Science.gov

Sample records for low-lying continuum states

  1. On the low-lying states of TiC

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.

    1984-01-01

    The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.

  2. The Low-Lying Electronic States of Mg2(+)

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.

    1994-01-01

    The low-lying doublet and quartet states of Mg+ have been studied using a multireference configuration interaction approach. The effect of inner-shell correlation has been included using the core-polarization potential method. The computed spectroscopic constants, lifetimes, and oscillator strengths should help resolve the difference between the recent experiments and previous theoretical calculations.

  3. Low-lying Collective States in {sup 136}Ba

    SciTech Connect

    Scheck, M.; Mukhopadhyay, S.; Crider, B.; Choudry, S. N.; Elhami, E.; Peters, E. E.; McEllistrem, M. T.; Orce, J. N.; Yates, S. W.

    2009-01-28

    Low-lying collective states in {sup 136}Ba were investigated with (n,n'{gamma}) techniques, including Doppler-shift attenuation lifetime measurements. The level spins, lifetimes, branching ratios, multipole-mixing ratios and transition strengths reveal candidates for symmetric-phonon states up to third order. The 2{sub ms}{sup +} mixed-symmetry state was confirmed as unfragmented and a candidate for a [2{sub 1}{sup +} x 2{sub ms}{sup +}]{sub 3}{sup +} two-phonon mixed-symmetry state is proposed.

  4. The low-lying electronic states of ReB.

    PubMed

    Borin, Antonio Carlos; Gobbo, João Paulo; Castro, César Augusto Milani

    2014-07-01

    The ground and low-lying electronic states of ReB were studied at the CASPT2//CASSCF level (multiconfigurational second-order perturbation theory) and quadruple-ζ ANO-RCC basis sets. Spectroscopic constants, potential energy curves, wavefunctions, and Mulliken population analysis are given. The ground state of ReB is of X(5)Σ(+) symmetry (R e  = 1.817 Å, ω e  = .909 cm(-1), and μ = 2.87 D), giving rise to a Ω = 0(+) ground state after including spin-orbit coupling.

  5. On the low lying singlet states of BeO

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Lengsfield, B. H.; Yarkony, D. R.

    1980-01-01

    Calculations of the ground and low-lying singlet states of BeO are performed in order to gain an understanding of the techniques needed to treat the excited states of other, more complex, ionic molecules. The MCSCF and CI calculations are based on a Gaussian basis set of slightly better than double zeta plus polarization quality for single configuration descriptions of the states. The calculated X-A and X-B state separations are found to be in agreement with experimental measurements. The 1 Sigma - and 1 Delta states are predicted to lie approximately 40,000 kaysers above the ground state and are identified as the C and D states.The 2 1 Pi state is found to be approximately 15,000 kaysers and the 3 1 Sigma + state is found to be approximately 65,000 kaysers above the ground state.

  6. On the low-lying states of CuO

    NASA Technical Reports Server (NTRS)

    Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W., Jr.

    1984-01-01

    Self consistent field and correlated wave functions have been computed for the ground and for several low-lying states of CuO. The ground state is X(2)PI and the lowest excited state, at approximately 8,000/cm above X(2)PI, is a previously unidentified 2-sigma(+) state. The separation of these states is compared to that for the similar states of KO and is analysed in terms of integrals between orbitals of the separated free ions. A classification of the states of the molecule based on states of Cu(+) and O(-) which leads to a division into manifolds of states arising from Cu(+) 3d(10) and Cu(+) 3d(9) 4s(1) is considered. It is predicted that the state of the 3d(9) 4s(1) manifold are 10,000 to 30,000/cm above the ground state and assign the observed A2-sigma(+) state at 16,500/cm to this manifold.

  7. Noncollisional excitation of low-lying states in gaseous nebulae

    NASA Technical Reports Server (NTRS)

    Rubin, Robert H.

    1986-01-01

    Consideration is given to the effects of processes other than electron collisional excitation on the energy level populations of species of C, N, and O. It is found that dielectronic as well as direct-radiative recombination may contribute significantly and in some cases be the major input to populating the low-lying metastable levels. It is concluded that the most pronounced changes occur when there is a large effective recombination coefficient to a level and when T(e) is low. The most dramatic change among the forbidden lines occurs for the O II forbidden lines.

  8. The Low-Lying Electronic States of LiB

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the triplet and singlet states of LiB below about 30 000/ cm are determined using an internally contracted multireference configuration interaction approach in conjunction with [6s 5p 3d 2f] atomic natural orbital basis sets. The ground state is (sup 3)Pi as found in previous work. No excited triplet states are found to be ideal for characterizing the ground state; the (1)(sup 3)Sigma(sup -) state has a transition energy that is too small for many experimental approaches and the (2)(sup 3)Pi and (3)(sup 3)Pi states have bond lengths that are significantly longer than the ground state, resulting in transition intensities that are spread out over many vibrational levels of the ground state.

  9. On the low-lying states of TiN

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.

    1983-01-01

    A series of CAS SCF and multi-reference CI calculations are used to describe the lowest states of TiN. The bonding in all states is described as a triple bond involving the Ti 3d orbitals. The system has some ionic character as seen from both population analysis and dipole moment. The origins of the excited states are discussed.

  10. The Low-Lying Electronic States of YCu

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the singlet and triplet states of YCu below about 15 000 per centimeter are determined using an internally contracted multireference configuration-interaction approach. These calculations are calibrated by studies of fewer states using higher levels of correlation treatment and/or larger basis sets. The computed T(sub e) values and radiative lifetimes are in reasonable agreement with experiment. The calculations confirm the previous experimental assignment for all but one state, where theory helps resolve between two possible assignments.

  11. Isomerism of low-lying states in 86Y

    NASA Astrophysics Data System (ADS)

    Rusu, C.; Bucurescu, D.; Mărginean, N.; Ionescu-Bujor, M.; Iordăchescu, A.; Căta-Danil, G.; Căta-Danil, I.; Deleanu, D.; Filipescu, D.; Ghiţa, D.; Glodariu, T.; Ivaşcu, M.; Mihai, C.; Mărginean, R.; Pascu, S.; Sava, T.; Stroe, L.; Suliman, G.; Zamfir, N. V.

    2010-04-01

    Low-energy isomeric states of 86Y were populated in the reaction 73Ge + 16O at 57MeV and were investigated by means of delayed n γ and γ γ coincidences. A half-life of 70(7)ns was measured for the 5- state at 208keV, yielding an exceptionally small B( M1) value of 2.0(7)×10-5 W.u. and a B( E2) value of 0.34(+24 -13) W.u. For the other three known isomeric states at 218, 243, and 302keV, the half-lives extracted from the present experimental data are in very good agreement with previous measurements. Given the newly observed isomeric character of the 5- 208keV state, the re-analysis of earlier experimental data on the 302keV isomer led to a new spin-parity assignment, 6+, for this state. In addition, this re-evaluation provided two g -factors, -0.083(3) and +0.63(2) , for the 208 and 302keV states, respectively. The results are discussed in terms of spherical-shell model calculations performed with a truncated space of configurations built on the f 5/2 , p 3/2 , p 1/2 , and g 9/2 valence orbitals. Effective spin, orbital, and “tensor” g -factors were determined empirically for protons and neutrons in the considered configuration space.

  12. The low-lying electronic states of LiC

    NASA Technical Reports Server (NTRS)

    Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    The spectroscopic constants for the doublet and quartet states of LiC below about 30,000/cm are determined using an internally contracted multireference configuration-interaction approach in conjunction with a [6s 5p 3d 2f] atomic natural orbital basis sets. All of the strongly bound states, X(sup 4)(SIGMA)(sup -),(1)(sup 2)(DELTA), (1)(sup 2)(SIGMA)(sup +), and (2)(sup 2) II, very ionic in character. The only bound-bound quartet transition in this energy range is (2)(sup 4)SIGMA(sup -) and Franck-Condon factors, Einstein A values, and lifetimes are reported for this transition.

  13. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Taylor, Simon

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a $\\bar{K}$N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small (~1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p → K+ Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma0(1385) relative to the Sigma0(1385) → Lambda pi0 channel was measured to be 0.021 ± 0.008$+0.004\\atop{-0.007}$, corresponding to a partial width of 640 ± 270$+130\\atop{-220}$ keV.

  14. Energies of low-lying excited states of linear polyenes.

    PubMed

    Christensen, Ronald L; Galinato, Mary Grace I; Chu, Emily F; Howard, Jason N; Broene, Richard D; Frank, Harry A

    2008-12-11

    Room temperature absorption and emission spectra of the all-trans isomers of decatetraene, dodecapentaene, tetradecahexaene, and hexadecaheptaene have been obtained in a series of nonpolar solvents. The resolved vibronic features in the optical spectra of these model systems allow the accurate determination of S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) and S(1) (2(1)A(g)(-)) --> S(0) (1(1)A(g)(-)) electronic origins as a function of solvent polarizability. These data can be extrapolated to predict the transition energies in the absence of solvent perturbations. The effects of the terminal methyl substituents on the transition energies also can be estimated. Franck-Condon maxima in the absorption and emission spectra were used to estimate differences between S(0) (1(1)A(g)(-)) --> S(1) (2(1)A(g)(-)) and S(0) (1(1)A(g)(-)) --> S(2) (1(1)B(u)(+)) electronic origins and "vertical" transition energies. Experimental estimates of the vertical transition energies of unsubstituted, all-trans polyenes in vacuum as a function of conjugation length are compared with long-standing multireference configuration interaction (MRCI) treatments and with more recent ab initio calculations of the energies of the 2(1)A(g)(-) (S(1)) and 1(1)B(u)(+) (S(2)) states.

  15. Radiative proton capture to low-lying T =0 and T =1 states in 10B

    NASA Astrophysics Data System (ADS)

    Chakrabarty, D. R.; Datar, V. M.; Kumar, Suresh; Mirgule, E. T.; Mishra, G.; Rout, P. C.; Ghosh, C.; Nanal, V.; Joshi, S.; Kujur, R.

    2017-01-01

    Cross sections of the radiative proton capture reaction 9Be(p ,γ ) , leading to the low-lying excited states in 10B with isospin T =0 and 1, have been measured over the proton energy range of 7 to 20 MeV. For this, the method of coincidence between the primary and the secondary γ rays has been used. These γ rays are emitted following, respectively, the proton capture to an excited state and the subsequent decay of that state. A direct-semidirect capture model calculation has been performed and compared with the experimental data. The experimental results do not show a strong isospin dependence of the GDR strength function built on the low-lying states. The derived photoproton cross sections on these states and the earlier-measured photoneutron cross sections on the ground state of 10B show a large difference.

  16. Involvement of a low-lying Rydberg state in the ultrafast relaxation dynamics of ethylene

    SciTech Connect

    Champenois, Elio G.; Shivaram, Niranjan H.; Belkacem, Ali; Wright, Travis W.; Yang, Chan-Shan; Cryan, James P.

    2016-01-07

    We present a measurement of the time-resolved photoelectron kinetic energy spectrum of ethylene using 156 nm and 260 nm laser pulses. The 156 nm pulse first excites ethylene to the {sup 1}B{sub 1u} (ππ{sup ∗}) electronic state where 260 nm light photoionizes the system to probe the relaxation dynamics with sub-30 fs resolution. Recent ab initio calculations by Mori et al. [J. Phys. Chem. A 116, 2808-2818 (2012)] have predicted an ultrafast population transfer from the initially excited state to a low-lying Rydberg state during the relaxation of photoexcited ethylene. The measured photoelectron kinetic energy spectrum reveals wave packet motion on the valence state and shows indications that the low-lying π3s Rydberg state is indeed transiently populated via internal conversion following excitation to the ππ{sup ∗} state, supporting the theoretical predictions.

  17. Spectroscopic properties and potential energy curves of low-lying electronic states of RuC.

    PubMed

    Guo, Rui; Balasubramanian, K

    2004-04-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multiconfiguration self-consistent field followed by multireference configuration interaction methods that included up to 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38,000 cm(-1). We find two very closely low-lying electronic states for RuC, viz., 1Sigma+ and 3Delta with the 1Sigma+ being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound 1Sigma+ state with a large dipole moment which is most likely the experimentally observed ground state and an energetically close 3Delta state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18,000 cm(-1) agree quite well with those of the corresponding observed states.

  18. Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.

    PubMed

    Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence

    2016-06-14

    The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference.

  19. Spectroscopic Properties and Potential Energy Curves of Low-lying electronic States of RuC

    SciTech Connect

    Balasubramanian, K; Guo, R

    2003-12-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multi-configuration self-consistent field (CASSCF) followed by multireference configuration interaction (MRCI) methods that included up 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38 000 cm{sup -1}. We find two very closely low-lying electronic states for RuC, viz., {sup 1}{Sigma}{sup +} and {sup 3}{Delta} with the {sup 1}{Sigma}{sup +} being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound X{sup 1}{Sigma}{sup +} state with a large dipole moment and an energetically close {sup 3}{Delta} state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18000 cm{sup -1} agree quite well with those of the corresponding observed states.

  20. A theoretical study of the low-lying states of Ti2 and Zr2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.; Rosi, Marzio

    1991-01-01

    The low-lying states of Ti2 and the valence isoelectronic Zr2 are examined theoretically by means of a multireference configuration-interaction (MRCI) method. MRCI calculations demonstrate that two of the Zr2 states are very low-lying and that the resulting vertical excitation is consistent with the optical spectrum of Zr2. The ground state is predicted for Ti2 on the basis of valence correlation with the MRCI method and the average coupled-pair functional technique. Calculations of the inner-shell correlation effects are estimated and found to lower the 3Delta g state to a ground state, and another to a very low-lying state. The ground state of Ti2 is assigned to 3Delta g since it is lower than the other state at all levels of correlation and is derived from the same atomic asymptote. This conclusion is supported by the lack of an electron-spin resonance signal but contradicts the absence of subcomponents on the Raman spectral lines.

  1. Doppler-shift attenuation method lifetime measurements of low-lying states in 111In

    NASA Astrophysics Data System (ADS)

    Bucurescu, D.; Căta-Danil, I.; Ilaş, G.; Ivaşcu, M.; Mărginean, N.; Stroe, L.; Ur, C. A.

    1996-11-01

    The lifetimes of nine low-lying excited states in 111In have been measured with the Doppler-shift attenuation method in the 111Cd(p,nγ) reaction. A comparison of experimental quantities with predictions based on the interacting boson-fermion model unravels the states due to the coupling of a g9/2 proton hole to the quadrupole vibrations of the core.

  2. New extrapolation method for low-lying states of nuclei in the sd and the pf shells

    SciTech Connect

    Shen, J. J.; Zhao, Y. M.; Arima, A.; Yoshinaga, N.

    2011-04-15

    We study extrapolation approaches to evaluate energies of low-lying states for nuclei in the sd and pf shells, by sorting the diagonal matrix elements of the nuclear shell-model Hamiltonian. We introduce an extrapolation method with perturbation and apply our new method to predict both low-lying state energies and E2 transition rates between low-lying states. Our predicted results arrive at an accuracy of the root-mean-squared deviations {approx}40-60 keV for low-lying states of these nuclei.

  3. Shell model description of low-lying states in Po and Rn isotopes

    NASA Astrophysics Data System (ADS)

    Higashiyama, Koji; Yoshinaga, Naotaka

    2014-03-01

    Nuclear structure of the Po and Rn isotopes is theoretically studied in terms of the spherical shell model with the monopole- and quadrupole-pairing plus quadrupole-quadrupole effective interaction. The experimental energy levels of low-lying states are well reproduced. The shell model results are examined in detail in a pair-truncated shell model. The analysis reveals the alignment of two protons in the 0h9/2 orbital at spin 8.

  4. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  5. Computed potential surfaces for six low-lying states of Ni3

    NASA Technical Reports Server (NTRS)

    Walch, Stephen P.

    1987-01-01

    Selected portions of the potential surfaces for six low lying states of Ni3 are the subject of the present SCF/CCI calculations using the effective core potentials developed by Hay and Wadt (1985); the four states are studied for near-equilateral triangle geometries are within 0.04 eV of each other. Two states are studied for linear geometries, of which the first is 0.16 eV higher than the corresponding near-equilateral triangle state and the second is estimated to be nearly degenerate with the near-equilateral triangle structures.

  6. Ozone absorption spectroscopy in search of low-lying electronic states

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Mauersberger, K.

    1995-01-01

    A spectrometer capable of detecting ozone absorption features 9 orders of magnitude weaker than the Hartley band has been employed to investigate the molecule's near-infrared absorption spectrum. At this sensitivity a wealth of information on the low-lying electronically excited states often believed to play a role in atmospheric chemistry is available in the form of vibrational and rotational structure. We have analyzed these spectra using a combination of digital filtering and isotope substitution and find evidence for three electronically excited states below 1.5 eV. The lowest of these states is metastable, bound by approximately 0.1 eV and probably the (3)A2 rather than the (3)B2 state. Its adiabatic electronic energy is 1.24 +/- 0.01 eV, slightly above the dissociation energy of the ground state. Two higher states, at 1.29 +/- 0.03 and 1.48 +/- 0.03 eV are identified as the (3)B2 and the (3)B1, respectively. Combined with other recent theoretical and experimental data on the low-lying electronic states of ozone, these results imply that these are, in fact, the lowest three excited states; that is, there are no electronically excited states of ozone lying below the energy of O(3P) + O2((3)Sigma(-), v = 0). Some of the implications for atmospheric chemistry are considered.

  7. Theoretical Study of the Low-Lying States of MgN+2

    NASA Technical Reports Server (NTRS)

    Maitre, Philippe; Bauschlicher, Charles W., Jr.; Gross, Anthony R. (Technical Monitor)

    1994-01-01

    The structure and binding energies of the low-lying states of MgN2+ have been computed at the multireference configuration interaction level of theory. The effect of Mg inner-shell correlation have been included using the core-polarization potential method. The charge-quadrupole interaction results in a linear 2Sigma+ ground state as expected. The excited states can arise from either the interaction of the 2-P state of Mg+ with N2 or from charge transfer states with Mg(sup 2+)N2- bonding character. The lowest lying excited state, 2-B2, is mixture of these two mechanisms, which results in a C2v, geometry with Mg atoms sitting at the N2 bond midpoint. The small barrier in the bending potential exists between this state and the 2-II State which is the lowest lying linear excited state.

  8. Electron delocalization and aromaticity in low-lying excited states of archetypal organic compounds.

    PubMed

    Feixas, Ferran; Vandenbussche, Jelle; Bultinck, Patrick; Matito, Eduard; Solà, Miquel

    2011-12-14

    Aromaticity is a property usually linked to the ground state of stable molecules. Although it is well-known that certain excited states are unquestionably aromatic, the aromaticity of excited states remains rather unexplored. To move one step forward in the comprehension of aromaticity in excited states, in this work we analyze the electron delocalization and aromaticity of a series of low-lying excited states of cyclobutadiene, benzene, and cyclooctatetraene with different multiplicities at the CASSCF level by means of electron delocalization measures. While our results are in agreement with Baird's rule for the aromaticity of the lowest-lying triplet excited state in annulenes having 4nπ-electrons, they do not support Soncini and Fowler's generalization of Baird's rule pointing out that the lowest-lying quintet state of benzene and septet state of cyclooctatetraene are not aromatic.

  9. A New Approach to Solve the Low-lying States of the Schroedinger Equation

    NASA Astrophysics Data System (ADS)

    Lee, T. D.

    2005-12-01

    We review a new iterative procedure to solve the low-lying states of the Schroedinger equation, done in collaboration with Richard Friedberg. For the groundstate energy, the nth order iterative energy is bounded by a finite limit, independent of n; thereby it avoids some of the inherent difficulties faced by the usual perturbative series expansions. For a fairly large class of problems, this new procedure can be proved to give convergent iterative solutions. These convergent solutions include the long standing difficult problem of a quartic potential with either symmetric or asymmetric minima

  10. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    NASA Astrophysics Data System (ADS)

    Jakobsson, U.; Uusitalo, J.; Auranen, K.; Badran, H.; Cederwall, B.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.

    2015-10-01

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2+ state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2+ state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2+ state and the spherical 9/2- ground state in 203Fr and 205Fr.

  11. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    SciTech Connect

    Jakobsson, U. Cederwall, B.; Uusitalo, J.; Auranen, K.; Badran, H.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; Herzáň, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; and others

    2015-10-15

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2{sup +} state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2{sup +} state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2{sup +} state and the spherical 9/2{sup −} ground state in {sup 203}Fr and {sup 205}Fr.

  12. Microscopic structure of low-lying states in {sup 188,190,192}Os

    SciTech Connect

    Lo Iudice, N.; Sushkov, A. V.

    2008-11-15

    The phonon and quasiparticle structure of the low-lying states in {sup 188,190,192}Os is investigated within the microscopic quasiparticle-phonon model. An overall agreement with the data is obtained for energies and transitions. The properties of the 0{sup +} states are found to be correlated with the evolution of the nuclear shape toward the {gamma}-soft region. Special attention is devoted at the 4{sub 3}{sup +} state. This state is found to be composed of a large double-{gamma} phonon component coexisting with an even larger one-phonon hexadecapole piece. Such a mixed phonon structure explains the observed, apparently contradictory, properties of the 4{sub 3}{sup +} states in Os isotopes.

  13. RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg

    SciTech Connect

    Kuehn, R.; Dewald, A.; Kruecken, R.

    1996-12-31

    The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.

  14. γ -ray spectroscopy of low-lying excited states and shape competition in 194Os

    NASA Astrophysics Data System (ADS)

    Daniel, T.; Kisyov, S.; Regan, P. H.; Marginean, N.; Podolyák, Zs.; Marginean, R.; Nomura, K.; Rudigier, M.; Mihai, R.; Werner, V.; Carroll, R. J.; Gurgi, L. A.; Oprea, A.; Berry, T.; Serban, A.; Nita, C. R.; Sotty, C.; Suvaila, R.; Turturica, A.; Costache, C.; Stan, L.; Olacel, A.; Boromiza, M.; Toma, S.

    2017-02-01

    The properties of excited states in the neutron-rich nucleus 194Os have been investigated using the 192Os(18O,16O )194Os reaction with an 80 MeV beam provided by the IFIN-HH Laboratory, Bucharest. Discrete γ -ray decays from excited states have been measured using the hybrid HPGe-LaBr3(Ce ) array RoSPHERE. The current work identifies a number of previously unreported low-lying nonyrast states in 194Os as well as the first measurement of the half-life of the yrast 2+ state of 302(50) ps. This is equivalent to a B (E 2 :2+→0+) =45 (16 ) W.u. and intrinsic quadrupole deformation of βeff=0.14 (1 ) . The experimental results are compared with Hartree-Fock-Bogoliubov-interacting-boson-model calculations and are consistent with a reduction in a quadrupole collectivity in Os isotopes with increasing neutron number.

  15. Low-lying singlet and triplet electronic states of RhB.

    PubMed

    Borin, Antonio Carlos; Gobbo, João Paulo

    2008-05-08

    The low-lying XSigma+, a3Delta, A1Delta, b3Sigma+, B1Pi, c3Pi, C1Phi, D1Sigma+, E1Pi, d3Phi, and e3Pi electronic states of RhB have been investigated at the ab initio level, using the multistate multiconfigurational second-order perturbation (MS-CASPT2) theory, with extended atomic basis sets and inclusion of scalar relativistic effects. Among the eleven electronic states included in this work, only three (the X1Sigma+, D1Sigma+, and E1Pi states) have been investigated experimentally. Potential energy curves, spectroscopic constants, dipole moments, binding energies, and chemical bonding aspects are presented for all electronic states.

  16. Accurate MRCI calculations of the low-lying electronic states of the NCl molecule

    NASA Astrophysics Data System (ADS)

    Song, Ziyue; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2017-03-01

    Characterization of 22 electronic states of NCl correlating to the two lowest dissociation channels are carried out using high level CASSCF/MRCI calculations with a sextuple-ζ basis set including Davidson modification, core-valence correlation correction and scalar relativistic effects. As far as we know, this radical has never been the preference of theoretical researchers and experimental investigations only concern the ground state and the two low-lying metastable states. Accurate potential energy curves, dissociation energies as well as the equilibrium constants are determined and avoided crossings between the Π symmetry are studied. Moreover, spin-orbit splitting of several states and transition probabilities and radiative lifetimes for some allowed or forbidden transitions are presented.

  17. On the low-lying states of MgO. II

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Lengsfield, B. H., III; Silver, D. M.; Yarkony, D. R.

    1981-01-01

    Using a double zeta plus polarization basis set of Slater orbitals, full valence MCSCF (FVMCSCF) calculations were performed for the low-lying states of MgO. For each state the FVMCSCF calculations were used to identify the important configurations which are then used in the MCSCF calculation and subsequently as references in a single and double excitation CI calculation. This approach is found to treat all states equivalently, with the maximum error in the computed transition energies and equilibrium bond lengths of 800/cm and approximately 0.03 A, respectively. The b 3 Sigma + state which has yet to be characterized experimentally is predicted to have a transition energy of approximately 8300/cm and a bond length of 1.79 A. A spectroscopic analysis of the potential curves indicates that their shapes are in quite reasonable agreement with the range of experimental results.

  18. "No-spin" states and low-lying structures in 130Xe and 136Xe

    NASA Astrophysics Data System (ADS)

    Ross, T. J.; Peters, E. E.; Chakraborty, A.; Crider, B. P.; Kumar, A.; Liu, S. H.; McEllistrem, M. T.; Prados-Estévez, F. M.; Vanhoy, J. R.; Yates, S. W.

    2015-05-01

    Inelastic neutron scattering on solid 130XeF2 and 136XeF2 targets was utilized to populate excited levels in 130Xe and 136Xe. When calculating nuclear matrix elements vital to the understanding of double-beta decay, it is important to have a clear understanding of the low-lying level structure of both the parent and daughter nucleus. Of particular relevance to double-beta decay searches are the assignments of 0+ states. We show here that in the case of 130Xe there are several discrepancies in the adopted level structure. We found that one previous 0+ candidate level (1590 keV) can be ruled out and assigned two additional candidates (2223 and 2242 keV). In 136Xe we question the previous assignment of a 0+ level at 2582 keV. Excitation function and angular distribution measurements were utilized to make spin and parity assignments of levels and place new transitions.

  19. Fine and hyperfine structure in three low-lying 3S+ states of molecular hydrogen

    NASA Astrophysics Data System (ADS)

    Minaev, Boris; Loboda, Oleksandr; Rinkevicius, Zilvinas; Vahtras, Olav; Ågren, Hans

    The fine structure constant (electron spin-spin coupling) and the hyperfine structure parameters (electron-nuclear spin coupling, including spin-rotation and electron-nuclear quadrupole coupling) in the low-lying triplet states and of molecular hydrogen and deuterium are calculated using a recently developed technique with full configu-ration interaction and multiconfiguration self-consistent field wave functions. The second-order spin-orbit coupling contribution to the 3Σ+ states splitting is negligible, and the calculations therefore provide a good estimate of the zero-field splitting based only on the electron spin-spin coupling values. For the bound state a negligible zero-field splitting is found, in qualitative agreement with the e-a spectrum. The zero-field splitting parameter is considerable for the repulsive state (≃1 cm-1) and of intermediate size for the bound state. The isotropic hyperfine coupling constant is very large not only for the valence state (1580 MHz) but also for the Rydberg a and e triplet states (≃1400 MHz). The quadrupole coupling constants for the deuterium isotopes are negligible (0.04-0.07 MHz) for all studied triplet states. The electric dipole activity of the spin sublevels in the triplet-singlet transitions to the ground state is estimated by means of the quadratic response technique.

  20. CASSCF/CI calculations of low-lying states and potential energy surfaces of Au3

    NASA Astrophysics Data System (ADS)

    Balasubramanian, K.; Liao, M. Z.

    1987-05-01

    Complete active space MCSCF (CASSCF) and second-order configuration interaction (SOCI) calculations of low-lying electronic states [2B2,2A1] of Au3 as well as the 1Σ+g state of Au2 are carried out. The bending potential energy surfaces of 2A1 and 2B2 states are also presented. A barrier is found in the potential energy surface of the 2A1 state in moving from the linear to bent structure. Two nearly-degenerate structures are found for the ground state. The 2Σ+u state arising from the linear structure with an Au-Au bond length of 2.66 Å is only 3.2 kcal/mol below the 2A1 bent state. The equilibrium geometry of the 2A1 state is an isosceles triangle with an apex angle of 54°. The Au3 cluster is found to be more stable than the gold dimer. The effect of d correlation is studied on Au2 by carrying out MRSDCI (multireference singles and doubles CI) calculations on the 1Σ+g state of Au2 which include excitations from the d orbitals.

  1. Low-lying electronic states of LiF molecule with inner electrons correlation

    NASA Astrophysics Data System (ADS)

    Wan, Ming-jie; Huang, Duo-hui; Yang, Jun-sheng; Cao, Qi-long; Jin, Cheng-guo; Wang, Fan-hou

    2015-06-01

    The potential energy curves and dipole moments of the low-lying electronic states of LiF molecule are performed by using highly accurate multi-reference configuration interaction with Awcv5z basis sets. 1s, the inner shell of Li is considered as the closed orbit, which is used to characterise the spectroscopic properties of a manifold of singlet and triplet states. 16 electronic states correlate with two lowest dissociation channels Li(2S)+F(2P) and Li(2P)+F(2P) are investigated. Spectroscopic parameters of the ground state X1Σ+ have been evaluated and critically compared with the available experimental values and the other theoretical data. However, spectroscopic parameters of 13Π, 11Δ, 11Σ-, 11Π, 13Σ+, 23Σ+, 13Δ, 13Σ-, 23Π, 21Π, 33Π, 31Π and 33Σ+ states are studied for the first time. These 13 excited states have shallow potential wells, and the dispersion coefficients of these excited states are predicted. In additional, oscillator strengths of excited states at equilibrium distances are also predicted.

  2. Properties of the low-lying electronic states of phenanthrene: Exact PPP results

    SciTech Connect

    Chakrabarti, A.; Ramasesha, S.

    1996-10-05

    The authors report properties of the exact low-lying states of phenanthrene, its anion and dianion within the Pariser-Parr-Pople (PPP) model. The experimentally known singlet states of the neutral molecule are well reproduced by the model. The intensities for one and two photon absorption to various single states are also in good agreement with experiment. From the bond orders of these states, the authors predict the equilibrium geometries. The relaxation energies of these states, computed from charge-charge correlations and bond orders, are presented. The authors also present results of ring current calculations in the singlet ground state of phenanthrene. The authors have also reported energies, spin densities, bond orders, and relaxation energies of several triplet states and compared then with experiments as well as with other calculations, where available. The fine structure constants D and E, computed in the lowest triplet state, compare well with those obtained from experiments. These properties are also presented for the anions and the dianions. The PPP model in these cases predicts a low-energy (< 1 eV) dipole excitation. 31 refs., 4 figs., 9 tabs.

  3. Low-lying electronic states of CuN calculated by MRCI method

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Dong; Liu, Chao

    2016-10-01

    The high accuracy ab initio calculation method of multi-reference configuration interaction (MRCI) is used to compute the low-lying eight electronic states of CuN. The potential energy curves (PECs) of the X3Σ-, 13Π, 23Σ-, 13Δ, 11Δ, 11Σ-, 11Π, and 5Σ- in a range of R = 0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(2Sg) + N(4Su) and Cu(2Sg) + N(2Du) dissociation limits. All the possible vibrational levels, rotational constants, and spectral constants for the six bound states of X3Σ-, 13Π, 23Σ-, 11Δ, 11Σ-, and 11Π are obtained by solving the radial Schrödinger equation of nuclear motion with the Le Roy provided Level8.0 program. Also the transition dipole moments from the ground state X3Σ- to the excited states 13Π and 23Σ- are calculated and the result indicates that the 23Σ--X3Σ- transition has a much higher transition dipole moment than the 13Π-X3Σ- transition even though the 13Π state is much lower in energy than the 23Σ- state.

  4. A theoretical study on low-lying electronic states and spectroscopic properties of PH

    NASA Astrophysics Data System (ADS)

    Gao, Yufeng; Gao, Tao

    2014-01-01

    The low-lying electronic states (X3∑-, a1Δ, b1Σ+, A3Π, c1Π and 5∑-) of the PH species correlating with the first three dissociation channels have been investigated at the MRCI + Q/aug-cc-PV5Z level of theory. Accurate adiabatic potential energy curves and spectroscopic constants (Te, Re, ωeχe, ωe, Be, De) of these electronic states have been reported. Effect of the spin-orbit coupling on the A3Π and 5∑- states of the PH has been calculated, which lead to the spin-orbit-induced predissociation of the A3Π state. Electronic transition moment, Einstein coefficients and Franck-Condon factors for the A3Π - X3∑- system have been calculated. Dipole moment functions (μe) and radiative lifetime (τv‧) for the A3Π state has also been determined. The radiative lifetime for A3Π - X3∑- transition is computed and compared with the available data.

  5. Pauli blocking in the low-lying, low-spin states of {sup 141}Pr

    SciTech Connect

    Scheck, M.; Choudry, S. N.; Elhami, E.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Yates, S. W.

    2008-09-15

    The low-lying, low-spin levels of {sup 141}Pr were investigated using (n,n{sup '}{gamma}) techniques. Level energies, branching ratios, and tentative spin assignments for more than 100 states, linked by nearly 300 transitions, were obtained from two angular distributions (E{sub n}=2.0 and 3.0 MeV) and an excitation function measurement (E{sub n}=1.5-3.2 MeV). The application of the Doppler-shift attenuation method led to the determination of lifetimes. The obtained spectroscopic data provide insight into the wave functions of the states observed. A detailed analysis of the [2{sub 1}{sup +} x d{sub 5/2}] and [2{sub 1}{sup +} x g{sub 7/2}] multiplets provides the first quantitative evidence for Pauli blocking in a spherical odd-mass nucleus. The unpaired particle is used to probe the microscopic structure of the first 2{sup +} state of the adjacent core nuclei {sup 140}Ce and {sup 142}Nd.

  6. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  7. Theoretical calculation of low-lying states of NaAr and NaXe

    NASA Technical Reports Server (NTRS)

    Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.

    1981-01-01

    Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.

  8. Structural Optimization by Quantum Monte Carlo: Investigating the Low-Lying Excited States of Ethylene.

    PubMed

    Barborini, Matteo; Sorella, Sandro; Guidoni, Leonardo

    2012-04-10

    We present full structural optimizations of the ground state and of the low lying triplet state of the ethylene molecule by means of Quantum Monte Carlo methods. Using the efficient structural optimization method based on renormalization techniques and on adjoint differentiation algorithms recently proposed [Sorella, S.; Capriotti, L. J. Chem. Phys.2010, 133, 234111], we present the variational convergence of both wave function parameters and atomic positions. All of the calculations were done using an accurate and compact wave function based on Pauling's resonating valence bond representation: the Jastrow Antisymmetrized Geminal Power (JAGP). All structural and wave function parameters are optimized, including coefficients and exponents of the Gaussian primitives of the AGP and the Jastrow atomic orbitals. Bond lengths and bond angles are calculated with a statistical error of about 0.1% and are in good agreement with the available experimental data. The Variational and Diffusion Monte Carlo calculations estimate vertical and adiabatic excitation energies in the ranges 4.623(10)-4.688(5) eV and 3.001(5)-3.091(5) eV, respectively. The adiabatic gap, which is in line with other correlated quantum chemistry methods, is slightly higher than the value estimated by recent photodissociation experiments. Our results demonstrate how Quantum Monte Carlo calculations have become a promising and computationally affordable tool for the structural optimization of correlated molecular systems.

  9. Electronic and structural properties of low-lying excited states of vitamin B12.

    PubMed

    Lodowski, Piotr; Jaworska, Maria; Kornobis, Karina; Andruniów, Tadeusz; Kozlowski, Pawel M

    2011-11-17

    Time-dependent density functional theory (TD-DFT) has been applied to explore electronically excited states of vitamin B(12) (cyanocobalamin or CNCbl). To explain why the Co-C bond in CNCbl does not undergo photodissociation under conditions of simple photon excitation, electronically excited states have been computed along the Co-C(CN) stretched coordinate. It was found that the repulsive (3)(σ(Co-C) → σ*(Co-C)) triplet state drops in energy as the Co-C(CN) bond lengthens, but it does not become dissociative. Low-lying excited states were also computed as function of two axial bond lengths. Two energy minima have been located on the S(1)/CNCbl, as well as T(1)/CNCbl, surfaces. The full geometry optimization was carried out for each minimum and electronic properties associated with each optimized structure were analyzed in details. One minimum was described as excitation having mixed ππ*/MLCT (metal-to-ligand charge transfer) character, while the second as ligand-to-metal charge transfer (LMCT) transition. Neither of them, however, can be viewed as pure MLCT or LMCT transitions since additional excitation to or from σ-bonds (SB) of N-Co-C unit have also noticeable contributions. Inclusion of solvent altered the character of one of the excitations from ππ*/MLCT/SBLCT to ππ*/LMCT/LSBCT-type, and therefore, both of them gained significant contribution from LMCT/LSBCT transition. Finally, the nature of S(1) electronic state has been comparatively analyzed in CNCbl and MeCbl cobalamins.

  10. A theoretical study of low-lying electronic states of aminonitrene, phosphinonitrene, and phosphinocarbene

    NASA Astrophysics Data System (ADS)

    Hoffmann, Mark R.; Kuhler, Kathleen

    1991-06-01

    The recently formulated multiconfiguration-based unitary coupled electron pair approximation (UCEPA) is compared with multireference configuration interaction (MR-CISD) calculations, including all single and double excitations, for the molecules in this study. The electronic states of the molecules in this study are not only of experimental interest, but represent a challenge to any formalism to accurately predict the energy separations of the low-lying electronic states. The equilibrium geometries and fundamental vibrational frequencies of the three lowest electronic states (i.e., 1A1, 3A`, and 1A`) of aminonitrene H2N2, and phosphinonitrene, H2PN, have been determined using a split-valence basis with polarization functions on the heavy atoms and a small complete active space self-consistent-field (CASSCF) description of the active space. Both MR-CISD and UCEPA calculations have been performed at the equilibrium structures using larger basis sets to accurately determine the relative energetics of the electronic states. The equilibrium geometries and vibrational frequencies of the two lowest electronic states (i.e., 1A' and 3A`) of phosphinocarbene, H2PCH, have been determined using a larger than double zeta basis set, augmented with polarization and diffuse functions, and a CASSCF description of the active space. Both MR-CISD and UCEPA calculations were performed on the equilibrium structures and predict that the singlet lies between 10.4 and 11.8 kcal/mol lower in energy than the triplet. The use of a generalized valence bond (GVB) reference function within UCEPA is introduced and is shown to be a useful approximation.

  11. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  12. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1986-01-01

    Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.

  13. The low-lying 2-sigma-minus states of OH

    NASA Technical Reports Server (NTRS)

    Van Dishoeck, E. F.; Langhoff, S. R.; Dalgarno, A.

    1983-01-01

    The configuration-interaction method is used to determine the electronic wave functions of the two lowest 2-sigma-minus states of OH using four different atomic orbital basis sets. Potential energy curves, transition moments, oscillator strengths, and photodissociation cross sections are obtained. Electronic transition dipole moments connecting the excited 1 2-sigma-minus and 2(D)2-sigma-minus states with each other and with the ground chi-2-pi state are presented as functions of internuclear distance. The theoretical absorption oscillator strengths for the D-2-sigma-minus(v prime = 0) from chi-2-pi(v double prime = 0) transition are in good agreement with the empirical value derived from astronomical measurement. The photodissociation cross sections for absorption from the v prime = 0, 1, and 2 levels of the ground state into the continuum of the 1 2-sigma-minus state are calculated, and the interstellar and cometary photodissociation rates are derived.

  14. Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈100

    NASA Astrophysics Data System (ADS)

    Xiang, J.; Yao, J. M.; Fu, Y.; Wang, Z. H.; Li, Z. P.; Long, W. H.

    2016-05-01

    Background: In recent years, the study of triaxiality in the low-lying states of atomic nuclei with transition character or shape coexistence has been of great interest. Previous studies indicate that the neutron-rich nuclei in the A ˜100 mass region with Z ˜40 ,N ˜60 serve as good grounds for examining the role of triaxiality in nuclear low-lying states. Purpose: The aim of this work is to provide a microscopic study of low-lying states for nuclei in the A ˜100 mass regions and to examine in detail the role of triaxiality in the shape-coexistence phenomena and the variation of shape with the isospin and spin values at the beyond mean-field level. Method: The starting point of our method is a set of relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations (β ,γ ) . The excitation energies and electric multipole transition strengths of low-lying states are calculated by solving a five-dimensional collective Hamiltonian (5DCH) with parameters determined by the mean-field wave functions. Results: The low-lying states of Mo isotopes and of N =60 isotones in the A ˜100 mass region are calculated. The results indicate that triaxiality is essential to reproduce the data of excitation energies and electric quadrupole transition strengths in low-lying states and plays an important role in the shape evolution as a function of nucleon number. However, the decrease of nuclear collectivity with the increase of angular momentum in neutron-rich Mo isotopes has not been reproduced. Conclusions: The evolution of nuclear collectivity in the low-lying states of neutron-rich nuclei in the A ˜100 mass region as a function of nucleon number is governed by the novel triaxial structure. However, the mechanism that governs the variation of nuclear shape with spin in Mo isotopes remains unclear and deserves further investigation by taking into account the effects other than the collective motions.

  15. Low-lying excited states in armchair polyacene within Pariser-Parr-Pople model: A density matrix renormalization group study

    SciTech Connect

    Das, Mousumi

    2014-03-28

    We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.

  16. Simultaneous description of low-lying positive and negative parity states in spd, sdf and spdf interacting boson model

    NASA Astrophysics Data System (ADS)

    Jafarizadeh, M. A.; Majarshin, A. Jalili; Fouladi, N.

    2016-11-01

    In order to investigate negative parity states, it is necessary to consider negative parity-bosons additionally to the usual s- and d-bosons. The dipole and octupole degrees of freedom are essential to describe the observed low-lying collective states with negative parity. An extended interacting boson model (IBM) that describes pairing interactions among s, p, d and f-boson based on affine SU(1, 1) Lie algebra in the quantum phase transition (QPT) field, such as spd-IBM, sdf-IBM and spdf-IBM, is composed based on algebraic structure. In this paper, a solvable extended transitional Hamiltonian based on affine SU(1, 1) Lie algebra is proposed to describe low-lying positive and negative parity states between the spherical and deformed gamma-unstable shape. Three model of new algebraic solution for even-even nuclei are introduced. Numerical extraction to low-lying energy levels and transition rates within the control parameters of this evaluated Hamiltonian are presented for various N values. We reproduced the positive and negative parity states and our calculations suggest that the results of spdf-IBM are better than spd-IBM and sdf-IBM in this literature. By reproducing the experimental results, the method based on signature of the phase transition such as level crossing in the lowest excited states is used to provide a better description of Ru isotopes in this transitional region.

  17. On the low-lying states of WO - A comparison with CrO and MoO

    NASA Technical Reports Server (NTRS)

    Nelin, C. J.; Bauschlicher, C. W., Jr.

    1985-01-01

    The four low-lying states of WO were investigated and compared with similar states of CrO and MoO. For all these systems the ground state is 5 Pi, but the ordering of the upper states is different between WO and either CrO or MoO. The difference in the state ordering arises in part from the fact that in WO all of the states are formed from W(+) in a d4S1 configuration, whereas in both CrO and MoO some states are formed from the d5 configuration and others from the d4S1 configuration.

  18. Theoretical spectroscopic parameters for the low-lying states of the second-row transition metal hydrides

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Partridge, Harry

    1987-01-01

    A systematic analysis of the low-lying states of all of the second-row transition metal (TM) hydrides except CdH is reported. The calculations included the dominant relativistic contributions through the use of the relativistic effective core potentials of Hay and Wadt (1985). Electron correlation was incorporated, using single-plus-double configuration interaction, the coupled pair functional (CPF) formalism of Ahlrichs et al. (1985), and the Chong and Langhoff (1986) modified version of the CPF method. The spectroscopic parameters D(e), r(e), and mu(e) determined for the low-lying states are compared with the available experimental data and previous theoretical results. In contrast to the first-row TM hydrides studied earlier (Chong et al., 1986), the spectroscopic constants for the second-row TM hydrides were found to be much less sensitive to the level of correlation treatment.

  19. Electron-impact excitation of the low-lying electronic states of HCN

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.

    1977-01-01

    The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.

  20. Low-lying isomeric state in {sup 80}Ga from the {beta}{sup -} decay of {sup 80}Zn

    SciTech Connect

    LicA, R.; Marginean, N.; Ghita, D.G.; and others

    2012-10-20

    A new level scheme was constructed for {sup 80}Ga which is significantly different from the one previously reported. The excitation energy of a new low-lying state recently reported in [2] was identified at 22.4 keV. Properties of the level scheme suggest that the ground state has spin J = 6 and the first excited state has spin J = 3. The spin assignments are in agreement with laser spectroscopy values previously measured. Our work provides the first evidence for the J = 6 being the ground state.

  1. Potential energy curves and lifetimes of low-lying excited electronic states of CSe studied by configuration interaction method.

    PubMed

    Li, Rui; Sun, Erping; Jin, Mingxing; Xu, Haifeng; Yan, Bing

    2014-04-10

    In this work, we performed a high level ab initio study on the low-lying electronic states of CSe, utilizing MRCI+Q (the internally contracted multireference configuration interaction, and Davidson's correction) method with scalar relativistic and spin-orbit coupling effects taken into account. The potential energy curves of 18 Λ-S states associated with the lowest dissociation limit of CSe molecule, as well as those of 50 Ω states generated from the Λ-S states were computed. The spectroscopic parameters of bound states were evaluated, which agree well with existing theoretical and experimental results. With the aid of calculated spin-orbit matrix elements and the Λ-S compositional variation of the Ω states, the spin-orbit perturbations of low-lying states to the A(1)Π and a(3)Π states are analyzed. Finally, the transition dipole moments of A(1)Π, A'(1)Σ(+), a(3)Π0+, and a(3)Π1 to the ground X(1)Σ(+) state as well as the lifetimes of the four excited states were evaluated.

  2. An investigation into low-lying electronic states of HCS{sub 2} via threshold photoelectron imaging

    SciTech Connect

    Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao E-mail: fanhj@dicp.ac.cn; Fan, Hongjun E-mail: fanhj@dicp.ac.cn

    2014-06-07

    Low-energy photoelectron imaging spectra of HCS{sub 2}{sup −} are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS{sub 2}{sup −} to the ground state and low-lying excited states of HCS{sub 2} are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS{sub 2} radical in the gaseous phase. The ground state and two low-lying excited states of HCS{sub 2} radical are assigned as {sup 2}B{sub 2}, {sup 2}A{sub 2}, and {sup 2}A{sub 1} states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T{sub 0} = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

  3. On the ground and some low-lying excited states of ScB: A multiconfigurational study

    NASA Astrophysics Data System (ADS)

    Černušák, Ivan; Dallos, Michal; Lischka, Hans; Müller, Thomas; Uhlár, Milan

    2007-06-01

    The electronic structure of a series of low-lying excited triplet and quintet states of scandium boride (ScB) was examined using multireference configuration interaction (including Davidson's correction for quadruple excitations) and single-reference coupled cluster (CC) methods with averaged natural orbital (ANO) basis sets. The CC approach was used only for the lowest quintet state. The authors have analyzed eight low-lying triplets Σ-3(2), Σ+3, Π3(3), and Δ3(2) dissociating to Sc(D2)/B(P2) atoms and eight low-lying quintet states Σ-5, Σ+5, Π5(2), Φ5, and Δ5(3) dissociating to Sc(F4)/B(P2) atoms. They report the potential energy curves and spectroscopic parameters of ScB obtained with the multireference configuration interaction (MRCI) technique including all singly and doubly excited configurations obtained with the ANO-S basis set. For the two lowest states they obtained also improved ANO-L spectroscopic constants, dipole and quadrupole moments as well as scalar relativistic effects based on the Douglas-Kroll-Hess Hamiltonian. They provide the analysis of the bonding based on Mulliken populations and occupation numbers. Since the two lowest states, Σ-3 and Σ-5, lie energetically very close, their principal goal was to resolve the nature of the ground state of ScB. Their nonrelativistic MRCI(Q) (including Davidson correction) results indicate that the quintet is more stable than the triplet by about 800cm-1. Inclusion of scalar relativistic effects reduces this difference to about 240cm-1. The dissociation energies for Σ-5 ScB range from 3.20to3.30eV while those for the Σ-3 range from 1.70to1.80eV.

  4. Primary transitions between the yrast superdeformed band and low-lying normal deformed states in {sup 194}Pb

    SciTech Connect

    Hauschild, K.; Bernstein, L.A.; Becker, J.A.

    1996-12-31

    The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.

  5. Ab initio MRCI+Q study on low-lying states of CS including spin-orbit coupling.

    PubMed

    Li, Rui; Wei, Changli; Sun, Qixiang; Sun, Erping; Xu, Haifeng; Yan, Bing

    2013-03-21

    Carbon monosulfide (CS), which plays an important role in a variety of research fields, has long received considerable interest. Due to its transient nature and large state density, the electronic states of CS have not been well understood, especially the interactions between different states. In this paper, we performed a detail ab initio study on the low-lying electronic states of CS by means of the internally contracted multireference configuration interaction method (including Davidson correction) with scalar relativistic correction using the Douglas-Kroll-Hess Hamiltonian. We focused on the spin-orbit coupling of the states via the state interaction method with the full Breit-Pauli Hamiltonian. The potential energy curves (PECs) of 18 Λ-S states correlated with the lowest dissociation limit of the CS molecule were calculated, as well as those of 50 Ω states generated from the Λ-S states. The spectroscopic constants of the bound states were obtained, which are in good agreement with previous available experimental and theoretical results. The state perturbations of the a(3)Π and A(1)Π states with other low-lying electronic states are discussed in detail, based on the calculated spin-orbit matrix as well as the PECs of the Ω states. Avoided crossing in the states of CS was indicated when spin-orbit coupling was taken into account. Finally, the allowed transition dipole moments as well as the lifetimes of the five lowest vibrational states of the A(1)Π1, A'(1)Σ(+)0(+) and a(3)Πi states were obtained.

  6. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    NASA Astrophysics Data System (ADS)

    Bross, David H.; Peterson, Kirk A.

    2015-11-01

    Spectroscopic constants (Te, re, B0, ωe, and ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF+ and UCl+ both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous studies, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment and are expected to be predictive for UCl and UCl+, which are reported here for the first time.

  7. Theoretical spectroscopy study of the low-lying electronic states of UX and UX{sup +}, X = F and Cl

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2015-11-14

    Spectroscopic constants (T{sub e}, r{sub e}, B{sub 0}, ω{sub e}, and ω{sub e}x{sub e}) have been calculated for the low-lying electronic states of UF, UF{sup +}, UCl, and UCl{sup +} using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U{sup +} and UF{sup +}. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm{sup −1} as opposed to the same state at 435 cm{sup −1} in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF{sup +} and UCl{sup +} both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl{sup +} than in UF{sup +}, ranging up to 776 cm{sup −1} in UF{sup +} and only 438 cm{sup −1} in UCl{sup +}. As in previous studies, the final PP-based SO-CASPT2 results for UF{sup +} and UF agree well with experiment and are expected to be predictive for UCl and UCl{sup +}, which are reported here for the first time.

  8. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    DOE PAGES

    Bross, David H.; Peterson, Kirk A.

    2015-11-13

    Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and themore » PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.« less

  9. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ∗ states

    NASA Astrophysics Data System (ADS)

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-01

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S1←S0 absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S1 origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ∗ character in the vicinity of the lowest valence ππ∗ state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ∗ and a nearby dissociative πσ∗ state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H2O)n clusters (n = 1-11), intensities of a number of πσ∗ states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the observed photophysical behavior.

  10. Dissociation potential curves of low-lying states in transition metal hydrides. 3. Hydrides of groups 6 and 7.

    PubMed

    Koseki, Shiro; Matsushita, Takeshi; Gordon, Mark S

    2006-02-23

    The dissociation curves of low-lying spin-mixed states in monohydrides of groups 6 and 7 were calculated by using an effective core potential (ECP) approach. This approach is based on the multiconfiguration self-consistent field (MCSCF) method, followed by first-order configuration interaction (FOCI) calculations, in which the method employs an ECP basis set proposed by Stevens and co-workers (SBKJC) augmented by a set of polarization functions. Spin-orbit coupling (SOC) effects are estimated within the one-electron approximation by using effective nuclear charges, since SOC splittings obtained with the full Breit-Pauli Hamitonian are underestimated when ECP basis sets are used. The ground states of group 6 hydrides have Omega = (1)/(2)(X(6)Sigma(+)(1/2)), where Omega is the z component of the total angular momentum quantum number. Although the ground states of group 7 hydrides have Omega = 0(+), their main adiabatic components are different; the ground state in MnH originates from the lowest (7)Sigma(+), while in TcH and ReH the main component of the ground state is the lowest (5)Sigma(+). The present paper reports a comprehensive set of theoretical results including the dissociation energies, equilibrium distances, electronic transition energies, harmonic frequencies, anharmonicities, and rotational constants for several low-lying spin-mixed states in these hydrides. Transition dipole moments were also computed among the spin-mixed states and large peak positions of electronic transitions are suggested theoretically for these hydrides. The periodic trends of physical properties of metal hydrides are discussed, based on the results reported in this and other recent studies.

  11. Three-Dimensional Angular Momentum Projected Relativistic Point-Coupling Approach for Low-Lying Excited States in 24Mg

    NASA Astrophysics Data System (ADS)

    Yao, Jiang-Ming; Meng, Jie; D. Pena, Arteaga; Ring, P.

    2008-10-01

    A full three-dimensional angular momentum projection on top of a triaxial relativistic mean-Geld calculation is implemented for the first time. The underlying Lagrangian is a point coupling model and pairing correlations are taken into account by a monopole force. This method is applied for the low-lying excited states in 24Mg. Good agreement with the experimental data is found for the ground state properties. A minimum in the potential energy surface for the 2+1 state, with β ≃ 0.55,γ ≃ 10°, is used as the basis to investigate the rotational energy spectrum as well as the corresponding B(E2) transition probabilities as compared to the available data.

  12. Low-lying quasibound rovibrational states of H2 16O**

    NASA Astrophysics Data System (ADS)

    Szidarovszky, Tamás; Császár, Attila G.

    2013-08-01

    A complex coordinate scaling (CCS) method is described allowing the quantum chemical computation of quasibound (also called resonance or metastable) rovibrational states of strongly bound triatomic molecules. The molecule chosen to test the method is H2 16O, for which an accurate global potential energy surface, a previous computation of a few resonance states via the complex absorbing potential (CAP) method, and some Feshbach (J = 0, where J is the quantum number characterising overall rotations of the molecule) and shape (J ≠ 0) resonances measured via a state-selective, triple-resonance technique are all available. Characterisation of the computed resonance states is performed via probability density plots based on CCS rovibrational wavefunctions. Such plots provide useful details about the physical nature of the resonance states. Based on the computations and the resonance plots, the following useful facts about the resonance states investigated are obtained: (a) Feshbach resonances are formed by accumulation of a large amount of energy in either the non-dissociative bending or symmetric streching modes, excitations by more than five quanta are not uncommon; (b) there are several resonance states with low and medium bending excitation, the latter are different from the states observed somewhat below dissociation by the same triple-resonance technique; (c) several types of dissociation bahavior can be identified, varying greatly among the states; (d) several pairs of J = 0 and J = 1 Feshbach resonance states can be identified which differ by rigid-rotor type energies; and (e) the lifetimes of the assigned J = 1 rovibrational Feshbach resonances are considerably longer than the lifetimes of their J = 0 vibrational counterparts.

  13. Lifetimes and collectivity of low-lying states in 115Sn

    NASA Astrophysics Data System (ADS)

    Lobach, Yu. N.; Käubler, L.; Schwengner, R.; Pasternak, A. A.

    1999-04-01

    The lifetimes of excited states in 115Sn have been measured using the Doppler shift attenuation method in the reaction 113Cd(α,2nγ) at Eα=27.2 MeV. Lifetimes were obtained for 18 states and lifetime limits for 6 states with Ex<=4 MeV and J<=23/2. The experimentally obtained B(σL) values for transitions deexciting positive-parity states are compared with calculations in the framework of the Bardeen-Cooper-Schrieffer quasiparticle model and the interacting boson fermion model, whereas the values for transitions between negative-parity states are discussed qualitatively within a core-particle coupling picture. The value of B(E2)=3.5(11) Weisskopf units (W.u.) for the transition linking the 19/2- state of the intruder νh11/2π2p2h band to the 15/2- state of the νh11/2⊗2+1 multiplet strongly supports the configuration νh11/2π(g-29/2g27/2) ascribed to this band.

  14. Stabilization calculations of the low-lying temporary anions states of Be, Mg, and Ca

    NASA Astrophysics Data System (ADS)

    Falcetta, Michael F.; Reilly, Nathan D.; Jordan, Kenneth D.

    2017-01-01

    The stabilization method is used in conjunction with the equation-of-motion electron-attachment coupled-cluster method to calculate the complex energies of the 2P temporary anion states of Be and Mg as well as of the 2D temporary anions states of Mg and Ca. The calculated resonance parameters for the 2P state of Mg- and 2D state of Ca- agree well with experiment. Experimental results are not available for the 2P anion of Be, but we note that our calculated resonance parameters of 2P Be-, while in good agreement with the CI results of McNutt and McCurdy (1983), differ significantly from the results of two other recent theoretical studies.

  15. The Low-Lying States of AlCu and AlAg

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry

    1994-01-01

    The singlet and triplet states of AlCu and AlAg below about 32 000/cm are studied using the internally contracted multireference configuration-interaction method. A more elaborate study of the X(sup 1)Sum(sup +) ground state of AlCu is undertaken using extended Gaussian basis sets, including the effect of inner-shell correlation and including a perturbational estimate of relativistic effects. Our best estimate of the spectroscopic constants (r(sub 0), DeltaG(sub 1/2), and D(sub 0)) for the X(sup 1)Sum(sup+) state with the experimental values in parentheses are: 4.416(4.420) a(sub 0), 295 (294) /cm, and 2.318 (2.315) eV. The calculations definitively assign the upper state in the observed transition at 14 892/cm to the lowest (sup 1)Prod state. The calculated spectroscopic constants and radiative lifetime for the (sup 1)Prod state are in good agreement with experiment. The calculations support the tentative assignments of Behm et al. for three band systems observed in the visible region between 25 000 and 28 000 / cm. However, the computed spectroscopic constants are in very poor agreement with those deduced from an analysis of the spectra. Analogous theoretical results for AlAg suggest that the (2)(sup 3)Prod, (3)(sup 3)Prod, and (3)(sup 1)Sum(sup +) states account for the bands observed, but not assigned, by Duncan and co-workers.

  16. Ab initio calculations of low-lying electronic states of vinyl chloride

    NASA Astrophysics Data System (ADS)

    Chang, Jia-Lin; Chen, Yit-Tsong

    2002-05-01

    The equilibrium geometries, vibrational frequencies, excitation energies, and oscillator strengths of vinyl chloride in the ground and five lowest-lying excited singlet states have been calculated using MP2, CIS, CASSCF, and MRCI methods with the 6-311++G** basis set. The geometries and vibrational frequencies of the ground and excited states are utilized to compute Franck-Condon factors. Calculated vibronic spectra for the transitions from the ground state to these five excited states are in agreement with experiment at 52 500-60 000 cm-1, with major contributions from the Ã(1 1A″)←X˜(1A') and C˜(2 1A')←X˜(11A') transitions. In this study, two spin-forbidden transitions of b˜(1 3A″)←X˜(11A') and c˜(2 3A&')←X˜(11A') are calculated to locate in 45 000-54 000 cm-1, and could be responsible for the observed one-photon absorption spectrum due to an intensity borrowing caused by the spin-orbit coupling of the Cl atom. Based on calculation, we speculate that upon the excitation of vinyl chloride at 193 nm the b˜(1 3A″) or c˜(2 3A″) excited state, instead of the (π,π*), is initially prepared prior to the subsequent photodissociation processes.

  17. Hydrogen atom in a strong magnetic field. II. Relativistic corrections for low-lying excited states

    NASA Astrophysics Data System (ADS)

    Poszwa, A.; Rutkowski, A.

    2004-02-01

    The highly accurate solution of the Schrödinger equation in the form of common Landau exponential factor multiplied by a power series in two variables, the sine of the cone angle and radial variable is completed by the first-order relativistic correction calculated within the framework of the relativistic direct perturbation theory (DPT). It is found that in contrast to behavior of relativistic corrections for the ground state and 2p-1(ms=-1/2) excited state, which change sign from negative to positive near B≈1011 G and B≈1010 G, respectively [Z. Chen and S. P. Goldman, Phys. Rev A 45, 1722 (1992)], the relativistic corrections for 2s0(ms=-1/2) and 2p0(ms=-1/2) excited states are negative for the magnetic field varying in range 0states the near-degenerate version of DPT is used. The avoided crossings of relativistic levels with μ=-1/2 and π=-1, evolving from field-free states with principal quantum numbers n=2,3,4 are presented.

  18. On the nature of the low lying singlet states of anthracene

    NASA Astrophysics Data System (ADS)

    Bree, A.; Leyderman, A.; Taliani, C.

    1986-03-01

    An analysis of the two-photon fluorescence excitation spectrum (TPES) of anthracene-h 10 and anthracene-d 10 in mixed crystal in the spectral range of 26000-31000 cm -1 at 4.2 K is presented. The two photon forbidden pure electronic origin of anthracene is particularly intense in fluorene mixed crystals because of the perturbation of the host matrix. In addition, a number of b lu vibrations give rise to a vibronic coupling with a second excited electronic state of total symmetry A g at about 29400 cm -1. The nature of this second excited state is discussed.

  19. MRCI calculations of the low-lying electronic states of CuC

    NASA Astrophysics Data System (ADS)

    Liu, C.; Zhang, S. D.

    2015-06-01

    The four electronic states (2Σ-, 2Π, 4Σ-, and 4Π) of CuC corresponding to the lowest dissociation limits Cu(2 S g ) + C(3 P g ) are calculated by using multi-reference configuration interaction method with Davidson correction (MRCI + Q) approach in combination with the effective core potentials (ECPs) basis sets LANLTZ for the Cu atom and 6-311+g( d) basis sets for the C atom. The calculation covers the internuclear distance ranging from 0.04 to 0.54 nm, and the equilibrium bond length R e and the vertical excited energy T e are determined directly. The potential energy curves (PECs) show that the lowest two states are the 4Σ- and 2Π, and 4Σ- is the ground state where the 2Π state is higher than 4Σ- about 0.28 eV. With the potentials, all of the vibrational levels and rotational constants are predicted by numerically solving the radial Schröbinger equation of nuclear motion. Then the spectroscopic data of ωe, ωe x e, B e, and αe are obtained after data fitting which are compared with theoretical results currently available.

  20. Theoretical study of the low-lying bound states of O2

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.

    1991-01-01

    It is demonstrated that a complete-active-space self-consistent-field (CASSCF) (2p)/MRCI + Q (multireference configuration interaction with a Davidson correction) description in a (13s8p6d 4f2g)/((5s4p3d 2f1g) atomic natural orbits (ANO) basis set supplemented with diffuse functions provides a quantitative description of the six lowest states of O2. The calculated potentials are within 0.05 eV (1.2 kilocal/mol) of accurate experimental results. The importance of substantially expanding the primitive basis set has been investigated, and it is demonstrated that such expansions yield insignificant improvement in the spectroscopic constants. Potential energy curves have also been reported for the weakly bound states of O2. The 5Pi(g) state is estimated to have a D(e) of 0.16 +/- 0.03 eV. The upper bound of D(e) is found to be sufficiently large that the importance of this state as a precursor for the formation of O2 (b 1Sigma(t)(+)) and O(1S) should be reconsidered.

  1. Probing ground and low-lying excited states for HIO2 isomers

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  2. Probing ground and low-lying excited states for HIO2 isomers.

    PubMed

    de Souza, Gabriel L C; Brown, Alex

    2014-12-21

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10(-3)).

  3. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  4. Low-lying quasiparticle states and hidden collective charge instabilities in parent cobaltate superconductors.

    PubMed

    Qian, D; Hsieh, D; Wray, L; Chuang, Y-D; Fedorov, A; Wu, D; Luo, J L; Wang, N L; Viciu, L; Cava, R J; Hasan, M Z

    2006-06-02

    We report a state-of-the-art photoemission (angle-resolved photoemission spectroscopy) study of high quality single crystals of NaxCoO2 the series focusing on the fine details of the low-energy states. The Fermi velocity is found to be small (<0.5 eV A) and only weakly anisotropic over the Fermi surface at all dopings, setting the size of the pair wave function to be on the order of 10-20 nm. In the low-doping regime, the exchange interlayer splitting vanishes and two-dimensional collective instabilities such as 120 degrees -type fluctuations become kinematically allowed. Our results suggest that the unusually small Fermi velocity and the unique symmetry of kinematic instabilities distinguish cobaltates from most other oxide superconductors.

  5. Spectroscopic and theoretical studies of the low-lying states of BaO{sup +}

    SciTech Connect

    Bartlett, Joshua H.; VanGundy, Robert A.; Heaven, Michael C.

    2015-07-28

    The BaO{sup +} cation is of interest from the perspectives of electronic structure and the potential for cooling to ultra-cold temperatures. Spectroscopic data for the ion have been obtained using a two-color photoionization technique. The ionization energy for BaO was found to be 6.8123(3) eV. The ground state of BaO{sup +} was identified as X{sup 2}Σ{sup +}, and both vibrational and rotational constants were determined. Vibrationally resolved spectra were recorded for A{sup 2}Π, the first electronically excited state. These data yielded the term energy, vibrational frequency, and the spin-orbit interaction constant. Relativistic electronic structure calculations were carried out using multi-reference configuration interaction (MRCI), coupled cluster and density functional theory methods. Transition moments for the pure vibrational and A{sup 2}Π-X{sup 2}Σ{sup +} transitions were predicted using the MRCI method.

  6. Electron-impact excitation of the low-lying electronic states of formaldehyde

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    1974-01-01

    Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.

  7. Low-lying states of Li 3H: Is there an ion-pair minimum?

    NASA Astrophysics Data System (ADS)

    Talbi, Dahbia; Saxon, Roberta P.

    1989-05-01

    The 1 1A', 1 1A″, 1 3A', and 1 3A″ states of Li 3H have been investigated at the MCSCF/SOCI level. The global minimum is a planar conformation of 1A' symmetry. A local minimum on the same potential surface at a C 3v pyramidal geometry, of mixed ion-pair and covalent character, is found at a relative energy of 20.30 kcal/mol. The barrier height for isomerization is predicted to be 1.3 kcal/mol. The correlation diagram linking states of Li 3H to those of Li 3 + H, LiH + Li 2 and Li 2H + Li is presented.

  8. A MRCI study of the low-lying electronic states of the BeAl molecule

    NASA Astrophysics Data System (ADS)

    Ribas, Vladir W.; Ueno, Leonardo T.; Roberto-Neto, Orlando; Machado, Francisco B. C.

    2006-11-01

    In this work is presented, for the first time, an accurate spectroscopic characterization of the lowest-lying doublet and quartet states of BeAl molecule. We used a high level CASSCF/MRCI correlation methodology and the aug-cc-pVQZ basis set. The behavior of the dipole moment and the transition dipole moment functions are described, and transition probabilities and radiative lifetimes are also predicted using the Einstein coefficients.

  9. Ab initio calculations of low lying states of the BH + and AlH + ions

    NASA Astrophysics Data System (ADS)

    Klein, R.; Rosmus, P.; Werner, H. J.

    1982-10-01

    For the X 2Σ+, A 2Π, and B' 2Σ+ states of the BH+ and AlH+ ions potential energy, electric dipole and transition dipole moment functions have been calculated from MC-SCF wave functions. For the X and A states the MC-SCF results are compared with those obtained from highly correlated PNO-CEPA wave functions. All emission processes in the X, A, and B' states have been investigated. The absolute emission intensities for the most intense bandheads of the A→X and B→X transitions have been calculated, and the band shapes are compared with the experimental emission spectrum of BH+ obtained in the reaction B+ (1-10 eV/cm)+H→BH++H. A so far unobserved part of the B'-X emission system is predicted between 2000 and 2500 Å. The Franck-Condon factors and the energies for the ionizations of the AH molecules into the AH+ ions are given.

  10. Theoretical study of the low-lying electronic states of the RbCs+ molecular ion

    NASA Astrophysics Data System (ADS)

    Korek, M.; Allouche, A. R.

    2001-09-01

    The potential energy has been calculated over a wide range of internuclear distance for the 64 lowest molecular states of symmetry 2Σ+, 2Π, 2Δ, and Ω = ½, 3/2, 3/2 of the molecular ion RbCs+. This calculation has been done by using an ab initio method based on non-empirical pseudopotentials and parametrized l-dependent polarization potentials. We used Gaussian basis sets for both atoms and the spin-orbit effect has been taken into account through a non-empirical spin-orbit pseudopotential. For the four bound states (1) 2Σ+, (1) 2Π, (1) Ω = ½ and (1) Ω = 3/2 the main spectroscopic constants ωe, Be, and De have been derived. By replacing the rovibrational differential Schrödinger equation by a Volterra integral equation the wavefunction is given by Ψ = ∑i = 01{aifi}, where the coefficients ai are obtained from the boundary conditions of the wavefunction and fi are two well defined canonical functions. Using these functions the eigenvalues Ev, the rotational constants Bv and the centrifugal distortion constants Dv have been calculated for the four considered bound states up to v = 121 as well as the dipole moment functions and oscillator strengths for transitions between (1) 2Σ+ and (1) 2Π. No comparison of these values with other results is yet possible because they are given here for the first time. Extensive tables of energy values versus internuclear distance and the values of Ev, Bv and Dv are displayed at the following address: http://lasim.univ-lyon1.fr/allouche/rbcsplus

  11. Reduced transition strengths of low-lying yrast states in chromium isotopes in the vicinity of N =40

    NASA Astrophysics Data System (ADS)

    Braunroth, Thomas; Dewald, A.; Iwasaki, H.; Lenzi, S. M.; Albers, M.; Bader, V. M.; Baugher, T.; Baumann, T.; Bazin, D.; Berryman, J. S.; Fransen, C.; Gade, A.; Ginter, T.; Gottardo, A.; Hackstein, M.; Jolie, J.; Lemasson, A.; Litzinger, J.; Lunardi, S.; Marchi, T.; Modamio, V.; Morse, C.; Napoli, D. R.; Nichols, A.; Recchia, F.; Stroberg, S. R.; Wadsworth, R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.

    2015-09-01

    Background: In neutron-rich nuclei around N =40 rapid changes in nuclear structure can be observed. While 68Ni exhibits signatures of a doubly magic nucleus, experimental data along the isotopic chains in even more exotic Fe and Cr isotopes—such as excitation energies and transition strengths—suggest a sudden rise in collectivity toward N =40 . Purpose: Reduced quadrupole transition strengths for low-lying transitions in neutron-rich 58,60,62Cr are investigated. This gives quantitative new insights into the evolution of quadrupole collectivity in the neutron-rich region close to N =40 . Method: The recoil distance Doppler-shift (RDDS) technique was applied to measure lifetimes of low-lying states in 58,60,62>Cr. The experiment was carried out at the National Superconducting Cyclotron Laboratory (NSCL) with the SeGA array in a plunger configuration coupled to the S800 magnetic spectrograph. The states of interest were populated by means of one-proton knockout reactions. Results: Data reveal a rapid increase in quadrupole collectivity for 58,60,62>Cr toward N =40 and point to stronger quadrupole deformations compared to neighboring Fe isotopes. The experimental B (E 2 ) values are reproduced well with state-of-the-art shell-model calculations using the LNPS effective interaction. A consideration of intrinsic quadrupole moments and B42 ratios suggest an evolution toward a rotational nature of the collective structures in Cr,6260. Compared to 58Cr, experimental B42 and B62 values for 60Cr are in better agreement with the E (5 ) limit. Conclusion: Our results indicate that collective excitations in neutron-rich Cr isotopes saturate at N =38 , which is in agreement with theoretical predictions. More detailed experimental data of excited structures and interband transitions are needed for a comprehensive understanding of quadrupole collectivity close to N =40 . This calls for additional measurements in neutron-rich Cr and neighboring Ti and Fe nuclei.

  12. Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine.

    PubMed

    Trachsel, Maria A; Lobsiger, Simon; Schär, Tobias; Leutwyler, Samuel

    2014-01-28

    The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm(-1) resolution in a supersonic jet. The electronic origin at 32,252 cm(-1) exhibits methyl torsional subbands that originate from the 0A1'' (l = 0) and 1E(″) (l = ±1) torsional levels. These and further torsional bands that appear up to 00 (0)+230 cm(-1) allow to fit the threefold (V3) barriers of the torsional potentials as |V3''|=50 cm(-1) in the S0 and |V3'|=126 cm(-1) in the S1 state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V3''=20 cm(-1) and V3'=115 cm(-1). The 00 (0) rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis (1)ππ(*) excitation. The residual 25% c-axis polarization may indicate coupling of the (1)ππ(*) to the close-lying (1)nπ(*) state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated (1)nπ oscillator strength is only 6% of that of the (1)ππ(*) transition. The (1)ππ(*) vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm(-1). The methyl torsion and the low-frequency out-of-plane ν1' and ν2' vibrations are strongly coupled in the (1)ππ(*) state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the (1)ππ(*) spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian broadening needed to fit the 00 (0) contour of 9M-2AP, the (1)ππ(*) lifetime is τ ⩾ 120 ps, reflecting a rapid nonradiative transition.

  13. Electron impact excitation and assignment of the low-lying electronic states of CO2

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.

  14. Robust correlations between quadrupole moments of low-lying 2+ states within random-interaction ensembles

    NASA Astrophysics Data System (ADS)

    Lei, Y.

    2016-02-01

    In random-interaction ensembles, three proportional correlations between quadrupole moments of the first two Iπ=2+ states robustly emerge, including Q (21+) =±Q (22+) correlations previously remarked by a realistic nuclear survey, and the Q (22+) =-3/7 Q (21+) correlation, which is only observed in the s d -boson space. These correlations can be microscopically characterized by the rotational SU(3) symmetry and quadrupole vibrational U(5) limit, respectively, according to the Elliott model and the s d -boson mean-field theory. The anharmonic vibration may be another phenomenological interpretation for the Q (21+) =-Q (22+) correlation, whose spectral evidence, however, is insufficient.

  15. Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine

    SciTech Connect

    Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Leutwyler, Samuel

    2014-01-28

    The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm{sup −1} resolution in a supersonic jet. The electronic origin at 32 252 cm{sup −1} exhibits methyl torsional subbands that originate from the 0A{sub 1}{sup ′′} (l = 0) and 1E{sup ″} (l = ±1) torsional levels. These and further torsional bands that appear up to 0{sub 0}{sup 0}+230 cm{sup −1} allow to fit the threefold (V{sub 3}) barriers of the torsional potentials as |V{sub 3}{sup ′′}|=50 cm{sup −1} in the S{sub 0} and |V{sub 3}{sup ′}|=126 cm{sup −1} in the S{sub 1} state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V{sub 3}{sup ′′}=20 cm{sup −1} and V{sub 3}{sup ′}=115 cm{sup −1}. The 0{sub 0}{sup 0} rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis {sup 1}ππ{sup *} excitation. The residual 25% c-axis polarization may indicate coupling of the {sup 1}ππ{sup *} to the close-lying {sup 1}nπ{sup *} state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated {sup 1}nπ oscillator strength is only 6% of that of the {sup 1}ππ{sup *} transition. The {sup 1}ππ{sup *} vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm{sup −1}. The methyl torsion and the low-frequency out-of-plane ν{sub 1}{sup ′} and ν{sub 2}{sup ′} vibrations are strongly coupled in the {sup 1}ππ{sup *} state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the {sup 1}ππ{sup *} spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian

  16. State of Louisiana - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.

  17. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ{sup ∗} states

    SciTech Connect

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}←S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ{sup ∗} character in the vicinity of the lowest valence ππ{sup ∗} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ{sup ∗} and a nearby dissociative πσ{sup ∗} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of πσ{sup ∗} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the

  18. State of Texas - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.

  19. Third-order many-body perturbation theory calculations for low-lying states in beryllium

    NASA Astrophysics Data System (ADS)

    Ho, Hung-Cheuk

    2005-05-01

    A detailed breakdown of many-body perturbation theory (MBPT) contributions through third order is presented for energies of the ten (2l ,l') states of beryllium. A total of 84 one-body and 578 two-body terms contribute to the third-order energy. Third-order MBPT calculations for monovalent atoms were carried out fifteen years ago by Blundell et al.[1] Second-order calculations for ions of the berylliumlike isoelectronic sequence were also reported six years later[2]. In that paper, only 4 one-body and 20 two-body terms contribute to the second-order energy of neutral Be. The agreement with experimental energies was at 5% level. Our study aims to present complete third-order MBPT formulas, and apply them to the simplest two-valence particles system beryllium to improve the agreement with experiment.^1 S.A. Blundell, W.R. Johnson and J. Sapirstein, Phys. Rev. A 42, 3751 (1990).^2 M.S. Safronova, W.R. Johnson and U.I. Safronova, Phys. Rev. A 53, 4036 (1996).

  20. Ab initio study on the ground and low-lying excited states of cesium iodide (CsI).

    PubMed

    Kurosaki, Yuzuru; Matsuoka, Leo; Yokoyama, Keiichi; Yokoyama, Atsushi

    2008-01-14

    Potential energy curves (PECs) for the ground and low-lying excited states of the cesium iodide (CsI) molecule have been calculated using the internally contracted multireference configuration interaction calculation with single and double excitation method with the relativistic pseudopotentials. PECs for seven Lambda-S states, X 1Sigma+, 2 1Sigma+, 3Sigma+, 1Pi, and 3Pi are first calculated and then those for 13 Omega states are obtained by diagonalizing the matrix of the electronic Hamiltonian H(el) plus the effective one-electron spin-orbit (SO) Hamiltonian H(SO). Spectroscopic constants for the calculated ground X 0+-state PEC with the Davidson correction are found to agree well with the experiment. Transition dipole moments (TDMs) between X 0 and the other Omega states are also obtained and the TDM between X 0+ and A 0+ is predicted to be the largest and that between X 0+ and B 0+ is the second largest around the equilibrium internuclear distance. The TDMs between X 0+ and the Omega=1 states are estimated to be nonzero, but they are notably small as compared with those between the 0+ states. Finally, vibrational levels of the X 0+ PEC for the two isotopic analogs, (133)CsI and (135)CsI, are numerically obtained to investigate the isotope effect on the vibrational-level shift. It has been found that the maximized available isotope shift is approximately 30 cm(-1) around nu=136.

  1. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    SciTech Connect

    Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  2. Ultrafast electron dynamics following outer-valence ionization: The impact of low-lying relaxation satellite states

    NASA Astrophysics Data System (ADS)

    Lünnemann, Siegfried; Kuleff, Alexander I.; Cederbaum, Lorenz S.

    2009-04-01

    Low-lying relaxation satellites give rise to ultrafast electron dynamics following outer-valence ionization of a molecular system. To demonstrate the impact of such satellites, the evolution of the electronic cloud after sudden removal of an electron from the highest occupied molecular orbital (HOMO) of the organic unsaturated nitroso compound 2-nitroso[1,3]oxazolo[5,4-d][1,3]oxazole is traced in real time and space using ab initio methods only. Our results show that the initially created hole charge remains stationary but on top of it the system reacts by an ultrafast π-π ∗ excitation followed by a cyclic excitation-de-excitation process which leads to a redistribution of the charge. The π-π ∗ excitation following the removal of the HOMO electron takes place on a subfemtosecond time scale and the period of the excitation-de-excitation alternations is about 1.4 fs. In real space the processes of excitation and de-excitation represent ultrafast delocalization and localization of the charge. The results are analyzed by simple two- and three-state models.

  3. Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl)

    NASA Astrophysics Data System (ADS)

    Kurosaki, Yuzuru; Yokoyama, Keiichi

    2012-08-01

    Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X1Σ+, A1Σ+, 3Σ+, 1Π, and 3Π, and then obtain PECs for 13 SO Ω states, X0+, A0+, B0+, 0-(I), 0-(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X1Σ+ and X0+ PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X1Σ+ and X0+ PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics.

  4. An SCF and MCSCF description of the low-lying states of MgO. [Configuration State Functions Multiconfiguration Self Consistent Field

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Silver, D. M.; Yarkony, D. R.

    1980-01-01

    The paper presents the multiconfiguration-self-consistent (MCSCF) and configuration state functions (CSF) for the low-lying electronic states of MgO. It was shown that simple description of these states was possible provided the 1 Sigma(+) states are individually optimized at the MCSCF level, noting that the 1(3 Sigma)(+) and 2(1 Sigma)(+) states which nominally result from the same electron occupation are separated energetically. The molecular orbitals obtained at this level of approximation should provide a useful starting point for extended configuration interaction calculations since they have been optimized for the particular states of interest.

  5. Direct observation of the solvent effects on the low-lying nπ* and ππ* excited triplet states of acetophenone derivatives in thermal equilibrium.

    PubMed

    Narra, Sudhakar; Shigeto, Shinsuke

    2015-03-05

    Low-lying excited triplet states of aromatic carbonyl compounds exhibit diverse photophysical and photochemical properties of fundamental importance. Despite tremendous effort in studying those triplet states, the effects of substituents and solvents on the energetics of the triplet manifold and on photoreactivity remain to be fully understood. We have recently studied the ordering of the low-lying nπ* and ππ* excited triplet states and its substituent dependence in acetophenone derivatives using nanosecond time-resolved near-IR (NIR) spectroscopy. Here we address the other important issue, the solvent effects, by directly observing the electronic bands in the NIR that originate from the lowest nπ* and ππ* states of acetophenone derivatives in four solvents of different polarity (n-heptane, benzene, acetonitrile, and methanol). The two transient NIR bands decay synchronously in all the solvents, indicating that the lowest nπ* and ππ* states are in thermal equilibrium irrespective of the solvent polarity studied here. We found that the ππ* band increases in intensity relative to the nπ* band as solvent polarity increases. These results are compared with the photoreduction rate constant for the acetophenone derivatives in the solvents to which 2-propanol was added as a hydrogen-atom donor. Based on the present findings, we present a comprehensive, solvent- and substituent-dependent energy level diagram of the low-lying nπ* and ππ* excited triplet states.

  6. A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.

  7. Nuclear structure of low-lying states in 60,62,64,66Zn — A shell model description

    NASA Astrophysics Data System (ADS)

    Rai, S.; Biswas, A.; Mukherjee, B.

    2016-11-01

    Shell model calculation has been performed for even-even 60,62,64,66Zn using NuShellX code in f5/2pg9/2 model space with two different effective Hamiltonians, viz. JUN45 and jj44b. The low-lying structure is studied up to angular momentum, I = 10ℏ by calculating level energies, reduced transition probabilities, occupation numbers, lifetimes, and quadrupole moments. The results of the calculations are compared with the available experimental data. It is observed that the inclusion of 1g9/2 orbital in the model space is essential to understand nuclear structure in these isotopes. Shell model calculation with an improved set of effective Hamiltonian parameters and inclusion of 1f7/2 orbital in the model space are necessary in order to produce finer agreement with the experimental observations.

  8. Analysis of strongly coupled electronic states in diatomic molecules: Low-lying excited states of RbCs

    SciTech Connect

    Bergeman, T.; Fellows, C.E.; Gutterres, R.F.; Amiot, C.

    2003-05-01

    Analysis and assignment of spectra involving the lowest excited states of the heavier alkali-metal atom dimers are complicated by the strong spin-orbit coupling elements. Here we report an analysis of the Fourier-transform spectroscopy data from laser-induced fluorescence of the coupled A {sup 1}{sigma}{sup +} and b {sup 3}{pi} states of RbCs, using the discrete variable representation. Fitted parameters are given and special effects due to strong coupling are discussed.

  9. Jet-cooled laser-induced dispersed fluorescence spectroscopy of NiC: Observation of low-lying Ω = 0+ state

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Yarlagadda, Suresh; Bhattacharyya, Soumen; Nakhate, S. G.

    2014-01-01

    Laser-induced dispersed fluorescence spectra of 58Ni12C molecules, produced in a free-jet apparatus, have been studied. A new low-lying Ω = 0+ state has been observed at Te = 5178 (6) cm-1. Based on previous ab initio calculations this state is plausibly assigned as 0+ spin-orbit component of the first excited 3 Π state. The term energies of vibrational levels up to v = 10 for X1Σ+ ground and v = 3 for Ω = 0+ states have been determined. The harmonic and anharmonic wavenumbers respectively equal to 833 (4) and 6.7 (13) cm-1 for Ω = 0+ state have been measured.

  10. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  11. Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy odd-mass 181Ta nucleus

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2016-07-01

    The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.

  12. Probing the Low-lying Electronic States of Cyclobutanetetraone (C4O4) and its Radical Anion: A Low-Temperature Anion Photoelectron Spectroscopic Approach

    SciTech Connect

    Guo, Jin-Chang; Hou, Gaolei; Li, Si-Dian; Wang, Xue B.

    2012-02-02

    Despite a seemingly simple appearance, cyclobutanetetraone (C{sub 4}O{sub 4}) has four low-lying electronic states. Determining the energetic ordering of these states and the ground state of C{sub 4}O{sub 4}{sup -} theoretically has been proven to be considerably challenging and remains largely unresolved to date. Here we report a low-temperature negative ion photoelectron spectroscopic approach. A well structured spectrum with evenly spaced features was obtained at 193 nm due to excitation of the ring breathing mode of the C{sub 4}O{sub 4} neutral, whereas each 193-nm feature was observed to further split into a three-peak manifold at 266 nm assigned due to three electronic transitions from the ground state of the anion to the ground and two low-lying excited states of the neutral. Combined with recent theoretical studies and our own Franck-Condon factors simulations, the ground state of C{sub 4}O{sub 4}{sup -}, as well as the ground and two low-lying excited states of C{sub 4}O{sub 4} are determined to be {sup 2}A{sub 2u}, and {sup 3}B{sub 2u}, {sup 1}A{sub 1g} (8{pi}), {sup 1}B{sub 2u}, respectively. The frequency of the ring breathing mode (1810 {+-} 20 cm{sup -1}), the electron affinity (3.475 {+-} 0.005 eV), and the term values of {sup 1}A{sub 1g} (8{pi}) (6.27 {+-} 0.5 kJ/mol) and {sup 1}B{sub 2u} (13.50 {+-} 0.5 kJ/mol) are also directly obtained from the experiments.

  13. One- and two-body densities of carbon isoelectronic series in their low-lying multiplet states from explicitly correlated wave functions.

    PubMed

    Gálvez, F J; Buendía, E; Sarsa, A

    2006-01-28

    The (3)P ground state and both the (1)D and (1)S excited states arising from the low-lying 1s(2)2s(2)2p(2) configuration of the carbon isoelectronic series are studied starting from explicitly correlated multiconfigurational wave functions. One- and two-body densities in position space have been calculated and different one- and two-body expectation values have been obtained. The effects of electronic correlations have been systematically studied. All the calculations have been done by means of variational Monte Carlo.

  14. Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: Low-lying states v(8) <= 2 of methyl cyanide, CH3CN

    SciTech Connect

    Muller, H. S.; Brown, Linda R.; Drouin, B. J.; Pearson, J. C.; Kleiner, Isabelle; Sams, Robert L.; Sung, Keeyoon; Ordu, Matthias H.; Lewen, Frank

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2v(8) around 717 cm(-1) with assignments covering 684-765 cm-1. Additional spectra in the vs region were used to validate the analysis.

  15. Elastic and inelastic scattering to low-lying states of {sup 58}Ni and {sup 90}Zr using 240-MeV {sup 6}Li

    SciTech Connect

    Krishichayan; Chen, X.; Lui, Y.-W.; Tokimoto, Y.; Button, J.; Youngblood, D. H.

    2010-01-15

    Elastic and inelastic scattering of 240-MeV {sup 6}Li particles from {sup 58}Ni and {sup 90}Zr were measured with the multipole-dipole-multipole spectrometer from 4 deg. <={theta}{sub c.m.}<=43 deg. The elastic scattering data were fitted with the double-folding model using the density-dependent M3Y NN effective interaction and with a phenomenological Woods-Saxon potential. B(E2) and B(E3) values obtained for low-lying 2{sup +} and 3{sup -} states with the double-folding calculations agreed with the adopted values.

  16. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  17. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2015-11-13

    Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.

  18. Theoretical investigation of the ground and low-lying excited states of nickel carbide, NiC.

    PubMed

    Tzeli, Demeter; Mavridis, Aristides

    2007-05-21

    The electronic structure and bonding of 19 states of the diatomic nickel carbide (NiC) has been studied by multireference methods. Potential energy curves have been constructed for all states, whereas for the three lowest states of symmetries X (1)Sigma(+), a (3)Pi, and A (1)Pi well separated from the rest of the states, special attention was paid through the use of very large basis sets and the calculation of core-valence correlation and scalar relativistic effects. The recommended binding energies for these states are 91, 67, and 54 kcal/mol with respect to the ground state atoms. Our results in general can be considered in fair agreement with the limited experimental findings.

  19. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  20. Theoretical study of the low-lying electronic states of ZnO and ZnS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Langhoff, S. R.

    1986-01-01

    Theoretical spectroscopic constants and dipole moments are determined for the 1 Sigma(+), 1,3 Pi, and 3 Sigma(+) states of ZnO and ZnS, using extended Gaussian basis sets and incorporating correlation using both configuration-interaction and coupled pair (CPF) methods. Relativistic corrections (Darwin plus mass velocity), included using first-order perturbation theory, are relatively small. At the CPF level, both ZnO and ZnS have 1 Sigma(+) ground states, with the 3 Pi state lying 209 and 2075/cm higher, respectively. The 3 Sigma(+) state lies about 1.5 eV higher in ZnO and 2.1 eV higher in ZnS. The 1,3 Pi states are relatively close together since the exchange splitting is small with the sigma electron localized on Zn and the pi electron on oxygen (or sulfur).

  1. Low-lying excited states and nonradiative processes of the adenine analogues 7H- and 9H-2-aminopurine.

    PubMed

    Lobsiger, Simon; Sinha, Rajeev K; Trachsel, Maria; Leutwyler, Samuel

    2011-03-21

    We have investigated the UV vibronic spectra and excited-state nonradiative processes of the 7H- and 9H-tautomers of jet-cooled 2-aminopurine (2AP) and of the 9H-2AP-d(4) and -d(5) isotopomers, using two-color resonant two-photon ionization spectroscopy at 0.3 and 0.045  cm(-1) resolution. The S(1) ← S(0) transition of 7H-2AP was observed for the first time. It lies ∼1600  cm(-1) below that of 9H-2AP, is ∼1000 times weaker and exhibits only in-plane vibronic excitations. In contrast, the S(1) ← S(0) spectra of 9H-2AP, 9H-2AP-d(4), and 9H-2AP-d(5) show numerous low-frequency bands that can be systematically assigned to overtone and combinations of the out-of-plane vibrations ν(1)', ν(2)', and ν(3)'. The intensity of these out-of-plane bands reflects an out-of-plane deformation in the (1)ππ∗(L(a)) state. Approximate second-order coupled-cluster theory also predicts that 2-aminopurine undergoes a "butterfly" deformation in its lowest (1)ππ∗ state. The rotational contours of the 9H-2AP, 9H-2AP-d(4), and 9H-2AP-d(5) 0(0)(0) bands and of eight vibronic bands of 9H-2AP up to 0(0)(0) + 600 cm(-1) exhibit 75%-80% in-plane (a∕b) polarization, which is characteristic for a (1)ππ∗ excitation. A 20%-25% c-axis (perpendicular) transition dipole moment component may indicate coupling of the (1)ππ∗ bright state to the close-lying (1)nπ∗ dark state. However, no (1)nπ∗ vibronic bands were detected below or up to 500  cm(-1) above the (1)ππ∗ 0(0)(0) band. Following (1)ππ∗ excitation, 9H-2AP undergoes a rapid nonradiative transition to a lower-lying long-lived state with a lifetime ≥5 μs. The ionization potential of 9H-2AP was measured via the (1)ππ∗ state (IP = 8.020 eV) and the long-lived state (IP > 9.10 eV). The difference shows that the long-lived state lies ≥1.08 eV below the (1)ππ∗ state. Time-dependent B3LYP calculations predict the (3)ππ∗ (T(1)) state 1.12 eV below the (1)ππ∗ state, but place the (1)n

  2. Specific heat and low-lying excitations in the mixed state for a type-II superconductor

    NASA Astrophysics Data System (ADS)

    Nakai, N.; Miranović, P.; Ichioka, M.; Machida, K.

    2006-05-01

    Low temperature behavior of the electronic specific heat C(T) in the mixed state is by the self-consistent calculation of the Eilenberger theory. In addition to the γT -term ( γ is a Sommerfeld coefficient), C(T) has a significant contribution of T2 -term intrinsic in the vortex state. We identify the origin of the T2 term as (i) V-shape density of states in the vortex state and (ii) the Kramer-Pesch effect of vortex-core shrinking upon lowering T . These results for both full-gap and line-node cases reveal that the vortex core is a richer electronic structure beyond the normal core picture.

  3. A theoretical study of calcium monohydride, CaH: low-lying states and their permanent electric dipole moments.

    PubMed

    Kerkines, Ioannis S K; Mavridis, Aristides

    2007-01-18

    Potential energy curves, energy parameters, and spectroscopic values for the X (2)Sigma(+), A (2)Pi, B (2)Sigma(+), a (4)Pi, and b (4)Sigma(+), states of CaH have been calculated using the multireference configuration interaction and coupled cluster levels of theory, while employing quantitative basis sets (of augmented quintuple-zeta quality) and taking also into account core/valence correlation and one-electron relativistic effects. For the ground (X (2)Sigma(+)) and the first two following excited states (A (2)Pi, B (2)Sigma(+)) of CaH, the permanent electric dipole moments have been calculated. Our best finite field dipole moment of the A (2)Pi state of 2.425 D (upsilon = 0) is in very good agreement with the experimental literature value of 2.372(12) D. However, a discrepancy is observed in the dipole moment of the X (2)Sigma(+) state. Our most extensive calculation gives mu = 2.623 D (upsilon = 0), which is considerably smaller than the experimental value of mu = 2.94(16) D (upsilon = 0). Small van der Waals minima were found for both "repulsive" quartet states. Spectroscopic constants and energy parameters for all states are in remarkable agreement with available experimental values.

  4. Energetics and dynamics of the low-lying electronic states of constrained polyenes: implications for infinite polyenes.

    PubMed

    Christensen, Ronald L; Enriquez, Miriam M; Wagner, Nicole L; Peacock-Villada, Alexandra Y; Scriban, Corina; Schrock, Richard R; Polívka, Tomáš; Frank, Harry A; Birge, Robert R

    2013-02-21

    Steady-state and ultrafast transient absorption spectra were obtained for a series of conformationally constrained, isomerically pure polyenes with 5-23 conjugated double bonds (N). These data and fluorescence spectra of the shorter polyenes reveal the N dependence of the energies of six (1)B(u)(+) and two (1)A(g)(-) excited states. The (1)B(u)(+) states converge to a common infinite polyene limit of 15,900 ± 100 cm(-1). The two excited (1)A(g)(-) states, however, exhibit a large (~9000 cm(-1)) energy difference in the infinite polyene limit, in contrast to the common value previously predicted by theory. EOM-CCSD ab initio and MNDO-PSDCI semiempirical MO theories account for the experimental transition energies and intensities. The complex, multistep dynamics of the 1(1)B(u)(+) → 2(1)A(g)(-) → 1(1)A(g)(-) excited state decay pathways as a function of N are compared with kinetic data from several natural and synthetic carotenoids. Distinctive transient absorption signals in the visible region, previously identified with S* states in carotenoids, also are observed for the longer polyenes. Analysis of the lifetimes of the 2(1)A(g)(-) states, using the energy gap law for nonradiative decay, reveals remarkable similarities in the N dependence of the 2(1)A(g)(-) decay kinetics of the carotenoid and polyene systems. These findings are important for understanding the mechanisms by which carotenoids carry out their roles as light-harvesting molecules and photoprotective agents in biological systems.

  5. Theoretical description of the low-lying electronic states of LuBr located below 41,700 cm-1

    NASA Astrophysics Data System (ADS)

    Assaf, Joumana; Taher, Fadia; Magnier, Sylvie

    2017-03-01

    A theoretical investigation of the lowest molecular states of LuBr located below 41,700 cm-1 in the 2S+1Λ(+/-) and Ω(±) representations when including the spin-orbit effects, has been performed through SA-CASSCF and MRCI calculations. Potential energy curves have been determined for 21 2S+1Λ(+/-) and 42 Ω(±) molecular states in the range of 1.70 to 3.50 Å and the spectroscopic constants (Re, Te, ωe and ωeχe) have been deduced. Transition Dipole Moments have been computed for various allowed ΔΛ=0,±1 on the same range of internuclear distances. In the case of the ground state and the two expected lowest singlet excited states (1)1Π and (2)1Σ+, a good agreement with the experimental results is obtained while new results are reported for the not yet observed 18 2S+1Λ(+/-) and 42 Ω(±) states. A comparison with previous studies on the Lutetium mono-halides LuF, LuCl and LuI is presented, leading to trends in transition energies, equilibrium distances and dipole moments.

  6. Isospin character of low-lying pygmy dipole states in 208Pb via inelastic scattering of 17O ions.

    PubMed

    Crespi, F C L; Bracco, A; Nicolini, R; Mengoni, D; Pellegri, L; Lanza, E G; Leoni, S; Maj, A; Kmiecik, M; Avigo, R; Benzoni, G; Blasi, N; Boiano, C; Bottoni, S; Brambilla, S; Camera, F; Ceruti, S; Giaz, A; Million, B; Morales, A I; Vandone, V; Wieland, O; Bednarczyk, P; Ciemała, M; Grebosz, J; Krzysiek, M; Mazurek, K; Zieblinski, M; Bazzacco, D; Bellato, M; Birkenbach, B; Bortolato, D; Calore, E; Cederwall, B; Charles, L; de Angelis, G; Désesquelles, P; Eberth, J; Farnea, E; Gadea, A; Görgen, A; Gottardo, A; Isocrate, R; Jolie, J; Jungclaus, A; Karkour, N; Korten, W; Menegazzo, R; Michelagnoli, C; Molini, P; Napoli, D R; Pullia, A; Recchia, F; Reiter, P; Rosso, D; Sahin, E; Salsac, M D; Siebeck, B; Siem, S; Simpson, J; Söderström, P-A; Stezowski, O; Theisen, Ch; Ur, C; Valiente-Dobón, J J

    2014-07-04

    The properties of pygmy dipole states in 208Pb were investigated using the 208Pb(17O, 17O'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  7. Isospin Character of Low-Lying Pygmy Dipole States in Pb208 via Inelastic Scattering of O17 Ions

    NASA Astrophysics Data System (ADS)

    Crespi, F. C. L.; Bracco, A.; Nicolini, R.; Mengoni, D.; Pellegri, L.; Lanza, E. G.; Leoni, S.; Maj, A.; Kmiecik, M.; Avigo, R.; Benzoni, G.; Blasi, N.; Boiano, C.; Bottoni, S.; Brambilla, S.; Camera, F.; Ceruti, S.; Giaz, A.; Million, B.; Morales, A. I.; Vandone, V.; Wieland, O.; Bednarczyk, P.; Ciemała, M.; Grebosz, J.; Krzysiek, M.; Mazurek, K.; Zieblinski, M.; Bazzacco, D.; Bellato, M.; Birkenbach, B.; Bortolato, D.; Calore, E.; Cederwall, B.; Charles, L.; de Angelis, G.; Désesquelles, P.; Eberth, J.; Farnea, E.; Gadea, A.; Görgen, A.; Gottardo, A.; Isocrate, R.; Jolie, J.; Jungclaus, A.; Karkour, N.; Korten, W.; Menegazzo, R.; Michelagnoli, C.; Molini, P.; Napoli, D. R.; Pullia, A.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Siebeck, B.; Siem, S.; Simpson, J.; Söderström, P.-A.; Stezowski, O.; Theisen, Ch.; Ur, C.; Valiente-Dobón, J. J.

    2014-07-01

    The properties of pygmy dipole states in Pb208 were investigated using the Pb208(O17, O17'γ) reaction at 340 MeV and measuring the γ decay with high resolution with the AGATA demonstrator array. Cross sections and angular distributions of the emitted γ rays and of the scattered particles were measured. The results are compared with (γ, γ') and (p, p') data. The data analysis with the distorted wave Born approximation approach gives a good description of the elastic scattering and of the inelastic excitation of the 2+ and 3- states. For the dipole transitions a form factor obtained by folding a microscopically calculated transition density was used for the first time. This has allowed us to extract the isoscalar component of the 1- excited states from 4 to 8 MeV.

  8. Fragmentation of low-lying hexadecapole states in even 74-82Se and a RPA calculation

    NASA Astrophysics Data System (ADS)

    Ogino, K.; Kadota, Y.; Haga, H.; Matsuki, S.; Higo, T.; Shiba, T.; Sakamoto, N.; Okuma, Y.; Yanabu, T.

    1983-10-01

    The level schemes of the even 74-82Se up to Ex = 5.0 MeV have been investigated with high-resolution inelastic proton scattering at Ep = 64.8 MeV. Several 4+ states with comparable strengths were found at EX = 2.0-5.0 MeV in all isotopes studied. The energy weighted sum-rule fraction of the 4+ states in this region increases with decreasing neutron number from 82Se (1.0%) up to 76Se (3.7%), and then decreases in 74Se (2.6%). A RPA calculation with a pairing plus hexa-decapole-hexadecapole interaction can well reproduce the distribution of the excitation energies and transition strengths for the hexadecapole states.

  9. Ab initio transition dipole moments and potential energy curves for the low-lying electronic states of CaH

    NASA Astrophysics Data System (ADS)

    Shayesteh, Alireza; Alavi, S. Fatemeh; Rahman, Moloud; Gharib-Nezhad, Ehsan

    2017-01-01

    Ab initio potential energy curves have been calculated for the X2Σ+, A2Π, B2Σ+, 12Δ, E2Π and D2Σ+ states of CaH using the multi-reference configuration interaction method with large active space and basis sets. Transition dipole moments were calculated at Ca-H distances from 2.0 a0 to 14.0 a0, and excited state lifetimes were obtained. Our theoretical transition dipole moments can be combined with the available experimental data on the X2Σ+, A2Π and B2Σ+ states to calculate Einstein A coefficients for all rovibronic transitions of CaH appearing in solar and stellar spectra.

  10. An Ab Initio Study of the Low-Lying Doublet States of AgO and AgS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.

    1990-01-01

    Spectroscopic constants (D(sub o), r(sub e), mu(sub e), T(sub e)) are determined for the doublet states of AgO and AgS below approx. = 30000/cm. Large valence basis sets are employed in conjunction with relativistic effective core potentials (RECPs). Electron correlation is included using the modified coupled-pair functional (MCPF) and multireference configuration interaction (MRCI) methods. The A(sup 2)Sigma(sup +) - X(sup 2)Pi band system is found to occur in the near infrared (approx. = 9000/cm) and to be relatively weak with a radiative lifetime of 900 microns for A(sup 2)Sigma(sup +) (upsilon = 0). The weakly bound C(sup 2)Pi state (our notation), the upper state of the blue system, is found to require high levels of theoretical treatment to determine a quantitatively accurate potential. The red system is assigned as a transition from the C(sup 2)Pi state to the previously unobserved A(sup 2)Sigma(sup +) state. Several additional transitions are identified that should be detectable experimentally. A more limited study is performed for the vertical excitation spectrum of AgS. In addition, a detailed all-electron study of the X(sup 2)Pi and A(sup 2)Sigma(sup +) states of AgO is carried out using large atomic natural orbital (ANO) basis sets. Our best calculated D(sub o) value for AgO is significantly less than the experimental value, which suggests that there may be some systematic error in the experimental determination.

  11. Matrix elements in the coupled-cluster approach - With application to low-lying states in Li

    NASA Technical Reports Server (NTRS)

    Martensson-Pendrill, Ann-Marie; Ynnerman, Anders

    1990-01-01

    A procedure is suggested for evaluating matrix elements of an operator between wavefunctions in the coupled-cluster form. The use of the exponential ansatz leads to compact exponential expressions also for matrix elements. Algorithms are developed for summing all effects of one-particle clusters and certain chains of two-particle clusters (containing the well-known random-phase approximation as a subset). The treatment of one-particle perturbations in single valence states is investigated in detail. As examples the oscillator strength for the 2s-2p transition in Li as well as the hyperfine structure for the two states are studied and compared to earlier work.

  12. Low-lying singlet states of carotenoids having 8-13 conjugated double bonds as determined by electronic absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping

    2005-07-01

    Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.

  13. New development of the projected shell model and description of low-lying collective states in transitional nuclei

    NASA Astrophysics Data System (ADS)

    Chen, Fang-Qi; Sun, Yang

    2013-12-01

    Description of the interplay between different nuclear shapes is an interesting but challenging problem. The original projected shell model (PSM) is applicable to nuclei with fixed shapes. We extend the PSM by superimposing (angular-momentum- and particle-number-) projected product wave functions in the spirit of the generate coordinate method. With this development, the Gd isotopes across the N = 90 region are studied, and the results indicate spectroscopic features of shape phase transition with varying neutron number. In order to illustrate the shape distribution in microscopic wave functions, we introduce a deformation representation and show that the collectively excited Kπ = 0+ states in the Gd isotopes have characters of shape vibration.

  14. Progress in the Rotational Analysis of the Ground and Low-Lying Vibrationally Excited States of Malonaldehyde

    NASA Astrophysics Data System (ADS)

    Goudreau, E. S.; Tokaryk, Dennis W.; Ross, Stephen Cary; Billinghurst, Brant E.

    2016-06-01

    Despite being an important prototype molecule for intramolecular proton tunnelling, the far-IR spectrum of the internally hydrogen-bonded species malonaldehyde (C_3O_2H_4) is not yet well understood. In the talk I gave at the ISMS meeting in 2015 I discussed the high-resolution spectra we obtained at the Canadian Light Source synchrotron in Saskatoon, Saskatchewan. These spectra include a number of fundamental vibrational bands in the 100-2000 cm-1 region. In our efforts to analyze these bands we have noticed that our ground state combination differences show a large drift (up to an order of magnitude larger than our experimental error) away from those calculated using constants established by Baba et al., particularly in regions of high J (above 30) and low Ka (below 5). An examination of the previous microwave and far-IR studies reveals that this region of J-Ka space was not represented in the lines that Baba et al. used to generate the values for their fitting parameters. By including our own measurements in the fitting, we were able to improve the characterization of the ground state so that it is now consistent with all of the existing data. This characterization now covers a much larger range of J-Ka space and has enabled us to make significant progress in analyzing our far-IR synchrotron spectra. These include an excited vibrational state at 241 cm-1 as well as several states split by the tunnelling effect at higher wavenumber. T. Baba, T. Tanaka, I. Morino, K. M. T. Yamada, K. Tanaka. Detection of the tunneling-rotation transitions of malonaldehyde in the submillimeter-wave region. J. Chem. Phys., 110. 4131-4133 (1999) P. Turner, S. L. Baughcum, S. L. Coy, Z. Smith. Microwave Spectroscopic Study of Malonaldehyde. 4. Vibration-Rotation Interaction in Parent Species. J. Am. Chem. Soc., 106. 2265-2267 (1984) D. W. Firth, K. Beyer, M. A. Dvorak, S. W. Reeve, A. Grushow, K. R. Leopold. Tunable far-infrared spectroscopy of malonaldehyde. J. Chem. Phys., 94. 1812

  15. β decay of Si,4038 (Tz=+5 ,+6 ) to low-lying core excited states in odd-odd P,4038 isotopes

    NASA Astrophysics Data System (ADS)

    Tripathi, Vandana; Lubna, R. S.; Abromeit, B.; Crawford, H. L.; Liddick, S. N.; Utsuno, Y.; Bender, P. C.; Crider, B. P.; Dungan, R.; Fallon, P.; Kravvaris, K.; Larson, N.; Macchiavelli, A. O.; Otsuka, T.; Prokop, C. J.; Richard, A. L.; Shimizu, N.; Tabor, S. L.; Volya, A.; Yoshida, S.

    2017-02-01

    Low-lying excited states in P,4038 have been identified in the β decay of Tz=+5 ,+6 , Si,4038. Based on the allowed nature of the Gamow-Teller (GT) decay observed, these states are assigned spin and parity of 1+ and are core-excited 1p1h intruder states with a parity opposite to the ground state. The occurrence of intruder states at low energies highlights the importance of pairing and quadrupole correlation energies in lowering the intruder states despite the N =20 shell gap. Configuration interaction shell model calculations with the state-of-art SDPF-MU effective interaction were performed to understand the structure of these 1p1h states in the even-A phosphorus isotopes. States in 40P with N =25 were found to have very complex configurations involving all the f p orbitals leading to deformed states as seen in neutron-rich nuclei with N ≈28 . The calculated GT matrix elements for the β decay highlight the dominance of the decay of the core neutrons rather than the valence neutrons.

  16. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  17. Anharmonic Franck-Condon simulation of the absorption and fluorescence spectra for the low-lying S1 and S2 excited states of pyridine.

    PubMed

    Wang, Huan; Zhu, Chaoyuan; Yu, Jian-Guo; Lin, Sheng Hsien

    2009-12-31

    Anharmonic effects of the absorption and fluorescence spectra of pyridine molecule are studied and analyzed for the two-low lying singlet excited states S(1)((1)B(1)) and S(2)((1)B(2)). The complete active space self-consistent field (CASSCF) method is utilized to compute equilibrium geometries and all 27 vibrational normal-mode frequencies for the ground state and the two excited states. The present calculations show that the frequency differences between the ground and two excited states are small for the ten totally symmetric vibrational modes so that the displaced oscillator approximation can be used for spectrum simulations. The Franck-Condon factors within harmonic approximation basically grasp the main features of molecular spectra, but simulated 0-0 transition energy position and spectrum band shapes are not satisfactorily good for S(1)((1)B(1)) absorption and fluorescence spectra in comparison with experiment observation. As the first-order anharmonic correction added to Franck-Condon factors, both spectrum positions and band shapes can be simultaneously improved for both absorption and fluorescence spectra. It is concluded that the present anharmonic correction produces a significant dynamic shifts for spectrum positions and improves spectrum band shapes as well. The detailed structures of absorption spectrum of S(2)((1)B(2)) state observed from experiment can be also reproduced with anharmonic Franck-Condon simulation, and these were not shown in the harmonic Franck-Condon simulation with either distorted or Duschinsky effects in the literature.

  18. Ab initio study on the low-lying excited states of gas-phase PH+ cation including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Li, Xia; Zhang, Xiaomei; Yan, Bing

    2015-05-01

    Ab initio calculations have been performed on the low-lying excited and ground states of PH+. The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A2Δ-4Π and 12Σ+-4Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15 Ω states. The Ω = 1/2 state generated from the X2Π state is confirmed to the ground Ω state. And the SOC splitting for the X2Π is calculated to be 294 cm-1. The SOC effect has large effect on the PECs of the A2Δ and 12Σ+ states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A2Δ-X2Π and 12Σ--X2Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A2Δ and 12Σ- states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A2Δ state is almost uninfluenced by the perturbation via the SOC effect.

  19. Investigating nuclear shell structure in the vicinity of 78Ni: Low-lying excited states in the neutron-rich isotopes Zn,8280

    NASA Astrophysics Data System (ADS)

    Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.

    2016-02-01

    The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.

  20. Theoretical and jet spectroscopic investigations of energetics and structures for the low-lying singlet states of fluorene and 9,9'-spirobifluorene

    NASA Astrophysics Data System (ADS)

    Boo, Bong Hyun; Choi, Young Sik; Kim, Taek-Soo; Kang, Sung Kwon; Kang, Yong Hee; Lee, Sang Yeon

    1996-03-01

    Ab initio, semiempirical and spectroscopic studies of fluorene (FR) and 9,9'-spirobifluorene (SBF) were performed to elucidate π-orbital interaction between two fluorenyl rings of SBF and to predict the energies of the low-lying singlet electronic states of the molecules. Energies and symmetries of π-orbitals of FR and SBF molecules were determined by 3-21G and 6-31G∗ calculations on the optimized structures. The INDO/S-CIS semiempirical method was applied to predict the excited state energies, the transition dipole moments and the oscillator strengths for the optical transitions. Laser-induced fluorescence (LIF) excitation spectra were measured for FR and SBF cooled in pulsed supersonic expansions of He in the ranges 283.7-296.7 nm and 289.1-305.6 nm, respectively. In the LIF excitation spectra of FR and SBF, highly resolved vibronic bands were observed having the band origins of 33791 and 33047 cm -1, respectively. The spectral shift of the 0-0 band of SBF to red by 744 cm -1 may be attributed to the spiroconjugation arising from the interaction of four p π orbitals in the different planes.

  1. Study of the β- decay of 116m1In: A new interpretation of low-lying 0+ states in 116Sn

    NASA Astrophysics Data System (ADS)

    Pore, J. L.; Cross, D. S.; Andreoiu, C.; Ashley, R.; Ball, G. C.; Bender, P. C.; Chester, A. S.; Diaz Varela, A.; Demand, G. A.; Dunlop, R.; Garnsworthy, A. B.; Garrett, P. E.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Liblong, A.; Kanungo, R.; Noakes, B.; Petrache, C. M.; Rajabali, M. M.; Starosta, K.; Svensson, C. E.; Voss, P. J.; Wang, Z. M.; Wood, J. L.; Yates, S. W.

    2017-02-01

    The 116Sn nucleus contains a collective rotational band originating from proton π 2 p-2 h excitations across the proton Z=50 shell gap. Even though this nucleus has been extensively investigated in the past, there was still missing information on the low-energy interband transitions connecting the intruder and normal structures. The low-lying structure of 116Sn was investigated through a high-statistics study of the β- decay of 116m1In with the 8π spectrometer and its ancillary detectors at TRIUMF. These measurements are critical in order to properly characterize the π 2 p-2 h rotational band. Weak γ-decay branches are observed utilizing γ-γ coincidence spectroscopy methods, leading to the first direct observation of the 85 keV 22+→ 03+ γ ray with a transition strength of B(E2) = 99.7(84) W.u. The analysis of these results strongly suggests that the 2027 keV 03+ state should replace the previously assigned 1757 keV 02+ state as the band-head of the π 2 p-2 h rotational band.

  2. An ab initio investigation of the ground and low-lying singlet and triplet electronic states of XNO{sub 2} and XONO (X = Cl, Br, and I)

    SciTech Connect

    Peterson, Kirk A.; Francisco, Joseph S.

    2014-01-28

    A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.

  3. Ab initio MRCI + Q calculations on the low-lying excited states of the MgBr radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wu, Dong-lan; Tan, Bin; Wen, Yu-feng; Zeng, Xue-feng; Xie, An-dong; Yan, Bing

    2016-05-01

    Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI + Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X2Σ+ and the first excited state A2Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B2Σ+ correlated to ion-pair dissociation limit Mg+ (2Sg) + Br- (1Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30 Ω states, and the SOC splitting for the A2Π is calculated to be 102.58 cm- 1. The SOC effect, leading to the double-well potential of the Ω = (3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X2Σ+1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X2Σ+1/2 and (2)3/2-X2Σ+1/2 are particularly important to the observed transitions A2Π-X2Σ+ and C2Π-X2Σ+. The

  4. Accessing a low-lying bound electronic state of the alkali oxides, LiO and NaO, using laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Pugh, J. V.; Shen, K. K.; Winstead, C. B.; Gole, J. L.

    1996-01-01

    The first laser based probe for the sodium and lithium monoxides is established. The Li(Na)+N 2O reactions studied in a multiple collision entrainment mode produce the LiO and NaO ground X 2Π and low-lying monoxide excited states. In contrast to the alkali halides, laser induced excitation spectroscopy confirms that the LiO and NaO B 2Π states, counter to recent predictions, are located at energies well below the ground state dissociation asymptote and, as predicted, possess significant binding energies. An assignment of the laser induced excitation spectra (LIF) for the B 2Π-X 2Π transitions of LiO in the region 3940-4300 Å is based on a direct correlation with the observed chemiluminescence (CL) from the lowest level of the LiO B 2Π state ( ˜4000-7000 Å) and high quality ab initio calculations for the ground state. The self-consistent assignment of the observed LIF and CL spectra makes use of the complimentary extended progressions in the X 2Π (CL) and B 2Π (LIF) vibrational level structure which results from the significant shift of the B 2Π excited state potential relative to that of the ground state. The experimental data are consistent with an excited state vibrational frequency separation of order 130 cm -1, and T e( B2Π) ≈ 26078 ± 800 cm-1. The latter value, in correlation with the ground state dissociation energy of LiO, suggests a B 2Π excited state dissociation energy well in excess of 2000 cm -1. The radiative lifetimes of the lowest levels of the LiO B 2Π state, isoergic with the highest levels of the LiO ground state, are determined to be in excess of 600 ns. The corresponding NaO excitation spectra in the range 6680-7250 Å also correlate well with ab initio calculations for the ground electronic state of NaO. Within this study, we provide optical signatures which one might consider to monitor LiO or NaO in process streams. In correlation with the observed chemiluminescence from B 2Π states of the higher alkali oxides KO, RbO, and

  5. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  6. Bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Stone, A. Douglas; Joannopoulos, John D.; Soljačić, Marin

    2016-09-01

    Bound states in the continuum (BICs) are waves that remain localized even though they coexist with a continuous spectrum of radiating waves that can carry energy away. Their very existence defies conventional wisdom. Although BICs were first proposed in quantum mechanics, they are a general wave phenomenon and have since been identified in electromagnetic waves, acoustic waves in air, water waves and elastic waves in solids. These states have been studied in a wide range of material systems, such as piezoelectric materials, dielectric photonic crystals, optical waveguides and fibres, quantum dots, graphene and topological insulators. In this Review, we describe recent developments in this field with an emphasis on the physical mechanisms that lead to BICs across seemingly very different materials and types of waves. We also discuss experimental realizations, existing applications and directions for future work.

  7. Rotational Spectroscopy as a Tool to Investigate Interactions Between Vibrational Polyads in Symmetric Top Molecules: Low-Lying States v_8 ≤ 2 OF Methyl Cyanide

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Ordu, Matthias H.; Lewen, Frank; Brown, Linda; Drouin, Brian; Pearson, John; Sung, Keeyoon; Kleiner, Isabelle; Sams, Robert

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627~GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2ν_8 around 717~cm-1 with assignments covering 684-765~cm-1. Additional spectra in the ν _8 region were used to validate the analysis. Using ν _8 data as well as spectroscopic parameters for v_4 = 1, v_7 = 1, and v_8 = 3 from previous studies, we analyzed rotational data involving v = 0, v_8 = 1, and v_8 = 2 up to high J and K quantum numbers. We analyzed a strong Δ v_8 = ± 1, Δ K = 0, Δ l = ±3 Fermi resonance between v_8 = 1-1 and v_8 = 2+2 at K = 14 and obtained preliminary results for two further Fermi resonances between v_8 = 2 and 3. We also found resonant Δ v_8 = ± 1, Δ K = ∓ 2, Δ l = ± 1 interactions between v_8 = 1 and 2 and present the first detailed analysis of such a resonance between v_8 = 0 and 1. We discuss the impact of this analysis on the v_8 = 1 and 2 as well as on the axial v = 0 parameters and compare selected CH_3CN parameters with those of CH_3CCH and CH_3NC. We evaluated transition dipole moments of ν _8, 2ν _8 - ν _8, and 2ν _8 for remote sensing in the IR. Part of this work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. M. Koivusaari et al., J. Mol. Spectrosc. 152 (1992) 377-388. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.

  8. Low-lying electronic states of FeNC and FeCN: A theoretical journey into isomerization and quartet/sextet competition

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Yamaguchi, Yukio; Allen, Wesley D.; Pak, Chaeho; Schaefer, Henry F.; Peterson, Kirk A.

    2004-03-01

    With several levels of multireference and restricted open-shell single-reference electronic structure theory, optimum structures, relative energetics, and spectroscopic properties of the low-lying 6Δ, 6Π, 4Δ, 4Π, and 4Σ- states of linear FeNC and FeCN have been investigated using five contracted Gaussian basis sets ranging from Fe[10s8p3d], C/N[4s2p1d] to Fe[6s8p6d3f2g1h], C/N[6s5p4d3f2g]. Based on multireference configuration interaction (MRCISD+Q) results with a correlation-consistent polarized valence quadruple-zeta (cc-pVQZ) basis set, appended with core correlation and relativistic corrections, we propose the relative energies: Te(FeNC), 6Δ(0)<6Π (2300 cm-1)<4Δ (2700 cm-1)<4Π (4200 cm-1)<4Σ-; and Te(FeCN), 6Δ(0)<6Π (1800 cm-1)<4Δ (2500 cm-1)<4Π (2900 cm-1)<4Σ-. The 4Δ and 4Π states have massive multireference character, arising mostly from 11σ→12σ promotions, whereas the sextet states are dominated by single electronic configurations. The single-reference CCSDT-3 (coupled cluster singles and doubles with iterative partial triples) method appears to significantly overshoot the stabilization of the quartet states provided by both static and dynamical correlation. The 4,6Δ and 4,6Π states of both isomers are rather ionic, and all have dipole moments near 5 D. On the ground 6Δ surface, FeNC is predicted to lie 0.6 kcal mol-1 below FeCN, and the classical barrier for isocyanide/cyanide isomerization is about 6.5 kcal mol-1. Our data support the recent spectroscopic characterization by Lei and Dagdigian [J. Chem. Phys. 114, 2137 (2000)] of linear 6Δ FeNC as the first experimentally observed transition-metal monoisocyanide. Their assignments for the ground term symbol, isotopomeric rotational constants, and the Fe-N ω3 stretching frequency are confirmed; however, we find rather different structural parameters for 6Δ FeNC:re(Fe-N)=1.940 Å and r(N-C)=1.182 Å at the cc-pVQZ MRCISD+Q level. Our results also reveal that the observed band of Fe

  9. Low-lying dipole modes in 26,28Ne in the quasiparticle relativistic random phase approximation

    NASA Astrophysics Data System (ADS)

    Cao, Li-Gang; Ma, Zhong-Yu

    2005-03-01

    The low-lying isovector dipole strengths in the neutron-rich nuclei 26Ne and 28Ne are investigated in the quasiparticle relativistic random phase approximation. Nuclear ground-state properties are calculated in an extended relativistic mean field theory plus Bardeen-Cooper-Schrieffer (BCS) method where the contribution of the resonant continuum to pairing correlations is properly treated. Numerical calculations are tested in the case of isovector dipole and isoscalar quadrupole modes in the neutron-rich nucleus 22O. It is found that in the present calculation, low-lying isovector dipole strengths at Ex<10MeV in nuclei 26Ne and 26Ne exhaust about 4.9% and 5.8% of the Thomas-Reiche-Kuhn dipole sum rule, respectively. The centroid energy of the low-lying dipole excitation is located at 8.3 MeV in 26Ne and 7.9 MeV in 28Ne.

  10. Folding model analysis of 240 MeV {sup 6}Li elastic scattering on {sup 116}Sn and inelastic scattering to low-lying states of {sup 116}Sn

    SciTech Connect

    Chen, X.; Lui, Y.-W.; Clark, H. L.; Tokimoto, Y.; Youngblood, D. H.

    2007-11-15

    Elastic scattering of 240 MeV {sup 6}Li ions from {sup 116}Sn was measured from 4 deg.{<=}{theta}{sub c.m.}{<=}32 deg. The data were fitted with a Woods-Saxon phenomenological potential and with double folding models using the M3Y NN effective interaction with and without density dependence. DWBA calculations with the fitted parameters were used to calculate cross sections for inelastic scattering to low-lying 2{sup +}and 3{sup -} states. B(E2) and B(E3) values were extracted and compared with electromagnetic values and those obtained from {alpha} inelastic scattering.

  11. Low-lying excitations in 72Ni

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoyborg, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Shaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2016-03-01

    Low-lying excited states in 72Ni have been investigated in an in-flight fission experiment at the RIBF facility of the RIKEN Nishina Center. The combination of the state-of-the-art BigRIPS and EURICA setups has allowed for a very accurate study of the β decay from 72Co to 72Ni, and has provided first experimental information on the decay sequence 72Fe→72Co→72Ni and on the delayed neutron-emission branch 73Co→72Ni . Accordingly, we report nearly 60 previously unobserved γ transitions which deexcite 21 new levels in 72Ni. Evidence for the location of the so-sought-after (42+) ,(62+) , and (81+) seniority states is provided. As well, the existence of a low-spin β -decaying isomer in odd-odd neutron-rich Co isotopes is confirmed for mass A =72 . The new experimental information is compared to simple shell-model calculations including only neutron excitations across the f p g shells. It is shown that, in general, the calculations reproduce well the observed states.

  12. The origin of unequal bond lengths in the C1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    DOE PAGES

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-14

    Here the C1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v'3 progression. We have recently made the first observation of low-lying levels with odd quanta of v'3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamicallymore » important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the v'3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ~145°.« less

  13. The origin of unequal bond lengths in the C̃ (1)B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure.

    PubMed

    Park, G Barratt; Jiang, Jun; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°.

  14. An improved model electronic Hamiltonian for potential energy surfaces and spin−orbit couplings of low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+}

    SciTech Connect

    Iuchi, Satoru Koga, Nobuaki

    2014-01-14

    With the aim of exploring excited state dynamics, a model electronic Hamiltonian for several low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+} complex [S. Iuchi, J. Chem. Phys. 136, 064519 (2012)] is refined using density-functional theory calculations of singlet, triplet, and quintet states as benchmarks. Spin−orbit coupling elements are also evaluated within the framework of the model Hamiltonian. The accuracy of the developed model Hamiltonian is determined by examining potential energies and spin−orbit couplings at surface crossing regions between different spin states. Insights into the potential energy surfaces around surface crossing regions are also provided through molecular dynamics simulations. The results demonstrate that the constructed model Hamiltonian can be used for studies on the d−d excited state dynamics of [Fe(bpy){sub 3}]{sup 2+}.

  15. Ab initio studies of low-lying 3Sigma(-), 3Pi, and 5Sigma(-) states of NH. I - Potential curves and dipole moment functions

    NASA Technical Reports Server (NTRS)

    Goldfield, Evelyn M.; Kirby, Kate P.

    1987-01-01

    Configuration interaction wave functions, potential energy curves, and dipole moment functions have been calculated for the four lowest 3Sigma(-) and the three lowest 3Pi states and 5Sigma(-) states of NH. The electronic wave functions were constructed to give a balanced description of valence-Rydberg interactions. Two repulsive states have been identified as important photodissociation pathways. Spectroscopic constants are presented for the bound states, and results are compared to other theoretical and experimental work. The possible predissociation of the A 3Pi state by the 1 5Sigma(-) state is discussed.

  16. Ab initio coupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone

    DOE PAGES

    Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; ...

    2015-12-09

    In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D4h-symmetric, 1,2,3,4-cyclobutanetetraone (C4O4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π(1A1g) state, the singlet 10π(1A1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π(1A1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π(1B2u) and 9π(3B2u), respectively, originating from single occupancy of the HOMO and LUMO. Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneraciesmore » in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g) and that the 8π(1A1g) - 9π(3B2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.« less

  17. Dissociation of the OCS{sup +} ion in low-lying electronic states studied using multiconfiguration second-order perturbation theory

    SciTech Connect

    Chen Bozhen; Chang Haibo; Huang Mingbao

    2006-08-07

    Complete active space self-consistent-field (CASSCF) and multiconfiguration second-order perturbation theory (CASPT2) calculations with atomic natural orbital basis sets were performed to investigate the S-loss direct dissociation of the 1 {sup 2}{pi}(X {sup 2}{pi}), 2 {sup 2}{pi}(A {sup 2}{pi}), 1 {sup 2}{sigma}{sup +}(B {sup 2}{sigma}{sup +}), 1 {sup 4}{sigma}{sup -}, 1 {sup 2}{sigma}{sup -}, and 1 {sup 2}{delta} states of the OCS{sup +} ion and the predissociations of the 1 {sup 2}{pi}, 2 {sup 2}{pi}, and 1 {sup 2}{sigma}{sup +} states. Our calculations indicate that the S-loss dissociation products of the OCS{sup +} ion in the six states are the ground-state CO molecule plus the S{sup +} ion in different electronic states. The CASPT2//CASSCF potential energy curves were calculated for the S-loss dissociation from the six states. The calculations indicate that the dissociation of the 1 {sup 4}{sigma}{sup -} state leads to the CO+S{sup +} ({sup 4}S{sub u}) products representing the first dissociation limit; the dissociations of the 1 {sup 2}{pi}, 1 {sup 2}{sigma}{sup -}, and 1 {sup 2}{delta} states lead to the CO+S{sup +}({sup 2}D{sub u}) products representing the second dissociation limit; and the dissociations of the 2 {sup 2}{pi} and 1 {sup 2}{sigma}{sup +} states lead to the CO+S{sup +}({sup 2}P{sub u}) products representing the third dissociation limit. Seams of the 1 {sup 2}{pi}-1 {sup 4}{sigma}{sup -}, 2 {sup 2}{pi}-1 {sup 4}{sigma}{sup -}, 2 {sup 2}{pi}-1 {sup 2}{sigma}{sup -}, 2 {sup 2}{pi}-1 {sup 2}{delta}, and 1 {sup 2}{sigma}{sup +}-1 {sup 4}{sigma}{sup -} potential energy surface intersections were calculated at the CASPT2 level, and the minima along the seams were located. The calculations indicate that within the experimental energy range (15.07-16.0 eV) the 2 {sup 2}{pi}(A {sup 2}{pi}) state can be predissociated by 1 {sup 4}{sigma}{sup -} forming the S{sup +}({sup 4}S{sub u}) ion and can undergo internal conversion to 1 {sup 2}{pi} followed by

  18. Avoided crossings, conical intersections, and low-lying excited states with a single reference method: The restricted active space spin-flip configuration interaction approach

    NASA Astrophysics Data System (ADS)

    Casanova, David

    2012-08-01

    The restricted active space spin-flip CI (RASCI-SF) performance is tested in the electronic structure computation of the ground and the lowest electronically excited states in the presence of near-degeneracies. The feasibility of the method is demonstrated by analyzing the avoided crossing between the ionic and neutral singlet states of LiF along the molecular dissociation. The two potential energy surfaces (PESs) are explored by means of the energies of computed adiabatic and approximated diabatic states, dipole moments, and natural orbital electronic occupancies of both states. The RASCI-SF methodology is also used to study the ground and first excited singlet surface crossing involved in the double bond isomerization of ethylene, as a model case. The two-dimensional PESs of the ground (S0) and excited (S1) states are calculated for the complete configuration space of torsion and pyramidalization molecular distortions. The parameters that define the state energetics in the vicinity of the S0/S1 conical intersection region are compared to complete active space self-consistent field (CASSCF) results. These examples show that it is possible to describe strongly correlated electronic states using a single reference methodology without the need to expand the wavefunction to high levels of collective excitations. Finally, RASCI is also examined in the electronic structure characterization of the ground and 2^1{A}^-_g, 1^1{B}^+_u, 1^1{B}^-_u, and 1^3{B}^-_u states of all-trans polyenes with two to seven double bonds and beyond. Transition energies are compared to configuration interaction singles, time-dependent density functional theory (TDDFT), CASSCF, and its second-order perturbation correction calculations, and to experimental data. The capability of RASCI-SF to describe the nature and properties of each electronic state is discussed in detail. This example is also used to expose the properties of different truncations of the RASCI wavefunction and to show the

  19. Low-lying {sup 3}P{sup o} and {sup 3}S{sup e} states of Rb{sup -}, Cs{sup -}, and Fr{sup -}

    SciTech Connect

    Bahrim, C.; Thumm, U.

    2000-02-01

    Our Dirac R-matrix calculations suggest that none of the heavy alkali-metal negative ions, Rb, Cs, and Fr, has an excited bound state. Their lowest excited state appears to be a multiplet of {sup 3}P{sub J}{sup o}-shape resonances, the J=1 component of which was recently observed in photodetachment experiments on Cs{sup -}. We analyze these {sup 3}P{sub J}{sup o} and the {sup 3}S{sup e} excited negative ion states in partial and converged total scattering cross sections for slow electrons with incident kinetic energies below 120 meV. Our results are in excellent agreement with available experimental data. We also propose a new value for the electron affinity of Fr, provide the scattering length for electronic collisions with Rb, Cs, and Fr, and discuss the nuclear charge dependence of relativistic effects in the resonance profiles. (c) 2000 The American Physical Society.

  20. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low lying excited states and radiationless deactivation. Part II: influence of substitution on luminescence patterns.

    PubMed

    Segado, Mireia; Mercier, Yannick; Gómez, Isabel; Reguero, Mar

    2016-03-07

    In this paper, we study the mechanisms of charge transfer, luminescence and radiationless decay of three derivatives of 4-aminobenzonitrile (ABN): dimethyl-ABN (DMABN) and the tetrafluorinated derivatives, ABN-4F and DMABN-4F. Our CASSCF/CASPT2 computations explain the different luminescence patterns observed in these three compounds and in comparison with the parent system, ABN, in spite of their similar architecture. We have found that the modifications made by the different substitutions in ABN tune the relative energies of the locally excited (LE) and charge transfer (CT) excited states due to electronic and structural factors. In all cases, the only potentially emitting species of CT character is the twisted-ICT. The increasing stabilization of this later species in the series formed by ABN-4F, DMABN and DMABN-4F explains the increasing intensity of the anomalous emission band in these compounds. Nevertheless, other factors like probability of emission vs. nonradiative decay must have also been taken into account. In fact fluoro-substitution increases the accessibility to conical intersections of the excited states with the ground state, opening an internal conversion channel that decreases the fluorescence quantum yield in the fluorinated derivatives. Our results also show that the involvement of the π-σ* state in the CT process is only possible in ABN-4F, but even in this case it is not probable.

  1. Extensive ab initio study of the OH+HCN reaction: Low lying electronic states of the stationary points on the 2A' surface

    NASA Astrophysics Data System (ADS)

    Palma, A.; Semprini, E.; Stefani, F.; Talamo, A.

    1996-09-01

    We found many stationary points (minima and transition states) for the title reaction on the 2A' surface at unrestricted Hartree-Fock self-consistent field (UHF-SCF) level with two different basis sets. Stable adducts, as suggested by previous experimental works, have been ascertained and several reaction paths are obtained through intrinsic reaction coordinate (IRC) calculations. A link to the HNC+OH reaction is possible. Multiconfiguration SCF (MC-SCF) calculations have been carried out for the addition reaction with the lowest energy barrier in order to eliminate the spin contamination error on these geometries. Correlation energy at the stationary points was estimated via a perturbative scheme, Møller-Plesset at fourth order (MP4) which does not seem adequate for such a system, and via multireference double configuration interaction (MR-DCI) with extrapolation to full CI values for ground and first excited states. Electronic excitations may open some reaction channels.

  2. A valence bond analysis of electronic degeneracies in Jahn-Teller systems: low-lying states of the cyclopentadienyl radical and cation.

    PubMed

    Zilberg, Shmuel; Haas, Yehuda

    2002-09-11

    The lowest doublet electronic state of the cyclopentadienyl radical (CPDR) and the lowest singlet state of the cyclopentadienyl cation (CPDC) are distorted from the highly symmetric D(5h) structure due to the Jahn-Teller effect. A valence bond analysis based on the phase-change rule of Longuet-Higgins reveals that in both cases the distortion is due to the first-order Jahn-Teller effect. It is shown that, while for the radical an isolated Jahn-Teller degeneracy is expected, in the case of the cation the main Jahn-Teller degeneracy is accompanied by five satellite degeneracies. The method offers a chemically oriented way for identifying the distortive coordinates.

  3. Properties of low-lying intruder states in {sup 34}Al and {sup 34}Si populated in the beta-decay of {sup 34}Mg

    SciTech Connect

    Lică, R.; Grévy, S. [CENBG, Université de Bordeaux, CNRS Desagne, Ph. [IPHC, Université de Strasbourg, IN2P3 and others

    2015-02-24

    The results of the IS530 experiment at ISOLDE revealed new information concerning several nuclei close to the N ≈ 20 'Island of Inversion' - {sup 34}Mg, {sup 34}Al, {sup 34}Si. The half-life of {sup 34}Mg was found to be three times larger than the adopted value (63(1) ms instead of 20(10) ms). The beta-gamma spectroscopy of {sup 34}Mg performed for the first time in this experiment, led to the first experimental level scheme for {sup 34}Al, also showing that the full beta strength goes through the predicted 1{sup +} isomer in {sup 34}Al [1] and/or excited states that deexcite to it. The subsequent beta-decay of the 1{sup +} isomer in {sup 34}Al allowed the observation of new gamma lines in {sup 34}Si, (tentatively) associated with low-spin high-energy excited states previously unobserved.

  4. Experimental determination of rotational constants of low-lying vibrational levels in the 0g- pure long-range state of ultracold Cs2 molecule

    NASA Astrophysics Data System (ADS)

    Wu, Jizhou; Liu, Wenliang; Li, Yuqing; Ma, Jie; Xiao, Liantuan; Jia, Suotang

    2017-04-01

    We report an accurate experimental determination of rotational constants of the lowest vibrational levels in the purely long-range state of ultracold cesium molecules (Cs2). We engineer a precise reference of the frequency difference through double photoassociation spectroscopy (PAS). The PAS for the lowest vibrational levels, v=0-3, has been obtained with an enhanced sensitivity and accuracy, according to which the binding energies have been corrected. As deduced from the reference, the frequency intervals between neighboring rotational levels are fitted to a non-rigid rotor model, thus the rotational constants are precisely obtained. The experimental results show good agreement with theoretical expectations.

  5. Density Functional Theory in Transition-Metal Chemistry: Relative Energies of Low-Lying States of Iron Compounds and the Effect of Spatial Symmetry Breaking

    SciTech Connect

    Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.

  6. State of Florida 1:24,000- and 1:100,000-scale Quadrangle Index Map - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Models

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts 1:24,000- and 1:100,000-scale quadrangle footprints over a color shaded relief representation of the State of Florida. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Figure 1 shows a similar representation for the entire U.S. Gulf Coast, using coarsened 30-meter NED data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. Quadrangle names, dated April, 2006, were obtained from the Federal Geographic Names Information System. The NED data were downloaded in 2004.

  7. Ab initio and long-range studies of the electronic transition dipole moments among the low-lying states of Rb2 and Cs2 molecules

    NASA Astrophysics Data System (ADS)

    Pazyuk, Elena A.; Revina, Elena I.; Stolyarov, Andrey V.

    2016-07-01

    The spin allowed electronic transition dipole moments (ETDM) of rubidium and cesium dimers are calculated among the states converging to the lowest three dissociation limits. The ETDM functions are evaluated for a wide range of internuclear distances R in the basis of the spin-averaged wavefunctions corresponding to pure Hund's coupling case (a) by using small (including the 8 subvalence +1 valence electrons) effective core pseudopotentials (ECP). The dynamic correlation is accounted for in a large scale multi-reference configuration interaction (MR-CI) method applied to only two valence electrons. The core-polarization potentials (CPP) are implemented to implicitly take the residual core-valence effect into account. The reliability of the present EDTM functions is discussed through comparison with preceding ab initio calculations and their long range perturbation theory counterparts. The achieved accuracy allowed us to quantitatively support the asymptotic behavior of the ETDM functions predicted in Marinescu and Dalgarno (1995 [4]). The long R-range transition moments could be useful to optimize stimulated Raman processes employed in ultracold molecule production.

  8. Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: Low-lying states v8 ⩽ 2 of methyl cyanide, CH3CN

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Brown, Linda R.; Drouin, Brian J.; Pearson, John C.; Kleiner, Isabelle; Sams, Robert L.; Sung, Keeyoon; Ordu, Matthias H.; Lewen, Frank

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2ν8 around 717 cm-1 with assignments covering 684-765 cm-1. Additional spectra in the ν8 region were used to validate the analysis. Information on the K level structure of CH3CN is almost exclusively obtained from IR spectra, as are basics of the J level structure. The large amount and the high accuracy of the rotational data improves knowledge of the J level structure considerably. Moreover, since these data extend to much higher J and K quantum numbers, they allowed us to investigate for the first time in depth local interactions between these states which occur at high K values. In particular, we have detected several interactions between v8 = 1 and 2. Notably, there is a strong Δv8 = ± 1 , ΔK = 0 , Δl = ± 3 Fermi resonance between v8 =1-1 and v8 =2+2 at K = 14 . Pronounced effects in the spectrum are also caused by resonant Δv8 = ± 1 , ΔK = ∓ 2 , Δl = ± 1 interactions between v8 = 1 and 2 at K = 13 , l = - 1 / K = 11 , l = 0 and at K = 15 , l = + 1 / K = 13 , l = + 2 . An equivalent resonant interaction occurs between K = 14 of the ground vibrational state and K = 12 , l = + 1 of v8 = 1 for which we present the first detailed account. A preliminary account was given in an earlier study on the ground vibrational state. Similar resonances were found for CH3CCH and, more recently, for CH3NC, warranting comparison of the results. From data pertaining to v8 = 2 , we also investigated rotational interactions with v4 = 1 as well as Δv8 = ± 1 , ΔK = 0 , Δl = ± 3 Fermi interactions between v8 = 2 and 3. We have derived N2- and self

  9. Continuum-continuum transitions between resonant states using the RABITT technique

    NASA Astrophysics Data System (ADS)

    Jiménez, A.; Argenti, L.; Martín, F.

    2014-04-01

    We present a study of radiative continuum-continuum transitions in helium in the presence of doubly-excited states by using the attosecond RABITT technique beyond the Single Active Electron approximation. On the one hand, transition amplitudes between correlated continuum states are calculated both by direct numerical solution of the time-dependent Schrodinger equation as well as with a two-photon perturbative model. The effect of autoionizing states on the sideband phaseshift is thus analyzed. On the other hand, we apply the soft-photon approximation to quantify the effects the IR probe intensity on the sideband non-resonant overtone components.

  10. Instanton contributions to the low-lying hadron mass spectrum

    NASA Astrophysics Data System (ADS)

    Thomas, Samuel D.; Kamleh, Waseem; Leinweber, Derek B.

    2015-11-01

    The role of instanton-like objects in the QCD vacuum on the mass spectrum of low-lying light hadrons is explored in lattice QCD. Using overimproved stout-link smearing, tuned to preserve instanton-like objects in the QCD vacuum, the evolution of the mass spectrum under smearing is examined. The calculation is performed using a 203×40 dynamical fat-link-irrelevant-clover (FLIC) fermion action ensemble with lattice spacing 0.126 fm. Through the consideration of a range of pion masses, the effect of the vacuum instanton content is compared at a common pion mass. While the qualitative features of ground-state hadrons are preserved on instanton-dominated configurations, the excitation spectrum experiences significant changes. The underlying physics revealed shows little similarity to the direct-instanton-interaction predictions of the instanton liquid model.

  11. Rabi-split states broadened by a continuum

    SciTech Connect

    Maialle, M. Z.; Degani, M. H.; Madureira, J. R.

    2013-12-04

    In this work we theoretically investigate a Λ-like three-level system. Our model consists of a onedimensional quantum well with a nearby continuum. The Λ level structure is formed by the ground state (a valence band state) and two excited states (both in conduction band), one being a localized and the other a quasi-bound state which is interacting with the continuum. An infrared (IR) field is used to drive the excited states into dressed states creating Autler-Townes doublets. We solve the semiconductor Bloch equation, in real space and in time domain, to follow the interband optical excitation dynamics. The optical absorption and the photocurrent spectra are calculated for different potential barriers separating the well and the continuum. We show how this affects the Autler-Townes doublets since this is a possible way of changing the relationship between the IR Rabi frequency and the dephasing rates.

  12. Low-lying Gamow-Teller transitions in spherical nuclei

    SciTech Connect

    Cakmak, N.; Uenlue, S.; Selam, C.

    2012-01-15

    The Pyatov Method has been used to study the low-lying Gamow-Teller transitions in the mass region of 98 Less-Than-Or-Slanted-Equal-To A Less-Than-Or-Slanted-Equal-To 130. The eigenvalues and eigenfunctions of the total Hamiltonian have been solved within the framework of proton-neutron quasiparticle random-phase approximation. The low-lying {beta} decay log(ft) values have been calculated for the nuclei under consideration.

  13. Spectroscopic strengths of low-lying levels in 18Ne

    NASA Astrophysics Data System (ADS)

    Omalley, Patrick; Allen, J. M.; Bardayan, D. W.; Becchetti, F. D.; Cizewski, J. A.; Febbraro, M.; Gryzwacz, R.; Hall, M.; Jones, K. L.; Kolata, J. J.; Paulauskas, S. V.; Smith, K.; Thornsberry, C.

    2016-09-01

    Much effort has been made to understand the origins of 18F in novae. Due to its relatively long half-life ( 2 hours), 18F can survive until the nova envelope is transparent, and therefore it can provide a sensitive diagnostic of nova nucleosynthesis. It is likely produced through the beta decay of 18Ne, which is itself produced (primarily) through the 17F(p, γ) reaction. Understanding the direct capture contribution to the 17F(p, γ) reaction is important to accurately model it. As such, the spectroscopic strengths of low-lying states in 18Ne are needed. At the University of Notre Dame a measurement of the 17F(d,n) reaction has been performed using a beam produced with TwinSol Low energy radioactive beam facility. The neutrons were detected using a combination of VANDLE and UoM deuterated scintillator arrays. Data will be shown and preliminary results discussed. Research sponsored by the National Science Foundation, the US DOE Office of Nuclear Physics, and the National Nuclear Security Administration.

  14. The origin of unequal bond lengths in the C1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    SciTech Connect

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-14

    Here the C1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v'3 progression. We have recently made the first observation of low-lying levels with odd quanta of v'3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the v'3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ~145°.

  15. Equation of State and Sound Velocities from Isotropic Continuum Mechanics.

    DTIC Science & Technology

    1986-10-01

    of state and the shear and longitudinal velocity to fifth order elastic constants. The resulting expressions are implicit in terms of the pressure...The methods of finite elasticity in continuum mechanics of homogeneous isotropic materials are used to obtain the pressure dependence of the equation

  16. Breakup channels for C12 triple-α continuum states

    NASA Astrophysics Data System (ADS)

    Diget, C. Aa.; Barker, F. C.; Borge, M. J. G.; Boutami, R.; Dendooven, P.; Eronen, T.; Fox, S. P.; Fulton, B. R.; Fynbo, H. O. U.; Huikari, J.; Hyldegaard, S.; Jeppesen, H. B.; Jokinen, A.; Jonson, B.; Kankainen, A.; Moore, I.; Nieminen, A.; Nyman, G.; Penttilä, H.; Pucknell, V. F. E.; Riisager, K.; Rinta-Antila, S.; Tengblad, O.; Wang, Y.; Wilhelmsen, K.; Äystö, J.

    2009-09-01

    The triple-α-particle breakup of states in the triple-α continuum of C12 has been investigated by way of coincident detection of all three α particles of the breakup. The states have been fed in the β decay of N12 and B12, and the α particles measured using a setup that covers all of the triple-α phase space. Contributions from the breakup through the Be8(0+) ground state as well as other channels—interpreted as breakup through excited energies in Be8—have been identified. Spins and parities of C12 triple-α continuum states are deduced from the measured phase-space distributions for breakup through Be8 above the ground state by comparison to a fully symmetrized sequential R-matrix description of the breakup. At around 10 MeV in C12, the breakup is found to be dominated by 0+ strength breaking up through the ghost of the Be8(0+) ground state with L=0 angular momentum between the first emitted α particle and the intermediate Be8 nucleus. For C12 energies above the 12.7 MeV 1+ state, however, L=2 breakup of a C12 2+ state through the Be8(2+) excited state dominates. Furthermore, the possibility of a 2+ excited state in the 9-12 MeV region of C12 is investigated.

  17. High resolution photoelectron imaging of UO{sup −} and UO{sub 2}{sup −} and the low-lying electronic states and vibrational frequencies of UO and UO{sub 2}

    SciTech Connect

    Czekner, Joseph; Lopez, Gary V.; Wang, Lai-Sheng

    2014-12-28

    We report a study of the electronic and vibrational structures of the gaseous uranium monoxide and dioxide molecules using high-resolution photoelectron imaging. Vibrationally resolved photoelectron spectra are obtained for both UO{sup −} and UO{sub 2}{sup −}. The spectra for UO{sub 2}{sup −} are consistent with, but much better resolved than a recent study using a magnetic-bottle photoelectron analyzer [W. L. Li et al., J. Chem. Phys. 140, 094306 (2014)]. The electron affinity (EA) of UO is reported for the first time as 1.1407(7) eV, whereas a much more accurate EA is obtained for UO{sub 2} as 1.1688(6) eV. The symmetric stretching modes for the neutral and anionic ground states, and two neutral excited states for UO{sub 2} are observed, as well as the bending mode for the neutral ground state. These vibrational frequencies are consistent with previous experimental and theoretical results. The stretching vibrational modes for the ground state and one excited state are observed for UO. The current results for UO and UO{sub 2} are compared with previous theoretical calculations including relativistic effects and spin-orbit coupling. The accurate experimental data reported here provide more stringent tests for future theoretical methods for actinide-containing species.

  18. Tamm-Hubbard surface states in the continuum.

    PubMed

    Longhi, S; Della Valle, G

    2013-06-12

    In the framework of the Bose-Hubbard model, we show that two-particle surface bound states embedded in the continuum (BIC) can be sustained at the edge of a semi-infinite one-dimensional tight-binding lattice for any infinitesimally-small impurity potential V at the lattice boundary. Such thresholdless surface states, which can be referred to as Tamm-Hubbard BIC states, exist provided that the impurity potential V is attractive (repulsive) and the particle-particle Hubbard interaction U is repulsive (attractive), i.e. for UV < 0.

  19. Ab initio coupled-cluster and multi-reference configuration interaction studies of the low-lying electronic states of 1,2,3,4-cyclobutanetetraone

    SciTech Connect

    Hansen, Jared A.; Bauman, Nicholas P.; Shen, Jun; Borden, Weston Thatcher; Piecuch, Piotr

    2015-12-09

    In this paper, the four, closely spaced, lowest energy electronic states of the challenging, D4h-symmetric, 1,2,3,4-cyclobutanetetraone (C4O4) molecule have been investigated using high-level ab initio methods. The calculated states include the closed-shell singlet 8π(1A1g) state, the singlet 10π(1A1g) state, in which the π-type lowest unoccupied molecular orbital (LUMO) of the 8π(1A1g) reference is doubly occupied and the σ-type highest occupied molecular orbital (HOMO) is empty, and the open-shell singlet and triplet states, designated as 9π(1B2u) and 9π(3B2u), respectively, originating from single occupancy of the HOMO and LUMO. Our focus is on single-reference coupled-cluster (CC) approaches capable of handling electronic near-degeneracies in diradicals, especially the completely renormalised CR-CC(2,3) and active-space CCSDt methods, along with their CCSD and EOMCCSD counterparts. The internally contracted multi-reference configuration interaction calculations with a quasi-degenerate Davidson correction are performed as well. Our computations demonstrate that the state ordering is 9π(3B2u) < 8π(1A1g) < 9π(1B2u) < 10π(1A1g) and that the 8π(1A1g) - 9π(3B2u) gap is in the 7–11 kJ/mol range, in reasonable agreement with the negative ion photoelectron spectroscopy measurements, which give 6.27 ± 0.5 kJ/mol. Finally, in addition to the theory level used, geometry relaxation and basis set play a significant role in determining the state ordering and energy spacings. In particular, it is unsafe to use lower level, non-CC geometries and smaller basis sets.

  20. Theoretical Study of the Low-Lying States of TiHe(+),TiNe(+),TiAr(+),VAr(+),CrHe(+),CrAr(+),FeHe(+),FeAr(+),CoHe(+),and CoAr(+)

    NASA Technical Reports Server (NTRS)

    Partridge, Harry; Bauschlicher, Charles W., Jr.

    1994-01-01

    The potential energy curves for the manifold of molecular states dissociating to the lowest transition metal ion states derived from the 3d(sup n+1) and 3d(sup n)4s(sup 1) occupations have been determined for selected transition-metal ion- rare gas systems. These curves have been computed using large basis sets, and the state-averaged complete- active-space self-consistent-field/multireference configuration interaction level of electron correlation treatment. In general, the families of curves derived from the 3d(sup n+1) and 3d(sup n)4s(sup 1) metal occupations are disjoint; however, for Ti(+) there is a strong mixing of the 3d(sup 2)4s(sup 1) and 3d(sup 3) asymptotes, because of the small separation between the asymptotes. This mixing leads to a failure of single-reference-based techniques; this is discussed in the context of our previous single-reference-based treatments.

  1. Exploring continuum structures with a pseudo-state basis

    SciTech Connect

    Lay, J. A.; Moro, A. M.; Arias, J. M.; Gomez-Camacho, J.

    2010-08-15

    The ability of a recently developed square-integrable discrete basis to represent the properties of the continuum of a two-body system is investigated. The basis is obtained performing a simple analytic local scale transformation to the harmonic oscillator basis. Scattering phase-shifts and the electric transition probabilities B(E1) and B(E2) have been evaluated for several potentials using the proposed basis. Both quantities are found to be in excellent agreement with the exact values calculated from the true scattering states. The basis has been applied to describe the projectile continuum in the {sup 6}He scattering by {sup 12}C and {sup 208}Pb targets at 240 MeV/nucleon and the {sup 11}Be scattering by {sup 12}C at 67 MeV/nucleon. The calculated breakup differential cross sections are found to be in very good agreement with the available experimental data for these reactions.

  2. Evolution of states in a continuum migration model

    NASA Astrophysics Data System (ADS)

    Kondratiev, Yuri; Kozitsky, Yuri

    2017-03-01

    The Markov evolution of states of a continuum migration model is studied. The model describes an infinite system of entities placed in R^d in which the constituents appear (immigrate) with rate b(x) and disappear, also due to competition. For this model, we prove the existence of the evolution of states μ _0 mapsto μ _t such that the moments μ _t(N_Λ ^n) , nin N, of the number of entities in compact Λ subset R^d remain bounded for all t>0 . Under an additional condition, we prove that the density of entities and the second correlation function remain point-wise bounded globally in time.

  3. Role of Many-Body Effects in Describing Low-Lying Excited States of π-Conjugated Chromophores: High-Level Equation-of-Motion Coupled-Cluster Studies of Fused Porphyrin Systems.

    PubMed

    Kowalski, K; Olson, R M; Krishnamoorthy, S; Tipparaju, V; Aprà, E

    2011-07-12

    The unusual photophysical properties of the π-conjugated chromophores make them potential building blocks of various molecular devices. In particular, significant narrowing of the HOMO-LUMO gaps can be observed as an effect of functionalization chromophores with polycyclic aromatic hydrocarbons (PAHs). In this paper we present equation-of-motion coupled cluster (EOMCC) calculations for vertical excitation energies of several functionalized forms of porphyrins. The results for free-base porphyrin (FBP) clearly demonstrate significant differences between functionalization of FBP with one- (anthracene) and two-dimensional (coronene) structures. We also compare the EOMCC results with the experimentally available results for anthracene fused zinc-porphyrin. The impact of various types of correlation effects is illustrated on several benchmark models, where the comparison with the experiment is possible. In particular, we demonstrate that for all excited states considered in this paper, all of them being dominated by single excitations, the inclusion of triply excited configurations is crucial for attaining qualitative agreement with experiment. We also demonstrate the parallel performance of the most computationally intensive part of the completely renormalized EOMCCSD(T) approach (CR-EOMCCSD(T)) across 120 000 cores.

  4. Low-lying excited states and primary photoproducts of [Os3(CO)10(s-cis-L)] (L=cyclohexa-1,3-diene, buta-1,3-diene)] clusters studied by picosecond time-resolved UV/Vis and IR spectroscopy and by density functional theory.

    PubMed

    Vergeer, Frank W; Matousek, Pavel; Towrie, Michael; Costa, Paulo J; Calhorda, Maria J; Hartl, Frantisek

    2004-07-19

    Combined picosecond transient absorption and time-resolved infrared studies were performed, aimed at characterising low-lying excited states of the cluster [Os(3)(CO)(10)(s-cis-L)] (L=cyclohexa-1,3-diene, 1) and monitoring the formation of its photoproducts. Theoretical (DFT and TD-DFT) calculations on the closely related cluster with L=buta-1,3-diene (2') have revealed that the low-lying electronic transitions of these [Os(3)(CO)(10)(s-cis-1,3-diene)] clusters have a predominant sigma(core)pi*(CO) character. From the lowest sigmapi* excited state, cluster 1 undergoes fast Os-Os(1,3-diene) bond cleavage (tau=3.3 ps) resulting in the formation of a coordinatively unsaturated primary photoproduct (1 a) with a single CO bridge. A new insight into the structure of the transient has been obtained by DFT calculations. The cleaved Os-Os(1,3-diene) bond is bridged by the donor 1,3-diene ligand, compensating for the electron deficiency at the neighbouring Os centre. Because of the unequal distribution of the electron density in transient 1 a, a second CO bridge is formed in 20 ps in the photoproduct [Os(3)(CO)(8)(micro-CO)(2)(cyclohexa-1,3-diene)] (1 b). The latter compound, absorbing strongly around 630 nm, mainly regenerates the parent cluster with a lifetime of about 100 ns in hexane. Its structure, as suggested by the DFT calculations, again contains the 1,3-diene ligand coordinated in a bridging fashion. Photoproduct 1 b can therefore be assigned as a high-energy coordination isomer of the parent cluster with all Os-Os bonds bridged.

  5. Spectroscopy of low-lying levels in 81Br and its nuclear-structure interpretation

    NASA Astrophysics Data System (ADS)

    Jakob, G.; Speidel, K.-H.; Kremeyer, S.; Busch, H.; Grabowy, U.; Gohla, A.; Cub, J.; Gerber, J.; Oros, A.-M.; Heyde, K.; Rikovska, J.

    1996-02-01

    Magnetic moments of low-lying levels in 81Br have been measured using Coulomb excitation of 81Br beams and the technique of transient magnetic fields with Gd as ferromagnet. In addition, lifetimes have been redetermined for several states employing the Doppler-shift attenuation method and mixing ratios of γ-transitions were deduced from angular correlations. The data are discussed in the framework of the particle-vibrator and the particle-rotor coupling models.

  6. On properties of low-lying spin-1 hadron resonances

    NASA Astrophysics Data System (ADS)

    Chizhov, M. V.

    2017-03-01

    Properties of low-lying spin-1 hadron resonances are described in the review. It is shown how the Nambu-Jona-Lasinio model can be extended in the chiral invariant way by new tensor interactions. New mass formulas are obtained, which are not based on unitary symmetry groups but involve particles from different multiplets even with opposite parity. They all are in good agreement with experimental data. Dynamic properties of spin-1 mesons confirmed by the calculations performed using the QCD sum rule technique and the lattice calculations are understood and explained.

  7. Block versus continuum deformation in the Western United States

    USGS Publications Warehouse

    King, G.; Oppenheimer, D.; Amelung, F.

    1994-01-01

    The relative role of block versus continuum deformation of continental lithosphere is a current subject of debate. Continuous deformation is suggested by distributed seismicity at continental plate margins and by cumulative seismic moment sums which yield slip estimates that are less than estimates from plate motion studies. In contrast, block models are favored by geologic studies of displacement in places like Asia. A problem in this debate is a lack of data from which unequivocal conclusions may be reached. In this paper we apply the techniques of study used in regions such as the Alpine-Himalayan belt to an area with a wealth of instrumental data-the Western United States. By comparing plate rates to seismic moment release rates and assuming a typical seismogenic layer thickness of 15 km it appears that since 1850 about 60% of the Pacific-North America motion across the plate boundary in California and Nevada has occurred seismically and 40% aseismically. The San Francisco Bay area shows similar partitioning between seismic and aseismic deformation, and it can be shown that within the seismogenic depth range aseismic deformation is concentrated near the surface and at depth. In some cases this deformation can be located on creeping surface faults, but elsewhere it is spread over a several kilometer wide zone adjacent to the fault. These superficial creeping deformation zones may be responsible for the palaeomagnetic rotations that have been ascribed elsewhere to the surface expression of continuum deformation in the lithosphere. Our results support the dominant role of non-continuum deformation processes with the implication that deformation localization by strain softening must occur in the lower crust and probably the upper mantle. Our conclusions apply only to the regions where the data are good, and even within the Western United States (i.e., the Basin and Range) deformation styles remain poorly resolved. Nonetheless, we maintain that block motion is the

  8. Lasing action from photonic bound states in continuum

    NASA Astrophysics Data System (ADS)

    Kodigala, Ashok; Lepetit, Thomas; Gu, Qing; Bahari, Babak; Fainman, Yeshaiahu; Kanté, Boubacar

    2017-01-01

    In 1929, only three years after the advent of quantum mechanics, von Neumann and Wigner showed that Schrödinger’s equation can have bound states above the continuum threshold. These peculiar states, called bound states in the continuum (BICs), manifest themselves as resonances that do not decay. For several decades afterwards the idea lay dormant, regarded primarily as a mathematical curiosity. In 1977, Herrick and Stillinger revived interest in BICs when they suggested that BICs could be observed in semiconductor superlattices. BICs arise naturally from Feshbach’s quantum mechanical theory of resonances, as explained by Friedrich and Wintgen, and are thus more physical than initially realized. Recently, it was realized that BICs are intrinsically a wave phenomenon and are thus not restricted to the realm of quantum mechanics. They have since been shown to occur in many different fields of wave physics including acoustics, microwaves and nanophotonics. However, experimental observations of BICs have been limited to passive systems and the realization of BIC lasers has remained elusive. Here we report, at room temperature, lasing action from an optically pumped BIC cavity. Our results show that the lasing wavelength of the fabricated BIC cavities, each made of an array of cylindrical nanoresonators suspended in air, scales with the radii of the nanoresonators according to the theoretical prediction for the BIC mode. Moreover, lasing action from the designed BIC cavity persists even after scaling down the array to as few as 8-by-8 nanoresonators. BIC lasers open up new avenues in the study of light-matter interaction because they are intrinsically connected to topological charges and represent natural vector beam sources (that is, there are several possible beam shapes), which are highly sought after in the fields of optical trapping, biological sensing and quantum information.

  9. Microscopic study of low-lying collective bands in 77 Kr

    NASA Astrophysics Data System (ADS)

    Tripathy, K. C.; Sahu, R.; Mishra, S.

    2006-02-01

    The structure of the collective bands in ^{77}Kr is investigated within our deformed shell model (DSM) based on Hartree-Fock states. The different levels are classified into collective bands on the basis of their B(E2) values. The calculated K= 5/2^+ ground band agrees reasonably well with the experiment. An attempt has been made to study the structure of the 3-quasiparticle band based on large J state in this nucleus. The calculated collective bands, the B(E2), and B(M1) values are compared with available experimental data. The nature of alignments in the low-lying bands is also analyzed.

  10. Continuum-state and bound-state β--decay rates of the neutron

    NASA Astrophysics Data System (ADS)

    Faber, M.; Ivanov, A. N.; Ivanova, V. A.; Marton, J.; Pitschmann, M.; Serebrov, A. P.; Troitskaya, N. I.; Wellenzohn, M.

    2009-09-01

    For the β--decay of the neutron we analyze the continuum-state and bound-state decay modes. We calculate the decay rates, the electron energy spectrum for the continuum-state decay mode, and angular distributions of the decay probabilities for the continuum-state and bound-state decay modes. The theoretical results are obtained for the new value for the axial coupling constant gA=1.2750(9), obtained recently by H. Abele [Prog. Part. Nucl. Phys. 60, 1 (2008)] from the fit of the experimental data on the coefficient of the correlation of the neutron spin and the electron momentum of the electron energy spectrum of the continuum-state decay mode. We take into account the contribution of radiative corrections and the scalar and tensor weak couplings. The calculated angular distributions of the probabilities of the bound-state decay modes of the polarized neutron can be used for the experimental measurements of the bound-state β--decays into the hyperfine states with total angular momentum F=1 and scalar and tensor weak coupling constants.

  11. Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD

    SciTech Connect

    Takahashi, Toru T.; Oka, Makoto

    2010-02-01

    Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).

  12. Low-lying excitations in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus

    2016-05-01

    We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.

  13. Strain-Induced Localized States Within the Matrix Continuum of Self-Assembled Quantum Dots

    SciTech Connect

    Popescu, V.; Bester, G.; Zunger, A.

    2009-07-01

    Quantum dot-based infrared detectors often involve transitions from confined states of the dot to states above the minimum of the conduction band continuum of the matrix. We discuss the existence of two types of resonant states within this continuum in self-assembled dots: (i) virtual bound states, which characterize square wells even without strain and (ii) strain-induced localized states. The latter emerge due to the appearance of 'potential wings' near the dot, related to the curvature of the dots. While states (i) do couple to the continuum, states (ii) are sheltered by the wings, giving rise to sharp absorption peaks.

  14. Low-Lying Structure of 50Ar and the N =32 Subshell Closure

    NASA Astrophysics Data System (ADS)

    Steppenbeck, D.; Takeuchi, S.; Aoi, N.; Doornenbal, P.; Matsushita, M.; Wang, H.; Utsuno, Y.; Baba, H.; Go, S.; Lee, J.; Matsui, K.; Michimasa, S.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Sakurai, H.; Shiga, Y.; Shimizu, N.; Söderström, P.-A.; Sumikama, T.; Taniuchi, R.; Valiente-Dobón, J. J.; Yoneda, K.

    2015-06-01

    The low-lying structure of the neutron-rich nucleus 50Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ -ray spectroscopy with 9Be (54Ca, 50Ar +γ )X , 9Be (55Sc, 50Ar +γ )X , and 9Be (56Ti, 50Ar +γ )X multinucleon removal reactions at ˜220 MeV /u . A γ -ray peak at 1178(18) keV is reported and assigned as the transition from the first 2+ state to the 0+ ground state. A weaker, tentative line at 1582(38) keV is suggested as the 41+→21+ transition. The experimental results are compared to large-scale shell-model calculations performed in the s d p f model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for 50Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N =32 subshell gap in 50Ar is similar in magnitude to those in 52Ca and 54Ti and, notably, predict an N =34 subshell closure in 52Ar that is larger than the one recently reported in 54Ca.

  15. On the accuracy of the general, state-specific polarizable-continuum model for the description of correlated ground- and excited states in solution.

    PubMed

    Mewes, Jan-Michael; Herbert, John M; Dreuw, Andreas

    2017-01-04

    Equilibrium and non-equilibrium formulations of the state-specific polarizable-continuum model (SS-PCM) are evaluated in combination with correlated ground- and excited-state densities provided by the algebraic-diagrammatic construction method (ADC) for the polarization propagator via the computationally efficient intermediate-state representation (ISR) formalism. Since the influence of the SS-PCM onto quantum-chemical method is naturally limited to the presence of the apparent surface charges in the one-electron Hamiltonian and hence fully contained in the polarized MOs, the herein presented solvent model can be combined with all implemented orders and variants of ADC. Employing ADC/SS-PCM, the symmetric, ionized dimers of neon, ethene and nitromethane are investigated. Their broken-symmetry wavefunctions exhibit a low-lying charge-transfer state that is symmetry-equivalent to the ground state. This curious though ultimately artificial feature is convenient as it allows for a direct comparison of ADC/SS-PCM for the CT state to the Møller-Plesset/PCM description of the ground state. The agreement down to 0.02 eV for a wide range of dielectric constants validates the ADC/SS-PCM approach. Eventually, the relaxed potential-energy surfaces of the ground and lowest excited states of 4-(N,N)-dimethylaminobenzonitrile in cyclohexane and acetonitrile are computed, and it is demonstrated that the ADC(2)/SS-PCM approach affords excellent agreement with experimental fluorescence data. Only at the ADC(3) level of theory, however, the experimentally observed solvent-dependent dual fluorescence can be explained.

  16. Quantum secure direct communication of digital and analog signals using continuum coherent states

    NASA Astrophysics Data System (ADS)

    Guerra, Antônio Geovan de Araújo Holanda; Rios, Francisco Franklin Sousa; Ramos, Rubens Viana

    2016-11-01

    In this work, we present optical schemes for secure direct quantum communication of digital and analog signals using continuum coherent states and frequency-dependent phase modulation. The main advantages of the proposed schemes are that they do not use entangled states and they can be implemented with today technology. The theory of quantum interference of continuum coherent state is described, and the optical setups for secure direct communication are presented and their securities are discussed.

  17. Low-lying levels in /sup 148/Pm

    SciTech Connect

    Norman, E.B.; Lesko, K.T.; Champagne, A.E.

    1988-02-01

    The /sup 149/Sm(d,/sup 3/He) reaction has been used to populate levels in /sup 148/Pm. Nineteen new excited states have been observed below 1 MeV excitation energy in /sup 148/Pm. The possible astrophysical implications of these results are discussed.

  18. Landau-Zener-Stueckelberg Physics with a Singular Continuum of States.

    PubMed

    Basko, D M

    2017-01-06

    This Letter addresses the dynamical quantum problem of a driven discrete energy level coupled to a semi-infinite continuum whose density of states has a square-root-type singularity, such as states of a free particle in one dimension or quasiparticle states in a BCS superconductor. The system dynamics is strongly affected by the quantum-mechanical repulsion between the discrete level and the singularity, which gives rise to a bound state, suppresses the decay into the continuum, and can produce Stueckelberg oscillations. This quantum coherence effect may limit the performance of mesoscopic superconducting devices, such as the quantum electron turnstile.

  19. Landau-Zener-Stueckelberg Physics with a Singular Continuum of States

    NASA Astrophysics Data System (ADS)

    Basko, D. M.

    2017-01-01

    This Letter addresses the dynamical quantum problem of a driven discrete energy level coupled to a semi-infinite continuum whose density of states has a square-root-type singularity, such as states of a free particle in one dimension or quasiparticle states in a BCS superconductor. The system dynamics is strongly affected by the quantum-mechanical repulsion between the discrete level and the singularity, which gives rise to a bound state, suppresses the decay into the continuum, and can produce Stueckelberg oscillations. This quantum coherence effect may limit the performance of mesoscopic superconducting devices, such as the quantum electron turnstile.

  20. Many low-lying isomers of the cationic and neutral niobium trimer and tetramer

    NASA Astrophysics Data System (ADS)

    Fowler, Joseph E.; García, América; Ugalde, Jesus M.

    1999-10-01

    The experimentally interesting Nb3 and Nb4 clusters and their cations have been studied in great detail using density-functional methodology in conjunction with relativistic effective core potentials. Close attention has been paid to full optimization along the flat potential energy surfaces and numerous minima and several transition states have been characterized. The Nb3 cation is predicted to have a 3A'1 ground state with an equilibrium geometry of D3h symmetry. The ground state of the neutral is predicted to be a 2B1 state of C2v symmetry with two shorter bonds and one longer. The transition state for pseudorotation or ``peak'' atom interchange, however, lies only 0.01 kcal/mol higher in energy, implying a fluxional structure for the neutral species. The global minimum of the Nb4 cationic cluster is a C2v structure, Jahn-Teller distorted from the Td global minimum of the singlet neutral. Numerous other energetically low-lying stationary points are characterized for each species. We discuss the bonding features of these minima and relate our predictions to the existing experimental data.

  1. Uniqueness of continuum one-dimensional Gibbs states for slowly decaying interactions

    SciTech Connect

    Klein, D.

    1986-04-01

    We consider one-dimensional grand-canonical continuum Gibbs states corresponding to slowly decaying, superstable, many-body interactions. Absence of phase transitions, in the sense of uniqueness of the tempered Gibbs state, is proved for interactions with an Nth body hardcore for arbitrarily large N.

  2. Searching for low-lying multi-particle thresholds in lattice spectroscopy

    SciTech Connect

    Mahbub, M. Selim; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.

    2014-03-15

    We explore the Euclidean-time tails of odd-parity nucleon correlation functions in a search for the S-wave pion–nucleon scattering-state threshold contribution. The analysis is performed using 2+1 flavor 32{sup 3}×64 PACS-CS gauge configurations available via the ILDG. Correlation matrices composed with various levels of fermion source/sink smearing are used to project low-lying states. The consideration of 25,600 fermion propagators reveals the presence of more than one state in what would normally be regarded as an eigenstate-projected correlation function. This observation is in accord with the scenario where the eigenstates contain a strong mixing of single and multi-particle states but only the single particle component has a strong coupling to the interpolating field. Employing a two-exponential fit to the eigenvector-projected correlation function, we are able to confirm the presence of two eigenstates. The lower-lying eigenstate is consistent with a Nπ scattering threshold and has a relatively small coupling to the three-quark interpolating field. We discuss the impact of this small scattering-state contamination in the eigenvector projected correlation function on previous results presented in the literature. -- Highlights: • Correlation-matrix projected correlators reveal more than one state contributing. • Results are associated with strong mixing of single and multi-particle states in QCD. • A two-exponential fit confirms the presence of two QCD eigenstates. •The lower-lying eigenstate is consistent with a nucleon–pion scattering threshold. •The impact of this small contamination on the higher-lying state is examined.

  3. Accidental bound states in the continuum in an open Sinai billiard

    NASA Astrophysics Data System (ADS)

    Pilipchuk, A. S.; Sadreev, A. F.

    2017-02-01

    The fundamental mechanism of the bound states in the continuum is the full destructive interference of two resonances when two eigenlevels of the closed system are crossing. There is, however, a wide class of quantum chaotic systems which display only avoided crossings of eigenlevels. As an example of such a system we consider the Sinai billiard coupled with two semi-infinite waveguides. We show that notwithstanding the absence of degeneracy bound states in the continuum occur due to accidental decoupling of the eigenstates of the billiard from the waveguides.

  4. Excited state absorption spectrum of chlorophyll a obtained with white-light continuum.

    PubMed

    De Boni, L; Correa, D S; Pavinatto, F J; dos Santos, D S; Mendonça, C R

    2007-04-28

    The study of excited state properties of chlorophyll a is a subject of foremost interest, given that it plays important roles in biological process and has also been proposed for applications in photonics. This work reports on the excited state absorption spectrum of chlorophyll a solution from 460 to 700 nm, obtained through the white-light continuum Z-scan technique. Saturation of absorption was observed due to the ground state depletion, induced by the white-light continuum region that is resonant with the Q band of chlorophyll a. The authors also observed reverse saturation of absorption related to the excitation from the first excited state to a higher energy level for wavelengths below 640 nm. An energy-level diagram, based on the electronic states of chlorophyll a, was employed to interpret their results, revealing that more states than the ones related to the Q and B bands participate in the excited state absorption of this molecule.

  5. Fano resonances in photonic crystal slabs near optical bound states in the continuum

    NASA Astrophysics Data System (ADS)

    Blanchard, Cédric; Hugonin, Jean-Paul; Sauvan, Christophe

    2016-10-01

    Photonic crystal slabs are able to support optical bound states in the continuum. The latter are eigenmodes of the structure that are truly guided (no radiation leakage) despite the fact that they lie above the light cone within the continuum of radiation modes. Such peculiar states can be viewed as modes with an infinite quality factor Q . Therefore, the question of the behavior of Fano resonances, as optogeometrical parameters are tuned close to optical bound states in the continuum, is of importance for applications of photonic crystal slabs with ultrahigh Q factors. We study theoretically the reflection and transmission of a photonic crystal slab close to an optical bound state in the continuum with a phenomenological approach involving the poles and zeros of the scattering matrix. In particular, we derive a general relation valid for asymmetric structures that gives the position of a pole in the complex plane as a function of the positions of the zeros. We provide closed-form expressions for the reflection and transmission. The proposed phenomenological approach is validated through rigorous numerical calculations.

  6. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  7. Simultaneous description of low-lying positive and negative parity bands in heavy even-even nuclei

    NASA Astrophysics Data System (ADS)

    Ganev, H. G.

    2014-05-01

    The low-lying spectra including the first few excited positive and negative parity bands of some heavy even-even nuclei from the rare earth and actinide mass regions are investigated within the framework of the symplectic interacting vector boson model with the Sp(12,R) dynamical symmetry group. Symplectic dynamical symmetries allow the change of the number of excitation quanta or phonons building the collective states, providing for larger representation spaces and richer subalgebraic structures to incorporate more complex nuclear spectra. The theoretical predictions for the energy levels and the electromagnetic transitions between the collective states of the ground-state band and Kπ=0- band are compared with experiment and some other collective models incorporating octupole and/or dipole degrees of freedom. The energy staggering, which is a sensitive indicator of the octupole correlations in even-even nuclei, is also calculated and compared with experiment. The results obtained for the energy levels, energy staggering, and transition strengths reveal the relevance of the dynamical symmetry used in the model to simultaneously describe both positive and negative parity low-lying collective bands.

  8. Quantum dynamics of Ne -Br2 vibrational predissociation: The role of continuum resonances as doorway states

    NASA Astrophysics Data System (ADS)

    García-Vela, A.; Janda, K. C.

    2006-01-01

    Wave-packet simulations of the Ne -Br2(B,υ') vibrational predissociation dynamics in the range υ'=16-29 are reported. The aim is to interpret recent time-dependent pump-probe experiments [Cabrera et al., J. Chem. Phys. 123, 054311 (2005)]. Good agreement is found between the calculated and the experimental lifetimes corresponding to decay of the Ne -Br2(B,υ') initial state and to appearance of Br2(B,υ<υ') products. The simulations show that up to υ'˜22 the dynamics is dominated by direct predissociation, while for higher υ' levels an indirect intramolecular vibrational relaxation mechanism of dissociation becomes increasingly important. Such a mechanism occurs via coupling of the initial state in the υ' vibrational manifold to nearly degenerate resonances embedded in the continuum of the lower υ <υ' manifolds, which act as intermediate doorway states to dissociation. The role of the intermediate resonances manifests itself in multiexponential behavior and oscillations in the time-dependent population curves associated with the initial complex state, the final product states, and the Ne -Br2(B,υ<υ') intermediate complexes. Analysis of the Ne -Br2(B,υ<υ') intermediate population shows that the continuum resonances are supported by centrifugal barriers involving excitation of the internal rotation of the complex. We find that the coupling between the intermediate state resonances and the continuum product state wave functions extend to Ne -Br2 distances greater than 15Å. In the light of the results, a structure of the spectrum of continuum resonances is suggested and discussed.

  9. Controlling Directionality and Dimensionality of Radiation by Perturbing Separable Bound States in the Continuum

    PubMed Central

    Rivera, Nicholas; Hsu, Chia Wei; Zhen, Bo; Buljan, Hrvoje; Joannopoulos, John D.; Soljačić, Marin

    2016-01-01

    A bound state in the continuum (BIC) is an unusual localized state that is embedded in a continuum of extended states. Here, we present the general condition for BICs to arise from wave equation separability. Then we show that by exploiting perturbations of certain symmetry such BICs can be turned into resonances that radiate with a tailorable directionality and dimensionality. Using this general framework, we construct new examples of separable BICs and resonances that can exist in optical potentials for ultracold atoms, photonic systems, and systems described by tight binding. Such resonances with easily reconfigurable radiation allow for applications such as the storage and release of waves at a controllable rate and direction, as well systems that switch between different dimensions of confinement. PMID:27641540

  10. Building the Coverage Continuum: The Role of State Medicaid Directors and Insurance Commissioners.

    PubMed

    Ario, Joel; Bachrach, Deborah

    2017-02-01

    Issue: The Affordable Care Act has expanded coverage to 20 million newly insured individuals, split between state Medicaid programs and commercially insured marketplaces, with limited integration between the two. The seamless continuum of coverage envisioned by the law is central to achieving the full potential of the Affordable Care Act, but it remains an elusive promise. Goals: To examine the historical and cultural differences between state Medicaid agencies and insurance departments that contribute to this lack of coordination. Findings and Conclusions: Historical and cultural differences must be overcome to ensure continuing access to coverage and care. The authors present two opportunities for insurance and Medicaid officials to work together to advance the continuum of coverage: alignment of regulations for insurers participating in both markets and collaboration on efforts to reform the health care delivery system.

  11. Low-lying π∗ resonances associated with cyano groups: A CAP/SAC-CI study

    NASA Astrophysics Data System (ADS)

    Ehara, Masahiro; Kanazawa, Yuki; Sommerfeld, Thomas

    2017-01-01

    The complex absorbing potential (CAP)/symmetry-adapted cluster-configuration interaction (SAC-CI) method is applied to low-lying π∗ resonance states of molecules containing one or two cyano (CN) groups. Benchmark calculations are carried out comparing the non-variational and approximate variational approach of SAC-CI and studying the selection threshold of operators. Experimental resonance positions from electron transmission spectroscopy (ETS) are reproduced provided the anticipated deviations due to vibronic effects are taken into account. Moreover, the calculated positions and widths agree well with those obtained in previous electron scattering calculations for HCN, CH3CN and their isonitriles. Based on our results, we suggest a reassignment of the experimental ETS of fumaronitrile and malononitrile. Our present results demonstrate again that the CAP/SAC-CI method reliably predicts low-lying π∗ resonances, and regarding the total numbers of molecules and resonances investigated, it is fair to say that it is presently the most extensively used high-level method in the temporary anion field.

  12. Excited-state polarizabilities of solvated molecules using cubic response theory and the polarizable continuum model

    NASA Astrophysics Data System (ADS)

    Ferrighi, Lara; Frediani, Luca; Ruud, Kenneth

    2010-01-01

    The theory and an implementation of the solvent contribution to the cubic response function for the polarizable continuum model for multiconfigurational self-consistent field wave functions is presented. The excited-state polarizability of benzene, para-nitroaniline, and nitrobenzene has been obtained from the double residue of the cubic response function calculated in the presence of an acetonitrile and dioxane solvent. The calculated excited-state polarizabilities are compared to results obtained from the linear response function of the explicitly optimized excited states.

  13. Low-lying excitations of poly-fused thiophene within Pariser-Parr-Pople model: A density matrix renormalization group study.

    PubMed

    Das, Mousumi

    2010-05-21

    We studied the nature of the ground and low-lying excited states of poly-fused thiophene oligomers within long-range Pariser-Parr-Pople (PPP) model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. Our results show that the lowest dipole-allowed state lies below the lowest dipole forbidden two-photon state, indicating that poly-fused thiophenes are strongly fluorescent. The lowest triplet state lies below the two-photon state, which is in agreement with the general trend in conjugated polymers. The charge density and bond order calculations of three low-lying excited states, along with the ground state of fused thiophene oligomers, show a significant transfer of charge from sulfur to adjacent carbon atom in the middle of the largest system size and these excitations are localized. The charge density and bond order calculations on singly and doubly doped states show that bipolarons are not stable entity in these systems. The calculations of low-lying excitations on radical cation and anion of fused thiophene oligomers show a new energy band in the low energy region, which is strongly coupled to its hole and electron conductivity. This implies that poly-fused thiophenes posses novel field-effect transistor properties.

  14. Reply to ``Comment on `Three-body properties of low-lying 12Be resonances' ''

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.; Johansen, J. G.

    2013-09-01

    We suggested that the two resonances at 0.89 and 2.03 MeV above the two-neutron separation threshold have spins and parities of 0+ and 1-. In the Comment, Fortune claims that these states almost unambiguously must be 3- and 4+ states. We work in three-body cluster models with Jπ=0+,1-,2+ where all three-body continuum structures are included. Fortune bases his assignments on the bound-state shell-model and (t,p) calculations. Our conclusions are from three-body structure results including widths. Assignments as 0+ and 1- (or, perhaps, 3-) resonances are the most natural within the three-body cluster model.

  15. Bound states in the continuum in open quantum billiards with a variable shape

    SciTech Connect

    Sadreev, Almas F.; Bulgakov, Evgeny N.; Rotter, Ingrid

    2006-06-15

    We show the existence of bound states in the continuum (BICs) in quantum billiards (QBs) that are opened by attaching single-channel leads to them. They may be observed by varying an external parameter continuously, e.g., the shape of the QB. At some values of the parameter, resonance states with vanishing decay width (the BICs) occur. They are localized almost completely in the interior of the closed system. The phenomenon is shown analytically to exist in the simplest case of a two level QB and is complemented by numerical calculations for a real QB.

  16. Core excitations in (d,p) reactions including transitions to continuum levels

    NASA Astrophysics Data System (ADS)

    Makoto, Tanifuji; Osamu, Mikoshiba; Tokuo, Terasawa

    1982-11-01

    Effects of core excitations in (d, p) reactions are investigated for 12C(d, p) 13C ∗ reactions in the CCBA framework, where couplings of channels are considered for the ground and first-excited levels of 12C in the initial state and for the bound {1}/{2}+and{5}/{2}+ levels and low-lying continuum levels of 13C in the final state, where a discretization is introduced for the continuum region. In the transitions to the continuum levels, matrix elements are calculated by the use of scattering-state wave functions for the final neutron. Theoretical cross sections and vector analyzing powers are compared with experimental data, where significant contributions of core-excitation processes are identified, particularly in the transition to the {5}/{2}+II level of 13C. Spectra of emitted protons are calculated and compared with the measured ones. Adequate agreement between theory and experiment is found throughout the present investigation.

  17. Low-lying dipole resonance in neutron-rich Ne isotopes

    NASA Astrophysics Data System (ADS)

    Yoshida, Kenichi; van Giai, Nguyen

    2008-07-01

    Microscopic structure of the low-lying isovector dipole excitation mode in neutron-rich Ne26,28,30 is investigated by performing deformed quasiparticle-random-phase-approximation (QRPA) calculations. The particle-hole residual interaction is derived from a Skyrme force through a Landau-Migdal approximation. We obtain the low-lying resonance in Ne26 at around 8.6 MeV. It is found that the isovector dipole strength at Ex<10 MeV exhausts about 6.0% of the classical Thomas-Reiche-Kuhn dipole sum rule. This excitation mode is composed of several QRPA eigenmodes, one is generated by a ν(2s1/2-12p3/2) transition dominantly and the other mostly by a ν(2s1/2-12p1/2) transition. The neutron excitations take place outside of the nuclear surface reflecting the spatially extended structure of the 2s1/2 wave function. In Ne30, the deformation splitting of the giant resonance is large, and the low-lying resonance overlaps with the giant resonance.

  18. Symptomatic lumbar disc protrusion causing progressive myelopathy in a low-lying cord.

    PubMed

    Srinivas, Shreya; Shetty, Rohit; Collins, Iona

    2012-06-01

    Low-lying cord is an uncommon entity, and cord compression due lumbar disc disease is rarely encountered. We discuss our experience with a case of lumbar cord compression secondary to a large disc protrusion, which caused myelopathy in a low-lying/tethered cord. A 77-year-old woman with known spina bifida occulta presented with 6-week history of severe low back pain and progressive paraparesis. Magnetic resonance imaging showed a low-lying tethered cord and a large disc prolapse at L2/3 causing cord compression with associated syringomyelia. Medical comorbidities precluded her from anterior decompression, and therefore a posterior decompression was performed. She recovered full motor power in her lower limbs and could eventually walk unaided. She had a deep wound infection, which was successfully treated with debridement, negative pressure therapy (vacuum-assisted closure pump), and antibiotics. Six months after surgery, her Oswestry Disability Index improved from 55% preoperatively to 20%. Posterior spinal cord decompression for this condition has been successful in our case, and we believe that the lumbar lordosis may have helped indirectly decompress the spinal cord by posterior decompression alone.

  19. gamma-ray spectroscopic study of calcium-48,49 and scandium-50 focusing on low lying octupole vibration excitations

    NASA Astrophysics Data System (ADS)

    McPherson, David M.

    An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.

  20. Treatment of continuum in nuclear reactions involving weakly bound systems. A simple model to test different prescriptions describing the coupling to continuum states

    SciTech Connect

    Dasso, C. H.; Vitturi, A.

    2009-03-04

    We exploit a model describing the break-up of weakly-bound nuclei that can be used as a laboratory for testing different prescriptions that have been advanced in the literature to take into account the near-by presence of continuum states. In the model we follow the evolution of a single particle wave function in one dimension, initially bound by a Woods-Saxon type potential and then perturbed by a time- and position-dependent external field. Proper choices of this potential can simulate the effect of the interaction between reaction partners in a nuclear collision. These processes generate inelastic excitation probabilities that--distributed over the bound and continuum states of the system--lead to either a partial or a total fragmentation of the final wave function. The comparison with the exact calculations shows that standard coupled channel descriptions based on discretization of the continuum can be accurate only when a proper choice is made of the number of discrete states, of the energy mesh and of the energy cutoff. This may imply, even in simplified cases, the use of a rather large (and unpracticable) number of channels. The use of a more restricted number of channels may lead to misleading results.

  1. The GSAM software: A global search algorithm of minima exploration for the investigation of low lying isomers of clusters

    SciTech Connect

    Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude

    2015-01-22

    The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.

  2. Comment on 'Bound-state eigenenergy outside and inside the continuum for unstable multilevel systems'

    SciTech Connect

    Bulgakov, E. N.; Sadreev, A. F.; Rotter, I.

    2007-06-15

    We discuss the solution of the basic equations of the N-level Friedrichs model by using the Feshbach projection operator (FPO) technique and consider the relation between bound states in the continuum (BICs) and form factors. In the FPO formalism, the BICs are eigenstates of a non-Hermitian Hamilton operator with vanishing decay width. The wave function of a BIC is localized inside the system. On the basis of the FPO solutions we discuss the mechanism to yield a BIC at every coupling strength between system and environment. We relate our results to those given by Miyamoto [Phys. Rev. A 72, 063405 (2005)].

  3. In-situ measurement of bound states in the continuum in photonic crystal slabs (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kalchmair, Stefan; Gansch, Roman; Genevet, Patrice; Zederbauer, Tobias; MacFarland, Donald; Detz, Hermann; Andrews, Aaron Maxwell; Schrenk, Werner; Strasser, Gottfried; Capasso, Federico; Loncar, Marko

    2016-04-01

    Photonic crystal slabs have been subject to research for more than a decade, yet the existence of bound states in the radiation continuum (BICs) in photonic crystals has been reported only recently [1]. A BIC is formed when the radiation from all possible channels interferes destructively, causing the overall radiation to vanish. In photonic crystals, BICs are the result of accidental phase matching between incident, reflected and in-plane waves at seemingly random wave vectors [2]. While BICs in photonic crystals have been discussed previously using reflection measurements, we reports for the first time in-situ measurements of the bound states in the continuum in photonic crystal slabs. By embedding a photodetector into a photonic crystal slab we were able to directly observe optical BICs. The photonic crystal slabs are processed from a GaAs/AlGaAs quantum wells heterostructure, providing intersubband absorption in the mid-infrared wavelength range. The generated photocurrent is collected via doped contact layers on top and bottom of the suspended photonic crystal slab. We were mapping out the photonic band structure by rotating the device and by acquiring photocurrent spectra every 5°. Our measured photonic bandstructure revealed several BICs, which was confirmed with a rigorously coupled-wave analysis simulation. Since coupling to external fields is suppressed, the photocurrent measured by the photodetector vanishes at the BIC wave vector. To confirm the relation between the measured photocurrent and the Q-factor we used temporal coupled mode theory, which yielded an inverse proportional relation between the photocurrent and the out-coupling loss from the photonic crystal. Implementing a plane wave expansion simulation allowed us to identify the corresponding photonic crystal modes. The ability to directly measure the field intensity inside the photonic crystal presents an important milestone towards integrated opto-electronic BIC devices. Potential

  4. Critical field enhancement of asymptotic optical bound states in the continuum

    PubMed Central

    Yoon, Jae Woong; Song, Seok Ho; Magnusson, Robert

    2015-01-01

    We study spectral singularities and critical field enhancement factors associated with embedded photonic bound states in subwavelength periodic Si films. Ultrahigh-Q resonances supporting field enhancement factor exceeding 108 are obtained in the spectral vicinity of exact embedded eigenvalues in spite of deep surface modulation and vertical asymmetry of the given structure. Treating relations between the partial resonance Q and field enhancement factors with an analytical coupled-mode model, we derive a general strategy to maximize the field enhancement associated with these photonic bound states in the presence of material dissipation. The analytical expression for the field enhancement quantitatively agrees with rigorous numerical calculations. Therefore, our results provide a general knowledge for designing practical resonance elements based on optical bound states in the continuum in various applications. PMID:26673548

  5. Nucleosynthesis of 92Nb and the relevance of the low-lying isomer at 135.5 keV

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-06-01

    Background: Because of its half-life of about 35 million years, 92Nb is considered as a chronometer for nucleosynthesis events prior to the birth of our sun. The abundance of 92Nb in the early solar system can be derived from meteoritic data. It has to be compared to theoretical estimates for the production of 92Nb to determine the time between the last nucleosynthesis event before the formation of the early solar system. Purpose: The influence of a low-lying short-lived isomer on the nucleosynthesis of 92Nb is analyzed. The thermal coupling between the ground state and the isomer via so-called intermediate states affects the production and survival of 92Nb. Method: The properties of the lowest intermediate state in 92Nb are known from experiment. From the lifetime of the intermediate state and from its decay branchings, the transition rate from the ground state to the isomer and the effective half-life of 92Nb are calculated as functions of the temperature. Results: The coupling between the ground state and the isomer is strong. This leads to thermalization of ground state and isomer in the nucleosynthesis of 92Nb in any explosive production scenario and almost 100% survival of 92Nb in its ground state. However, the strong coupling leads to a temperature-dependent effective half-life of 92Nb which makes the 92Nb survival very sensitive to temperatures as low as about 8 keV, thus turning 92Nb at least partly into a thermometer. Conclusions: The low-lying isomer in 92Nb does not affect the production of 92Nb in explosive scenarios. In retrospect this validates all previous studies where the isomer was not taken into account. However, the dramatic reduction of the effective half-life at temperatures below 10 keV may affect the survival of 92Nb after its synthesis in supernovae, which are the most likely astrophysical sites for the nucleosynthesis of 92Nb.

  6. {sup 10}Li low-lying resonances populated by one-neutron transfer

    SciTech Connect

    Cavallaro, M. Agodi, C.; Carbone, D.; Cunsolo, A.; De Napoli, M.; Cappuzzello, F.; Bondì, M.; Davids, B.; Galinski, N.; Ruiz, C.; Davinson, T.; Sanetullaev, A.; Foti, A.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.

    2015-10-15

    The {sup 9}Li + {sup 2}H → {sup 10}Li + {sup 1}H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a {sup 9}Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing {sup 9}Li produced by the {sup 10}Li breakup at forward angles and the recoil protons emitted at backward angles. The {sup 10}Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

  7. STS-31 Discovery, OV-103, is hidden in low-lying clouds after KSC liftoff

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, is hidden in low-lying cloud cover as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B just after its liftoff at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The glow of the solid rocket booster (SRB) and the space shuttle main engine (SSME) firings appears just below the cloud cover and is reflected in the nearby waterway (foreground). An exhaust plume trails from OV-103 and its SRBs and covers the launch pad area.

  8. STS-31 Discovery, OV-103, rockets through low-lying clouds after KSC liftoff

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, rides above the firey glow of the solid rocket boosters (SRBs) and space shuttle main engines (SSMEs) and a long trail of exhaust as it heads toward Earth orbit. Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B is covered in an exhaust cloud moments after the liftoff of OV-103 at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The exhaust plume pierces the low-lying clouds as OV-103 soars into the clear skies above. A nearby waterway appears in the foreground.

  9. A numerical study of the thermal stability of low-lying coronal loops

    NASA Technical Reports Server (NTRS)

    Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.

    1986-01-01

    The nonlinear evolution of loops that are subjected to a variety of small but finite perturbations was studied. Only the low-lying loops are considered. The analysis was performed numerically using a one-dimensional hydrodynamical model developed at the Naval Research Laboratory. The computer codes solve the time-dependent equations for mass, momentum, and energy transport. The primary interest is the active region filaments, hence a geometry appropriate to those structures was considered. The static solutions were subjected to a moderate sized perturbation and allowed to evolve. The results suggest that both hot and cool loops of the geometry considered are thermally stable against amplitude perturbations of all kinds.

  10. New blue emissive conjugated small molecules with low lying HOMO energy levels for optoelectronic applications

    NASA Astrophysics Data System (ADS)

    Trupthi Devaiah, C.; Hemavathi, B.; Ahipa, T. N.

    2017-03-01

    Versatile conjugated small molecules bearing cyanopyridone core (CP1-5), composed of various donor/acceptor moieties at position - 4 and - 6 have been designed, developed and characterized. Their solvatochromic studies were conducted and analyzed using Lippert-Mataga, Kamlet-Taft and Catalan solvent scales and interesting results were obtained. The polarizability/dipolarity of the solvent greatly influenced the spectra. The electrochemical studies were carried out using cyclic voltammetry to calculate the HOMO-LUMO energy levels. The study revealed that the synthesized conjugated small molecules possess low lying HOMO energy levels which can be exploited for application in various fields of optoelectronics.

  11. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    PubMed Central

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng

    2016-01-01

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. We show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectors not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors. PMID:27557882

  12. Ultrasensitive optical absorption in graphene based on bound states in the continuum

    PubMed Central

    Zhang, Mingda; Zhang, Xiangdong

    2015-01-01

    We have designed a sphere-graphene-slab structure so that the electromagnetic wave can be well confined in the graphene due to the formation of a bound state in a continuum (BIC) of radiation modes. Based on such a bound state, we have realized strong optical absorption in the monolayer graphene. Such a strong optical absorption exhibits many advantages. It is ultrasensitive to the wavelength because the Q factor of the absorption peak can be more than 2000. By taking suitable BICs, the selective absorption for S and P waves has not only been realized, but also all-angle absorption for the S and P waves at the same time has been demonstrated. We have also found that ultrasensitive strong absorptions can appear at any wavelength from mid-infrared to far-infrared band. These phenomena are very beneficial to biosensing, perfect filters and waveguides. PMID:25652437

  13. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    DOE PAGES

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; ...

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectorsmore » not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.« less

  14. Formation mechanism of guided resonances and bound states in the continuum in photonic crystal slabs

    SciTech Connect

    Gao, Xingwei; Hsu, Chia Wei; Zhen, Bo; Lin, Xiao; Joannopoulos, John D.; Soljačić, Marin; Chen, Hongsheng

    2016-08-25

    We develop a formalism, based on the mode expansion method, to describe the guided resonances and bound states in the continuum (BICs) in photonic crystal slabs with one-dimensional periodicity. This approach provides analytic insights to the formation mechanisms of these states: the guided resonances arise from the transverse Fabry–Pérot condition, and the divergence of the resonance lifetimes at the BICs is explained by a destructive interference of radiation from different propagating components inside the slab. As a result, we show BICs at the center and on the edge of the Brillouin zone protected by symmetry, BICs at generic wave vectors not protected by symmetry, and the annihilation of BICs at low-symmetry wave vectors.

  15. Large enhancement of fully resonant sum-frequency generation through quantum control via continuum states

    SciTech Connect

    Popov, A.K.; Kimberg, V.V.; George, Thomas F.

    2004-04-01

    A theory of quantum control of short-wavelength sum-frequency generation, which employs the continuum states, is developed. The proposed scheme employs all-resonant coupling and trade-off optimization of the accompanying constructive and destructive quantum interference effects in the lower-order and higher-order polarizations controlled by the overlap of two autoionizinglike laser-induced continuum structures. The scheme does not rely on adiabatic passage, coherent population trapping or maximum atomic coherence as a means to facilitate maximum output. The opportunities for manipulating transparency of the medium and refractive index for the fundamental and generated radiations, as well as nonlinear polarization in the multiple-resonant medium, are shown. This opens the feasibility of creating frequency-tunable narrowband filters, polarization rotators, and dispersive elements for vacuum ultraviolet radiation. The features specific for quantum interference in Doppler-broadened media are investigated. The feasibility of almost complete conversion of long-wavelength fundamental radiation into generated short-wavelength radiation, and of a dramatic decrease in the intensity of required fundamental radiations, is shown.

  16. Combined discrete particle and continuum model predicting solid-state fermentation in a drum fermentor.

    PubMed

    Schutyser, M A I; Briels, W J; Boom, R M; Rinzema, A

    2004-05-20

    The development of mathematical models facilitates industrial (large-scale) application of solid-state fermentation (SSF). In this study, a two-phase model of a drum fermentor is developed that consists of a discrete particle model (solid phase) and a continuum model (gas phase). The continuum model describes the distribution of air in the bed injected via an aeration pipe. The discrete particle model describes the solid phase. In previous work, mixing during SSF was predicted with the discrete particle model, although mixing simulations were not carried out in the current work. Heat and mass transfer between the two phases and biomass growth were implemented in the two-phase model. Validation experiments were conducted in a 28-dm3 drum fermentor. In this fermentor, sufficient aeration was provided to control the temperatures near the optimum value for growth during the first 45-50 hours. Several simulations were also conducted for different fermentor scales. Forced aeration via a single pipe in the drum fermentors did not provide homogeneous cooling in the substrate bed. Due to large temperature gradients, biomass yield decreased severely with increasing size of the fermentor. Improvement of air distribution would be required to avoid the need for frequent mixing events, during which growth is hampered. From these results, it was concluded that the two-phase model developed is a powerful tool to investigate design and scale-up of aerated (mixed) SSF fermentors.

  17. Is Preoperative Chemoradiotherapy Beneficial for Sphincter Preservation in Low-Lying Rectal Cancer Patients?

    PubMed

    Park, In Ja; Yu, Chang Sik; Lim, Seok-Byung; Lee, Jong Lyul; Kim, Chan Wook; Yoon, Yong Sik; Park, Seong Ho; Kim, Jin Cheon

    2016-05-01

    The present study explored the benefit of preoperative chemoradiotherapy (PCRT) for sphincter preservation in locally advanced low-lying rectal cancer patients who underwent stapled anastomosis, especially in those with deep and narrow pelvises determined by magnetic resonance imaging.Patients with locally advanced low-lying rectal cancer (≤5 cm from the anal verge) who underwent stapled anastomosis were included. Patients were categorized into two groups (PCRT+ vs. PCRT-) according to PCRT application. Patients in the PCRT+ group were matched to those in the PCRT- group according to potential confounding factors (age, gender, clinical stage, and body mass index) for sphincter preservation. Sphincter preservation, permanent stoma, and anastomosis-related complications were compared between the groups. Pelvic magnetic resonance imaging was used to measure 12 dimensions representing pelvic cavity depth and width with which deep and narrow pelvis was defined. The impact of PCRT on sphincter preservation and permanent stoma in pelvic dimensions defined as deep and narrow pelvis was evaluated, and factors associated with sphincter preservation and permanent stoma were analyzed.One hundred sixty-six patients were one-to-one matched between the PCRT+ and PCRT- groups. Overall, sphincter-saving surgery was performed in 66.3% and the rates were not different between the 2 groups. Anastomotic complications and permanent stoma occurred nonsignificantly more frequently in the PCRT+ group. PCRT was not associated with higher rate of sphincter preservation in all pelvic dimensions defined as deep and narrow pelvis, while PCRT was related to higher rate of permanent stoma in shorter transverse diameter and interspinous distance. On logistic regression analysis, PCRT was not shown to influence both sphincter preservation and permanent stoma, while longer transverse diameter and interspinous distance were associated with lower rate of permanent stoma.PCRT had no beneficial

  18. Is Preoperative Chemoradiotherapy Beneficial for Sphincter Preservation in Low-Lying Rectal Cancer Patients?

    PubMed Central

    Park, In Ja; Yu, Chang Sik; Lim, Seok-Byung; Lee, Jong Lyul; Kim, Chan Wook; Yoon, Yong Sik; Park, Seong Ho; Kim, Jin Cheon

    2016-01-01

    Abstract The present study explored the benefit of preoperative chemoradiotherapy (PCRT) for sphincter preservation in locally advanced low-lying rectal cancer patients who underwent stapled anastomosis, especially in those with deep and narrow pelvises determined by magnetic resonance imaging. Patients with locally advanced low-lying rectal cancer (≤5 cm from the anal verge) who underwent stapled anastomosis were included. Patients were categorized into two groups (PCRT+ vs. PCRT–) according to PCRT application. Patients in the PCRT+ group were matched to those in the PCRT– group according to potential confounding factors (age, gender, clinical stage, and body mass index) for sphincter preservation. Sphincter preservation, permanent stoma, and anastomosis-related complications were compared between the groups. Pelvic magnetic resonance imaging was used to measure 12 dimensions representing pelvic cavity depth and width with which deep and narrow pelvis was defined. The impact of PCRT on sphincter preservation and permanent stoma in pelvic dimensions defined as deep and narrow pelvis was evaluated, and factors associated with sphincter preservation and permanent stoma were analyzed. One hundred sixty-six patients were one-to-one matched between the PCRT+ and PCRT− groups. Overall, sphincter-saving surgery was performed in 66.3% and the rates were not different between the 2 groups. Anastomotic complications and permanent stoma occurred nonsignificantly more frequently in the PCRT+ group. PCRT was not associated with higher rate of sphincter preservation in all pelvic dimensions defined as deep and narrow pelvis, while PCRT was related to higher rate of permanent stoma in shorter transverse diameter and interspinous distance. On logistic regression analysis, PCRT was not shown to influence both sphincter preservation and permanent stoma, while longer transverse diameter and interspinous distance were associated with lower rate of permanent stoma. PCRT had

  19. Modeling electron dynamics coupled to continuum states in finite volumes with absorbing boundaries

    NASA Astrophysics Data System (ADS)

    De Giovannini, Umberto; Larsen, Ask Hjorth; Rubio, Angel

    2015-03-01

    Absorbing boundaries are frequently employed in real-time propagation of the Schrödinger equation to remove spurious reflections and efficiently emulate outgoing boundary conditions. These conditions are a fundamental ingredient for the calculation of observables involving infinitely extended continuum states in finite volumes. In the literature, several boundary absorbers have been proposed. They mostly fall into three main families: mask function absorbers, complex absorbing potentials, and exterior complex-scaled potentials. To date none of the proposed absorbers is perfect, and all present a certain degree of reflections. Characterization of such reflections is thus a critical task with strong implications for time-dependent simulations of atoms and molecules. We introduce a method to evaluate the reflection properties of a given absorber and present a comparison of selected samples for each family of absorbers. Further, we discuss the connections between members of each family and show how the same reflection curves can be obtained with very different absorption schemes.

  20. The fate of water deposited in the low-lying northern plains

    NASA Technical Reports Server (NTRS)

    Carr, M. H.

    1993-01-01

    Many large outflow channels terminate in the low-lying northern plains. If the outflow channels formed by running water, as appears likely, then standing bodies of water must have accumulated at the ends of the channels. Most of the observed channels, and hence the bodies of water, are post-Noachian. They formed after the period for which we have the most abundant evidence of climate change. While it has been speculated that the post-Noachian period has experienced large, episodic, climatic excursions, this paper takes the more conservative view that the climatic conditions on Mars, at least from mid-Hesperian onward, were mostly similar to the climatic conditions that prevail in the present epoch. Thus obliquity variations are taken into account, but massive climate changes induced by the floods are considered so improbable that they are ignored.

  1. Low Lying Spin Excitation in the Spin Ice Ho2Ti2O7

    SciTech Connect

    Ehlers, Georg; Mamontov, Eugene; Zamponi, Michaela M; Gardner, Jason S

    2010-01-01

    The high flux and low background of the new backscattering spectrometer at the SNS combine to produce an excellent signal to noise ratio, allowing us to investigate a low lying weak excitation never seen before in the spin ice, Ho{sub 2}Ti{sub 2}O{sub 7}. This non-dispersive excitation has been observed at E = 26.3 {mu}eV below 100 K but is resolution limited only below {approx}65 K. It is indifferent to magnetic fields below {mu}{sub 0}H = 4.5 T, at 1.6 K. These characteristics help us to identify the excitation as due to the nuclear spin system.

  2. Self-localized states for electron transfer in nonlocal continuum deformable media

    NASA Astrophysics Data System (ADS)

    Cisneros-Ake, Luis A.

    2016-08-01

    We consider the problem of electron transport in a deformable continuum medium subjected to an external harmonic substrate potential. We then consider the quasi-stationary state of the full problem to find a Gross-Pitaevskii type equation with a nonlocal external potential, which is solved by variational and numerical means (considered as the exact solution) to find the parameter conditions for the existence of self-localized solutions. The variational approach predicts a threshold on the on-site or nonlocality parameter where localized solutions cease to exist from the Non-Linear Schrödinger soliton limit. A numerical continuation of stationary state solutions in the corresponding discrete system is used to confirm the prediction of the turning value in the on-site term. We finally study the full stationary state and make use of an approximation, proposed by Briedis et al. [17], for the nonlocal term, corresponding to strong nonlocalities, to find analytic expressions for self-localized states in terms of the series solutions of a nonlinear modified Bessel equation.

  3. Electron impact excitation and assignment of the low-lying electronic states of N2O

    NASA Technical Reports Server (NTRS)

    Hall, R. I.; Chutjian, A.; Trajmar, S.

    1973-01-01

    Electron scattering spectra of nitrous oxide are reported in the 5- to 10-eV energy-loss range at scattering angles of 20, 30, 90, and 130 deg at a residual energy of 7.0 eV; and at residual energies of 10.0, 2.0, 1.0, 0.6, and 0.2 eV at a scattering angle of 90 deg. Several new distinct and overlapping continua are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of semiempirical INDO calculations of Chutjian and Segal (1972) of the vertical transition energies of N2O. An assignment of the symmetries of the observed excitations consistent with the experimental and theoretical data is suggested.

  4. Static Dipole Polarizabilities for Low-Lying Rovibrational States of HD+

    NASA Astrophysics Data System (ADS)

    Tian, Quan-Long; Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun

    2015-08-01

    Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11474319 and 11274348, the National Basic Research Program of China under Grant No 2012CB821305, the Natural Sciences and Engineering Research Council of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.

  5. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    USGS Publications Warehouse

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  6. Impulsive thermal x-ray emission from a low-lying coronal loop

    SciTech Connect

    Liu, Siming; Li, Youping; Fletcher, Lyndsay

    2013-06-01

    Understanding the relationship among different emission components plays an essential role in the study of particle acceleration and energy conversion in solar flares. In flares where gradual and impulsive emission components can be readily identified, the impulsive emission has been attributed to non-thermal particles. We carry out detailed analysis of Hα and X-ray observations of a GOES class B microflare loop on the solar disk. The impulsive hard X-ray emission, however, is found to be consistent with a hot, quasi-thermal origin, and there is little evidence of emission from chromospheric footpoints, which challenges conventional models of flares and reveals a class of microflares associated with dense loops. Hα observations indicate that the loop lies very low in the solar corona or even in the chromosphere and both emission and absorption materials evolve during the flare. The enhanced Hα emission may very well originate from the photosphere when the low-lying flare loop heats up the underlying chromosphere and reduces the corresponding Hα opacity. These observations may be compared with detailed modeling of flare loops with the internal kink instability, where the mode remains confined in space without apparent change in the global field shape, to uncover the underlying physical processes and to probe the structure of solar atmosphere.

  7. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2017-01-01

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed 229-233Th and 233-239U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even 228-232Th and 232-238U nuclei. For 235U the summed M1 strength in the energy range 1.5-2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  8. Low-lying even parity meson resonances and spin-flavor symmetry revisited

    NASA Astrophysics Data System (ADS)

    García-Recio, C.; Geng, L. S.; Nieves, J.; Salcedo, L. L.; Wang, En; Xie, Ju-Jun

    2013-05-01

    We review and extend the model derived in Garcia-Recio et al. [Phys. Rev. D 83, 016007 (2011)] to address the dynamics of the low-lying even-parity meson resonances. This model is based on a coupled-channels spin-flavor extension of the chiral Weinberg-Tomozawa Lagrangian. This interaction is then used to study the S-wave meson-meson scattering involving members not only of the π octet, but also of the ρ nonet. In this work, we study in detail the structure of the SU(6)-symmetry-breaking contact terms that respect (or softly break) chiral symmetry. We derive the most general local (without involving derivatives) terms consistent with the chiral-symmetry-breaking pattern of QCD. After introducing sensible simplifications to reduce the large number of possible operators, we carry out a phenomenological discussion of the effects of these terms. We show how the inclusion of these pieces leads to an improvement of the description of the JP=2+ sector, without spoiling the main features of the predictions obtained in the original model in the JP=0+ and JP=1+ sectors. In particular, we find a significantly better description of the IG(JPC)=0+(2++), 1-(2++) and the I(JP)=(1)/(2)(2+) sectors, which correspond to the f2(1270), a2(1320), and K2*(1430) quantum numbers, respectively.

  9. Process-based model predictions of hurricane induced morphodynamic change on low-lying barrier islands

    USGS Publications Warehouse

    Plant, Nathaniel G.; Thompson, David M.; Elias, Edwin; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    Using Delft3D, a Chandeleur Island model was constructed to examine the sediment-transport patterns and morphodynamic change caused by Hurricane Katrina and similar storm events. The model setup included a coarse Gulf of Mexico domain and a nested finer-resolution Chandeleur Island domain. The finer-resolution domain resolved morphodynamic processes driven by storms and tides. A sensitivity analysis of the simulated morphodynamic response was performed to investigate the effects of variations in surge levels. The Chandeleur morphodynamic model reproduced several important features that matched observed morphodynamic changes. A simulation of bathymetric change driven by storm surge alone (no waves) along the central portion of the Chandeleur Islands showed (1) a general landward retreat and lowering of the island chain and (2) multiple breaches that increased the degree of island dissection. The locations of many of the breaches correspond with the low-lying or narrow sections of the initial bathymetry. The major part of the morphological change occurred prior to the peak of the surge when overtopping of the islands produced a strong water-level gradient and induced significant flow velocities.

  10. Theory and experimental consequences of generation of a pair of photon-dressed discrete states by external electromagnetic fields in the atomic or molecular continuum

    NASA Astrophysics Data System (ADS)

    Lami, Alessandro; Rahman, Naseem K.

    1986-01-01

    It is shown theoretically that double resonance through the continuum can be utilized to produce two photon-dressed discrete states embedded in the continuum. The significance of creating such a pair of states is discussed, along with its experimental consequences. Especially important are quantum beats of population, which offer novel spectroscopic opportunities.

  11. 4He+n+n continuum within an ab initio framework

    DOE PAGES

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; ...

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using amore » soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2–, 1+, and 0– channels, while no low-lying resonances are present in the 0+ and 1– channels.« less

  12. Lifetime measurements of 17C excited states and three-body and continuum effects

    DOE PAGES

    Smalley, D.; Iwasaki, H.; Navratil, P.; ...

    2015-12-18

    We studied transition rates for the lowest 1/2+ and 5/2+ excited states of 17C through lifetime measurements with the GRETINA array using the recoil-distance method. The present measurements provide a model-independent determination of transition strengths giving the values of B(M1;1/2+ → 3/2+g.s.) = 1.04+0.03–0.12 × 10–2μ2N and B(M1;5/2+ → 3/2+g.s.) = 7.12+1.27–0.96 × 10–2μ2N. The quenched M1 transition strength for the 1/2+ → 3/2+g.s. transition, with respect to the 5/2+ → 3/2+g.s. transition, has been confirmed with greater precision. Furthermore, the current data are compared to importance-truncated no-core shell model calculations addressing effects due to continuum and three-body forces.

  13. Stress-free states of continuum dislocation fields: Rotations, grain boundaries, and the Nye dislocation density tensor

    NASA Astrophysics Data System (ADS)

    Limkumnerd, Surachate; Sethna, James P.

    2007-06-01

    We derive general relations between grain boundaries, rotational deformations, and stress-free states for the mesoscale continuum Nye dislocation density tensor. Dislocations generally are associated with long-range stress fields. We provide the general form for dislocation density fields whose stress fields vanish. We explain that a grain boundary (a dislocation wall satisfying Frank’s formula) has vanishing stress in the continuum limit. We show that the general stress-free state can be written explicitly as a (perhaps continuous) superposition of flat Frank walls. We show that the stress-free states are also naturally interpreted as configurations generated by a general spatially dependent rotational deformation. Finally, we propose a least-squares definition for the spatially dependent rotation field of a general (stressful) dislocation density field.

  14. Aspects of conical intersections: Dynamics, bound states embedded in the continuum and short-lived electronic states

    NASA Astrophysics Data System (ADS)

    Cederbaum, Lorenz

    2007-03-01

    Conical intersections are omnipresent in polyatomic molecules and their presence gives rise to the most severe breakdown of the Born-Oppenheimer approximation. Several general aspects of conical intersections and of the dynamics through them will be addressed. Particular attention will be paid to the question what happens to the potential energy surfaces if the electronic states are metastable. In addition, it is shown that nuclear dynamics on coupled potential surface can lead to bound states embedded in the continuum. Non-Born-Oppenheimer effects are responsible for the binding of these states. Once the Born-Oppenheimer approximation is introduced, these states at best become resonances which decay via potential tunnelling. The tunnelling is completely suppressed by the coupling between the electronic states. Another important issue which will be touched upon is dynamics in the presence of conical intersections in macrosystems. Here, the number of modes is extremely large and, nevertheless, their impact close to the intersections cannot be neglected. It is shown that effective modes can be derived which reproduce exactly the short-time dynamics of the whole macrosystem at low cost. Numerical examples are given. References: H. K"oppel, W. Domcke and L.S. Cederbaum, Adv.Chem.Phys. 57, 59 (1984) G.A. Worth and L.S. Cederbaum, Annu-Rev.Phys.Chem. 55, 127 (2004) L.S. Cederbaum, R.S. Friedman, V.M Ryaboy and N. Moiseyev, Phys.Rev.Lett. 90, 013001 (2003) S. Feuerbacher, T. Sommerfeld and L.S. Cederbaum, J.Chem.Phys. 120, 3201 (2004) L.S. Cederbaum, E. Gindensperger and I. Burghardt, Phys.Rev.Lett. 94, 113003 (2005)

  15. Towards an integrated primary and secondary HIV prevention continuum for the United States: a cyclical process model

    PubMed Central

    Horn, Tim; Sherwood, Jennifer; Remien, Robert H; Nash, Denis; Auerbach, Judith D.

    2016-01-01

    Introduction Every new HIV infection is preventable and every HIV-related death is avoidable. As many jurisdictions around the world endeavour to end HIV as an epidemic, missed HIV prevention and treatment opportunities must be regarded as public health emergencies, and efforts to quickly fill gaps in service provision for all people living with and vulnerable to HIV infection must be prioritized. Discussion We present a novel, comprehensive, primary and secondary HIV prevention continuum model for the United States as a conceptual framework to identify key steps in reducing HIV incidence and improving health outcomes among those vulnerable to, as well as those living with, HIV infection. We further discuss potential approaches to address gaps in data required for programme planning, implementation and evaluation across the elements of the HIV prevention continuum. Conclusions Our model conceptualizes opportunities to monitor and quantify primary HIV prevention efforts and, importantly, illustrates the interplay between an outcomes-oriented primary HIV prevention process and the HIV care continuum to move aggressively forward in reaching ambitious reductions in HIV incidence. To optimize the utility of this outcomes-oriented HIV prevention continuum, a key gap to be addressed includes the creation and increased coordination of data relevant to HIV prevention across sectors. PMID:27863535

  16. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  17. Continuum of depressive and manic mixed states in patients with bipolar disorder: quantitative measurement and clinical features.

    PubMed

    Swann, Alan C; Steinberg, Joel L; Lijffijt, Marijn; Moeller, Gerard F

    2009-10-01

    Bipolar mixed states combine depressive and manic features, presenting diagnostic and treatment challenges and reflecting a severe form of the illness. DSM-IV criteria for a mixed state require combined depressive and manic syndromes, but a range of mixed states has been described clinically. A unified definition of mixed states would be valuable in understanding their diagnosis, mechanism and treatment implications. We investigated the manner in which depressive and manic features combine to produce a continuum of mixed states. In 88 subjects with bipolar disorder (DSM-IV), we evaluated symptoms and clinical characteristics, and compared depression-based, mania-based, and other published definitions of mixed states. We developed an index of the extent to which symptoms were mixed (Mixed State Index, MSI) and characterized its relationship to clinical state. Predominately manic and depressive mixed states using criteria from recent literature, as well as Kraepelinian mixed states, had similar symptoms and MSI scores. Anxiety correlated significantly with depression scores in manic subjects and with mania scores in depressed subjects. Discriminant function analysis associated mixed states with symptoms of hyperactivity and negative cognitions, but not subjective depressive or elevated mood. High MSI scores were associated with severe course of illness. For depressive or manic episodes, characteristics of mixed states emerged with two symptoms of the opposite polarity. This was a cross-sectional study. Mixed states appear to be a continuum. An index of the degree to which depressive and manic symptoms combine appears useful in identifying and characterizing mixed states. We propose a depressive or manic episode with three or more symptoms of the opposite polarity as a parsimonious definition of a mixed state.

  18. Low-lying intruder and tensor-driven structures in 82As revealed by β decay at a new movable-tape-based experimental setup

    NASA Astrophysics Data System (ADS)

    Etilé, A.; Verney, D.; Arsenyev, N. N.; Bettane, J.; Borzov, I. N.; Cheikh Mhamed, M.; Cuong, P. V.; Delafosse, C.; Didierjean, F.; Gaulard, C.; Van Giai, Nguyen; Goasduff, A.; Ibrahim, F.; Kolos, K.; Lau, C.; Niikura, M.; Roccia, S.; Severyukhin, A. P.; Testov, D.; Tusseau-Nenez, S.; Voronov, V. V.

    2015-06-01

    The β decay of 82Ge Ge was re-investigated using the newly commissioned tape station BEDO at the electron-driven ISOL (isotope separation on line) facility ALTO operated by the Institut de Physique Nucléaire, Orsay. The original motivation of this work was focused on the sudden occurrence in the light N =49 odd-odd isotonic chain of a large number of J ≤1 states (positive or negative parity) in 80Ga by providing a reliable intermediate example, viz., 82As. The extension of the 82As level scheme towards higher energies from the present work has revealed three potential 1+ states above the already known one at 1092 keV. In addition our data allow ruling out the hypothesis that the 843 keV level could be a 1+ state. A detailed analysis of the level scheme using both an empirical core-particle coupling model and a fully microscopic treatment within a Skyrme-QRPA (quasiparticle random-phase approximation) approach using the finite-rank separable approximation was performed. From this analysis two conclusions can be drawn: (i) the presence of a large number of low-lying low-spin negative parity states is due to intruder states stemming from above the N =50 shell closure, and (ii) the sudden increase, from 82As to 80Ga, of the number of low-lying 1+ states and the corresponding Gamow-Teller fragmentation are naturally reproduced by the inclusion of tensor correlations and couplings to 2p-2h excitations.

  19. The water budget of a coastal low-lying wetland area at the German Baltic Coast

    NASA Astrophysics Data System (ADS)

    Bronstert, Axel; Graeff, Thomas; Selle, Benny; Salzmann, Thomas; Franck, Christian; Miegel, Konrad

    2016-04-01

    that despite low slope, sandy soils and forest vegetation, the catchment's hydrology is dominated by quick discharge components, for which the near-surface groundwater and the reaction for open water surfaces are the main cause. The seasonality of the area's discharge is characterized by the formation of quick discharge components mainly during the winter half-year, and by the retention effect of the lowland/fen. This retention is especially high in summer, when the surface and ground water levels have decreased due to high evaporation rates and the discharge out of the area may cease. The magnitude of the area's outflow thus generally depends on the catchment's water level. Due to the possible backlog of surface water caused by high water levels of the Baltic Sea, the direction of flow may reverse episodically. In the subareas between the trenches of the lowland, vertical exchange processes from precipitation and evaporation dominate. The lateral sub-surface interaction from/to the Baltic Sea is rather small due to the particular low local subsurface hydraulic conductivity and the very small hydraulic gradient. In summary, it can be said that this coastal low-lying wetland in the restoration phase shows rather heterogeneous hydrological processes and water balance. Characteristic are the high relevance of the subsurface processes and a strong seasonal variation, i.e. very low discharge rates in summer (except for summer convective rain storms) and considerable discharge rates in winter. The anthropogenic interventions in those coastal areas during the last two centuries have changed their water balance exceedingly. The interaction with the Baltic Sea via groundwater exchange under the dunes is very small.

  20. Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

    NASA Astrophysics Data System (ADS)

    Kobayashi, Yoshihiko; Matsuo, Masayuki

    2016-01-01

    We discuss the effects of pairing correlation on quasiparticle resonance. We analyze in detail how the width of the low-lying (Ex≲ 1 MeV) quasiparticle resonance is governed by the pairing correlation in the neutron drip-line nuclei. We consider the {}^{46}Si + n system to discuss the low-lying p-wave quasiparticle resonance. Solving the Hartree-Fock-Bogoliubov equation in coordinate space with the scattering boundary condition, we calculate the phase shift, the elastic cross section, the resonance width, and the resonance energy. We find that the pairing correlation has the effect of reducing the width of the quasiparticle resonance that originates from a particle-like orbit in weakly bound nuclei.

  1. Impact of the electron environment on the lifetime of the {sup 229}Th{sup m} low-lying isomer

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2007-11-15

    The question of the lifetime of the {sup 229}Th{sup m} low-lying isomer is considered in light of current experimental research. A strong effect of the electron shell on lifetime is demonstrated, depending on the energy of the isomer. Calculations are performed within the framework of the multiconfiguration Dirac-Fock method. The calculated lifetime ranges from around 1 min down to 10{sup -5} s. Prospects for further experimental research of the isomer are discussed.

  2. 4He+n+n continuum within an ab initio framework

    SciTech Connect

    Romero-Redondo, Carolina; Quaglioni, Sofia; Navratil, Petr; Hupin, Guillaume

    2014-07-16

    In this study, the low-lying continuum spectrum of the 6He nucleus is investigated for the first time within an ab initio framework that encompasses the 4He+n+n three-cluster dynamics characterizing its lowest decay channel. This is achieved through an extension of the no-core shell model combined with the resonating-group method, in which energy-independent nonlocal interactions among three nuclear fragments can be calculated microscopically, starting from realistic nucleon-nucleon interactions and consistent ab initio many-body wave functions of the clusters. The three-cluster Schrödinger equation is solved with three-body scattering boundary conditions by means of the hyperspherical-harmonics method on a Lagrange mesh. Using a soft similarity-renormalization-group evolved chiral nucleon-nucleon potential, we find the known Jπ = 2+ resonance as well as a result consistent with a new low-lying second 2+ resonance recently observed at GANIL at ~2.6 MeV above the He6 ground state. We also find resonances in the 2, 1+, and 0 channels, while no low-lying resonances are present in the 0+ and 1 channels.

  3. Low-Lying Isomers of the B9- Boron Cluster: The Planar Molecular Wheel Versus Three-Dimensional Structures

    SciTech Connect

    Pan, Li-Li; Li, Jun; Wang, Lai S.

    2008-07-14

    The B9- cluster was found previously to be an unprecedented molecular wheel containing an octacoordinate planar boron with D8h symmetry in a combined photoelectron spectroscopy (PES) and theoretical study [H. J. Zhai et al., Angew. Chem. Int. Ed. 42, 6004 (2003)]. However, the PES spectra of B9- exhibit minor features that cannot be explained by the global minimum D8h structure, suggesting possible contributions from low-lying isomers at finite temperatures. Here we present Car-Parrinello molecular dynamics with simulated annealing simulations to fully explore the potential energy surface of B9- and search for low-lying isomers that may account for the minor PES features. We performed density functional theory (DFT) calculations with different exchange-correlation functionals and ab initio calculations at various levels of theory with different basis sets. Two three-dimensional low-lying isomers were found, both of Cs symmetry, 6.29 (Cs-2) and 10.23 (Cs-1) kcal/mol higher in energy than the D8h structure at the highest CCSD(T) level of theory. Calculated detachment transitions from the Cs-2 isomer are in excellent agreement with the minor features observed in the PES spectra of B9-. The B9- cluster proves to be a challenge for most DFT methods and the calculated relative energies strongly depend on the exchange-correlation functionals, providing an excellent example for evaluating the accuracies of various DFT methods.

  4. Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect

    PubMed Central

    2013-01-01

    Electron transport properties in an armchair graphene nanoribbon are theoretically investigated by considering the presence of line defect. It is found that the line defect causes the abundant Fano effects and bound state in continuum (BIC) in the electron transport process, which are tightly dependent on the width of the nanoribbon. By plotting the spectra of the density of electron states of the line defect, we see that the line defect induces some localized quantum states around the Dirac point and that the different localizations of these states lead to these two kinds of transport results. Next, the Fano effect and BIC phenomenon are detailedly described via the analysis about the influence of the structure parameters. According to the numerical results, we propose such a structure to be a promising candidate for graphene nanoswitch. PACS 81.05.Uw, 71.55.-i, 73.23.-b, 73.25.+i PMID:23870061

  5. Fano effect and bound state in continuum in electron transport through an armchair graphene nanoribbon with line defect.

    PubMed

    Gong, Wei-Jiang; Sui, Xiao-Yan; Wang, Yan; Yu, Guo-Dong; Chen, Xiao-Hui

    2013-07-22

    : Electron transport properties in an armchair graphene nanoribbon are theoretically investigated by considering the presence of line defect. It is found that the line defect causes the abundant Fano effects and bound state in continuum (BIC) in the electron transport process, which are tightly dependent on the width of the nanoribbon. By plotting the spectra of the density of electron states of the line defect, we see that the line defect induces some localized quantum states around the Dirac point and that the different localizations of these states lead to these two kinds of transport results. Next, the Fano effect and BIC phenomenon are detailedly described via the analysis about the influence of the structure parameters. According to the numerical results, we propose such a structure to be a promising candidate for graphene nanoswitch. PACS: 81.05.Uw, 71.55.-i, 73.23.-b, 73.25.+i.

  6. Search for saddle-point electrons using the continuum-distorted-wave eikonal initial-state model

    SciTech Connect

    McCartney, M.

    1995-08-01

    The continuum-distorted-wave eikonal initial-state (CDWEIS) model is used to study the ionization of hydrogen by protons of energy 10--500 keV. Ejected electron spectra are presented and discussed in the context of the saddle-point mechanism. The behavior of the ejected electron spectrum as the charge of the incident projectile is varied is also considered. It is concluded that within its range of validity, CDWEIS does not provide any evidence of the existence of saddle-point electrons.

  7. Comment on ``Three-body properties of low-lying 12Be resonances''

    NASA Astrophysics Data System (ADS)

    Fortune, H. T.

    2013-09-01

    A recent paper [Phys. Rev. CPRVCAN0556-281310.1103/PhysRevC.86.024310 86, 024310 (2012)] that concerned 12Be suggested Jπ of 0+ and 1- for known states at energies of 0.89 and 2.03 MeV, respectively, above the 2n threshold. I argue that their most likely assignments are 3- and 4+, respectively, and that the measured 2n transfer cross sections for the two known states are 20 to 50 times as large as those expected for the 0+ and 1- states of Garrido .

  8. Spin (1/2){sup +}, spin (3/2){sup +}, and transition magnetic moments of low lying and charmed baryons

    SciTech Connect

    Sharma, Neetika; Dahiya, Harleen; Chatley, P. K.; Gupta, Manmohan

    2010-04-01

    Magnetic moments of the low lying and charmed spin (1/2){sup +} and spin (3/2){sup +} baryons have been calculated in the SU(4) chiral constituent quark model ({chi}CQM) by including the contribution from cc fluctuations. Explicit calculations have been carried out for the contribution coming from the valence quarks, ''quark sea'' polarizations and their orbital angular momentum. The implications of such a model have also been studied for magnetic moments of the low lying spin (3/2){sup +{yields}}(1/2){sup +} and (1/2){sup +{yields}}(1/2){sup +} transitions as well as the transitions involving charmed baryons. The predictions of {chi}CQM not only give a satisfactory fit for the baryons where experimental data is available but also show improvement over the other models. In particular, for the case of {mu}(p), {mu}({Sigma}{sup +}), {mu}({Xi}{sup 0}), {mu}({Lambda}), Coleman-Glashow sum rule for the low lying spin (1/2){sup +} baryons and {mu}({Delta}{sup +}), {mu}({Omega}{sup -}) for the low lying spin (3/2){sup +} baryons, we are able to achieve an excellent agreement with data. For the spin (1/2){sup +} and spin (3/2){sup +} charmed baryon magnetic moments, our results are consistent with the predictions of the QCD sum rules, light cone sum rules and spectral sum rules. For the cases where light quarks dominate in the valence structure, the sea and orbital contributions are found to be fairly significant however, they cancel in the right direction to give the correct magnitude of the total magnetic moment. On the other hand, when there is an excess of heavy quarks, the contribution of the quark sea is almost negligible, for example, {mu}({Omega}{sub c}{sup 0}), {mu}({Lambda}{sub c}{sup +}), {mu}({Xi}{sub c}{sup +}), {mu}({Xi}{sub c}{sup 0}), {mu}({Omega}{sub cc}{sup +}), {mu}({Omega}{sup -}), {mu}({Omega}{sub c}*{sup 0}), {mu}({Omega}{sub cc}*{sup +}), and {mu}({Omega}{sub ccc}*{sup ++}). The effects of configuration mixing and quark masses have also been

  9. Combining the GW formalism with the polarizable continuum model: A state-specific non-equilibrium approach.

    PubMed

    Duchemin, Ivan; Jacquemin, Denis; Blase, Xavier

    2016-04-28

    We have implemented the polarizable continuum model within the framework of the many-body Green's function GW formalism for the calculation of electron addition and removal energies in solution. The present formalism includes both ground-state and non-equilibrium polarization effects. In addition, the polarization energies are state-specific, allowing to obtain the bath-induced renormalisation energy of all occupied and virtual energy levels. Our implementation is validated by comparisons with ΔSCF calculations performed at both the density functional theory and coupled-cluster single and double levels for solvated nucleobases. The present study opens the way to GW and Bethe-Salpeter calculations in disordered condensed phases of interest in organic optoelectronics, wet chemistry, and biology.

  10. From Low-Lying Roofs to Towering Spires: Toward a Heideggerian Understanding of Learning Environments

    ERIC Educational Resources Information Center

    Ream, Todd C.; Ream, Tyler W.

    2005-01-01

    This article explores the significance that environments play in terms of the learning process. In the United States, the legacy of John Dewey's intellectual efforts left a theoretical understanding that views the architectural composition of learning environments as instrumental mediums which house the educational process. This understanding of…

  11. Configuration mixing calculation for complete low-lying spectra with a mean-field Hamiltonian

    SciTech Connect

    Shinohara, Satoshi; Ohta, Hirofumi; Nakatsukasa, Takashi; Yabana, Kazuhiro

    2006-11-15

    We propose a new theoretical approach to ground and low-energy excited states of nuclei extending the nuclear mean-field theory. It consists of three steps: stochastic preparation of many Slater determinants, the parity and angular-momentum projection, and diagonalization of the generalized eigenvalue problems. The Slater determinants are constructed in the three-dimensional Cartesian coordinate representation capable of describing arbitrary shape of nuclei. We examine feasibility and usefulness of the method by applying the method with the Bonche-Koonin-Negele interaction to light 4N nuclei, {sup 12}C, {sup 16}O, and {sup 20}Ne. We discuss difficulties of keeping linear independence for basis states projected on good parity and angular momentum and present a possible prescription.

  12. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    USGS Publications Warehouse

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.

  13. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect

    von Brentano, P.; Zilges, A.; Herzberg, R.D.; Zamfir, N.V.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.

    1992-10-01

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J{sup {pi}},K)=(l{sup {minus}},0) and (J{sup {pi}},K)=(l{sup {minus}},1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus {sup 142}Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3{minus}-octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus {sup 141}Pr and found first evidence for the existence of 3{sup {minus}}{circle_times}2+{circle_times}particle-states.

  14. Strong Electron-Phonon Coupling Superconductivity Induced by a Low-Lying Phonon in IrGe

    SciTech Connect

    Hirai, Daigorou; Ali, Mazhar N.; Cava, Robert J.

    2014-02-26

    The physical properties of the previously reported superconductor IrGe and the Rh1-xIrxGe solid solution are investigated. IrGe has an exceptionally high superconducting transition temperature (Tc=4.7 K) among the isostructural 1:1 late-metal germanides MGe (M=Rh, Pd, Ir, and Pt). Specific-heat measurements reveal that IrGe has an anomalously low Debye temperature, originating from a low-lying phonon, compared to the other MGe phases. A large jump at Tc in the specific-heat data clearly indicates that IrGe is a strong coupling superconductor. In the Rh1-xIrxGe solid solution, a relationship between an anomalous change in lattice constants and the Debye temperature is observed. We conclude that the unusually high Tc for IrGe is likely due to strong electron–phonon coupling derived from the presence of a low-lying phonon.

  15. Spectroscopy of low lying transitions of He confined in a fullerene cage

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Supriya K.; Mukherjee, Prasanta K.; Fricke, Burkhard

    2016-09-01

    Using time dependent coupled Hartree-Fock(TDCHF) theory, we estimate structural properties such as total energy, ionisation potential, static and dynamic polarizabilities, oscillator strengths and transition probabilities for the first three dipolar excitations 1s2:1Se → 1snp:1Po (n = 2,3,4) and quadrupolar excitations 1s2:1Se → 1snd:1De (n = 3,4,5) of a helium atom placed at the centre of a fullerene cage. We estimate these structural properties using the fullerene cage potential based on experimental findings, including both neutral and charged fullerene potentials. Systematics have been observed with respect to the nature of the charge on fullerene compared to neutral species. We highlight interesting behavior of the excited state wavefunctions for the central atom, leading to altered behavioral patterns of the relevant properties.

  16. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction.

    PubMed

    Bulgakov, Evgeny N; Sadreev, Almas F

    2016-07-06

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  17. Spin polarized bound states in the continuum in open Aharonov-Bohm rings with the Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Bulgakov, Evgeny N.; Sadreev, Almas F.

    2016-07-01

    We consider the trapping of electrons with a definite spin polarization by bound states in the continuum (BSC) in the open Aharonov-Bohm rings in the presence of the Rashba spin-orbit interaction (RSOI). Neglecting the Zeeman term we show the existence of BSCs in the one-dimensional ring when the eigenstates of the closed ring are doubly degenerate. With account of the Zeeman term BSCs occur only at the points of threefold degeneracy. The BSCs are found in the parametric space of flux and RSOI strength in close pairs with opposite spin polarization. Thereby the spin polarization of electrons transmitted through the ring can be altered by minor variation of magnetic or electric field at the vicinity of these pairs. Numerical simulations of the two-dimensional open ring show similar results for the BSCs. Encircling the BSC points in the parametric space of the flux and the RSOI constant gives rise to a geometric phase.

  18. Gulf of Mexico Region - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Data

    USGS Publications Warehouse

    Kosovich, John J.

    2008-01-01

    In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.

  19. Spin Tests of a Low-lying Monoplane in Flight and in the Free-spinning Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Seidman, Oscar; Mcavoy, William H

    1940-01-01

    Comparative full-scale and model spin tests were made with a low-lying monoplane in order to extend the available information as to the utility of the free-spinning wind tunnel as an aid in predicting full-scale spin characteristics. For a given control disposition the model indicated steeper spins than were actually obtained with the airplane, the difference being most pronounced for spins with elevators up. Recovery characteristics for the model, on the whole, agreed with those for the airplane, but a disagreement was noted for the case of recovery with elevators held full up. Free-spinning wind-tunnel tests are a useful aid in estimating spin characteristics of airplanes, but it must be appreciated that model results can give only general indications of full-scale behavior.

  20. Rydberg and continuum states of the HeH+ molecular ion: Variational R -matrix and multichannel quantum defect theory calculations

    NASA Astrophysics Data System (ADS)

    Bouhali, I.; Bezzaouia, S.; Telmini, M.; Jungen, Ch.

    2016-08-01

    Variational ab initio R -matrix theory combined with generalized multichannel quantum defect theory is used to calculate singly excited Rydberg states of the hydrohelium molecular ion, HeH+, for Σ,3+1,Π,31,Δ,31,Φ,31, and Γ,31 symmetry. Bound levels are calculated for n values up to n ≈10 , and continuum states up to ≈3 eV above the HeH2 + threshold. The calculations span the range of internuclear distances R from 1 to 5 bohrs. The present work follows a preliminary study on the Δ,31 states of HeH+ [Bouhali, Bezzaouia, Telmini, and Jungen, EPJ Web Conf. 84, 04004 (2015), 10.1051/epjconf/20158404004] which was also based on R -matrix theory. Further—although limited to rather small R values—the present work extends the recent ab initio computations of Jungen and Jungen [Mol. Phys. 113, 2333 (2015), 10.1080/00268976.2015.1040094] to higher excitation energies which are not accessible to standard quantum-chemical methods. Where a comparison with the calculations of Jungen and Jungen and other older results can be made, namely for n ≤5 , very good agreement with previous ab initio results is obtained.

  1. Coherent-state path integrals in the continuum: The SU(2) case

    NASA Astrophysics Data System (ADS)

    Kordas, G.; Kalantzis, D.; Karanikas, A. I.

    2016-09-01

    We define the time-continuous spin coherent-state path integral in a way that is free from inconsistencies. The proposed definition is used to reproduce known exact results. Such a formalism opens new possibilities for applying approximations with improved accuracy and can be proven useful in a great variety of problems where spin Hamiltonians are used.

  2. The Teacher Development Continuum in the United States and China: Summary of a Workshop

    ERIC Educational Resources Information Center

    Ferreras, Ana; Olson, Steve

    2010-01-01

    In 1999, Liping Ma published her book "Knowing and Teaching Elementary Mathematics: Teachers' Understanding of Fundamental Mathematics in the United States and China," which probed the kinds of knowledge that elementary school teachers need to convey mathematical concepts and procedures effectively to their students. Later that year,…

  3. A study of gamma ray burst continuum properties presnting evidence for two spectral states in bursts

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, B. A.; Lestrade, J. P.

    1994-01-01

    Evidence is presented for the existence of two spectral states contributing simultaneously to the total spectrum observed in many gamma-ray bursts (GRB's). An ensemble of 120 GRB's measured by BATSE were studied, using 4 channel spectral data, to determine in which bursts the spectral states can be most effectively resolved. The technique of summing the low intensity spectra together to get an average spectrum allows for precise characterization of the average low intensity spectral behavior. The 4 and 16 channel spectra obtained by the BATSE Large Area Detectors (LAD's) are analyzed using a model-independent spectral inversion technique. The results of these analyses applied to an individual burst are discussed in detail.

  4. Lindblad-driven discretized leads for nonequilibrium steady-state transport in quantum impurity models: Recovering the continuum limit

    NASA Astrophysics Data System (ADS)

    Schwarz, F.; Goldstein, M.; Dorda, A.; Arrigoni, E.; Weichselbaum, A.; von Delft, J.

    2016-10-01

    The description of interacting quantum impurity models in steady-state nonequilibrium is an open challenge for computational many-particle methods: the numerical requirement of using a finite number of lead levels and the physical requirement of describing a truly open quantum system are seemingly incompatible. One possibility to bridge this gap is the use of Lindblad-driven discretized leads (LDDL): one couples auxiliary continuous reservoirs to the discretized lead levels and represents these additional reservoirs by Lindblad terms in the Liouville equation. For quadratic models governed by Lindbladian dynamics, we present an elementary approach for obtaining correlation functions analytically. In a second part, we use this approach to explicitly discuss the conditions under which the continuum limit of the LDDL approach recovers the correct representation of thermal reservoirs. As an analytically solvable example, the nonequilibrium resonant level model is studied in greater detail. Lastly, we present ideas towards a numerical evaluation of the suggested Lindblad equation for interacting impurities based on matrix product states. In particular, we present a reformulation of the Lindblad equation, which has the useful property that the leads can be mapped onto a chain where both the Hamiltonian dynamics and the Lindblad driving are local at the same time. Moreover, we discuss the possibility to combine the Lindblad approach with a logarithmic discretization needed for the exploration of exponentially small energy scales.

  5. A quantitative evaluation method of flood risks in low-lying areas associated with increase of heavy rainfall in Japan

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2012-12-01

    An increase in flood risk, especially in low-lying areas, is predicted as a consequence of global climate change or other causes. Immediate measures such as strengthening of drainage capacity are needed to minimize the damage caused by more-frequent flooding. Typically, drainage pump capacities of in paddy areas are planned by using a result of drainage analysis with design rainfall (e.g. 3-day rainfall amount with a 10-year return period). However, the result depends on a hyetograph of input rainfall even if a total amount of rainfall is equal, and the flood risk may be different with rainfall patterns. Therefore, it is important to assume various patterns of heavy rainfall for flood risk assessment. On the other hand, a rainfall synthesis simulation is useful to generate many patterns of rainfall data for flood studies. We previously proposed a rainfall simulation method called diurnal rainfall pattern generator which can generate short-time step rainfall and internal pattern of them. This study discusses a quantitative evaluation method for detecting a relationship between flood damage risk and heavy rainfall scale by using the diurnal rainfall pattern generator. In addition, we also approached an estimation of flood damage which focused on rice yield. Our study area was in the Kaga three-lagoon basin in Ishikawa Prefecture, Japan. There are two lagoons in the study area, and the low-lying paddy areas extend over about 4,000 ha in the lower reaches of the basin. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level on channels and paddies. Next, the heavy rainfall data for drainage analysis were generated. Here, the 3-day rainfalls amounts with 9 kinds of different return periods (2-, 3-, 5-, 8-, 10-, 15-, 50-, 100-, and 200-year) were derived, and three hundred hyetograph patterns were generated for each rainfall amount by using the diurnal rainfall pattern generator. Finally, all data

  6. MRCI+Q study of the low-lying electronic states of CdF including spin–orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhao, Shu-Tao; Yan, Bing; Li, Rui; Wu, Shan; Wang, Qiu-Ling

    2017-02-01

    Not Available Project supported by the National Natural Science Foundation of China (Grant Nos. 11604052, 11404180, and 11574114 ), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A2015010), the Natural Science Foundation of Anhui Province, China (Grant No. 1608085MA10), the International Science & Technology Cooperation Program of Anhui Province, China (Grant No. 1403062027), the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China (Grant No. 2015095), and the Natural Science Foundation of Jilin Province, China (Grant No. 20150101003JC).

  7. Steady-state analysis of a continuum model for super-infection.

    PubMed

    Ermentrout, Bard; Hastings, Stuart

    2009-09-01

    A large system of N strains of parasite and a single host is analyzed as a function of the degree of virulence in the strains when there is super-infection between hosts (more virulent strains can infect hosts that are already infected) and within-host transition between strains that is neutral. When this small amount of local switching is allowed, steady-state solutions converge to a continuous distribution as the number of strains increases. The resulting nonlinear-nonautonomous integro-differential equation is reduced to a fourth order boundary value problem (BVP) and the existence of positive solutions is proven. The methods here and associated BVP allow for a thorough exploration of parameter space for this class of models.

  8. Increasing Risks to China's Coastal Cities with Its Expansion to Low-lying Seaward under Rising Sea level

    NASA Astrophysics Data System (ADS)

    Kang, Jing; Cheng, Xiao

    2014-05-01

    Global sea level rise has certainly accelerated through the 21st and far beyond the previous projections and will continue to rise, while the frequencies and strength of extreme events such like flood and storm will increase due to global warming. Coastal cities where always be with densely population and accumulated social wealth will be under enormous affects. Using Landsat TM/ETM+ satellite images (1990, 2010) to extract urban built-up area, 17 China's developed coastal cities, which account for only 1.2% of total land area but boast 18.3% of urban population and nearly 19.6% of GDP in 2010, are spotted a 550% increase of urban land from 1990 to 2010. Shuttle Radar Topography Mission (SRTM) with 90m resolution data were used to calculate average elevation of extracted urban area. Then we found that these cities are all expanding seaward, occupying the most vulnerable neighborhoods, often in low-lying areas, alongside waterways prone to flooding. 11 cities show a reducing trend of mean elevations with the total average of more than 3 meters. Particularly, Shanghai, Tianjin and Ningbo in Delta area are most serious with the mean urban elevation less than 5 meters in 2010. The rapid expansion to seawards and accumulation of population and social wealth processed in coastal cities will increase the vulnerability and exposure, which will exacerbated the existing risks of rising sea level or extreme events. Referring to Defense Meteorological Satellite Program (DMSP/OLS) city-lights data and SRTM data, we built the Urban Vulnerability Index (UVI) to do semi-quantitative assessment on vulnerabilities of coastal cities. The UVI case study in GuangZhou showed the most vulnerability region concentrated at the low-lying south area where is with the much higher relative South Sea level than other sea area of China. With relative sea level rise of 1-1.5 m by 2100 and increased frequency of extreme sea level due to cyclone propagation, and weak urban drain-off system, Chinese

  9. Lifetime measurements of 17C excited states and three-body and continuum effects

    SciTech Connect

    Smalley, D.; Iwasaki, H.; Navratil, P.; Roth, R.; Langhammer, J.; Bader, V. M.; Bazin, D.; Barryman, J. S.; Campbell, C. M.; Dohet-Eraly, J.; Fallon, P.; Gade, A.; Langer, C.; Lemasson, A.; Macchiavelli, A. O.; Morse, C.; Parker, J.; Quaglioni, S.; Recchia, F.; Stroberg, S. R.; Wiesshaar, D.; Whitmore, K.; Wimmer, K.; Brown, B. A.

    2015-12-18

    We studied transition rates for the lowest 1/2+ and 5/2+ excited states of 17C through lifetime measurements with the GRETINA array using the recoil-distance method. The present measurements provide a model-independent determination of transition strengths giving the values of B(M1;1/2+ → 3/2+g.s.) = 1.04+0.03–0.12 × 10–2μ2N and B(M1;5/2+ → 3/2+g.s.) = 7.12+1.27–0.96 × 10–2μ2N. The quenched M1 transition strength for the 1/2+ → 3/2+g.s. transition, with respect to the 5/2+ → 3/2+g.s. transition, has been confirmed with greater precision. Furthermore, the current data are compared to importance-truncated no-core shell model calculations addressing effects due to continuum and three-body forces.

  10. Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: An assessment of vulnerability.

    PubMed

    Da Lio, Cristina; Carol, Eleonora; Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi

    2015-11-15

    The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater-surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined.

  11. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  12. Excitation of the low lying vibrational levels of H2O by O(3P) as measured on Spacelab 2

    NASA Technical Reports Server (NTRS)

    Meyerott, R. E.; Swenson, G. R.; Schweitzer, E. L.; Koch, D. G.

    1994-01-01

    The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.

  13. First-principles Calculation of Excited State Spectra in QCD

    SciTech Connect

    Jozef Dudek,Robert Edwards,Michael Peardon,David Richards,Christopher Thomas

    2011-05-01

    Recent progress at understanding the excited state spectra of mesons and baryons is described. I begin by outlining the application of the variational method to compute the spectrum of QCD, and then present results for the excited meson spectrum, with continuum quantum numbers of the states clearly delineated. I emphasise the need to extend the calculation to encompass multi-hadron contributions, and describe a recent calculation of the I=2 pion-pion energy-dependent phase shifts as a precursor to the study of channels with resonant behavior. I conclude with recent results for the low lying baryon spectrum, and the prospects for future calculations.

  14. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Zeng, X. C.

    2006-05-01

    We performed a constrained search for the geometries of low-lying neutral germanium clusters GeN in the size range of 21⩽N⩽29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N ˜65.

  15. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach

    NASA Astrophysics Data System (ADS)

    Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar

    2016-06-01

    Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica

  16. Numerical Study of Rarefied Hypersonic Flow Interacting with a Continuum Jet. Degree awarded by Pennsylvania State Univ., Aug. 1999

    NASA Technical Reports Server (NTRS)

    Glass, Christopher E.

    2000-01-01

    An uncoupled Computational Fluid Dynamics-Direct Simulation Monte Carlo (CFD-DSMC) technique is developed and applied to provide solutions for continuum jets interacting with rarefied external flows. The technique is based on a correlation of the appropriate Bird breakdown parameter for a transitional-rarefied condition that defines a surface within which the continuum solution is unaffected by the external flow-jet interaction. The method is applied to two problems to assess and demonstrate its validity; one of a jet interaction in the transitional-rarefied flow regime and the other in the moderately rarefied regime. Results show that the appropriate Bird breakdown surface for uncoupling the continuum and non-continuum solutions is a function of a non-dimensional parameter relating the momentum flux and collisionality between the two interacting flows. The correlation is exploited for the simulation of a jet interaction modeled for an experimental condition in the transitional-rarefied flow regime and the validity of the correlation is demonstrated. The uncoupled technique is also applied to an aerobraking flight condition for the Mars Global Surveyor spacecraft with attitude control system jet interaction. Aerodynamic yawing moment coefficients for cases without and with jet interaction at various angles-of-attack were predicted, and results from the present method compare well with values published previously. The flow field and surface properties are analyzed in some detail to describe the mechanism by which the jet interaction affects the aerodynamics.

  17. An Approach to Assessing Flood Risk in Low-lying Paddy Areas of Japan considering Economic Damage on Rice

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2013-12-01

    constructed in a rice paddy plot, which consisted of two zones, one in which the rice was cultivated as usual with normal water levels, and a flood zone, which was used for submerging rice plants. The flood zone, which was designed to reproduce actual flood disaster conditions in paddy fields, can be filled with water to a depth of 0.3, 0.6 or 0.9 m above ground level, and is divided into two plots, a clean water part and a turbid water part. Thus, the experimental conditions can vary according to 1) the development stage of rice, 2) complete or incomplete submersion, 3) clean or turbid water, and 4) duration of submergence. Finally, the reduction scales were formulated by using the resultant data and it was found that rice is most sensitive to damage during the development stage. Flood risk was evaluated by using calculated water level on each paddy. Here, the averaged duration of inundation to a depth of more than 0.3 m was used as the criteria for flood occurrence. The results indicated that the duration increased with larger heavy rainfall amounts. Furthermore, the damage to rice was predicted to increase especially in low-lying paddy fields. Mitigation measures, such as revising drainage planning and/or changing design standards for the capacity of drainage pumps may be necessary in the future.

  18. Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to 7He

    DOE PAGES

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-03-26

    In this study, we introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster component with asymptoticmore » boundary conditions that can properly describe weakly bound states, resonances, and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.« less

  19. Continuum Nuclear Structure via

    NASA Astrophysics Data System (ADS)

    Templon, Jeffrey A.

    1993-01-01

    Nuclear spectra are generally well-understood for excitation energies below the particle-emission threshold. Above this threshold, excited states decay preferentially by emission of nucleons or nucleon clusters. These resonant excitations are short-lived, producing continuum spectra of overlapping states accompanied by non-resonant, probe -dependent background processes. The resonant excitations' properties are difficult to deduce from these spectra. Many important advances in nuclear physics require understanding of such excitations. (e,e^' X) coincidence experiments have established the utility of angular correlation measurements of particle (X) emitted by decaying resonances for continuum studies. However, electron-induced reactions excite only a subset of the total nuclear response. Hadronic probes are necessary for a complete study. This dissertation describes a (p,p^' X) coincidence experiment, the first at intermediate energies where microscopic theories apply. The reaction's utility was investigated and applied to ^{12 }C. The experiment was performed using a 156 MeV polarized proton beam. A magnetic spectrometer was used to detect scattered protons. An array of eight silicon-detector telescopes was constructed and used to measure the angular correlation of charged particles (X). Inclusive (p,p ^') and exclusive (p,p ^' X) data were acquired simultaneously. The momentum transfer range (0.6<= q<= 1.2 fm^{-1}) was covered in three spectrometer angle settings. The excitation energy range spanned the region from sharp states to quasifree processes. Analyzing powers and cross sections were measured for both inclusive and exclusive data. A simple reaction model was developed which suggested a Legendre-polynomial series should describe the sigma(theta_{X}) data. The model relates the polynomial coefficients to nuclear structure information. A result of this work is that this series was found to satisfactorily describe the data and provided new information about

  20. Interpretation of the X(3872) as a charmonium state plus an extra component due to the coupling to the meson-meson continuum

    NASA Astrophysics Data System (ADS)

    Ferretti, J.; Galatà, G.; Santopinto, E.

    2013-07-01

    We present a quark model calculation of the charmonium spectrum with self-energy corrections due to the coupling to the meson-meson continuum. The bare masses used in the calculation are computed within the relativized quark model by Godfrey and Isgur. The strong decay widths of 3S, 2P, 1D, and 2D cc¯ states are also calculated, to set the values of the 3P0 pair-creation model's parameters we use to compute the vertex functions of the loop integrals. Finally, the nature of the X(3872) resonance is analyzed and the main possibilities (cc¯ state or DD¯* molecule) are discussed. According to our results, the X(3872) is compatible with the meson χc1(2P), with JPC=1++, and is thus interpreted as a cc¯ core plus higher Fock components due to the coupling to the meson-meson continuum. These JPC=1++ quantum numbers are in agreement with the experimental results found by the LHCb collaboration. In our view, the X(3872)'s mass is lower than the quark model's predictions because of self-energy shifts.

  1. Californium-252 neutron intracavity brachytherapy alone for T1N0 low-lying rectal adenocarcinoma: A definitive anal sphincter-preserving radiotherapy.

    PubMed

    Xiong, Yanli; Shan, Jinlu; Liu, Jia; Zhao, Kewei; Chen, Shu; Xu, Wenjing; Zhou, Qian; Yang, Mei; Lei, Xin

    2017-01-17

    This study evaluated the 4-year results of 32 patients with T1N0 low-lying rectal adenocarcinoma treated solely with californium-252 (Cf-252) neutron intracavity brachytherapy (ICBT). Patients were solicited into the study from January 2008 to June 2011. All the patients had refused surgery or surgery was contraindicated. The patients were treated with Cf-252 neutron ICBT using a novel 3.5-cm diameter off-axis 4-channel intrarectal applicator designed by the authors. The dose reference point was defined on the mucosa surface, with a total dose of 55-62 Gy-eq/4 f (13-16 Gy-eq/f/wk). All the patients completed the radiotherapy in accordance with our protocol. The rectal lesions regressed completely, and the acute rectal toxicity was mild (≤G2). The 4-year local control, overall survival, disease-free survival, and late complication (≥G2) rates were 96.9%, 90.6%, 87.5% and 15.6%, respectively. No severe late complication (≥G3) occurred. The mean follow-up was 56.1 ± 16.0 months. At the end of last follow-up, 29 patients remained alive. The mean survival time was 82.1 ± 2.7 months. Cf-252 neutron ICBT administered as the sole treatment (without surgery) for patients with T1N0 low-lying rectal adenocarcinoma is effective with acceptable late complications. Our study and method offers a definitive anal sphincter-preserving radiotherapy for T1N0 low-lying rectal adenocarcinoma patients.

  2. Californium-252 neutron intracavity brachytherapy alone for T1N0 low-lying rectal adenocarcinoma: A definitive anal sphincter-preserving radiotherapy

    PubMed Central

    Xiong, Yanli; Shan, Jinlu; Liu, Jia; Zhao, Kewei; Chen, Shu; Xu, Wenjing; Zhou, Qian; Yang, Mei; Lei, Xin

    2017-01-01

    This study evaluated the 4-year results of 32 patients with T1N0 low-lying rectal adenocarcinoma treated solely with californium-252 (Cf-252) neutron intracavity brachytherapy (ICBT). Patients were solicited into the study from January 2008 to June 2011. All the patients had refused surgery or surgery was contraindicated. The patients were treated with Cf-252 neutron ICBT using a novel 3.5-cm diameter off-axis 4-channel intrarectal applicator designed by the authors. The dose reference point was defined on the mucosa surface, with a total dose of 55–62 Gy-eq/4 f (13–16 Gy-eq/f/wk). All the patients completed the radiotherapy in accordance with our protocol. The rectal lesions regressed completely, and the acute rectal toxicity was mild (≤G2). The 4-year local control, overall survival, disease-free survival, and late complication (≥G2) rates were 96.9%, 90.6%, 87.5% and 15.6%, respectively. No severe late complication (≥G3) occurred. The mean follow-up was 56.1 ± 16.0 months. At the end of last follow-up, 29 patients remained alive. The mean survival time was 82.1 ± 2.7 months. Cf-252 neutron ICBT administered as the sole treatment (without surgery) for patients with T1N0 low-lying rectal adenocarcinoma is effective with acceptable late complications. Our study and method offers a definitive anal sphincter-preserving radiotherapy for T1N0 low-lying rectal adenocarcinoma patients. PMID:28094790

  3. A Star-Shaped Molecule with Low-Lying Lowest Unoccupied Molecular Orbital Level, n-Type Panchromatic Electrochromism, and Long-Term Stability.

    PubMed

    Yao, Bin; Zhou, Yue; Ye, Xichong; Wang, Rong; Zhang, Jie; Wan, Xinhua

    2017-04-03

    An electron-deficient star-shaped molecule based on anthraquinone imide was synthesized and characterized. It showed high electron accommodating capacity and strong electron-withdrawing ability with a low-lying lowest unoccupied molecular orbital (LUMO) of -4.10 eV. In addition, it exhibited panchromatic electrochromism attributed to the simultaneous presence of π*-π* transitions and intervalence charge transfer (IV-CT) upon one-electron reduction, and revealed long-term stability in electron gain and loss due to the proper LUMO energy level and ordered intermolecular assembly.

  4. Properties of bound, resonant, and regular continuum states of the excitation spectrum of symmetric liquid 4He films at T=0 K

    NASA Astrophysics Data System (ADS)

    Szybisz, Leszek

    1996-03-01

    Elementary excitations in rather thick symmetric films of liquid 4He at T=0 K are investigated. They are characterized by a momentum ħq parallel to the surface and may be described by bound or continuum states, which are obtained by solving a Bogoliubov-type equation formulated within the framework of the paired-phonon analysis and the hypernetted-chain approximation. Films of coverages nc=0.3 and 0.4 Å-2 confined by simple Gaussian potentials are studied. The excitation spectrum is numerically evaluated by discretizing the associated eigenvalue problem in a finite box. The evolution of the energy levels as a function of the box size is explored. Examples of the calculated energies and wave functions are displayed in a series of figures. Two differing sorts of continuum states may be distinguished. Depending on the behavior of their excitation energies as a function of the box size on the one hand, and the spatial distribution of their wave functions inside the film and in the asymptotic region far apart from the interface layer on the other, the continuum solutions can be separated into two classes of excitations: (a) the ``regular'' continuum states and (b) the ``resonant modes.'' The matrix elements of the particle-hole potential and the penetration factors of the most important states are examined. The lowest-lying branch of states is always bound and for q

  5. The near-IR spectrum of NO(X˜ 2Π )-Ne detected through excitation into the Östate continuum: A joint experimental and theoretical study

    NASA Astrophysics Data System (ADS)

    Kłos, J.; Zhang, S. G.; Meyer, H.

    2016-03-01

    We present new measurements of the near IR spectrum of NO-Ne in the region of the first NO overtone transition. The IR absorption is detected by exciting the vibrationally excited complex to the A ˜ -state dissociation continuum. The resulting NO(A) fragment is subsequently ionized in the same laser pulse. Spectra of the two lowest bands, A and B, are recorded. The spectra are compared with calculated spectra based on bound states derived from a new set of high level ab initio potential energy surfaces (PESs). For the calculation, the PESs are used with either fixed NO intermolecular distance or averaged for the vibrational states of NO (X ˜ , v = 0 or 2). Spectra based on the new PESs reproduce the experimental spectra better than theoretical spectra based on the older PESs of M. H. Alexander et al. [J. Chem. Phys. 114, 5588 (2001)]. Especially, spectra based on the two different vibrationally averaged PESs show a marked improvement in comparison to the one based on the fixed internuclear NO-distance. A fitted set of spectroscopic constants allows to reproduce most of the finer details of the measured spectra. Monitoring simultaneously the NO fragment ion and the parent ion channels while scanning the UV wavelength through the NO A-X hot-band region enabled us to confirm the NO-Ne A ˜ -state dissociation limit of 44233 ± 5 cm-1. These measurements also confirm the absence of a structured NO-Ne spectrum involving the A ˜ -state.

  6. Comparison of human monocytes isolated by elutriation and adherence suggests that heterogeneity may reflect a continuum of maturation/activation states.

    PubMed Central

    Dransfield, I; Corcoran, D; Partridge, L J; Hogg, N; Burton, D R

    1988-01-01

    Monocytes are heterogeneous both in terms of physical properties and in their functional capacity. Isolation of monocytes from peripheral blood may perturb the observed heterogeneity for purified cell preparations. To explore this possibility we examined monocytes prepared by two techniques, counter-flow centrifugation elutriation (CCE) and fibronectin adherence, in terms of cell-surface molecule expression and several physical properties. Although such cells would be expected to represent dissimilar cross-sections of the total monocyte population, they were found to have similar cell-surface antigenic profiles. Observed differences in levels of expression of several molecules (CR1, CR3 and the antigen recognized by LP9 antibody) were found to be a temperature-related phenomenon. These results indicate that monocytes are not divisible into 'subpopulations' on the basis of cell-surface molecule expression and suggest that heterogeneity of monocytes may reflect the presence in the circulation of a continuum of maturational/activation states. PMID:3350583

  7. Study of dispersion forces with quantum Monte Carlo: toward a continuum model for solvation.

    PubMed

    Amovilli, Claudio; Floris, Franca Maria

    2015-05-28

    We present a general method to compute dispersion interaction energy that, starting from London's interpretation, is based on the measure of the electronic electric field fluctuations, evaluated on electronic sampled configurations generated by quantum Monte Carlo. A damped electric field was considered in order to avoid divergence in the variance. Dispersion atom-atom C6 van der Waals coefficients were computed by coupling electric field fluctuations with static dipole polarizabilities. The dipole polarizability was evaluated at the diffusion Monte Carlo level by studying the response of the system to a constant external electric field. We extended the method to the calculation of the dispersion contribution to the free energy of solvation in the framework of the polarizable continuum model. We performed test calculations on pairs of some atomic systems. We considered He in ground and low lying excited states and Ne in the ground state and obtained a good agreement with literature data. We also made calculations on He, Ne, and F(-) in water as the solvent. Resulting dispersion contribution to the free energy of solvation shows the reliability of the method illustrated here.

  8. Parameter identification in continuum models

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Crowley, J. M.

    1983-01-01

    Approximation techniques for use in numerical schemes for estimating spatially varying coefficients in continuum models such as those for Euler-Bernoulli beams are discussed. The techniques are based on quintic spline state approximations and cubic spline parameter approximations. Both theoretical and numerical results are presented.

  9. Quasi-bound states and continuum absorption background of polar Al{sub 0.5}Ga{sub 0.5}N/GaN quantum dots

    SciTech Connect

    Elmaghraoui, D. Triki, M.; Jaziri, S.; Leroux, M.; Brault, J.

    2014-07-07

    A theoretical interpretation of the photoluminescence excitation spectra of self-organized polar GaN/(Al,Ga)N quantum dots is presented. A numerical method assuming a realistic shape of the dots and including the built-in electric field effects is developed to calculate their energy structure and hence their optical absorption. The electron and hole spectra show the existence of a set of quasi-bound states that does not originate from the wetting layer and plays a crucial role in the observed absorption spectrum of the GaN/(Al,Ga)N dots. Transitions involving these quasi-bound states and wetting layer states give a sufficient explanation for the observed continuum absorption background. The properties of this absorption band, especially its extension, depend strongly on the dot's size. Our simulation provides a natural explanation of the experimental luminescence excitation spectra of ensembles of dots of different heights. Our theoretical model can be convenient for future optical studies including systems with more complicated potentials.

  10. Continuum effects in transfer reactions induced by heavy ions

    SciTech Connect

    Marta, H.D.; Donangelo, R.; Fernandez Niello, J.O.; Pacheco, A.J.

    2006-02-15

    In the usual treatment of transfer nuclear reactions, the continuum states of the transferred particle are neglected. Here we perform a semiclassical calculation that treats the continuum in an exact way. For comparison purposes, we perform a second calculation in which the continuum is completely disregarded. The results of these two calculations indicates that the influence of the continuum states may be very important in systems with weakly bound reactants.

  11. Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland

    NASA Astrophysics Data System (ADS)

    Luoma, Samrit; Okkonen, Jarkko; Korkka-Niemi, Kirsti

    2016-09-01

    A shallow unconfined low-lying coastal aquifer in southern Finland surrounded by the Baltic Sea is vulnerable to changes in groundwater recharge, sea-level rise and human activities. Assessment of the intrinsic vulnerability of groundwater under climate scenarios was performed for the aquifer area by utilising the results of a published study on the impacts of climate change on groundwater recharge and sea-level rise on groundwater-seawater interaction. Three intrinsic vulnerability mapping methods, the aquifer vulnerability index (AVI), a modified SINTACS and GALDIT, were applied and compared. According to the results, the degree of groundwater vulnerability is greatly impacted by seasonal variations in groundwater recharge during the year, and also varies depending on the climate-change variability in the long term. The groundwater is potentially highly vulnerable to contamination from sources on the ground surface during high groundwater recharge rates after snowmelt, while a high vulnerability to seawater intrusion could exist when there is a low groundwater recharge rate in dry season. The AVI results suggest that a change in the sea level will have an insignificant impact on groundwater vulnerability compared with the results from the modified SINTACS and GALDIT. The modified SINTACS method could be used as a guideline for the groundwater vulnerability assessment of glacial and deglacial deposits in inland aquifers, and in combination with GALDIT, it could provide a useful tool for assessing groundwater vulnerability to both contamination from sources on the ground surface and to seawater intrusion for shallow unconfined low-lying coastal aquifers under future climate-change conditions.

  12. The Early Childhood and Elementary Education Continuum: Constructing an Understanding of P-3 as State-Level Policy Reform

    ERIC Educational Resources Information Center

    Kauerz, Kristie Anne

    2009-01-01

    State-level policy attention to young children's early learning opportunities burgeons; a sense of urgency exists to identify reform agendas that are both effective and sustainable. "P-3" often is used as the term for the first level of a seamless P-20 system that stretches from early childhood through post-secondary education. While it…

  13. Emergence of oscillations and spatio-temporal coherence states in a continuum-model of excitatory and inhibitory neurons.

    PubMed

    Sabatini, Silvio P; Solari, Fabio; Secchi, Luca

    2005-01-01

    A neural field model of the reaction-diffusion type for the emergence of oscillatory phenomena in visual cortices is proposed. To investigate the joint spatio-temporal oscillatory dynamics in a continuous distribution of excitatory and inhibitory neurons, the coupling among oscillators is modelled as a diffusion process, combined with non-linear point interactions. The model exhibits cooperative activation properties in both time and space, by reacting to volleys of activations at multiple cortical sites with ordered spatio-temporal oscillatory states, similar to those found in the physiological experiments on slow-wave field potentials. The possible use of the resulting spatial distributions of coherent states, as a flexible medium to establish feature association, is discussed.

  14. The Suicide Prevention Continuum

    PubMed Central

    Caldwell, Dawn

    2010-01-01

    The suicide prevention continuum illustrates a practical approach to the complex issue of suicide prevention. The continuum evolved from discussions with two Aboriginal communities in Atlantic Canada about suicide and the different types of interventions available. The continuum offers a framework and reference tool to differentiate between the different stages of suicide risk. It illustrates where the Aboriginal Community Youth Resilience Network (ACYRN) fits into suicide prevention and how it contributes to prevention knowledge, capacity building, and policy development. PMID:20835376

  15. Steady-state kinetics of solitary batrachotoxin-treated sodium channels. Kinetics on a bounded continuum of polymer conformations.

    PubMed Central

    Rubinson, K A

    1992-01-01

    The underlying principles of the kinetics and equilibrium of a solitary sodium channel in the steady state are examined. Both the open and closed kinetics are postulated to result from round-trip excursions from a transition region that separates the openable and closed forms. Exponential behavior of the kinetics can have origins different from small-molecule systems. These differences suggest that the probability density functions (PDFs) that describe the time dependences of the open and closed forms arise from a distribution of rate constants. The distribution is likely to arise from a thermal modulation of the channel structure, and this provides a physical basis for the following three-variable equation: [formula; see text] Here, A0 is a scaling term, k is the mean rate constant, and sigma quantifies the Gaussian spread for the contributions of a range of effective rate constants. The maximum contribution is made by k, with rates faster and slower contributing less. (When sigma, the standard deviation of the spread, goes to zero, then p(f) = A0 e-kt.) The equation is applied to the single-channel steady-state probability density functions for batrachotoxin-treated sodium channels (1986. Keller et al. J. Gen. Physiol. 88: 1-23). The following characteristics are found: (a) The data for both open and closed forms of the channel are fit well with the above equation, which represents a Gaussian distribution of first-order rate processes. (b) The simple relationship [formula; see text] holds for the mean effective rat constants. Or, equivalently stated, the values of P open calculated from the k values closely agree with the P open values found directly from the PDF data. (c) In agreement with the known behavior of voltage-dependent rate constants, the voltage dependences of the mean effective rate constants for the opening and closing of the channel are equal and opposite over the voltage range studied. That is, [formula; see text] "Bursts" are related to the well

  16. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-11-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  17. Probe spectroscopy in an operating magneto-optical trap: The role of Raman transitions between discrete and continuum atomic states

    SciTech Connect

    Brzozowski, Tomasz M.; Brzozowska, Maria; Zachorowski, Jerzy; Zawada, Michal; Gawlik, Wojciech

    2005-01-01

    We report on cw measurements of probe beam absorption and four-wave-mixing spectra in a {sup 85}Rb magneto-optical trap taken while the trap is in operation. The trapping beams are used as pump light. We concentrate on the central feature of the spectra at small pump-probe detuning and attribute its narrow resonant structures to the superposition of Raman transitions between light-shifted sublevels of the ground atomic state and to atomic recoil processes. These two contributions have different dependencies on trap parameters and we show that the former is inhomogeneously broadened. The strong dependence of the spectra on the probe-beam polarization indicates the existence of large optical anisotropy of the cold-atom sample, which is attributed to the recoil effects. We point out that the recoil-induced resonances can be isolated from other contributions, making pump-probe spectroscopy a highly sensitive diagnostic tool for atoms in a working magneto-optical trap.

  18. Application of pseudo-Hermitian quantum mechanics to a PT-symmetric Hamiltonian with a continuum of scattering states

    NASA Astrophysics Data System (ADS)

    Mostafazadeh, Ali

    2005-10-01

    We extend the application of the techniques developed within the framework of the pseudo-Hermitian quantum mechanics to study a unitary quantum system described by an imaginary PT-symmetric potential v(x ) having a continuous real spectrum. For this potential that has recently been used, in the context of optical potentials, for modeling the propagation of electromagnetic waves traveling in a waveguide half and half filled with gain and absorbing media, we give a perturbative construction of the physical Hilbert space, observables, localized states, and the equivalent Hermitian Hamiltonian. Ignoring terms of order three or higher in the non-Hermiticity parameter ζ, we show that the equivalent Hermitian Hamiltonian has the form p2/2m+(ζ2/2)∑n =0∞{αn(x),p2n} with αn(x) vanishing outside an interval that is three times larger than the support of v(x ), i.e., in 2/3 of the physical interaction region the potential v(x ) vanishes identically. We provide a physical interpretation for this unusual behavior and comment on the classical limit of the system.

  19. Morphological changes, beach inundation and overwash caused by an extreme storm on a low-lying embayed beach bounded by a dune system (NW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Durán, Ruth; Guillén, Jorge; Ruiz, Antonio; Jiménez, José A.; Sagristà, Enric

    2016-12-01

    The geomorphological evolution of a low-lying, micro-tidal sandy beach in the western Mediterranean, Pals beach, was characterized using airborne Light Detection and Ranging (LiDAR) data. Data were collected in prior to and six months after the impact of an extreme storm with a return period of approx. 50 years, with the aim of characterizing the beach's response to the storm. The use of repeated high-resolution topographic data to quantify beach geomorphic changes has allowed assessment of the accuracy of different proxies for estimating beach volume changes. Results revealed that changes in the shoreline position cannot accurately reproduce beach volume changes on low-lying beaches where overwash processes are significant. Observations also suggested that volume estimations from beach profiles do not accurately represent subaerial volume changes at large profile distances on beaches with significant alongshore geomorphological variability. Accordingly, the segmentation of the beach into regularly spaced bins is proposed to assess alongshore variations in the beach volume with the accuracy of the topographic data. The morphological evolution of Pals beach during the study period showed a net shoreline retreat (- 4 m) and a significant sediment gain on the subaerial beach (+ 7.5 m3/m). The net gain of sediment is mostly due to the impact of the extreme storm, driving significant overwash processes that transport sediment landwards, increasing volume on the backshore and dunes. The increase of volume on the foreshore and the presence of cuspate morphologies along the shoreline also evidence post-storm beach recovery. Observed morphological changes exhibit a high variability along the beach related to variations in beach morphology. Changes in the morphology and migration of megacusps result in a high variability in the shoreline position and foreshore volume changes. On the other hand, larger morphological changes on the backshore and larger inundation distances

  20. Toward establishing low-lying Λ and Σ hyperon resonances with the K ¯+d →π +Y +N reaction

    NASA Astrophysics Data System (ADS)

    Kamano, H.; Lee, T.-S. H.

    2016-12-01

    A model for the K ¯d →π Y N reactions with Y =Λ ,Σ is developed, aiming at establishing the low-lying Λ and Σ hyperon resonances through analyzing the forthcoming data from the J-PARC E31 experiment. The off-shell amplitudes generated from the dynamical coupled-channels (DCC) model, which was developed in Kamano et al. [Phys. Rev. C 90, 065204 (2014), 10.1103/PhysRevC.90.065204], are used as input to the calculations of the elementary K ¯N →K ¯N and K ¯N →π Y subprocesses in the K ¯d →π Y N reactions. It is shown that the cross sections for the J-PARC E31 experiment with a rather high incoming-K ¯ momentum, | p⃗K ¯|=1 GeV, can be predicted reliably only when the input K ¯N →K ¯N amplitudes are generated from a K ¯N model, such as the DCC model used in this investigation, which describes the data of the K ¯N reactions at energies far beyond the K ¯N threshold. We find that the data of the threefold differential cross section d σ /(d Mπ Σd Ωp n) for the K-d →π Σ n reaction below the K ¯N threshold can be used to test the predictions of the resonance poles associated with Λ (1405 ) . We also find that the momentum dependence of the threefold differential cross sections for the K-d →π-Λ p reaction can be used to examine the existence of a low-lying JP=1 /2+ Σ resonance with a pole mass MR=1457 -i 39 MeV, which was found from analyzing the K-p reaction data within the employed DCC model.

  1. The Neutrino Energy Loss of Nuclides by K-shell Continuum State Electron Capture at the Late Stage of Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Liu, J. J.; Lin, Y.

    2013-01-01

    Based on the Weinberg-Salam theory and taken into consideration of the Coulomb effect on electron gas, the neutrino energy loss rates by K-shell continuum state electron capture are discussed for ^{12}C, ^{16}O, ^{20}Ne, ^{24}Mg, ^{28}Si and ^{56}Fe under the condition of complete ionization and at the late stage of stellar evolution. Our results are compared with those of Beaudet, Petrosian and Salpeter (BPS). It is shown that at relatively high temperatures (e.g., {T_9 = 0.1} and {T_9 = 1}, T_9 represents the temperature in units of 10^9 K), our results agree well with BPS's. However, at relatively low temperatures (e.g., {T_9 = 0.01} and {T_9 = 0.001}), the neutrino energy loss rates of BPS for ^{16}O, ^{20}Ne, ^{24}Mg and ^{28}Si are higher than our results by 10˜ 70 times, and even by 2 orders of magnitude for nuclide ^{12}C. Our results may be of great importance in the research of late stellar evolution, especially for the cooling mechanism of white dwarf, during which the nucleus collapsed to the stage with a relatively low temperature and intermediate density.

  2. Studies of yrast and continuum states in A=140-160 nuclei. Progress report, January 1, 1980-December 31, 1980. [Purdue Univ. , 1/1/80-12/31/80

    SciTech Connect

    Daly, P.J.

    1981-01-01

    The structure of nuclei in the A approx. 150 region was investigated by in-beam ..gamma..-ray spectroscopy using heavy-ion beams, mostly from the Argonne Tandem-Linac. Results for the nuclei /sup 148/Dy, /sup 149/Dy, /sup 153/Dy, /sup 154/Dy, /sup 149/Ho, and /sup 150/Ho are summarized. The feeding of yrast states in these nuclei and the link between the highest known yrast states and the continuum region were also studied. 6 figures.

  3. Oral Language Continuum.

    ERIC Educational Resources Information Center

    Fresno County Dept. of Education, Fresno, CA.

    An oral language continuum designed to help elementary students develop techniques for a variety of speech situations, learn to listen, and learn to be aware of the responsibility of the speaker is presented. The continuum is divided into four sections. Student needs, implications for teaching, and suggested activities are arranged sequentially.…

  4. Lattice QCD sprectrum of excited states of the nucleon

    NASA Astrophysics Data System (ADS)

    Wallace, Stephen

    2012-03-01

    Lattice QCD results are presented for the spectrum of excited states of the nucleon. Matrices of correlation functions are calculated using lattice operators that incorporate up to two covariant derivatives in combinations that transform according to SU(2) symmetry restricted to the lattice. Although the lattice has cubic symmetry, identification of continuum SU(2) spins is straightforward using such operators. Overlaps of the operators with the lattice QCD states obtained by diagonalizing matrices of correlation functions provide the link of continuum spins to lattice states. Spins up to 7/2 are identified clearly. Evidence for an approximate realization of rotational symmetry in the spectrum is presented, which helps to explain why the continuum spins can be identified. In lattice simulations with pion mass equal to 392 MeV, the low-lying excited states of lattice QCD are found to have the same spin quantum numbers as the states of SU(6)xO(3) symmetry. The lattice QCD spectra are inconsistent with either a quark-diquark model or parity doubling of states. They suggest that the Roper resonance may have a complex structure consisting of contributions from L=0, 1 and 2.

  5. Continuum radiation at Uranus

    SciTech Connect

    Kurth, W.S.; Gurnett, D.A. ); Desch, M.D. )

    1990-02-01

    Uranus has proven to be a radio source of remarkable complexity with as many as six distinctly different types of emission. One Uranian radio emission which has thus far escaped attention is an analog of continuum radiation at Earth, Jupiter, and Saturn. The emission is found to be propagating in the ordinary mode in the range of one to a few kHz on the inbound leg of the Voyager 2 encounter, shortly after the magnetopause crossing. The continuum radiation spectrum at Uranus also includes bands with frequencies as high as 12 kHz or greater on both the inbound and outbound legs. The Uranian continuum radiation is notably weak, making it more like that detected at Saturn than the extremely intense Jovian continuum radiation. The Uranian emission shows some evidence for narrow-band components lying in the same frequency regime as the continuum, completing the analogy with the other planets, which also show narrow-band components superimposed on the continuum spectrum. The authors argue that the low intensity of the Uranian continuum is most likely related to the lack of a density cavity within the Uranian magnetosphere that is deep relative to the solar wind plasma density.

  6. Boundary-corrected four-body continuum-intermediate-state method: Single-electron capture from heliumlike atomic systems by fast nuclei

    NASA Astrophysics Data System (ADS)

    Mančev, Ivan; Milojević, Nenad; Belkić, Dževad

    2015-06-01

    Single charge exchange in collisions between bare projectiles and heliumlike atomic systems at intermediate and high incident energies is examined by using the four-body formalism of the first- and second-order theories. The main purpose of the present study is to investigate the relative importance of the intermediate ionization continua of the captured electron compared to the usual direct path of the single electron transfer from a target to a projectile. In order to achieve this goal, comprehensive comparisons are made between the four-body boundary-corrected continuum-intermediate-states (BCIS-4B) method and the four-body boundary-corrected first Born (CB1-4B) method. The perturbation potential is the same in the CB1-4B and BCIS-4B methods. Both methods satisfy the correct boundary conditions in the entrance and exit channels. However, unlike the CB1-4B method, the second-order BCIS-4B method takes into account the electronic Coulomb continuum-intermediate states in either the entrance or the exit channel depending on whether the post or the prior version of the transition amplitude is used. Hence, by comparing the results from these two theories, the relative importance of the intermediate ionization electronic continua can be assessed within the four-body formalism of scattering theory. The BCIS-4B method predicts the usual second-order effect through double scattering of the captured electron on two nuclei as a quantum-mechanical counterpart of the Thomas classical two-step, billiard-type collision. The physical mechanism for this effect in the BCIS-4B method is also comprised of two steps such that ionization occurs first. This is followed by capture of the electron by the projectile with both processes taking place on the energy shell. Moreover, the role of the second, noncaptured electron in a heliumlike target is revisited. To this end, the BCIS-4B method describes the effect of capture of one electron by the interaction of the projectile nucleus with

  7. Low Energy Continuum and Lattice Effective Field Theories

    NASA Astrophysics Data System (ADS)

    Elhatisari, Serdar

    In this thesis we investigate several constraints and their impacts on the short-range potentials in the low-energy limits of quantum mechanics.We also present lattice Monte Carlo calculations using the adiabatic projection method. In the first part we consider the constraints of causality and unitarity for the low-energy interactions of particles. We generalize Wigner's causality bound to the case of non-vanishing partial-wave mixing. Specifically we analyze the system of the low-energy interactions between protons and neutrons. We derive a general theorem that non-vanishing partial-wave mixing cannot be reproduced with zero-range interactions without violating causality or unitarity. We also analyze low-energy scattering for systems with arbitrary short-range interactions plus an attractive 1/ralpha tail for alpha ≥ 2. In particular, we focus on the case of alpha = 6 and we derive the constraints of causality and unitarity also for these systems and find that the van derWaals length scale dominates over parameters characterizing the short-distance physics of the interaction. This separation of scales suggests a separate universality class for physics characterizing interactions with an attractive 1{r6 tail. We argue that a similar universality class exists for any attractive potential 1/ralpha for alpha ≥ 2. In the second part of the thesis we present lattice Monte Carlo calculations of fermion-dimer scattering in the limit of zero-range interactions using the adiabatic projection method. The adiabatic projection method uses a set of initial cluster states and Euclidean time projection to give a systematically improvable description of the low-lying scattering cluster states in a finite volume. We use Luscher's finite-volume relations to determine the s-wave, p-wave, and d-wave phase shifts. For comparison, we also compute exact lattice results using Lanczos iteration and continuum results using the Skorniakov-Ter-Martirosian equation. For our Monte Carlo

  8. Electron-impact excitation of Ni II. Collision strengths and effective collision strengths for low-lying fine-structure forbidden transitions

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Ramsbottom, C. A.; Scott, M. P.; Burke, P. G.

    2010-04-01

    Context. Considerable demand exists for electron excitation data for ion{Ni}{ii}, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims: In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of ion{Ni}{ii}. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of ion{Ni}{ii}. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30-100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date. Methods: The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model - 3d9, 3d84s, 3d84p, 3d74s2 and 3d74s4p - giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering problem. Results: Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A55

  9. Terahertz Atmospheric Attenuation and Continuum Effects

    DTIC Science & Technology

    2013-05-01

    4 . TITLE AND SUBTITLE Terahertz atmospheric attenuation and continuum effects 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6...As stated previously, each dataset had 6 transmission scans, one for each path length. A total of 4 relative humidity levels were studied, 17.89...continuum absorption and instrumentation distortion (blue). All plots are 15.23Torr of water vapor and 746.77Torr or air. 4 RESULTS The

  10. Latinos in the United States on the HIV/AIDS care continuum by birth country/region: a systematic review of the literature.

    PubMed

    Sheehan, Diana M; Trepka, Mary Jo; Dillon, Frank R

    2015-01-01

    Twenty percent of Latinos with HIV in the US are unaware of their HIV status, 33% are linked to care late, and 74% do not reach viral suppression. Disparities along this HIV/AIDS care continuum may be present between various ethnic groups historically categorised as Latino. To identify differences along the HIV/AIDS care continuum between US Latinos of varying birth countries/regions a systematic review of articles published in English between 2002 and 2013 was conducted using MEDLINE, PsycINFO, and Web of Science. Studies that reported on one or more steps of the HIV/AIDS care continuum and reported results by birth country/region for Latinos were included. Latinos born in Mexico and Central America were found to be at increased risk of late diagnosis compared with US-born Latinos. No studies were found that reported on linkage to HIV care or viral load suppression by country/region of birth. Lower survival was found among Latinos born in Puerto Rico compared with Latinos born in mainland US. Inconsistent differences in survival were found among Latinos born in Mexico, Cuba, and Central America. Socio/cultural context, immigration factors, and documentation status are discussed as partial explanations for disparities along the HIV/AIDS care continuum.

  11. Geo-statistical modeling to evaluate the socio-economic impacts of households in the context of low-lying areas conversion in Colombo metropolitan region-Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hemakumara, GPTS; Rainis, Ruslan

    2015-02-01

    Living in Low-lying areas is a challenging task, but due to the lack of suitable land at affordable prices, thousands of householders have been establishing their own houses on Low-lying areas. Manipulation and conversion of low lying areas have led to an increase in the frequency and severity of micro disasters because the cumulative effect of these settlements is very high. Therefore, it is needed to examine how individual households have been emerging in Low-lying areas. This process is primarily influenced and controlled by Socio-economic factors. In the field survey conducted for this study, 388 householders were interviewed face to face to obtain the primary data. Collected data were applied to the Multivariate binary logistic Model. The Dependent variable of the model was set as Stable Houses and Non-Stable Houses based on the weighted values that were obtained from the field observations. Independent variables of this study are nine key aspects of the socio-economic conditions in these areas. Units of analysis of the study were taken as individual housing plots in the study area. The particular combination of Socio-Economic factors that exerted influence on each housing plot was measured using predicted probability value of logistic model and linked it with GIS land plot's map. Accuracy of Final Model is 86.9 % and probability level of influencing factors given a clear idea about household distribution and status while providing guidance about how the planning authorities should monitor and manage low lying areas, taking into consideration the present housing condition of these areas.

  12. Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD

    SciTech Connect

    Padmanath, M.; Edwards, Robert G.; Mathur, Nilmani; Peardon, Michael

    2014-07-01

    We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.

  13. A study of high-temperature heat pipes with multiple heat sources and sinks. I - Experimental methodology and frozen startup profiles. II - Analysis of continuum transient and steady-state experimental data with numerical predictions

    NASA Technical Reports Server (NTRS)

    Faghri, A.; Cao, Y.; Buchko, M.

    1991-01-01

    Experimental profiles for heat pipe startup from the frozen state were obtained, using a high-temperature sodium/stainless steel pipe with multiple heat sources and sinks to investigate the startup behavior of the heat pipe for various heat loads and input locations, with both low and high heat rejection rates at the condensor. The experimental results of the performance characteristics for the continuum transient and steady-state operation of the heat pipe were analyzed, and the performance limits for operation with varying heat fluxes and location are determined.

  14. Examining the Psychosis Continuum

    PubMed Central

    DeRosse, Pamela; Karlsgodt, Katherine H.

    2015-01-01

    The notion that psychosis may exist on a continuum with normal experience has been proposed in multiple forms throughout the history of psychiatry. However, in recent years there has been an exponential increase in efforts aimed at elucidating what has been termed the ‘psychosis continuum’. The present review seeks to summarize some of the more basic characteristics of this continuum and to present some of the recent findings that provide support for its validity. While there is still considerable work to be done, the emerging data holds considerable promise for advancing our understanding of both risk and resilience to psychiatric disorders characterized by psychosis. PMID:26052479

  15. The Continuum of Listening

    ERIC Educational Resources Information Center

    Rud, A. G.; Garrison, Jim

    2007-01-01

    The distinction between "apophatic" and "cataphatic" listening is defined and analyzed. "Apophatic" listening is more or less devoid of cognitivist claims, whereas "cataphatic" listening involves cognition and questioning. Many of the papers in this volume are discussed along the continuum determined by these two types of listening.…

  16. The Creativity Continuum

    ERIC Educational Resources Information Center

    Walling, Donovan R.

    2009-01-01

    Children are innately creative, and the youngest often are the most original because they have yet to be influenced by the creativity of others. One way to think of creative expression is as a continuum. At one end is originality, or the creation of something wholly new, "original." At the other end is replication, or the re-creation of something…

  17. Unified ab initio approach to bound and unbound states: No-core shell model with continuum and its application to 7He

    SciTech Connect

    Baroni, Simone; Navratil, Petr; Quaglioni, Sofia

    2013-03-26

    In this study, we introduce a unified approach to nuclear bound and continuum states based on the coupling of the no-core shell model (NCSM), a bound-state technique, with the no-core shell model/resonating group method (NCSM/RGM), a nuclear scattering technique. This new ab initio method, no-core shell model with continuum (NCSMC), leads to convergence properties superior to either NCSM or NCSM/RGM while providing a balanced approach to different classes of states. In the NCSMC, the ansatz for the many-nucleon wave function includes (i) a square-integrable A-nucleon component expanded in a complete harmonic oscillator basis and (ii) a binary-cluster component with asymptotic boundary conditions that can properly describe weakly bound states, resonances, and scattering. The Schrödinger equation is transformed into a system of coupled-channel integral-differential equations that we solve using a modified microscopic R-matrix formalism within a Lagrange mesh basis. We demonstrate the usefulness of the approach by investigating the unbound 7He nucleus.

  18. Isostaticity in Cosserat Continuum

    DTIC Science & Technology

    2012-01-01

    Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 15. SUBJECT TERMS Isostaticity, Cosserat, Granular, Force chains Antoinette ...TELEPHONE NUMBER Antoinette Tordesillas 038-344-9685 3. DATES COVERED (From - To) Standard Form 298 (Rev 8/98) Prescribed by ANSI Std. Z39.18...Cosserat continuum Antoinette Tordesillas · Jingyu Shi · John F. Peters Received: 29 August 2011 / Published online: 16 March 2012 © Springer-Verlag 2012

  19. A continuum model of transcriptional bursting

    PubMed Central

    Corrigan, Adam M; Tunnacliffe, Edward; Cannon, Danielle; Chubb, Jonathan R

    2016-01-01

    Transcription occurs in stochastic bursts. Early models based upon RNA hybridisation studies suggest bursting dynamics arise from alternating inactive and permissive states. Here we investigate bursting mechanism in live cells by quantitative imaging of actin gene transcription, combined with molecular genetics, stochastic simulation and probabilistic modelling. In contrast to early models, our data indicate a continuum of transcriptional states, with a slowly fluctuating initiation rate converting the gene between different levels of activity, interspersed with extended periods of inactivity. We place an upper limit of 40 s on the lifetime of fluctuations in elongation rate, with initiation rate variations persisting an order of magnitude longer. TATA mutations reduce the accessibility of high activity states, leaving the lifetime of on- and off-states unchanged. A continuum or spectrum of gene states potentially enables a wide dynamic range for cell responses to stimuli. DOI: http://dx.doi.org/10.7554/eLife.13051.001 PMID:26896676

  20. Stiffness Control of Surgical Continuum Manipulators

    PubMed Central

    Mahvash, Mohsen; Dupont, Pierre E.

    2013-01-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot’s coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions. PMID:24273466

  1. Stiffness Control of Surgical Continuum Manipulators.

    PubMed

    Mahvash, Mohsen; Dupont, Pierre E

    2011-04-01

    This paper introduces the first stiffness controller for continuum robots. The control law is based on an accurate approximation of a continuum robot's coupled kinematic and static force model. To implement a desired tip stiffness, the controller drives the actuators to positions corresponding to a deflected robot configuration that produces the required tip force for the measured tip position. This approach provides several important advantages. First, it enables the use of robot deflection sensing as a means to both sense and control tip forces. Second, it enables stiffness control to be implemented by modification of existing continuum robot position controllers. The proposed controller is demonstrated experimentally in the context of a concentric tube robot. Results show that the stiffness controller achieves the desired stiffness in steady state, provides good dynamic performance, and exhibits stability during contact transitions.

  2. The Response Continuum

    SciTech Connect

    Caltagirone, Sergio; Frincke, Deborah A.

    2005-06-17

    Active response is a sequence of actions per- formed speci¯cally to mitigate a detected threat. Response decisions always follow detection: a decision to take `no ac- tion' remains a response decision. However, active response is a complex subject that has received insu±cient formal attention. To facilitate discussion, this paper provides a framework that proposes a common de¯nition, describes the role of response and the major issues surrounding response choices, and ¯nally, provides a model for the process of re- sponse. This provides a common starting point for discus- sion of the full response continuum as an integral part of contemporary computer security.

  3. Micropolar continuum in spatial description

    NASA Astrophysics Data System (ADS)

    Ivanova, Elena A.; Vilchevskaya, Elena N.

    2016-11-01

    Within the spatial description, it is customary to refer thermodynamic state quantities to an elementary volume fixed in space containing an ensemble of particles. During its evolution, the elementary volume is occupied by different particles, each having its own mass, tensor of inertia, angular and linear velocities. The aim of the present paper is to answer the question of how to determine the inertial and kinematic characteristics of the elementary volume. In order to model structural transformations due to the consolidation or defragmentation of particles or anisotropic changes, one should consider the fact that the tensor of inertia of the elementary volume may change. This means that an additional constitutive equation must be formulated. The paper suggests kinetic equations for the tensor of inertia of the elementary volume. It also discusses the specificity of the inelastic polar continuum description within the framework of the spatial description.

  4. Computational Methods in Continuum Mechanics

    DTIC Science & Technology

    1993-11-30

    ftruet11ft bwalch.Aq 0.4.oiqn 04ta tou.MtC’ gahimtc" n matod .nAfitang In@ data 01#04141. OAd co0noIDW~ng And tft@nq the ~OIWCI&Qn of 1,onjt~omt .nd~ml...AD-A27S 560 DTIC\\3\\Ul3 10 S ELECTE1 FEB 9 1994 I c I £ COMPUTATIONAL METHODS IN CONTINUUM MECHANICS By Bolindra N . Borah N.C. A&T State University...PAGE 0me No 0.704-0158 io (reorovtnq burden ’Of .t..i e’iortion of Information is estimted to ’Adoraw 1O4 .0 e~o- * n th.n I~c ot.. "o.vw.n. q

  5. Continuum lowering - A new perspective

    NASA Astrophysics Data System (ADS)

    Crowley, B. J. B.

    2014-12-01

    What is meant by continuum lowering and ionization potential depression (IPD) in a Coulomb system depends very much upon precisely what question is being asked. It is shown that equilibrium (equation of state) phenomena and non-equilibrium dynamical processes like photoionization are characterized by different values of the IPD. In the former, the ionization potential of an atom embedded in matter is the difference in the free energy of the many-body system between states of thermodynamic equilibrium differing by the ionization state of just one atom. Typically, this energy is less than that required to ionize the same atom in vacuo. Probably, the best known example of this is the IPD given by Stewart and Pyatt (SP). However, it is a common misconception that this formula should apply directly to the energy of a photon causing photoionization, since this is a local adiabatic process that occurs in the absence of a response from the surrounding plasma. To achieve the prescribed final equilibrium state, in general, additional energy, in the form of heat and work, is transferred between the atom and its surroundings. This additional relaxation energy is sufficient to explain the discrepancy between recent spectroscopic measurements of IPD in dense plasmas and the predictions of the SP formula. This paper provides a detailed account of an analytical approach, based on SP, to calculating thermodynamic and spectroscopic (adiabatic) IPDs in multicomponent Coulomb systems of arbitrary coupling strength with Te ≠ Ti. The ramifications for equilibrium Coulomb systems are examined in order to elucidate the roles of the various forms of the IPD and any possible connection with the plasma microfield. The formulation embodies an analytical equation of state (EoS) that is thermodynamically self-consistent, provided that the bound and free electrons are dynamically separable, meaning that the system is not undergoing pressure ionization. Apart from this restriction, the model is

  6. Kilometric Continuum Radiation

    NASA Technical Reports Server (NTRS)

    Green, James L.; Boardsen, Scott

    2006-01-01

    Kilometric continuum (KC) is the high frequency component (approximately 100 kHz to approximately 800 kHz) of nonthermal continuum (NTC). Unlike the lower frequency portion of NTC (approximately 5 kHz to approximately 100 kHz) whose source is around the dawn sector, the source of KC occurs at all magnetic local times. The latitudinal beaming of KC as observed by GEOTAIL is, for most events, restricted to plus or minus 15 degrees magnetic latitude. KC has been observed during periods of both low and strong geomagnetic activity, with no significant correlation of wave intensity with K(sub p), index. However statistically the maximum observed frequency of KC emission tends to increase with K(sub p) index, the effect is more pronounced around solar maximum, but is also detected near solar minimum. There is strong evidence that the source region of KC is from the equatorial plasmapause during periods when a portion of the plasmapause moves significantly inwards from its nominal position. Case studies have shown that KC emissions are nearly always associated with plasmaspheric notches, shoulders, and tails. There is a recent focus on trying to understand the banded frequency structure of this emission and its relationship to plasmaspheric density ducts and irregularities in the source region.

  7. Some Continuum Aspects of Data Assimilation

    NASA Technical Reports Server (NTRS)

    Cohn, Stephen E.; Menard, Richard

    1999-01-01

    A long-sought goal in data assimilation is to build more fully the time dimension into the data assimilation process. Truly four-dimensional data assimilation requires evolving second-moment information, namely the estimation error covariance, along with the state estimate itself. The continuum evolution equations for the estimation error covariance constitute a system of partial differential equations in six space dimensions, forced by a model error covariance and by the observations themselves. The high dimensionality of this system poses a difficult computational problem. Numerous methods have been proposed for approximate, discrete solution of this system of equations. Four-dimensional variational schemes solve these equations indirectly, while schemes based on Kalman filtering solve the equations more directly, usually on a small subspace of the full six-dimensional space. In both cases, most proposed solution methods are not derived from the continuum covariance evolution equations themselves. Instead, most methods simply inherit the discretization used for evolving the state estimate, either in the form of a discrete tangent linear model or, in the case of ensemble schemes, in the form of a fully nonlinear discrete model. In this lecture we show that solutions of the continuum covariance evolution equations possess simple properties that are not readily satisfied upon discretization of the equations. we give numerical examples illustrating that "inherited" discretizations sometimes fail to produce meaningfully accurate solutions. Finally, we suggest alternative discretization methods that may yield more faithful approximate solutions of the continuum problem.

  8. Collective nature of low-lying excitations in 70,72,74Zn from lifetime measurements using the AGATA spectrometer demonstrator

    NASA Astrophysics Data System (ADS)

    Louchart, C.; Obertelli, A.; Görgen, A.; Korten, W.; Bazzacco, D.; Birkenbach, B.; Bruyneel, B.; Clément, E.; Coleman-Smith, P. J.; Corradi, L.; Curien, D.; de Angelis, G.; de France, G.; Delaroche, J.-P.; Dewald, A.; Didierjean, F.; Doncel, M.; Duchêne, G.; Eberth, J.; Erduran, M. N.; Farnea, E.; Finck, C.; Fioretto, E.; Fransen, C.; Gadea, A.; Girod, M.; Gottardo, A.; Grebosz, J.; Habermann, T.; Hackstein, M.; Huyuk, T.; Jolie, J.; Judson, D.; Jungclaus, A.; Karkour, N.; Klupp, S.; Krücken, R.; Kusoglu, A.; Lenzi, S. M.; Libert, J.; Ljungvall, J.; Lunardi, S.; Maron, G.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Million, B.; Molini, P.; Möller, O.; Montagnoli, G.; Montanari, D.; Napoli, D. R.; Orlandi, R.; Pollarolo, G.; Prieto, A.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Rother, W.; Sahin, E.; Salsac, M.-D.; Scarlassara, F.; Schlarb, M.; Siem, S.; Singh, P. P.; Söderström, P.-A.; Stefanini, A. M.; Stézowski, O.; Sulignano, B.; Szilner, S.; Theisen, Ch.; Ur, C. A.; Valiente-Dobón, J. J.; Zielinska, M.

    2013-05-01

    Background: Neutron-rich nuclei with protons in the fp shell show an onset of collectivity around N=40. Spectroscopic information is required to understand the underlying mechanism and to determine the relevant terms of the nucleon-nucleon interaction that are responsible for the evolution of the shell structure in this mass region.Methods: We report on the lifetime measurement of the first 2+ and 4+ states in 70,72,74Zn and the first 6+ state in 72Zn using the recoil distance Doppler shift method. The experiment was carried out at the INFN Laboratory of Legnaro with the AGATA demonstrator, first phase of the Advanced Gamma Tracking Array of highly segmented, high-purity germanium detectors coupled to the PRISMA magnetic spectrometer. The excited states of the nuclei of interest were populated in the deep inelastic scattering of a 76Ge beam impinging on a 238U target.Results: The maximum of collectivity along the chain of Zn isotopes is observed for 72Zn at N=42. An unexpectedly long lifetime of 20-5.2+1.8 ps was measured for the 4+ state in 74Zn.Conclusions: Our results lead to small values of the B(E2;41+→21+)/B(E2;21+→01+) ratio for 72,74Zn, suggesting a significant noncollective contribution to these excitations. These experimental results are not reproduced by state-of-the-art microscopic models and call for lifetime measurements beyond the first 2+ state in heavy zinc and nickel isotopes.

  9. Modeling Molecular Systems at Extreme Pressure by an Extension of the Polarizable Continuum Model (PCM) Based on the Symmetry-Adapted Cluster-Configuration Interaction (SAC-CI) Method: Confined Electronic Excited States of Furan as a Test Case.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Cammi, Roberto

    2015-05-12

    Novel molecular photochemistry can be developed by combining high pressure and laser irradiation. For studying such high-pressure effects on the confined electronic ground and excited states, we extend the PCM (polarizable continuum model) SAC (symmetry-adapted cluster) and SAC-CI (SAC-configuration interaction) methods to the PCM-XP (extreme pressure) framework. By using the PCM-XP SAC/SAC-CI method, molecular systems in various electronic states can be confined by polarizable media in a smooth and flexible way. The PCM-XP SAC/SAC-CI method is applied to a furan (C4H4O) molecule in cyclohexane at high pressure (1-60 GPa). The relationship between the calculated free-energy and cavity volume can be approximately represented with the Murnaghan equation of state. The excitation energies of furan in cyclohexane show blueshifts with increasing pressure, and the extents of the blueshifts significantly depend on the character of the excitations. Particularly large confinement effects are found in the Rydberg states. The energy ordering of the lowest Rydberg and valence states alters under high-pressure. The pressure effects on the electronic structure may be classified into two contributions: a confinement of the molecular orbital and a suppression of the mixing between the valence and Rydberg configurations. The valence or Rydberg character in an excited state is, therefore, enhanced under high pressure.

  10. Low-lying electronic structure of EuH, EuOH, and EuO neutrals and anions determined by anion photoelectron spectroscopy and DFT calculations

    SciTech Connect

    Kafader, Jared O.; Ray, Manisha; Jarrold, Caroline Chick

    2015-07-21

    The anion photoelectron (PE) spectra of EuH{sup −} and the PE spectrum of overlapping EuOH{sup −} and EuO{sup −} anions are presented and analyzed with supporting results from density functional theory calculations on the various anions and neutrals. Results point to ionically bound, high-spin species. EuH and EuOH anions and neutrals exhibit analogous electronic structures: Transitions from {sup 8}Σ{sup −} anion ground states arising from the 4f{sup 7}σ{sub 6s}{sup 2} superconfiguration to the close-lying neutral {sup 9}Σ{sup −} and {sup 7}Σ{sup −} states arising from the 4f{sup 7}σ{sub 6s} superconfiguration are observed spaced by an energy interval similar to the free Eu{sup +} [4f{sup 7}6s] {sup 9}S - {sup 7}S splitting. The electron affinities (EAs) of EuH and EuOH are determined to be 0.771 ± 0.009 eV and 0.700 ± 0.011 eV, respectively. Analysis of spectroscopic features attributed to EuO{sup −} photodetachment is complicated by the likely presence of two energetically competitive electronic states of EuO{sup −} populating the ion beam. However, based on the calculated relative energies of the close-lying anion states arising from the 4f{sup 7}σ{sub 6s} and 4f{sup 6}σ{sub 6s}{sup 2} configurations and the relative energies of the one-electron accessible 4f{sup 7} and 4f{sup 6}σ{sub 6s} neutral states based on ligand-field theory [M. Dulick, E. Murad, and R. F. Barrow, J. Chem. Phys. 85, 385 (1986)], the remaining features are consistent with the 4f{sup 6}σ{sub 6s}{sup 2}  {sup 7}Σ{sup −} and 4f{sup 7}σ{sub 6s}{sup 7}Σ{sup −} anion states lying very close in energy (the former was calculated to be 0.15 eV lower in energy than the latter), though the true anion ground state and neutral EA could not be established unambiguously. Calculations on the various EuO anion and neutral states suggest 4f-orbital overlap with 2p orbitals in species with 4f{sup 6} occupancy.

  11. Theoretical explanation of the low-lying ν(6) vibrational fundamental of the FSO3 radical by the linear vibronic coupling approach.

    PubMed

    Uhlíková, Tereza; Urban, Štěpán

    2013-06-21

    The first attempt for a theoretical explanation of the ν6 fundamental energy levels of the fluorosulfate radical (FSO3) electronic ground state has been made. The vibronic interaction of the two lowest electronic states of the radical (X̃ (2)A2 and à (2)E) has been taken into consideration in the basis of the linear vibronic coupling (LVC) approximation. The strengths of the intrastate and interstate vibronic couplings have been calculated within the framework of the Köppel, Domcke, and Cederbaum (KDC) model Hamiltonian. Already this simple KDC-LVC model provides the ν6 fundamental energy, which is in very good agreement with the experimental results. From the inclusion of vibronic interactions such as the pseudo-Jahn-Teller and Jahn-Teller effects into the calculation of the fundamental energy of the ν6 mode, it can be said that mainly the interstate coupling with the electronic excited state E causes the unexpectedly low fundamental energy ν6 of the FSO3 radical.

  12. Internal photopumping of Nd3+ (2H9/2, 4F5/2) states in yttrium aluminum garnet by excitation transfer from oxygen deficiency centers and Fe3+ continuum emission

    NASA Astrophysics Data System (ADS)

    Hewitt, J. D.; Spinka, T. M.; Senin, A. A.; Eden, J. G.

    2011-07-01

    Photoexcitation of Nd3+ (2H9/2, 4F5/2) states by the broad (˜70 nm FWHM), near-infrared continuum provided by Fe3+ has been observed at 300 K in bulk yttrium aluminum garnet (YAG) crystals doped with trace concentrations (<50 ppm) of Fe, Cr, and Eu. Irradiation of YAG at 248 nm with a KrF laser, which excites the oxygen deficiency center (ODC) in YAG having peak absorption at ˜240 nm, culminates in ODC→Fe3+ excitation transfer and subsequent Fe3+ emission. This internal optical pumping mechanism for rare earth ions is unencumbered by the requirement for donor-acceptor proximity that constrains conventional Förster-Dexter excitation transfer in co-doped crystals.

  13. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    NASA Astrophysics Data System (ADS)

    Stefańska, Patrycja

    2017-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities (χ M 1 →E 2) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge Ze. Numerical values of this susceptibility for the hydrogen atom (Z = 1) and for hydrogenic ions with 2 ⩽ Z ⩽ 137 are computed from the general analytical formula, recently derived by us (Stefanska, 2016), valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of χ M 1 →E 2 for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s1/2, 2p1/2, 2p3/2, 3s1/2, 3p1/2, 3p3/2, 3d3/2, 3d5/2, 4s1/2, 4p1/2, 4p3/2, 4d3/2, 4d5/2, 4f5/2 and 4f7/2) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the calculations is α-1 = 137.035999139, and was taken from CODATA 2014.

  14. The complex-scaled multiconfigurational spin-tensor electron propagator method for low-lying shape resonances in Be-, Mg- and Ca-

    NASA Astrophysics Data System (ADS)

    Tsogbayar, Tsednee; Yeager, Danny L.

    2017-01-01

    We further apply the complex scaled multiconfigurational spin-tensor electron propagator method (CMCSTEP) for the theoretical determination of resonance parameters with electron-atom systems including open-shell and highly correlated (non-dynamical correlation) atoms and molecules. The multiconfigurational spin-tensor electron propagator method (MCSTEP) developed and implemented by Yeager and his coworkers for real space gives very accurate and reliable ionization potentials and electron affinities. CMCSTEP uses a complex scaled multiconfigurational self-consistent field (CMCSCF) state as an initial state along with a dilated Hamiltonian where all of the electronic coordinates are scaled by a complex factor. CMCSTEP is designed for determining resonances. We apply CMCSTEP to get the lowest 2P (Be-, Mg-) and 2D (Mg-, Ca-) shape resonances using several different basis sets each with several complete active spaces. Many of these basis sets we employ have been used by others with different methods. Hence, we can directly compare results with different methods but using the same basis sets.

  15. Gating mechanism of mechanosensitive channel of large conductance: a coupled continuum mechanical-continuum solvation approach.

    PubMed

    Zhu, Liangliang; Wu, Jiazhong; Liu, Ling; Liu, Yilun; Yan, Yuan; Cui, Qiang; Chen, Xi

    2016-12-01

    Gating transition of the mechanosensitive channel of large conductance (MscL) represents a good example of important biological processes that are difficult to describe using atomistic simulations due to the large (submicron) length scale and long (millisecond) time scale. Here we develop a novel computational framework that tightly couples continuum mechanics with continuum solvation models to study the detailed gating behavior of E. coli-MscL. The components of protein molecules are modeled by continuum elements that properly describe their shape, material properties and physicochemical features (e.g., charge distribution). The lipid membrane is modeled as a three-layer material in which the lipid head group and tail regions are treated separately, taking into account the fact that fluidic lipid bilayers do not bear shear stress. Coupling between mechanical and chemical responses of the channel is realized by an iterative integration of continuum mechanics (CM) modeling and continuum solvation (CS) computation. Compared to previous continuum mechanics studies, the present model is capable of capturing the most essential features of the gating process in a much more realistic fashion: due mainly to the apolar solvation contribution, the membrane tension for full opening of MscL is reduced substantially to the experimental measured range. Moreover, the pore size stabilizes constantly during gating because of the intricate interactions of the multiple components of the system, implying the mechanism for sub-conducting states of MscL gating. A significant fraction ([Formula: see text]2/3) of the gating membrane strain is required to reach the first sub-conducting state of our model, which is featured with a relative conductance of 0.115 to the fully opened state. These trends agree well with experimental observations. We anticipate that the coupled CM/CS modeling framework is uniquely suited for the analysis of many biomolecules and their assemblies under external

  16. Continuum Modeling of Facet Evolution

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel

    2000-03-01

    Standard continuum models of surface dynamics are very useful for studying thin film evolution on the micron length scale. Unfortunately, they are inadequate below the roughening transition, since they do not appropriately describe faceting. Our goal is to propose a continuum approach which deals with facet dynamics in a physically accurate way. We studied in detail the dynamics of faceting in simple submicron surface structures [1], and proposed two approaches for the development of continuum models. First, we rigorously derived continuum kinetic models of the systems of interest, starting from step flow models. These models break down at singular points, which we identify as facet edges. The models are not applicable on facets, and the surface profile is obtained as a solution of the continuum model with boundary conditions at the singular points. Secondly, we showed [2] that if the existence of both steps and anti-steps in regions of small surface slope is taken into account, it is possible to construct continuum models that are valid even on facets. The solutions of both types of continuum models are in excellent agreement with step flow models. The resulting surface profiles are of relevance to experiments on decay of one dimensional periodic gratings. Our work points to a possible general continuum model for an accurate description of kinetics of crystalline surfaces below the roughening transition. [1] N. Israeli and D. Kandel, Phys. Rev. Lett. 80, 3300 (1998); N. Israeli and D. Kandel, Phys. Rev. B 60, 5946 (1999). [2] N. Israeli and D. Kandel, preprint.

  17. Rotational bands in the continuum illustrated by 8Be results

    NASA Astrophysics Data System (ADS)

    Garrido, E.; Jensen, A. S.; Fedorov, D. V.

    2013-08-01

    We use the α-α cluster model to describe the properties of 8Be. The rotational energy sequence of the (0+,2+,4+) resonances are reproduced with the complex energy scaling technique for Ali-Bodmer and Buck potentials. However, both static and transition probabilities are far from the rotational values. We trace this observation to the prominent continuum properties of the 2+ and 4+ resonances. They resemble free continuum solutions although still exhibit strong collective rotational character. We compare with cluster models and discuss concepts of rotations in the continuum in connection with such central quantities as transition probabilities, inelastic cross sections, and resonance widths. We compute the 6+ and 8+ S-matrix poles and discuss properties of this possible continuation of the band beyond the known 4+ state. Regularization of diverging quantities is discussed to extract observable continuum properties. We formulate the division of electromagnetic transition probabilities into interfering contributions from resonance-resonance, continuum-resonance, resonance-continuum, and continuum-continuum transitions.

  18. Continuum limbed robots for locomotion

    NASA Astrophysics Data System (ADS)

    Mutlu, Alper

    This thesis focuses on continuum robots based on pneumatic muscle technology. We introduce a novel approach to use these muscles as limbs of lightweight legged robots. The flexibility of the continuum legs of these robots offers the potential to perform some duties that are not possible with classical rigid-link robots. Potential applications are as space robots in low gravity, and as cave explorer robots. The thesis covers the fabrication process of continuum pneumatic muscles and limbs. It also provides some new experimental data on this technology. Afterwards, the designs of two different novel continuum robots - one tripod, one quadruped - are introduced. Experimental data from tests using the robots is provided. The experimental results are the first published example of locomotion with tripod and quadruped continuum legged robots. Finally, discussion of the results and how far this technology can go forward is presented.

  19. Combining the Bethe-Salpeter Formalism with Time-Dependent DFT Excited-State Forces to Describe Optical Signatures: NBO Fluoroborates as Working Examples.

    PubMed

    Boulanger, Paul; Chibani, Siwar; Le Guennic, Boris; Duchemin, Ivan; Blase, Xavier; Jacquemin, Denis

    2014-10-14

    We propose to use a blend of methodologies to tackle a challenging case for quantum approaches: the simulation of the optical properties of asymmetric fluoroborate derivatives. Indeed, these dyes, which present a low-lying excited-state exhibiting a cyanine-like nature, are treated not only with the Time-Dependent Density Functional Theory (TD-DFT) method to determine both the structures and vibrational patterns but also with the Bethe-Salpeter approach to compute both the vertical absorption and emission energies. This combination allows us to obtain 0-0 energies with a significantly improved accuracy compared to the "raw" TD-DFT estimates. We also discuss the impact of various declinations of the Polarizable Continuum Model (linear-response, corrected linear-response, and state-specific models) on the obtained accuracy.

  20. Relativistic Continuum Shell Model

    NASA Astrophysics Data System (ADS)

    Grineviciute, Janina; Halderson, Dean

    2011-04-01

    The R-matrix formalism of Lane and Thomas has been extended to the relativistic case so that the many-coupled channels problem may be solved for systems in which binary breakup channels satisfy a relative Dirac equation. The formalism was previously applied to the relativistic impulse approximation RIA and now we applied it to Quantum Hadrodynamics QHD in the continuum Tamm-Dancoff approximation TDA with the classical meson fields replaced by one-meson exchange potentials. None of the published QHD parameters provide a decent fit to the 15 N + p elastic cross section. The deficiency is also evident in inability of the QHD parameters with the one meson exchange potentials to reproduce the QHD single particle energies. Results with alternate parameters sets are presented. A. M. Lane and R. G. Thomas, R-Matrix Theory of Nuclear Reactions, Reviews of Modern Physics, 30 (1958) 257

  1. Electron-ion continuum-continuum mixing in dissociative recombination

    NASA Technical Reports Server (NTRS)

    Guberman, Steven L.

    1993-01-01

    In recent calculations on the dissociative recombination (DR) of the v=1 vibrational level of the ground state of N2(+), N2(+)(v=1) + e(-) yields N + N, we have observed an important continuun-continuum mixing process involving the open channels on both sides of N2(+)(v=1) + e(-) yields N2(+)(v=0) + e(-). In vibrational relaxation by electron impact (immediately above) the magnitude of the cross section depends upon the strength of the interaction between these continua. In DR of the v=1 ion level, these continua can also interact in the entrance channel, and the mixing can have a profound effect upon the DR cross section from v=1, as we illustrate in this paper. In our theoretical calculations of N2(+) DR using multichannel quantum defect theory (MQDT), the reactants and products in the two above equations are described simultaneously. This allows us to calculate vibrational relaxation and excitation cross sections as well as DR cross sections. In order to understand the mixing described above, we first present a brief review of the prior results for DR of the v=0 level of N2(+).

  2. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

    SciTech Connect

    Xantheas, Sotiris S.

    2012-08-01

    We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared to DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.

  3. Uses of Continuum Radiation in the AXAF Calibration

    NASA Technical Reports Server (NTRS)

    Kolodziejczak, J. J.; Austin, R. A.; Eisner, R. F.; ODell, S. L.; Sulkanen, M. E.; Swartz, D. A.; Tennant, A. F.; Weisskopf, M. C.; Zirnstein, G.; McDermott, W. C.

    1997-01-01

    X-ray calibration of the Advanced X-ray Astrophysics Facility (AXAF) observatory at the MSFC X-Ray Calibration Facility (XRCF) made novel use of the x-ray continuum from a conventional electron-impact source. Taking advantage of the good spectral resolution of solid-state detectors, continuum measurements proved advantageous in calibrating the effective area of AXAF's High-Resolution Mirror Assembly (HRMA) and in verifying its alignment to the XRCF's optical axis.

  4. The Paranoid-Depressive Continuum

    ERIC Educational Resources Information Center

    Johnson, Betty J.

    1977-01-01

    Few investigators have attempted to lay a conceptual base for comparative studies of paranoia and depression within a single general framework. The paranoid-depressive continuum is an attempt to develop such a framework. (Author)

  5. Quantitative X-ray - UV Line and Continuum Spectroscopy with Application to AGN: State-Specific Hydrogenic Recombination Cooling Coefficients for a Wide Range of Conditions

    NASA Technical Reports Server (NTRS)

    LaMothe, J.; Ferland, Gary J.

    2002-01-01

    Recombination cooling, in which a free electron emits light while being captured to an ion, is an important cooling process in photoionized clouds that are optically thick or have low metallicity. State specific rather than total recombination cooling rates are needed since the hydrogen atom tends to become optically thick in high-density regimes such as Active Galactic Nuclei. This paper builds upon previous work to derive the cooling rate over the full temperature range where the process can be a significant contributor in a photoionized plasma. We exploit the fact that the recombination and cooling rates are given by intrinsically similar formulae to express the cooling rate in terms of the closely related radiative recombination rate. We give an especially simple but accurate approximation that works for any high hydrogenic level and can be conveniently employed in large-scale numerical simulations.

  6. Spectroscopic properties and potential energy curves of 28 electronic states of NbH

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Balasubramanian, K.

    1990-12-01

    State-averaged complete active space MCSCF (CASSCF) followed by second-order configuration interaction (SOCI) calculations are carried out on 28 low-lying electronic states of NbH. The ground state of NbH is found to be of 5Δ symmetry ( R e = 1.787 Å, ωe = 1750 cm -1, μe = 2.20 D, De = 2.67 eV) with a very low-lying excited state of 5Π symmetry ( Te = 720 cm -1). There are 14 low-lying bound states below 10 000 cm -1. Many dipole-allowed transitions are predicted for NbH which are yet to be observed. An intense 5Δ(II) ↔ 5Δ transition is predicted in the 21 000 ± 2000 cm -1 region. Mulliken population analyses reveal that the low-lying electronic states of NbH are very ionic (Nb +H -).

  7. Four-body continuum-discretized coupled-channels calculations

    SciTech Connect

    Rodriguez-Gallardo, M.; Arias, J. M.; Moro, A. M.; Gomez-Camacho, J.; Thompson, I. J.; Tostevin, J. A.

    2009-11-15

    The development of a continuum-bin scheme of discretization for three-body projectiles is necessary for studies of reactions of Borromean nuclei such as {sup 6}He within the continuum-discretized coupled-channels approach. Such a procedure, for constructing bin states on selected continuum energy intervals, is formulated and applied for the first time to reactions of a three-body projectile. The continuum representation uses the eigenchannel expansion of the three-body S matrix. The method is applied to the challenging case of the {sup 6}He+{sup 208}Pb reaction at 22 MeV, where an accurate treatment of both the Coulomb and the nuclear interactions with the target is necessary.

  8. State densities and ionization equilibrium of atoms in dense plasmas

    NASA Astrophysics Data System (ADS)

    Shimamura, Isao; Fujimoto, Takashi

    1990-08-01

    The semiclassical Bohr-Sommerfeld quantization condition is used to derive an approximate analytical expression for the state density of the hydrogen atom in a dense plasma. An ion-sphere model with an infinitely high potential wall is assumed. The expression leads to a universal curve that spans all values of the electron density. The curve is continuous and smooth over the entire energy range, starting from the hydrogenic state density for low-lying bound states and approaching the plane-wave state density in the high-energy limit of the continuum. The number of bound states is approximately proportional to the inverse of the square root of the electron density. Integration of the state density over the Boltzmann distribution of the electronic energy results in an ionization equilibrium relation, leading to modified Saha's equation. The correction factor for this modified equation is a function of both the electron temperature and the electron density, and is expressed as a universal function of the ion coupling parameter.

  9. Seawater-overwash impacts on freshwater-lens water supplies of low-lying oceanic islands: example from Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Voss, C. I.; Gingerich, S. B.

    2015-12-01

    Low-lying oceanic islands host thin freshwater lenses subject to long-term aquifer salinization by seawater overwash. The lens is often the sole-source water supply for inhabitants. As maximum elevation for these islands is only a few meters above sea level, overwash can occur during high tides and storm surges. Sea level rise due to climate change will make overwash events even more common. The thin freshwater lenses, a few meters thick, are underlain by seawater, so pumping must be done carefully, often with horizontal skimming wells. Even a small amount of downward seawater infiltration from an overwash event can render the water supply non-potable. Where permeability is high, seawater infiltrates quickly, but seawater that infiltrates lower-permeability zones may remain for many months causing groundwater to remain non-potable, leaving residents without a reliable freshwater source. Initial post-overwash salinization is driven by the higher density of the invading saltwater, which sinks and mixes into the fresher water in potentially-complex patterns determined by: distribution of flooding and post-flood ponding, locations of permeable paths, and the inherently complex flow fields generated when fluid of higher density overlies lower-density fluid. The flow patterns cannot generally be measured or predicted in detail. This study develops basic understanding of overwash salinization processes impacting water supply on low-level islands, using a rare example of a monitored seawater overwash event that occurred in December 2008 at Roi-Namur Island in Kwajalein Atoll, Republic of the Marshall Islands, in which the salinity evolution of well water was measured. Due to typical lack of field data on such islands, a set of plausible alternative simulation-model descriptions of the hydrogeology and overwash event are created for analysis of the monitored salinization and recovery. Despite inability to know the 'true and complete' description of the event and the

  10. Lagrangian continuum dynamics in ALEGRA.

    SciTech Connect

    Wong, Michael K. W.; Love, Edward

    2007-12-01

    Alegra is an ALE (Arbitrary Lagrangian-Eulerian) multi-material finite element code that emphasizes large deformations and strong shock physics. The Lagrangian continuum dynamics package in Alegra uses a Galerkin finite element spatial discretization and an explicit central-difference stepping method in time. The goal of this report is to describe in detail the characteristics of this algorithm, including the conservation and stability properties. The details provided should help both researchers and analysts understand the underlying theory and numerical implementation of the Alegra continuum hydrodynamics algorithm.

  11. Submillimeter Continuum Observations of Comets

    NASA Technical Reports Server (NTRS)

    Jewitt, David

    1998-01-01

    The aim of this proposal was to study the submillimeter continuum emission from comets. The study was based mainly on the exploitation of the world's leading submillimeter telescope, the JCMT (James Clerk Maxwell Telescope) on Mauna Kea. Submillimeter wavelengths provide a unique view of cometary physics for one main reason. The cometary size distribution is such that the scattering cross-section is dominated by small dust grains, while the mass is dominated by the largest particles. Submillimeter continuum radiation samples cometary particles much larger than those sampled by more common observations at shorter (optical and infrared) wavelengths and therefore provides a nearly direct measure of the cometary dust mass.

  12. Quasiparticle-continuum level repulsion in a quantum magnet

    SciTech Connect

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; Harriger, Leland W.; Granroth, G.  E.; Kolesnikov, Alexander I.; Shu, G. J.; Chou, F. C.; Rüegg, Ch.; Kim, Yong Baek; Kim, Young-June

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here, we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.

  13. Quasiparticle-continuum level repulsion in a quantum magnet

    DOE PAGES

    Plumb, K. W.; Hwang, Kyusung; Qiu, Y.; ...

    2015-11-30

    When the energy eigenvalues of two coupled quantum states approach each other in a certain parameter space, their energy levels repel each other and level crossing is avoided. Such level repulsion, or avoided level crossing, is commonly used to describe the dispersion relation of quasiparticles in solids. But, little is known about the level repulsion when more than two quasiparticles are present; for example, in a strongly interacting quantum system where a quasiparticle can spontaneously decay into a many-particle continuum. Here we show that even in this case level repulsion exists between a long-lived quasiparticle state and a continuum. Here,more » we observe a renormalization of the quasiparticle dispersion relation due to the presence of the continuum of multi-quasiparticle states, in our fine-resolution neutron spectroscopy study of magnetic quasiparticles in the frustrated quantum magnet BiCu2PO6.« less

  14. Shell model states in the continuum

    NASA Astrophysics Data System (ADS)

    Shirokov, A. M.; Mazur, A. I.; Mazur, I. A.; Vary, J. P.

    2016-12-01

    We suggest a method for calculating scattering phase shifts and energies and widths of resonances which utilizes only eigenenergies obtained in variational calculations with oscillator basis and their dependence on oscillator basis spacing ℏ Ω . We make use of simple expressions for the S matrix at eigenstates of a finite (truncated) Hamiltonian matrix in the oscillator basis obtained in the HORSE (J -matrix) formalism of quantum scattering theory. The validity of the suggested approach is verified in calculations with model Woods-Saxon potentials and applied to calculations of n α resonances and nonresonant scattering using the no-core shell model.

  15. A nonlocal continuum model for biological aggregation.

    PubMed

    Topaz, Chad M; Bertozzi, Andrea L; Lewis, Mark A

    2006-10-01

    We construct a continuum model for biological aggregations in which individuals experience long-range social attraction and short-range dispersal. For the case of one spatial dimension, we study the steady states analytically and numerically. There exist strongly nonlinear states with compact support and steep edges that correspond to localized biological aggregations, or clumps. These steady-state clumps are reached through a dynamic coarsening process. In the limit of large population size, the clumps approach a constant density swarm with abrupt edges. We use energy arguments to understand the nonlinear selection of clump solutions, and to predict the internal density in the large population limit. The energy result holds in higher dimensions as well, and is demonstrated via numerical simulations in two dimensions.

  16. The climate continuum revisited

    NASA Astrophysics Data System (ADS)

    Emile-Geay, J.; Wang, J.; Partin, J. W.

    2015-12-01

    A grand challenge of climate science is to quantify the extent of natural variability on adaptation-relevant timescales (10-100y). Since the instrumental record is too short to adequately estimate the spectra of climate measures, this information must be derived from paleoclimate proxies, which may harbor a many-to-one, non-linear (e.g. thresholded) and non-stationary relationship to climate. In this talk, I will touch upon the estimation of climate scaling behavior from climate proxies. Two case studies will be presented: an investigation of scaling behavior in a reconstruction of global surface temperature using state-of- the-art data [PAGES2K Consortium, in prep] and methods [Guillot et al., 2015]. Estimating the scaling exponent β in spectra derived from this reconstruction, we find that 0 < β < 1 in most regions, suggesting long-term memory. Overall, the reconstruction-based spectra are steeper than the ones based on an instrumental dataset [HadCRUT4.2, Morice et al., 2012], and those estimated from PMIP3/CMIP5 models, suggesting the climate system is more energetic at multidecadal to centennial timescales than can be inferred from the short instrumental record or from the models developed to reproduce it [Laepple and Huybers, 2014]. an investigation of scaling behavior in speleothems records of tropical hydroclimate. We will make use of recent advances in proxy system modeling [Dee et al., 2015] and investigate how various aspects of the speleothem system (karst dynamics, age uncertainties) may conspire to bias the estimate of scaling behavior from speleothem timeseries. The results suggest that ignoring such complications leads to erroneous inferences about hydroclimate scaling. References Dee, S. G., J. Emile-Geay, M. N. Evans, Allam, A., D. M. Thompson, and E. J. Steig (2015), J. Adv. Mod. Earth Sys., 07, doi:10.1002/2015MS000447. Guillot, D., B. Rajaratnam, and J. Emile-Geay (2015), Ann. Applied. Statist., pp. 324-352, doi:10.1214/14-AOAS794. Laepple, T

  17. Homogenization of a Cauchy continuum towards a micromorphic continuum

    NASA Astrophysics Data System (ADS)

    Hütter, Geralf

    2017-02-01

    The micromorphic theory of Eringen and Mindlin, including special cases like strain gradient theory or Cosserat theory, is widely used to model size effects and localization phenomena. The heuristic construction of such theories based on thermodynamic considerations is well-established. However, the identification of corresponding constitutive laws and of the large number of respective constitutive parameters limits the practical application of such theories. In the present contribution, a closed procedure for the homogenization of a Cauchy continuum at the microscale towards a fully micromorphic continuum is derived including explicit definitions of all involved generalized macroscopic stress and deformation measures. The boundary value problem to be solved on the microscale is formulated either for using static or kinematic boundary conditions. The procedure is demonstrated with an example.

  18. Continuum effects in nuclear transfer reactions

    SciTech Connect

    Marta, H. D.; Donangelo, R.; Fernandez Niello, J. O.; Pacheco, A. J.

    2007-02-12

    We develop a semiclassical calculation for nuclear transfer reactions where the continuum is treated in an exact way, and compare the results with those of a treatment in which the continuum is neglected. We conclude that the influence of the continuum is very important for weakly bound reactants.

  19. Mathematical Modeling in Continuum Mechanics

    NASA Astrophysics Data System (ADS)

    Temam, Roger; Miranville, Alain

    2005-06-01

    Temam and Miranville present core topics within the general themes of fluid and solid mechanics. The brisk style allows the text to cover a wide range of topics including viscous flow, magnetohydrodynamics, atmospheric flows, shock equations, turbulence, nonlinear solid mechanics, solitons, and the nonlinear Schrödinger equation. This second edition will be a unique resource for those studying continuum mechanics at the advanced undergraduate and beginning graduate level whether in engineering, mathematics, physics or the applied sciences. Exercises and hints for solutions have been added to the majority of chapters, and the final part on solid mechanics has been substantially expanded. These additions have now made it appropriate for use as a textbook, but it also remains an ideal reference book for students and anyone interested in continuum mechanics.

  20. Continuum description for jointed media

    SciTech Connect

    Thomas, R.K.

    1982-04-01

    A general three-dimensional continuum description is presented for a material containing regularly spaced and approximately parallel jointing planes within a representative elementary volume. Constitutive relationships are introduced for linear behavior of the base material and nonlinear normal and shear behavior across jointing planes. Furthermore, a fracture permeability tensor is calculated so that deformation induced alterations to the in-situ values can be measured. Examples for several strain-controlled loading paths are presented.

  1. Continuum radiation in planetary magnetospheres

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.

    1991-01-01

    With the completion of the Voyager tour of the outer planets, radio and plasma wave instruments have executed the first survey of the wave spectra of Earth, Jupiter, Saturn, Uranus, and Neptune. One of the most notable conclusions of this survey is that there is a great deal of qualitative similarity in both the plasma wave and radio wave spectra from one magnetosphere to the next. In particular, in spite of detailed differences, most of the radio emissions at each of the planets have been tentatively classified into two primary categories. First, the most intense emissions are generally associated with the cyclotron maser instability. Second, a class of weaker emissions can be found at each of the magnetospheres which appears to be the result of conversion from intense electrostatic emissions at the upper hybrid resonance frequency into (primarily) ordinary mode radio emission. It is this second category, often referred to as nonthermal continuum radiation, which we will discuss in this review. We review the characteristics of the continuum spectrum at each of the planets, discuss the source region and direct observations of the generation of the emissions where available, and briefly describe the theories for the generation of the emissions. Over the past few years evidence has increased that the linear mode conversion of electrostatic waves into the ordinary mode can account for at least some of the continuum radiation observed. There is no definitive evidence which precludes the possibility that a nonlinear mechanism may also be important.

  2. Continuum representations of cellular solids

    NASA Astrophysics Data System (ADS)

    Neilsen, M. K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics, and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  3. Continuum representations of cellular solids

    SciTech Connect

    Neilsen, M.K.

    1993-09-01

    Cellular materials consist of interconnected struts or plates which form cells. The struts or plates are constructed from a variety of metals, polymers, ceramics and wood products. Cellular materials are often used in impact limiters for shipping containers to protect the contents from accidental impact events. These materials exhibit a variety of complex behavior when subjected to crushing loads. This research focuses on the development of continuum representations of cellular solids that can be used in the finite element analysis of shipping container accidents. A significant portion of this work is the development of a new methodology to relate localized deformations to appropriate constitutive descriptions. This methodology provides the insight needed to select constitutive descriptions for cellular solids that capture the localized deformations that are observed experimentally. Constitutive relations are developed for two different cellular materials, aluminum honeycomb and polyurethane foam. These constitutive relations are based on plasticity and continuum damage theories. Plasticity is used to describe the permanent deformation exhibited by both aluminum honeycomb and polyurethane foam. Continuum damage is needed to capture the change in elastic parameters due to cracking of the polyurethane cell wall materials. The new constitutive description of polyurethane foam is implemented in both static and dynamic finite element codes, and analytical and numerical predictions are compared with available experimental data.

  4. 77 FR 45367 - Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-31

    ... URBAN DEVELOPMENT Continuum of Care Homeless Assistance Grant Application; Continuum of Care Application... subject proposal. Pre-established communities, called Continuums of Care (CoC), will complete the Exhibit 1 of the Continuum of Care Homeless Assistance application which collects data about the...

  5. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 34 Education 2 2014-07-01 2013-07-01 true Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  6. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.115... 34 Education 2 2012-07-01 2012-07-01 false Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  7. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 2 2011-07-01 2010-07-01 true Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE OF SPECIAL EDUCATION AND REHABILITATIVE SERVICES, DEPARTMENT OF EDUCATION ASSISTANCE TO STATES FOR THE EDUCATION...

  8. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.115... 34 Education 2 2013-07-01 2013-07-01 false Continuum of alternative placements. 300.115 Section 300.115 Education Regulations of the Offices of the Department of Education (Continued) OFFICE...

  9. 34 CFR 300.115 - Continuum of alternative placements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... EDUCATION OF CHILDREN WITH DISABILITIES State Eligibility Least Restrictive Environment (lre) § 300.115... placements is available to meet the needs of children with disabilities for special education and related... 34 Education 2 2010-07-01 2010-07-01 false Continuum of alternative placements. 300.115...

  10. Increasing spin-flips and decreasing cost: Perturbative corrections for external singles to the complete active space spin flip model for low-lying excited states and strong correlation

    SciTech Connect

    Mayhall, Nicholas J.; Head-Gordon, Martin

    2014-07-28

    An approximation to the spin-flip extended configuration interaction singles method is developed using a second-order perturbation theory approach. In addition to providing significant efficiency advantages, the new framework is general for an arbitrary number of spin-flips, with the current implementation being applicable for up to around 4 spin-flips. Two new methods are introduced: one which is developed using non-degenerate perturbation theory, spin-flip complete active-space (SF-CAS(S)), and a second quasidegenerate perturbation theory method, SF-CAS(S){sub 1}. These two approaches take the SF-CAS wavefunction as the reference, and then perturbatively includes the effect of single excitations. For the quasidegenerate perturbation theory method, SF-CAS(S){sub 1}, the subscripted “1” in the acronym indicates that a truncated denominator expansion is used to obtain an energy-independent down-folded Hamiltonian. We also show how this can alternatively be formulated in terms of an extended Lagrangian, by introducing an orthonormality constraint on the first-order wavefunction. Several numerical examples are provided, which demonstrate the ability of SF-CAS(S) and SF-CAS(S){sub 1} to describe bond dissociations, singlet-triplet gaps of organic molecules, and exchange coupling parameters for binuclear transition metal complexes.

  11. Modeled changes in extreme wave climates in the Pacific Ocean during the 21st century and implications for low-lying U.S. and U.S.-affiliated atoll islands

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.

    2014-12-01

    . As most atoll islets accrete during large wave events, decreasing wave heights during other seasons may inhibit atoll islet accretion such that the low-lying islets may not be able to keep up with projected sea-level rise.

  12. Analogies between continuum dislocation theory, continuum mechanics and fluid mechanics

    NASA Astrophysics Data System (ADS)

    Silbermann, C. B.; Ihlemann, J.

    2017-03-01

    Continuum Dislocation Theory (CDT) relates gradients of plastic deformation in crystals with the presence of geometrically necessary dislocations. Interestingly, CDT shows striking analogies to other branches of continuum mechanics. The present contribution demonstrates this on two essential kinematical quantities which reflect tensorial dislocation properties: the (resultant) Burgers vector and the dislocation density tensor. First, the limiting process for the (resultant) Burgers vector from an integral to a local quantity is performed analogously to the limiting process from the force vector to the traction vector. By evaluating the balance of forces on a tetrahedral volume element, Cauchy found his famous formula relating traction vector and stress tensor. It is shown how this procedure may be adopted to a continuously dislocated tetrahedron. Here, the conservation of Burger’s vector implicates the introduction of the dislocation density tensor. Second, analogies between the plastic flow of a continuously dislocated solid and the liquid flow of a fluid are highlighted: the resultant Burgers vector of a dislocation ensemble plays a similar role as the (resultant) circulation of a vortex tube. Moreover, both vortices within flowing fluids and dislocations within deforming solids induce discontinuities in the velocity field and the plastic distortion field, respectively. Beyond the analogies, some peculiar properties of the dislocation density tensor are presented as well.

  13. Disease management: a continuum approach.

    PubMed

    Harvey, N; DePue, D M

    1997-06-01

    Disease management is a comprehensive, integrated approach to managing the health of populations through the use of disease-specific standards and protocols and population segmentation. It has been increasing in popularity among integrated delivery systems (IDSs) and payers alike as a way to respond to competitive pressures and to shift care delivery from inpatient to alternative care sites. To successfully implement disease-management programs, IDSs must develop an organizational mind-set that stresses information-driven, evidence-based standards of care that are adhered to across a tightly integrated continuum of care.

  14. Nonlocal models in continuum mechanics

    SciTech Connect

    Johnson, N.L.; Phan-Thien, N.

    1993-09-01

    The recent appearance of nonlocal methods is examined in the light of traditional continuum mechanics. A comparison of nonlocal approaches in the fields of solid and fluid mechanics reveals that no consistent definition of a nonlocal theory has been used. We suggest a definition based on the violation of the principle of local action in continuum mechanics. From the consideration of the implications of a nonlocal theory based on this definition, we conclude that constitutive relations with nonlocal terms can confuse the traditional separation of the roles between conservation laws and constitutive relations. The diversity of motivations for the nonlocal approaches are presented, resulting primarily from deficiencies in numerical solutions to practical problems. To illustrate these concepts, the history of nonlocal terms in the field of viscoelastic fluids is reviewed. A specific example of a viscoelastic constitutive relation that contains a stress diffusion term is applied to a simple shear flow and found not to be a physical description of any known fluid. We conclude by listing questions that should be asked of nonlocal approaches.

  15. Hybrid discrete/continuum algorithms for stochastic reaction networks

    DOE PAGES

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; ...

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discretemore » and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.« less

  16. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin Sargsyan, Khachik Debusschere, Bert Najm, Habib N.

    2015-01-15

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker–Planck equation. The Fokker–Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. The performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  17. Hybrid discrete/continuum algorithms for stochastic reaction networks

    SciTech Connect

    Safta, Cosmin; Sargsyan, Khachik; Debusschere, Bert; Najm, Habib N.

    2014-10-22

    Direct solutions of the Chemical Master Equation (CME) governing Stochastic Reaction Networks (SRNs) are generally prohibitively expensive due to excessive numbers of possible discrete states in such systems. To enhance computational efficiency we develop a hybrid approach where the evolution of states with low molecule counts is treated with the discrete CME model while that of states with large molecule counts is modeled by the continuum Fokker-Planck equation. The Fokker-Planck equation is discretized using a 2nd order finite volume approach with appropriate treatment of flux components to avoid negative probability values. The numerical construction at the interface between the discrete and continuum regions implements the transfer of probability reaction by reaction according to the stoichiometry of the system. As a result, the performance of this novel hybrid approach is explored for a two-species circadian model with computational efficiency gains of about one order of magnitude.

  18. Conductivity of continuum percolating systems

    NASA Astrophysics Data System (ADS)

    Stenull, Olaf; Janssen, Hans-Karl

    2001-11-01

    We study the conductivity of a class of disordered continuum systems represented by the Swiss-cheese model, where the conducting medium is the space between randomly placed spherical holes, near the percolation threshold. This model can be mapped onto a bond percolation model where the conductance σ of randomly occupied bonds is drawn from a probability distribution of the form σ-a. Employing the methods of renormalized field theory we show to arbitrary order in ɛ expansion that the critical conductivity exponent of the Swiss-cheese model is given by tSC(a)=(d-2)ν+max[φ,(1-a)-1], where d is the spatial dimension and ν and φ denote the critical exponents for the percolation correlation length and resistance, respectively. Our result confirms a conjecture that is based on the ``nodes, links, and blobs'' picture of percolation clusters.

  19. Dementia: Continuum or Distinct Entity?

    PubMed Central

    Walters, Glenn D.

    2009-01-01

    The latent structure of dementia was examined in a group of 10,775 older adults with indicators derived from a neuropsychological test battery. Subjecting these data to taxometric analysis using mean above minus below a cut (MAMBAC), maximum covariance (MAXCOV), and latent mode factor analysis (L-Mode) produced results more consistent with dementia as a dimensional (lying along a continuum) than categorical (representing a distinct entity) construct. A second study conducted on a group of 2375 21-to-64-year olds produced similar results. These findings denote that dementia, as measured by deficits in episodic memory, attention/concentration, executive function, and language, differs quantitatively rather than qualitatively from the cognitive status of non-demented adults. The implications of these results for classification, assessment, etiology, and prevention are discussed. PMID:20677881

  20. Continuum Fitting HST QSO Spectra

    NASA Technical Reports Server (NTRS)

    Tytler, David; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The Principal Component Analysis (PCA) method which we are using to fit and describe QSO spectra relies upon the fact that QSO continuum are generally very smooth and simple except for emission and absorption lines. To see this we need high signal-to-noise (S/N) spectra of QSOs at low redshift which have relatively few absorption lines in the Lyman-a forest. We need a large number of such spectra to use as the basis set for the PCA analysis which will find the set of principal component spectra which describe the QSO family as a whole. We have found that too few HST spectra have the required S/N and hence we need to supplement them with ground based spectra of QSOs at higher redshift. We have many such spectra and we have been working to make them suitable for this analysis. We have concentrated on this topic since 12/15/01.

  1. Zero-energy states in rotating trapped Bose-Einstein condensates.

    PubMed

    Simula, Tapio

    2013-07-17

    We have calculated low-lying quasiparticle excitation spectra of rotating three-dimensional Bose-Einstein condensates. We find, as opposed to the prediction of hydrodynamic continuum theories, a minimum in the Tkachenko mode spectrum at intermediate rotation frequencies of the harmonic trap. Such a minimum can harbour a Tkachenko quasiparticle with zero excitation energy. We discuss the experimental signatures of such a zero mode.

  2. Continuum channel coupling of shape resonances in N2

    NASA Astrophysics Data System (ADS)

    Poliakoff, E. D.; Kakar, Sandeep; Rosenberg, R. A.

    1992-02-01

    We have measured vibrational branching ratios for 2σ-1u photoionization of N2 in an effort to elucidate fundamental aspects of continuum channel coupling. Calculations have shown that photoejection of a 2σu electron from N2 should be influenced by a shape resonance in the 3σg →ɛσu photoionization channel and that this continuum channel coupling can result in deviations from Franck-Condon behavior for the resulting N+2(B 2Σ+u) ion. In the present study, the N2 molecules are ionized by monochromatic synchrotron radiation (25state. The observed branching ratios are enhanced at hν≊30 eV and we attribute this Franck-Condon breakdown to continuum coupling between the 2σ-1u and 3σ-1g ionization channels. However, our results exhibit significant discrepancies with theory. The areas of agreement and disagreement suggest useful avenues of further study to clarify the nature of continuum channel coupling in molecular photoionization.

  3. Turbulent fluid motion 3: Basic continuum equations

    NASA Technical Reports Server (NTRS)

    Deissler, Robert G.

    1991-01-01

    A derivation of the continuum equations used for the analysis of turbulence is given. These equations include the continuity equation, the Navier-Stokes equations, and the heat transfer or energy equation. An experimental justification for using a continuum approach for the study of turbulence is given.

  4. Novel Continuum Modeling of Crystal Surface Evolution

    NASA Astrophysics Data System (ADS)

    Kandel, Daniel

    2003-03-01

    Below the roughening temperature the evolution of crystal surfaces proceeds by the nucleation, flow and annihilation of discrete atomic steps. The appropriate mathematical model of the evolution of such surfaces is discrete in nature, and consists of coupled equations for the motion, nucelation and annihilation of steps. It is useful, however, to describe surface evolution in terms of continuum models. Such models are more amenable to analytical treatments and have enormous computational advantages over their discrete counterparts. Standard continuum models successfully describe the evolution of surfaces with smooth morphology, but completely fail when the surface has singularities such as facets. It is an interesting and important challenge to develop continuum descriptions of surfaces with singularities, since in many cases the singularities drive the evolution of the whole system. In the talk I will present a conceptually new approach to continuum modeling of surface evolution, termed Configurational Continuum [1], which is valid even in singular regions. The approach consists of a new definition of the continuum limit. It is equivalent to standard continuum for very smooth morphology, but is radically different from it in singular regions, where it becomes equivalent to the discrete models. The validity of configurational continuum will be demonstrated on several simple systems. [1] N. Israeli and D. Kandel, Phys. Rev. Lett. 88, 116103 (2002).

  5. Lattice continuum and diffusional creep

    NASA Astrophysics Data System (ADS)

    Mesarovic, Sinisa Dj.

    2016-04-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro-Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro-Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate.

  6. Lattice continuum and diffusional creep

    PubMed Central

    2016-01-01

    Diffusional creep is characterized by growth/disappearance of lattice planes at the crystal boundaries that serve as sources/sinks of vacancies, and by diffusion of vacancies. The lattice continuum theory developed here represents a natural and intuitive framework for the analysis of diffusion in crystals and lattice growth/loss at the boundaries. The formulation includes the definition of the Lagrangian reference configuration for the newly created lattice, the transport theorem and the definition of the creep rate tensor for a polycrystal as a piecewise uniform, discontinuous field. The values associated with each crystalline grain are related to the normal diffusional flux at grain boundaries. The governing equations for Nabarro–Herring creep are derived with coupled diffusion and elasticity with compositional eigenstrain. Both, bulk diffusional dissipation and boundary dissipation accompanying vacancy nucleation and absorption, are considered, but the latter is found to be negligible. For periodic arrangements of grains, diffusion formally decouples from elasticity but at the cost of a complicated boundary condition. The equilibrium of deviatorically stressed polycrystals is impossible without inclusion of interface energies. The secondary creep rate estimates correspond to the standard Nabarro–Herring model, and the volumetric creep is small. The initial (primary) creep rate is estimated to be much larger than the secondary creep rate. PMID:27274696

  7. Large-scale continuum random-phase approximation predictions of dipole strength for astrophysical applications

    NASA Astrophysics Data System (ADS)

    Daoutidis, I.; Goriely, S.

    2012-09-01

    Large-scale calculations of the E1 strength are performed within the random phase approximation (RPA) based on the relativistic point-coupling mean field approach in order to derive the radiative neutron capture cross sections for all nuclei of astrophysical interest. While the coupling to the single-particle continuum is taken into account in an explicit and self-consistent way, additional corrections like the coupling to complex configurations and the temperature and deformation effects are included in a phenomenological way to account for a complete description of the nuclear dynamical problem. It is shown that the resulting E1-strength function based on the PCF1 force is in close agreement with photoabsorption data as well as the available experimental E1 strength data at low energies. For neutron-rich nuclei, as well as light neutron-deficient nuclei, a low-lying so-called pygmy resonance is found systematically in the 5-10 MeV region. The corresponding strength can reach 10% of the giant dipole strength in the neutron-rich region and about 5% in the neutron-deficient region, and is found to be reduced in the vicinity of the shell closures. Finally, the neutron capture reaction rates of neutron-rich nuclei is found to be about 2-5 times larger than those predicted on the basis of the nonrelativistic RPA calculation and about a factor 50 larger than obtained with traditional Lorentzian-type approaches.

  8. Analysis of an optimization-based atomistic-to-continuum coupling method for point defects

    DOE PAGES

    Olson, Derek; Shapeev, Alexander V.; Bochev, Pavel B.; ...

    2015-11-16

    Here, we formulate and analyze an optimization-based Atomistic-to-Continuum (AtC) coupling method for problems with point defects. Application of a potential-based atomistic model near the defect core enables accurate simulation of the defect. Away from the core, where site energies become nearly independent of the lattice position, the method switches to a more efficient continuum model. The two models are merged by minimizing the mismatch of their states on an overlap region, subject to the atomistic and continuum force balance equations acting independently in their domains. We prove that the optimization problem is well-posed and establish error estimates.

  9. Continuum methods in lattice perturbation theory

    SciTech Connect

    Becher, Thomas G

    2002-11-15

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions.

  10. Periodic amplitude variations in Jovian continuum radiation

    NASA Technical Reports Server (NTRS)

    Kurth, W. S.; Gurnett, D. A.; Scarf, F. L.

    1986-01-01

    An analysis of periodic variations in the amplitude of continuum radiation near 3 kHz trapped in the Jovian magnetosphere shows structure with periods near both five and ten hours. Contrary to a plausible initial idea, the continuum amplitudes are not organized by position of the observer relative to the dense plasma sheet. Instead, there seem to be preferred orientations of system III longitude with respect to the direction to the sun which account for the peaks. This implies a clock-like modulation of the continuum radiation intensity as opposed to a searchlight effect. The importance of the dipole longitude-solar wind alignment to the amplitude of the continuum radiation implies the source region of the radiation is near the magnetopause and may indirectly tie the generation of the radio waves to the clocklike modulation of energetic electron fluxes from Jupiter.

  11. A continuum model of nanocrystalline metals under shock loading

    NASA Astrophysics Data System (ADS)

    Jérusalem, Antoine; Radovitzky, Raúl

    2009-03-01

    Recent atomistic simulations have shown that grain boundary sliding in nanocrystals is altered under shock loading conditions. It is found that the high state of compression inhibits grain boundary sliding and reactivates intragrain dislocation activity. This leads to higher material strength and postpones the transition between these two deformation mechanisms to smaller grain size. We present here a continuum model aimed at extending the model proposed by Jérusalem et al for quasi-static and high rates (2007 Phil. Mag. 87 2541-59) to shock loading. To this end, the shock response of nanocrystals is investigated by accounting specifically for additional frictional deformation-inhibiting effects. The model is based on a numerical finite element discretization of the polycrystal, considered as a continuum, with embedded surfaces of discontinuity accounting for the grain boundary response. Interface elements are formulated to account for the special kinematics of grain boundaries, i.e. to describe grain boundary frictional sliding and other accommodation mechanisms. The response of grain interiors is modeled with a high rate equation of state for the volumetric response and a simple plasticity model to describe their deviatoric response. A large-scale parallel computing framework is finally developed to calibrate and investigate the specificities of the deformation mechanisms under shock loading conditions, and the results are compared in detail with atomistic results. As a conclusion, this extended three-dimensional continuum model constitutes a promising first step for the characterization of large-scale nanocrystalline deformation under the most complete range of loading rates yet proposed in continuum simulations, namely, from quasi-static to shock loading.

  12. Noise scaling in continuum percolating films

    NASA Astrophysics Data System (ADS)

    Garfunkel, G. A.; Weissman, M. B.

    1985-07-01

    Measurements of the scaling of 1/f noise magnitude versus resistance were made in metal films as the metal was removed by sandblasting. This procedure gives an approximate experimental realization of a Swiss-cheese continuum-percolation model, for which theory indicates some scaling properties very different from lattice percolation. The ratio of the resistance and noise exponents was in strong disagreement with lattice-percolation predictions and agreed approximately with simple continuum predictions.

  13. Geometric continuum regularization of quantum field theory

    SciTech Connect

    Halpern, M.B. . Dept. of Physics)

    1989-11-08

    An overview of the continuum regularization program is given. The program is traced from its roots in stochastic quantization, with emphasis on the examples of regularized gauge theory, the regularized general nonlinear sigma model and regularized quantum gravity. In its coordinate-invariant form, the regularization is seen as entirely geometric: only the supermetric on field deformations is regularized, and the prescription provides universal nonperturbative invariant continuum regularization across all quantum field theory. 54 refs.

  14. Sacrifice Along the Energy Continuum: A Call for Energy Justice

    PubMed Central

    Hernández, Diana

    2016-01-01

    The confluence of energy supply- and demand-side dynamics links vulnerable communities along the spectrum of energy production and consumption. The disproportionate burden borne by vulnerable communities along the energy continuum are seldom examined simultaneously. Yet, from a justice perspective there are important parallels that merit further exploration in the United States and beyond. A first step is to understand links to vulnerability and justice along the energy continuum by way of theoretical constructs and practical applications. The present article posits energy as a social and environmental justice issue and advances our current understanding of the links between energy and vulnerability, particularly in the U.S. context. Drawing on several emerging concepts including, “energy sacrifice zones,” “energy insecurity” and “energy justice,” this article lays a foundation for examining critical sacrifices along the energy continuum. To conclude, four basic rights are proposed as a starting point to achieve recognition and equity for vulnerable populations in the realm of energy. PMID:27053980

  15. Control of density fluctuations in atomistic-continuum simulations of dense liquids

    NASA Astrophysics Data System (ADS)

    Kotsalis, E. M.; Walther, J. H.; Koumoutsakos, P.

    2007-07-01

    We present a control algorithm to eliminate spurious density fluctuations associated with the coupling of atomistic and continuum descriptions for dense liquids. A Schwartz domain decomposition algorithm is employed to couple molecular dynamics for the simulation of the atomistic system with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is usually employed to remedy this situation. We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of the method makes it suitable for any type of coupling between atomistic and continuum descriptions of dense fluids.

  16. Control of density fluctuations in atomistic-continuum simulations of dense liquids.

    PubMed

    Kotsalis, E M; Walther, J H; Koumoutsakos, P

    2007-07-01

    We present a control algorithm to eliminate spurious density fluctuations associated with the coupling of atomistic and continuum descriptions for dense liquids. A Schwartz domain decomposition algorithm is employed to couple molecular dynamics for the simulation of the atomistic system with a continuum solver for the simulation of the Navier-Stokes equations. The lack of periodic boundary conditions in the molecular dynamics simulations hinders the proper accounting for the virial pressure leading to spurious density fluctuations at the continuum-atomistic interface. An ad hoc boundary force is usually employed to remedy this situation. We propose the calculation of this boundary force using a control algorithm that explicitly cancels the density fluctuations. The results demonstrate that the present approach outperforms state-of-the-art algorithms. The conceptual and algorithmic simplicity of the method makes it suitable for any type of coupling between atomistic and continuum descriptions of dense fluids.

  17. Numerical Modelling and Damage Assessment of Rotary Wing Aircraft Cabin Door Using Continuum Damage Mechanics Model

    NASA Astrophysics Data System (ADS)

    Boyina, Gangadhara Rao T.; Rayavarapu, Vijaya Kumar; V. V., Subba Rao

    2017-02-01

    The prediction of ultimate strength remains the main challenge in the simulation of the mechanical response of composite structures. This paper examines continuum damage model to predict the strength and size effects for deformation and failure response of polymer composite laminates when subjected to complex state of stress. The paper also considers how the overall results of the exercise can be applied in design applications. The continuum damage model is described and the resulting prediction of size effects are compared against the standard benchmark solutions. The stress analysis for strength prediction of rotary wing aircraft cabin door is carried out. The goal of this study is to extend the proposed continuum damage model such that it can be accurately predict the failure around stress concentration regions. The finite element-based continuum damage mechanics model can be applied to the structures and components of arbitrary configurations where analytical solutions could not be developed.

  18. Non-Markovian transmission through two quantum dots connected by a continuum

    NASA Astrophysics Data System (ADS)

    Cao, Yunshan; Xu, Luting; Meng, Jianyu; Li, Xin-Qi

    2012-10-01

    We consider a transport setup that contains a double-dot connected by a continuum. Via an exact solution of the time-dependent Schrödinger equation, we demonstrate a highly non-Markovian quantum-coherence-mediated transport through this dot-continuum-dot (DCD) system, which is in contrast with the common premise since in typical case a quantum particle does not reenter the system of interest once it irreversibly decayed into a continuum (such as the spontaneous emission of a photon). We also find that this DCD system supports an unusual steady state with unequal source and drain currents, owing to electrons irreversibly entering the continuum and floating there.

  19. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kibaek

    2017-01-01

    We describe the ignition of an explosive crystal of gamma-phase RDX due to a thermal hot spot with reactive molecular dynamics (RMD), with first-principles trained, reactive force field based molecular potentials that represents an extremely complex reaction network. The RMD simulation is analyzed by sorting molecular product fragments into high and low molecular weight groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation has a single temperature and stress state for the mixture. The continuum simulation that mirrors the atomistic simulation allows us to study the atomistic simulation in the familiar physical chemistry framework and provides an essential, continuum/atomistic link.

  20. Observations of Continuum Depression in Warm Dense Matter with X-Ray Thomson Scattering

    NASA Astrophysics Data System (ADS)

    Fletcher, L. B.; Kritcher, A. L.; Pak, A.; Ma, T.; Döppner, T.; Fortmann, C.; Divol, L.; Jones, O. S.; Landen, O. L.; Scott, H. A.; Vorberger, J.; Chapman, D. A.; Gericke, D. O.; Mattern, B. A.; Seidler, G. T.; Gregori, G.; Falcone, R. W.; Glenzer, S. H.

    2014-04-01

    Detailed measurements of the electron densities, temperatures, and ionization states of compressed CH shells approaching pressures of 50 Mbar are achieved with spectrally resolved x-ray scattering. Laser-produced 9 keV x-rays probe the plasma during the transient state of three-shock coalescence. High signal-to-noise x-ray scattering spectra show direct evidence of continuum depression in highly degenerate warm dense matter states with electron densities ne>1024 cm-3. The measured densities and temperatures agree well with radiation-hydrodynamic modeling when accounting for continuum lowering in calculations that employ detailed configuration accounting.

  1. Self-trapped states in proteins?

    SciTech Connect

    Robert H Austin; Aihua Xie; Lex van der Meer; Michelle D. Shinn; George Neil

    2003-05-14

    We show here that the temperature dependence of the amide I band of myoglobin shows evidence for a low-lying self-trapped state at 6.15 {micro}m. We have conducted a careful set of picosecond pump-probe experiments providing results as a function of temperature and wavelength and show that this low-lying state has a 30 ps lifetime at 50 K, much longer than the relaxation time of the main amide I band at 50 K. Fits of the temperature dependence of thermal occupation of this state yield the result that it lies 280 K below the main amide I band. Since the gap energy of this state is approximately equal to room temperature, this self-trapped state can act as a transient store of vibrational energy at physiological temperatures in biomolecules and can help to direct the path of energy flow in a biomolecule under biological conditions.

  2. Theoretical study on dielectronic recombination of O6+ ions in metastable states

    NASA Astrophysics Data System (ADS)

    Zhao, Li-Bo; Shirai, Toshizo

    2001-11-01

    A computational scheme, based on the theory of the continuum-bound transitions of Bell and Seaton [J. Phys. B 18, 1589 (1985)] and the close-coupling R-matrix approach, has been developed to treat dielectronic recombination (DR) in high-lying resonance-energy regions. This scheme and our presented numerical method to compute DR in low-lying resonance-energy regions [Phys. Rev. A 62, 022706 (2000)] have been applied together to elucidate the experimental spectra of the DR of O6+ ions in the metastable 1s2s 3S and 1s2s 1S states. For comparison, a perturbative theoretical calculation of DR for O6+ has also been accompanied. The reasonable representation of the general dielectronic spectral shape is yielded by both our close-coupling and perturbative calculations. However, both the methods do not reproduce the experimental double-peak structure at ~6-8 eV. This shows that the further investigation on DR of this kind of ions is required both experimentally and theoretically.

  3. Continuum Absorption Coefficient of Atoms and Ions

    NASA Technical Reports Server (NTRS)

    Armaly, B. F.

    1979-01-01

    The rate of heat transfer to the heat shield of a Jupiter probe has been estimated to be one order of magnitude higher than any previously experienced in an outer space exploration program. More than one-third of this heat load is due to an emission of continuum radiation from atoms and ions. The existing computer code for calculating the continuum contribution to the total load utilizes a modified version of Biberman's approximate method. The continuum radiation absorption cross sections of a C - H - O - N ablation system were examined in detail. The present computer code was evaluated and updated by being compared with available exact and approximate calculations and correlations of experimental data. A detailed calculation procedure, which can be applied to other atomic species, is presented. The approximate correlations can be made to agree with the available exact and experimental data.

  4. Defining and testing a granular continuum element

    SciTech Connect

    Rycroft, Chris H.; Kamrin, Ken; Bazant, Martin Z.

    2007-12-03

    Continuum mechanics relies on the fundamental notion of amesoscopic volume "element" in which properties averaged over discreteparticles obey deterministic relationships. Recent work on granularmaterials suggests a continuum law may be inapplicable, revealinginhomogeneities at the particle level, such as force chains and slow cagebreaking. Here, we analyze large-scale Discrete-Element Method (DEM)simulations of different granular flows and show that a "granularelement" can indeed be defined at the scale of dynamical correlations,roughly three to five particle diameters. Its rheology is rather subtle,combining liquid-like dependence on deformation rate and solid-likedependence on strain. Our results confirm some aspects of classicalplasticity theory (e.g., coaxiality of stress and deformation rate),while contradicting others (i.e., incipient yield), and can guide thedevelopment of more realistic continuum models.

  5. Hadron resonances with a quark core embedded in the continuum

    SciTech Connect

    Shimizu, Kiyotaka; Takeuchi, Sachiko; Takizawa, Makoto

    2011-05-06

    We investigate the excited baryons and mesons which cannot be described in terms of a simple constituent quark model, such as {Lambda}(1405) and X(3872) as a resonance in a coupled channel hadron-hadron (baryon-meson or meson-meson) scattering with a 'bound state embedded in the continuum' (BSEC). For this purpose, we solve the Lippmann-Schwinger equation including a BSEC in the momentum space. This BSEC is introduced by hand, as a state not originated from a simple baryon-meson or meson-meson system. We assume it comes from the three-quark state or quark-anti quark state and show such a picture can describe the {Lambda}(1405) and X(3872) resonances.

  6. Modeling angiogenesis: A discrete to continuum description

    NASA Astrophysics Data System (ADS)

    Pillay, Samara; Byrne, Helen M.; Maini, Philip K.

    2017-01-01

    Angiogenesis is the process by which new blood vessels develop from existing vasculature. During angiogenesis, endothelial tip cells migrate via diffusion and chemotaxis, loops form via tip-to-tip and tip-to-sprout anastomosis, new tip cells are produced via branching, and a vessel network forms as endothelial cells follow the paths of tip cells. The latter process is known as the snail trail. We use a mean-field approximation to systematically derive a continuum model from a two-dimensional lattice-based cellular automaton model of angiogenesis in the corneal assay, based on the snail-trail process. From the two-dimensional continuum model, we derive a one-dimensional model which represents angiogenesis in two dimensions. By comparing the discrete and one-dimensional continuum models, we determine how individual cell behavior manifests at the macroscale. In contrast to the phenomenological continuum models in the literature, we find that endothelial cell creation due to tip cell movement (vessel formation via the snail trail) manifests as a source term of tip cells on the macroscale. Further, we find that phenomenological continuum models, which assume that endothelial cell creation is proportional to the flux of tip cells in the direction of increasing chemoattractant concentration, qualitatively capture vessel formation in two dimensions, but must be modified to accurately represent vessel formation. Additionally, we find that anastomosis imposes restrictions on cell density, which, if violated, leads to ill-posedness in our continuum model. We also deduce that self-loops should be excluded when tip-to-sprout anastomosis is active in the discrete model to ensure propagation of the vascular front.

  7. Hydrologic ramifications of an increased role of wildland fire across the rangeland-dry forest continuum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The increased role of wildland fire across the rangeland-dry forest continuum in the western United States (US) presents landscape-scale consequences relative runoff and erosion. Much of the Intermountain West now exists in a state in which rangeland and woodland wildfires stimulated by invasive che...

  8. Decay of a nonlinear impurity in a structured continuum from a nonlinear Fano-Anderson model

    SciTech Connect

    Longhi, Stefano

    2007-05-01

    The decay dynamics of a nonlinear impurity mode embedded in a linear structured continuum is theoretically investigated in the framework of a nonlinear Fano-Anderson model. A gradient flow dynamics for the survival probability is derived in the Van Hove ({lambda}{sup 2}t) limit by a multiple-scale asymptotic analysis, and the role of nonlinearity on the decay law is discussed. In particular, it is shown that the existence of bound states embedded in the continuum acts as transient trapping states which slow down the decay. The dynamical behavior predicted in the {lambda}{sup 2}t limit is studied in detail for a simple tight-binding one-dimensional lattice model, which may describe electron or photon transport in condensed matter or photonic systems. Numerical simulations of the underlying equations confirm, in particular, the trapping effect in the decay process due to bound states embedded in the continuum.

  9. Fluctuation relation based continuum model for thermoviscoplasticity in metals

    NASA Astrophysics Data System (ADS)

    Roy Chowdhury, Shubhankar; Roy, Debasish; Reddy, J. N.; Srinivasa, Arun

    2016-11-01

    A continuum plasticity model for metals is presented from considerations of non-equilibrium thermodynamics. Of specific interest is the application of a fluctuation relation that subsumes the second law of thermodynamics en route to deriving the evolution equations for the internal state variables. The modelling itself is accomplished in a two-temperature framework that appears naturally by considering the thermodynamic system to be composed of two weakly interacting subsystems, viz. a kinetic vibrational subsystem corresponding to the atomic lattice vibrations and a configurational subsystem of the slower degrees of freedom describing the motion of defects in a plastically deforming metal. An apparently physical nature of the present model derives upon considering the dislocation density, which characterizes the configurational subsystem, as a state variable. Unlike the usual constitutive modelling aided by the second law of thermodynamics that merely provides a guideline to select the admissible (though possibly non-unique) processes, the present formalism strictly determines the process or the evolution equations for the thermodynamic states while including the effect of fluctuations. The continuum model accommodates finite deformation and describes plastic deformation in a yield-free setup. The theory here is essentially limited to face-centered cubic metals modelled with a single dislocation density as the internal variable. Limited numerical simulations are presented with validation against relevant experimental data.

  10. The HIV treatment cascade and care continuum: updates, goals, and recommendations for the future.

    PubMed

    Kay, Emma Sophia; Batey, D Scott; Mugavero, Michael J

    2016-01-01

    The HIV care continuum is a framework that models the dynamic stages of HIV care. The continuum consists of five main steps, which, at the population level, are depicted cross-sectionally as the HIV treatment cascade. These steps include diagnosis, linkage to care (LTC), retention in care (RiC), adherence to antiretroviral therapy (ART), and viral suppression. Although the HIV treatment cascade is represented as a linear, unidirectional framework, persons living with HIV (PLWH) often experience the care continuum in a less streamlined fashion, skip steps altogether, or even exit the continuum for a period of time and regress to an earlier stage. The proportion of PLWH decreases at each successive step of the cascade, beginning with an estimated 86% who are diagnosed and dropping dramatically to approximately 30% of PLWH who are virally suppressed in the United States (US). In this current issues review, we describe each step in the cascade, discuss targeted interventions that address weak points in the continuum, review domestic and international policies that help shape and direct HIV care strategies, and conclude with recommendations and future directions for HIV providers and policymakers. While we primarily examine issues related to domestic HIV care in the US, we also discuss international applications of the continuum in order to provide broader context.

  11. Targeting individual excited states in DMRG.

    NASA Astrophysics Data System (ADS)

    Dorando, Jonathan; Hachmann, Johannes; Kin-Lic Chan, Garnet

    2007-03-01

    The low-lying excited states of π-conjugated molecules are important for the development of novel devices such as lasers, light-emitting diodes, photovoltaic cells, and field-effect transistors [1,2]. The ab-intio Density Matrix Renormalization Group (DMRG) provides a powerful way to explore the electronic structure of quasi-one-dimensional systems such as conjugated organic oligomers. However, DMRG is limited to targeting only low-lying excited states through state-averaged DMRG (SDMRG). There are several drawbacks; state-averaging degrades the accuracy of the excited states and is limited to at most a few of the low-lying states [3]. In this study, we present a new method for targeting higher individual excited states. Due to progress in the field of numerical analysis presented by Van Der Horst and others [4], we are able to target individual excited states of the Hamiltonian. This is accomplished by modifying the Jacobi-Davidson algorithm via a ``Harmonic Ritz'' procedure. We will present studies of oligoacenes and polyenes that compare the accuracy of SDMRG and Harmonic Davidson DMRG. [1] Burroughes, et al. , Nature 347, 539 (1990). [2] Shirota, J. Mater. Chem. 10, 1, (2000). [3] Ramasesha, Pati, Krishnamurthy, Shuai, Bredas, Phys. Rev. B. 54, 7598, (1997). [4] Bai, Demmel, Dongarra, Ruhe, Van Der Horst, Templates for the Solution of Algebraic Eigenvalue Problems, SIAM, 2000.

  12. Efficient white-light continuum generation in transparent solid media using ˜250 fs, 1053 nm laser pulses

    NASA Astrophysics Data System (ADS)

    Imran, T.; Figueira, G.

    2010-04-01

    We report white-light continuum generation in solid-state media (fused silica and sapphire) using seed pulses centered at 1053 nm and at a repetition rate of 10 Hz. We have investigated the influence of different parameters, such as changing the focal position and the energy of the incident pulse within the medium to obtain optimal white-light continuum. Preliminary results indicate that for intense laser pulses, waist position inside the media and input energy are crucial for high efficiency white-light continuum generation over the wavelength range 400-1100 nm. It was also found that pulses centered at 1053 nm generate a flatter spectrum, with higher white-light continuum efficiency. Such a flat response over a broad bandwidth in the continuum has the potential to be efficiently compressed to shorter durations.

  13. Electron impact excitation of the low-lying 3s[3/2]{sub 1} and 3s{sup ′}[1/2]{sub 1} levels in neon for incident energies between 20 and 300 eV

    SciTech Connect

    Hoshino, M. Murai, H.; Kato, H.; Tanaka, H.; Brunger, M. J.; Itikawa, Y.

    2013-11-14

    Absolute differential cross sections (DCSs) for electron impact of the two lower-lying 3s[3/2]{sub 1} ({sup 3}P{sub 0}) and 3s{sup ′}[1/2]{sub 1} ({sup 1}P{sub 1}) electronic states in neon (Ne) have been determined for eight incident electron energies in the range 20–300 eV. Comparisons between our results and previous measurements and calculations, where possible, are provided with best agreement being found with the recent large-scale B-spline R-matrix computations [O. Zatsarinny and K. Bartschat, Phys. Rev. A 86, 022717 (2012)]. Based on these DCSs at 100, 200, and 300 eV, a generalised oscillator strength analysis enabled us to determine estimates for the optical oscillator strengths of the 3s[3/2]{sub 1} and 3s{sup ′}[1/2]{sub 1} levels. In this case, excellent agreement was found with a range of independent experiments and calculations, giving us some confidence in the validity of our measurement and analysis procedures. Integral cross sections, derived from the present DCSs, were presented graphically and discussed elsewhere [M. Hoshino, H. Murai, H. Kato, Y. Itikawa, M. J. Brunger, and H. Tanaka, Chem. Phys. Lett. 585, 33 (2013)], but are tabulated here for completeness.

  14. Mentorship: The Education-Research Continuum

    SciTech Connect

    Correll, D

    2008-05-29

    recommendation for learning science stated: 'The Nature of Science includes the scientific world view, scientific methods of inquiry, and the nature of the scientific enterprise'. All three elements of the 'Nature of Science' are pivotal aspects of a research internship under the mentorship of an experienced and trusted advisor. In addition to internships for undergraduates, an important ingredient in realizing 'Science for All' is collaboration involving educators and scientists as they engage science students and the public at large to promote science literacy and to develop the next generation of STEM professionals. The DOE National Laboratories, individually and collectively, form an ideal nexus for nurturing these complementary collaborations. My 'Science for All' experiences at Lawrence Livermore National Laboratory (LLNL) over the last 30 years have spanned pre-college, college, and postdoctoral activities, including mentoring of undergraduate students. Early in my mentoring career, I became aware that undergraduates in particular needed help in answering the question 'what path (or paths) will lead to a challenging and rewarding STEM career'? For many, a successful path included a research internship that would result in expanded skills and training in addition to those received from their academic education. These internship skills were helpful whether the student's next Education-Research Continuum decision was graduate school or STEM employment. My experience at LLNL mirrors that of my colleagues at other DOE National Laboratories--internships with a dedicated mentor provide undergraduates with a unique set of skills that can underpin their future options and serve to improve the number, quality, and successful outcomes of students who enter STEM careers. 'Science for All' can also be found in the goals of 'The America COMPETES Act', which call for renewed efforts to increase investments in scientific research and development, strengthen education, and encourage

  15. A Multiscale Morphing Continuum Description for Turbulence

    NASA Astrophysics Data System (ADS)

    Chen, James; Wonnell, Louis

    2015-11-01

    Turbulence is a flow physics phenomena invlolving multiple length scales. The popular Navier- Stokes equations only possess one length/time scale. Therefore, extremely fine mesh is needed for DNS attempting to resolve the small scale motion, which comes with a burden of excessive computational cost. For practical application with complex geometries, the research society rely on RANS and LES, which requre turbulence model or subgrid scale (SGS) model for closure problems. Different models not only lead to different results but usually are invalidated on solid physical grounds, such as objectivity and entropy principle.The Morphing Continuum Theory (MCT) is a high-order continuum theory formulated under the framework of thermalmechanics for physics phenomena involving microstructure. In this study, a theoretical perspective for the multiscale nature of the Morphing Continuum Theory is connected with the multiscale nature of turbulence physics. The kinematics, balance laws, constitutive equations and a Morphing Continuum description of turbulence are introduced. The equations were numerically implemented for a zero pressure gradient flat plate. The simulations are compate with the laminar, transitional and turbulence cases.

  16. Parental Involvement to Parental Engagement: A Continuum

    ERIC Educational Resources Information Center

    Goodall, Janet; Montgomery, Caroline

    2014-01-01

    Based on the literature of the field, this article traces a continuum between parental involvement with schools, and parental engagement with children's learning. The article seeks to shed light on an area of confusion; previous research has shown that different stakeholder groups understand "parental engagement" in different ways.…

  17. Language Attitudes in a Creole Continuum.

    ERIC Educational Resources Information Center

    Rickford, John R.

    The standard view of language attitudes in a creole continuum is that the creole is considered bad and the standard language is considered good. This standard view fits with the theory of decreolization by which such continua are thought to have come about. A study was carried out in Guyana in an effort to overcome the perceived limitations of the…

  18. Radio continuum from FU Orionis stars

    SciTech Connect

    Rodriguez, L.F.; Hartmann, L.W.; Chavira, E. Harvard-Smithsonian Center for Astrophysics, Cambridge, MA Instituto Nacional de Astrofisica, Optica y Electronica, Puebla )

    1990-12-01

    Using the very large array a sensitive search is conducted for 3.6-cm continuum emission toward four FU Orionis objects: FU Ori, V1515 Cyg, V1057 Cyg, and Elias 1-12. V1057 Cyg and Elias 1-12 at the level of about 0.1 mJy is detected. The association of radio continuum emission with these FU Ori objects strengthens a possible relation between FU Ori stars and objects like L 1551 IRS 5 and Z CMa that are also sources of radio continuum emission and have been proposed as post-FU Ori objects. Whether the radio continuum emission is caused by free-free emission from ionized ejecta or if it is optically thin emission from a dusty disk is discussed. It was determined that, in the archives of the Tonantzintla Observatory, a plate taken in 1957 does not show Elias 1-12. This result significantly narrows the time range for the epoch of the outburst of this source to between 1957 and 1965. 38 refs.

  19. Continuum modeling of large lattice structures: Status and projections

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K.; Mikulas, Martin M., Jr.

    1988-01-01

    The status and some recent developments of continuum modeling for large repetitive lattice structures are summarized. Discussion focuses on a number of aspects including definition of an effective substitute continuum; characterization of the continuum model; and the different approaches for generating the properties of the continuum, namely, the constitutive matrix, the matrix of mass densities, and the matrix of thermal coefficients. Also, a simple approach is presented for generating the continuum properties. The approach can be used to generate analytic and/or numerical values of the continuum properties.

  20. PT-symmetry breaking with divergent potentials: Lattice and continuum cases

    NASA Astrophysics Data System (ADS)

    Joglekar, Yogesh N.; Scott, Derek D.; Saxena, Avadh

    2014-09-01

    We investigate the parity- and time-reversal (PT-) symmetry breaking in lattice models in the presence of long-ranged, non-Hermitian, PT-symmetric potentials that remain finite or become divergent in the continuum limit. By scaling analysis of the fragile PT threshold for an open finite lattice, we show that continuum loss-gain potentials Vα(x)∝i|x|αsgn(x) have a positive PT-breaking threshold for α >-2, and a zero threshold for α ≤-2. When α <0 localized states with complex (conjugate) energies in the continuum energy band occur at higher loss-gain strengths. We investigate the signatures of PT-symmetry breaking in coupled waveguides, and show that the emergence of localized states dramatically shortens the relevant time scale in the PT-symmetry broken region.

  1. Nucleon-pair states of even-even N =82 isotones

    NASA Astrophysics Data System (ADS)

    Cheng, Y. Y.; Zhao, Y. M.; Arima, A.

    2016-08-01

    In this paper we study low-lying states of five N =82 isotones, 134Te, 136Xe, 138Ba, 140Ce and 142Nd, within the framework of the nucleon-pair approximation (NPA). For the low-lying yrast states of 136Xe and 138Ba, we calculate the overlaps between the wave functions obtained in the full shell-model (SM) space and those obtained in the truncated NPA space, and find that most of these overlaps are very close to 1. Very interestingly and surprisingly, for most of these yrast states, the SM wave functions are found to be well approximated by one-dimensional, optimized pair basis states, which indicates a simple picture of "nucleon-pair states". The positive-parity yrast states with spin J >6 in these nuclei, as well as the 82+ state, are found to be well described by breaking one or two S pair(s) of the 61+ or 62+ state (low-lying, seniority-two, spin-maximum, and positive-parity); similarly, negative-parity yrast states with spin J >9 are well represented by breaking one or two S pair(s) of the 91- state (low-lying, seniority-two, spin-maximum, and negative-parity). It is shown that the low-lying negative-parity yrast states of 136Xe and 138Ba are reasonably described to be one-octupole-phonon excited states. The evolution of the 61+ and 62+ states for the five isotones are also systematically investigated.

  2. Multiscale gas-kinetic simulation for continuum and near-continuum flows.

    PubMed

    Xu, Kun; Liu, Hongwei

    2007-01-01

    It is well known that for increasingly rarefied flow fields, predictions from continuum formulations, such as the Navier-Stokes equations, lose accuracy. The inclusion of higher-order terms, such as Burnett or high-order moment equations, could improve the predictive capabilities of such continuum formulations, but there has been only limited success. Here, we present a multiscale model. On the macroscopic level, the flow variables are updated based on the mass, momentum, and energy conservation through the fluxes. On the other hand, the fluxes are constructed on the microscopic level based on the gas-kinetic equation, which is valid in both continuum and near-continuum flow regimes. Based on this model, the nonequilibrium shock structure, Poiseuille flow, nonlinear heat conduction problems, and unsteady Rayleigh problem will be studied. In the near-continuum flow regime, the current gas-kinetic simulation is more efficient than microscopic methods, such as the direction Boltzmann solver and direct-simulation Monte Carlo method. In the continuum flow limit, the current formulation will go back to the gas-kinetic Navier-Stokes flow solver automatically.

  3. Mirrored continuum and molecular scale simulations of the ignition of gamma phase RDX

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Chaudhuri, Santanu; Joshi, Kaushik; Lee, Kiabek

    2015-06-01

    We consider the ignition of a high-pressure gamma-phase of an explosive crystal of RDX which forms during overdriven shock initiation. Molecular dynamics (MD), with first-principles based or reactive force field based molecular potentials, provides a description of the chemistry as an extremely complex reaction network. The results of the molecular simulation is analyzed by sorting molecular product fragments into high and low molecular groups, to represent identifiable components that can be interpreted by a continuum model. A continuum model based on a Gibbs formulation, that has a single temperature and stress state for the mixture is used to represent the same RDX material and its chemistry. Each component in the continuum model has a corresponding Gibbs continuum potential, that are in turn inferred from molecular MD informed equation of state libraries such as CHEETAH, or are directly simulated by Monte Carlo MD simulations. Information about transport, kinetic rates and diffusion are derived from the MD simulation and the growth of a reactive hot spot in the RDX is studied with both simulations that mirror the other results to provide an essential, continuum/atomistic link. Supported by N000014-12-1-0555, subaward-36561937 (ONR).

  4. Isomeric states in 253No

    NASA Astrophysics Data System (ADS)

    Lopez-Martens, A.; Hauschild, K.; Yeremin, A. V.; Dorvaux, O.; Belozerov, A. V.; Briançon, Ch.; Chelnokov, M. L.; Chepigin, V. I.; Curien, D.; Désesquelles, P.; Gall, B.; Gorshkov, V. A.; Guttormsen, M.; Hanappe, F.; Kabachenko, A. P.; Khalfallah, F.; Korichi, A.; Larsen, A. C.; Malyshev, O. N.; Minkova, A.; Oganessian, Yu. Ts.; Popeko, A. G.; Rousseau, M.; Rowley, N.; Sagaidak, R. N.; Sharo, S.; Shutov, A. V.; Siem, S.; Stuttgé, L.; Svirikhin, A. I.; Syed, N. U. H.; Theisen, Ch.

    2007-06-01

    Isomeric states in 253No have been investigated by conversion electron and γ -ray spectroscopy with the GABRIELA detection system. The 31μs isomer reported more than 30 years ago is found to decay to the ground state of 253No by the emission of a 167keV M2 transition. The spin and parity of this low-lying isomeric state are established to be 5/2+ . The presence of another longer-lived isomeric state is also discussed.

  5. Lattice Boltzmann equation method for multiple immiscible continuum fluids.

    PubMed

    Spencer, T J; Halliday, I; Care, C M

    2010-12-01

    This paper generalizes the two-component algorithm of Sec. , extending it, in Sec. , to describe N>2 mutually immiscible fluids in the isothermal continuum regime. Each fluid has an independent interfacial tension. While retaining all its computational advantages, we remove entirely the empiricism associated with contact behavior in our previous multiple immiscible fluid models [M. M. Dupin, Phys. Rev. E 73, 055701(R) (2006); Med. Eng. Phys. 28, 13 (2006)] while solidifying the physical foundations. Moreover, the model relies upon a fluid-fluid segregation which is simpler, computationally faster, more free of artifacts (i.e., the interfacial microcurrent), and upon an interface-inducing force distribution which is analytic. The method is completely symmetric between any numbers of immiscible fluids and stable over a wide range of directly input interfacial tension. We present data on the steady-state properties of multiple interface model, which are in good agreement with theory [R. E. Johnson and S. S. Sadhal, Annu. Rev. Fluid Mech. 17, 289 (1985)], specifically on the shapes of multidrop systems. Section is an analysis of the kinetic and continuum-scale descriptions of the underlying two-component lattice Boltzmann model for immiscible fluids, extendable to more than two immiscible fluids. This extension requires (i) the use of a more local kinetic equation perturbation which is (ii) free from a reliance on measured interfacial curvature. It should be noted that viewed simply as a two-component method, the continuum algorithm is inferior to our previous methods, reported by Lishchuk [Phys. Rev. E 67, 036701 (2003)] and Halliday [Phys. Rev. E 76, 026708 (2007)]. Greater stability and parameter range is achieved in multiple drop simulations by using the forced multi-relaxation-time lattice Boltzmann method developed, along with (for completeness) a forced exactly incompressible Bhatnagar-Gross-Krook lattice Boltzmann model, in the Appendix. These appended schemes

  6. The South Carolina rural-urban HIV continuum of care.

    PubMed

    Edun, Babatunde; Iyer, Medha; Albrecht, Helmut; Weissman, Sharon

    2016-12-16

    The HIV continuum of care model is widely used by various agencies to describe the HIV epidemic in stages from diagnosis through to virologic suppression. It identifies the various points at which persons living with HIV (PLWHIV) within a population fail to reach their next step in HIV care. The rural population in the Southern United States is disproportionally affected by the HIV epidemic. The purpose of this study was to examine these rural-urban disparities using the HIV care continuum model and determine at what stages these differences become apparent. PLWHIV aged 13 years and older in South Carolina (SC) were identified using data from the enhanced HIV/AIDS Reporting System. The percentages of PLWHIV linked to care, retained in care, and virologically suppressed were determined. Rural versus urban residence was determined using the Office of Management and Budget classification. There were 14,523 PLWHIV in SC at the end of 2012; 11,193 (77%) of whom were categorized as urban and 3305 (22%) as rural. There was no difference between urban and rural for those who had received any care: 64% versus 64% (p = .61); retention in care 53% versus 53% (p = .71); and virologic suppression 49% versus 48% (p = .35), respectively. The SC rural-urban HIV cascade represents the first published cascade of care model using rural versus urban residence. Although significant health care disparities exist between rural and urban residents, there were no major differences between rural and urban residents at the various stages of engagement in HIV care using the HIV continuum of care model.

  7. Continuum of Collaboration: Little Steps for Little Feet

    ERIC Educational Resources Information Center

    Powell, Gwynn M.

    2013-01-01

    This mini-article outlines a continuum of collaboration for faculty within a department of the same discipline. The goal of illustrating this continuum is showcase different stages of collaboration so that faculty members can assess where they are as a collective and consider steps to collaborate more. The separate points along a continuum of…

  8. Mesoscopic and continuum modelling of angiogenesis

    PubMed Central

    Spill, F.; Guerrero, P.; Alarcon, T.; Maini, P. K.; Byrne, H. M.

    2016-01-01

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. PMID:24615007

  9. Robot strings: Long, thin continuum robots

    NASA Astrophysics Data System (ADS)

    Walker, I. D.

    We describe and discuss the development of long, thin, continuous “ string-like” robots aimed at Space exploration missions. These continuous backbone “ continuum” robots are inspired by numerous biological structures, particularly vines, worms, and the tongues of animals such as the anteater. The key novelty is the high length-to-diameter ratio of the robots. This morphology offers penetration into, and exploration of, significantly narrower and deeper environments than accessible using current robot technology. In this paper, we introduce new design alternatives for long thin continuum robots, based on an analysis and extension of three core existing continuum robot design types. The designs are evaluated based on their mechanical feasibility, structural properties, kinematic simplicity, and degrees of freedom.

  10. Models of Uranium continuum radio emission

    NASA Technical Reports Server (NTRS)

    Romig, Joseph H.; Evans, David R.; Sawyer, Constance B.; Schweitzer, Andrea E.; Warwick, James W.

    1987-01-01

    Uranium continuum radio emission detected by the Voyager 2 Planetary Radio Astronomy experiment during the January 1986 encounter is considered. The continuum emissions comprised four components (equatorial emissions, anomaly emissions, strong nightside emissions, and weak nightside emissions) associated with different sources. The equatorial emissions appeared most prominently during the days before closest approach and extended from 40 kHz or below to about 120 kHz. The anomaly emissions were seen about 12 hours before closest approach and extended to about 250 kHz. The agreement found between Miranda's phase and strong radio emission at 20.4 kHz, just after closest approach, suggests intense dynamic activity on the Miranda L shell.

  11. Continuum Statistics of the Airy2 Process

    NASA Astrophysics Data System (ADS)

    Corwin, Ivan; Quastel, Jeremy; Remenik, Daniel

    2013-01-01

    We develop an exact determinantal formula for the probability that the Airy_2 process is bounded by a function g on a finite interval. As an application, we provide a direct proof that {sup({A}2(x)-x^2)} is distributed as a GOE random variable. Both the continuum formula and the GOE result have applications in the study of the end point of an unconstrained directed polymer in a disordered environment. We explain Johansson's (Commun. Math. Phys. 242(1-2):277-329, 2003) observation that the GOE result follows from this polymer interpretation and exact results within that field. In a companion paper (Moreno Flores et al. in Commun. Math. Phys. 2012) these continuum statistics are used to compute the distribution of the endpoint of directed polymers.

  12. Entropic formulation of relativistic continuum mechanics.

    PubMed

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    An entropic formulation of relativistic continuum mechanics is developed in the Landau-Lifshitz frame. We introduce two spatial scales, one being the small scale representing the linear size of each material particle and the other the large scale representing the linear size of a large system which consists of material particles and is to linearly regress to the equilibrium. We propose a local functional which is expected to represent the total entropy of the larger system and require the entropy functional to be maximized in the process of linear regression. We show that Onsager's original idea on linear regression can then be realized explicitly as current conservations with dissipative currents in the desired form. We demonstrate the effectiveness of this formulation by showing that one can treat a wide class of relativistic continuum materials, including standard relativistic viscous fluids and relativistic viscoelastic materials.

  13. Automatic continuum analysis of reflectance spectra

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; King, Trude V. V.

    1987-01-01

    A continuum algorithm based on a Segmented Upper Hull method (SUH) is described. An upper hull is performed on segments of a spectrum defined by local minima and maxima. The segments making a complete spectrum are then combined. The definition of the upper hull allows the continuum to be both concave and/or convex, adapting to the shape of the spectrum. The method performs multiple passes on a spectrum by segmenting each local maximum to minimum and performing an upper hull. The algorithm naturally adapts to the widths of absorption features, so that all features are found, including the nature of doublets, triplets, etc. The algorithm is also reasonably fast on common minicomputers so that it might be applied to the large data sets from imaging spectrometers.

  14. Steering continuum electron dynamics by low-energy attosecond streaking

    NASA Astrophysics Data System (ADS)

    Geng, Ji-Wei; Xiong, Wei-Hao; Xiao, Xiang-Ru; Gong, Qihuang; Peng, Liang-You

    2016-08-01

    A semiclassical model is developed to understand the electronic dynamics in the low-energy attosecond streaking. Under a relatively strong infrared (IR) pulse, the low-energy part of photoelectrons initialized by a single attosecond pulse (SAP) can either rescatter with the ionic core and induce interferences structures in the momentum spectra of the ionized electrons or be recaptured into the Rydberg states. The Coulomb potential plays essential roles in both the electron rescattering and recapturing processes. We find that by changing the time delay between the SAP and the IR pulse, the photoelectrons yield or the population of the Rydberg states can be effectively controlled. The present study demonstrates a fascinating way to steer the electron motion in the continuum.

  15. A continuum model of a multilayer nanosheet

    NASA Astrophysics Data System (ADS)

    Morozov, N. F.; Tovstik, P. E.; Tovstik, T. P.

    2016-11-01

    A continuum model for describing the bending and free vibrations of a crystalline graphite sheet consisting of graphene layers is proposed. Graphene is modeled by a two-dimensional layer having a finite rigidity under extension and bending. The interval between graphene layers through which their Van-der-Waals interaction occurs is modeled by a fictitious layer with relatively low rigidity. In the solution, formulas describing the bending of a multilayer sheet with alternating rigid and soft layers are used.

  16. Lattice Boltzmann algorithm for continuum multicomponent flow

    NASA Astrophysics Data System (ADS)

    Halliday, I.; Hollis, A. P.; Care, C. M.

    2007-08-01

    We present a multicomponent lattice Boltzmann simulation for continuum fluid mechanics, paying particular attention to the component segregation part of the underlying algorithm. In the principal result of this paper, the dynamics of a component index, or phase field, is obtained for a segregation method after U. D’Ortona [Phys. Rev. E 51, 3718 (1995)], due to Latva-Kokko and Rothman [Phys. Rev. E 71 056702 (2005)]. The said dynamics accord with a simulation designed to address multicomponent flow in the continuum approximation and underwrite improved simulation performance in two main ways: (i) by reducing the interfacial microcurrent activity considerably and (ii) by facilitating simulational access to regimes of flow with a low capillary number and drop Reynolds number [I. Halliday, R. Law, C. M. Care, and A. Hollis, Phys. Rev. E 73, 056708 (2006)]. The component segregation method studied, used in conjunction with Lishchuk’s method [S. V. Lishchuk, C. M. Care, and I. Halliday, Phys. Rev. E 67, 036701 (2003)], produces an interface, which is distributed in terms of its component index; however, the hydrodynamic boundary conditions which emerge are shown to support the notion of a sharp, unstructured, continuum interface.

  17. Polymer Fluid Dynamics: Continuum and Molecular Approaches.

    PubMed

    Bird, R B; Giacomin, A J

    2016-06-07

    To solve problems in polymer fluid dynamics, one needs the equations of continuity, motion, and energy. The last two equations contain the stress tensor and the heat-flux vector for the material. There are two ways to formulate the stress tensor: (a) One can write a continuum expression for the stress tensor in terms of kinematic tensors, or (b) one can select a molecular model that represents the polymer molecule and then develop an expression for the stress tensor from kinetic theory. The advantage of the kinetic theory approach is that one gets information about the relation between the molecular structure of the polymers and the rheological properties. We restrict the discussion primarily to the simplest stress tensor expressions or constitutive equations containing from two to four adjustable parameters, although we do indicate how these formulations may be extended to give more complicated expressions. We also explore how these simplest expressions are recovered as special cases of a more general framework, the Oldroyd 8-constant model. Studying the simplest models allows us to discover which types of empiricisms or molecular models seem to be worth investigating further. We also explore equivalences between continuum and molecular approaches. We restrict the discussion to several types of simple flows, such as shearing flows and extensional flows, which are of greatest importance in industrial operations. Furthermore, if these simple flows cannot be well described by continuum or molecular models, then it is not necessary to lavish time and energy to apply them to more complex flow problems.

  18. Bipotential continuum models for granular mechanics

    NASA Astrophysics Data System (ADS)

    Goddard, Joe

    2014-03-01

    Most currently popular continuum models for granular media are special cases of a generalized Maxwell fluid model, which describes the evolution of stress and internal variables such as granular particle fraction and fabric,in terms of imposed strain rate. It is shown how such models can be obtained from two scalar potentials, a standard elastic free energy and a ``dissipation potential'' given rigorously by the mathematical theory of Edelen. This allows for a relatively easy derivation of properly invariant continuum models for granular media and fluid-particle suspensions within a thermodynamically consistent framework. The resulting continuum models encompass all the prominent regimes of granular flow, ranging from the quasi-static to rapidly sheared, and are readily extended to include higher-gradient or Cosserat effects. Models involving stress diffusion, such as that proposed recently by Kamrin and Koval (PRL 108 178301), provide an alternative approach that is mentioned in passing. This paper provides a brief overview of a forthcoming review articles by the speaker (The Princeton Companion to Applied Mathematics, and Appl. Mech. Rev.,in the press, 2013).

  19. Improvements in continuum modeling for biomolecular systems

    NASA Astrophysics Data System (ADS)

    Yu, Qiao; Ben-Zhuo, Lu

    2016-01-01

    Modeling of biomolecular systems plays an essential role in understanding biological processes, such as ionic flow across channels, protein modification or interaction, and cell signaling. The continuum model described by the Poisson- Boltzmann (PB)/Poisson-Nernst-Planck (PNP) equations has made great contributions towards simulation of these processes. However, the model has shortcomings in its commonly used form and cannot capture (or cannot accurately capture) some important physical properties of the biological systems. Considerable efforts have been made to improve the continuum model to account for discrete particle interactions and to make progress in numerical methods to provide accurate and efficient simulations. This review will summarize recent main improvements in continuum modeling for biomolecular systems, with focus on the size-modified models, the coupling of the classical density functional theory and the PNP equations, the coupling of polar and nonpolar interactions, and numerical progress. Project supported by the National Natural Science Foundation of China (Grant No. 91230106) and the Chinese Academy of Sciences Program for Cross & Cooperative Team of the Science & Technology Innovation.

  20. Hydrodynamic fluctuations in a particle-continuum hybrid for complex fluids

    NASA Astrophysics Data System (ADS)

    Garcia, Alejandro L.; Donev, Aleksandar; Bell, John B.; Alder, Berni J.

    2011-05-01

    A previously-developed hybrid particle-continuum method [J. B. Bell, A. Garcia and S. A. Williams, SIAM Multiscale Modeling and Simulation, 6:1256-1280, 2008] is generalized to dense fluids and two and three dimensional flows. The scheme couples an explicit fluctuating compressible Navier-Stokes solver with the Isotropic Direct Simulation Monte Carlo (DSMC) particle method [A. Donev and A. L. Garcia and B. J. Alder, J. Stat. Mech., 2009(11):P11008, 2009]. To achieve bidirectional dynamic coupling between the particle (microscale) and continuum (macroscale) regions, the continuum solver provides state-based boundary conditions to the particle subdomain, while the particle solver provides flux-based boundary conditions for the continuum subdomain; see [A. Donev, J.B. Bell, A. Garcia, and B. Alder, SIAM Multiscale Modeling and Simulation, 8:871-911, 2010.] for details. This paper summarizes two important numerical tests: First, the equilibrium diffusive (Brownian) motion of a large spherical bead suspended in a particle fluid is examined, demonstrating that the hybrid method correctly reproduces the velocity autocorrelation function of the bead but only if thermal fluctuations are included in the continuum solver. Second, the new scheme is applied to the well-known adiabatic piston problem and we find that it correctly reproduces the slow non-equilibrium relaxation of the piston toward thermodynamic equilibrium but, again, only if the continuum solver includes stochastic (white-noise) flux terms. These two fundamental examples clearly demonstrate the need to include fluctuations in continuum solvers employed in hybrid multiscale methods.

  1. Graduate Medical Education: Its Role in Achieving a True Medical Education Continuum.

    PubMed

    Aschenbrener, Carol A; Ast, Cori; Kirch, Darrell G

    2015-09-01

    Nearly half a century ago, Lowell T. Coggeshall recommended, through what has come to be known as the Coggeshall Report, that physician education-medical school (or undergraduate medical education [UME]), residency training (or graduate medical education [GME]), and continuing medical education (CME)-be "planned and provided as a continuum." While the dream of a true continuum remains unfulfilled, recent innovations focused on defining and assessing meaningful outcomes at last offer the anchor for the creation of a seamless, flexible, and ongoing pathway for the preparation of physicians. Recent innovations, including a widely accepted competency framework and entrustable professional activities (EPAs), provide key tools for creating a continuum. The competency framework is being leveraged in UME, GME, and CME and is serving as the foundation for the continuum. Learners and those who assess them are increasingly relying on observable behaviors (e.g., EPAs) to determine progress. The GME community in the United States and Canada has played-and continues to play-a leading role in the creation of these tools and a true medical education continuum. Despite some systemic challenges to implementation (e.g., premedical learner formation, time-in-step requirements), the GME community is already operationalizing these tools as a basis for other innovations that are improving transitions across the continuum (e.g., competency-based progression of residents). The medical education community's greatest responsibility in the years ahead will be to build on these efforts in GME-joining together to learn from one another and develop a continuum that serves the public and the profession.

  2. The electronic excited states of green fluorescent protein chromophore models

    NASA Astrophysics Data System (ADS)

    Olsen, Seth Carlton

    We explore the properties of quantum chemical approximations to the excited states of model chromophores of the green fluorescent protein of A. victoria. We calculate several low-lying states by several methods of quantum chemical calculation, including state-averaged complete active space SCF (CASSCF) methods, time dependent density functional theory (TDDFT), equation-of motion coupled cluster (EOM-CCSD) and multireference perturbation theory (MRPT). Amongst the low-lying states we identify the optically bright pipi* state of the molecules and examine its properties. We demonstrate that the state is dominated by a single configuration function. We calculate zero-time approximations to the resonance Raman spectrum of GFP chromophore models, and assign published spectra based upon these.

  3. Rural Primary Care Providers' Perceptions of Their Role in the Breast Cancer Care Continuum

    ERIC Educational Resources Information Center

    Rayman, Kathleen M.; Edwards, Joellen

    2010-01-01

    Context: Rural women in the United States experience disparity in breast cancer diagnosis and treatment when compared to their urban counterparts. Given the 11% chance of lifetime occurrence of breast cancer for women overall, the continuum of breast cancer screening, diagnosis, treatment, and recovery are of legitimate concern to rural women and…

  4. Electrophilic, Ambiphilic, and Nucleophilic C-H bond Activation. Understanding the electronic continuum of C-H bond activation through transition-state and reaction pathway interaction energy decompositions

    SciTech Connect

    Ess, Daniel H.; Goddard, William A.; Periana, Roy A.

    2010-10-29

    The potential energy and interaction energy profiles for metal- and metal-ligand-mediated alkane C-H bond activation were explored using B3LYP density functional theory (DFT) and the absolutely localized molecular orbital energy decomposition analysis (ALMO-EDA). The set of complexes explored range from late transition metal group 10 (Pt and Pd) and group 11 (Au) metal centers to group 7-9 (Ir, Rh, Ru, and W) metal centers as well as a group 3 Sc complex. The coordination geometries, electron metal count (d8, d6, d4, and d0), and ligands (N-heterocycles, O-donor, phosphine, and Cp*) are also diverse. Quantitative analysis using ALMO-EDA of both directions of charge-transfer stabilization (occupied to unoccupied orbital stabilization) energies between the metal-ligand fragment and the coordinated C-H bond in the transition state for cleavage of the C-H bond allows classification of C-H activation reactions as electrophilic, ambiphilic, or nucleophilic on the basis of the net direction of charge-transfer energy stabilization. This bonding pattern transcends any specific mechanistic or bonding paradigm, such as oxidative addition, σ-bond metathesis, or substitution. Late transition metals such as Au(III), Pt(II), Pd(II), and Rh(III) metal centers with N-heterocycle, halide, or O-donor ligands show electrophilically dominated reaction profiles with forward charge-transfer from the C-H bond to the metal, leading to more stabilization than reverse charge transfer from the metal to the C-H bond. Transition states and reaction profiles for d6 Ru(II) and Ir(III) metals with Tp and acac ligands were found to have nearly equal forward and reverse charge-transfer energy stabilization. This ambiphilic region also includes the classically labeled electrophilic cationic species Cp*(PMe3)Ir(Me). Nucleophilic character, where the metal to C-H bond charge-transfer interaction is most stabilizing, was found in

  5. Dyson-Schwinger equations : density, temperature and continuum strong QCD.

    SciTech Connect

    Roberts, C. D.; Schmidt, S. M.; Physics

    2000-01-01

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions; and the transition to, and properties of, a quark gluon plasma. We provide a contemporary perspective, couched primarily in terms of the Dyson-Schwinger equations but also making comparisons with other approaches and models. Our discourse provides a practitioners' guide to features of the Dyson-Schwinger equations [such as confinement and dynamical chiral symmetry breaking] and canvasses phenomenological applications to light meson and baryon properties in cold, sparse QCD. These provide the foundation for an extension to hot, dense QCD, which is probed via the introduction of the intensive thermodynamic variables: chemical potential and temperature. We describe order parameters whose evolution signals deconfinement and chiral symmetry restoration, and chronicle their use in demarcating the quark gluon plasma phase boundary and characterizing the plasma's properties. Hadron traits change in an equilibrated plasma. We exemplify this and discuss putative signals of the effects. Finally, since plasma formation is not an equilibrium process, we discuss recent developments in kinetic theory and its application to describing the evolution from a relativistic heavy ion collision to an equilibrated quark gluon plasma.

  6. Minimal continuum theories of structure formation in dense active fluids

    NASA Astrophysics Data System (ADS)

    Dunkel, Jörn; Heidenreich, Sebastian; Bär, Markus; Goldstein, Raymond E.

    2013-04-01

    Self-sustained dynamical phases of living matter can exhibit remarkable similarities over a wide range of scales, from mesoscopic vortex structures in microbial suspensions and motility assays of biopolymers to turbulent large-scale instabilities in flocks of birds or schools of fish. Here, we argue that, in many cases, the phenomenology of such active states can be efficiently described in terms of fourth- and higher-order partial differential equations. Structural transitions in these models can be interpreted as Landau-type kinematic transitions in Fourier (wavenumber) space, suggesting that microscopically different biological systems can share universal long-wavelength features. This general idea is illustrated through numerical simulations for two classes of continuum models for incompressible active fluids: a Swift-Hohenberg-type scalar field theory, and a minimal vector model that extends the classical Toner-Tu theory and appears to be a promising candidate for the quantitative description of dense bacterial suspensions. We discuss how microscopic symmetry-breaking mechanisms can enter macroscopic continuum descriptions of collective microbial motion near surfaces, and conclude by outlining future applications.

  7. Covariant formulation of the governing equations of continuum mechanics in an Eulerian description

    NASA Astrophysics Data System (ADS)

    Schöberl, Markus; Schlacher, Kurt

    2007-05-01

    We present the balance relations for a continuum in the Eulerian formulation in a pure covariant fashion. Based on the analysis of nonrelativistic particle mechanics, we adapt the covariant description to the case of a continuum. The use of the covariant Nijenhuis differential as well as the splitting of the vertical configuration bundle are the key objects that allow a coordinate-free representation. We state the balance equations such that they are valid, also when time variant transformations are applied, which leads to a nontrivial space-time connection and a metric which explicitly depends on the time.

  8. Sexual Orientation: Categories or Continuum? Commentary on Bailey et al. (2016).

    PubMed

    Savin-Williams, Ritch C

    2016-09-01

    Bailey et al. (2016) have provided an excellent, state-of-the-art overview that is a major contribution to our understanding of sexual orientation. However, whereas Bailey and his coauthors have examined the physiological, behavioral, and self-report data of sexual orientation and see categories, I see a sexual and romantic continuum. After noting several objections concerning the limitations of the review and methodological shortcomings characteristic of sexual-orientation research in general, I present evidence from research investigating in-between sexualities to support an alternative, continuum-based perspective regarding the nature of sexual orientation for both women and men. A continuum conceptualization has potential implications for investigating the prevalence of nonheterosexuals, sexual-orientation differences in gender nonconformity, causes of sexual orientation, and political issues.

  9. A robust, coupled approach for atomistic-continuum simulation.

    SciTech Connect

    Aubry, Sylvie; Webb, Edmund Blackburn, III; Wagner, Gregory John; Klein, Patrick A.; Jones, Reese E.; Zimmerman, Jonathan A.; Bammann, Douglas J.; Hoyt, Jeffrey John; Kimmer, Christopher J.

    2004-09-01

    This report is a collection of documents written by the group members of the Engineering Sciences Research Foundation (ESRF), Laboratory Directed Research and Development (LDRD) project titled 'A Robust, Coupled Approach to Atomistic-Continuum Simulation'. Presented in this document is the development of a formulation for performing quasistatic, coupled, atomistic-continuum simulation that includes cross terms in the equilibrium equations that arise due to kinematic coupling and corrections used for the calculation of system potential energy to account for continuum elements that overlap regions containing atomic bonds, evaluations of thermo-mechanical continuum quantities calculated within atomistic simulations including measures of stress, temperature and heat flux, calculation used to determine the appropriate spatial and time averaging necessary to enable these atomistically-defined expressions to have the same physical meaning as their continuum counterparts, and a formulation to quantify a continuum 'temperature field', the first step towards constructing a coupled atomistic-continuum approach capable of finite temperature and dynamic analyses.

  10. Critique of dual continuum formulations of multicomponent reactive transport in fractured porous media

    NASA Astrophysics Data System (ADS)

    Lichtner, Peter C.

    Subsurface flow processes may take place at many different scales. The different scales refer to rock pore structure, microfractures, distinct fracture networks (ranging from small to large fracture spacing), and even faults. Presently, there is no satisfactory methodology for quantitatively describing flow and reactive transport in multiscale media. Approaches commonly applied to model fractured systems include single continuum models (SCM), equivalent continuum models (ECM), discrete fracture models (DFM), and various forms of dual continuum models (DCM). The SCM describes flow in the fracture network only and is valid in the absence of fracture-matrix interaction. The ECM, on the other hand, requires pervasive interaction between fracture and matrix and is based on averaging their properties. The ECM is characterized by equal fracture and matrix solute concentrations, but generally different mineral concentrations. The DFM is perhaps the most rigorous, but would require inordinate computational resources for a highly fractured rock mass. The DCM represents a fractured porous medium as two interacting continuums with one continuum corresponding to the fracture network and the other the matrix. A coupling term provides mass transfer between the two continuums. Values for mineral and solute concentrations and other properties such as liquid saturation state may be assigned individually to fracture and matrix. Two forms of the DCM are considered, characterized by connected and disconnected matrix blocks. The former is referred to as the dual continuum connected matrix (DCCM) model and the latter as the dual continuum disconnected matrix (DCDM) model. In contrast to the DCCM model, in which concentration gradients in the matrix are allowed only parallel to the fracture, the DFM provides for matrix concentration gradients perpendicular to the fracture. The DFM and DCCM models can agree with each other only in the case where both reduce to the ECM. The DCCM model

  11. Modeling yarn slip in woven fabric at the continuum level: Simulations of ballistic impact

    NASA Astrophysics Data System (ADS)

    Parsons, Ethan M.; King, Michael J.; Socrate, Simona

    2013-01-01

    Woven fabric is used in a wide variety of military and commercial products—both in neat form and as the reinforcement phase of composites. In many applications, yarn slip, the relative sliding of the yarns composing the weave, is an important mode of deformation or failure. Yarn slip can significantly change the energy absorption capacity and yarn density of the fabric and also cause yarns to unravel from the weave. Virtually all existing models for woven fabric that allow yarn slip are discrete in nature. They simulate every yarn in the weave and are therefore computationally expensive and difficult to integrate with other material models. A promising alternative to discrete models is the mesostructure-based continuum technique. With this technique, homogenized continuum properties are determined from a deforming analytic model of the fabric mesostructure at each material point. Yarn-level mechanisms of deformation are thus captured without the computational cost of simulating every yarn in the fabric. However, existing mesostructure-based continuum models treat the yarns as pinned together at the cross-over points of the weave, and an operative model that allows yarn slip has not been published. Here, we introduce a mesostructure-based continuum model that permits yarn slip and use the model to simulate the ballistic impact of woven fabric. In our approach, the weave is the continuum substrate on which the model is anchored, and slip of the yarns occurs relative to the weave continuum. The cross-over points of the weave act as the material points of the continuum, and the evolution of the local weave mesostructure at each point of the continuum is represented by state variables. At the same time, slip velocity fields simulate the slip of each yarn family relative to the weave continuum and therefore control the evolution of the yarn pitch. We found that simulating yarn slip significantly improves finite element predictions of the ballistic impact of a Kevlar

  12. Continuum models for epitaxial growth with elasticity

    NASA Astrophysics Data System (ADS)

    Xiang, Yang

    In heteroepitaxial growth, the mismatch between the lattice constants in the film and the substrate causes misfit strain in the film, making a flat surface unstable to small perturbations. This morphological instability is called Asaro-Tiller-Grinfeld (ATG) instability, which can drive the film to self-organize into nanostructures such as quantum wires or quantum dots. At low temperature, the surface consists of steps and facets, when the misfit strain causes step bunching, traditional continuum models for ATG instability does not apply directly. In the first part of this thesis, we derive a PDE model for step bunching by taking the continuum limit of the discrete models proposed by Tersoff et al and Duport et al. We study the linear instability of a uniform step train with small perturbations and compare our results with those of discrete models and continuum models for traditional ATG instability. We numerically study the nonlinear evolution of this instability and compare our results with those of discrete models. We also study the equilibrium shapes of step bunches and explain their coalescence. In the second part of this thesis, we derive a nonlinear approximate PDE for the ATG instability. In the ATG instability, the misfit strain is coupled with surface morphology and an elasticity problem must be solved numerically. Linear approximation is made in some cases such as when computing the equilibrium island shapes. Using the exact solution for a cycloid surface obtained by Chiu and Gao, we find that our nonlinear approximation has a wider range of applicability than linear approximation. Numerical simulation using our nonlinear PDE model predicts formation of a cusp-like surface morphology from initially small perturbations of flat surfaces, which agrees well with the result obtained by Spencer and Meiron by solving the elasticity problem numerically.

  13. Interpreting angina: symptoms along a gender continuum

    PubMed Central

    Crea-Arsenio, Mary; Shannon, Harry S; Velianou, James L; Giacomini, Mita

    2016-01-01

    Background ‘Typical’ angina is often used to describe symptoms common among men, while ‘atypical’ angina is used to describe symptoms common among women, despite a higher prevalence of angina among women. This discrepancy is a source of controversy in cardiac care among women. Objectives To redefine angina by (1) qualitatively comparing angina symptoms and experiences in women and men and (2) to propose a more meaningful construct of angina that integrates a more gender-centred approach. Methods Patients were recruited between July and December 2010 from a tertiary cardiac care centre and interviewed immediately prior to their first angiogram. Symptoms were explored through in-depth semi-structured interviews, transcribed verbatim and analysed concurrently using a modified grounded theory approach. Angiographically significant disease was assessed at ≥70% stenosis of a major epicardial vessel. Results Among 31 total patients, 13 men and 14 women had angiograpically significant CAD. Patients describe angina symptoms according to 6 symptomatic subthemes that array along a ‘gender continuum’. Gender-specific symptoms are anchored at each end of the continuum. At the centre of the continuum, are a remarkably large number of symptoms commonly expressed by both men and women. Conclusions The ‘gender continuum’ offers new insights into angina experiences of angiography candidates. Notably, there is more overlap of shared experiences between men and women than conventionally thought. The gender continuum can help researchers and clinicians contextualise patient symptom reports, avoiding the conventional ‘typical’ versus ‘atypical’ distinction that can misrepresent gendered angina experiences. PMID:27158523

  14. Three-body Coulomb continuum problem

    NASA Astrophysics Data System (ADS)

    Berakdar, J.; Briggs, J. S.

    1994-06-01

    A symmetric representation of the three-body Coulomb continuum wave function as a product of three two-body Coulomb wave functions is modified to allow for three-body effects whereby the Sommerfeld parameter describing the strength of interaction of any two particles is affected by the presence of the third particle. This approach gives excellent agreement with near-threshold absolute (e,2e) ionization cross sections. In particular a recently observed deep minimum in noncoplanar geometry is reproduced for the first time.

  15. Millimeter Continuum Observations Of Disk Solids

    NASA Astrophysics Data System (ADS)

    Andrews, Sean

    2016-07-01

    I will offer a condensed overview of some key issues in protoplanetary disk research that makes use interferometric measurements of the millimeter-wavelength continuum emitted by their solid particles. Several lines of evidence now qualitatively support theoretical models for the growth and migration of disk solids, but also advertise a quantitative tension with the traditional efficiency of that evolution. New observations of small-scale substructures in disks might both reconcile the conflict and shift our focus in the mechanics of planet formation.

  16. Continuum description of avalanches in granular media.

    SciTech Connect

    Aranson, I. S.; Tsimring, L. S.

    2000-12-05

    A continuum theory of partially fluidized granular flows is proposed. The theory is based on a combination of the mass and momentum conservation equations with the order parameter equation which describes the transition between flowing and static components of the granular system. We apply this model to the dynamics of avalanches in chutes. The theory provides a quantitative description of recent observations of granular flows on rough inclined planes (Daerr and Douady 1999): layer bistability, and the transition from triangular avalanches propagating downhill at small inclination angles to balloon-shaped avalanches also propagating uphill for larger angles.

  17. Dust continuum spectra from model HII regions

    NASA Technical Reports Server (NTRS)

    Aannestad, P. A.; Emery, R. J.

    1989-01-01

    The infrared spectrum emitted by nebular dust, heated by the ionizing stars in H II blisters and spherical H II regions, is calculated for various model parameters. Absorption of the non-ionizing radiation in a neutral layer is included. Heating by the Lyman alpha photon field is taken into account. The dust is composed of silicate and graphite grains, and evaporation of the grains in the inner region is considered. The models are presented with a view to interpretation of infrared observations of dusty H II regions and can be applied directly to the infrared astronomy satellite survey data. The continuum emission is compared with calculated fine structure line emission.

  18. Simulations of plasma sheaths using continuum kinetic models

    NASA Astrophysics Data System (ADS)

    Srinivasan, Bhuvana; Hakim, Ammar

    2015-11-01

    Understanding plasma sheath physics is important for the performance of devices such as Hall thrusters due to the effect of energetic particles on electrode erosion. Plasma sheath physics is studied using kinetic and multi-fluid models with relevance to secondary electron emissions and plasma-surface interactions. Continuum kinetic models are developed to directly solve the Vlasov-Poisson equation using the discontinuous Galerkin method for each of the ion and electron species. A steady-state sheath is simulated by including a simple model for a neutral fluid. Multi-fluid simulations for the plasma sheath are also performed using the discontinuous Galerkin method to solve a complete set of fluid equations for each of the ion and electron species. The kinetic plasma sheath is compared to a multi-fluid plasma sheath. Supported by Air Force Office of Scientific Research.

  19. Formative pluripotency: the executive phase in a developmental continuum.

    PubMed

    Smith, Austin

    2017-02-01

    The regulative capability of single cells to give rise to all primary embryonic lineages is termed pluripotency. Observations of fluctuating gene expression and phenotypic heterogeneity in vitro have fostered a conception of pluripotency as an intrinsically metastable and precarious state. However, in the embryo and in defined culture environments the properties of pluripotent cells change in an orderly sequence. Two phases of pluripotency, called naïve and primed, have previously been described. In this Hypothesis article, a third phase, called formative pluripotency, is proposed to exist as part of a developmental continuum between the naïve and primed phases. The formative phase is hypothesised to be enabling for the execution of pluripotency, entailing remodelling of transcriptional, epigenetic, signalling and metabolic networks to constitute multi-lineage competence and responsiveness to specification cues.

  20. Fast convergence to equilibrium for long-chain polymer melts using a MD/continuum hybrid method.

    PubMed

    Senda, Yasuhiro; Fujio, Miyuki; Shimamura, Shuji; Blomqvist, Janne; Nieminen, Risto M

    2012-10-21

    Effective and fast convergence toward an equilibrium state for long-chain polymer melts is realized by a hybrid method coupling molecular dynamics and the elastic continuum. The required simulation time to achieve the equilibrium state is reduced compared with conventional equilibration methods. The polymers move on a wide range phase space due to large-scale fluctuation generated by the elastic continuum. A variety of chain structures is generated in the polymer melt which results in the fast convergence to the equilibrium state.

  1. Atomistic to continuum modeling of solidification microstructures

    SciTech Connect

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked to experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.

  2. Atomistic to continuum modeling of solidification microstructures

    DOE PAGES

    Karma, Alain; Tourret, Damien

    2015-09-26

    We summarize recent advances in modeling of solidification microstructures using computational methods that bridge atomistic to continuum scales. We first discuss progress in atomistic modeling of equilibrium and non-equilibrium solid–liquid interface properties influencing microstructure formation, as well as interface coalescence phenomena influencing the late stages of solidification. The latter is relevant in the context of hot tearing reviewed in the article by M. Rappaz in this issue. We then discuss progress to model microstructures on a continuum scale using phase-field methods. We focus on selected examples in which modeling of 3D cellular and dendritic microstructures has been directly linked tomore » experimental observations. Finally, we discuss a recently introduced coarse-grained dendritic needle network approach to simulate the formation of well-developed dendritic microstructures. The approach reliably bridges the well-separated scales traditionally simulated by phase-field and grain structure models, hence opening new avenues for quantitative modeling of complex intra- and inter-grain dynamical interactions on a grain scale.« less

  3. Continuum robot arms inspired by cephalopods

    NASA Astrophysics Data System (ADS)

    Walker, Ian D.; Dawson, Darren M.; Flash, Tamar; Grasso, Frank W.; Hanlon, Roger T.; Hochner, Binyamin; Kier, William M.; Pagano, Christopher C.; Rahn, Christopher D.; Zhang, Qiming M.

    2005-05-01

    In this paper, we describe our recent results in the development of a new class of soft, continuous backbone ("continuum") robot manipulators. Our work is strongly motivated by the dexterous appendages found in cephalopods, particularly the arms and suckers of octopus, and the arms and tentacles of squid. Our ongoing investigation of these animals reveals interesting and unexpected functional aspects of their structure and behavior. The arrangement and dynamic operation of muscles and connective tissue observed in the arms of a variety of octopus species motivate the underlying design approach for our soft manipulators. These artificial manipulators feature biomimetic actuators, including artificial muscles based on both electro-active polymers (EAP) and pneumatic (McKibben) muscles. They feature a "clean" continuous backbone design, redundant degrees of freedom, and exhibit significant compliance that provides novel operational capacities during environmental interaction and object manipulation. The unusual compliance and redundant degrees of freedom provide strong potential for application to delicate tasks in cluttered and/or unstructured environments. Our aim is to endow these compliant robotic mechanisms with the diverse and dexterous grasping behavior observed in octopuses. To this end, we are conducting fundamental research into the manipulation tactics, sensory biology, and neural control of octopuses. This work in turn leads to novel approaches to motion planning and operator interfaces for the robots. The paper describes the above efforts, along with the results of our development of a series of continuum tentacle-like robots, demonstrating the unique abilities of biologically-inspired design.

  4. Mid-IR super-continuum generation

    NASA Astrophysics Data System (ADS)

    Islam, Mohammed N.; Xia, Chenan; Freeman, Mike J.; Mauricio, Jeremiah; Zakel, Andy; Ke, Kevin; Xu, Zhao; Terry, Fred L., Jr.

    2009-02-01

    A Mid-InfraRed FIber Laser (MIRFIL) has been developed that generates super-continuum covering the spectral range from 0.8 to 4.5 microns with a time-averaged power as high as 10.5W. The MIRFIL is an all-fiber integrated laser with no moving parts and no mode-locked lasers that uses commercial off-the-shelf parts and leverages the mature telecom/fiber optics platform. The MIRFIL power can be easily scaled by changing the repetition rate and modifying the erbium-doped fiber amplifier. Some of the applications using the super-continuum laser will be described in defense, homeland security and healthcare. For example, the MIRFIL is being applied to a catheter-based medical diagnostic system to detect vulnerable plaque, which is responsible for most heart attacks resulting from hardening-of-the-arteries or atherosclerosis. More generally, the MIRFIL can be a platform for selective ablation of lipids without damaging normal protein or smooth muscle tissue.

  5. Ash Dispersal in Planetary Atmospheres: Continuum vs. Non-continuum Effects

    NASA Astrophysics Data System (ADS)

    Fagents, S. A.; Baloga, S. M.; Glaze, L. S.

    2013-12-01

    The dispersal of ash from a volcanic vent on any given planet is dictated by particle properties (density, shape, and size distribution), the intensity of the eruptive source, and the characteristics of the planetary environment (atmospheric structure, wind field, and gravity) into which the ash is erupted. Relating observations of potential pyroclastic deposits to source locations and eruption conditions requires a detailed quantitative understanding of the settling rates of individual particles under changing ambient conditions. For atmospheres that are well described by continuum mechanics, the conventional Newtonian description of particle motion allows particle settling velocities to be related to particle characteristics via a drag coefficient. However, under rarefied atmospheric conditions (i.e., on Mars and at high altitude on Earth), non-continuum effects become important for ash-sized particles, and an equation of motion based on statistical mechanics is required for calculating particle motion. We have developed a rigorous new treatment of particle settling under variable atmospheric conditions and applied it to Earth and Mars. When non-continuum effects are important (as dictated by the mean free path of atmospheric gas relative to the particle size), fall velocities are greater than those calculated by continuum mechanics. When continuum conditions (i.e., higher atmospheric densities) are reached during descent, our model switches to a conventional formulation that determines the appropriate drag coefficient as the particle transits varying atmospheric properties. The variation of settling velocity with altitude allows computation of particle trajectories, fall durations and downwind dispersal. Our theoretical and numerical analyses show that several key, competing factors strongly influence the downwind trajectories of ash particles and the extents of the resulting deposits. These factors include: the shape of the particles (non-spherical particles

  6. Wave functions for continuum states of charged fragments

    NASA Astrophysics Data System (ADS)

    Ward, S. J.; Macek, J. H.

    1994-02-01

    Briggs's representation [Phys. Rev. A 41, 539 (1990)] of the Mo/ller wave operator for multiparticle wave functions is applied to charged fragments using a limiting procedure to correctly account for the slow decrease of Coulomb interactions with distance. Approximate wave functions used to model (e,2e) angular correlation measurments are obtained. Computed and measured angular correlations are compared to clarify the region of applicability of two approximations.

  7. Non-coherent Continuum Scattering as a Line Polarization Mechanism

    NASA Astrophysics Data System (ADS)

    del Pino Alemán, T.; Manso Sainz, R.; Trujillo Bueno, J.

    2014-03-01

    Line scattering polarization can be strongly affected by Rayleigh scattering at neutral hydrogen and Thomson scattering at free electrons. Often a depolarization of the continuum results, but the Doppler redistribution produced by the continuum scatterers, which are light (hence, fast), induces more complex interactions between the polarization in spectral lines and in the continuum. Here we formulate and solve the radiative transfer problem of scattering line polarization with non-coherent continuum scattering consistently. The problem is formulated within the spherical tensor representation of atomic and light polarization. The numerical method of solution is a generalization of the Accelerated Lambda Iteration that is applied to both the atomic system and the radiation field. We show that the redistribution of the spectral line radiation due to the non-coherence of the continuum scattering may modify the shape of the emergent fractional linear polarization patterns significantly, even yielding polarization signals above the continuum level in intrinsically unpolarizable lines.

  8. Continuum capture in the three-body problem

    SciTech Connect

    Sellin, I A

    1980-01-01

    The three-body problem, especially the problem of electron capture to the continuum in heavy particle collisions is reviewed. Major topics covered include: second born-induced asymmetry in electron capture to the continuum; historical context, links to other tests of atomic scattering theory; experiments characterizing the velocity distribution of ECC electrons; other atomic physics tests of high velocity Born expansions; atom capture; capture by positrons; and pion capture to the continuum. (GHT)

  9. Significance of decay mechanism into continuum in dynamical Wannier-Stark ladder

    SciTech Connect

    Nemoto, Yuya; Maeshima, Nobuya; Hino, Ken-ichi

    2013-12-04

    We examine the resonance structure of photodressed electron states of laser-driven Wannier-Stark ladder, namely, dynamic Wannier-Stark ladder, in terms of the excess density of states (DOS) closely related to a lifetime of the state of concern. It is revealed that the resonance structure in the strong laser-field region shows clear dependence on the ratio, η, of a Bloch-frequency to a laser frequency. As the laser strength increases, for η = 1, the excess DOS becomes involved with a lot of newly-growing resonance peaks. This result would be understood from the viewpoint of a Fano-like decay-mechanism caused by a multichannel continuum effect, in marked contrast to the cases of larger η’s; for η = 3, the excess DOS just is found to show a pronounced red-shift of a single dominant peak caused by a single-channel continuum effect.

  10. Lattice Boltzmann equation method for multiple immiscible continuum fluids

    NASA Astrophysics Data System (ADS)

    Spencer, T. J.; Halliday, I.; Care, C. M.

    2010-12-01

    This paper generalizes the two-component algorithm of Sec. , extending it, in Sec. , to describe N>2 mutually immiscible fluids in the isothermal continuum regime. Each fluid has an independent interfacial tension. While retaining all its computational advantages, we remove entirely the empiricism associated with contact behavior in our previous multiple immiscible fluid models [M. M. Dupin , Phys. Rev. E 73, 055701(R) (2006)10.1103/PhysRevE.73.055701; Med. Eng. Phys. 28, 13 (2006)10.1016/j.medengphy.2005.04.015] while solidifying the physical foundations. Moreover, the model relies upon a fluid-fluid segregation which is simpler, computationally faster, more free of artifacts (i.e., the interfacial microcurrent), and upon an interface-inducing force distribution which is analytic. The method is completely symmetric between any numbers of immiscible fluids and stable over a wide range of directly input interfacial tension. We present data on the steady-state properties of multiple interface model, which are in good agreement with theory [R. E. Johnson and S. S. Sadhal, Annu. Rev. Fluid Mech. 17, 289 (1985)10.1146/annurev.fl.17.010185.001445], specifically on the shapes of multidrop systems. Section is an analysis of the kinetic and continuum-scale descriptions of the underlying two-component lattice Boltzmann model for immiscible fluids, extendable to more than two immiscible fluids. This extension requires (i) the use of a more local kinetic equation perturbation which is (ii) free from a reliance on measured interfacial curvature. It should be noted that viewed simply as a two-component method, the continuum algorithm is inferior to our previous methods, reported by Lishchuk [Phys. Rev. E 67, 036701 (2003)]10.1103/PhysRevE.76.036701 and Halliday [Phys. Rev. E 76, 026708 (2007)]10.1103/PhysRevE.76.026708. Greater stability and parameter range is achieved in multiple drop simulations by using the forced multi-relaxation-time lattice Boltzmann method developed

  11. Continuum Fatigue Damage Modeling for Use in Life Extending Control

    NASA Technical Reports Server (NTRS)

    Lorenzo, Carl F.

    1994-01-01

    This paper develops a simplified continuum (continuous wrp to time, stress, etc.) fatigue damage model for use in Life Extending Controls (LEC) studies. The work is based on zero mean stress local strain cyclic damage modeling. New nonlinear explicit equation forms of cyclic damage in terms of stress amplitude are derived to facilitate the continuum modeling. Stress based continuum models are derived. Extension to plastic strain-strain rate models are also presented. Application of these models to LEC applications is considered. Progress toward a nonzero mean stress based continuum model is presented. Also, new nonlinear explicit equation forms in terms of stress amplitude are also derived for this case.

  12. Discrete and Continuum Elastic Properties of Interfaces.

    NASA Astrophysics Data System (ADS)

    Alber, Elliott Solomon

    The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (i) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (ii) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h -thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic

  13. Discrete and continuum elastic properties of interfaces

    NASA Astrophysics Data System (ADS)

    Alber, Elliott Solomon

    1993-06-01

    The microstructure of defects in solids, e.g. interfaces, is heterogeneous and, consequently, so are the elastic properties. The complete anisotropic fourth-order tensors of both the discrete and the effective elastic moduli are defined in the interfacial region. To examine the meaning of discrete elastic constants, (1) a piecewise-continuous medium is considered where individual phases occupy the Voronoi polyhedra and have the elastic moduli associated with individual atoms, and (2) the relationship between natural vibrations of the discrete systems and continuum waves is explored. Questions of local energy changes and stability are addressed in terms of continuum properties of the moduli, particularly positive definiteness and strong ellipticity. Comparisons between the atomistic results (exact effective moduli) and those for the continuum analog (bounds) establish the validity of the definition of elastic properties for heterogeneous structures at atomic scales and lead to criteria to assess the stability of a given microstructure. Homogenization of interfacial properties gives heterogeneous transition zone (or interphase) model. Interface phenomena in macrosystems (composites) and microsystems (grain boundaries) is explained by inner layer conditions between homogeneous bulk regions. Dynamical membrane and spring models of the imperfect interfaces are shown to be limiting models (similar to Reuss and Voigt bounding approximations in multiphase composite mechanics) for asymptotic expansions of stress and strain fields, respectively. Asymptotic expansion of both fields (in terms of small parameter h-thickness of the layer) produces mixed-type, exact approximation of the first order in h. Derived models of imperfect interface are used for investigation of interface waves in anisotropic bicrystals and for comparison with corresponding acoustical modes in phonon spectra. Localized interface waves are explained as general inhomogeneous plane waves in subsonic

  14. Continuum and line emission in Cygnus A

    NASA Astrophysics Data System (ADS)

    Stockton, Alan; Ridgway, Susan E.; Lilly, Simon J.

    1994-08-01

    We present the results from (1) imaging observations of Cygnus A in five essentially line-free continuum bands with central wavelengths ranging from 0.34 to 2.1 microns. (2) imaging observations in five narrowband filters centered on the emission lines H beta(O III) lambda5007, H alpha(N II) lambda6583, and (S II) lambda lambda6716, 6731, and (3) deep spectroscopy covering the entire central region of Cyg A. We confirm that the featureless spectrum component is to be identified with the prominent double morphology at the center of Cyg A, but uncertainties in the distribution of the dust in this region tend to limit the accuracy with which we can determine its morphology and spectral-energy distribution (SED). From regions that appear to be least affected by obscuration, we find fv is approximately v-0.1 for this component. This SED could be consistent with free-free emission, a population of young stars, or a quasar continuum scattered by electrons, but probably not with a quasar continuum scattered by dust, which would be bluer. Our spectroscopy places an upper limit on the equivalent width of broad H beta that is well below that of typical quasars, showing that this flat-spectrum component (FSC) is almost certainly not dominated by scattered quasar radiation. Appeals to scattering by hot electrons to smear the scattered broad lines into invisibility appear to fail because the large density scale height of the electrons and the inefficiency of electron scattering should result in smoother and more extensive structure than we observe. Although the relative SED is consistent with free-free emission, the required amount of hot gas violates other observational constraints. At high angular resolution, the apparent morphology of the FSC is spiral-like. Although this impression may be partly due to obscuration, the distribution of the dust itself only serves to reinforce the spiral-like nature of the material with which it is associated. We conclude that the FSC is most

  15. Broadly continuously tunable slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design

    SciTech Connect

    Meng, Bo; Zeng, Yong Quan; Liang, Guozhen; Hu, Xiao Nan; Rodriguez, Etienne; Wang, Qi Jie

    2015-09-14

    We report our progress in the development of broadly tunable single-mode slot waveguide quantum cascade lasers based on a continuum-to-continuum active region design. The electroluminescence spectrum of the continuum-to-continuum active region design has a full width at half maximum of 440 cm{sup −1} at center wavelength ∼10 μm at room temperature (300 K). Devices using the optimized slot waveguide structure and the continuum-to-continuum design can be tuned continuously with a lasing emission over 42 cm{sup −1}, from 9.74 to 10.16 μm, at room temperature by using only current tuning scheme, together with a side mode suppression ratio of above 15 dB within the whole tuning range.

  16. Calculating Free Energy Changes in Continuum Solvation Models

    SciTech Connect

    Ho, Junming; Ertem, Mehmed Z.

    2016-02-27

    We recently showed for a large dataset of pKas and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents (Phys. Chem. Chem. Phys. 2015, 17, 2859). In this paper, we significantly expand the scope of our study to examine the suitability of this approach for the calculation of general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMDM062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems and reaction types. This includes cluster-continuum schemes for pKa calculations, as well as various neutral, radical and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and bimolecular SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar – the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 kJ mol-1 and 25 kJ mol-1 respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. The results indicate that when appropriate combinations of electronic structure methods are employed, the direct approach provides a reliable alternative to the thermodynamic cycle calculations of solution phase kinetics and thermodynamics across a broad range of organic reactions.

  17. Calculating Free Energy Changes in Continuum Solvation Models

    DOE PAGES

    Ho, Junming; Ertem, Mehmed Z.

    2016-02-27

    We recently showed for a large dataset of pKas and reduction potentials that free energies calculated directly within the SMD continuum model compares very well with corresponding thermodynamic cycle calculations in both aqueous and organic solvents (Phys. Chem. Chem. Phys. 2015, 17, 2859). In this paper, we significantly expand the scope of our study to examine the suitability of this approach for the calculation of general solution phase kinetics and thermodynamics, in conjunction with several commonly used solvation models (SMDM062X, SMD-HF, CPCM-UAKS, and CPCM-UAHF) for a broad range of systems and reaction types. This includes cluster-continuum schemes for pKa calculations,more » as well as various neutral, radical and ionic reactions such as enolization, cycloaddition, hydrogen and chlorine atom transfer, and bimolecular SN2 and E2 reactions. On the basis of this benchmarking study, we conclude that the accuracies of both approaches are generally very similar – the mean errors for Gibbs free energy changes of neutral and ionic reactions are approximately 5 kJ mol-1 and 25 kJ mol-1 respectively. In systems where there are significant structural changes due to solvation, as is the case for certain ionic transition states and amino acids, the direct approach generally afford free energy changes that are in better agreement with experiment. The results indicate that when appropriate combinations of electronic structure methods are employed, the direct approach provides a reliable alternative to the thermodynamic cycle calculations of solution phase kinetics and thermodynamics across a broad range of organic reactions.« less

  18. Continuum mechanics, stresses, currents and electrodynamics.

    PubMed

    Segev, Reuven

    2016-04-28

    The Eulerian approach to continuum mechanics does not make use of a body manifold. Rather, all fields considered are defined on the space, or the space-time, manifolds. Sections of some vector bundle represent generalized velocities which need not be associated with the motion of material points. Using the theories of de Rham currents and generalized sections of vector bundles, we formulate a weak theory of forces and stresses represented by vector-valued currents. Considering generalized velocities represented by differential forms and interpreting such a form as a generalized potential field, we present a weak formulation of pre-metric, p-form electrodynamics as a natural example of the foregoing theory. Finally, it is shown that the assumptions leading to p-form electrodynamics may be replaced by the condition that the force functional is continuous with respect to the flat topology of forms.

  19. Exercise therapy across the lung cancer continuum.

    PubMed

    Jones, Lee W; Eves, Neil D; Waner, Emily; Joy, Anil A

    2009-07-01

    A lung cancer diagnosis and associated therapeutic management are associated with unique and varying degrees of adverse physical/functional impairments that dramatically reduce patients' ability to tolerate exercise. Poor exercise capacity predisposes to increased susceptibility to other common age-related diseases, poor quality of life, and likely premature death. This article reviews the literature investigating the role of exercise as an adjunct therapy across the lung cancer continuum (ie, prevention to palliation). The current evidence suggests that exercise training is a safe and feasible adjunct therapy for patients with operable lung cancer both before and after pulmonary resection. Among patients with inoperable disease, feasibility and safety studies of carefully prescribed exercise training are warranted. Preliminary evidence in this area suggests that exercise therapy may be an important consideration in multidisciplinary management of patients diagnosed with lung cancer.

  20. The evolution of the quasar continuum

    NASA Technical Reports Server (NTRS)

    Elvis, M.

    1992-01-01

    We now have in hand a large data base of Roentgen Satellite (ROSAT), optical, and IR complementary data. We are in the process of obtaining a large amount of the International Ultraviolet Explorer (IUE) data for the same quasar sample. For our complementary sample at high redshifts, where the UV was redshifted into the optical, we have just had approved large amounts of observing time to cover the quasar continuum in the near-IR using the new Near-Infrared Camera and Multi-Object Spectrometer (NICMOS) array spectrographs. Ten micron, optical, and VLA radio, data also have approved time. An ISO US key program was approved to extend this work into the far-IR, and the launch of ASTRO-D (early in 1993) promises to extend it to higher energy X-rays.