directly via the stream during some intermediate stages; the detailed process through which the disc disappears still requires investigation.
Si, Jian-min; Luo, A-li; Wu, Fu-zhao; Wu, Yi-hong
2015-03-01
There are many valuable rare and unusual objects in spectra dataset of Sloan Digital Sky Survey (SDSS) Data Release eight (DR8), such as special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on, so it is extremely significant to search for rare and unusual celestial objects from massive spectra dataset. A novel algorithm based on Kernel dense estimation and K-nearest neighborhoods (KNN) has been presented, and applied to search for rare and unusual celestial objects from 546 383 stellar spectra of SDSS DR8. Their densities are estimated using Gaussian kernel density estimation, the top 5 000 spectra in descend order by their densities are selected as rare objects, and the top 300 000 spectra in ascend order by their densities are selected as normal objects. Then, KNN were used to classify the rest objects, and simultaneously K nearest neighbors of the 5 000 rare spectra are also selected as rare objects. As a result, there are totally 21 193 spectra selected as initial rare spectra, which include error spectra caused by deletion, redden, bad calibration, spectra consisting of different physically irrelevant components, planetary nebulas, QSOs, special white dwarfs (DZ, DQ, DC), carbon stars, white dwarf main-sequence binaries (WDMS), cataclysmic variable (CV) stars and so on. By cross identification with SIMBAD, NED, ADS and major literature, it is found that three DZ white dwarfs, one WDMS, two CVs with company of G-type star, three CVs candidates, six DC white dwarfs, one DC white dwarf candidate and one BL Lacertae (BL lac) candidate are our new findings. We also have found one special DA white dwarf with emission lines of Ca II triple and Mg I, and one unknown object whose spectrum looks like a late M star with emission lines and its image looks like a galaxy or nebula.
Three Investigations of Low Mass Stars in the Milky Way Using New Technology Surveys
NASA Astrophysics Data System (ADS)
Lurie, John C.
At least 80% of stars in the Milky Way have masses less than or equal to the Sun. These long lived stars are the most likely hosts of planets where complex life can develop. Although relatively stable on the timescale of billions of years, many low mass stars possess strong magnetic fields that are manifested in energetic surface activity, which may pose a hazard to both life and technology. Magnetic activity also influences the evolution of a low mass star through a feedback process that slows the rotation rate, which in turn tends to decrease the amount of activity. In this way, the rotation rate and activity level of a low mass star may provide an estimate of its age. Beyond their rotation-activity evolution as isolated objects, a small but important fraction of low mass stars have a close binary companion that influences the rotational and orbital properties of the system. Binary interaction can lead to phenomena such as supernovae, cataclysmic variables, and degenerate object mergers. From a larger perspective, low mass stars trace Galactic structure, and through their longevity serve as archives of the dynamical and chemical history of the Milky Way. Thus a full picture of low mass stars, and by extension the Milky Way, requires understanding their rotation and activity; their interaction in close binaries; and their spatial and kinematic distribution throughout the Galaxy. Historically, these topics have been approached from two separate but complementary modes of observation. Time series photometric surveys measure the stellar variability caused by rotation, activity, and binary interaction, while wide field surveys measure the brightnesses and colors of millions of stars to map their distribution in the Galaxy. The first generation of digital detectors and computing technology limited intensive time series surveys to a small number of stars, and limited wide field surveys to little if any variability information. Today those limitations are falling away. This thesis is composed of three investigations of low mass stars using two recent surveys at the cutting edge of detector technology. The Kepler space telescope carried the largest camera ever launched into space, and continuously monitored the brightnesses of hundreds of thousands of stars with unprecedented precision and cadence. The Pan-STARRS survey was equipped with the largest camera ever constructed, and imaged 75% percent of the sky to greater depth than any previous optical survey. The first investigation in this thesis used Kepler observations of a binary system containing two stars that are about one third the mass of the Sun. The convective motions in these stars extend to their centers, and so there is no interface with a radiative core to drive a solar-like dynamo that powers the magnetic activity of stars like the Sun. By virtue of being in a binary, the stars have the same age, providing a control for the interdependent effects of activity and rotation. The investigation found that the stars have nearly the same level of activity, despite one star rotating almost three times faster than the other. This suggests that in fully convective stars, there is a threshold rotation rate above which activity is no longer correlated with rotation. The second investigation also used Kepler observations, but in this case focused on low mass stars in close binaries, where tidal interactions are expected to circularize the orbit and synchronize the rotation rates to the orbital period. Prior to this investigation, there were few observational constraints on the tidal synchronization of stars with convective envelopes, and this investigation resulted in rotation period measurements for over 800 such stars. At orbital periods below approximately ten days, nearly all binaries are synchronized, while beyond ten days most binaries have eccentric orbits and rotation rates that are synchronized to the angular velocity at periastron. An unexpected result was that 15% of binaries with orbital periods below ten days are rotating about 13% slower than the synchronized rate. It was suggested that the equators of the stars are in fact synchronized, and that the subsynchronous signal originates from slower rotating high latitudes. The subsynchronous population presents a new test for theories of activity and differential rotation in tidally interacting binaries. The final investigation used Pan-STARRS observations to search for asymmetries in the disk of the Milky Way. In this case, low mass stars served as tracers of Galactic structure. Previous deep optical surveys avoided the Galactic plane, but Pan-STARRS enabled a comprehensive search. In particular, asymmetries in the stellar density distribution may be the result of interactions with satellite galaxies, and the frequency and nature of the interactions provide an observational test case for theories of galaxy formation. (Abstract shortened by ProQuest.).
The luminosity of the double-mode Cepheid Y Carinae
NASA Technical Reports Server (NTRS)
Evans, Nancy R.
1992-01-01
IUE spectra of the double-mode Cepheid Y Carinae have been used to determine the spectral type of the binary companion. From the companion spectral type (B9.O V), the absolute magnitude of the Cepheid is found to be -2.94 mag, with an estimated uncertainty of +/-0.3. This luminosity is in good agreement with that from the period-luminosity-color relation of Feast and Walker for the fundamental mode. This agreement, together with the large magnitude difference between the B9.0 V star and the Cepheid, confirm that the Cepheid is a normal classical Cepheid with a mass much larger than that inferred from the ratio of the two periods (beat mass). The two double-mode Cepheids with independently determined luminosities (Y Car and V 367 Sct) both fall on the blue edge of the instability strip.
X-RAY VARIABILITY AND HARDNESS OF ESO 243-49 HLX-1: CLEAR EVIDENCE FOR SPECTRAL STATE TRANSITIONS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Servillat, Mathieu; Farrell, Sean A.; Lin Dacheng
2011-12-10
The ultraluminous X-ray (ULX) source ESO 243-49 HLX-1, which reaches a maximum luminosity of 10{sup 42} erg s{sup -1} (0.2-10 keV), currently provides the strongest evidence for the existence of intermediate-mass black holes (IMBHs). To study the spectral variability of the source, we conduct an ongoing monitoring campaign with the Swift X-ray Telescope (XRT), which now spans more than two years. We found that HLX-1 showed two fast rise and exponential decay type outbursts in the Swift XRT light curve with increases in the count rate of a factor {approx}40 separated by 375 {+-} 13 days. We obtained new XMM-Newtonmore » and Chandra dedicated pointings that were triggered at the lowest and highest luminosities, respectively. From spectral fitting, the unabsorbed luminosities ranged from 1.9 Multiplication-Sign 10{sup 40} to 1.25 Multiplication-Sign 10{sup 42} erg s{sup -1}. We confirm here the detection of spectral state transitions from HLX-1 reminiscent of Galactic black hole binaries (GBHBs): at high luminosities, the X-ray spectrum showed a thermal state dominated by a disk component with temperatures of 0.26 keV at most, and at low luminosities the spectrum is dominated by a hard power law with a photon index in the range 1.4-2.1, consistent with a hard state. The source was also observed in a state consistent with the steep power-law state, with a photon index of {approx}3.5. In the thermal state, the luminosity of the disk component appears to scale with the fourth power of the inner disk temperature, which supports the presence of an optically thick, geometrically thin accretion disk. The low fractional variability (rms of 9% {+-} 9%) in this state also suggests the presence of a dominant disk. The spectral changes and long-term variability of the source cannot be explained by variations of the beaming angle and are not consistent with the source being in a super-Eddington accretion state as is proposed for most ULX sources with lower luminosities. All this indicates that HLX-1 is an unusual ULX as it is similar to GBHBs, which have non-beamed and sub-Eddington emission, but with luminosities three orders of magnitude higher. In this picture, a lower limit on the mass of the black hole of >9000 M{sub Sun} can be derived, and the relatively low disk temperature in the thermal state also suggests the presence of an IMBH of a few 10{sup 3} M{sub Sun }.« less
Detecting Nova Shells around known Cataclysmic Variable systems
NASA Astrophysics Data System (ADS)
Xhakaj, Enia; Kupfer, Thomas; Prince, Thomas A.
2017-01-01
Nova shells are hydrogen-rich nebulae around Cataclysmic Variables that are created when a Nova outburst takes place. Learning more about Nova shells can help us get a better understanding of the long-term evolution of white dwarfs in active Cataclysmic Variables. In this project, we present the search for Nova shells around 1700 Cataclysmic Variables, using Hα images from the Palomar Transient Factory (PTF) survey. The PTF Hα survey started in 2009 using the 48’’ Oschin telescope at Palomar Observatory and is the first of its type covering the whole northern hemisphere while reaching 18 mags in 60 seconds of exposure. We concentrated our search on the IAU catalogue of Historical Novae, as well as on the SDSS and the Ritter-Kolb catalogue of Cataclysmic Variables. We numerically analyzed radial profiles centered on the target sources to search for excess emission potentially associated with the shells. Out of 1700 Cataclysmic Variables present in these catalogues, we detected 25 Nova shells, out of which 20 are not observed before.
The ASCA PV phase observation of FO Aquarii
NASA Technical Reports Server (NTRS)
Mukai, Koji; Ishida, Manabu; Osborne, Julian P.
1994-01-01
We report on a approximately 1-day Advanced Satellite for Cosmology and Astrophysics (ASCA) observation of the intermediate polar FO Aquarii. We find two distinctive spectral components, one unabsorbed and the other strongly absorbed; the observed 2-10 keV flux severely underestimates the total system luminosity, due to this strong absorption intrinsic to the binary. The absorbed component is dominant in terms of luminosity, and its light curve is simple. The unabsorbed component accounts for approximately 2% of the luminosity, and shows a much more complicated light curve. As the dominant component predominantly shows a sinusoidal modulation at the white dwarf spin period, it provides a strong evidence for a partial accretion disk in the system.
Outbursts in Symbiotic Binaries
NASA Technical Reports Server (NTRS)
Mushotzky, Richard (Technical Monitor); Kenyon, Scott J.
2003-01-01
Two models have been proposed for the outbursts of symbiotic stars. In the thermonuclear model, outbursts begin when the hydrogen burning shell of a hot white dwarf reaches a critical mass. After a rapid increase in the luminosity and effective temperature, the white dwarf evolves at constant luminosity to lower effective temperatures, remains at optical maximum for several years, and then returns to quiescence along a white dwarf cooling curve. In disk instability models, the brightness rises when the accretion rate from the disk onto the central white dwarf abruptly increases by factors of 5-20. After a few month to several year period at maximum, both the luminosity and the effective temperature of the disk decline as the system returns to quiescence.
A Neutron Star Binary Merger Model for GW170817/GRB 170817A/SSS17a
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murguia-Berthier, A.; Ramirez-Ruiz, E.; Kilpatrick, C. D.
2017-10-20
The merging neutron star gravitational-wave event GW170817 has been observed throughout the entire electromagnetic spectrum from radio waves to γ -rays. The resulting energetics, variability, and light curves are shown to be consistent with GW170817 originating from the merger of two neutron stars, in all likelihood followed by the prompt gravitational collapse of the massive remnant. The available γ -ray, X-ray, and radio data provide a clear probe for the nature of the relativistic ejecta and the non-thermal processes occurring within, while the ultraviolet, optical, and infrared emission are shown to probe material torn during the merger and subsequently heatedmore » by the decay of freshly synthesized r -process material. The simplest hypothesis, that the non-thermal emission is due to a low-luminosity short γ -ray burst (sGRB), seems to agree with the present data. While low-luminosity sGRBs might be common, we show here that the collective prompt and multi-wavelength observations are also consistent with a typical, powerful sGRB seen off-axis. Detailed follow-up observations are thus essential before we can place stringent constraints on the nature of the relativistic ejecta in GW170817.« less
The Crowded Magnetosphere Of The Post-Common-Envelope Binary QS Virginis
NASA Astrophysics Data System (ADS)
Hill, Colin
2016-06-01
We present high-speed photometry and high-resolution spectroscopy of the short-period (Prot = 3.6 h) eclipsing post-common-envelope binary QS Virginis (QS Vir). Our UVES spectra span in excess of 6 orbits, over more than a year, and reveal the presence of several large prominences passing in front of both the M star and its white dwarf (WD) companion. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. Roche tomography reveals a heavily spotted M star, with long-lived spots remaining in fixed locations, preferentially found on the hemisphere facing the WD. We find the 14,220 ± 350 K WD is relatively massive at 0.782 ± 0.013 M(_{odot}),with a radius of0.01068 ± 0.00007 R(_{odot}), consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M(_{odot})and a radius of0.381 ± 0.003 R(_{odot}), also consistent with evolutionary models. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogdanov, Slavko; Halpern, Jules P.
We present X-ray, ultraviolet, and optical observations of 1RXS J154439.4–112820, the most probable counterpart of the unassociated Fermi-LAT source 3FGL J1544.6–1125. The optical data reveal rapid variability, which is a feature of accreting systems. The X-rays exhibit large-amplitude variations in the form of fast switching (within ∼10 s) between two distinct flux levels that differ by a factor of ≈10. The detailed optical and X-ray behavior is virtually identical to that seen in the accretion-disk-dominated states of the transitional millisecond pulsar (MSP) binaries PSR J1023+0038 and XSS J12270–4859, which are also associated with γ-ray sources. Based on the available observationalmore » evidence, we conclude that 1RXS J154439.4–112820 and 3FGL J1544.6–1125 are the same object, with the X-rays arising from intermittent low-luminosity accretion onto an MSP and the γ-rays originating from an accretion-driven outflow. 1RXS J154439.4–112820 is only the fourth γ-ray-emitting low-mass X-ray binary system to be identified and is likely to sporadically undergo transformations to a non-accreting rotation-powered pulsar system.« less
NASA Astrophysics Data System (ADS)
Smith, Nathan; Götberg, Ylva; de Mink, Selma E.
2018-03-01
Recent surveys of the Magellanic Clouds have revealed a subtype of Wolf-Rayet (WR) star with peculiar properties. WN3/O3 spectra exhibit both WR-like emission and O3 V-like absorption - but at lower luminosity than O3 V or WN stars. We examine the projected spatial distribution of WN3/O3 stars in the Large Magellanic Cloud as compared to O-type stars. Surprisingly, WN3/O3 stars are among the most isolated of all classes of massive stars; they have a distribution similar to red supergiants dominated by initial masses of 10-15 M⊙, and are far more dispersed than classical WR stars or luminous blue variables. Their lack of association with clusters of O-type stars suggests strongly that WN3/O3 stars are not the descendants of single massive stars (30 M⊙ or above). Instead, they are likely products of interacting binaries at lower initial mass (10-18 M⊙). Comparison with binary models suggests a probable origin with primaries in this mass range that were stripped of their H envelopes through non-conservative mass transfer by a low-mass secondary. We show that model spectra and positions on the Hertzsprung-Russell diagram for binary-stripped stars are consistent with WN3/O3 stars. Monitoring radial velocities with high-resolution spectra can test for low-mass companions or runaway velocities. With lower initial mass and environments that avoid very massive stars, the WN3/O3 stars fit expectations for progenitors of Type Ib and possibly Type Ibn supernovae.
MESA models for the evolutionary status of the epsilon Aurigae disk-eclipsed binary system
NASA Astrophysics Data System (ADS)
Stencel, Robert E.; Gibson, Justus
2018-06-01
The brightest member of the class of disk-eclipsed binary stars is the Algol-like long-period binary, epsilon Aurigae (HD 31964, F0Iap + disk, http://adsabs.harvard.edu/abs/2016SPIE.9907E..17S ). Using MESA (Modules for Experiments in Stellar Astrophysics, version 9575), we have made an evaluation of its evolutionary state. We sought to satisfy several observational constraints, including: (1) requiring evolutionary tracks to pass close to the current temperature and luminosity of the primary star; (2) obtaining a period near the observed value of 27.1 years; (3) matching a mass function of 3.0; (4) concurrent Roche lobe overflow and mass transfer; (5) an isotopic ratio 12C / 13C = 5 and, (6) matching the interferometrically determined angular diameter. A MESA model starting with binary masses of 9.85 + 4.5 solar masses, with a 100 day initial period, produces a 1.2 + 10.6 solar masses result having a 547 day period, plus a single digit 12C / 13C ratio. These values were reached near an age of 20 Myr, when the donor star comes close to the observed luminosity and temperature for epsilon Aurigae A, as a post-RGB/pre-AGB star. Contemporaneously, the accretor then appears as an upper main sequence, early B-type star. This benchmark model can provide a basis for further exploration of this interacting binary, and other long period binary stars. This report has been submitted to MNRAS, along with a parallel investigation of mass transfer stream and disk sub-structure. The authors are grateful to the estate of William Herschel Womble for the support of astronomy at the University of Denver.
A Simple test for the existence of two accretion modes in active galactic nuclei
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jester, Sebastian; /Fermilab
2005-02-01
By analogy to the different accretion states observed in black-hole X-ray binaries (BHXBs), it appears plausible that accretion disks in active galactic nuclei (AGN) undergo a state transition between a radiatively efficient and inefficient accretion flow. If the radiative efficiency changes at some critical accretion rate, there will be a change in the distribution of black hole masses and bolometric luminosities at the corresponding transition luminosity. To test this prediction, the author considers the joint distribution of AGN black hole masses and bolometric luminosities for a sample taken from the literature. The small number of objects with low Eddington-scaled accretionmore » rates m < 0.01 and black hole masses M{sub BH} < 10{sup 9} M{sub {circle_dot}} constitutes tentative evidence for the existence of such a transition in AGN. Selection effects, in particular those associated with flux-limited samples, systematically exclude objects in particular regions of the (M{sub BH}, L{sub bol}) plane. Therefore, they require particular attention in the analysis of distributions of black hole mass, bolometric luminosity, and derived quantities like the accretion rate. The author suggests further observational tests of the BHXB-AGN unification scheme which are based on the jet domination of the energy output of BHXBs in the hard state, and on the possible equivalence of BHXB in the very high (or steep power-law) state showing ejections and efficiently accreting quasars and radio galaxies with powerful radio jets.« less
NASA Technical Reports Server (NTRS)
Enoto, Teruaki; Sasano, Makoto; Yamada, Shin'Ya; Tamagawa, Toru; Makishima, Kazuo; Pottschmidt, Katja; Marcu, Diana; Corbet, Robin H. D.; Fuerst, Felix; Wilms, Jorn
2014-01-01
The symbiotic X-ray binary (SyXB) 4U 1954+319 is a rare system hosting a peculiar neutron star (NS) and an M-type optical companion. Its approx. 5.4 hr NS spin period is the longest among all known accretion-powered pulsars and exhibited large (is approx. 7%) fluctuations over 8 yr. A spin trend transition was detected with Swift/BAT around an X-ray brightening in 2012. The source was in quiescent and bright states before and after this outburst based on 60 ks Suzaku observations in 2011 and 2012. The observed continuum is well described by a Comptonized model with the addition of a narrow 6.4 keV Fe-K alpha line during the outburst. Spectral similarities to slowly rotating pulsars in high-mass X-ray binaries, its high pulsed fraction (approx. 60%-80%), and the location in the Corbet diagram favor high B-field (approx. greater than 10(exp12) G) over a weak field as in low-mass X-ray binaries. The observed low X-ray luminosity (10(exp33)-10(exp35) erg s(exp-1)), probable wide orbit, and a slow stellar wind of this SyXB make quasi-spherical accretion in the subsonic settling regime a plausible model. Assuming a approx. 10(exp13) G NS, this scheme can explain the approx. 5.4 hr equilibrium rotation without employing the magnetar-like field (approx. 10(exp16) G) required in the disk accretion case. The timescales of multiple irregular flares (approx. 50 s) can also be attributed to the free-fall time from the Alfv´en shell for a approx. 10(exp13) G field. A physical interpretation of SyXBs beyond the canonical binary classifications is discussed.
NASA Astrophysics Data System (ADS)
Wijnands, R.; Parikh, A. S.; Altamirano, D.; Homan, J.; Degenaar, N.
2017-11-01
Here, we study the rapid X-ray variability (using XMM-Newton observations) of three neutron-star low-mass X-ray binaries (1RXS J180408.9-342058, EXO 1745-248 and IGR J18245-2452) during their recently proposed very hard spectral state. All our systems exhibit a strong to very strong noise component in their power density spectra (rms amplitudes ranging from 34 per cent to 102 per cent) with very low characteristic frequencies (as low as 0.01 Hz). These properties are more extreme than what is commonly observed in the canonical hard state of neutron-star low-mass X-ray binaries observed at X-ray luminosities similar to those we observe from our sources. This suggests that indeed the very hard state is a spectral-timing state distinct from the hard state, although we argue that the variability behaviour of IGR J18245-2452 is very extreme and possibly this source was in a very unusual state. We also compare our results with the rapid X-ray variability of the accreting millisecond X-ray pulsars IGR J00291+5934 and Swift J0911.9-6452 (also using XMM-Newton data) for which previously similar variability phenomena were observed. Although their energy spectra (as observed using the Swift X-ray telescope) were not necessarily as hard (i.e. for Swift J0911.9-6452) as for our other three sources, we conclude that likely both sources were also in very similar state during their XMM-Newton observations. This suggests that different sources that are found in this new state might exhibit different spectral hardness and one has to study both the spectral and the rapid variability to identify this unusual state.
Planetary Nebulae in the Solar Neighbourhood: Statistics, Distance Scale and Luminosity Function
NASA Astrophysics Data System (ADS)
Frew, David J.
2008-07-01
An accurate census of the nearest planetary nebulae (PNe) is needed for calculations of the total number, space density, scale height, and birth rate of PNe in the Galaxy, to understand the dynamics of an evolving nebula and its relationship to the cooling history of the central star, and also to provide an unbiased sample to investigate the frequency of binary central stars and their role in the formation and shaping of these objects. This study presents the most refined volume-limited survey of PNe known to date. Integrated H-alpha fluxes for over 400 mostly evolved PNe are presented, based primarily on data from the Southern H-alpha Sky Survey Atlas (SHASSA) and the Virginia Tech Spectral-Line Survey (VTSS). Aperture photometry on the digital images was performed to extract H-alpha+[NII] fluxes. The [NII] contribution was then de-convolved using literature data, new data from slit spectra, or spectrophotometric data from the Wisconsin H-Alpha Mapper (WHAM) also obtained as part of this project. Comparison with previous work shows that the flux scale presented here has no significant zero-point error. The H-alpha fluxes are used to determine new Zanstra temperatures for those PNe with accurate central star photometry, calculating surface-brightness distances for each PN in the sample, and in conjunction with accurate [OIII] fluxes, new absolute PN magnitudes for delineating the faint end of the PN luminosity function. A spectroscopic survey of a range of MASH PNe is also presented. New emission-line intensities for 60 PNe are given, including a preliminary discussion of the chemical abundances of this sample. New distances have been determined for a large number of PNe, by either critically examining the literature, or by deriving new extinction and kinematic distances where suitable. For all PNe not amenable to these approaches, distances were estimated from a new H-alpha surface brightness-radius (SB-r) relation. The Hα SB-r relation covers >6 dex in SB, and while the spread in SB is ∼1 dex at a given radius, optically thick (mainly bipolar and bipolar-core) PNe tend to populate the upper bound of the trend, while common-envelope PNe and high-excitation PNe fall along the lower boundary in SB-r space. Using sub-trends has allowed more precision in the determination of distances, as good as ±22% in the case of high-excitation PNe. The adopted SB-r zero point, set from 122 galactic calibrators, recovers the distances to the LMC, SMC and the Sagittarius dSph galaxy to within 5%. With distances to all nearby PNe, I have generated the most accurate volume-limited sample of PNe (D ≤ 1.0 kpc) yet considered, containing ∼56 PNe. An extension sample to 2.0 kpc contains ∼210 PNe. An accurate database of parameters for nearly all of these objects is presented, providing integrated fluxes, diameters, morphological classifications, distances, ionized masses, expansion velocities, kinematic ages, chemical abundances, and central star properties for each PN in this volume-limited sample.Details are also given on a number of misclassified 'PNe' which contaminate the local volume, including, amongst others, Abell 35, DHW 5, Sh 2-68, Sh 2-174, Hewett 1, RE J1738+665, PG 0108+101, PG 0109+111, PHL 932 and EGB 5. The observation that known close-binary PNe fall on a particular trend in SB-r space, is suggestive that these form a separate population to the majority of PNe. Recent conclusions that the great majority (or all) PNe go through a common-envelope phase are not supported at this point in time, though there is no doubt a modest frequency of common-envelope events has occurred in the solar neighbourhood. The exact number awaits a full multiplicity census of all objects within this volume. A preliminary estimate of the binary frequency of PN central stars in the solar neighbourhood is ∼52-58% and hence I conclude that it is possible for single stars to produce PNe. A deep local PN luminosity function is presented, extending to 10 magnitudes below the bright PN cutoff magnitude, M*. The local [OIII] PNLF is seen to be much more bottom-heavy than previously recognised, with up to half of all PNe being fainter than 7 mag below M*. An exponential increase in PN numbers occurs to ∼8.3 mag below M*, where a marked turnover in the PNLF is seen. The very faintest PNe may represent a population of low-mass objects with low-luminosity central stars. New estimates for the number density, scale height, birth rate, and total number of Galactic PNe, as extrapolated from the solar neighbourhood sample, are also given. The total Galactic population is estimated to be 24,000 ± 4000 PNe with r < 1.5 pc, and 13,000 ± 2000 PNe with r < 0.9 pc. The MW/LMC luminosity ratio implies a total LMC PN population of ∼2400. Evidently many more PNe remain to be discovered in this system. The observed Galactic population leads to a PN birthrate of 0.8 ± 0.3 × 10^-12 pc^-3yr^-1, fully consistent within the errors with the birthrate of white dwarfs. A remarkable bow-shock nebula around a previously unnoticed, bright, nova-like cataclysmic variable, V341 Ara, has also been discovered as part of this study. The star has a high space motion, leading to the formation of the parabolic bow-shock at the interaction of the disk wind and the ISM. The proximity of this nebula to the Sun suggests the space density of such objects may quite high. Similar nebulae might be found through a narrowband search around other CVs with significant proper motion.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-07-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin-up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90 per cent of mergers in massive galaxies and of 40-60 per cent in dwarfs (range mostly sensitive to the natal kicks) are expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broad-band luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲50°.
NASA Astrophysics Data System (ADS)
Perna, Rosalba; Chruslinska, Martyna; Corsi, Alessandra; Belczynski, Krzysztof
2018-03-01
Binary black holes (BBHs) are one of the endpoints of isolated binary evolution, and their mergers a leading channel for gravitational wave events. Here, using the evolutionary code STARTRACK, we study the statistical properties of the BBH population from isolated binary evolution for a range of progenitor star metallicities and BH natal kicks. We compute the mass function and the distribution of the primary BH spin a as a result of mass accretion during the binary evolution, and find that this is not an efficient process to spin up BHs, producing an increase by at most a ˜ 0.2-0.3 for very low natal BH spins. We further compute the distribution of merger sites within the host galaxy, after tracking the motion of the binaries in the potentials of a massive spiral, a massive elliptical, and a dwarf galaxy. We find that a fraction of 70-90% of mergers in massive galaxies and of 40-60% in dwarfs (range mostly sensitive to the natal kicks) is expected to occur inside of their hosts. The number density distribution at the merger sites further allows us to estimate the broadband luminosity distribution that BBH mergers would produce, if associated with a kinetic energy release in an outflow, which, as a reference, we assume at the level inferred for the Fermi GBM counterpart to GW150914, with the understanding that current limits from the O1 and O2 runs would require such emission to be produced within a jet of angular size within ≲ 50°.
Primordial main equence binary stars in the globular cluster M71
NASA Technical Reports Server (NTRS)
Yan, Lin; Mateo, Mario
1994-01-01
We report the identification of five short-period variables near the center of the metal-rich globular cluster M71. Our observations consist of multiepoch VI charge coupled device (CCD) images centered on the cluster and covering a 6.3 min x 6.3 min field. Four of these variables are contact eclipsing binaries with periods between 0.35 and 0.41 days; one is a detached or semidetached eclipsing binary with a period of 0.56 days. Two of the variables were first identified as possible eclipsing binaries in an earlier survey by Hodder et al. (1992). We have used a variety of arguments to conclude that all five binary stars are probable members of M71, a result that is consistent with the low number (0.15) of short-period field binaries expected along this line of sight. Based on a simple model of how contact binaries evolve from initially detached binaries, we have determined a lower limit of 1.3% on the frequency of primordial binaries in M71 with initial orbital periods in the range 2.5 - 5 days. This implies that the overall primordial binary frequency, f, is 22(sup +26)(sub -12)% assuming df/d log P = const ( the 'flat' distribution), or f = 57(sup +15)(sub -8)% for df/d log P = 0.032 log P + const as observed for G-dwarf binaries in the solar neighborhood (the 'sloped' distribution). Both estimates of f correspond to binaries with initial periods shorter than 800 yr since any longer-period binaries would have been disrupted over the lifetime of the cluster. Our short-period binary frequency is in excellent agreement with the observed frequency of red-giant binaries observed in globulars if we adopt the flat distribution. For the sloped distribution, our results significantly overestimate the number of red-giant binaries. All of the short-period M71 binaries lie within 1 mag of the luminosity of the cluster turnoff in the color-magnitude diagram despite the fact we should have easily detected similar eclipsing binaries 2 - 2.5 mag fainter than this. We discuss the implications of this on our estimates of the binary frequency in M71 and on the formation of blue stragglers.
A Catalog of 1022 Bright Contact Binary Stars
NASA Astrophysics Data System (ADS)
Gettel, S. J.; Geske, M. T.; McKay, T. A.
2006-01-01
In this work we describe a large new sample of contact binary stars extracted in a uniform manner from sky patrol data taken by the ROTSE-I telescope. Extensive ROTSE-I light-curve data are combined with J-, H-, and K-band near-infrared data taken from the Two Micron All Sky Survey to add color information. Contact binary candidates are selected using the observed period-color relation. Candidates are confirmed by visual examination of the light curves. To enhance the utility of this catalog, we derive a new J-H period-color-luminosity relation and use this to estimate distances for the entire catalog. From these distance estimates we derive an estimated contact binary space density of (1.7+/-0.6)×10-5 pc-3.
Accretion Disks Around Binary Black Holes of Unequal Mass: GRMHD Simulations Near Decoupling
NASA Technical Reports Server (NTRS)
Gold, Roman; Paschalidis, Vasileios; Etienne, Zachariah B.; Shapiro, Stuart L.; Pfeiffer, Harald, P.
2013-01-01
We report on simulations in general relativity of magnetized disks onto black hole binaries. We vary the binary mass ratio from 1:1 to 1:10 and evolve the systems when they orbit near the binary disk decoupling radius. We compare (surface) density profiles, accretion rates (relative to a single, non-spinning black hole), variability, effective alpha-stress levels and luminosities as functions of the mass ratio. We treat the disks in two limiting regimes: rapid radiative cooling and no radiative cooling. The magnetic field lines clearly reveal jets emerging from both black hole horizons and merging into one common jet at large distances. The magnetic fields give rise to much stronger shock heating than the pure hydrodynamic flows, completely alter the disk structure, and boost accretion rates and luminosities. Accretion streams near the horizons are among the densest structures; in fact, the 1:10 no-cooling evolution results in a refilling of the cavity. The typical effective temperature in the bulk of the disk is approx. 10(exp5) (M / 10(exp 8)M solar mass (exp -1/4(L/L(sub edd) (exp 1/4K) yielding characteristic thermal frequencies approx. 10 (exp 15) (M /10(exp 8)M solar mass) (exp -1/4(L/L (sub edd) (1+z) (exp -1)Hz. These systems are thus promising targets for many extragalactic optical surveys, such as LSST, WFIRST, and PanSTARRS.
NASA Astrophysics Data System (ADS)
Tomaru, Ryota; Done, Chris; Odaka, Hirokazu; Watanabe, Shin; Takahashi, Tadayuki
2018-05-01
Blueshifted absorption lines from highly ionized iron are seen in some high inclination X-ray binary systems, indicating the presence of an equatorial disc wind. This launch mechanism is under debate, but thermal driving should be ubiquitous. X-ray irradiation from the central source heats disc surface, forming a wind from the outer disc where the local escape velocity is lower than the sound speed. The mass-loss rate from each part of the disc is determined by the luminosity and spectral shape of the central source. We use these together with an assumed density and velocity structure of the wind to predict the column density and ionization state, then combine this with a Monte Carlo radiation transfer to predict the detailed shape of the absorption (and emission) line profiles. We test this on the persistent wind seen in the bright neutron star binary GX 13+1, with luminosity L/LEdd ˜ 0.5. We approximately include the effect of radiation pressure because of high luminosity, and compute line features. We compare these to the highest resolution data, the Chandra third-order grating spectra, which we show here for the first time. This is the first physical model for the wind in this system, and it succeeds in reproducing many of the features seen in the data, showing that the wind in GX13+1 is most likely a thermal-radiation driven wind. This approach, combined with better streamline structures derived from full radiation hydrodynamic simulations, will allow future calorimeter data to explore the detail wind structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malo, Lison; Artigau, Étienne; Doyon, René
2014-06-10
Based on high-resolution spectra obtained with PHOENIX at Gemini-South, CRIRES at VLT-UT1, and ESPaDOnS at the Canada-France-Hawaii Telescope, we present new measurements of the radial and projected rotational velocities of 219 low-mass stars. The target likely membership was initially established using the Bayesian analysis tool recently presented in Malo et al., taking into account only the position, proper motion, and photometry of the stars to assess their membership probability. In the present study, we include radial velocity as an additional input to our analysis, and in doing so we confirm the high membership probability for 130 candidates: 27 in βmore » Pictoris, 22 in Tucana-Horologium, 25 in Columba, 7 in Carina, 18 in Argus and 18 in AB Doradus, and 13 with an ambiguous membership. Our analysis also confirms the membership of 57 stars proposed in the literature. A subsample of 16 candidates was observed at 3 or more epochs, allowing us to discover 6 new spectroscopic binaries. The fraction of binaries in our sample is 25%, consistent with values in the literature. Of the stars in our sample, 20% show projected rotational velocities (vsin i) higher than 30 km s{sup –1} and therefore are considered as fast rotators. A parallax and other youth indicators are still needed to fully confirm the 130 highly probable candidates identified here as new bona fide members. Finally, based on the X-ray emission of bona fide and highly probable group members, we show that for low-mass stars in the 12-120 Myr age range, the X-ray luminosity is an excellent indicator of youth and better than the more traditionally used R {sub X} parameter, the ratio of X-ray to bolometric luminosity.« less
On the nature of the dwarf carbon star G77-61
NASA Technical Reports Server (NTRS)
Dearborn, D. S. P.; Liebert, J.; Aaronson, M.; Dahn, C. C.; Harrington, R.
1986-01-01
In the present study of astrometric, photometric, and spectrophotometric data for the low luminosity carbon star G77-61, radial velocity variations are detected which have a binary period of 245 days. The unseen companion is probably a cool white dwarf of much higher mass than the visible object. The most straightforward evolutionary hypothesis is that this star has an extremely metal-poor composition, and that it accreted a small amount of carbon-rich material when the now-unseen primary was at maximum radius. This may have inverted the C/O abundance of the secondary without achieving common envelope evolution and a sorter period.
New Evidence for a Substellar Luminosity Problem: Dynamical Mass for the Brown Dwarf Binary Gl 417BC
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.; Ireland, Michael J.
2014-08-01
We present new evidence for a problem with cooling rates predicted by substellar evolutionary models that implies that model-derived masses in the literature for brown dwarfs and directly imaged planets may be too high. Based on our dynamical mass for Gl 417BC (L4.5+L6) and a gyrochronology system age from its young, solar-type host star, commonly used models predict luminosities 0.2-0.4 dex lower than we observe. This corroborates a similar luminosity-age discrepancy identified in our previous work on the L4+L4 binary HD 130948BC, which coincidentally has nearly identical component masses (≈50-55 M Jup) and age (≈800 Myr) as Gl 417BC. Such a luminosity offset would cause systematic errors of 15%-25% in model-derived masses at this age. After comparing different models, including cloudless models that should not be appropriate for mid-L dwarfs like Gl 417BC and HD 130948BC but actually match their luminosities better, we speculate the observed overluminosity could be caused by opacity holes (i.e., patchy clouds) in these objects. Moreover, from hybrid substellar evolutionary models that account for cloud disappearance, we infer the corresponding phase of overluminosity may extend from a few hundred million years up to a few gigayears and cause masses to be overestimated by up to 25%, even well after clouds disappear from view entirely. Thus, the range of ages and spectral types affected by this potential systematic shift in luminosity evolution would encompass most known directly imaged gas-giants and field brown dwarfs. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
An ultraluminous X-ray source powered by an accreting neutron star.
Bachetti, M; Harrison, F A; Walton, D J; Grefenstette, B W; Chakrabarty, D; Fürst, F; Barret, D; Beloborodov, A; Boggs, S E; Christensen, F E; Craig, W W; Fabian, A C; Hailey, C J; Hornschemeier, A; Kaspi, V; Kulkarni, S R; Maccarone, T; Miller, J M; Rana, V; Stern, D; Tendulkar, S P; Tomsick, J; Webb, N A; Zhang, W W
2014-10-09
The majority of ultraluminous X-ray sources are point sources that are spatially offset from the nuclei of nearby galaxies and whose X-ray luminosities exceed the theoretical maximum for spherical infall (the Eddington limit) onto stellar-mass black holes. Their X-ray luminosities in the 0.5-10 kiloelectronvolt energy band range from 10(39) to 10(41) ergs per second. Because higher masses imply less extreme ratios of the luminosity to the isotropic Eddington limit, theoretical models have focused on black hole rather than neutron star systems. The most challenging sources to explain are those at the luminous end of the range (more than 10(40) ergs per second), which require black hole masses of 50-100 times the solar value or significant departures from the standard thin disk accretion that powers bright Galactic X-ray binaries, or both. Here we report broadband X-ray observations of the nuclear region of the galaxy M82 that reveal pulsations with an average period of 1.37 seconds and a 2.5-day sinusoidal modulation. The pulsations result from the rotation of a magnetized neutron star, and the modulation arises from its binary orbit. The pulsed flux alone corresponds to an X-ray luminosity in the 3-30 kiloelectronvolt range of 4.9 × 10(39) ergs per second. The pulsating source is spatially coincident with a variable source that can reach an X-ray luminosity in the 0.3-10 kiloelectronvolt range of 1.8 × 10(40) ergs per second. This association implies a luminosity of about 100 times the Eddington limit for a 1.4-solar-mass object, or more than ten times brighter than any known accreting pulsar. This implies that neutron stars may not be rare in the ultraluminous X-ray population, and it challenges physical models for the accretion of matter onto magnetized compact objects.
Black Holes in Bulgeless Galaxies: An XMM-Newton Investigation of NGC 3367 AND NGC 4536
NASA Technical Reports Server (NTRS)
McAlpine, W.; Satyapal, S.; Gliozzi, M.; Cheung, C. C.; Sambruna, R. M.; Eracleous, Michael
2012-01-01
The vast majority of optically identified active galactic nuclei (AGNs) in the local Universe reside in host galaxies with prominent bulges, supporting the hypothesis that black hole formation and growth is fundamentally connected to the build-up of galaxy bulges. However, recent mid-infrared spectroscopic studies with Spitzer of a sample of optically "normal" late-type galaxies reveal remarkably the presence of high-ionization [NeV] lines in several sources, providing strong evidence for AGNs in these galaxies. We present follow-up X-ray observations recently obtained with XMM-Newton of two such sources, the late-type optically normal galaxies NGC 3367 and NGC 4536. Both sources are detected in our observations. Detailed spectral analysis reveals that for both galaxies, the 2-10 keV emission is dominated by a power law with an X-ray luminosity in the L(sub 2- 10 keV) approximates 10(exp 39) - 10(exp 40) ergs/s range, consistent with low luminosity AGNs. While there is a possibility that X-ray binaries account for some fraction of the observed X-ray luminosity, we argue that this fraction is negligible. These observations therefore add to the growing evidence that the fraction of late-type galaxies hosting AGNs is significantly underestimated using optical observations alone. A comparison of the midinfrared [NeV] luminosity and the X-ray luminosities suggests the presence of an additional highly absorbed X-ray source in both galaxies, and that the black hole masses are in the range of 10(exp 5) - 10(exp 7) solar M for NGC 3367 and 10(exp 4) - (exp 10) solar M for NGC 4536
Hubble Space Telescope Imaging of Brightest Cluster Galaxies
NASA Astrophysics Data System (ADS)
Laine, Seppo; van der Marel, Roeland P.; Lauer, Tod R.; Postman, Marc; O'Dea, Christopher P.; Owen, Frazer N.
2003-02-01
We used the Hubble Space Telescope Wide Field Planetary Camera 2 to obtain I-band images of the centers of 81 brightest cluster galaxies (BCGs), drawn from a volume-limited sample of nearby BCGs. The images show a rich variety of morphological features, including multiple or double nuclei, dust, stellar disks, point-source nuclei, and central surface brightness depressions. High-resolution surface brightness profiles could be inferred for 60 galaxies. Of those, 88% have well-resolved cores. The relationship between core size and galaxy luminosity for BCGs is indistinguishable from that of Faber et al. (published in 1997, hereafter F97) for galaxies within the same luminosity range. However, the core sizes of the most luminous BCGs fall below the extrapolation of the F97 relationship rb~L1.15V. A shallower relationship, rb~L0.72V, fits both the BCGs and the core galaxies presented in F97. Twelve percent of the BCG sample lacks a well-resolved core; all but one of these BCGs have ``power law'' profiles. Some of these galaxies have higher luminosities than any power-law galaxy identified by F97 and have physical upper limits on rb well below the values observed for core galaxies of the same luminosity. These results support the idea that the central structure of early-type galaxies is bimodal in its physical properties but also suggest that there exist high-luminosity galaxies with power-law profiles (or unusually small cores). The BCGs in the latter category tend to fall at the low end of the BCG luminosity function and tend to have low values of the quantity α (the logarithmic slope of the metric luminosity as a function of radius, at 10 kpc). Since theoretical calculations have shown that the luminosities and α-values of BCGs grow with time as a result of accretion, this suggests a scenario in which elliptical galaxies evolve from power-law profiles to core profiles through accretion and merging. This is consistent with theoretical scenarios that invoke the formation of massive black hole binaries during merger events. More generally, the prevalence of large cores in the great majority of BCGs, which are likely to have experienced several generations of galaxy merging, underscores the role of a mechanism that creates and preserves cores in such merging events. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with proposal 8683.
Accretion geometry in the persistent Be/X-ray binary RXJ0440.9+4431
NASA Astrophysics Data System (ADS)
Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.
2014-01-01
The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL). We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of ~ 2 × 1036 erg s-1. The luminosity dependency of the size of the black body emission region is found to be rBB ∝ LX0.39±0.02. This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the size of the black-body emitting hotspot is larger than the footprint of the accretion column. This phenomenon can be due to illumination of the surface by a growing column or by a a structure of the neutron star magnetic field more complicated than a simple dipole at least close to the surface.
NASA Astrophysics Data System (ADS)
Rucinski, Slavek M.; Maceroni, Carla
2001-01-01
Thirty-eight long-period (P>10 days) apparently contact binary stars discovered by the OGLE-II project in the SMC show EB-type light curves and an ``inverted'' period-color relation with longer orbital periods for redder systems. The strong light variations between eclipses can be explained within a semidetached model in which ellipsoidal variations of a large, evolved, Roche lobe-filling component dominates over eclipse effects in the systemic light changes. The model requires further spectroscopic and color-curve support before it can be fully accepted. It is noted that the dominant role of the Roche lobe-filling component in the total systemic luminosity can explain the new period-luminosity-color (PLC) relation, which has been established for the long-period EB (LP-EB) systems. We call it the PLC-β relation, to distinguish it from the Cepheid relation. Two versions of the PLC-β relation-based on the (B-V)0 or (V-I)0 color indices-have been calibrated for 33 systems with (V-I)0>0.25 spanning the orbital period range of 11 to 181 days (it was found that blue systems with (V-I)0<=0.25 do not follow the same calibration). The relations can provide maximum-light, absolute-magnitude estimates accurate to ɛMV~=0.35 mag within the approximate range -3
NSV 1907 - A new eclipsing, nova-like cataclysmic variable
NASA Astrophysics Data System (ADS)
Hümmerich, Stefan; Gröbel, Rainer; Hambsch, Franz-Josef; Dubois, Franky; Ashley, Richard; Gänsicke, Boris T.; Vanaverbeke, Siegfried; Bernhard, Klaus; Wils, Patrick
2017-01-01
NSV 1907, formerly listed as an irregular variable in variability catalogues, was classified as an Algol-type eclipsing binary in the Catalina Surveys Periodic Variable Star Catalogue. We have identified NSV 1907 as an ultraviolet (UV) bright source using measurements from the GALEX space telescope and detected obvious out-of-eclipse variability in archival photometric data from the Catalina Sky Survey, which instigated a closer examination of the object. A spectrum and extensive multicolour photometric observations were acquired, from which we deduce that NSV 1907 is a deeply eclipsing, nova-like cataclysmic variable. Apart from the orbital variations (deep eclipses with a period of P ≈ 6.63 hours), changes in mean brightness and irregular short-term variability (flickering) were observed. The presence of a secondary minimum at phase φ ≈ 0.5 was established, which indicates a significant contribution of the companion star to the optical flux of the system. We find possible evidence for sinusoidal variations with a period of P ≈ 4.2 d, which we interpret as the nodal precession period of the accretion disc. No outbursts or VY Scl-like drops in brightness were detected either by the CSS or during our photometric monitoring. Because of its spectral characteristics and the observed variability pattern, we propose NSV 1907 as a new moderately bright long-period SW Sextantis star. Further photometric and spectroscopic observations are encouraged.
On the SW Sex-type eclipsing cataclysmic variable SDSS0756+0858
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tovmassian, Gagik; Hernandez, Mercedes Stephania; González-Buitrago, Diego
We conducted a spectroscopic and photometric study of SDSS J075653.11+085831. X-ray observations were also attempted. We determined the orbital period of this binary system to be 3.29 hr. It is a deep eclipsing system, whose spectra show mostly single-peaked, Balmer emission lines and a rather intense He II line. There is also the presence of faint (often double-peaked) He I emission lines as well as several absorption lines, Mg I being the most prominent. All of these features point toward the affiliation of this object with the growing number of SW Sex-type objects. We developed a phenomenological model of anmore » SW Sex system to reproduce the observed photometric and spectral features.« less
NASA Astrophysics Data System (ADS)
Kashi, Amit; Soker, Noam
2018-05-01
Contrary to recent claims, we argue that the orientation of the massive binary system Eta Carinae is such that the secondary star is closer to us at periastron passage, and it is on the far side during most of the time of the eccentric orbit. The binary orientation we dispute is based on problematic interpretations of recent observations. Among these are the radial velocity of the absorption component of He I P-Cyg lines, of the He II λ4686 emission line, and of the Br γ line emitted by clumps close to the binary system. We also base our orientation on observations of asymmetric molecular clumps that were recently observed by ALMA around the binary system, and were claimed to compose a torus with a missing segment. The orientation has implications for the modeling of the binary interaction during the nineteenth century Great Eruption (GE) of Eta Carinae that occurred close to periastron passage. The orientation where the secondary is closer to us at periastron leads us to suggest that the mass-missing side of the molecular clumps is a result of accretion onto the secondary star during periastron passage when the clumps were ejected, probably during the GE. The secondary star accreted a few solar masses during the GE and the energy from the accretion process consists of the majority of the GE energy. This in turn strengthens the more general model according to which many intermediate-luminosity optical transients (ILOTS) are powered by accretion onto a secondary star.
NASA Technical Reports Server (NTRS)
Hall, Douglas S.
1991-01-01
The eclipsing binary CG Cyg provides observational confirmation of three predictions made by Applegate's (1991) improvement on the theory that magnetic cycles cause the quasi-periodic orbital period changes in binaries containing a convective star. The mean brightness outside eclipse and the period vary with the same cycle length of about 50 yr. The light curve and O - C curve are in phase, with maximum light and period increase occurring in early 1980. The chromospherically active star becomes bluer in phase with the brightening. Because a period increase occurs at maximum brightness, the sense of the star's differential rotation is specified: outside rotating faster.
Kepler Mission: Detecting Earth-sized Planets in Habitable Zones
NASA Technical Reports Server (NTRS)
Kondo, Yoji; Fisher, Richard R. (Technical Monitor)
2001-01-01
The Kepler Mission, which is presently in Phase A, is being proposed for launch in 5 years for a 4-year mission to determine the frequency of Earth-sized or larger planets in habitable zones in our galaxy. Kepler will be placed in an Earth-trailing orbit to provide stable physical environments for the sensitive scientific instruments. The satellite is equipped with a photometric system with the precision of 10E-5, which should be sufficient for detecting the transits of Earth-sized or larger planets in front of dwarf stars similar to the Sun. Approximately 100,000 or more sun-like stars brighter than the 14th apparently magnitude will be monitored continuously for 4 years in a preselected region of the sky, which is about 100 square degrees in size. In addition, Kepler will have a participating scientist program that will enable research in intrinsic variable stars, interacting binaries including cataclysmic stars and X-ray binaries, and a large number of solar analogs in our galaxy. Several ten thousand additional stars may be investigated in the guest observer program open to the whole world.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Song; Qiu, Yanli; Liu, Jifeng
Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm withmore » good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.« less
Einstein X-ray observations of M101
NASA Technical Reports Server (NTRS)
Trinchieri, G.; Fabbiano, G.; Romaine, S.
1990-01-01
The Einstein X-ray observations of the face-on spiral galaxy M101 are presented. The global X-ray luminosity L(x) of M101 is about 1.2 x 10 to the 40th ergs/s for D = 7.2 Mpc, consistent with the expected X-ray luminosity of normal spiral galaxies of its optical magnitude. The X-ray emission is mostly due to very luminous individual sources, with L(x) greater than 10 to the 38th ergs/s each, most likely very massive accreting binary systems. The data suggest a deficiency of sources in the luminosity range of L(x) from about 10 to the 37th to about 10 to the 38th ergs/s, which would indicate that the luminosity distribution of the X-ray sources in M101 might be different from that of M31 or M33.
XMM-Newton Archival Study of the ULX Population in Nearby Galaxies
NASA Technical Reports Server (NTRS)
Winter, Lisa M.; Mushotzky, Richard F.; Reynolds, christopher S.
2006-01-01
We present the results of an archival XMM-Newton study of the bright X-ray point sources (L(sub X) greater than 10(exp 38 erg per second)) in 32 nearby galaxies. From our list of approximately 100 point sources, we attempt to determine if there is a low-state counterpart to the Ultraluminous X-ray (ULX) population, searching for a soft-hard state dichotomy similar to that known for Galactic X-ray binaries and testing the specific predictions of the IMBH hypothesis. To this end, we searched for low-state objects, which we defined as objects within our sample which had a spectrum well fit by a simple absorbed power law, and high-state objects, which we defined as objects better fit by a combined blackbody and a power law. Assuming that low-state)) objects accrete at approximately 10% of the Eddington luminosity (Done & Gierlinski 2003) and that high-state objects accrete near the Eddington luminosity we further divided our sample of sources into low and high state ULX sources. We classify 16 sources as low-state ULXs and 26 objects as high-state ULXs. As in Galactic black hole systems, the spectral indices, GAMMA, of the lowstate objects, as well as the luminosities, tend to be lower than those of the high-state objects. The observed range of blackbody temperatures for the high state is 0.1-1 keV, with the most luminous systems tending toward the lowest temperatures. We therefore divide our high-state ULXs into candidate IMBHs (with blackbody temperatures of approximately 0.1 keV) and candidate stellar mass BHs (with blackbody temperatures of approximately 1.0 keV). A subset of the candidate stellar mass BHs have spectra that are well-fit by a Comptonization model, a property similar of Galactic BHs radiating in the very-high state near the Eddington limit.
THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luque-Escamilla, Pedro L.; Martí, Josep; Muñoz-Arjonilla, Álvaro J., E-mail: peter@ujaen.es, E-mail: jmarti@ujaen.es, E-mail: ajmunoz@ujaen.es
2014-12-10
We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest inmore » time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.« less
Very Luminous X-ray Point Sources in Starburst Galaxies
NASA Astrophysics Data System (ADS)
Colbert, E.; Heckman, T.; Ptak, A.; Weaver, K. A.; Strickland, D.
Extranuclear X-ray point sources in external galaxies with luminosities above 1039.0 erg/s are quite common in elliptical, disk and dwarf galaxies, with an average of ~ 0.5 and dwarf galaxies, with an average of ~0.5 sources per galaxy. These objects may be a new class of object, perhaps accreting intermediate-mass black holes, or beamed stellar mass black hole binaries. Starburst galaxies tend to have a larger number of these intermediate-luminosity X-ray objects (IXOs), as well as a large number of lower-luminosity (1037 - 1039 erg/s) point sources. These point sources dominate the total hard X-ray emission in starburst galaxies. We present a review of both types of objects and discuss possible schemes for their formation.
Exposing the Binary Heart of ETA Carinae
NASA Technical Reports Server (NTRS)
Forman, WIlliam; Mushotzky, Richard (Technical Monitor)
2005-01-01
Continued progress was made last year on A1367. As noted before, A1367 is a puzzling cluster with a large elongation, suggesting a major merger but with an anti-correlation between the luminosity and temperature of the two components of the cluster (NE and SW). The less luminous subconcentration appears hotter and the more luminous portion of the cluster appears cooler in contradiction to the well-established positive correlation of temperature and luminosity for clusters and groups. With the XMM-Newton observation we have developed a merger model to explain this apparent contradiction.
ADIABATIC MASS LOSS IN BINARY STARS. II. FROM ZERO-AGE MAIN SEQUENCE TO THE BASE OF THE GIANT BRANCH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Hongwei; Chen, Xuefei; Han, Zhanwen
2015-10-10
In the limit of extremely rapid mass transfer, the response of a donor star in an interacting binary becomes asymptotically one of adiabatic expansion. We survey here adiabatic mass loss from Population I stars (Z = 0.02) of mass 0.10 M{sub ⊙}–100 M{sub ⊙} from the zero-age main sequence to the base of the giant branch, or to central hydrogen exhaustion for lower main sequence stars. The logarithmic derivatives of radius with respect to mass along adiabatic mass-loss sequences translate into critical mass ratios for runaway (dynamical timescale) mass transfer, evaluated here under the assumption of conservative mass transfer. Formore » intermediate- and high-mass stars, dynamical mass transfer is preceded by an extended phase of thermal timescale mass transfer as the star is stripped of most of its envelope mass. The critical mass ratio q{sub ad} (throughout this paper, we follow the convention of defining the binary mass ratio as q ≡ M{sub donor}/M{sub accretor}) above which this delayed dynamical instability occurs increases with advancing evolutionary age of the donor star, by ever-increasing factors for more massive donors. Most intermediate- or high-mass binaries with nondegenerate accretors probably evolve into contact before manifesting this instability. As they approach the base of the giant branch, however, and begin developing a convective envelope, q{sub ad} plummets dramatically among intermediate-mass stars, to values of order unity, and a prompt dynamical instability occurs. Among low-mass stars, the prompt instability prevails throughout main sequence evolution, with q{sub ad} declining with decreasing mass, and asymptotically approaching q{sub ad} = 2/3, appropriate to a classical isentropic n = 3/2 polytrope. Our calculated q{sub ad} values agree well with the behavior of time-dependent models by Chen and Han of intermediate-mass stars initiating mass transfer in the Hertzsprung gap. Application of our results to cataclysmic variables, as systems that must be stable against rapid mass transfer, nicely circumscribes the range in q{sub ad} as a function of the orbital period in which they are found. These results are intended to advance the verisimilitude of population synthesis models of close binary evolution.« less
Low-mass X-ray binary MAXI J1421-613 observed by MAXI GSC and Swift XRT
NASA Astrophysics Data System (ADS)
Serino, Motoko; Shidatsu, Megumi; Ueda, Yoshihiro; Matsuoka, Masaru; Negoro, Hitoshi; Yamaoka, Kazutaka; Kennea, Jamie A.; Fukushima, Kosuke; Nagayama, Takahiro
2015-04-01
Monitor of All sky X-ray Image (MAXI) discovered a new outburst of an X-ray transient source named MAXI J1421-613. Because of the detection of three X-ray bursts from the source, it was identified as a neutron star low-mass X-ray binary. The results of data analyses of the MAXI GSC (Gas Slit Camera) and the Swift XRT (X-Ray Telescope) follow-up observations suggest that the spectral hardness remained unchanged during the first two weeks of the outburst. All the XRT spectra in the 0.5-10 keV band can be well explained by thermal Comptonization of multi-color disk blackbody emission. The photon index of the Comptonized component is ≈ 2, which is typical of low-mass X-ray binaries in the low/hard state. Since X-ray bursts have a maximum peak luminosity, it is possible to estimate the (maximum) distance from its observed peak flux. The peak flux of the second X-ray burst, which was observed by the GSC, is about 5 photons cm-2 s-1. By assuming a blackbody spectrum of 2.5 keV, the maximum distance to the source is estimated as 7 kpc. The position of this source is contained by the large error regions of two bright X-ray sources detected with Orbiting Solar Observatory-7 (OSO-7) in the 1970s. Besides this, no past activities at the XRT position are reported in the literature. If MAXI J1421-613 is the same source as (one of) these, the outburst observed with MAXI may have occurred after a quiescence of 30-40 years.
RADIO IMAGING OBSERVATIONS OF PSR J1023+0038 IN AN LMXB STATE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deller, A. T.; Moldon, J.; Patruno, A.
2015-08-10
The transitional millisecond pulsar (MSP) binary system PSR J1023+0038 re-entered an accreting state in 2013 June in which it bears many similarities to low-mass X-ray binaries (LMXBs) in quiescence or near-quiescence. At a distance of just 1.37 kpc, PSR J1023+0038 offers an unsurpassed ability to study low-level accretion onto a highly magnetized compact object. We have monitored PSR J1023+0038 intensively using radio imaging with the Karl G. Jansky Very Large Array, the European VLBI Network and the Low Frequency Array, seeing rapidly variable, flat spectrum emission that persists over a period of six months. The flat spectrum and variability aremore » indicative of synchrotron emission originating in an outflow from the system, most likely in the form of a compact, partially self-absorbed jet, as is seen in LMXBs at higher accretion rates. The radio brightness, however, greatly exceeds extrapolations made from observations of more vigorously accreting neutron star LMXB systems. We postulate that PSR J1023+0038 is undergoing radiatively inefficient “propeller-mode” accretion, with the jet carrying away a dominant fraction of the liberated accretion luminosity. We confirm that the enhanced γ-ray emission seen in PSR J1023+0038 since it re-entered an accreting state has been maintained; the increased γ-ray emission in this state can also potentially be associated with propeller-mode accretion. Similar accretion modes can be invoked to explain the radio and X-ray properties of the other two known transitional MSP systems XSS J12270–4859 and PSR J1824–2452I (M28I), suggesting that radiatively inefficient accretion may be a ubiquitous phenomenon among (at least one class of) neutron star binaries at low accretion rates.« less
An Almost Complete Radio Survey of Magnetic Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Dieck, Christopher A.; Everett Barrett, Paul; Beasley, Anthony J.; Pal Singh, Kulinder; Boboltz, David A.; Godon, Patrick; Mason, Paul A.
2016-01-01
This poster presents the results of a radio survey using the Jansky Very Large Array (JVLA) of 129 Magnetic Cataclysmic Variables (MCVs) north of declination -35 deg. 103 hours of observations were performed during the JVLA observing sessions 2013B and 2015A, when the array was mostly in its highest spatial-resolution configurations (i.e., A and B). Most targets were observed twice for 2-5 minutes at each of three frequencies (C, X, and K-bands), although a few targets were also observed at a fourth frequency (Q-band). 22 of the 129 MCVS were detected at one or more frequencies. Of these 22 detections, 15 are new. This number nearly triples the number of MCVs that are known radio sources. Most detections are at the C and X-band frequencies, although three sources were detected at the K-band frequency. One of the K-band frequency detections is the known rapidly-rotating radio source AE Aqr, while the other two are the polars, AI Tri and ST LMi. Of the 22 detected sources, two-thirds are polars (15) and all are believed to be nearby (<200 pc). Except for a few stronger sources, most detections are in the range of 100-200 µJy, which at a distance of 150 pc corresponds roughly to a luminosity of 2x1024 erg/s at the X-band frequency. The results of this survey are encouraging in that more MCVs are likely to be detected as the time on-source increases, since the flux from MCVs is highly variable.
MAXI J1957+032: An Accreting Neutron Star Possibly in a Triple System
NASA Astrophysics Data System (ADS)
Ravi, V.
2017-12-01
I present an optical characterization of the Galactic X-ray transient source MAXI J1957+032. This system flares by a factor of ≳104 every few hundred days, with each flare lasting ∼5 days. I identify its quiescent counterpart to be a late-K/early-M dwarf star at a distance of 5 ± 2 kpc. This implies that the peak 0.5{--}10 {keV} luminosity of the system is {10}36.4+/- 0.4 erg s‑1. As found by Mata Sanchez et al. the outburst properties of MAXI J1957+032 are most consistent with the sample of accreting millisecond pulsars. However, the low inferred accretion rate, and the lack of evidence for a hydrogen-rich accretion flow, are difficult to reconcile with the late-K/early-M dwarf counterpart being the mass donor. Instead, the observations are best described by a low-mass hydrogen- and possibly helium-poor mass donor, such as a carbon–oxygen white dwarf, forming a tight interacting binary with a neutron star. The observed main-sequence counterpart would then likely be in a wide orbit around the inner binary.
Tidal Disruption Events Across Cosmic Time
NASA Astrophysics Data System (ADS)
Fialkov, Anastasia; Loeb, Abraham
2017-01-01
Tidal disruption events (TDEs) of stars by single or binary super-massive black holes illuminate the environment around quiescent black holes in galactic nuclei allowing to probe dorment black holes. We predict the TDE rates expected to be detected by next-generation X-ray surveys. We include events sourced by both single and binary super-massive black holes assuming that 10% of TDEs lead to the formation of relativistic jets and are therefore observable to higher redshifts. Assigning the Eddington luminosity to each event, we show that if the occupation fraction of intermediate black holes is high, more than 90% of the brightest TDE might be associated with merging black holes which are potential sources for eLISA. Next generation telescopes with improved sensitivities should probe dim local TDE events as well as bright events at high redshifts. We show that an instrument which is 50 times more sensitive than the Swift Burst Alert Telescope (BAT) is expected to trigger ~10 times more events than BAT. Majority of these events originate at low redshifts (z<0.5) if the occupation fraction of IMBHs is high and at high-redshift (z>2) if it is low.
NASA Technical Reports Server (NTRS)
Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.
2009-01-01
This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of they infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 1040 erg per second would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shacks likely contribute very little, if at all, to the high excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on they predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] hi some starburst systems containing black hole binaries.
NASA Technical Reports Server (NTRS)
Berghea, C. T.; Dudik, R. P.; Weaver, K. A.; Kallman, T. R.
2009-01-01
This is the second of two papers examining Spitzer Infrared Spectrograph (IRS) observations of the ultraluminous X-ray source (ULX) in Holmberg II. Here we perform detailed photoionization modeling of the infrared lines. Our analysis suggests that the luminosity and morphology of the [O IV] 25.89 micron emission line is consistent with photoionization by the soft X-ray and far ultraviolet (FUV) radiation from the accretion disk of the binary system and inconsistent with narrow beaming. We show that the emission nebula is matter-bounded both in the line of sight direction and to the east, and probably radiation-bounded to the west. A bolometric luminosity in excess of 10(exp 40) erg/s would be needed to produce the measured [O IV] flux. We use modeling and previously published studies to conclude that shocks likely contribute very little, if at all, to the high-excitation line fluxes observed in the Holmberg II ULX. Additionally, we find that the spectral type of the companion star has a surprisingly strong effect on the predicted strength of the [O IV] emission. This finding could explain the origin of [O IV] in some starburst systems containing black hole binaries.
IGR J14257-6117, a magnetic accreting white dwarf with a very strong strong X-ray orbital modulation
NASA Astrophysics Data System (ADS)
Bernardini, F.; de Martino, D.; Mukai, K.; Falanga, M.
2018-07-01
IGR J14257-6117 is an unclassified source in the hard X-ray catalogues. Optical follow-ups suggest it could be a Cataclysmic Variable (CV) of the magnetic type. We present the first high signal-to-noise (S/N) X-ray observation performed by XMM-Newton at 0.3-10 keV, complemented with 10-80 keV coverage by Swift/BAT, aimed at revealing the source nature. We detected for the first time a fast periodic variability at 509.5 s and a longer periodic variability at 4.05 h, ascribed to the white dwarf (WD) spin and binary orbital periods, respectively. These unambiguously identify IGR J14257-6117 as a magnetic CV of the intermediate polar (IP) type. The energy-resolved light curves at both periods reveal amplitudes decreasing with increasing energy, with the orbital modulation reaching ˜ 100 per cent in the softest band. The energy spectrum shows optically thin thermal emission with an excess at the iron complex, absorbed by two dense media (NH ˜ 1022 - 23 cm-2), partially covering the X-ray source. These are likely localized in the magnetically confined accretion flow above the WD surface and at the disc rim, producing the energy-dependent spin and orbital variabilities, respectively. IGR J14257-6117 joins the group of strongest orbitally modulated IPs now counting four systems. Drawing similarities with low-mass X-ray binaries displaying orbital dips, these IPs should be seen at large orbital inclinations allowing azimuthally extended absorbing material fixed in the binary frame to intercept the line of sight. For IGR J14257-6117, we estimate 50o ≲ i ≲ 70o. Whether also the mass accretion rate plays a role in the large orbital modulations in IPs cannot be established with the present data.
NASA Astrophysics Data System (ADS)
Homan, Jeroen; van der Klis, Michiel; Wijnands, Rudy; Belloni, Tomaso; Fender, Rob; Klein-Wolt, Marc; Casella, Piergiorgio; Méndez, Mariano; Gallo, Elena; Lewin, Walter H. G.; Gehrels, Neil
2007-02-01
We report on the first 10 weeks of RXTE observations of the X-ray transient XTE J1701-462 and conclude that it had all the characteristics of the neutron star Z sources, i.e., the brightest persistent neutron star low-mass X-ray binaries. These include the typical Z-shaped tracks traced out in X-ray color diagrams and the variability components detected in the power spectra, such as kHz QPOs and normal and horizontal branch oscillations. XTE J1701-462 is the first transient Z source and provides unique insights into mass accretion rate (m˙) and luminosity dependencies in neutron star X-ray binaries. As its overall luminosity decreased, we observed a switch between two types of Z source behavior, with the branches of the Z track changing their shape and/or orientation. We interpret this as an extreme case of the more moderate long-term changes seen in the persistent Z sources and suggest that they result from changes in m˙. We also suggest that the Cyg-like Z sources (Cyg X-2, GX 5-1, and GX 340+0) are substantially more luminous (>50%) than the Sco-like Z sources (Sco X-1, GX 17+2, and GX 349+2). Adopting a possible explanation for the behavior of kHz QPOs, which involves a prompt as well as a filtered response to changes in m˙, we further propose that changes in m˙ can explain both movement along the Z track and changes in the shape of the Z track. We discuss some consequences of this and consider the possibility that the branches of the Z will smoothly evolve into the branches observed in X-ray color diagrams of the less luminous atoll sources, although not in a way that was previously suggested.
CH Cygni. I. Observational Evidence for a Disk-Jet Connection
NASA Astrophysics Data System (ADS)
Sokoloski, J. L.; Kenyon, S. J.
2003-02-01
We investigate the role of accretion in the production of jets in the symbiotic star CH Cygni. Assuming that the rapid stochastic optical variations in CH Cygni come from the accretion disk, as in cataclysmic variables, we use changes in this flickering to diagnose the state of the disk in 1997. At that time, CH Cygni dropped to a very low optical state, and Karovska et al. report that a radio jet was produced. For approximately 1 yr after the jet production, the amplitude of the fastest (timescale of minutes) variations was significantly reduced, although smooth, hour-timescale variations were still present. This light-curve evolution indicates that the inner disk may have been disrupted, or emission from this region suppressed, in association with the mass ejection event. We describe optical spectra that support this interpretation of the flickering changes. The simultaneous state change, jet ejection, and disk disruption suggest a comparison between CH Cygni and some black hole candidate X-ray binaries that show changes in the inner-disk radius in conjunction with discrete ejection events on a wide range of timescales (e.g., the microquasar GRS 1915+105 and XTE J1550-564).
Optical studies of the X-ray transient XTE J2123-058 - II. Phase-resolved spectroscopy
NASA Astrophysics Data System (ADS)
Hynes, R. I.; Charles, P. A.; Haswell, C. A.; Casares, J.; Zurita, C.; Serra-Ricart, M.
2001-06-01
We present time-resolved spectroscopy of the soft X-ray transient XTEJ2123-058 in outburst. A useful spectral coverage of 3700-6700Å was achieved spanning two orbits of the binary, with single-epoch coverage extending to ~9000Å. The optical spectrum approximates a steep blue power law, consistent with emission on the Rayleigh-Jeans tail of a hot blackbody spectrum. The strongest spectral lines are Heii 4686Å and Ciii/Niii 4640Å (Bowen blend) in emission. Their relative strengths suggest that XTEJ2123-058 was formed in the Galactic plane, not in the halo. Other weak emission lines of Heii and Civ are present, and Balmer lines show a complex structure, blended with Heii. Heii 4686-Å profiles show a complex multiple S-wave structure, with the strongest component appearing at low velocities in the lower-left quadrant of a Doppler tomogram. Hα shows transient absorption between phases 0.35 and 0.55. Both of these effects appear to be analogous to similar behaviour in SW Sex type cataclysmic variables. We therefore consider whether the spectral line behaviour of XTEJ2123-058 can be explained by the same models invoked for those systems.
Kepler Observations of V447 Lyr: an Eclipsing U Gem Cataclysmic Variable
NASA Technical Reports Server (NTRS)
Ramsay, Gavin; Cannizzo, John K.; Howell, Steve B.; Wood, Matt A.; Still, Martin; Barclay, Thomas; Smale, Alan
2012-01-01
We present the results of an analysis of Kepler data covering 1.5 yr of the dwarf nova V447 Lyr. We detect eclipses of the accretion disc by the mass donating secondary star every 3.74 h which is the binary orbital period. V447 Lyr is therefore the first dwarf nova in the Kepler field to show eclipses.We also detect five long outbursts and six short outbursts showing V447 Lyr is a U Gem-type dwarf nova. We show that the orbital phase of the mid-eclipse occurs earlier during outbursts compared to quiescence and that the width of the eclipse is greater during outburst. This suggests that the bright spot is more prominent during quiescence and that the disc is larger during outburst than quiescence. This is consistent with an expansion of the outer disc radius due to the presence of high viscosity material associated with the outburst, followed by a contraction in quiescence due to the accretion of low angular momentum material. We note that the long outbursts appear to be triggered by a short outburst, which is also observed in the super-outbursts of SU UMa dwarf novae as observed using Kepler.
NASA Astrophysics Data System (ADS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Abernathy, M.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.; Amador Ceron, E.; Amin, R. S.; Anderson, S. B.; Anderson, W. G.; Antonucci, F.; Arain, M. A.; Araya, M.; Aronsson, M.; Arun, K. G.; Aso, Y.; Aston, S.; Astone, P.; Atkinson, D. E.; Aufmuth, P.; Aulbert, C.; Babak, S.; Baker, P.; Ballardin, G.; Ballinger, T.; Ballmer, S.; Barker, D.; Barnum, S.; Barone, F.; Barr, B.; Barriga, P.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Bastarrika, M.; Bauchrowitz, J.; Bauer, Th. S.; Behnke, B.; Beker, M. G.; Belletoile, A.; Benacquista, M.; Bertolini, A.; Betzwieser, J.; Beveridge, N.; Beyersdorf, P. T.; Bigotta, S.; Bilenko, I. A.; Billingsley, G.; Birch, J.; Birindelli, S.; Biswas, R.; Bitossi, M.; Bizouard, M. A.; Black, E.; Blackburn, J. K.; Blackburn, L.; Blair, D.; Bland, B.; Blom, M.; Boccara, C.; Bock, O.; Bodiya, T. P.; Bondarescu, R.; Bondu, F.; Bonelli, L.; Bonnand, R.; Bork, R.; Born, M.; Bose, S.; Bosi, L.; Bouhou, B.; Boyle, M.; Braccini, S.; Bradaschia, C.; Brady, P. R.; Braginsky, V. B.; Brau, J. E.; Breyer, J.; Bridges, D. O.; Brillet, A.; Brinkmann, M.; Brisson, V.; Britzger, M.; Brooks, A. F.; Brown, D. A.; Budzyński, R.; Bulik, T.; Bulten, H. J.; Buonanno, A.; Burguet–Castell, J.; Burmeister, O.; Buskulic, D.; Buy, C.; Byer, R. L.; Cadonati, L.; Cagnoli, G.; Cain, J.; Calloni, E.; Camp, J. B.; Campagna, E.; Campsie, P.; Cannizzo, J.; Cannon, K. C.; Canuel, B.; Cao, J.; Capano, C.; Carbognani, F.; Caudill, S.; Cavaglià, M.; Cavalier, F.; Cavalieri, R.; Cella, G.; Cepeda, C.; Cesarini, E.; Chalermsongsak, T.; Chalkley, E.; Charlton, P.; Chassande-Mottin, E.; Chelkowski, S.; Chen, Y.; Chincarini, A.; Christensen, N.; Chua, S. S. Y.; Chung, C. T. Y.; Clark, D.; Clark, J.; Clayton, J. H.; Cleva, F.; Coccia, E.; Colacino, C. N.; Colas, J.; Colla, A.; Colombini, M.; Conte, R.; Cook, D.; Corbitt, T. R.; Cornish, N.; Corsi, A.; Costa, C. A.; Coulon, J.-P.; Coward, D.; Coyne, D. C.; Creighton, J. D. E.; Creighton, T. D.; Cruise, A. M.; Culter, R. M.; Cumming, A.; Cunningham, L.; Cuoco, E.; Dahl, K.; Danilishin, S. L.; Dannenberg, R.; D'Antonio, S.; Danzmann, K.; Das, K.; Dattilo, V.; Daudert, B.; Davier, M.; Davies, G.; Davis, A.; Daw, E. J.; Day, R.; Dayanga, T.; de Rosa, R.; Debra, D.; Degallaix, J.; Del Prete, M.; Dergachev, V.; Derosa, R.; Desalvo, R.; Devanka, P.; Dhurandhar, S.; di Fiore, L.; di Lieto, A.; di Palma, I.; di Paolo Emilio, M.; di Virgilio, A.; Díaz, M.; Dietz, A.; Donovan, F.; Dooley, K. L.; Doomes, E. E.; Dorsher, S.; Douglas, E. S. D.; Drago, M.; Drever, R. W. P.; Driggers, J. C.; Dueck, J.; Dumas, J.-C.; Eberle, T.; Edgar, M.; Edwards, M.; Effler, A.; Ehrens, P.; Ely, G.; Engel, R.; Etzel, T.; Evans, M.; Evans, T.; Fafone, V.; Fairhurst, S.; Fan, Y.; Farr, B. F.; Fazi, D.; Fehrmann, H.; Feldbaum, D.; Ferrante, I.; Fidecaro, F.; Finn, L. S.; Fiori, I.; Flaminio, R.; Flanigan, M.; Flasch, K.; Foley, S.; Forrest, C.; Forsi, E.; Fotopoulos, N.; Fournier, J.-D.; Franc, J.; Frasca, S.; Frasconi, F.; Frede, M.; Frei, M.; Frei, Z.; Freise, A.; Frey, R.; Fricke, T. T.; Friedrich, D.; Fritschel, P.; Frolov, V. V.; Fulda, P.; Fyffe, M.; Galimberti, M.; Gammaitoni, L.; Garofoli, J. A.; Garufi, F.; Gemme, G.; Genin, E.; Gennai, A.; Ghosh, S.; Giaime, J. A.; Giampanis, S.; Giardina, K. D.; Giazotto, A.; Gill, C.; Goetz, E.; Goggin, L. M.; González, G.; Goßler, S.; Gouaty, R.; Graef, C.; Granata, M.; Grant, A.; Gras, S.; Gray, C.; Greenhalgh, R. J. S.; Gretarsson, A. M.; Greverie, C.; Grosso, R.; Grote, H.; Grunewald, S.; Guidi, G. M.; Gustafson, E. K.; Gustafson, R.; Hage, B.; Hall, P.; Hallam, J. M.; Hammer, D.; Hammond, G.; Hanks, J.; Hanna, C.; Hanson, J.; Harms, J.; Harry, G. M.; Harry, I. W.; Harstad, E. D.; Haughian, K.; Hayama, K.; Hayau, J.-F.; Hayler, T.; Heefner, J.; Heitmann, H.; Hello, P.; Heng, I. S.; Heptonstall, A.; Hewitson, M.; Hild, S.; Hirose, E.; Hoak, D.; Hodge, K. A.; Holt, K.; Hosken, D. J.; Hough, J.; Howell, E.; Hoyland, D.; Huet, D.; Hughey, B.; Husa, S.; Huttner, S. H.; Huynh–Dinh, T.; Ingram, D. R.; Inta, R.; Isogai, T.; Ivanov, A.; Jaranowski, P.; Johnson, W. W.; Jones, D. I.; Jones, G.; Jones, R.; Ju, L.; Kalmus, P.; Kalogera, V.; Kandhasamy, S.; Kanner, J.; Katsavounidis, E.; Kawabe, K.; Kawamura, S.; Kawazoe, F.; Kells, W.; Keppel, D. G.; Khalaidovski, A.; Khalili, F. Y.; Khazanov, E. A.; Kim, H.; King, P. J.; Kinzel, D. L.; Kissel, J. S.; Klimenko, S.; Kondrashov, V.; Kopparapu, R.; Koranda, S.; Kowalska, I.; Kozak, D.; Krause, T.; Kringel, V.; Krishnamurthy, S.; Krishnan, B.; Królak, A.; Kuehn, G.; Kullman, J.; Kumar, R.; Kwee, P.; Landry, M.; Lang, M.; Lantz, B.; Lastzka, N.; Lazzarini, A.; Leaci, P.; Leong, J.; Leonor, I.; Leroy, N.; Letendre, N.; Li, J.; Li, T. G. F.; Lin, H.; Lindquist, P. E.; Lockerbie, N. A.; Lodhia, D.; Lorenzini, M.; Loriette, V.; Lormand, M.; Losurdo, G.; Lu, P.; Luan, J.; Lubiński, M.; Lucianetti, A.; Lück, H.; Lundgren, A.; Machenschalk, B.; Macinnis, M.; Mageswaran, M.; Mailand, K.; Majorana, E.; Mak, C.; Maksimovic, I.; Man, N.; Mandel, I.; Mandic, V.; Mantovani, M.; Marchesoni, F.; Marion, F.; Márka, S.; Márka, Z.; Maros, E.; Marque, J.; Martelli, F.; Martin, I. W.; Martin, R. M.; Marx, J. N.; Mason, K.; Masserot, A.; Matichard, F.; Matone, L.; Matzner, R. A.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McGuire, S. C.; McIntyre, G.; McIvor, G.; McKechan, D. J. A.; Meadors, G.; Mehmet, M.; Meier, T.; Melatos, A.; Melissinos, A. C.; Mendell, G.; Menéndez, D. F.; Mercer, R. A.; Merill, L.; Meshkov, S.; Messenger, C.; Meyer, M. S.; Miao, H.; Michel, C.; Milano, L.; Miller, J.; Minenkov, Y.; Mino, Y.; Mitra, S.; Mitrofanov, V. P.; Mitselmakher, G.; Mittleman, R.; Moe, B.; Mohan, M.; Mohanty, S. D.; Mohapatra, S. R. P.; Moraru, D.; Moreau, J.; Moreno, G.; Morgado, N.; Morgia, A.; Mors, K.; Mosca, S.; Moscatelli, V.; Mossavi, K.; Mours, B.; Mowlowry, C.; Mueller, G.; Mukherjee, S.; Mullavey, A.; Müller-Ebhardt, H.; Munch, J.; Murray, P. G.; Nash, T.; Nawrodt, R.; Nelson, J.; Neri, I.; Newton, G.; Nishida, E.; Nishizawa, A.; Nocera, F.; Nolting, D.; Ochsner, E.; O'Dell, J.; Ogin, G. H.; Oldenburg, R. G.; O'Reilly, B.; O'Shaughnessy, R.; Osthelder, C.; Ottaway, D. J.; Ottens, R. S.; Overmier, H.; Owen, B. J.; Page, A.; Pagliaroli, G.; Palladino, L.; Palomba, C.; Pan, Y.; Pankow, C.; Paoletti, F.; Papa, M. A.; Pardi, S.; Pareja, M.; Parisi, M.; Pasqualetti, A.; Passaquieti, R.; Passuello, D.; Patel, P.; Pathak, D.; Pedraza, M.; Pekowsky, L.; Penn, S.; Peralta, C.; Perreca, A.; Persichetti, G.; Pichot, M.; Pickenpack, M.; Piergiovanni, F.; Pietka, M.; Pinard, L.; Pinto, I. M.; Pitkin, M.; Pletsch, H. J.; Plissi, M. V.; Poggiani, R.; Postiglione, F.; Prato, M.; Predoi, V.; Price, L. R.; Prijatelj, M.; Principe, M.; Prix, R.; Prodi, G. A.; Prokhorov, L.; Puncken, O.; Punturo, M.; Puppo, P.; Quetschke, V.; Raab, F. J.; Rabeling, D. S.; Radke, T.; Radkins, H.; Raffai, P.; Rakhmanov, M.; Rankins, B.; Rapagnani, P.; Raymond, V.; Re, V.; Reed, C. M.; Reed, T.; Regimbau, T.; Reid, S.; Reitze, D. H.; Ricci, F.; Riesen, R.; Riles, K.; Roberts, P.; Robertson, N. A.; Robinet, F.; Robinson, C.; Robinson, E. L.; Rocchi, A.; Roddy, S.; Röver, C.; Rolland, L.; Rollins, J.; Romano, J. D.; Romano, R.; Romie, J. H.; Rosińska, D.; Rowan, S.; Rüdiger, A.; Ruggi, P.; Ryan, K.; Sakata, S.; Sakosky, M.; Salemi, F.; Sammut, L.; Sancho de La Jordana, L.; Sandberg, V.; Sannibale, V.; Santamaría, L.; Santostasi, G.; Saraf, S.; Sassolas, B.; Sathyaprakash, B. S.; Sato, S.; Satterthwaite, M.; Saulson, P. R.; Savage, R.; Schilling, R.; Schnabel, R.; Schofield, R.; Schulz, B.; Schutz, B. F.; Schwinberg, P.; Scott, J.; Scott, S. M.; Searle, A. C.; Seifert, F.; Sellers, D.; Sengupta, A. S.; Sentenac, D.; Sergeev, A.; Shaddock, D.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sibley, A.; Siemens, X.; Sigg, D.; Singer, A.; Sintes, A. M.; Skelton, G.; Slagmolen, B. J. J.; Slutsky, J.; Smith, J. R.; Smith, M. R.; Smith, N. D.; Somiya, K.; Sorazu, B.; Speirits, F. C.; Sperandio, L.; Stein, A. J.; Stein, L. C.; Steinlechner, S.; Steplewski, S.; Stochino, A.; Stone, R.; Strain, K. A.; Strigin, S.; Stroeer, A.; Sturani, R.; Stuver, A. L.; Summerscales, T. Z.; Sung, M.; Susmithan, S.; Sutton, P. J.; Swinkels, B.; Talukder, D.; Tanner, D. B.; Tarabrin, S. P.; Taylor, J. R.; Taylor, R.; Thomas, P.; Thorne, K. A.; Thorne, K. S.; Thrane, E.; Thüring, A.; Titsler, C.; Tokmakov, K. V.; Toncelli, A.; Tonelli, M.; Torre, O.; Torres, C.; Torrie, C. I.; Tournefier, E.; Travasso, F.; Traylor, G.; Trias, M.; Trummer, J.; Tseng, K.; Turner, L.; Ugolini, D.; Urbanek, K.; Vahlbruch, H.; Vaishnav, B.; Vajente, G.; Vallisneri, M.; van den Brand, J. F. J.; van den Broeck, C.; van der Putten, S.; van der Sluys, M. V.; van Veggel, A. A.; Vass, S.; Vaulin, R.; Vavoulidis, M.; Vecchio, A.; Vedovato, G.; Veitch, J.; Veitch, P. J.; Veltkamp, C.; Verkindt, D.; Vetrano, F.; Viceré, A.; Villar, A.; Vinet, J.-Y.; Vocca, H.; Vorvick, C.; Vyachanin, S. P.; Waldman, S. J.; Wallace, L.; Wanner, A.; Ward, R. L.; Was, M.; Wei, P.; Weinert, M.; Weinstein, A. J.; Weiss, R.; Wen, L.; Wen, S.; Wessels, P.; West, M.; Westphal, T.; Wette, K.; Whelan, J. T.; Whitcomb, S. E.; White, D. J.; Whiting, B. F.; Wilkinson, C.; Willems, P. A.; Williams, L.; Willke, B.; Winkelmann, L.; Winkler, W.; Wipf, C. C.; Wiseman, A. G.; Woan, G.; Wooley, R.; Worden, J.; Yakushin, I.; Yamamoto, H.; Yamamoto, K.; Yeaton-Massey, D.; Yoshida, S.; Yu, P. P.; Yvert, M.; Zanolin, M.; Zhang, L.; Zhang, Z.; Zhao, C.; Zotov, N.; Zucker, M. E.; Zweizig, J.
2010-11-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory’s S5 and Virgo’s VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M⊙. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7×10-3yr-1L10-1, 2.2×10-3yr-1L10-1, and 4.4×10-4yr-1L10-1, respectively, where L10 is 1010 times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
NASA Technical Reports Server (NTRS)
Abadie, J.; Abbott, B. P.; Abbott, R.; Accadia, T.; Acernese, F.; Adams, C.; Adhikari, R.; Ajith, P.; Allen, B.; Allen, G.;
2010-01-01
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo detectors. Five months of data were collected during the concurrent S5 (UGO) and VSRI (Virgo) science runs. The search focused on signals from binary mergers with a total mass between 2 and 35 Solar Mass. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for non-spinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7 x 10(exp -3) / yr-1/L(sub 10) 2.2 x 10-3 yr-1L101, and 4.4 x 10(exp -4)3) / yr-1/L(sub 10) respectively, where L (sub 10) is 10(exp 10) times the blue solar luminosity. These upper limits are compared with astrophysical expectations.
NASA Astrophysics Data System (ADS)
Lee, Myung Gyoon; Kang, Jisu; Im, Myungshin
2018-05-01
NGC 4993 hosts a binary neutron star merger, GW170817/GRB 170817A, emitting gravitational waves and electromagnetic waves. The distance to this galaxy is not well established. We select the globular cluster candidates from the Hubble Space Telescope (HST)/ACS F606W images of NGC 4993 in the archive, using the structural parameters of the detected sources. The radial number density distribution of these candidates shows a significant central concentration around the galaxy center at the galactocentric distance r < 50″, showing that they are mostly the members of NGC 4993. Also, the luminosity function of these candidates is fit well by a Gaussian function. Therefore, the selected candidates at r < 50″ are mostly considered to be globular clusters in NGC 4993. We derive an extinction-corrected turnover Vega magnitude in the luminosity function of the globular clusters at 20″ < r < 50″, F606W (max)0 = 25.36 ± 0.08 (V 0 = 25.52 ± 0.11) mag. Adopting the calibration of the turnover magnitudes of the globular clusters, M V (max) = ‑7.58 ± 0.11, we derive a distance to NGC 4993, d = 41.65 ± 3.00 Mpc ({(m-M)}0 = 33.10+/- 0.16). The systematic error of this method can be as large as ±0.3 mag. This value is consistent with the previous distance estimates based on the fundamental plane relation and the gravitational wave method in the literature. The distance in this study can be used to constrain the values of the parameters including the inclination angle of the binary system in the models of gravitational wave analysis.
Individual Dynamical Masses of Ultracool Dwarfs
NASA Astrophysics Data System (ADS)
Dupuy, Trent J.; Liu, Michael C.
2017-08-01
We present the full results of our decade-long astrometric monitoring programs targeting 31 ultracool binaries with component spectral types M7-T5. Joint analysis of resolved imaging from Keck Observatory and Hubble Space Telescope and unresolved astrometry from CFHT/WIRCam yields parallactic distances for all systems, robust orbit determinations for 23 systems, and photocenter orbits for 19 systems. As a result, we measure 38 precise individual masses spanning 30-115 {M}{Jup}. We determine a model-independent substellar boundary that is ≈70 {M}{Jup} in mass (≈L4 in spectral type), and we validate Baraffe et al. evolutionary model predictions for the lithium-depletion boundary (60 {M}{Jup} at field ages). Assuming each binary is coeval, we test models of the substellar mass-luminosity relation and find that in the L/T transition, only the Saumon & Marley “hybrid” models accounting for cloud clearing match our data. We derive a precise, mass-calibrated spectral type-effective temperature relation covering 1100-2800 K. Our masses enable a novel direct determination of the age distribution of field brown dwarfs spanning L4-T5 and 30-70 {M}{Jup}. We determine a median age of 1.3 Gyr, and our population synthesis modeling indicates our sample is consistent with a constant star formation history modulated by dynamical heating in the Galactic disk. We discover two triple-brown-dwarf systems, the first with directly measured masses and eccentricities. We examine the eccentricity distribution, carefully considering biases and completeness, and find that low-eccentricity orbits are significantly more common among ultracool binaries than solar-type binaries, possibly indicating the early influence of long-lived dissipative gas disks. Overall, this work represents a major advance in the empirical view of very low-mass stars and brown dwarfs.
NASA Technical Reports Server (NTRS)
Scargle, Jeffrey D.; Steiman-Cameron, Thomas; Young, Karl; Donoho, David L.; Crutchfield, James P.; Imamura, James
1993-01-01
We present evidence that the quasi-periodic oscillations (QPO) and very low frequency noise (VLFN) characteristic of many accretion sources are different aspects of the same physical process. We analyzed a long, high time resolution EXOSAT observation of the low-mass X-ray binary (LMXB) Sco X-1. The X-ray luminosity varies stochastically on time scales from milliseconds to hours. The nature of this variability - as quantified with both power spectrum analysis and a new wavelet technique, the scalegram - agrees well with the dripping handrail accretion model, a simple dynamical system which exhibits transient chaos. In this model both the QPO and VLFN are produced by radiation from blobs with a wide size distribution, resulting from accretion and subsequent diffusion of hot gas, the density of which is limited by an unspecified instability to lie below a threshold.
Black Hole Event Horizons and Advection-Dominated Accretion
NASA Technical Reports Server (NTRS)
McClintock, Jeffrey; Mushotzky, Richard F. (Technical Monitor)
2001-01-01
The XMM data on black-hole X-ray novae are only now becoming available and they have so far not been included in any publications. This work is part of a larger project that makes use of both XMM and Chandra data. Our first publication on the Chandra results is the following: "New Evidence for Black Hole Event Horizons from Chandra" by M.R. Garcia, J.E. McClintock, R. Narayan, P. Callanan, D. Barret and S. Murray (2001, ApJ, 553, L47). Therein we present the luminosities of the two black-hole X-ray novae, GRO J0422+22 and 4U1 543-47, which were observed by Chandra. These results are combined with the luminosities of four additional black-hole X-ray novae, which were observed as part of a Chandra GTO program (PI: S. Murray). The very low, but nonzero, quiescent X-ray luminosities of these black hole binaries is very difficult to understand in the context of standard viscous accretion disk theory. The principal result of this work is that X-ray novae that contain black hole primaries are about 100 times fainter that X-ray novae that contain neutron star primaries. This result had been suggested in earlier work, but the present work very firmly establishes this large luminosity difference. The result is remarkable because the black-hole and the neutron-star systems are believed to be similar in many respects. Most importantly, the mass transfer rate from the secondary star is believed to be very comparable for the two kinds of systems for similar orbital periods. The advection-dominated accretion flow (ADAF) model provides a natural framework for understanding the extraordinarily low luminosities of the black hole systems and the hundred-fold greater luminosities of the neutron star systems. The chief feature of an ADAF is that the heat energy in the accreting gas is trapped in the gas and travels with it, rather than being radiated promptly. Thus the accreting gas reaches the central object with a huge amount of thermal energy. If the accretor is a black hole, the thermal energy will disappear through the event horizon, and the object will be very dim. On the other hand, if the central object is a neutron star or any other object with a surface, then the energy will be radiated from the surface, and the object will be bright.
Detection of variable VHE γ-ray emission from the extra-galactic γ-ray binary LMC P3
NASA Astrophysics Data System (ADS)
HESS Collaboration; Abdalla, H.; Abramowski, A.; Aharonian, F.; Ait Benkhali, F.; Angüner, E. O.; Arakawa, M.; Armand, C.; Arrieta, M.; Backes, M.; Balzer, A.; Barnard, M.; Becherini, Y.; Becker Tjus, J.; Berge, D.; Bernhard, S.; Bernlöhr, K.; Blackwell, R.; Böttcher, M.; Boisson, C.; Bolmont, J.; Bonnefoy, S.; Bordas, P.; Bregeon, J.; Brun, F.; Brun, P.; Bryan, M.; Büchele, M.; Bulik, T.; Capasso, M.; Caroff, S.; Carosi, A.; Casanova, S.; Cerruti, M.; Chakraborty, N.; Chaves, R. C. G.; Chen, A.; Chevalier, J.; Colafrancesco, S.; Condon, B.; Conrad, J.; Davids, I. D.; Decock, J.; Deil, C.; Devin, J.; deWilt, P.; Dirson, L.; Djannati-Ataï, A.; Donath, A.; Drury, L. O.'C.; Dyks, J.; Edwards, T.; Egberts, K.; Emery, G.; Ernenwein, J.-P.; Eschbach, S.; Farnier, C.; Fegan, S.; Fernandes, M. V.; Fiasson, A.; Fontaine, G.; Funk, S.; Füßling, M.; Gabici, S.; Gallant, Y. A.; Garrigoux, T.; Gaté, F.; Giavitto, G.; Glawion, D.; Glicenstein, J. F.; Gottschall, D.; Grondin, M.-H.; Hahn, J.; Haupt, M.; Hawkes, J.; Heinzelmann, G.; Henri, G.; Hermann, G.; Hinton, J. A.; Hofmann, W.; Hoischen, C.; Holch, T. L.; Holler, M.; Horns, D.; Ivascenko, A.; Iwasaki, H.; Jacholkowska, A.; Jamrozy, M.; Jankowsky, D.; Jankowsky, F.; Jingo, M.; Jouvin, L.; Jung-Richardt, I.; Kastendieck, M. A.; Katarzyński, K.; Katsuragawa, M.; Katz, U.; Kerszberg, D.; Khangulyan, D.; Khélifi, B.; King, J.; Klepser, S.; Klochkov, D.; Kluźniak, W.; Komin, Nu.; Kosack, K.; Krakau, S.; Kraus, M.; Krüger, P. P.; Laffon, H.; Lamanna, G.; Lau, J.; Lefaucheur, J.; Lemière, A.; Lemoine-Goumard, M.; Lenain, J.-P.; Leser, E.; Lohse, T.; Lorentz, M.; Liu, R.; López-Coto, R.; Lypova, I.; Malyshev, D.; Marandon, V.; Marcowith, A.; Mariaud, C.; Marx, R.; Maurin, G.; Maxted, N.; Mayer, M.; Meintjes, P. J.; Meyer, M.; Mitchell, A. M. W.; Moderski, R.; Mohamed, M.; Mohrmann, L.; Morå, K.; Moulin, E.; Murach, T.; Nakashima, S.; de Naurois, M.; Ndiyavala, H.; Niederwanger, F.; Niemiec, J.; Oakes, L.; O'Brien, P.; Odaka, H.; Ohm, S.; Ostrowski, M.; Oya, I.; Padovani, M.; Panter, M.; Parsons, R. D.; Pekeur, N. W.; Pelletier, G.; Perennes, C.; Petrucci, P.-O.; Peyaud, B.; Piel, Q.; Pita, S.; Poireau, V.; Prokhorov, D. A.; Prokoph, H.; Pühlhofer, G.; Punch, M.; Quirrenbach, A.; Raab, S.; Rauth, R.; Reimer, A.; Reimer, O.; Renaud, M.; de los Reyes, R.; Rieger, F.; Rinchiuso, L.; Romoli, C.; Rowell, G.; Rudak, B.; Rulten, C. B.; Sahakian, V.; Saito, S.; Sanchez, D. A.; Santangelo, A.; Sasaki, M.; Schlickeiser, R.; Schüssler, F.; Schulz, A.; Schwanke, U.; Schwemmer, S.; Seglar-Arroyo, M.; Seyffert, A. S.; Shafi, N.; Shilon, I.; Shiningayamwe, K.; Simoni, R.; Sol, H.; Spanier, F.; Spir-Jacob, M.; Stawarz, Ł.; Steenkamp, R.; Stegmann, C.; Steppa, C.; Sushch, I.; Takahashi, T.; Tavernet, J.-P.; Tavernier, T.; Taylor, A. M.; Terrier, R.; Tibaldo, L.; Tiziani, D.; Tluczykont, M.; Trichard, C.; Tsirou, M.; Tsuji, N.; Tuffs, R.; Uchiyama, Y.; van der Walt, D. J.; van Eldik, C.; van Rensburg, C.; van Soelen, B.; Vasileiadis, G.; Veh, J.; Venter, C.; Viana, A.; Vincent, P.; Vink, J.; Voisin, F.; Völk, H. J.; Vuillaume, T.; Wadiasingh, Z.; Wagner, S. J.; Wagner, P.; Wagner, R. M.; White, R.; Wierzcholska, A.; Willmann, P.; Wörnlein, A.; Wouters, D.; Yang, R.; Zaborov, D.; Zacharias, M.; Zanin, R.; Zdziarski, A. A.; Zech, A.; Zefi, F.; Ziegler, A.; Zorn, J.; Żywucka, N.
2018-03-01
Context. Recently, the high-energy (HE, 0.1-100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods: LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period of the system in order to test for variability of the emission. Results: VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1-10 TeV energy range is (1.4 ± 0.2) × 1035 erg s-1. A luminosity of (5 ± 1) × 1035 erg s-1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. LMC P3 is the most luminous γ-ray binary known so far.
Detection of variable VHE γ -ray emission from the extra-galactic γ -ray binary LMC P3
Abdalla, H.; Abramowski, A.; Aharonian, F.; ...
2018-02-01
Context. Recently, the high-energy (HE, 0.1–100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period ofmore » the system in order to test for variability of the emission. Results. VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1–10 TeV energy range is (1.4 ± 0.2) × 1035 erg s -1. A luminosity of (5 ± 1) × 1035 erg s -1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. In conclucion, LMC P3 is the most luminous γ-ray binary known so far.« less
Detection of variable VHE γ -ray emission from the extra-galactic γ -ray binary LMC P3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdalla, H.; Abramowski, A.; Aharonian, F.
Context. Recently, the high-energy (HE, 0.1–100 GeV) γ-ray emission from the object LMC P3 in the Large Magellanic Cloud (LMC) has been discovered to be modulated with a 10.3-day period, making it the first extra-galactic γ-ray binary. Aim. This work aims at the detection of very-high-energy (VHE, >100 GeV) γ-ray emission and the search for modulation of the VHE signal with the orbital period of the binary system. Methods. LMC P3 has been observed with the High Energy Stereoscopic System (H.E.S.S.); the acceptance-corrected exposure time is 100 h. The data set has been folded with the known orbital period ofmore » the system in order to test for variability of the emission. Results. VHE γ-ray emission is detected with a statistical significance of 6.4 σ. The data clearly show variability which is phase-locked to the orbital period of the system. Periodicity cannot be deduced from the H.E.S.S. data set alone. The orbit-averaged luminosity in the 1–10 TeV energy range is (1.4 ± 0.2) × 1035 erg s -1. A luminosity of (5 ± 1) × 1035 erg s -1 is reached during 20% of the orbit. HE and VHE γ-ray emissions are anti-correlated. In conclucion, LMC P3 is the most luminous γ-ray binary known so far.« less
Early-type galaxies in the Chandra cosmos survey
DOE Office of Scientific and Technical Information (OSTI.GOV)
Civano, F.; Fabbiano, G.; Kim, D.-W.
2014-07-20
We study a sample of 69 X-ray detected early-type galaxies (ETGs), selected from the Chandra COSMOS survey, to explore the relation between the X-ray luminosity of hot gaseous halos (L{sub X,{sub gas}}) and the integrated stellar luminosity (L{sub K} ) of the galaxies, in a range of redshift extending out to z = 1.5. In the local universe, a tight, steep relationship has been established between these two quantities (L{sub X,gas}∼L{sub K}{sup 4.5}), suggesting the presence of largely virialized halos in X-ray luminous systems. We use well-established relations from the study of local universe ETGs, together with the expected evolutionmore » of the X-ray emission, to subtract the contribution of low-mass X-ray binary populations from the X-ray luminosity of our sample. Our selection minimizes the presence of active galactic nuclei (AGNs), yielding a sample representative of normal passive COSMOS ETGs; therefore, the resulting luminosity should be representative of gaseous halos, although we cannot exclude other sources such as obscured AGNs or enhanced X-ray emission connected with embedded star formation in the higher-z galaxies. We find that most of the galaxies with estimated L{sub X} < 10{sup 42} erg s{sup –1} and z < 0.55 follow the L{sub X,{sub gas}}-L{sub K} relation of local universe ETGs. For these galaxies, the gravitational mass can be estimated with a certain degree of confidence from the local virial relation. However, the more luminous (10{sup 42} erg s{sup –1}« less
Using HMXBs to Probe Massive Binary Evolution
NASA Astrophysics Data System (ADS)
Garofali, Kristen
2017-09-01
We propose using deep archival Chandra data of M33 to characterize the distribution of physical parameters for the high-mass X-ray binary (HMXB) population from X-ray spectra, X-ray lightcurves, and identified optical counterparts coupled with ground-based spectroscopy. Our analysis will provide the largest clean sample of HMXBs in M33, including hardness, short- and long-term variability, luminosity, and ages. These measurements will be compared across M33 and to HMXB studies in other nearby galaxies to test correlations between HMXB population and host properties such as metallicity and star formation rate. Furthermore, our measurements will yield empirical constraints on prescriptions for models of the formation and evolution of massive stars in binaries.
RXJ0440.9+4431: a Persistent Be-x-ray Binary in Outburst
NASA Technical Reports Server (NTRS)
Ferrigno, C.; Farinelli, R.; Bozzo, E.; Pottschmidt, K.; Klochkov, D.; Kretschmar, P.
2013-01-01
The persistent Be/X-ray binary RXJ0440.9+4431 flared in 2010 and 2011 and has been followed by various X-ray facilities (Swift, RXTE, XMM-Newton, and INTEGRAL).We studied the source timing and spectral properties as a function of its X-ray luminosity to investigate the transition from normal to flaring activity and the dynamical properties of the system. We have determined the orbital period from the long-term Swift/BAT light curve, but our determinations of the spin-period are not precise enough to constrain any orbital solution. The source spectrum can always be described by a bulk-motion Comptonization model of black body seed photons attenuated by a moderate photoelectric absorption. At the highest luminosity, we measured a curvature of the spectrum, which we attribute to a significant contribution of the radiation pressure in the accretion process. This allows us to estimate that the transition from a bulk-motion-dominated flow to a radiatively dominated one happens at a luminosity of approx 2 × 10(exp 36) erg/ s. The luminosity dependency of the size of the black body emission region is found to be r(sub BB) varies as L(sub x) (exp 0.39 +/- 0.02). This suggests that either matter accreting onto the neutron star hosted in RXJ0440.9+4431 penetrates through closed magnetic field lines at the border of the compact object magnetosphere or that the structure of the Neutron star magnetic field is more complicated than a simple dipole close to the surface.
NASA Astrophysics Data System (ADS)
Yi, Shu-Xu; Cheng, K.-S.
2017-12-01
The velocity and density distribution of e± in the pulsar wind are crucial distinction among magnetosphere models, and contain key parameters determining the high-energy emission of pulsar binaries. In this work, a direct method is proposed, which might probe the properties of the wind from one pulsar in a double-pulsar binary. When the radio signals from the first-formed pulsar travel through the relativistic e± flow in the pulsar wind from the younger companion, the components of different radio frequencies will be dispersed. It will introduce an additional frequency-dependent time-of-arrival delay of pulses, which is function of the orbital phase. In this paper, we formulate the above-mentioned dispersive delay with the properties of the pulsar wind. As examples, we apply the formula to the double-pulsar system PSR J0737-3039A/B and the pulsar-neutron star binary PSR B1913+16. For PSR J0737-3039A/B, the time delay in 300 MHz is ≲ 10 μ s-1 near the superior conjunction, under the optimal pulsar wind parameters, which is approximately half of the current timing accuracy. For PSR B1913+16, with the assumption that the neutron-star companion has a typical spin-down luminosity of 1033 erg s-1, the time delay is as large as 10 - 20 μ s-1 in 300 MHz. The best timing precision of this pulsar is ∼ 5 μ s-1 in 1400 MHz. Therefore, it is possible that we can find this signal in archival data. Otherwise, we can set an upper limit on the spin-down luminosity. Similar analysis can be applied to other 11 known pulsar-neutron star binaries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qian, S.-B.; Han, Z.-T.; Zhang, B.
1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is notmore » accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L {sub 1} region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.« less
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Han, Z.-T.; Zhang, B.; Zejda, M.; Michel, R.; Zhu, L.-Y.; Zhao, E.-G.; Liao, W.-P.; Tian, X.-M.; Wang, Z.-H.
2017-10-01
1SWASP J162117.36+441254.2 was originally classified as an EW-type binary with a period of 0.20785 days. However, it was detected to have undergone a stellar outburst on 2016 June 3. Although the system was later classified as a cataclysmic variable (CV) and the event was attributed as a dwarf nova outburst, the physical reason is still unknown. This binary has been monitored photometrically since 2016 April 19, and many light curves were obtained before, during, and after the outburst. Those light and color curves observed before the outburst indicate that the system is a special CV. The white dwarf is not accreting material from the secondary and there are no accretion disks surrounding the white dwarf. By comparing the light curves obtained from 2016 April 19 to those from September 14, it was found that magnetic activity of the secondary is associated with the outburst. We show strong evidence that the L 1 region on the secondary was heavily spotted before and after the outburst and thus quench the mass transfer, while the outburst is produced by a sudden mass accretion of the white dwarf. These results suggest that J162117 is a good astrophysical laboratory to study stellar magnetic activity and its influences on CV mass transfer and mass accretion.
The Expanding Bipolar Shell of the Helium Nova V445 Puppis
NASA Astrophysics Data System (ADS)
Woudt, P. A.; Steeghs, D.; Karovska, M.; Warner, B.; Groot, P. J.; Nelemans, G.; Roelofs, G. H. A.; Marsh, T. R.; Nagayama, T.; Smits, D. P.; O'Brien, T.
2009-11-01
From multi-epoch adaptive optics imaging and integral field unit spectroscopy, we report the discovery of an expanding and narrowly confined bipolar shell surrounding the helium nova V445 Puppis (Nova Puppis 2000). An equatorial dust disc obscures the nova remnant, and the outflow is characterized by a large polar outflow velocity of 6720 ± 650 km s-1 and knots moving at even larger velocities of 8450 ± 570 km s-1. We derive an expansion parallax distance of 8.2 ± 0.5 kpc and deduce a pre-outburst luminosity of the underlying binary of log L/L sun = 4.34 ± 0.36. The derived luminosity suggests that V445 Puppis probably contains a massive white dwarf accreting at high rate from a helium star companion making it part of a population of binary stars that potentially lead to supernova Ia explosions due to accumulation of helium-rich material on the surface of a massive white dwarf.
Discovery of Periodic Dips in the Brightest Hard X-Ray Source of M31 with EXTraS
NASA Astrophysics Data System (ADS)
Marelli, Martino; Tiengo, Andrea; De Luca, Andrea; Salvetti, David; Saronni, Luca; Sidoli, Lara; Paizis, Adamantia; Salvaterra, Ruben; Belfiore, Andrea; Israel, Gianluca; Haberl, Frank; D’Agostino, Daniele
2017-12-01
We performed a search for eclipsing and dipping sources in the archive of the EXTraS project—a systematic characterization of the temporal behavior of XMM-Newton point sources. We discovered dips in the X-ray light curve of 3XMM J004232.1+411314, which has been recently associated with the hard X-ray source dominating the emission of M31. A systematic analysis of XMM-Newton observations revealed 13 dips in 40 observations (total exposure time of ∼0.8 Ms). Among them, four observations show two dips, separated by ∼4.01 hr. Dip depths and durations are variable. The dips occur only during low-luminosity states ({L}0.2{--12}< 1× {10}38 erg s‑1), while the source reaches {L}0.2{--12}∼ 2.8× {10}38 erg s‑1. We propose that this system is a new dipping low-mass X-ray binary in M31 seen at high inclination (60°–80°) the observed dipping periodicity is the orbital period of the system. A blue HST source within the Chandra error circle is the most likely optical counterpart of the accretion disk. The high luminosity of the system makes it the most luminous (not ULX) dipper known to date.
Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source.
Coulter, D A; Foley, R J; Kilpatrick, C D; Drout, M R; Piro, A L; Shappee, B J; Siebert, M R; Simon, J D; Ulloa, N; Kasen, D; Madore, B F; Murguia-Berthier, A; Pan, Y-C; Prochaska, J X; Ramirez-Ruiz, E; Rest, A; Rojas-Bravo, C
2017-12-22
On 17 August 2017, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Virgo interferometer detected gravitational waves (GWs) emanating from a binary neutron star merger, GW170817. Nearly simultaneously, the Fermi and INTEGRAL (INTErnational Gamma-Ray Astrophysics Laboratory) telescopes detected a gamma-ray transient, GRB 170817A. At 10.9 hours after the GW trigger, we discovered a transient and fading optical source, Swope Supernova Survey 2017a (SSS17a), coincident with GW170817. SSS17a is located in NGC 4993, an S0 galaxy at a distance of 40 megaparsecs. The precise location of GW170817 provides an opportunity to probe the nature of these cataclysmic events by combining electromagnetic and GW observations. Copyright © 2017, American Association for the Advancement of Science.
White Dwarf/M Dwarf Binaries as Single Degenerate Progenitors of Type Ia Supernovae
NASA Astrophysics Data System (ADS)
Wheeler, J. Craig
2012-10-01
Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, MV >~ 8.4 on the SN Ia in SNR 0509-67.5 and MV >~ 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a "magnetic bottle" connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the "nova limit" and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.
STELLAR X-RAY SOURCES IN THE CHANDRA COSMOS SURVEY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wright, N. J.; Drake, J. J.; Civano, F., E-mail: nwright@cfa.harvard.ed
2010-12-10
We present an analysis of the X-ray properties of a sample of solar- and late-type field stars identified in the Chandra Cosmic Evolution Survey (COSMOS), a deep (160 ks) and wide ({approx}0.9 deg{sup 2}) extragalactic survey. The sample of 60 sources was identified using both morphological and photometric star/galaxy separation methods. We determine X-ray count rates, extract spectra and light curves, and perform spectral fits to determine fluxes and plasma temperatures. Complementary optical and near-IR photometry is also presented and combined with spectroscopy for 48 of the sources to determine spectral types and distances for the sample. We find distancesmore » ranging from 30 pc to {approx}12 kpc, including a number of the most distant and highly active stellar X-ray sources ever detected. This stellar sample extends the known coverage of the L{sub X}-distance plane to greater distances and higher luminosities, but we do not detect as many intrinsically faint X-ray sources compared to previous surveys. Overall the sample is typically more luminous than the active Sun, representing the high-luminosity end of the disk and halo X-ray luminosity functions. The halo population appears to include both low-activity spectrally hard sources that may be emitting through thermal bremsstrahlung, as well as a number of highly active sources in close binaries.« less
NASA Technical Reports Server (NTRS)
Ladous, Constanze
1993-01-01
On grounds of different observable characteristics five classes of nova-like objects are distinguished: the UX Ursae Majoris stars, the antidwarf novae, the DQ Herculis stars, the AM Herculis stars, and the AM Canum Venaticorum stars. Some objects have not been classified specifically. Nova-like stars share most observable features with dwarf novae, except for the outburst behavior. The understanding is that dwarf novae, UX Ursae Majoris stars, and anti-dwarf novae are basically the same sort of objects. The difference between them is that in UX Ursae Majoris stars the mass transfer through the accretion disc always is high so the disc is stationary all the time; in anti-dwarf novae for some reason the mass transfer occasionally drops considerably for some time, and in dwarf novae it is low enough for the disc to undergo semiperiodic changes between high and low accretion events. DQ Herculis stars are believed to possess weakly magnetic white dwarfs which disrupt the inner disc at some distance from the central star; the rotation of the white dwarf can be seen as an additional photometric period. In AM Herculis stars, a strongly magnetic white dwarf entirely prevents the formation of an accretion disk and at the same time locks the rotation of the white dwarf to the binary orbit. Finally, AM Canum Venaticorum stars are believed to be cataclysmic variables that consist of two white dwarf components.
Physical implications of the eclipsing binary pulsar
NASA Technical Reports Server (NTRS)
Wasserman, Ira; Cordes, James M.
1988-01-01
The observed characteristics of the msec pulsar P1957+20, discovered in an eclipsing binary by Fruchter et al. (1988), are considered theoretically. Model equations for the stellar wind and optical emission are derived and used to estimate the effective temperature and optical luminosity associated with wind excitation; then the energy levels required to generate such winds are investigated. The color temperature of the pulsar-heated stellar surface calculated under the assumption of adiabatic expansion is 1000-10,000 K, in good agreement with the observational estimate of 5500 K.
NASA Technical Reports Server (NTRS)
Ake, Thomas B.; Johnson, Hollis R.
1988-01-01
Ultraviolet spectra of the peculiar red giants (PRGs) called MS stars are investigated, and the discovery of a white dwarf (WD) companion to the MS star 4 Omicron(1) Orionis is reported. The observations and data analysis are discussed and compared with those for field WDs in order to derive parameters for the WD and the luminosity of the primary. Detection limits for the other MS stars investigated are derived, and the binary hypothesis for PRGs is reviewed.
NASA Technical Reports Server (NTRS)
Strader, Jay; Chomiuk, Laura; Cheung, C. C.; Sand, David J.; Donato, Davide; Corbet, Robin H. D.; Koeppe, Dana; Edwards, Philip G.; Stevens, Jamie; Petrov, Leonid
2015-01-01
We present multiwavelength observations of the persistent Fermi-Large Area Telescope unidentified gamma-ray source 1FGL J1417.7-4407, showing it is likely to be associated with a newly discovered X-ray binary containing a massive neutron star (nearly 2 solar mass) and a approximately 0.35 solar mass giant secondary with a 5.4 day period. SOAR optical spectroscopy at a range of orbital phases reveals variable double-peaked H alpha emission, consistent with the presence of an accretion disk. The lack of radio emission and evidence for a disk suggests the gamma-ray emission is unlikely to originate in a pulsar magnetosphere, but could instead be associated with a pulsar wind, relativistic jet, or could be due to synchrotron self-Compton at the disk-magnetosphere boundary. Assuming a wind or jet, the high ratio of gamma- ray to X-ray luminosity (approximately 20) suggests efficient production of gamma-rays, perhaps due to the giant companion. The system appears to be a low-mass X-ray binary that has not yet completed the pulsar recycling process. This system is a good candidate to monitor for a future transition between accretion-powered and rotational-powered states, but in the context of a giant secondary.
The structure of common-envelope remnants
NASA Astrophysics Data System (ADS)
Hall, Philip D.
2015-05-01
We investigate the structure and evolution of the remnants of common-envelope evolution in binary star systems. In a common-envelope phase, two stars become engulfed in a gaseous envelope and, under the influence of drag forces, spiral to smaller separations. They may merge to form a single star or the envelope may be ejected to leave the stars in a shorter period orbit. This process explains the short orbital periods of many observed binary systems, such as cataclysmic variables and low-mass X-ray binary systems. Despite the importance of these systems, and of common-envelope evolution to their formation, it remains poorly understood. Specifically, we are unable to confidently predict the outcome of a common-envelope phase from the properties at its onset. After presenting a review of work on stellar evolution, binary systems, common-envelope evolution and the computer programs used, we describe the results of three computational projects on common-envelope evolution. Our work specifically relates to the methods and prescriptions which are used for predicting the outcome. We use the Cambridge stellar-evolution code STARS to produce detailed models of the structure and evolution of remnants of common-envelope evolution. We compare different assumptions about the uncertain end-of-common envelope structure and envelope mass of remnants which successfully eject their common envelopes. In the first project, we use detailed remnant models to investigate whether planetary nebulae are predicted after common-envelope phases initiated by low-mass red giants. We focus on the requirement that a remnant evolves rapidly enough to photoionize the nebula and compare the predictions for different ideas about the structure at the end of a common-envelope phase. We find that planetary nebulae are possible for some prescriptions for the end-of-common envelope structure. In our second contribution, we compute a large set of single-star models and fit new formulae to the core radii of evolved stars. These formulae can be used to better compute the outcome of common-envelope evolution with rapid evolution codes. We find that the new formulae are necessary for accurate predictions of the properties of post-common envelope systems. Finally, we use detailed remnant models of massive stars to investigate whether hydrogen may be retained after a common-envelope phase to the point of core-collapse and so be observable in supernovae. We find that this is possible and thus common-envelope evolution may contribute to the formation of Type IIb supernovae.
Young Binaries and Early Stellar Evolution
NASA Astrophysics Data System (ADS)
Brandner, Wolfgang
1996-07-01
Most main-sequence stars are members of binary or multiple systems. The same is true for pre-main-sequence (PMS) stars, as recent surveys have shown. Therefore studying star formation means to a large extent studying the formation of binary systems. Similarly, studying early stellar evolution primarily involves PMS binary systems. In this thesis I have studied the binary frequency among ROSAT selected T Tauri stars in the Chamaeleon T association and the Scorpius-Centaurus OB association, and the evolutionary status of Hα-selected PMS binaries in the T associations of Chamaeleon, Lupus, and ρ Ophiuchi. The direct imaging and spectroscopic observations in the optical have been carried out under subarcsec seeing conditions at the ESO New Technology Telescope (NTT) at La Silla. Furthermore, high-spatial resolution images of selected PMS stars in the near infrared were obtained with the ESO adaptive optics system COME-ON+/ADONIS. Among 195 T Tauri stars observed using direct imaging 31 binaries could be identified, 12 of them with subarcsec separation. Based on statistical arguments alone I conclude that almost all of them are indeed physical (i.e. gravitationally bound) binary or multiple systems. Using astrometric measurements of some binaries I showed that the components of these binaries are common proper motion pairs, very likely in a gravitationally bound orbit around each other. The overall binary frequency among T Tauri stars with a range of separations between 120 and 1800 AU is in agreement with the binary frequency observed among main-sequence stars in the solar neighbourhood. However, within individual regions the spatial distribution of binaries is non-uniform. In particular, in Upper Scorpius, weak-line T Tauri stars in the vicinity of early type stars seem to be almost devoid of multiple systems, whereas in another area in Upper Scorpius half of all weak-line T Tauri stars have a companion in a range of separation between 0.''7 and 3.''0. For a sample of 14 spatially resolved PMS binaries (separations 0.''6 to 1.prime'7) located in the above mentioned T associations both photometric and spectroscopic information has been analyzed. All binaries (originally unresolved) were identified as PMS stars based on their strong Hα emission and their association with dark clouds. Using the spectral A index, which measures the strength of the CaH band at 697.5nm relative to the nearby continuum as a luminosity class indicator, I showed that the classical T Tauri stars in the sample tend to be close to luminosity class V. Eight out of the 14 pairs could be placed on an H--R diagram. When comparing with theoretical PMS evolutionary tracks the individual components of all pairs appear to be coeval within the observational errors. This result is similar to Hartigan et al. (1994) who found two thirds of the wider pairs with separations from 400 AU to 6000 AU to be coeval. However, unlike Hartigan et al.'s finding for the wider pairs, I find no non-coeval pairs. One of the presumed binaries in our sample (ESO Hα 281) turned out to be a likely chance projection with the ``primary'' showing neither Hα emission nor Li absorption. Finally, using adaptive optics at the ESO 3.6m telescope, diffraction-limited JHK images of the region around the Herbig AeBe star NX Pup were obtained. The close companion (sep. 0.''128) to NX Pup -- originally discovered by HST -- was clearly resolved and its JHK magnitudes were determined. A third object at a separation of 7.''0 from NX Pup was identified as a classical T Tauri star so that NX Pup may in fact form a hierarchical triple system. I discuss the evolutionary status of these stars and derive estimates for their spectral types, luminosities, masses, and ages. My conclusions are that binarity is established very early in stellar evolution, that the orbital parameters of wide binaries (a >= 120AU) remain virtually unchanged during their PMS evolution, and that the components of the wide binaries were formed at the same time --- perhaps either through collisional fragmentation or fragmentation of rotating filaments. (Copies of the thesis (written in German) and related pre-/reprints are available from the author upon request.)
Discovery of A Young L Dwarf Binary, SDSS J224953.47+004404.6AB
NASA Astrophysics Data System (ADS)
Allers, K. N.; Liu, Michael C.; Dupuy, Trent J.; Cushing, Michael C.
2010-05-01
We report discovery of a young 0farcs32 L dwarf binary, SDSS J2249+0044AB, found as the result of a Keck laser guide star adaptive optics imaging survey of young field brown dwarfs. Weak K I, Na I, and FeH features as well as strong VO absorption in the integrated-light J-band spectrum indicate a low surface gravity and hence young age for the system. From spatially resolved K-band spectra we determine spectral types of L3 ± 0.5 and L5 ± 1 for components A and B, respectively. SDSS J2249+0044A is spectrally very similar to G196-3B, an L3 companion to a young M2.5 field dwarf. Thus, we adopt 100 Myr (the age estimate of the G196-3 system) as the age of SDSS J2249+0044AB, but ages of 12-790 Myr are possible. By comparing our photometry to the absolute magnitudes of G196-3B, we estimate a distance to SDSS J2249+0044AB of 54 ± 16 pc and infer a projected separation of 17 ± 5 AU for the binary. Comparison of the luminosities to evolutionary models at an age of 100 Myr yields masses of 0.029 ± 0.006 and 0.022+0.006 -0.009 M sun for SDSS J2249+0044A and B, respectively. Over the possible ages of the system (12-790 Myr), the mass of SDSS J2249+0044A could range from 0.011 to 0.070 M sun and the mass of SDSS J2249+0044B could range from 0.009 to 0.065 M sun. Evolutionary models predict that either component could be burning deuterium, which could result in a mass ratio as low as 0.4, or alternatively, a reversal in the luminosities of the binary. We find a likely proper motion companion, GSC 00568-01752, which lies 48farcs9 away (a projected separation of 2600 AU) and has Sloan Digital Sky Survey and Two Micron All Sky Survey colors consistent with an early M dwarf. We calculate a photometric distance to GSC 00568-01752 of 53 ± 15 pc, in good agreement with our distance estimate for SDSS J2249+0044AB. The space motion of SDSS J2249+0044AB shows no obvious coincidence with known young moving groups, though radial velocity and parallax measurements are necessary to refine our analysis. The unusually red near-IR colors, young age, and low masses of the binary make it an important template for studying planetary-mass objects found by direct imaging surveys. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.
Jenkins, J M; Doyle, L R; Cullers, D K
1996-02-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
NASA Technical Reports Server (NTRS)
Jenkins, J. M.; Doyle, L. R.; Cullers, D. K.
1996-01-01
The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.
Unravelling the role of the SW Sextantis stars in the evolution of cataclysmic variables
NASA Astrophysics Data System (ADS)
Torres, Manuel; Steeghs, Danny; Gaensicke, Boris; Marsh, Tom; Rodriguez-Gil, Pablo; Schmidtobreick, Linda; Long, Knox; Schreiber, Matthias
2007-08-01
SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the mass ratio of the system which, combined with the orbital inclination derived from modelling of either the disc eclipses in the high state or the ellipsoidal modulation in the low state, will eventually provide the first detailed system parameters for any SW Sex star.
Unravelling the role of the SW Sextantis stars in the evolution of cataclysmic variables
NASA Astrophysics Data System (ADS)
Torres, Manuel
2007-02-01
SW Sextantis stars are a relatively large group of cataclysmic variables (CVs) whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of a number of SW Sex stars and request here Gemini/GMOS-N ToO time to obtain orbital phase-resolved spectroscopy if one of them enters a low state, since this is the only opportunity for studying the stellar components individually. These data will be used to accurately measure the mass ratio of the system which, combined with the orbital inclination derived from modelling of either the disc eclipses in the high state or the ellipsoidal modulation in the low state, will eventually provide the first detailed system parameters for any SW Sex star.
COMMON PATTERNS IN THE EVOLUTION BETWEEN THE LUMINOUS NEUTRON STAR LOW-MASS X-RAY BINARY SUBCLASSES
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fridriksson, Joel K.; Homan, Jeroen; Remillard, Ronald A., E-mail: J.K.Fridriksson@uva.nl
2015-08-10
The X-ray transient XTE J1701–462 was the first source observed to evolve through all known subclasses of low-magnetic-field neutron star low-mass X-ray binaries (NS-LMXBs), as a result of large changes in its mass accretion rate. To investigate to what extent similar evolution is seen in other NS-LMXBs we have performed a detailed study of the color–color and hardness–intensity diagrams (CDs and HIDs) of Cyg X-2, Cir X-1, and GX 13+1—three luminous X-ray binaries, containing weakly magnetized neutron stars, known to exhibit strong secular changes in their CD/HID tracks. Using the full set of Rossi X-ray Timing Explorer Proportional Counter Arraymore » data collected for the sources over the 16 year duration of the mission, we show that Cyg X-2 and Cir X-1 display CD/HID evolution with close similarities to XTE J1701–462. Although GX 13+1 shows behavior that is in some ways unique, it also exhibits similarities to XTE J1701–462, and we conclude that its overall CD/HID properties strongly indicate that it should be classified as a Z source, rather than as an atoll source. We conjecture that the secular evolution of Cyg X-2, Cir X-1, and GX 13+1—illustrated by sequences of CD/HID tracks we construct—arises from changes in the mass accretion rate. Our results strengthen previous suggestions that within single sources Cyg-like Z source behavior takes place at higher luminosities and mass accretion rates than Sco-like Z behavior, and lend support to the notion that the mass accretion rate is the primary physical parameter distinguishing the various NS-LMXB subclasses.« less
Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets
NASA Astrophysics Data System (ADS)
Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya
2016-01-01
Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.
The Lunar Cataclysm and How LRO Can Help Test It
NASA Technical Reports Server (NTRS)
Cohen, Barbara A.
2009-01-01
One of the important outstanding goals of lunar science is understanding the bombardment history of the Moon and calibrating the impact flux curve for extrapolation to the Earth and other terrestrial planets. The "terminal lunar cataclysm," a brief but intense period of bombardment about 3.9 billion years ago, is of particular scientific interest. Radiometric dating of lunar impact-melt rocks forms the backbone of the lunar cataclysm hypothesis. A histogram of precise age determinations of impact-melt rocks shows the characteristics of the classic formulation of the lunar cataclysm hypothesis: a sharp peak at 3.9 Ga, a steep decline after 3.9 Ga perhaps only 20-200 Myr long, and few rocks of impact origin prior to 4.0 Ga.
1RXS J180834.7+101041 is a new cataclysmic variable with non-uniform disc
NASA Astrophysics Data System (ADS)
Yakin, D. G.; Suleimanov, V. F.; Shimansky, V. V.; Borisov, N. V.; Bikmaev, I. F.; Sakhibullin, N. A.
2010-11-01
Results of photometric and spectroscopic investigations of the recently discovered disc cataclysmic variable star 1RXS J180834.7+101041 are presented. Emission spectra of the system show broad double peaked hydrogen and helium emission lines. Doppler maps for the hydrogen lines demonstrate strongly non-uniform emissivity distribution in the disc, similar to that found in IP Peg. It means that the system is a new cataclysmic variable with a spiral density wave in the disc. Masses of the components (MWD = 0.8+/-0.22 Msolar and MRD = 0.14+/-0.02 Msolar), and the orbit inclination (i = 78°+/- 1.°5) were estimated using the various well-known relations for cataclysmic variables.
Discovery of a Free-Floating Double Planet?
NASA Astrophysics Data System (ADS)
Kohler, Susanna
2017-07-01
An object previously identified as a free-floating, large Jupiter analogturns out to be two objects each with the mass of a few Jupiters. This system is the lowest-mass binary weve ever discovered.Tracking Down Ages2MASS J111932541137466 is thought to be a member of the TW Hydrae Association, a group of roughly two dozen young stars moving together in the solar neighborhood. [University of Western Ontario/Carnegie Institution of Washington DTM/David Rodriguez]Brown dwarfs represent the bottom end of the stellar mass spectrum, with masses too low to fuse hydrogen (typically below 75-80 Jupiter masses). Observing these objects provides us a unique opportunity to learn about stellar evolution and atmospheric models but to properly understand these observations, we need to determine the dwarfs masses and ages.This is surprisingly difficult, however. Brown dwarfs cool continuously as they age, which creates an observational degeneracy: dwarfs of different masses and ages can have the same luminosity, making it difficult to infer their physical properties from observations.We can solve this problem with an independent measurement of the dwarfs masses. One approach is to find brown dwarfs that are members of nearby stellar associations called moving groups. The stars within the association share the same approximate age, so a brown dwarfs age can be estimated based on the easier-to-identify ages of other stars in the group.An Unusual BinaryRecently, a team of scientists led by William Best (Institute for Astronomy, University of Hawaii) were following up on such an object: the extremely red, low-gravity L7 dwarf 2MASS J111932541137466, possibly a member of the TW Hydrae Association. With the help of the powerful adaptive optics on the Keck II telescope in Hawaii, however, the team discovered that this Jupiter-like objectwas hiding something: its actually two objects of equal flux orbiting each other.Keck images of 2MASS J111932541137466 reveal that this object is actually a binary system. A similar image of another dwarf, WISEA J1147-2040, is shown at bottom left for contrast: this one does not show signs of being a binary at this resolution. [Best et al. 2017]To learn more about this unusual binary, Best and collaborators began by using observed properties like sky position, proper motion, and radial velocity to estimate the likelihood that 2MASS J111932541137466AB is, indeed, a member of the TW Hydrae Association of stars. They found roughly an 80% chance that it belongs to this group.Under this assumption, the authors then used the distance to the group around 160 light-years to estimate that the binarys separation is 3.9 AU. The assumed membership in the TW Hydrae Association also provides binarys age: roughly 10 million years. This allowed Best and collaborators to estimate the masses and effective temperatures of the components from luminosities and evolutionary models.Planetary-Mass ObjectsThe positions of 2MASS J111932541137466A and B on a color-magnitude diagram for ultracool dwarfs. The binary components lie among the faintest and reddest planetary-mass L dwarfs. [Best et al. 2017]The team found that each component is a mere 3.7 Jupiter masses, placing them in the fuzzy region between planets and stars. While the International Astronomical Union considers objects below the minimum mass to fuse deuterium (around 13 Jupiter masses) to be planets, other definitions vary, depending on factors such as composition, temperature, and formation. The authors describe the binary as consisting of two planetary-mass objects.Regardless of its definition, 2MASS J111932541137466AB qualifies as the lowest-mass binary discovered to date. The individual masses of the components also place them among the lowest-mass free-floating brown dwarfs known. This system will therefore be a crucial benchmark for tests of evolutionary and atmospheric models for low-mass stars in the future.CitationWilliam M. J. Best et al 2017 ApJL 843 L4. doi:10.3847/2041-8213/aa76df
Unravelling the Role of the SW Sextantis Stars in the Evolution of Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Torres, Manuel; Steeghs, D.; Rodriguez-Gil, P.; Gansicke, B.; Marsh Warwick, T. R.; Araujo-Betancor, S.; Long, K.
2006-08-01
SW Sextantis stars are a relatively large group of cataclysmic variables whose properties contradict all predictions made by the current CV evolution theories. Very little is known about the properties of their accreting white dwarfs and their donor stars, as the stellar components are usually outshone by an extremely bright accretion flow. Consequently, a proper assesment of their evolutionary state is illusionary. We are monitoring the brightness of 33 SW Sex stars, and request here Gemini/GMOS-N time to obtain orbital phase-resolved spectroscopy if one of them enters a low state. These data will be used to accurately measure the mass ratio, white dwarf temperature, and distance of the system, eventually providing the first detailed system parameters for any SW Sex star.
Asymmetric mass accretion in the magnetic cataclysmic variable RE 1149 + 28
NASA Technical Reports Server (NTRS)
Howell, Steve B.; Sirk, Martin M.; Malina, Roger F.; Mittaz, J. P. D.; Mason, K. O.
1995-01-01
We present the first detailed extreme photometric observations of a magnetic cataclysmic variable. Our two Extreme Ultraviolet Explorer (EUVE) observations of the AM Her star RE 1149 + 28 were obtained about 1 yr apart and show light-curve variations on orbital to yearly timescales, as well as long-term mean flux level changes of a factor of 2. The photometric data show a persistent ingress EUV enhancement which lasts approximately 0.04 in phase. We attribute this to a region of approximately 10(exp 3) km in extent at the accretion impact site, on or very near the surface of the white dwarf primary. Our observations of RE 1149 are consistent with a relatively low system inclination and provide a best-fit orbital period of 90.14 +/- 0.015 minutes.
Binary neutron star merger rate via the luminosity function of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-04-01
The luminosity function of short Gamma Ray Bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till October, 2017. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple powerlaw is ruled out to high confidence, the data is fit well both by exponential cutoff powerlaw and broken powerlaw models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of short GRBs are derived. Assuming a short GRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present and future configurations of the GW detector networks. Stringent lower limits of 1.87yr-1 for the aLIGO-VIRGO, and 3.11yr-1 for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68% confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date, are shown to have a mild tension; however the scenario that all BNSMs produce sGRBs cannot be ruled out.
Binary neutron star merger rate via the luminosity function of short gamma-ray bursts
NASA Astrophysics Data System (ADS)
Paul, Debdutta
2018-07-01
The luminosity function of short gamma ray bursts (GRBs) is modelled by using the available catalogue data of all short GRBs (sGRBs) detected till 2017 October. The luminosities are estimated via the `pseudo-redshifts' obtained from the `Yonetoku correlation', assuming a standard delay distribution between the cosmic star formation rate and the production rate of their progenitors. While the simple power law is ruled out to high confidence, the data is fit well both by exponential cutoff power law and broken power law models. Using the derived parameters of these models along with conservative values in the jet opening angles seen from afterglow observations, the true rate of sGRBs is derived. Assuming a sGRB is produced from each binary neutron star merger (BNSM), the rate of gravitational wave (GW) detections from these mergers are derived for the past, present, and future configurations of the GW detector networks. Stringent lower limits of 1.87 { yr^{-1}} for the aLIGO-VIRGO, and 3.11 { yr^{-1}} for the upcoming aLIGO-VIRGO-KAGRA-LIGO/India configurations are thus derived for the BNSM rate at 68 per cent confidence. The BNSM rates calculated from this work and that independently inferred from the observation of the only confirmed BNSM observed till date are shown to have a mild tension; however, the scenario that all BNSMs produce sGRBs cannot be ruled out.
Evolutionary Grids of Accreting White Dwarf Companions in Cataclysmic Variables
NASA Astrophysics Data System (ADS)
Benjamin, J.; Jensen, M.; Nadeau, S.; Nelson, L. A.
2003-12-01
We analyze the evolution of accreting white dwarfs in binary systems for a wide range of initial conditions. Specifically, evolutionary tracks are calculated for CO white dwarfs with masses in the range of 0.6 - 1.3 solar masses and accreting H-rich gas at rates of between 10-6 to 10-10 solar masses per year. Since the white dwarfs in these binaries could be very young or very old at the onset of mass transfer we simulated this possibility by investigating the evolution for a large range of internal temperatures. Thus most of the sequences generated were not thermally relaxed at the onset of mass transfer (and the thermonuclear flashes were not cyclic). We discuss the temporal dependence of the interior properties (envelope readjustment on a thermal timescale and compressional heating) on the initial conditions. Particular attention is paid to the white dwarfs accretors that remained small (relative to the Roche lobe radius) during the shell flash event. Finally, we use the results of these models to comment on the observed properties of Supersoft X-ray sources. This research was supported in part by funds from the Natural Sciences and Engineering Research Council (Canada).
Spectral and Timing Investigations of Dwarf Novae Selected in Hard X-Rays
NASA Technical Reports Server (NTRS)
Thorstensen, John; Remillard, Ronald A.
2000-01-01
There are 9 dwarf novae (DN) among the 43 cataclysmic variables (accreting white dwarfs in close binary systems) that were detected during the HEAO-1 all-sky X-ray survey (1977-1979). On the other hand, there are roughly one hundred dwarf novae that are closer and/or optically brighter and yet they were not detected as hard X-ray sources. Two of the HEAO-1 DN show evidence for X-ray pulsations that imply strong magnetic fields on the white dwarf surface, and magnetic CVs are known to be strong X-ray sources. However, substantial flux in hard X-rays may be caused by non-magnetic effects, such as an optically thin boundary layer near a massive white dwarf. We proposed RXTE observations to measure plasma temperatures and to search for X-ray pulsations. The observations would distinguish whether these DN belong to one of (rare) magnetic subclasses. For those that do not show pulsations, the observations support efforts to define empirical relations between X-ray temperature, the accretion rate, and the mass of the white dwarf. The latter is determined via optical studies of the dynamics of the binary constituents.
R144 revealed as a double-lined spectroscopic binary
NASA Astrophysics Data System (ADS)
Sana, H.; van Boeckel, T.; Tramper, F.; Ellerbroek, L. E.; de Koter, A.; Kaper, L.; Moffat, A. F. J.; Schnurr, O.; Schneider, F. R. N.; Gies, D. R.
2013-05-01
R144 is a WN6h star in the 30 Doradus region. It is suspected to be a binary because of its high luminosity and its strong X-ray flux, but no periodicity could be established so far. Here, we present new X-shooter multi-epoch spectroscopy of R144 obtained at the ESO Very Large Telescope. We detect variability in position and/or shape of all the spectral lines. We measure radial velocity variations with an amplitude larger than 250 km s-1 in N IV and N V lines. Furthermore, the N III and N V line Doppler shifts are anticorrelated and the N IV lines show a double-peaked profile on six of our seven epochs. We thus conclude that R144 is a double-lined spectroscopic binary. Possible orbital periods range from two to six months, although a period up to one year is allowed if the orbit is highly eccentric. We estimate the spectral types of the components to be WN5-6h and WN6-7h, respectively. The high luminosity of the system (log Lbol/L⊙ ≈ 6.8) suggests a present-day total mass content in the range of about 200-300 M⊙, depending on the evolutionary stage of the components. This makes R144 the most massive binary identified so far, with a total mass content at birth possibly as large as 400 M⊙. We briefly discuss the presence of such a massive object, 60 pc away from the R136 cluster core in the context of star formation and stellar dynamics.
NASA Astrophysics Data System (ADS)
Sazonov, S.; Khabibullin, I.
2017-04-01
Using a spectral analysis of bright Chandra X-ray sources located in 27 nearby galaxies and maps of star-formation rate (SFR) and interstellar medium surface densities for these galaxies, we constructed the intrinsic X-ray luminosity function (XLF) of luminous high-mass X-ray binaries (HMXBs), taking into account absorption effects and the diversity of HMXB spectra. The XLF per unit SFR can be described by a power-law dN/dlog LX,unabs ≈ 2.0(LX,unabs/1039 erg s-1)-0.6 (M⊙ yr-1)-1 from LX,unabs = 1038 to 1040.5 erg s-1, where LX,unabs is the unabsorbed luminosity at 0.25-8 keV. The intrinsic number of luminous HMXBs per unit SFR is a factor of ˜2.3 larger than the observed number reported before. The intrinsic XLF is composed of hard, soft and supersoft sources (defined here as those with the 0.25-2 keV to 0.25-8 keV flux ratio of <0.6, 0.6-0.95 and >0.95, respectively) in ˜ 2:1:1 proportion. We also constructed the intrinsic HMXB XLF in the soft X-ray band (0.25-2 keV). Here, the numbers of hard, soft and supersoft sources prove to be nearly equal. The cumulative present-day 0.25-2 keV emissivity of HMXBs with luminosities between 1038 and 1040.5 erg s-1 is ˜5 × 1039 erg s-1(M⊙ yr-1)-1, which may be relevant for studying the X-ray preheating of the early Universe.
AN ONLINE CATALOG OF CATACLYSMIC VARIABLE SPECTRA FROM THE FAR-ULTRAVIOLET SPECTROSCOPIC EXPLORER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Godon, Patrick; Sion, Edward M.; Levay, Karen
2012-12-15
We present an online catalog containing spectra and supporting information for cataclysmic variables that have been observed with the Far-Ultraviolet Spectroscopic Explorer (FUSE). For each object in the catalog we list some of the basic system parameters such as (R.A., decl.), period, inclination, and white dwarf mass, as well as information on the available FUSE spectra: data ID, observation date and time, and exposure time. In addition, we provide parameters needed for the analysis of the FUSE spectra such as the reddening E(B - V), distance, and state (high, low, intermediate) of the system at the time it was observed.more » For some of these spectra we have carried out model fits to the continuum with synthetic stellar and/or disk spectra using the codes TLUSTY and SYNSPEC. We provide the parameters obtained from these model fits; this includes the white dwarf temperature, gravity, projected rotational velocity, and elemental abundances of C, Si, S, and N, together with the disk mass accretion rate, the resulting inclination, and model-derived distance (when unknown). For each object one or more figures are provided (as gif files) with line identification and model fit(s) when available. The FUSE spectra and the synthetic spectra are directly available for download as ASCII tables. References are provided for each object, as well as for the model fits. In this article we present 36 objects, and additional ones will be added to the online catalog in the future. In addition to cataclysmic variables, we also include a few related objects, such as a wind-accreting white dwarf, a pre-cataclysmic variable, and some symbiotics.« less
Eclipsing Binaries in Open Clusters
NASA Astrophysics Data System (ADS)
Southworth, John; Clausen, Jens Viggo
2006-08-01
The study of detached eclipsing binaries in open clusters can provide stringent tests of theoretical stellar evolutionary models, which must simultaneously fit the masses, radii, and luminosities of the eclipsing stars and the radiative properties of every other star in the cluster. We review recent progress in such studies and discuss two unusually interesting objects currently under analysis. GV Carinae is an A0 m + A8 m binary in the Southern open cluster NGC 3532; its eclipse depths have changed by 0.1 mag between 1990 and 2001, suggesting that its orbit is being perturbed by a relatively close third body. DW Carinae is a high-mass unevolved B1 V + B1 V binary in the very young open cluster Collinder 228, and displays double-peaked emission in the centre of the Hα line which is characteristic of Be stars. We conclude by pointing out that the great promise of eclipsing binaries in open clusters can only be satisfied when both the binaries and their parent clusters are well-observed, a situation which is less common than we would like.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abadie, J.; Abbott, B. P.; Abbott, R.
We report the results of the first search for gravitational waves from compact binary coalescence using data from the Laser Interferometer Gravitational-Wave Observatory and Virgo detectors. Five months of data were collected during the Laser Interferometer Gravitational-Wave Observatory's S5 and Virgo's VSR1 science runs. The search focused on signals from binary mergers with a total mass between 2 and 35M{sub {center_dot}}. No gravitational waves are identified. The cumulative 90%-confidence upper limits on the rate of compact binary coalescence are calculated for nonspinning binary neutron stars, black hole-neutron star systems, and binary black holes to be 8.7x10{sup -3} yr{sup -1} L{submore » 10}{sup -1}, 2.2x10{sup -3} yr{sup -1} L{sub 10}{sup -1}, and 4.4x10{sup -4} yr{sup -1} L{sub 10}{sup -1}, respectively, where L{sub 10} is 10{sup 10} times the blue solar luminosity. These upper limits are compared with astrophysical expectations.« less
Observations and light curve solutions of three ultrashort-period W UMa binaries
NASA Astrophysics Data System (ADS)
Kjurkchieva, Diana P.; Michel, Raul; Popov, Velimir A.; Deras, Dan
2018-07-01
Photometric observations in V, Rc and Ic bands of the ultrashort-period W UMa binaries 1SWASP J044132.96+440613.7, 1SWASP J052926.88+461147.5 and NSVS 2175434 are presented. The results from the modeling and analysis of our observations reveal that: (i) All targets undergo total eclipses and their photometric mass ratios should be accepted with confidence; (ii) All stellar components are late-type dwarfs; (iii) The temperature difference of target components does not exceed 150 K; (iv) All targets have overcontact configurations with fill-out factor around 0.24; (v) The orbit of NSVS 2175434 is slightly eccentric which is unusual for such an ultrashort-period binary; (vi) The orbital periods of all targets were improved. Masses, radii and luminosities of the stellar components were estimated by the empirical relation "period, orbital axis" for short- and ultrashort-period binaries.
Discriminating crop and other canopies by overlapping binary image layers
NASA Astrophysics Data System (ADS)
Doi, Ryoichi
2013-02-01
For optimal management of agricultural fields by remote sensing, discrimination of the crop canopy from weeds and other objects is essential. In a digital photograph, a rice canopy was discriminated from a variety of weed and tree canopies and other objects by overlapping binary image layers of red-green-blue and other color components indicating the pixels with target canopy-specific (intensity) values based on the ranges of means ±(3×) standard deviations. By overlapping and merging the binary image layers, the target canopy specificity improved to 0.0015 from 0.027 for the yellow 1× standard deviation binary image layer, which was the best among all combinations of color components and means ±(3×) standard deviations. The most target rice canopy-likely pixels were further identified by limiting the pixels at different luminosity values. The discriminatory power was also visually demonstrated in this manner.
NASA Astrophysics Data System (ADS)
Chun, Howard; Brinkworth, Carolyn; Ciardi, David; Hoard, Don; Howell, Steve; Stefaniak, Linda; Thomas, Beth
2006-03-01
During the first year of the Spitzer Space Telescope Observing Program for Students and Teachers, our team observed a small sample of short orbital period interacting white dwarf binaries. Our scientific investigation was aimed at detection and characterization of the low mass, cool, brown dwarf-like mass donors in these systems. We used the Infrared Array Camera to obtain photometric observations of the polars EF Eri, GG Leo, V347 Pav, and RX J0154.0-5947 at 3.6, 4.5, 5.8, and 8.0 microns. In all our targets, we detected excess emission in the 3-8 micron region over that expected from a brown dwarf alone. One of the exciting discoveries we made with our IRAC observations is that the star EF Eri was found to be unexpectedly bright in the mid-IR (compared to its 2MASS magnitudes). This fact highlights an opportunity for us to observe EF Eri with the IRS as a follow-up proposal. EF Eri has a flux level of ~700 ?Jy at 8 microns. Thus, we are asking for time to obtain IRS data for only this star, our brightest source. We plan to obtain SL1 (7.4-14.5 microns) and SL2 (5.2-8.7 microns) spectroscopy only. We know the IRAC fluxes so our integration toies are well constrained and the spectral region covered by SL1, SL2 will yield sufficient S/N to differentiate between cool dust (rising BB like spectrum with PAH and other molecular features allowing us to determine dust size, temperature, and disk extent) and a T type dwarf showing characteristic spectral signatures and a falling Rayleigh-Jeans tail.
NASA Astrophysics Data System (ADS)
Jensen, Sigurd S.; Haugbølle, Troels
2018-02-01
Hertzsprung-Russell diagrams of star-forming regions show a large luminosity spread. This is incompatible with well-defined isochrones based on classic non-accreting protostellar evolution models. Protostars do not evolve in isolation of their environment, but grow through accretion of gas. In addition, while an age can be defined for a star-forming region, the ages of individual stars in the region will vary. We show how the combined effect of a protostellar age spread, a consequence of sustained star formation in the molecular cloud, and time-varying protostellar accretion for individual protostars can explain the observed luminosity spread. We use a global magnetohydrodynamic simulation including a sub-scale sink particle model of a star-forming region to follow the accretion process of each star. The accretion profiles are used to compute stellar evolution models for each star, incorporating a model of how the accretion energy is distributed to the disc, radiated away at the accretion shock, or incorporated into the outer layers of the protostar. Using a modelled cluster age of 5 Myr, we naturally reproduce the luminosity spread and find good agreement with observations of the Collinder 69 cluster, and the Orion Nebular Cluster. It is shown how stars in binary and multiple systems can be externally forced creating recurrent episodic accretion events. We find that in a realistic global molecular cloud model massive stars build up mass over relatively long time-scales. This leads to an important conceptual change compared to the classic picture of non-accreting stellar evolution segmented into low-mass Hayashi tracks and high-mass Henyey tracks.
A spectroscopic analysis of three cataclysmic variable stars
NASA Astrophysics Data System (ADS)
Unda-Sanzana, E.
2005-02-01
Cataclysmic variable stars (CVs) are binary systems in which matter is transferred from a low mass star to a white dwarf via an accretion disc. My thesis is a spectroscopic study of three of these objects: U Gem, GD 552 and GY Cnc. I present high-resolution optical spectra of U Gem taken during quiescence. For U Gem, the radial velocity semi-amplitude of the white dwarf, K1, is accurately known thanks to a direct observation by Long et al. (1999). I find that even with these data the optical measurements are seriously distorted compared to the known value, which is not recovered to better than 20%. Doppler tomograms show emission at low velocity, close to the centre of mass, and a transient and sharp absorption feature is seen in the Balmer lines close to eclipse. I suggest that stellar prominences may explain part of these features. I study two features detected in HeII 4686.75 angstroms. They seem to be produced in the bright spot. The narrower feature has a velocity close to that of the accretion disc in the impact region. I present evidence of weak spiral structure, which may support explanations for ``spiral shocks'' based upon 3-body effects. I apply a method of isophote fitting to search for evidence of stream-disc overflow, but fail to uncover any. I detect evidence of irradiation of the mass donor with shielding by the disc: I estimate an H/R ratio between 0.15 and 0.20. For GD 552 I present spectroscopy taken with the aim of detecting emission from the mass donor. I fail to do so at a level which allows me to rule out the presence of a near-main-sequence star donor. Given GD 552's orbital period of 103 minutes, this suggests instead that it may be a system that has evolved through the 80 minute orbital period minimum of CVs and now has a brown dwarf mass donor. Finally, I give a first look at high-resolution data for GY Cnc, whose dynamical parameters make it a near-perfect twin of U Gem. I find several surprising features: the bright spot is completely absent from the Balmer lines, although visible in other lines; emission from the secondary sta r seems to arise from the whole of its Roche lobe; and low velocity emission is detected near the centre of mass as in U Gem. I argue that GY Cnc provides further evidence of the presence of prominence-like structures on CVs.
NASA Astrophysics Data System (ADS)
Shishkovsky, Laura; Strader, Jay; Chomiuk, Laura; Bahramian, Arash; Tremou, Evangelia; Li, Kwan-Lok; Salinas, Ricardo; Tudor, Vlad; Miller-Jones, James C. A.; Maccarone, Thomas J.; Heinke, Craig O.; Sivakoff, Gregory R.
2018-03-01
We present the discovery and characterization of a radio-bright binary in the Galactic globular cluster M10. First identified in deep radio continuum data from the Karl G. Jansky Very Large Array, M10-VLA1 has a flux density of 27 ± 4 μJy at 7.4 GHz and a flat-to-inverted radio spectrum. Chandra imaging shows an X-ray source with L X ≈ 1031 erg s‑1 matching the location of the radio source. This places M10-VLA1 within the scatter of the radio-X-ray luminosity correlation for quiescent stellar-mass black holes, and a black hole X-ray binary is a viable explanation for this system. The radio and X-ray properties of the source disfavor, but do not rule out, identification as an accreting neutron star or white dwarf system. Optical imaging from the Hubble Space Telescope and spectroscopy from the SOAR telescope show that the system has an orbital period of 3.339 days and an unusual “red straggler” component: an evolved star found redward of the M10 red giant branch. These data also show UV/optical variability and double-peaked Hα emission characteristic of an accretion disk. However, SOAR spectroscopic monitoring reveals that the velocity semi-amplitude of the red straggler is low. We conclude that M10-VLA1 is most likely either a quiescent black hole X-ray binary with a rather face-on (i < 4°) orientation or an unusual flaring RS Canum Venaticorum variable-type active binary, and discuss future observations that could distinguish between these possibilities.
SDSS-IV MaNGA: Galaxy Pair Fraction and Correlated Active Galactic Nuclei
NASA Astrophysics Data System (ADS)
Fu, Hai; Steffen, Joshua L.; Gross, Arran C.; Dai, Y. Sophia; Isbell, Jacob W.; Lin, Lihwai; Wake, David; Xue, Rui; Bizyaev, Dmitry; Pan, Kaike
2018-04-01
We have identified 105 galaxy pairs at z ∼ 0.04 with the MaNGA integral-field spectroscopic data. The pairs have projected separations between 1 and 30 kpc, and are selected to have radial velocity offsets less than 600 km s‑1 and stellar mass ratio between 0.1 and 1. The pair fraction increases with both the physical size of the integral-field unit and the stellar mass, consistent with theoretical expectations. We provide the best-fit analytical function of the pair fraction and find that ∼3% of M* galaxies are in close pairs. For both isolated galaxies and paired galaxies, active galactic nuclei (AGNs) are selected using emission-line ratios and Hα equivalent widths measured inside apertures at a fixed physical size. We find AGNs in ∼24% of the paired galaxies and binary AGNs in ∼13% of the pairs. To account for the selection biases in both the pair sample and the MaNGA sample, we compare the AGN comoving volume densities with those expected from the mass- and redshift-dependent AGN fractions. We find a strong (∼5×) excess of binary AGNs over random pairing and a mild (∼20%) deficit of single AGNs. The binary AGN excess increases from ∼2× to ∼6× as the projected separation decreases from 10–30 to 1–10 kpc. Our results indicate that the pairing of galaxies preserves the AGN duty cycle in individual galaxies but increases the population of binary AGNs through correlated activities. We suggest tidally induced galactic-scale shocks and AGN cross-ionization as two plausible channels to produce low-luminosity narrow-line-selected binary AGNs.
Variable Stars with the Kepler Space Telescope
NASA Astrophysics Data System (ADS)
Molnár, L.; Szabó, R.; Plachy, E.
2016-12-01
The Kepler space telescope has revolutionized our knowledge about exoplanets and stars and is continuing to do so in the K2 mission. The exquisite photometric precision, together with the long, uninterrupted observations opened up a new way to investigate the structure and evolution of stars. Asteroseismology, the study of stellar oscillations, allowed us to investigate solar-like stars, and to peer into the insides of red giants and massive stars. But many discoveries have been made about classical variable stars, too, ranging from pulsators like Cepheids and RR Lyraes to eclipsing binary stars and cataclysmic variables, and even supernovae. In this review, which is far from an exhaustive summary of all results obtained with Kepler, we collected some of the most interesting discoveries, and ponder on the role for amateur observers in this golden era of stellar astrophysics.
Orbit of the young very low-mass spectroscopic binary CHXR 74
NASA Astrophysics Data System (ADS)
Joergens, V.; Janson, M.; Müller, A.
2012-01-01
The pre-main sequence star CHXR 74 (M4.25) in Chamaeleon I was found a few years ago to be a very low-mass spectroscopic binary. A determination of its mass would provide a valuable dynamical mass measurement at young ages in the poorly constrained mass regime of <0.3 M⊙. We carried out follow-up radial velocity monitoring with UVES/VLT between 2008 and 2011 and high-resolution adaptive-optic-assisted imaging with NACO/VLT in 2008 with the aim of constraining the binary orbit. We present an orbital solution of the system based on the combined radial velocity data set, which spans more than eleven years of UVES monitoring for CHXR 74. The best-fit Kepler model has an orbital period of 13.1 years, zero eccentricity, and a radial velocity semi-amplitude of 2.2 km s-1. A companion mass M2sini (which is a lower limit due to the unknown orbital inclination i) of 0.08 M⊙ is derived by using a model-dependent mass estimate for the primary of 0.24 M⊙. The binary separation (a1sini + a2) for an inclination of 90° is 3.8 AU, which corresponds to 23 mas. Complementary NACO/VLT images of CHXR 74 were taken with the aim to directly resolve the binary. While there are marginal signs of an extended point spread function (PSF), we have detected no convincing companion to CHXR 74 in the NACO images. From the non-detection of the companion together with a prediction of the binary separation at the time of the NACO observations, we derive an upper limit for the K-band brightness ratio of the two binary components of 0.5. This allows us to estimate an upper limit of the companion mass of 0.14 M⊙ by applying evolutionary models. Thus, we confirm that CHXR 74 is a very low-mass spectroscopic binary and constrain the secondary mass to lie within the range of about 0.08 and 0.14 M⊙. We predict an astrometric signal of the primary between 0.2 and 0.4 mas when taking into account the luminosity of the companion. The Gaia astrometric mission might well be able to solve the astrometric orbit of the primary and in combination with the presented radial velocity data determine an absolute companion mass. Based on observations obtained at the Very Large Telescope of the European Southern Observatory at Paranal, Chile with UVES in program 65.I-0011(A), 72.C-0653(A), 75.C-0851(C), 77.C-0831(A+D), 380.C-0596(A), 082.C-0023(A), 087.C-0962(B), and with NACO in program 380.C-0596(B).
X-ray Spectral Formation In High-mass X-ray Binaries: The Case Of Vela X-1
NASA Astrophysics Data System (ADS)
Akiyama, Shizuka; Mauche, C. W.; Liedahl, D. A.; Plewa, T.
2007-05-01
We are working to develop improved models of radiatively-driven mass flows in the presence of an X-ray source -- such as in X-ray binaries, cataclysmic variables, and active galactic nuclei -- in order to infer the physical properties that determine the X-ray spectra of such systems. The models integrate a three-dimensional time-dependent hydrodynamics capability (FLASH); a comprehensive and uniform set of atomic data, improved calculations of the line force multiplier that account for X-ray photoionization and non-LTE population kinetics, and X-ray emission-line models appropriate to X-ray photoionized plasmas (HULLAC); and a Monte Carlo radiation transport code that simulates Compton scattering and recombination cascades following photoionization. As a test bed, we have simulated a high-mass X-ray binary with parameters appropriate to Vela X-1. While the orbital and stellar parameters of this system are well constrained, the physics of X-ray spectral formation is less well understood because the canonical analytical wind velocity profile of OB stars does not account for the dynamical and radiative feedback effects due to the rotation of the system and to the irradiation of the stellar wind by X-rays from the neutron star. We discuss the dynamical wind structure of Vela X-1 as determined by the FLASH simulation, where in the binary the X-ray emission features originate, and how the spatial and spectral properties of the X-ray emission features are modified by Compton scattering, photoabsorption, and fluorescent emission. This work was performed under the auspices of the U.S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.
The crowded magnetosphere of the post-common-envelope binary QS Virginis
NASA Astrophysics Data System (ADS)
Parsons, S. G.; Hill, C. A.; Marsh, T. R.; Gänsicke, B. T.; Watson, C. A.; Steeghs, D.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Schreiber, M. R.; Zorotovic, M.
2016-05-01
We present high-speed photometry and high-resolution spectroscopy of the eclipsing post-common-envelope binary QS Virginis (QS Vir). Our Ultraviolet and Visual Echelle Spectrograph (UVES) spectra span multiple orbits over more than a year and reveal the presence of several large prominences passing in front of both the M star and its white dwarf companion, allowing us to triangulate their positions. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. One large prominence extends almost three stellar radii from the M star. Roche tomography reveals that the M star is heavily spotted and that these spots are long-lived and in relatively fixed locations, preferentially found on the hemisphere facing the white dwarf. We also determine precise binary and physical parameters for the system. We find that the 14 220 ± 350 K white dwarf is relatively massive, 0.782 ± 0.013 M⊙, and has a radius of 0.010 68 ± 0.000 07 R⊙, consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M⊙ and a radius of 0.381 ± 0.003 R⊙, also consistent with evolutionary models. We find that the magnesium absorption line from the white dwarf is broader than expected. This could be due to rotation (implying a spin period of only ˜700 s), or due to a weak (˜100 kG) magnetic field, we favour the latter interpretation. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.
A Close Hidden Stellar Companion to the SX Phe-Type Variable Star DW Psc
NASA Astrophysics Data System (ADS)
Qian, S.-B.; Li, L.-J.; Wang, S.-M.; He, J.-J.; Zhou, X.; Jiang, L.-Q.
2015-01-01
DW Psc is a high-amplitude SX Phe-type variable with a period of pulsation of 0.05875 days. Using a few newly determined times of maximum light together with those collected from the literature, the changes in the observed-calculated (O-C) diagram are analyzed. It is discovered that the O-C curve of DW Psc shows a cyclic variation with a period of 6.08 years and a semi-amplitude of 0.0066 days. The periodic variation is analyzed for the light travel time effect, which is due to the presence of a stellar companion ({{M}2}sin i˜ 0.45(+/- 0.03) {{M}⊙ }). The two-component stars in the binary system are orbiting each other in an eccentric orbit (e ˜ 0.4) at an orbital separation of about 2.7(±0.3) AU. The detection of a close stellar companion to an SX Phe-type star supports the idea that SX Phe-type pulsating stars are blue stragglers that were formed from the merging of close binaries. The stellar companion has played an important role in the merging of the original binary by removing angular momentum from the central binary during early dynamical interaction or/and late dynamical evolution. After the more massive component in DW Psc evolves into a red giant, the cool close companion should help to remove the giant envelope via possible critical Roche-lobe overflow, and the system may be a progenitor of a cataclysmic variable. The detection of a close stellar companion to DW Psc makes it a very interesting system to study in the future.
2013-01-01
evolution of binaries as well as the structure of circumstellar disks. Aims. A multiwavelength high angular resolution study of the prototypical object...optical to mid-IR wave- lengths. For YSOs this has led to the discovery of an empiri- cal size-luminosity relation (Millan-Gabet et al. 2001; Monnier...Millan-Gabet 2002), which in turn has led to the current paradigm (Dullemond & Monnier 2010) of a passive dusty disk with an optically thin cavity and the
A NEW TWIST IN THE EVOLUTION OF LOW-MASS STARS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Denissenkov, Pavel A., E-mail: pavelden@uvic.ca
2012-07-01
We show that the evolutionary track of a low-mass red giant should make an extended zigzag on the Hertzsprung-Russel diagram just after the bump luminosity if fast internal rotation and enhanced extra mixing in the radiative zone bring the temperature gradient close to the adiabatic one. This can explain both the location and peculiar surface chemical composition of Li-rich K giants studied by Kumar et al. We also discuss a striking resemblance between the photometric and composition peculiarities of these stars and giant components of RS CVn binaries. We demonstrate that the observationally constrained values of the temperature gradient inmore » the Li-rich K giants agree with the required rate of extra mixing only if the turbulence that is believed to be responsible for this extra mixing is highly anisotropic, with its associated transport coefficients in the horizontal direction strongly dominating over those in the vertical direction.« less
Astrophysics to z approx. 10 with Gravitational Waves
NASA Technical Reports Server (NTRS)
Stebbins, Robin; Hughes, Scott; Lang, Ryan
2007-01-01
The most useful characterization of a gravitational wave detector's performance is the accuracy with which astrophysical parameters of potential gravitational wave sources can be estimated. One of the most important source types for the Laser Interferometer Space Antenna (LISA) is inspiraling binaries of black holes. LISA can measure mass and spin to better than 1% for a wide range of masses, even out to high redshifts. The most difficult parameter to estimate accurately is almost always luminosity distance. Nonetheless, LISA can measure luminosity distance of intermediate-mass black hole binary systems (total mass approx.10(exp 4) solar mass) out to z approx.10 with distance accuracies approaching 25% in many cases. With this performance, LISA will be able to follow the merger history of black holes from the earliest mergers of proto-galaxies to the present. LISA's performance as a function of mass from 1 to 10(exp 7) solar mass and of redshift out to z approx. 30 will be described. The re-formulation of LISA's science requirements based on an instrument sensitivity model and parameter estimation will be described.
The 155-day X-ray cycle of the very massive Wolf-Rayet star Melnick 34 in the Large Magellanic Cloud
NASA Astrophysics Data System (ADS)
Pollock, A. M. T.; Crowther, P. A.; Tehrani, K.; Broos, Patrick S.; Townsley, Leisa K.
2018-03-01
The Wolf-Rayet star Mk 34 was observed more than 50 times as part of the deep T-ReX Chandra ACIS-I X-ray imaging survey of the Tarantula Nebula in the Large Magellanic Cloud conducted between 2014 May and 2016 January. Its brightness showed one bright maximum and repeated faint minima which help define an X-ray recurrence time of 155.1 ± 0.1 d that is probably the orbital period of an eccentric binary system. The maximum immediately precedes the minimum in the folded X-ray light curve as confirmed by new Swift XRT observations. Notwithstanding its extreme median luminosity of 1.2 × 1035 erg s-1, which makes it over an order of magnitude brighter than comparable stars in the Milky Way, Mk 34 is almost certainly a colliding-wind binary system. Its spectrum shows phase-related changes of luminosity and absorption that are probably related to the orbital dynamics of two of the most massive stars known.
NASA Astrophysics Data System (ADS)
Sugizaki, Mutsumi; Mihara, Tatehiro; Nakajima, Motoki; Makishima, Kazuo
2017-12-01
To study observationally the spin-period changes of accreting pulsars caused by the accretion torque, the present work analyzes X-ray light curves of 12 Be binary pulsars obtained by the MAXI Gas-Slit Camera all-sky survey and their pulse periods measured by the Fermi Gamma-ray Burst Monitor pulsar project, both covering more than six years, from 2009 August to 2016 March. The 12 objects were selected because they are accompanied by clear optical identification and accurate measurements of surface magnetic fields. The luminosity L and the spin-frequency derivatives \\dot{ν}, measured during large outbursts with L ≳ 1 × 1037 erg s-1, were found to follow approximately the theoretical relations in the accretion torque models, represented by \\dot{ν} ∝ L^{α} (α ≃ 1), and the coefficient of proportionality between \\dot{ν} and Lα agrees, within a factor of ˜3, with that proposed by Ghosh and Lamb (1979b, ApJ, 234, 296). In the course of the present study, the orbital elements of several sources were refined.
Energy Feedback from X-ray Binaries in the Early Universe
NASA Technical Reports Server (NTRS)
Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.
2013-01-01
X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.
NASA Astrophysics Data System (ADS)
Volonteri, Marta; Reines, Amy E.; Atek, Hakim; Stark, Daniel P.; Trebitsch, Maxime
2017-11-01
The first billion years of the Universe has been a pivotal time: stars, black holes (BHs), and galaxies formed and assembled, sowing the seeds of galaxies as we know them today. Detecting, identifying, and understanding the first galaxies and BHs is one of the current observational and theoretical challenges in galaxy formation. In this paper we present a population synthesis model aimed at galaxies, BHs, and active galactic nuclei (AGNs) at high redshift. The model builds a population based on empirical relations. The spectral energy distribution of galaxies is determined by age and metallicity, and that of AGNs by BH mass and accretion rate. We validate the model against observations, and predict properties of galaxies and AGN in other wavelength and/or luminosity ranges, estimating the contamination of stellar populations (normal stars and high-mass X-ray binaries) for AGN searches from the infrared to X-rays, and vice versa for galaxy searches. For high-redshift galaxies with stellar ages < 1 {Gyr}, we find that disentangling stellar and AGN emission is challenging at restframe UV/optical wavelengths, while high-mass X-ray binaries become more important sources of confusion in X-rays. We propose a color-color selection in the James Webb Space Telescope bands to separate AGN versus star-dominated galaxies in photometric observations. We also estimate the AGN contribution, with respect to massive, hot, and metal-poor stars, at driving high-ionization lines, such as C IV and He II. Finally, we test the influence of the minimum BH mass and occupation fraction of BHs in low-mass galaxies on the restframe UV/near-IR and X-ray AGN luminosity function.
Black Hole-Neutron Star Mergers as Central Engines of Gamma-Ray Bursts.
Janka; Eberl; Ruffert; Fryer
1999-12-10
Hydrodynamic simulations of the merger of stellar mass black hole-neutron star binaries are compared with mergers of binary neutron stars. The simulations are Newtonian but take into account the emission and back-reaction of gravitational waves. The use of a physical nuclear equation of state allows us to include the effects of neutrino emission. For low neutron star-to-black hole mass ratios, the neutron star transfers mass to the black hole during a few cycles of orbital decay and subsequent widening before finally being disrupted, whereas for ratios near unity the neutron star is destroyed during its first approach. A gas mass between approximately 0.3 and approximately 0.7 M middle dot in circle is left in an accretion torus around the black hole and radiates neutrinos at a luminosity of several times 1053 ergs s-1 during an estimated accretion timescale of about 0.1 s. The emitted neutrinos and antineutrinos annihilate into e+/- pairs with efficiencies of 1%-3% and rates of up to approximately 2x1052 ergs s-1, thus depositing an energy Enunu&d1; less, similar1051 ergs above the poles of the black hole in a region that contains less than 10-5 M middle dot in circle of baryonic matter. This could allow for relativistic expansion with Lorentz factors around 100 and is sufficient to explain apparent burst luminosities Lgamma approximately Enunu&d1;&solm0;&parl0;fOmegatgamma&parr0; up to several times 1053 ergs s-1 for burst durations tgamma approximately 0.1-1 s, if the gamma emission is collimated in two moderately focused jets in a fraction fOmega=2deltaOmega&solm0;&parl0;4pi&parr0; approximately 1&solm0;100-(1/10) of the sky.
Spectroscopy and Photometry of EUVE J1429-38.0:An Eclipsing Magnetic Cataclysmic Variable
NASA Astrophysics Data System (ADS)
Howell, Steve B.; Craig, Nahide; Roberts, Bryce; McGee, Paddy; Sirk, Martin
1997-06-01
EUVE J1429-38.0 was originally discovered as a variable source by the Extreme Ultraviolet Explorer (EUVE) satellite. We present new optical observations which unambiguously confirm this star to be an eclipsing magnetic system with an orbital period of 4() h 46() m. The photometric data are strongly modulated by ellipsoidal variations during low states which allow a system inclination of near 80 degrees to be determined. Our time-resolved optical spectra, which cover only about one-third of the orbital cycle, indicate the clear presence of a gas stream. During high states, EUVE J1429-38.0 shows ~ 1 mag deep eclipses and the apparent formation of a partial accretion disk. EUVE J1429-38.0 presents the observer with properties of both the AM Herculis and the DQ Herculis types of magnetic cataclysmic variable.
NASA Astrophysics Data System (ADS)
Sanad, M. R.
2015-11-01
We present the first phase resolved ultraviolet spectroscopic study of V Sge in high, intermediate and low states observed with the Hubble Space Telescope High Resolution Spectrograph (HST HRS) and International Ultraviolet Explorer (IUE) during the period 1978-1996 to diagnose the ultraviolet fluxes of C IV 1550 Å and He II 1640 Å emission lines originating in the accretion disk during different orbital phases. Different spectra showing the variations in line fluxes at different orbital phases are presented. The reddening of V Sge is determined from the 2200 Å feature. We concentrated on calculating the line fluxes of C IV & He II emission lines. From HST and IUE data, we derived an accretion luminosity and an accretion rate for V Sge. The average temperature of the outer rim of the accretion disk {˜}10000 K. Our results show that there are variations in line fluxes, accretion luminosities and accretion rates with time for V Sge. These variations are attributed to the variations of both density and temperature as a result of a changing rate of mass transfer from the secondary star to the white dwarf. These results from the HST and IUE observations are consistent with the binary model consisting of a white dwarf, a disk around the white dwarf, and a lobe-filling main-sequence companion (Hachisu & Kato, Astrophys. J. 598:527H, 2003).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nyland, Kristina; Marvil, Josh; Young, Lisa M.
We present the results of deep, high-resolution, 5 GHz Expanded Very Large Array (EVLA) observations of the nearby, dwarf lenticular galaxy and intermediate-mass black hole candidate (M{sub BH} {approx} 4.5 Multiplication-Sign 10{sup 5} M{sub Sun }), NGC 404. For the first time, radio emission at frequencies above 1.4 GHz has been detected in this galaxy. We found a modestly resolved source in the NGC 404 nucleus with a total radio luminosity of 7.6 {+-} 0.7 Multiplication-Sign 10{sup 17} W Hz{sup -1} at 5 GHz and a spectral index from 5 to 7.45 GHz of {alpha} = -0.88 {+-} 0.30. NGCmore » 404 is only the third central intermediate-mass black hole candidate detected in the radio regime with subarcsecond resolution. The position of the radio source is consistent with the optical center of the galaxy and the location of a known, hard X-ray point source (L{sub X} {approx} 1.2 Multiplication-Sign 10{sup 37} erg s{sup -1}). The faint radio and X-ray emission could conceivably be produced by an X-ray binary, star formation, a supernova remnant, or a low-luminosity active galactic nucleus powered by an intermediate-mass black hole. In light of our new EVLA observations, we find that the most likely scenario is an accreting intermediate-mass black hole, with other explanations being either incompatible with the observed X-ray and/or radio luminosities or statistically unlikely.« less
Research Note PSR B1929+10 and GSC 01060-01374 are not binary companions
NASA Astrophysics Data System (ADS)
Kouwenhoven, M. L. A.; van den Berg, M. C.
2001-03-01
We have observed the star GSC 01060-01374 to investigate whether it is in a binary with PSR B1929+10. Its spectral type is K4-6 and its luminosity class is III or II, therefore its distance is 2.4 kpc or higher. Since the dispersion measure distance of PSR B1929+10 is 0.17 kpc, we rule out the possibility that these two stars are associated in a binary. This poses further constraints on the lower limit of kick velocities in supernova explosions. Based on observations made with the William Herschel Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.
Hard X-Ray Emission and the Ionizing Source in LINERs
NASA Technical Reports Server (NTRS)
Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.
2000-01-01
We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.
VizieR Online Data Catalog: Census of blue stars in SDSS DR8 (Scibelli+, 2014)
NASA Astrophysics Data System (ADS)
Scibelli, S.; Newberg, H. J.; Carlin, J. L.; Yanny, B.
2015-02-01
We present a census of the 12060 spectra of blue objects ((g-r)0<-0.25) in the Sloan Digital Sky Survey (SDSS) Data Release 8 (DR8). As part of the data release, all of the spectra were cross-correlated with 48 template spectra of stars, galaxies, and QSOs to determine the best match. We compared the blue spectra by eye to the templates assigned in SDSS DR8. 10856 of the objects matched their assigned template, 170 could not be classified due to low signal-to-noise ratio, and 1034 were given new classifications. We identify 7458 DA white dwarfs, 1145 DB white dwarfs, 273 rarer white dwarfs (including carbon, DZ, DQ, and magnetic), 294 subdwarf O stars, 648 subdwarf B stars, 679 blue horizontal branch stars, 1026 blue stragglers, 13 cataclysmic variables, 129 white dwarf-M dwarf binaries, 36 objects with spectra similar to DO white dwarfs, 179, quasi-stellar objects (QSOs), and 10 galaxies. We provide two tables of these objects, sample spectra that match the templates, figures showing all of the spectra that were grouped by eye, and diagnostic plots that show the positions, colors, apparent magnitudes, proper motions, etc., for each classification. (3 data files).
The Possibility of Multiple Habitable Worlds Orbiting Binary Stars
NASA Astrophysics Data System (ADS)
Mason, P. A.
2014-03-01
Are there planetary systems for which there is life on multiple worlds? Where are these fruitful planetary systems and how do we detect them? In order to address these questions; conditions which enable life and those that prevent or destroy it must be considered. Many constraints are specific to planetary systems, independent of the number of worlds in habitable zones. For instance, life on rocky planets or moons likely requires the right abundance of volatiles and radiogenic elements for prolonged geologic activity. Catastrophic sterilization events such as nearby supernovae and gamma-ray bursts affect entire planetary systems not just specific worlds. Giant planets may either enhance or disrupt the development of complex life within a given system. It might be rare for planetary systems to possess qualities that promote life and lucky enough to avoid cataclysm. However, multiple habitable planets may provide enhanced chances for advanced life to develop. The best predictor of life on one habitable zone planet might be the presence of life on its neighbor as panspermia may occur in planetary systems with several habitable worlds. Circumbinary habitability may go hand in hand with habitability of multiple worlds. The circumstances in which the Binary Habitability Mechanism (BHM) operates are reviewed. In some cases, the early synchronization of the primary's rotation with the binary period results in a reduction of XUV flux and stellar winds. Main sequence binaries with periods in the 10-50 days provide excellent habitable environments, within which multiple worlds may thrive. Planets and moons in these habitable zones need less magnetic protection than their single star counterparts. Exomoons orbiting a Neptune-like planet, within a BHM protected habitable zone, are expected to be habitable over a wide range of semimajor axes due to a larger planetary Hill radius. A result confirmed by numerical orbital calculations. Binaries containing a solar type star with a lower mass companion provide enhanced habitable zones as well as improved photosynthetic flux for habitable zone worlds.
The Class of Jsolated Stars and Luminous Planetary Nebulae in old stellar populations
NASA Astrophysics Data System (ADS)
Sabach, Efrat; Soker, Noam
2018-06-01
We suggest that stars whose angular momentum (J) does not increase by a companion, star or planet, along their post-main sequence evolution have much lower mass loss rates along their giant branches. Their classification to a separate group can bring insight on their late evolution stages. We here term these Jsolated stars. We argue that the mass loss rate of Jsolated stars is poorly determined because the mass loss rate expressions on the giant branches are empirically based on samples containing stars that experience strong binary interaction, with stellar or sub-stellar companions, e.g., planetary nebula (PN) progenitors. We use our earlier claim for a low mass loss rate of asymptotic giant branch (AGB) stars that are not spun-up by a stellar or substellar companion to show that we can account for the enigmatic finding that the brightest PNe in old stellar populations reach the same luminosity as the brightest PNe in young populations. It is quite likely that the best solution to the existence of bright PNe in old stellar populations is the combination of higher AGB luminosities, as obtained in some new stellar models, and the lower mass loss rates invoked here.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Qingcui; Chen, Li; Belloni, T. M.
Using archival Rossi X-ray Timing Explorer ( RXTE ) data, we studied the low-frequency quasi-periodic oscillations (LFQPOs) in the neutron star low-mass X-ray binary (LMXB) Cir X-1 and examined their contribution to frequency–frequency correlations for Z sources. We also studied the orbital phase effects on the LFQPO properties and found them to be phase independent. Comparing LFQPO frequencies in different classes of LMXBs, we found that systems that show both Z and atoll states form a common track with atoll/BH sources in the so-called WK correlation, while persistent Z systems are offset by a factor of about two. We foundmore » that neither source luminosity nor mass accretion rate is related to the shift of persistent Z systems. We discuss the possibility of a misidentification of fundamental frequency for horizontal branch oscillations from persistent Z systems and interpreted the oscillations in terms of models based on relativistic precession.« less
Very low luminosity active galaxies and the X-ray background
NASA Technical Reports Server (NTRS)
Elvis, M.; Soltan, A.; Keel, W. C.
1984-01-01
The properties of very low luminosity active galactic nuclei are not well studied, and, in particular, their possible contribution to the diffuse X-ray background is not known. In the present investigation, an X-ray luminosity function for the range from 10 to the 39th to 10 to the 42.5th ergs/s is constructed. The obtained X-ray luminosity function is integrated to estimate the contribution of these very low luminosity active galaxies to the diffuse X-ray background. The construction of the X-ray luminosity function is based on data obtained by Keel (1983) and some simple assumptions about optical and X-ray properties.
Constraining Accreting Binary Populations in Normal Galaxies
NASA Astrophysics Data System (ADS)
Lehmer, Bret; Hornschemeier, A.; Basu-Zych, A.; Fragos, T.; Jenkins, L.; Kalogera, V.; Ptak, A.; Tzanavaris, P.; Zezas, A.
2011-01-01
X-ray emission from accreting binary systems (X-ray binaries) uniquely probe the binary phase of stellar evolution and the formation of compact objects such as neutron stars and black holes. A detailed understanding of X-ray binary systems is needed to provide physical insight into the formation and evolution of the stars involved, as well as the demographics of interesting binary remnants, such as millisecond pulsars and gravitational wave sources. Our program makes wide use of Chandra observations and complementary multiwavelength data sets (through, e.g., the Spitzer Infrared Nearby Galaxies Survey [SINGS] and the Great Observatories Origins Deep Survey [GOODS]), as well as super-computing facilities, to provide: (1) improved calibrations for correlations between X-ray binary emission and physical properties (e.g., star-formation rate and stellar mass) for galaxies in the local Universe; (2) new physical constraints on accreting binary processes (e.g., common-envelope phase and mass transfer) through the fitting of X-ray binary synthesis models to observed local galaxy X-ray binary luminosity functions; (3) observational and model constraints on the X-ray evolution of normal galaxies over the last 90% of cosmic history (since z 4) from the Chandra Deep Field surveys and accreting binary synthesis models; and (4) predictions for deeper observations from forthcoming generations of X-ray telesopes (e.g., IXO, WFXT, and Gen-X) to provide a science driver for these missions. In this talk, we highlight the details of our program and discuss recent results.
The evolution of photoevaporating viscous discs in binaries
NASA Astrophysics Data System (ADS)
Rosotti, Giovanni P.; Clarke, Cathie J.
2018-02-01
A large fraction of stars are in binary systems, yet the evolution of protoplanetary discs in binaries has been little explored from the theoretical side. In this paper, we investigate the evolution of the discs surrounding the primary and secondary components of binary systems on the assumption that this is driven by photoevaporation induced by X-rays from the respective star. We show how for close enough separations (20-30 au for average X-ray luminosities) the tidal torque of the companion changes the qualitative behaviour of disc dispersal from inside out to outside in. Fewer transition discs created by photoevaporation are thus expected in binaries. We also demonstrate that in close binaries the reduction in viscous time leads to accelerated disc clearing around both components, consistent with unresolved observations. When looking at the differential disc evolution around the two components, in close binaries discs around the secondary clear first due to the shorter viscous time-scale associated with the smaller outer radius. In wide binaries instead the difference in photoevaporation rate makes the secondaries longer lived, though this is somewhat dependent on the assumed scaling of viscosity with stellar mass. We find that our models are broadly compatible with the growing sample of resolved observations of discs in binaries. We also predict that binaries have higher accretion rates than single stars for the same disc mass. Thus, binaries probably contribute to the observed scatter in the relationship between disc mass and accretion rate in young stars.
The Velocity Distribution of Isolated Radio Pulsars
NASA Technical Reports Server (NTRS)
Arzoumanian, Z.; Chernoff, D. F.; Cordes, J. M.; White, Nicholas E. (Technical Monitor)
2002-01-01
We infer the velocity distribution of radio pulsars based on large-scale 0.4 GHz pulsar surveys. We do so by modelling evolution of the locations, velocities, spins, and radio luminosities of pulsars; calculating pulsed flux according to a beaming model and random orientation angles of spin and beam; applying selection effects of pulsar surveys; and comparing model distributions of measurable pulsar properties with survey data using a likelihood function. The surveys analyzed have well-defined characteristics and cover approx. 95% of the sky. We maximize the likelihood in a 6-dimensional space of observables P, dot-P, DM, absolute value of b, mu, F (period, period derivative, dispersion measure, Galactic latitude, proper motion, and flux density). The models we test are described by 12 parameters that characterize a population's birth rate, luminosity, shutoff of radio emission, birth locations, and birth velocities. We infer that the radio beam luminosity (i) is comparable to the energy flux of relativistic particles in models for spin-driven magnetospheres, signifying that radio emission losses reach nearly 100% for the oldest pulsars; and (ii) scales approximately as E(exp 1/2) which, in magnetosphere models, is proportional to the voltage drop available for acceleration of particles. We find that a two-component velocity distribution with characteristic velocities of 90 km/ s and 500 km/ s is greatly preferred to any one-component distribution; this preference is largely immune to variations in other population parameters, such as the luminosity or distance scale, or the assumed spin-down law. We explore some consequences of the preferred birth velocity distribution: (1) roughly 50% of pulsars in the solar neighborhood will escape the Galaxy, while approx. 15% have velocities greater than 1000 km/ s (2) observational bias against high velocity pulsars is relatively unimportant for surveys that reach high Galactic absolute value of z distances, but is severe for spatially bounded surveys; (3) an important low-velocity population exists that increases the fraction of neutron stars retained by globular clusters and is consistent with the number of old objects that accrete from the interstellar medium; (4) under standard assumptions for supernova remnant expansion and pulsar spin-down, approx. 10% of pulsars younger than 20 kyr will appear to lie outside of their host remnants. Finally, we comment on the ramifications of our birth velocity distribution for binary survival and the population of inspiraling binary neutron stars relevant to some GRB models and potential sources for LIGO.
NASA Astrophysics Data System (ADS)
Wang, Jingjing; Zhang, Bin; Yu, Jing; Liu, Liang; Tian, Xiaoman
2018-06-01
Four sets of multi-color CCD photometric observations of the close binary BU Vul were carried out for four successive months in 2010. From our observations, there are obvious variations and asymmetry of light curves on the timescale of a month, indicating high-level stellar spot activity on the surface of at least one component. The Wilson-Devinney (2010) program was used to determine the photometric solutions, which suggest that BU Vul is a semi-detached binary with the cool, less massive component filling with the critical Roche lobe. The solutions also reveal that the spots on the primary and the secondary have changed and drifted in 2010 July, August, and September. Based on analysis of the O - C curves of BU Vul, its orbital period shows a cyclic oscillation (T3 = 22.4 yr, A3 = 0.0029 d) superimposed on a secular increase. The continuous increase is possibly a result of mass transfer from the less massive component to the more massive one at a rate of dM/dt = -2.95 × 10-9 M⊙ yr-1. The cyclic variation maybe be caused by the presence of a tertiary companion with extremely low luminosity. Combined with the distortions of the light curve on 2009 November 4, we infer that BU Vul has two additional companions in a quadruple system.
Evolutionary paths of binaries with a neutron star. I. The case of SAX J1808.4-3658
NASA Astrophysics Data System (ADS)
Tailo, M.; D'Antona, F.; Burderi, L.; Ventura, P.; di Salvo, T.; Sanna, A.; Papitto, A.; Riggio, A.; Maselli, A.
2018-06-01
The evolutionary status of the low mass X-ray binary SAX J1808.4-3658 is simulated by following the binary evolution of its possible progenitor system through mass transfer, starting at a period of ˜6.6 hr. The evolution includes angular momentum losses via magnetic braking and gravitational radiation. It also takes into account the effects of illumination of the donor by both the X-ray emission and the spin down luminosity of the pulsar. The system goes through stages of mass transfer and stages during which it is detached, where only the rotationally powered pulsar irradiates the donor. We show that the pulsar irradiation is a necessary ingredient to reach SAX J1808.4-3658 orbital period when the donor mass is reduced to 0.04-0.06 M⊙. We also show that the models reproduce important properties of the system, including the orbital period derivative, which is shown to be directly linked to the evolution through mass transfer cycles. Moreover we find that the effects of the irradiation on the internal structure of the donor are non negligible, causing the companion star to be non completely convective at the values of mass observed for the system and significantly altering its long term evolution, as the magnetic braking remains active along the whole evolution.
The Peculiar Galactic Center Neutron Star X-Ray Binary XMM J174457-2850.3
NASA Technical Reports Server (NTRS)
Degenaar, N.; Wijnands, R.; Reynolds, M. T.; Miller, J. M.; Altamirano, D.; Kennea, J.; Gehrels, N.; Haggard, D.; Ponti, G.
2014-01-01
The recent discovery of a milli-second radio pulsar experiencing an accretion outburst similar to those seen in low mass X-ray binaries, has opened up a new opportunity to investigate the evolutionary link between these two different neutron star manifestations. The remarkable X-ray variability and hard X-ray spectrum of this object can potentially serve as a template to search for other X-ray binary radio pulsar transitional objects. Here we demonstrate that the transient X-ray source XMM J174457-2850.3 near the Galactic center displays similar X-ray properties. We report on the detection of an energetic thermonuclear burst with an estimated duration of 2 hr and a radiated energy output of 5E40 erg, which unambiguously demonstrates that the source harbors an accreting neutron star. It has a quiescent X-ray luminosity of Lx5E32 ergs and exhibits occasional accretion outbursts during which it brightens to Lx1E35-1E36 ergs for a few weeks (2-10 keV). However, the source often lingers in between outburst and quiescence at Lx1E33-1E34 ergs. This unusual X-ray flux behavior and its relatively hard X-ray spectrum, a power law with an index of 1.4, could possibly be explained in terms of the interaction between the accretion flow and the magnetic field of the neutron star.