Science.gov

Sample records for low-lying quadrupole vibrations

  1. Two-photon excitation of low-lying electronic quadrupole states in atomic clusters

    SciTech Connect

    Nesterenko, V. O.; Reinhard, P.-G.; Halfmann, T.; Pavlov, L. I.

    2006-02-15

    A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the time-dependent local density approximation calculations. As a test case, the deformed cluster Na{sub 11}{sup +} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2x10{sup 10}-2x10{sup 11} W/cm{sup 2} and pulse duration T=200-500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow us to gather full mean-field spectra of valence electrons near the Fermi energy. Besides, the scheme allows us to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.

  2. gamma-ray spectroscopic study of calcium-48,49 and scandium-50 focusing on low lying octupole vibration excitations

    NASA Astrophysics Data System (ADS)

    McPherson, David M.

    An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.

  3. Communication: MULTIMODE calculations of low-lying vibrational states of NO3 using an adiabatic potential energy surface

    NASA Astrophysics Data System (ADS)

    Homayoon, Zahra; Bowman, Joel M.

    2014-10-01

    A semi-global, permutationally invariant potential energy surface for NO3 is constructed from a subset of roughly 5000 Multi-State CASPT2 calculations (MS-CAS(17e,13o)PT2/aug-cc-pVTZ) reported by Morokuma and co-workers [H. Xiao, S. Maeda, and K. Morokuma, J. Chem. Theory Comput. 8, 2600 (2012)]. The PES, with empirical adjustments to modify the energies of two fundamentals and a hot-band transition, is used in full-dimensional vibrational self-consistent field/virtual state configuration interaction calculations using the code MULTIMODE. Vibrational energies and assignments are given for the fundamentals and low-lying combination states, including two that have been the focus of some controversy. Energies of a number of overtone and combinations are shown to be in good agreement with experiment and previous calculations using a model vibronic Hamiltonian [C. S. Simmons, T. Ichino, and J. F. Stanton, J. Phys. Chem. Lett. 3, 1946 (2012)]. Notably, the fundamental v3 is calculated to be at 1099 cm-1 in accord with the prediction from the vibronic analysis, although roughly 30 cm-1 higher. The state at 1493 cm-1 is assigned as v3 + v4, which is also in agreement with the vibronic analysis and some experiments. Vibrational energies for 15NO3 are also presented and these are also in good agreement with experiment.

  4. Low-lying dipole excitations in vibrational nuclei: The Cd isotopic chain studied in photon scattering experiments

    NASA Astrophysics Data System (ADS)

    Kohstall, C.; Belic, D.; von Brentano, P.; Fransen, C.; Gade, A.; Herzberg, R.-D.; Jolie, J.; Kneissl, U.; Linnemann, A.; Nord, A.; Pietralla, N.; Pitz, H. H.; Scheck, M.; Stedile, F.; Werner, V.; Yates, S. W.

    2005-09-01

    High-resolution nuclear resonance fluorescence experiments (NRF) were performed on 110,111,112,114,116Cd at the bremsstrahlung facility of the 4.3-MV Dynamitron accelerator in Stuttgart to study the low-lying dipole strength distributions in these vibrational nuclei. Numerous excited states, most of them previously unknown, were observed in the excitation energy range up to 4 MeV. Detailed spectroscopic information has been obtained on excitation energies, spins, decay widths, decay branchings, and transition probabilities. For states in the even-even isotopes 110,112,114,116Cd, parities could be assigned from linear polarization measurements. Together with our previous results for 108,112,113,114Cd from NRF studies without polarization measurements, systematics was established for the dipole strength distributions of the stable nuclei within the Cd isotopic chain. The results are discussed with respect to the systematics of E1 two-phonon excitations and mixed-symmetry states in even-even nuclei near the Z=50 shell closure and the fragmentation of these excitation modes in the odd-mass Cd isotopes.

  5. A Vibrating Wire System For Quadrupole Fiducialization

    SciTech Connect

    Wolf, Zachary

    2010-12-13

    A vibrating wire system is being developed to fiducialize the quadrupoles between undulator segments in the LCLS. This note provides a detailed analysis of the system. The LCLS will have quadrupoles between the undulator segments to keep the electron beam focused. If the quadrupoles are not centered on the beam axis, the beam will receive transverse kicks, causing it to deviate from the undulator axis. Beam based alignment will be used to move the quadrupoles onto a straight line, but an initial, conventional alignment must place the quadrupole centers on a straight line to 100 {micro}m. In the fiducialization step of the initial alignment, the position of the center of the quadrupole is measured relative to tooling balls on the outside of the quadrupole. The alignment crews then use the tooling balls to place the magnet in the tunnel. The required error on the location of the quadrupole center relative to the tooling balls must be less than 25 {micro}m. In this note, we analyze a system under construction for the quadrupole fiducialization. The system uses the vibrating wire technique to position a wire onto the quadrupole magnetic axis. The wire position is then related to tooling balls using wire position detectors. The tooling balls on the wire position detectors are finally related to tooling balls on the quadrupole to perform the fiducialization. The total 25 {micro}m fiducialization error must be divided between these three steps. The wire must be positioned onto the quadrupole magnetic axis to within 10 {micro}m, the wire position must be measured relative to tooling balls on the wire position detectors to within 15 {micro}m, and tooling balls on the wire position detectors must be related to tooling balls on the quadrupole to within 10 {micro}m. The techniques used in these three steps will be discussed. The note begins by discussing various quadrupole fiducialization techniques used in the past and discusses why the vibrating wire technique is our method

  6. Rotational spectroscopy as a tool to investigate interactions between vibrational polyads in symmetric top molecules: Low-lying states v(8) <= 2 of methyl cyanide, CH3CN

    SciTech Connect

    Muller, H. S.; Brown, Linda R.; Drouin, B. J.; Pearson, J. C.; Kleiner, Isabelle; Sams, Robert L.; Sung, Keeyoon; Ordu, Matthias H.; Lewen, Frank

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2v(8) around 717 cm(-1) with assignments covering 684-765 cm-1. Additional spectra in the vs region were used to validate the analysis.

  7. Progress in the Rotational Analysis of the Ground and Low-Lying Vibrationally Excited States of Malonaldehyde

    NASA Astrophysics Data System (ADS)

    Goudreau, E. S.; Tokaryk, Dennis W.; Ross, Stephen Cary; Billinghurst, Brant E.

    2016-06-01

    Despite being an important prototype molecule for intramolecular proton tunnelling, the far-IR spectrum of the internally hydrogen-bonded species malonaldehyde (C_3O_2H_4) is not yet well understood. In the talk I gave at the ISMS meeting in 2015 I discussed the high-resolution spectra we obtained at the Canadian Light Source synchrotron in Saskatoon, Saskatchewan. These spectra include a number of fundamental vibrational bands in the 100-2000 cm-1 region. In our efforts to analyze these bands we have noticed that our ground state combination differences show a large drift (up to an order of magnitude larger than our experimental error) away from those calculated using constants established by Baba et al., particularly in regions of high J (above 30) and low Ka (below 5). An examination of the previous microwave and far-IR studies reveals that this region of J-Ka space was not represented in the lines that Baba et al. used to generate the values for their fitting parameters. By including our own measurements in the fitting, we were able to improve the characterization of the ground state so that it is now consistent with all of the existing data. This characterization now covers a much larger range of J-Ka space and has enabled us to make significant progress in analyzing our far-IR synchrotron spectra. These include an excited vibrational state at 241 cm-1 as well as several states split by the tunnelling effect at higher wavenumber. T. Baba, T. Tanaka, I. Morino, K. M. T. Yamada, K. Tanaka. Detection of the tunneling-rotation transitions of malonaldehyde in the submillimeter-wave region. J. Chem. Phys., 110. 4131-4133 (1999) P. Turner, S. L. Baughcum, S. L. Coy, Z. Smith. Microwave Spectroscopic Study of Malonaldehyde. 4. Vibration-Rotation Interaction in Parent Species. J. Am. Chem. Soc., 106. 2265-2267 (1984) D. W. Firth, K. Beyer, M. A. Dvorak, S. W. Reeve, A. Grushow, K. R. Leopold. Tunable far-infrared spectroscopy of malonaldehyde. J. Chem. Phys., 94. 1812

  8. Commissioning a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y

    2010-12-03

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of the quadrupoles. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing such a system. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). A previous study investigated the error associated with each step by using a permanent quadrupole magnet on an optical mover system. The study reported an error of 11{micro}m for step 1 and a repeatability of 4{micro}m for step 2. However, the set up used a FARO arm to measure tooling balls and didn't allow to accurately check step 2 for errors; an uncertainty of 100{micro}m was reported. Therefore, even though the repeatability was good, there was no way to check that the error in step 2 was small. Following the recommendations of

  9. Rotational Spectroscopy as a Tool to Investigate Interactions Between Vibrational Polyads in Symmetric Top Molecules: Low-Lying States v_8 ≤ 2 OF Methyl Cyanide

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Ordu, Matthias H.; Lewen, Frank; Brown, Linda; Drouin, Brian; Pearson, John; Sung, Keeyoon; Kleiner, Isabelle; Sams, Robert

    2015-06-01

    Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627~GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2ν_8 around 717~cm-1 with assignments covering 684-765~cm-1. Additional spectra in the ν _8 region were used to validate the analysis. Using ν _8 data as well as spectroscopic parameters for v_4 = 1, v_7 = 1, and v_8 = 3 from previous studies, we analyzed rotational data involving v = 0, v_8 = 1, and v_8 = 2 up to high J and K quantum numbers. We analyzed a strong Δ v_8 = ± 1, Δ K = 0, Δ l = ±3 Fermi resonance between v_8 = 1-1 and v_8 = 2+2 at K = 14 and obtained preliminary results for two further Fermi resonances between v_8 = 2 and 3. We also found resonant Δ v_8 = ± 1, Δ K = ∓ 2, Δ l = ± 1 interactions between v_8 = 1 and 2 and present the first detailed analysis of such a resonance between v_8 = 0 and 1. We discuss the impact of this analysis on the v_8 = 1 and 2 as well as on the axial v = 0 parameters and compare selected CH_3CN parameters with those of CH_3CCH and CH_3NC. We evaluated transition dipole moments of ν _8, 2ν _8 - ν _8, and 2ν _8 for remote sensing in the IR. Part of this work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. M. Koivusaari et al., J. Mol. Spectrosc. 152 (1992) 377-388. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.

  10. VIBRATION MEASUREMENTS IN A RHIC QUADRUPOLE AT CRYOGENIC TEMPERATURES.

    SciTech Connect

    JAIN, A.; AYDIN, S.; HE, P.; ANERELLA, M.; GANETIS, G.; HARRISON, M.; PARKER, B.; PLATE, S.

    2005-10-17

    One of the concerns in using compact superconducting magnets in the final focus region of the ILC is the influence of the cryogen flow on the vibration characteristics. As a first step towards characterizing such motion at nanometer levels, a project was undertaken at BNL to measure the vibrations in a spare RHIC quadrupole under cryogenic conditions. Given the constraints of cryogenic operation, and limited space available, it was decided to use a dual head laser Doppler vibrometer for this work. The performance of the laser vibrometer was tested in a series of room temperature tests and compared with results from Mark L4 geophones. The laser system was then used to measure the vibration of the cold mass of the quadrupole with respect to the outside warm enclosure. These measurements were carried out both with and without the flow of cold helium through the magnet. The results indicate only a minor increase in motion in the horizontal direction (where the cold mass is relatively free to move).

  11. The origin of unequal bond lengths in the C1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    DOE PAGES

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-14

    Here the C1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v'3 progression. We have recently made the first observation of low-lying levels with odd quanta of v'3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamicallymore » important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the v'3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ~145°.« less

  12. The origin of unequal bond lengths in the C ˜ 1B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Jiang, Jun; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3' progression. We have recently made the first observation of low-lying levels with odd quanta of v3', which allows us—in the current work—to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the ν3' levels increases with quanta of bending excitation, which is consistent with the approach along the C ˜ state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ˜145°.

  13. The origin of unequal bond lengths in the C̃ (1)B2 state of SO2: Signatures of high-lying potential energy surface crossings in the low-lying vibrational structure.

    PubMed

    Park, G Barratt; Jiang, Jun; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°.

  14. Low-lying states of valence-hole nuclei in the 208Pb region

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Shen, J. J.; Zhao, Y. M.; Arima, A.

    2011-04-01

    Systematic calculations of low-lying states for Ir, Pt, Au, Hg and Tl isotopes with neutron numbers between 120 and 125 have been performed within the framework of the SDG-pair approximation of the shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole-type interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate binding energies of the ground states, low energy level schemes, electric quadrupole and magnetic dipole moments, and E2 transition rates. Our results are reasonably consistent with the available experimental data as well as previous theoretical studies, in particular, for low-lying yrast states. We also demonstrate that low-lying states of nuclei studied here are usually well represented by very simple configurations in collective nucleon-pair basis.

  15. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Not Available

    2010-11-29

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  16. Set Up and Test Results for a Vibrating Wire System for Quadrupole Fiducialization

    SciTech Connect

    Levashov, Michael Y.

    2010-12-01

    Quadrupoles will be placed between the undulator segments in LCLS to keep the electron beam focused as it passes through. The quadrupoles will be assembled with their respective undulator segments prior to being placed into the tunnel. Beam alignment will be used to center the quadrupoles, along with the corresponding undulators, on the beam. If there is any displacement between the undulator and the quadrupole axes in the assemblies, the beam will deviate from the undulator axis. If it deviates by more than 80{micro}m in vertical or 140{micro}m in horizontal directions, the undulator will not perform as required by LCLS. This error is divided between three sources: undulator axis fiducialization, quadrupole magnetic axis fiducialization, and assembly of the two parts. In particular, it was calculated that the quadrupole needs to be fiducialized to within 25{micro}m in both vertical and horizontal directions. A previous study suggested using a vibrating wire system for finding the magnetic axis of a quadrupole. The study showed that the method has high sensitivity (up to 1{micro}m) and laid out guidelines for constructing it. There are 3 steps in fiducializing the quadrupole with the vibrating wire system. They are positioning the wire at the magnet center (step 1), finding the wire with position detectors (step 2), and finding the quadrupole tooling ball positions relative to the position detector tooling balls (step 3). The following break up of error was suggested for the fiducialization steps: 10{micro}m for step 1 (finding the center), 20{micro}m for step 2 (finding the wire), and 10{micro}m for step 3 (tooling ball measurements). The purpose of this study is to investigate whether the vibrating wire system meets the requirements for LCLS. In particular, if it can reliably fiducialize a quadrupole magnetic center to within 25{micro}m in both vertical and horizontal directions. The behavior of individual system components is compared to the expected performance

  17. Vibration Measurements to Study the Effect of Cryogen Flow in Superconducting Quadrupole.

    SciTech Connect

    He,P.; Anerella, M.; aydin, S.; Ganetis, G. Harrison, M.; Jain, A.; Parker, B.

    2007-06-25

    The conceptual design of compact superconducting magnets for the International Linear Collider final focus is presently under development. A primary concern in using superconducting quadrupoles is the potential for inducing additional vibrations from cryogenic operation. We have employed a Laser Doppler Vibrometer system to measure the vibrations in a spare RHIC quadrupole magnet under cryogenic conditions. Some preliminary results of these studies were limited in resolution due to a rather large motion of the laser head as well as the magnet. As a first step towards improving the measurement quality, a new set up was used that reduces the motion of the laser holder. The improved setup is described, and vibration spectra measured at cryogenic temperatures, both with and without helium flow, are presented.

  18. Low-lying structure of neutron-rich Zn and Ga isotopes

    NASA Astrophysics Data System (ADS)

    Jiang, H.; Fu, G. J.; Zhao, Y. M.; Arima, A.

    2011-09-01

    Low-lying states of even-even Zn and odd-mass Ga nuclei with neutron numbers between 42 and 50 have been calculated within the framework of the SDG-pair approximation of the nuclear shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate low-lying level schemes, electric quadrupole and magnetic dipole moments, and E2 and M1 transition rates. Reasonable agreement is achieved between the calculated results and experimental data. Dominant configurations in the ground states of odd-mass Ga nuclei are discussed in terms of pair correlations. The weak-coupling picture for some states of odd-mass Ga nuclei is studied.

  19. Low-lying structure of neutron-rich Zn and Ga isotopes

    SciTech Connect

    Jiang, H.; Fu, G. J.; Arima, A.; Zhao, Y. M.

    2011-09-15

    Low-lying states of even-even Zn and odd-mass Ga nuclei with neutron numbers between 42 and 50 have been calculated within the framework of the SDG-pair approximation of the nuclear shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate low-lying level schemes, electric quadrupole and magnetic dipole moments, and E2 and M1 transition rates. Reasonable agreement is achieved between the calculated results and experimental data. Dominant configurations in the ground states of odd-mass Ga nuclei are discussed in terms of pair correlations. The weak-coupling picture for some states of odd-mass Ga nuclei is studied.

  20. Effects of tensor correlations on low-lying collective states in finite nuclei

    SciTech Connect

    Cao Ligang; Sagawa, H.; Colo, G.

    2011-03-15

    We present a systematic analysis of the effects induced by tensor correlations on low-lying collective states of magic nuclei, by using the fully self-consistent random phase approximation (RPA) model with Skyrme interactions. The role of the tensor correlations is analyzed in detail in the case of quadrupole (2{sup +}) and octupole (3{sup -}) low-lying collective states in {sup 208}Pb. The example of {sup 40}Ca is also discussed, as well as the case of magnetic dipole states (1{sup +}).

  1. Low-lying excitations in 72Ni

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoyborg, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Shaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2016-03-01

    Low-lying excited states in 72Ni have been investigated in an in-flight fission experiment at the RIBF facility of the RIKEN Nishina Center. The combination of the state-of-the-art BigRIPS and EURICA setups has allowed for a very accurate study of the β decay from 72Co to 72Ni, and has provided first experimental information on the decay sequence 72Fe→72Co→72Ni and on the delayed neutron-emission branch 73Co→72Ni . Accordingly, we report nearly 60 previously unobserved γ transitions which deexcite 21 new levels in 72Ni. Evidence for the location of the so-sought-after (42+) ,(62+) , and (81+) seniority states is provided. As well, the existence of a low-spin β -decaying isomer in odd-odd neutron-rich Co isotopes is confirmed for mass A =72 . The new experimental information is compared to simple shell-model calculations including only neutron excitations across the f p g shells. It is shown that, in general, the calculations reproduce well the observed states.

  2. Toward a Global Model of Low-Lying Vibrational States of CH_3CN: the v_4 = 1 State at 920 cm-1 and its Interactions with Nearby States

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Drouin, B. J.; Pearson, J. C.; Brown, L. R.; Kleiner, I.; Sams, R. L.

    2010-06-01

    Methyl cyanide, CH_3CN, is an important interstellar molecule, in particular in hot and dense molecular cores, and it may play a role in the atmospheres of planets or of Titan. Therefore, we have recorded extensive rotational and rovibrational spectra up to ˜ 1.6 THz and ˜ 1500 cm-1, respectively. The present investigation extends our analysis of states with v_8 ≤ 2 at vibrational energies below 740 cm-1 and takes into consideration findings from an analysis of the ν _4 band and the higher-lying ν _7 (at ˜1042 cm-1) and 3ν _8 ^1 (at ˜1078 cm-1) bands. The rotational data extend to J = 87 and K = 15, infrared assignments currently extend to 55 and 12, respectively. Parameters affecting only v_7 = 1 or v_8 = 3 as well as some additional interaction parameters were kept fixed to values from (b). The largest perturbations of v_4 = 1 are caused by a Δ k = 0, Δ l = 3 interaction with v_8 = 3 at K = 8. Despite the inclusion of the interaction parameter and a centrifugal distortion correction, residuals amount to more than 200 MHz very close to the resonance. Removal of these residuals probably requires explicit inclusion of v_8 = 3 data. Several additional perturbations exist at lower as well as higher K with v_8 = 2, v_7 = 1 and v_8 = 3. Higher values of K are difficult to reproduce in spite of an extensive set of distortion parameters which, at highest orders, have rather large magnitudes, possibly indicating unaccounted interactions which would probably occur with states even higher than v_8 = 3. H. S. P. Müller et al., contribution WG03, presented at the 62nd International Symposium on Molecular Spectroscopy, June 18-22, 2007, Columbus, Ohio, USA. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.

  3. Low-lying excitations of polydiacetylene

    NASA Astrophysics Data System (ADS)

    Race, A.; Barford, W.; Bursill, R. J.

    2001-07-01

    The Pariser-Parr-Pople Hamiltonian is used to calculate and identify the nature of the low-lying vertical transition energies of polydiacetylene. The model is solved using the density matrix renormalization group method for a fixed acetylenic geometry for chains of up to 102 atoms. The nonlinear optical properties of polydiacetylene are considered, which are determined by the third-order susceptibility. The experimental 1Bu data of Giesa and Schultz are used as the geometric model for the calculation. For short chains, the calculated E(1Bu) agrees with the experimental value, within solvation effects (~0.3 eV). The charge gap is used to characterize bound and unbound states. The nBu state is above the charge gap and hence a continuum state; the 1Bu, 2Ag, and mAg states are not and hence are bound excitons. For large chain lengths, the nBu state tends towards the charge gap as expected, strongly suggesting that the nBu state is the conduction band edge. The conduction band edge for polydiacetylene is agreed in the literature to be ~3.0 eV. Accounting for the strong polarization effects of the medium and polaron formation gives our calculated E∞(nBu)~3.6 eV, with an exciton binding energy of ~1.0 eV. The 2Ag state is found to be above the 1Bu state, which does not agree with relaxed transition experimental data. However, this could be resolved by including explicit lattice relaxation in the Pariser-Parr-Pople-Peierls model. Particle-hole separation data further suggest that the 1Bu, 2Ag, and mAg states are bound excitons, and that the nBu is an unbound exciton.

  4. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    DOE PAGES

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; et al

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, $B(E2; 2^+_3 → 0^+_2)$ = 78(13) W.u. and $B(E2; 2^+_4 → 0^+_3)$ = 53(12) W.u. were determined. The $0^+_3$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xemore » measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.« less

  5. On the low-lying states of TiC

    NASA Technical Reports Server (NTRS)

    Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.

    1984-01-01

    The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.

  6. The H2+ molecular ion: Low-lying states

    NASA Astrophysics Data System (ADS)

    Olivares-Pilón, Horacio; Turbiner, Alexander V.

    2016-10-01

    Matching for a wavefunction the WKB expansion at large distances and Taylor expansion at small distances leads to a compact, few-parametric uniform approximation found in Turbiner and Olivares-Pilon (2011). The ten low-lying eigenstates of H2+ of the quantum numbers (n , m , Λ , ±) with n = m = 0 at Λ = 0 , 1 , 2, with n = 1, m = 0 and n = 0, m = 1 at Λ = 0 of both parities are explored for all interproton distances R. For all these states this approximation provides the relative accuracy ≲ 10-5 (not less than 5 s.d.) locally, for any real coordinate x in eigenfunctions, when for total energy E(R) it gives 10-11 s.d. for R ∈ [ 0 , 50 ] a.u. Corrections to the approximation are evaluated in the specially-designed, convergent perturbation theory. Separation constants are found with not less than 8 s.d. The oscillator strength for the electric dipole transitions E 1 is calculated with not less than 6 s.d. A dramatic dip in the E 1 oscillator strength f 1 sσg - 3 pσu at R ∼Req is observed. The magnetic dipole and electric quadrupole transitions are calculated for the first time with not less than 6 s.d. in oscillator strength. For two lowest states (0 , 0 , 0 , ±) (or, equivalently, 1 sσg and 2 pσu states) the potential curves are checked and confirmed in the Lagrange mesh method within 12 s.d. Based on them the Energy Gap between 1 sσg and 2 pσu potential curves is approximated with modified Pade Re-R [ Pade(8 / 7) ] (R) with not less than 4-5 figures at R ∈ [ 0 , 40 ] a.u. Sum of potential curves E1sσg +E2pσu is approximated by Pade 1 / R [ Pade(5 / 8) ] (R) in R ∈ [ 0 , 40 ] a.u. with not less than 3-4 figures.

  7. RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg

    SciTech Connect

    Kuehn, R.; Dewald, A.; Kruecken, R.

    1996-12-31

    The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.

  8. Bend Vibration of Surface Water Investigated by Heterodyne-Detected Sum Frequency Generation and Theoretical Study: Dominant Role of Quadrupole.

    PubMed

    Kundu, Achintya; Tanaka, Shogo; Ishiyama, Tatsuya; Ahmed, Mohammed; Inoue, Ken-Ichi; Nihonyanagi, Satoshi; Sawai, Hiromi; Yamaguchi, Shoichi; Morita, Akihiro; Tahara, Tahei

    2016-07-01

    Heterodyne-detected vibrational sum frequency generation spectroscopy was applied to the water surface for measuring the imaginary part of second-order nonlinear susceptibility (Im χ((2))) spectrum in the bend frequency region for the first time. The observed Im χ((2)) spectrum shows an overall positive band around 1650 cm(-1), contradicting former theoretical predictions. We further found that the Im χ((2)) spectrum of NaI aqueous solution exhibits an even larger positive band, which is apparently contrary to the flip-flop orientation of surface water. These unexpected observations are elucidated by calculating quadrupole contributions beyond the conventional dipole approximation. It is indicated that the Im χ((2)) spectrum in the bend region has a large quadrupole contribution from the bulk water. PMID:27322348

  9. Investigation of the Rotational Spectrum of Pyrimidine from 3 to 337 GHz: Molecular Structure, Nuclear Quadrupole Coupling, and Vibrational Satellites.

    PubMed

    Kisiel; Pszczólkowski; López; Alonso; Maris; Caminati

    1999-06-01

    A comprehensive reinvestigation of the rotational spectrum of pyrimidine was carried out by using several different spectrometers. All singly substituted 13C- and 15N-isotopic species of pyrimidine have been measured in natural abundance with millimeter-wave free jet and waveguide Fourier transform microwave techniques, and complete rs and r0 heavy atom geometries have been determined. The ground state rotational spectrum in the centimeter-wave region was measured at sub-Doppler resolution of the cavity Fourier transform spectrometer and all elements in the inertial and principal nuclear quadrupole-coupling tensors of the nitrogen nuclei in pyrimidine have been determined. The room-temperature spectrum was measured up to 337 GHz and J = 66 with BWO-based spectrometers and sextic level centrifugal distortion constants in the rotational Hamiltonian have been determined for the ground state and three lowest vibrational fundamentals of pyrimidine. Copyright 1999 Academic Press.

  10. Properties of low-lying heavy-light mesons

    NASA Astrophysics Data System (ADS)

    Duncan, Anthony; Eichten, Estia; El-Khadra, Aida X.; Flynn, Jonathan M.; Hill, Brian R.; Thacker, Hank

    1993-03-01

    We present preliminary results for fB and masses of low-lying heavy-light mesons in the static limit. Calculations were performed in the quenched approximation using multistate smearing functions generated from a Hamiltonian for a spinless relativistic quark. The 2 S-1 S and 1 P-1 S mass splitting are measured. Using the 1 P-1 S charmonium splitting to set the overall scale, the ground state decay constant fB, is 319 ± 11 (stat) MeV.

  11. Transition properties of low-lying states in atomic indium

    SciTech Connect

    Sahoo, B. K.; Das, B. P.

    2011-07-15

    We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.

  12. Spectroscopic study of low-lying {sup 16}N levels

    SciTech Connect

    Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.

    2008-11-15

    The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.

  13. Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈100

    NASA Astrophysics Data System (ADS)

    Xiang, J.; Yao, J. M.; Fu, Y.; Wang, Z. H.; Li, Z. P.; Long, W. H.

    2016-05-01

    Background: In recent years, the study of triaxiality in the low-lying states of atomic nuclei with transition character or shape coexistence has been of great interest. Previous studies indicate that the neutron-rich nuclei in the A ˜100 mass region with Z ˜40 ,N ˜60 serve as good grounds for examining the role of triaxiality in nuclear low-lying states. Purpose: The aim of this work is to provide a microscopic study of low-lying states for nuclei in the A ˜100 mass regions and to examine in detail the role of triaxiality in the shape-coexistence phenomena and the variation of shape with the isospin and spin values at the beyond mean-field level. Method: The starting point of our method is a set of relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations (β ,γ ) . The excitation energies and electric multipole transition strengths of low-lying states are calculated by solving a five-dimensional collective Hamiltonian (5DCH) with parameters determined by the mean-field wave functions. Results: The low-lying states of Mo isotopes and of N =60 isotones in the A ˜100 mass region are calculated. The results indicate that triaxiality is essential to reproduce the data of excitation energies and electric quadrupole transition strengths in low-lying states and plays an important role in the shape evolution as a function of nucleon number. However, the decrease of nuclear collectivity with the increase of angular momentum in neutron-rich Mo isotopes has not been reproduced. Conclusions: The evolution of nuclear collectivity in the low-lying states of neutron-rich nuclei in the A ˜100 mass region as a function of nucleon number is governed by the novel triaxial structure. However, the mechanism that governs the variation of nuclear shape with spin in Mo isotopes remains unclear and deserves further investigation by taking into account the effects other than the collective motions.

  14. Vibration study of the APS storage ring 0. 8 meter quadrupole magnet/magnet support assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-06-01

    The objectives of this study are as follows: Determine the vibration characteristics (frequency, damping, and mode shapes) of the magnet on prototypic supports (the actual mounting system used to mount the magnet on the girder). Measure system response to ambient floor motion. Measure the effect of various modifications to determine if the magnet response can be modified to minimize unwanted response characteristics. Modifications investigated include support schemes, increasing system damping, and increasing mechanical rigidity. Measure system response to coolant flow. Determine vibrational characteristics of a large concrete block placed on a concrete floor, including response to ambient floor motions.

  15. Ozone absorption spectroscopy in search of low-lying electronic states

    NASA Technical Reports Server (NTRS)

    Anderson, S. M.; Mauersberger, K.

    1995-01-01

    A spectrometer capable of detecting ozone absorption features 9 orders of magnitude weaker than the Hartley band has been employed to investigate the molecule's near-infrared absorption spectrum. At this sensitivity a wealth of information on the low-lying electronically excited states often believed to play a role in atmospheric chemistry is available in the form of vibrational and rotational structure. We have analyzed these spectra using a combination of digital filtering and isotope substitution and find evidence for three electronically excited states below 1.5 eV. The lowest of these states is metastable, bound by approximately 0.1 eV and probably the (3)A2 rather than the (3)B2 state. Its adiabatic electronic energy is 1.24 +/- 0.01 eV, slightly above the dissociation energy of the ground state. Two higher states, at 1.29 +/- 0.03 and 1.48 +/- 0.03 eV are identified as the (3)B2 and the (3)B1, respectively. Combined with other recent theoretical and experimental data on the low-lying electronic states of ozone, these results imply that these are, in fact, the lowest three excited states; that is, there are no electronically excited states of ozone lying below the energy of O(3P) + O2((3)Sigma(-), v = 0). Some of the implications for atmospheric chemistry are considered.

  16. Low-lying Level Structure of 150Nd

    NASA Astrophysics Data System (ADS)

    Chakraborty, A.; Prados-Estévez, F. M.; Yates, S. W.; Choudry, S. N.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Mynk, M. G.; Peters, E. E.; Garrett, P. E.; Kulp, W. D.; Wood, J. L.

    2011-10-01

    To address the issue of whether the 150Nd nucleus represents an example of a phase transition in the shape degree of freedom or a complex example of shape coexistence, its level structure, up to about 2 MeV excitation and 6 ℏ, has been explored via the (n ,n' γ) reaction at the University of Kentucky accelerator facility. Level lifetimes, in the sub-picosecond regime, were extracted with a Doppler-shift attenuation analysis. A significant extension of the level scheme was possible, and the observed low-lying level structure of 150Nd indicates a close resemblance to its neighboring 152Sm isotone. Results from the ongoing analysis will be presented. This material is based on work supported by the U.S. National Science Foundation under Grant No. PHY-0956310.

  17. Measurement of Low-Lying States in {sup 40}Sc

    SciTech Connect

    V. Y. Hansper; A. E. Champagne; C. Iliadis; S. E. Hale; D. C. Powell

    1999-12-31

    In explosive hydrogen burning nucleosynthesis material is processed via the proton capture sequence {sup 39}Ca(p,{gamma}){sup 40}Sc(p,{gamma}){sup 41}Ti. It has been predicted that the isotope {sup 39}Ca represents a waiting point for a continuous reaction flow. Therefore, its reaction rate is of interest. The {sup 39}Ca(p,{gamma}){sup 40}Sc reaction rate is determined by three resonances corresponding to the 2nd, 3rd and 4th excited states of {sup 40}Sc. Improved nuclear structure information of the low-lying levels of {sup 40}Sc is necessary to reduce uncertainties in the reaction rate of {sup 39}Ca(p,{gamma}){sup 40}Sc. Results from a current measurement of {sup 40}Ca({sup 3}He,t){sup 40}Sc at TUNL indicate that the 4th excited state is a doublet and further investigation is warranted.

  18. Measurement of Low-lying states in {sup 40}Sc

    SciTech Connect

    Hansper, V. Y.; Champagne, A. E.; Iliadis, C.; Hale, S. E.; Powell, D. C.

    1999-11-16

    In explosive hydrogen burning nucleosynthesis material is processed via the proton capture sequence {sup 39}Ca(p,{gamma}){sup 40}Sc(p,{gamma}){sup 41}Ti. It has been predicted that the isotope {sup 39}Ca represents a waiting point for a continuous reaction flow. Therefore, its reaction rate is of interest. The {sup 39}Ca(p,{gamma}){sup 40}Sc reaction rate is determined by three resonances corresponding to the 2nd, 3rd and 4th excited states of {sup 40}Sc. Improved nuclear structure information of the low-lying levels of {sup 40}Sc is necessary to reduce uncertainties in the reaction rate of {sup 39}Ca(p,{gamma}){sup 40}Sc. Results from a current measurement of {sup 40}Ca({sup 3}He,t){sup 40}Sc at TUNL indicate that the 4th excited state is a doublet and further investigation is warranted.

  19. Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion

    NASA Astrophysics Data System (ADS)

    Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Austin, R. A. E.; Ball, G. C.; Bandyopadhyay, D. S.; Bianco, L.; Colosimo, S.; Cross, D. S.; Demand, G. A.; Finlay, P.; Garnsworthy, A. B.; Grinyer, G. F.; Hackman, G.; Kulp, W. D.; Leach, K. G.; Morton, A. C.; Orce, J. N.; Pearson, C. J.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Triambak, S.; Wong, J.; Wood, J. L.; Yates, S. W.

    2011-10-01

    The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam γ spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics β decay using the 8π spectrometer at the TRIUMF radioactive beam facility. The decays of 112In and 112Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0+ or 2+ three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0+ and 2+ states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.

  20. Mapping quadrupole collectivity in the Cd isotopes: The breakdown of harmonic vibrational motion

    SciTech Connect

    Garrett, P. E.; Green, K. L.; Bangay, J.; Varela, A. Diaz; Sumithrarachchi, C. S.; Bandyopadhyay, D. S.; Bianco, L.; Demand, G. A.; Finlay, P.; Grinyer, G. F.; Leach, K. G.; Phillips, A. A.; Schumaker, M. A.; Svensson, C. E.; Wong, J.; Austin, R. A. E.; Colosimo, S.; Ball, G. C.; Garnsworthy, A. B.; Hackman, G.

    2011-10-28

    The stable Cd isotopes have long been used as paradigms for spherical vibrational motion. Extensive investigations with in-beam {gamma} spectroscopy have resulted in very-well-established level schemes, including many lifetimes or lifetime limits. A programme has been initiated to complement these studies with very-high-statistics {beta} decay using the 8{pi} spectrometer at the TRIUMF radioactive beam facility. The decays of {sup 112}In and {sup 112}Ag have been studied with an emphasis on the observation of, or the placement of stringent limits on, low-energy branches between potential multi-phonon levels. A lack of suitable 0{sup +} or 2{sup +} three-phonon candidates has been revealed. Further, the sum of the B(E2) strength from spin 0{sup +} and 2{sup +} states up to 3 MeV in excitation energy to the assigned two-phonon levels falls far short of the harmonic-vibrational expectations. This lack of strength points to the failing of collective models based on vibrational phonon structures.

  1. Ground-state and pairing-vibrational bands with equal quadrupole collectivity in 124Xe

    SciTech Connect

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Demand, G. A.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E. T.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    2015-04-01

    The nuclear structure of 124Xe has been investigated via measurements of the β+/EC decay of 124Cs with the 8π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled branching ratio measurements of weak, low-energy transitions from highly excited states, and the 2+ → 0+ in-band transitions have been observed. Combining these results with those from a previous Coulomb excitation study, $B(E2; 2^+_3 → 0^+_2)$ = 78(13) W.u. and $B(E2; 2^+_4 → 0^+_3)$ = 53(12) W.u. were determined. The $0^+_3$ state, in particular, is interpreted as the main fragment of the proton-pairing vibrational band identified in a previous 122Te(3He,n)124Xe measurement, and has quadrupole collectivity equal to, within uncertainty, that of the ground-state band.

  2. Low-lying isomeric levels in 75Cu

    SciTech Connect

    Daugas, J. M.; Faul, T.; Grawe, H.; Pfutzner, M.; Grzywacz, R.; Lewitowicz, M.; Achouri, N. L.; Bentida, R.; Beraud, R.; Borcea, C.; Bingham, C. R.; Catford, W.; Emsallem, A.; De France, G.; Grzywacz, K. L.; Lemmon, R.; Lopez Jimenez, M. J.; de Oliveira Santos, F.; Regan, P. H.; Rykaczewski, Krzysztof Piotr; Sauvestre, J. E.; Sawicka, M.; Stanoiu, M.; Sieja, K.; Nowacki, F.

    2010-01-01

    Isomeric low-lying states were identified and investigated in the 75Cu nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as 75m1Cu and 75m2Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2 , 3/2 , and 5/2 states for the neutron-rich odd-mass Cu isotopes when filling the g9/2. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2 state coexists with more and more collective 3/2 and 1/2 levels at low excitation energies.

  3. Low-lying isomeric levels in {sup 75}Cu

    SciTech Connect

    Daugas, J. M.; Faul, T.; Sauvestre, J. E.; Grawe, H.; Pfuetzner, M.; Sawicka, M.; Grzywacz, R.; Lewitowicz, M.; France, G. de; Lopez Jimenez, M. J.; Oliveira Santos, F. de; Baiborodin, D.; Bentida, R.; Beraud, R.; Emsallem, A.; Bingham, C. R.; Grzywacz, K. L.

    2010-03-15

    Isomeric low-lying states were identified and investigated in the {sup 75}Cu nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as {sup 75m1}Cu and {sup 75m2}Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2{sup -}, 3/2{sup -}, and 5/2{sup -} states for the neutron-rich odd-mass Cu isotopes when filling the nug{sub 9/2}. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2{sup -} state coexists with more and more collective 3/2{sup -} and 1/2{sup -} levels at low excitation energies.

  4. Low-lying excitations in a strongly interacting Fermi gas

    NASA Astrophysics Data System (ADS)

    Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus

    2016-05-01

    We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.

  5. Low-lying electronic states of CuN calculated by MRCI method

    NASA Astrophysics Data System (ADS)

    Zhang, Shu-Dong; Liu, Chao

    2016-10-01

    The high accuracy ab initio calculation method of multi-reference configuration interaction (MRCI) is used to compute the low-lying eight electronic states of CuN. The potential energy curves (PECs) of the X3Σ-, 13Π, 23Σ-, 13Δ, 11Δ, 11Σ-, 11Π, and 5Σ- in a range of R = 0.1 nm-0.5 nm are obtained and they are goodly asymptotes to the Cu(2Sg) + N(4Su) and Cu(2Sg) + N(2Du) dissociation limits. All the possible vibrational levels, rotational constants, and spectral constants for the six bound states of X3Σ-, 13Π, 23Σ-, 11Δ, 11Σ-, and 11Π are obtained by solving the radial Schrödinger equation of nuclear motion with the Le Roy provided Level8.0 program. Also the transition dipole moments from the ground state X3Σ- to the excited states 13Π and 23Σ- are calculated and the result indicates that the 23Σ--X3Σ- transition has a much higher transition dipole moment than the 13Π-X3Σ- transition even though the 13Π state is much lower in energy than the 23Σ- state.

  6. Theoretical study of the low-lying electronic spectrum of C 22+

    NASA Astrophysics Data System (ADS)

    Hogreve, H.

    1996-01-01

    Electronic states associated with the low-lying Born-Oppenheimer spectrum and crucial for the stability and experimental observability of the doubly positively charged carbon system C 22+ are studied by ab initio methods. This includes computation of potential energy curves and transition moments by multireference configuration interaction methods, and an investigation of the corresponding vibrational resonance levels and lifetimes. By analogy with the electronic ground state X3limit∑g- of the isoelectronic neutral molecule B 2, the lowest potential energy curve of C 22+ that supports quasibound vibronic motion belongs to the state 1 3limit∑g-. In case of C 22+, however, this state is destabilized by a crossing with the repulsive potential energy curve of 1 3Πu, and the induced electronic transitions represent the major decay channel of C22+ (1 3limit∑g-) . Also the quintet state 1 5limit∑g- is quasibound; whereas most of its vibronic levels are practically stable against dissociative tunneling interactions with other electronic states furnish the principal decay mechanism for 1 5∑ u-. Additional bonding and stability propertie of C 22+ are exposed by monitoring the behaviour of potential energy curves while rising the nuclear charge from the neutral to the doubly positively charged situation.

  7. Description of nuclear octupole and quadrupole deformation close to axial symmetry: Octupole vibrations in the X(5) nuclei {sup 150}Nd and {sup 152}Sm

    SciTech Connect

    Bizzeti, P. G.; Bizzeti-Sona, A. M.

    2010-03-15

    The model, introduced in a previous paper, for the description of the octupole and quadrupole degrees of freedom in conditions close to the axial symmetry is used to describe the negative-parity band based on the first octupole vibrational state in nuclei close to the critical point of the U(5)-to-SU(3) phase transition. The situation of {sup 150}Nd and {sup 152}Sm is discussed in detail. The positive-parity levels of these nuclei, and also the in-band E2 transitions, are reasonably accounted for by the X(5) model. With simple assumptions on the nature of the octupole vibrations, it is also possible to describe the negative-parity sector with comparable accuracy without changing the description of the positive-parity part.

  8. An investigation into low-lying electronic states of HCS{sub 2} via threshold photoelectron imaging

    SciTech Connect

    Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao E-mail: fanhj@dicp.ac.cn; Fan, Hongjun E-mail: fanhj@dicp.ac.cn

    2014-06-07

    Low-energy photoelectron imaging spectra of HCS{sub 2}{sup −} are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS{sub 2}{sup −} to the ground state and low-lying excited states of HCS{sub 2} are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS{sub 2} radical in the gaseous phase. The ground state and two low-lying excited states of HCS{sub 2} radical are assigned as {sup 2}B{sub 2}, {sup 2}A{sub 2}, and {sup 2}A{sub 1} states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T{sub 0} = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.

  9. Fourier Transform Emission Spectroscopy of the Low-Lying Electronic States of NbN

    NASA Astrophysics Data System (ADS)

    Ram, R. S.; Bernath, P. F.

    2000-06-01

    The high-resolution spectrum of NbN has been investigated in emission in the 3000-15 000 cm-1 region using a Fourier transform spectrometer. The bands were excited in a microwave discharge through a mixture of NbCl5 vapor, ∼5 mTorr of N2, and 3 Torr of He. Numerous bands observed in the near-infrared region have been classified into the following transitions: f1Φ-c1Γ, e1Π-a1Δ, C3Π0+-A3Σ-1, C3Π0--A3Σ-1, C3Π1-a1Δ, C3Π1-A3Σ-0, d1Σ+-A3Σ-0, and d1Σ+-b1Σ+. These observations are consistent with the energy level diagram provided by laser excitation and emission spectroscopy [Y. Azuma, G. Huang, M. P. J. Lyne, A. J. Merer, and V. I. Srdanov, J. Chem. Phys. 100, 4138-4155 (1993)]. The missing d1Σ+ state has been observed for the first time and its spectroscopic parameters are consistent with the theoretical predictions of S. R. Langhoff and W. Bauschlicher, Jr. [J. Mol. Spectrosc. 143, 169-179 (1990)]. Rotational analysis of a number of bands has been obtained and improved spectroscopic parameters have been extracted for the low-lying electronic states. The observation of several vibrational bands with v = 1 has enabled us to determine the vibrational intervals and equilibrium bond lengths for the A3Σ-0, a1Δ, b1Σ+, d1Σ+, and C3Π1 states.

  10. Low lying electric dipole excitations in nuclei of the rare earth region

    SciTech Connect

    von Brentano, P.; Zilges, A.; Herzberg, R.D.; Zamfir, N.V.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.

    1992-10-01

    From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J{sup {pi}},K)=(l{sup {minus}},0) and (J{sup {pi}},K)=(l{sup {minus}},1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus {sup 142}Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3{minus}-octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus {sup 141}Pr and found first evidence for the existence of 3{sup {minus}}{circle_times}2+{circle_times}particle-states.

  11. Octupole correlations in low-lying states of 150Nd and 150Sm and their impact on neutrinoless double-β decay

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Engel, J.

    2016-07-01

    We present a generator-coordinate calculation, based on a relativistic energy-density functional, of the low-lying spectra in the isotopes 150Nd and 150Sm and of the nuclear matrix element that governs the neutrinoless double-β decay of the first isotope to the second. We carefully examine the impact of octupole correlations on both nuclear structure and the double-β decay matrix element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape fluctuations, however, dilute the effects of octupole deformation on the double-β decay matrix element, so that the overall octupole-induced quenching is only about 7 % .

  12. Structure studies of low-lying O/sup plus/ states in the deformed rare-earth region

    SciTech Connect

    Shihab-Eldin, A.A.; Rasmussen, J.O.; Stoyer, M.

    1988-11-01

    To better understand the structure of the low lying O/sup +/ states of even-even nuclides in the deformed rare-earth region, we have carried out calculations to generate the wavefunctions, energies and pair transfer rates from/to these states within a framework of exact diagonalization of the residual pairing and n-p forces. First we carried out exact diagonalization for the neutron and proton systems separately, using as a basis space the 126 vector space of four/five pairs within nine appropriate deformed Nilsson orbitals. For the pairing force we included both monopole and quadrupole terms. Next, we used the lowest eight eigenfunctions from both the neutron and the proton systems to generate a new basis space composed of the 64 possible neutron-proton product vectors. The n-p force was approximated by a quadrupole-quadrupole force term which was then diagonalized within the new basis space. The resulting wave functions were used to calculate the neutron pair transfer strength from and to the various low O/sup +/ states below 3 MeV in the even-even Gd, Dy and Er isotopes. Furthermore, for the case where the deformation parameters do not change appreciably between the pair of nuclides involved in the pair transfer reaction, reasonable global agreement was obtained for the measured (t,p) and (p,t) pair transfer reaction strengths both to the ground and excited states O/sup +/ states accessible in these isotopes. The observed enhancement of (t,p) pair transfer strength to excited states in some of these isotopes was reproduced by the calculation. The enhancement is due to subshell gap and large relative pair transfer amplitude for an orbital near the Fermi surface. 24 refs., 7 figs.

  13. Ab initio potential energy surfaces of HCS+: A study of the ground and the low-lying excited electronic states

    NASA Astrophysics Data System (ADS)

    Kaur, Rajwant; Dhilip Kumar, T. J.

    2016-11-01

    Three dimensional ab initio potential energy surfaces (PESs) have been computed for the ground state and low-lying excited states of HCS+ molecular ion using the internally contracted multi-reference (single and double) configuration interaction and augmented correlation consistent polarized valence quadruple zeta (aug-cc-pVQZ) basis sets. Ground state global PES is analyzed as dissociation of molecular ion into H + CS+. The ground state PES (H + CS+) has been fitted by the inverse power series expansion function. The anisotropy of the surface has been analyzed in terms of the multipolar expansion coefficients for the rigid-rotor surface. The surface will be useful for detailed understanding of collision dynamics in terms of ro-vibrational cross sections and rate coefficients.

  14. Microscopic study of low-lying spectra of Λ hypernuclei based on a beyond-mean-field approach with a covariant energy density functional

    NASA Astrophysics Data System (ADS)

    Mei, H.; Hagino, K.; Yao, J. M.; Motoba, T.

    2015-06-01

    We present a detailed formalism of the microscopic particle-rotor model for hypernuclear low-lying states based on a covariant density functional theory. In this method, the hypernuclear states are constructed by coupling a hyperon to low-lying states of the core nucleus, which are described by the generator coordinate method (GCM) with the particle number and angular momentum projections. We apply this method to study in detail the low-lying spectrum of C13Λ and Ne21Λ hypernuclei. We also briefly discuss the structure of Sm155Λ as an example of heavy deformed hypernuclei. It is shown that the low-lying excitation spectra with positive-parity states of the hypernuclei, which are dominated by Λ hyperon in the s orbital coupled to the core states, are similar to that for the corresponding core states, while the electric quadrupole transition strength, B (E 2 ) , from the 21+ state to the ground state is reduced according to the mass number of the hypernuclei. Our study indicates that the energy splitting between the first 1 /2- and 3 /2- hypernuclear states is generally small for all the hypernuclei which we study. However, their configurations depend much on the properties of a core nucleus, in particular on the sign of deformation parameter. That is, the first 1 /2- and 3 /2- states in Λ13C are dominated by a single configuration with Λ particle in the p -wave orbits and thus provide good candidates for a study of the Λ spin-orbit splitting. On the other hand, those states in the other hypernuclei exhibit a large configuration mixing and thus their energy difference cannot be interpreted as the spin-orbit splitting for the p orbits.

  15. Vibration study of the APS storage ring 0.8 meter quadrupole magnet/magnet support assembly

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.; Smith, R.K.

    1991-06-01

    The objectives of this study are as follows: Determine the vibration characteristics (frequency, damping, and mode shapes) of the magnet on prototypic supports (the actual mounting system used to mount the magnet on the girder). Measure system response to ambient floor motion. Measure the effect of various modifications to determine if the magnet response can be modified to minimize unwanted response characteristics. Modifications investigated include support schemes, increasing system damping, and increasing mechanical rigidity. Measure system response to coolant flow. Determine vibrational characteristics of a large concrete block placed on a concrete floor, including response to ambient floor motions.

  16. Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V

    NASA Astrophysics Data System (ADS)

    Ürer, Güldem; Özdemir, Leyla

    2012-02-01

    We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.

  17. Taming the low-lying electronic states of FeH.

    PubMed

    DeYonker, Nathan J; Allen, Wesley D

    2012-12-21

    The low-lying electronic states (X (4)Δ, A (4)Π, a (6)Δ, b (6)Π) of the iron monohydride radical, which are especially troublesome for electronic structure theory, have been successfully described using a focal point analysis (FPA) approach that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through hextuple (CCSDTQPH) excitations. Adiabatic excitation energies (T(0)) and spectroscopic constants (r(e), r(0), B(e), B(0), D(e), ω(e), v(0), α(e), ω(e)x(e)) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pwCV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The purely ab initio FPA approach yields the following T(0) results (in eV) for the lowest spin-orbit components of each electronic state: 0 (X (4)Δ) < 0.132 (A (4)Π) < 0.190 (a (6)Δ) < 0.444 (b (6)Π). The computed anharmonic fundamental vibrational frequencies (v(0)) for the (4,6)Δ electronic states are within 3 cm(-1) of experiment and provide reliable predictions for the (4,6)Π states. With the cc-pVDZ basis set, even CCSDTQPH energies give an incorrect ground state of FeH, highlighting the importance of combining high-order electron correlation treatments with robust basis sets when studying transition-metal radicals. The FPA computations provide D(0) = 1.86 eV (42.9 kcal mol(-1)) for the 0 K dissociation energy of FeH and Δ(f)H(298) (∘) [FeH((g))] = 107.7 kcal mol(-1) for the enthalpy of formation at room temperature. Despite sizable multireference character in the quartet states, high-order single-reference coupled cluster computations improve the spectroscopic parameters over previous multireference theoretical studies; for example, the X (4)Δ → A (4)Π and a (6)Δ → b (6)Π transition energies are reproduced to 0

  18. Taming the low-lying electronic states of FeH

    NASA Astrophysics Data System (ADS)

    DeYonker, Nathan J.; Allen, Wesley D.

    2012-12-01

    The low-lying electronic states (X 4Δ, A 4Π, a 6Δ, b 6Π) of the iron monohydride radical, which are especially troublesome for electronic structure theory, have been successfully described using a focal point analysis (FPA) approach that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through hextuple (CCSDTQPH) excitations. Adiabatic excitation energies (T0) and spectroscopic constants (re, r0, Be, B0, overline De, ωe, v0, αe, ωexe) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pwCV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The purely ab initio FPA approach yields the following T0 results (in eV) for the lowest spin-orbit components of each electronic state: 0 (X 4Δ) < 0.132 (A 4Π) < 0.190 (a 6Δ) < 0.444 (b 6Π). The computed anharmonic fundamental vibrational frequencies (v0) for the 4,6Δ electronic states are within 3 cm-1 of experiment and provide reliable predictions for the 4,6Π states. With the cc-pVDZ basis set, even CCSDTQPH energies give an incorrect ground state of FeH, highlighting the importance of combining high-order electron correlation treatments with robust basis sets when studying transition-metal radicals. The FPA computations provide D0 = 1.86 eV (42.9 kcal mol-1) for the 0 K dissociation energy of FeH and Δ _f H_{298}° [FeH(g)] = 107.7 kcal mol-1 for the enthalpy of formation at room temperature. Despite sizable multireference character in the quartet states, high-order single-reference coupled cluster computations improve the spectroscopic parameters over previous multireference theoretical studies; for example, the X 4Δ → A 4Π and a 6Δ → b 6Π transition energies are reproduced to 0.012 and 0.002 eV, respectively, while the error for the problematic X 4Δ → a 6

  19. Jet-cooled laser-induced dispersed fluorescence spectroscopy of NiC: Observation of low-lying Ω = 0+ state

    NASA Astrophysics Data System (ADS)

    Mukund, Sheo; Yarlagadda, Suresh; Bhattacharyya, Soumen; Nakhate, S. G.

    2014-01-01

    Laser-induced dispersed fluorescence spectra of 58Ni12C molecules, produced in a free-jet apparatus, have been studied. A new low-lying Ω = 0+ state has been observed at Te = 5178 (6) cm-1. Based on previous ab initio calculations this state is plausibly assigned as 0+ spin-orbit component of the first excited Π state. The term energies of vibrational levels up to v = 10 for X1Σ+ ground and v = 3 for Ω = 0+ states have been determined. The harmonic and anharmonic wavenumbers respectively equal to 833 (4) and 6.7 (13) cm-1 for Ω = 0+ state have been measured.

  20. Low-lying resonances and relativistic screening in Big Bang nucleosynthesis

    NASA Astrophysics Data System (ADS)

    Famiano, M. A.; Balantekin, A. B.; Kajino, T.

    2016-04-01

    We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances in the secondary reactions leading to A =7 nuclei during the Big Bang nucleosynthesis. In particular, we investigate and examine possible low-lying resonances in the 7Be (3He,γ ) 10C reaction and examine the resultant destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to be relatively small in the standard Early Universe models.

  1. Calculations of energy levels and lifetimes of low-lying states of barium and radium

    SciTech Connect

    Dzuba, V. A.; Ginges, J. S. M.

    2006-03-15

    We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.

  2. Energy spectrum of the low-lying gluon excitations in the Coulomb gauge

    SciTech Connect

    Szczepaniak, Adam P.; Krupinski, Pawel

    2006-06-01

    We compute the energy spectrum of low-lying gluonic excitations in the presence of static quark-antiquark sources using Coulomb gauge and the quasiparticle representation. Within the valence sector of the Fock space we reproduce both, the overall normalization and the ordering of the spin-parity multiplets. We discus how the interactions induced by the nonabelian Coulomb kernel are central in to fine structure of the spectrum.

  3. Spectroscopic Properties and Potential Energy Curves of Low-lying electronic States of RuC

    SciTech Connect

    Balasubramanian, K; Guo, R

    2003-12-22

    The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multi-configuration self-consistent field (CASSCF) followed by multireference configuration interaction (MRCI) methods that included up 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38 000 cm{sup -1}. We find two very closely low-lying electronic states for RuC, viz., {sup 1}{Sigma}{sup +} and {sup 3}{Delta} with the {sup 1}{Sigma}{sup +} being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound X{sup 1}{Sigma}{sup +} state with a large dipole moment and an energetically close {sup 3}{Delta} state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18000 cm{sup -1} agree quite well with those of the corresponding observed states.

  4. STS-31 Discovery, OV-103, rockets through low-lying clouds after KSC liftoff

    NASA Technical Reports Server (NTRS)

    1990-01-01

    STS-31 Discovery, Orbiter Vehicle (OV) 103, rides above the firey glow of the solid rocket boosters (SRBs) and space shuttle main engines (SSMEs) and a long trail of exhaust as it heads toward Earth orbit. Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B is covered in an exhaust cloud moments after the liftoff of OV-103 at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The exhaust plume pierces the low-lying clouds as OV-103 soars into the clear skies above. A nearby waterway appears in the foreground.

  5. Low-Lying Dirac Eigenmodes, Topological Charge Fluctuations and the Instanton Liquid Model

    SciTech Connect

    I. Horvath; S.J. Dong; T. Draper; F.X. Lee; H.B. Thacker; J.B. Zhang

    2002-05-01

    The local structure of low-lying eigenmodes of the overlap Dirac operator is studied. It is found that these modes cannot be described as linear combinations of 't Hooft ''would-be'' zeromodes associated with instanton excitations that underly the Instanton Liquid Model. This implies that the instanton liquid scenario for spontaneous chiral symmetry breaking in QCD is not accurate. More generally, our data suggests that the vacuum fluctuations of topological charge are not effectively dominated by localized lumps of unit charge with which the topological ''would-be'' zeromodes could be associated.

  6. {sup 10}Li low-lying resonances populated by one-neutron transfer

    SciTech Connect

    Cavallaro, M. Agodi, C.; Carbone, D.; Cunsolo, A.; De Napoli, M.; Cappuzzello, F.; Bondì, M.; Davids, B.; Galinski, N.; Ruiz, C.; Davinson, T.; Sanetullaev, A.; Foti, A.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.

    2015-10-15

    The {sup 9}Li + {sup 2}H → {sup 10}Li + {sup 1}H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a {sup 9}Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing {sup 9}Li produced by the {sup 10}Li breakup at forward angles and the recoil protons emitted at backward angles. The {sup 10}Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.

  7. Low-lying dipole excitations in the odd-proton, midshell nucleus 103Rh

    NASA Astrophysics Data System (ADS)

    Stedile, F.; Fill, E.; Belic, D.; von Brentano, P.; Fransen, C.; Gade, A.; Kneissl, U.; Kohstall, C.; Linnemann, A.; Matschinsky, P.; Nord, A.; Pietralla, N.; Pitz, H. H.; Scheck, M.; Werner, V.

    2001-02-01

    Low-lying dipole excitations in the odd-proton, midshell nucleus 103Rh were investigated in photon scattering experiments at the Stuttgart Dynamitron facility using bremsstrahlung beams with end point energies of 4.1 and 2.4 MeV. In total, 106 excited levels, most of them unknown so far, could be observed in the excitation energy range from 1.2 to 4.0 MeV. In addition to 106 transitions to the ground state (Jπ0=1/2-), 20 transitions to the low-lying Jπ=3/2- level at 295 keV and 10 transitions to the Jπ=5/2- state at 357 keV were detected. For 20 photoexcited levels spins could be suggested from the measured angular distribution data. The reduced ground-state transition strengths summed up in the energy range 2-4 MeV amount to ΣgΓred0=(16.3+/-1.9) meV/MeV3 corresponding, under the assumption of an electric character for all excitations, to a total excitation strength of ΣB(E1)↑=(15.6+/-1.8)×10-3 e2 fm2. The fragmentation of the dipole strength and the decay branchings of the photoexcited levels are discussed. The observed feedings of the 295 and 357 keV levels result in a population inversion, the precondition for a possible γ-ray laser.

  8. Low-lying dipole excitations in the heavy, odd-mass nucleus 181Ta

    NASA Astrophysics Data System (ADS)

    Wolpert, A.; Beck, O.; Belic, D.; Besserer, J.; von Brentano, P.; Eckert, T.; Fransen, C.; Herzberg, R.-D.; Kneissl, U.; Margraf, J.; Maser, H.; Nord, A.; Pietralla, N.; Pitz, H. H.

    1998-08-01

    The strength distribution of low-lying dipole excitations in the heavy odd-mass nucleus 181Ta was studied in nuclear resonance fluorescence experiments performed at the bremsstrahlung beam of the Stuttgart 4.3 MV Dynamitron accelerator. To increase the detection sensitivity in the whole range of excitation energies between 1.8 and 4 MeV two measurements were carried out at different bremsstrahlung end-point energies of 2.7 and 4.1 MeV using two large-volume HPGe detectors of a relative efficiency of 100%. Detailed information on excitation energies, decay widths, transition probabilities, and branching ratios of 37 new low-lying states in the energy range 1.8-3.5 MeV have been obtained. The observed dipole strength is rather fragmented, apart from a strong excitation at 2.297 MeV. The total strength in the investigated range of excitation energies (1.8-4 MeV) is reduced by a factor of ~3.5 as compared to the neighboring even-even nucleus 180Hf.

  9. Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD

    SciTech Connect

    Takahashi, Toru T.; Oka, Makoto

    2010-02-01

    Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).

  10. An ab initio study of the low-lying electronic states of S3

    NASA Astrophysics Data System (ADS)

    Peterson, Kirk A.; Lyons, James R.; Francisco, Joseph S.

    2006-08-01

    Accurate calculations of the low-lying singlet and triplet electronic states of thiozone, S3, have been carried out using large multireference configuration interaction wave functions. Cuts of the full potential energy surfaces along the stretching and bending coordinates have been presented, together with the vertical excitation spectra. The strong experimentally observed absorption around 395nm is assigned to the 1B21 state, which correlates to ground state products. Absorption at wavelengths shorter than 260nm is predicted to lead to singlet excited state products, S2 (aΔg1)+S(D1). The spectroscopic properties of the XΣg -3, aΔg1, and bΣg +1 electronic states of the S2 radical have also been accurately characterized in this work. The investigations of the low-lying electronic states were accompanied by accurate ground state coupled cluster calculations of the thermochemistry of both S2 and S3 using large correlation consistent basis sets with corrections for core-valence correlation, scalar relativity, and atomic spin-orbit effects. Resulting values for D0(S2+S) and ∑D0 for S3 are predicted to be 61.3 and 162.7kcal/mol, respectively, with conservative uncertainties of ±1kcal/mol. Analogous calculations predict the C2v-D3h (open-cyclic) isomerization energy of S3 to be 4.4±0.5kcal/mol.

  11. On the nature of an emergent symmetry in QCD with low-lying Dirac modes removed

    NASA Astrophysics Data System (ADS)

    Cohen, Thomas D.

    2016-02-01

    Remarkable symmetry properties appear to arise in lattice calculations of correlation functions in which the lowest-lying eigenmodes of the Dirac operator in quark propagators are removed by hand. The Banks-Casher relation ties the chiral condensate to the density of low-lying modes; thus, it is plausible that removal of such modes could lead to a regime where spontaneous chiral symmetry breaking does not occur. Surprising, a pattern of identical correlation functions was observed that is larger than can be explained by a restoration of chiral symmetry. This suggests that a larger symmetry—one that is not present in the QCD Lagrangian—emerges when these modes are removed. Previously it was argued that this emergent symmetry was SU(4). However, when the low-lying modes are removed, the correlation functions of sources in the SU(4) 15-plet of spin-1 mesons appear to coincide with the correlation function of the SU(4) singlet. A natural explanation for this is an emergent symmetry larger than SU(4). In this work, it is shown that there exists no continuous symmetry whose generators in the field theory are spatial integrals of local operators that can account for the full pattern of identical correlation functions unless the apparent coincidence of the singlet channel with the 15-plet is accidental.

  12. Low-Lying Structure of (50)Ar and the N=32 Subshell Closure.

    PubMed

    Steppenbeck, D; Takeuchi, S; Aoi, N; Doornenbal, P; Matsushita, M; Wang, H; Utsuno, Y; Baba, H; Go, S; Lee, J; Matsui, K; Michimasa, S; Motobayashi, T; Nishimura, D; Otsuka, T; Sakurai, H; Shiga, Y; Shimizu, N; Söderström, P-A; Sumikama, T; Taniuchi, R; Valiente-Dobón, J J; Yoneda, K

    2015-06-26

    The low-lying structure of the neutron-rich nucleus (50)Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ-ray spectroscopy with (9)Be((54)Ca,(50)Ar+γ)X, (9)Be((55)Sc,(50)Ar+γ)X, and (9)Be((56)Ti,(50)Ar+γ)X multinucleon removal reactions at ∼220  MeV/u. A γ-ray peak at 1178(18) keV is reported and assigned as the transition from the first 2(+) state to the 0(+) ground state. A weaker, tentative line at 1582(38) keV is suggested as the 4(1)(+)→2(1)(+) transition. The experimental results are compared to large-scale shell-model calculations performed in the sdpf model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for (50)Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N=32 subshell gap in (50)Ar is similar in magnitude to those in (52)Ca and (54)Ti and, notably, predict an N=34 subshell closure in (52)Ar that is larger than the one recently reported in (54)Ca.

  13. Is Preoperative Chemoradiotherapy Beneficial for Sphincter Preservation in Low-Lying Rectal Cancer Patients?

    PubMed Central

    Park, In Ja; Yu, Chang Sik; Lim, Seok-Byung; Lee, Jong Lyul; Kim, Chan Wook; Yoon, Yong Sik; Park, Seong Ho; Kim, Jin Cheon

    2016-01-01

    Abstract The present study explored the benefit of preoperative chemoradiotherapy (PCRT) for sphincter preservation in locally advanced low-lying rectal cancer patients who underwent stapled anastomosis, especially in those with deep and narrow pelvises determined by magnetic resonance imaging. Patients with locally advanced low-lying rectal cancer (≤5 cm from the anal verge) who underwent stapled anastomosis were included. Patients were categorized into two groups (PCRT+ vs. PCRT–) according to PCRT application. Patients in the PCRT+ group were matched to those in the PCRT– group according to potential confounding factors (age, gender, clinical stage, and body mass index) for sphincter preservation. Sphincter preservation, permanent stoma, and anastomosis-related complications were compared between the groups. Pelvic magnetic resonance imaging was used to measure 12 dimensions representing pelvic cavity depth and width with which deep and narrow pelvis was defined. The impact of PCRT on sphincter preservation and permanent stoma in pelvic dimensions defined as deep and narrow pelvis was evaluated, and factors associated with sphincter preservation and permanent stoma were analyzed. One hundred sixty-six patients were one-to-one matched between the PCRT+ and PCRT− groups. Overall, sphincter-saving surgery was performed in 66.3% and the rates were not different between the 2 groups. Anastomotic complications and permanent stoma occurred nonsignificantly more frequently in the PCRT+ group. PCRT was not associated with higher rate of sphincter preservation in all pelvic dimensions defined as deep and narrow pelvis, while PCRT was related to higher rate of permanent stoma in shorter transverse diameter and interspinous distance. On logistic regression analysis, PCRT was not shown to influence both sphincter preservation and permanent stoma, while longer transverse diameter and interspinous distance were associated with lower rate of permanent stoma. PCRT had

  14. Fragmentation of low-lying dipole strength in the odd-mass nucleus 133Cs

    NASA Astrophysics Data System (ADS)

    Besserer, J.; Beck, O.; von Brentano, P.; Eckert, T.; Herzberg, R.-D.; Jäger, D.; Kneissl, U.; Margraf, J.; Maser, H.; Nord, A.; Pietralla, N.; Pitz, H. H.; Zilges, A.

    1997-09-01

    The fragmentation of low-lying dipole strength in the odd-mass nucleus 133Cs has been investigated in nuclear resonance fluorescence (NRF) experiments performed at the bremsstrahlung beam of the Stuttgart Dynamitron accelerator at an end-point energy of 4.1 MeV. In the excitation energy range 2.3 - 3.7 MeV in total 22 new dipole excitations were observed. From the high-resolution γ-ray spectra measured by three high-efficiency Ge detectors the reduced excitation probabilities B(E1)↑ or B(M1)↑ were deduced. The fragmentation and absolute total strengths of the detected dipole excitations are compared with results for the neighboring even-even, γ-soft nucleus 134Ba, where both, rather strong scissors mode-like M1 and two-phonon E1 excitations are known from recent NRF experiments.

  15. Semirelativistic potential model for low-lying three-gluon glueballs

    SciTech Connect

    Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard

    2006-09-01

    The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J{sup PC} states are computed and compared with recent lattice calculations. A good agreement is found for 1{sup --} and 3{sup --} states, but our model predicts a 2{sup --} state much higher in energy than the lattice result. The 0{sup -+} mass is also computed.

  16. Microscopic structure of low-lying states in {sup 188,190,192}Os

    SciTech Connect

    Lo Iudice, N.; Sushkov, A. V.

    2008-11-15

    The phonon and quasiparticle structure of the low-lying states in {sup 188,190,192}Os is investigated within the microscopic quasiparticle-phonon model. An overall agreement with the data is obtained for energies and transitions. The properties of the 0{sup +} states are found to be correlated with the evolution of the nuclear shape toward the {gamma}-soft region. Special attention is devoted at the 4{sub 3}{sup +} state. This state is found to be composed of a large double-{gamma} phonon component coexisting with an even larger one-phonon hexadecapole piece. Such a mixed phonon structure explains the observed, apparently contradictory, properties of the 4{sub 3}{sup +} states in Os isotopes.

  17. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    SciTech Connect

    Jakobsson, U. Cederwall, B.; Uusitalo, J.; Auranen, K.; Badran, H.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; Herzáň, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; and others

    2015-10-15

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2{sup +} state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2{sup +} state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2{sup +} state and the spherical 9/2{sup −} ground state in {sup 203}Fr and {sup 205}Fr.

  18. Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei

    NASA Astrophysics Data System (ADS)

    Jakobsson, U.; Uusitalo, J.; Auranen, K.; Badran, H.; Cederwall, B.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.

    2015-10-01

    Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2+ state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2+ state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2+ state and the spherical 9/2- ground state in 203Fr and 205Fr.

  19. Low Lying Spin Excitation in the Spin Ice Ho2Ti2O7

    SciTech Connect

    Ehlers, Georg; Mamontov, Eugene; Zamponi, Michaela M; Gardner, Jason S

    2010-01-01

    The high flux and low background of the new backscattering spectrometer at the SNS combine to produce an excellent signal to noise ratio, allowing us to investigate a low lying weak excitation never seen before in the spin ice, Ho{sub 2}Ti{sub 2}O{sub 7}. This non-dispersive excitation has been observed at E = 26.3 {mu}eV below 100 K but is resolution limited only below {approx}65 K. It is indifferent to magnetic fields below {mu}{sub 0}H = 4.5 T, at 1.6 K. These characteristics help us to identify the excitation as due to the nuclear spin system.

  20. Theoretical Study of the Electrostatic and Steric Effects on the Spectroscopic Characteristics of the Metal-Ligand Unit of Heme Proteins. 2. C-O Vibrational Frequencies, 17O Isotropic Chemical Shifts, and Nuclear Quadrupole Coupling Constants

    PubMed Central

    Kushkuley, Boris; Stavrov, Solomon S.

    1997-01-01

    The quantum chemical calculations, vibronic theory of activation, and London-Pople approach are used to study the dependence of the C-O vibrational frequency, 17O isotropic chemical shift, and nuclear quadrupole coupling constant on the distortion of the porphyrin ring and geometry of the CO coordination, changes in the iron-carbon and iron-imidazole distances, magnitude of the iron displacement out of the porphyrin plane, and presence of the charged groups in the heme environment. It is shown that only the electrostatic interactions can cause the variation of all these parameters experimentally observed in different heme proteins, and the heme distortions could modulate this variation. The correlations between the theoretically calculated parameters are shown to be close to the experimentally observed ones. The study of the effect of the electric field of the distal histidine shows that the presence of the four C-O vibrational bands in the infrared absorption spectra of the carbon monoxide complexes of different myoglobins and hemoglobins can be caused by the different orientations of the different tautomeric forms of the distal histidine. The dependence of the 17O isotropic chemical shift and nuclear quadrupole coupling constant on pH and the distal histidine substitution can be also explained from the same point of view. PMID:9017215

  1. Dipole excitations in the vibrational nucleus 112Cd

    NASA Astrophysics Data System (ADS)

    Lehmann, H.; Nord, A.; de Almeida Pinto, A. E.; Beck, O.; Besserer, J.; von Brentano, P.; Drissi, S.; Eckert, T.; Herzberg, R.-D.; Jäger, D.; Jolie, J.; Kneissl, U.; Margraf, J.; Maser, H.; Pietralla, N.; Pitz, H. H.

    1999-08-01

    The strength distribution of low-lying dipole excitations in the medium-weight vibrational nucleus 112Cd was investigated by means of nuclear resonance fluorescence experiments (NRF) performed at the bremsstrahlung beam of the Stuttgart Dynamitron accelerator (end-point energy 4.1 MeV). Detailed information on excitation energies, spins, decay widths, and transition probabilities of about 20 new spin-1 states in 112Cd has been obtained. In comparison with comprehensive spectroscopic information available for 112Cd conclusions on the parities of the lowest states can be made. A strongly excited Jπ=1- state is interpreted as the 1- member of the quadrupole-octupole coupled quintuplet. The observed transition intensities are described in the framework of the interacting boson model and compared with those obtained from recent nuclear resonance fluorescence experiments on the neighboring Cd isotopes 113,114Cd.

  2. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  3. Small spectroscopic factors of low-lying positive parity states in 31Mg

    NASA Astrophysics Data System (ADS)

    Imai, Nobu; Mukai, Momo; Cederkall, Joakim; Aghai, Hossein; Golubev, Pavel; Johansson, Haakan; Kahl, Daid; Kurcewics, Jan; Teranishi, Takashi; Watanabe, Yutaka

    2014-09-01

    The single particle structures of even-odd nuclei around the so-called ``island of inversion'' would give us the direct evidence of such a shell evolution in this region. We measured the proton resonance elastic scattering on 30Mg re-accelerated upto 2.92 MeV/nucleon by REX-ISOLDE to study the isobarig analog resonances (IARs) of the low-lying bound states in 31Mg. The proton resonance elastic scattering is a complementary method of (d,p) reaction. We observed three resonances which can be regarded as the IARs of 31Mg. The proton widths of the first two resonances give a rise to the spectroscopic factors for the two positive parity states in 31Mg which were found to be strongly quenched compared to those for the 35S and 37Ar. Comparison with a modern shell model calculation suggests that the degrees of the ν(2p-2h) configuration in 30Mg would be less than considered. The single particle structures of even-odd nuclei around the so-called ``island of inversion'' would give us the direct evidence of such a shell evolution in this region. We measured the proton resonance elastic scattering on 30Mg re-accelerated upto 2.92 MeV/nucleon by REX-ISOLDE to study the isobarig analog resonances (IARs) of the low-lying bound states in 31Mg. The proton resonance elastic scattering is a complementary method of (d,p) reaction. We observed three resonances which can be regarded as the IARs of 31Mg. The proton widths of the first two resonances give a rise to the spectroscopic factors for the two positive parity states in 31Mg which were found to be strongly quenched compared to those for the 35S and 37Ar. Comparison with a modern shell model calculation suggests that the degrees of the ν(2p-2h) configuration in 30Mg would be less than considered. The present work was supported by a Grant-in-Aid for Scientific Research (20244306, 23740215) by Japan Society Promotion of Science and by grants from the Swedish Research Council and the Royal Physiographical Society in Lund.

  4. Spectroscopic and theoretical studies of the low-lying states of BaO{sup +}

    SciTech Connect

    Bartlett, Joshua H.; VanGundy, Robert A.; Heaven, Michael C.

    2015-07-28

    The BaO{sup +} cation is of interest from the perspectives of electronic structure and the potential for cooling to ultra-cold temperatures. Spectroscopic data for the ion have been obtained using a two-color photoionization technique. The ionization energy for BaO was found to be 6.8123(3) eV. The ground state of BaO{sup +} was identified as X{sup 2}Σ{sup +}, and both vibrational and rotational constants were determined. Vibrationally resolved spectra were recorded for A{sup 2}Π, the first electronically excited state. These data yielded the term energy, vibrational frequency, and the spin-orbit interaction constant. Relativistic electronic structure calculations were carried out using multi-reference configuration interaction (MRCI), coupled cluster and density functional theory methods. Transition moments for the pure vibrational and A{sup 2}Π-X{sup 2}Σ{sup +} transitions were predicted using the MRCI method.

  5. Spectroscopic and theoretical studies of the low-lying states of BaO+

    NASA Astrophysics Data System (ADS)

    Bartlett, Joshua H.; VanGundy, Robert A.; Heaven, Michael C.

    2015-07-01

    The BaO+ cation is of interest from the perspectives of electronic structure and the potential for cooling to ultra-cold temperatures. Spectroscopic data for the ion have been obtained using a two-color photoionization technique. The ionization energy for BaO was found to be 6.8123(3) eV. The ground state of BaO+ was identified as X2Σ+, and both vibrational and rotational constants were determined. Vibrationally resolved spectra were recorded for A2Π, the first electronically excited state. These data yielded the term energy, vibrational frequency, and the spin-orbit interaction constant. Relativistic electronic structure calculations were carried out using multi-reference configuration interaction (MRCI), coupled cluster and density functional theory methods. Transition moments for the pure vibrational and A2Π-X2Σ+ transitions were predicted using the MRCI method.

  6. Process-based model predictions of hurricane induced morphodynamic change on low-lying barrier islands

    USGS Publications Warehouse

    Plant, Nathaniel G.; Thompson, David M.; Elias, Edwin; Wang, Ping; Rosati, Julie D.; Roberts, Tiffany M.

    2011-01-01

    Using Delft3D, a Chandeleur Island model was constructed to examine the sediment-transport patterns and morphodynamic change caused by Hurricane Katrina and similar storm events. The model setup included a coarse Gulf of Mexico domain and a nested finer-resolution Chandeleur Island domain. The finer-resolution domain resolved morphodynamic processes driven by storms and tides. A sensitivity analysis of the simulated morphodynamic response was performed to investigate the effects of variations in surge levels. The Chandeleur morphodynamic model reproduced several important features that matched observed morphodynamic changes. A simulation of bathymetric change driven by storm surge alone (no waves) along the central portion of the Chandeleur Islands showed (1) a general landward retreat and lowering of the island chain and (2) multiple breaches that increased the degree of island dissection. The locations of many of the breaches correspond with the low-lying or narrow sections of the initial bathymetry. The major part of the morphological change occurred prior to the peak of the surge when overtopping of the islands produced a strong water-level gradient and induced significant flow velocities.

  7. Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina

    USGS Publications Warehouse

    Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.

    2010-01-01

    Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.

  8. Low-Lying S-States of Two-Electron Systems

    NASA Astrophysics Data System (ADS)

    Khan, Md. Abdul

    2014-04-01

    The energies of the low-lying bound S-states of some two-electron systems (treating them as three-body systems) like negatively charged hydrogen, neutral helium, positively charged-lithium, beryllium, carbon, oxygen, neon, argon and negatively charged muonium and exotic positronium ions have been calculated employing hyperspherical harmonics expansion method. The matrix elements of two-body interactions involve Raynal-Revai coefficients which are particularly essential for the numerical solution of three-body Schrődinger equation when the two-body potentials are other from Coulomb or harmonic. The technique has been applied for to two-electron ions 1H- (Z = 1) to 40Ar16+ (Z = 18), negatively charged-muonium Mu- and exotic positronium ion Ps-(e + e - e -) considering purely Coulomb interaction. The available computer facility restricted reliable calculations up to 28 partial waves (i.e. K m = 28) and energies for higher K m have been obtained by applying an extrapolation scheme suggested by Schneider.

  9. Low-Lying Levels in 147Nd in the Decay of 147Pr

    NASA Astrophysics Data System (ADS)

    Shibata, Michihiro; Taniguchi, Akihiro; Yamamoto, Hiroshi; Kawade, Kiyoshi; Ruan, Jian-Zhi; Tamai, Tadaharu; Kawase, Yoichi; Okano, Kotoyuki

    1993-01-01

    The level structure of 147Nd has been studied from the decay of 147Pr. The radioactive sources of 147Pr were separated from the fission products of 235U using the on-line isotope-separator KUR-ISOL and chemical separation techniques. A decay scheme has been constructed involving 93 γ-rays and a newly observed 1261.1 keV level. The half-lives of 49.9, 127.8 and 214.6 keV levels were determined to be 1.0± 0.3 ns, 0.4± 0.1 ns and 4.53± 0.06 ns, respectively. Conversion coefficients of 15 transitions were determined. The parities for the levels at 49.9, 127.8, 214.6, 314.7 and 463.5 keV are deduced to be odd. Spins and parities for the 769.3 and 792.6 keV levels are deduced to be 3/2+. The properties of transition probabilities between the low-lying triplet hole states are similar to that of three particle states in the N{=}85 isotones.

  10. Impulsive thermal x-ray emission from a low-lying coronal loop

    SciTech Connect

    Liu, Siming; Li, Youping; Fletcher, Lyndsay

    2013-06-01

    Understanding the relationship among different emission components plays an essential role in the study of particle acceleration and energy conversion in solar flares. In flares where gradual and impulsive emission components can be readily identified, the impulsive emission has been attributed to non-thermal particles. We carry out detailed analysis of Hα and X-ray observations of a GOES class B microflare loop on the solar disk. The impulsive hard X-ray emission, however, is found to be consistent with a hot, quasi-thermal origin, and there is little evidence of emission from chromospheric footpoints, which challenges conventional models of flares and reveals a class of microflares associated with dense loops. Hα observations indicate that the loop lies very low in the solar corona or even in the chromosphere and both emission and absorption materials evolve during the flare. The enhanced Hα emission may very well originate from the photosphere when the low-lying flare loop heats up the underlying chromosphere and reduces the corresponding Hα opacity. These observations may be compared with detailed modeling of flare loops with the internal kink instability, where the mode remains confined in space without apparent change in the global field shape, to uncover the underlying physical processes and to probe the structure of solar atmosphere.

  11. Potential energy curves for the ground and low-lying excited states of CuAg

    SciTech Connect

    Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir

    2014-10-21

    The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.

  12. Low-lying electronic states of LiF molecule with inner electrons correlation

    NASA Astrophysics Data System (ADS)

    Wan, Ming-jie; Huang, Duo-hui; Yang, Jun-sheng; Cao, Qi-long; Jin, Cheng-guo; Wang, Fan-hou

    2015-06-01

    The potential energy curves and dipole moments of the low-lying electronic states of LiF molecule are performed by using highly accurate multi-reference configuration interaction with Awcv5z basis sets. 1s, the inner shell of Li is considered as the closed orbit, which is used to characterise the spectroscopic properties of a manifold of singlet and triplet states. 16 electronic states correlate with two lowest dissociation channels Li(2S)+F(2P) and Li(2P)+F(2P) are investigated. Spectroscopic parameters of the ground state X1Σ+ have been evaluated and critically compared with the available experimental values and the other theoretical data. However, spectroscopic parameters of 13Π, 11Δ, 11Σ-, 11Π, 13Σ+, 23Σ+, 13Δ, 13Σ-, 23Π, 21Π, 33Π, 31Π and 33Σ+ states are studied for the first time. These 13 excited states have shallow potential wells, and the dispersion coefficients of these excited states are predicted. In additional, oscillator strengths of excited states at equilibrium distances are also predicted.

  13. Structure and spectroscopic properties of low-lying states of the HOC(O)O radical.

    PubMed

    Linguerri, Roberto; Puzzarini, Cristina; Francisco, Joseph S

    2016-02-28

    The HOC(O)O radical is a product of the reaction of HOCO radicals with oxygen atoms. The present study provides theoretical prediction of critical spectroscopic features of this radical that should aid in its experimental characterization. Energies, structures, rotational constants, and harmonic frequencies are presented for the ground and two low-lying excited electronic states of HOC(O)O. The energies for the Ã(2)A″←X̃(2)A' and B̃(2)A'←X̃(2)A' electronic transitions are reported. The band origin of the B̃←X̃ transition of HOC(O)O is predicted to occur in the near infrared region of the spectrum at around 1.5 eV and it is suggested to be the most promising one for observing this radical spectroscopically. The structural and spectroscopic similarities between HOC(O)O and the isoelectronic radical FC(O)O are discussed. The abundance of experimental data on the FC(O)O radical should guide the spectroscopic characterization of HOC(O)O and serve as a benchmark for the structural and spectroscopic parameters obtained from theory.

  14. Low-lying stepwise paths for ethylene 1,3-dipolar cycloadditions: A DFT study

    NASA Astrophysics Data System (ADS)

    Kavitha, K.; Venuvanalingam, P.

    Ethylene reacts with 1,3-dipoles such as diazomethane, nitrile oxide, and nitrone to give a single adduct and the potential energy surfaces of these reactions were completely surveyed with Density Functional Theory at the B3LYP/6-31G(d) level; B3LYP/6-311+G(d,p), QCISD/6-31G(d) level calculations were performed for comparison. These reactions were found to have one concerted and four stepwise paths and all of them were thoroughly examined. Calculations show that anti and syn approaches in the stepwise paths merge at one point in the potential energy surface and the stepwise processes (i.e., through syn transition states) are low-lying and concerted paths that are in close competition with them. A closer examination of the computed barriers of the reactions of ethylene with the above dipoles, cyclopentadiene, 1,3-butadiene, and allyl anion reveals that there is a mechanistic cross-over from concerted to stepwise path. While the neutral cycloaddition partners prefer a concerted path, the charged partners strongly favor a stepwise path. The dipoles have both concerted and stepwise (syn) paths in close competition. Such a mechanistic cross-over has been induced by the polar influence of the charged species and this change-over in mechanism could not be observed with allene cycloadditions with the same set of partners because allene is strongly biased towards the stepwise mechanism.

  15. Theoretical studies of the low-lying states of ScO, ScS, VO, and VS

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.

    1986-01-01

    Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.

  16. Microscopic study of low-lying yrast spectra in 100429108 Mo isotopes

    NASA Astrophysics Data System (ADS)

    Sawhney, Neeru; Bharti, Arun; Khosa, S. K.

    2002-10-01

    Variation-after-projection (VAP) calculations in conjunction with Hartree-Bogoliubov (HB) ansatz have been carried out for A=100-108 molybdenum (Mo) isotopes. In this framework, the yrast spectra with J_{max}(pi) ≥ 10(+) , B(E2) transition probabilities, quadrupole (bt_2) and hexadecapole (bt_4) deformation parameters, moment of inertia (I) and square of cranking frequency (om(2)) for even-even Mo isotopes have been obtained. The results of the calculation give an indication that it is important to include the hexadecapole-hexadecapole component of the two-body interaction for obtaining various nuclear structure quantities in these Mo isotopes.

  17. Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc

    NASA Technical Reports Server (NTRS)

    Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.

    1989-01-01

    Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.

  18. Extrapolation methods for obtaining low-lying eigenvalues of a large-dimensional shell model Hamiltonian matrix

    SciTech Connect

    Yoshinaga, N.; Arima, A.

    2010-04-15

    We propose some new, efficient, and practical extrapolation methods to obtain a few low-lying eigenenergies of a large-dimensional Hamiltonian matrix in the nuclear shell model. We obtain those energies at the desired accuracy by extrapolation after diagonalizing small-dimensional submatrices of the sorted Hamiltonian matrix.

  19. Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US

    NASA Astrophysics Data System (ADS)

    Chow, A. T.; Conner, W.; Williams, T.; Song, B.

    2010-12-01

    Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could

  20. Structure of low-lying states in 140Sm studied by Coulomb excitation

    NASA Astrophysics Data System (ADS)

    Klintefjord, M.; Hadyńska-KlÈ©k, K.; Görgen, A.; Bauer, C.; Bello Garrote, F. L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; Fink, D. A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.-C.; Libert, J.; Lutter, R.; Marsh, B. A.; Molkanov, P. L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M. D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T. G.; Tveten, G. M.; Van Duppen, P.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.

    2016-05-01

    The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 21+ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that 140Sm shows considerable γ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivity in this mass region.

  1. Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes

    SciTech Connect

    Nomura, K.; Otsuka, T.; Rodriguez-Guzman, R.; Sarriguren, P.; Robledo, L. M.; Regan, P. H.; Stevenson, P. D.; Podolyak, Zs.

    2011-05-15

    Structural evolution in neutron-rich Os and W isotopes is investigated in terms of the interacting boson model (IBM) Hamiltonian determined by (constrained) Hartree-Fock-Bogoliubov calculations with the Gogny-D1S energy density functional (EDF). The interaction strengths of the IBM Hamiltonian are produced by mapping the potential energy surface (PES) of the Gogny-EDF with quadrupole degrees of freedom onto the corresponding PES of the IBM system. We examine the prolate-to-oblate shape/phase transition which is predicted to take place in this region as a function of neutron number N within the considered Os and W isotopic chains. The onset of this transition is found to be more rapid compared to the neighboring Pt isotopes. The calculations also allow the prediction of spectroscopic variables (excited state energies and reduced transition probabilities) which are presented for the neutron-rich {sup 192,194,196}W nuclei, for which there is only very limited experimental data available to date.

  2. The water budget of a coastal low-lying wetland area at the German Baltic Coast

    NASA Astrophysics Data System (ADS)

    Bronstert, Axel; Graeff, Thomas; Selle, Benny; Salzmann, Thomas; Franck, Christian; Miegel, Konrad

    2016-04-01

    that despite low slope, sandy soils and forest vegetation, the catchment's hydrology is dominated by quick discharge components, for which the near-surface groundwater and the reaction for open water surfaces are the main cause. The seasonality of the area's discharge is characterized by the formation of quick discharge components mainly during the winter half-year, and by the retention effect of the lowland/fen. This retention is especially high in summer, when the surface and ground water levels have decreased due to high evaporation rates and the discharge out of the area may cease. The magnitude of the area's outflow thus generally depends on the catchment's water level. Due to the possible backlog of surface water caused by high water levels of the Baltic Sea, the direction of flow may reverse episodically. In the subareas between the trenches of the lowland, vertical exchange processes from precipitation and evaporation dominate. The lateral sub-surface interaction from/to the Baltic Sea is rather small due to the particular low local subsurface hydraulic conductivity and the very small hydraulic gradient. In summary, it can be said that this coastal low-lying wetland in the restoration phase shows rather heterogeneous hydrological processes and water balance. Characteristic are the high relevance of the subsurface processes and a strong seasonal variation, i.e. very low discharge rates in summer (except for summer convective rain storms) and considerable discharge rates in winter. The anthropogenic interventions in those coastal areas during the last two centuries have changed their water balance exceedingly. The interaction with the Baltic Sea via groundwater exchange under the dunes is very small.

  3. Low-lying excited states in armchair polyacene within Pariser-Parr-Pople model: A density matrix renormalization group study

    SciTech Connect

    Das, Mousumi

    2014-03-28

    We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.

  4. Impact of the electron environment on the lifetime of the {sup 229}Th{sup m} low-lying isomer

    SciTech Connect

    Karpeshin, F. F.; Trzhaskovskaya, M. B.

    2007-11-15

    The question of the lifetime of the {sup 229}Th{sup m} low-lying isomer is considered in light of current experimental research. A strong effect of the electron shell on lifetime is demonstrated, depending on the energy of the isomer. Calculations are performed within the framework of the multiconfiguration Dirac-Fock method. The calculated lifetime ranges from around 1 min down to 10{sup -5} s. Prospects for further experimental research of the isomer are discussed.

  5. Probing ground and low-lying excited states for HIO2 isomers

    NASA Astrophysics Data System (ADS)

    de Souza, Gabriel L. C.; Brown, Alex

    2014-12-01

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).

  6. Probing ground and low-lying excited states for HIO2 isomers.

    PubMed

    de Souza, Gabriel L C; Brown, Alex

    2014-12-21

    We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10(-3)). PMID:25527931

  7. Probing ground and low-lying excited states for HIO{sub 2} isomers

    SciTech Connect

    Souza, Gabriel L. C. de; Brown, Alex

    2014-12-21

    We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})

  8. Ab initio study on the low-lying excited states of gas-phase PH+ cation including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Li, Xia; Zhang, Xiaomei; Yan, Bing

    2015-05-01

    Ab initio calculations have been performed on the low-lying excited and ground states of PH+. The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A2Δ-4Π and 12Σ+-4Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15 Ω states. The Ω = 1/2 state generated from the X2Π state is confirmed to the ground Ω state. And the SOC splitting for the X2Π is calculated to be 294 cm-1. The SOC effect has large effect on the PECs of the A2Δ and 12Σ+ states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A2Δ-X2Π and 12Σ--X2Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A2Δ and 12Σ- states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A2Δ state is almost uninfluenced by the perturbation via the SOC effect.

  9. Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine

    SciTech Connect

    Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Leutwyler, Samuel

    2014-01-28

    The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm{sup −1} resolution in a supersonic jet. The electronic origin at 32 252 cm{sup −1} exhibits methyl torsional subbands that originate from the 0A{sub 1}{sup ′′} (l = 0) and 1E{sup ″} (l = ±1) torsional levels. These and further torsional bands that appear up to 0{sub 0}{sup 0}+230 cm{sup −1} allow to fit the threefold (V{sub 3}) barriers of the torsional potentials as |V{sub 3}{sup ′′}|=50 cm{sup −1} in the S{sub 0} and |V{sub 3}{sup ′}|=126 cm{sup −1} in the S{sub 1} state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V{sub 3}{sup ′′}=20 cm{sup −1} and V{sub 3}{sup ′}=115 cm{sup −1}. The 0{sub 0}{sup 0} rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis {sup 1}ππ{sup *} excitation. The residual 25% c-axis polarization may indicate coupling of the {sup 1}ππ{sup *} to the close-lying {sup 1}nπ{sup *} state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated {sup 1}nπ oscillator strength is only 6% of that of the {sup 1}ππ{sup *} transition. The {sup 1}ππ{sup *} vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm{sup −1}. The methyl torsion and the low-frequency out-of-plane ν{sub 1}{sup ′} and ν{sub 2}{sup ′} vibrations are strongly coupled in the {sup 1}ππ{sup *} state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the {sup 1}ππ{sup *} spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian

  10. Low-lying isomeric state in {sup 80}Ga from the {beta}{sup -} decay of {sup 80}Zn

    SciTech Connect

    LicA, R.; Marginean, N.; Ghita, D.G.; and others

    2012-10-20

    A new level scheme was constructed for {sup 80}Ga which is significantly different from the one previously reported. The excitation energy of a new low-lying state recently reported in [2] was identified at 22.4 keV. Properties of the level scheme suggest that the ground state has spin J = 6 and the first excited state has spin J = 3. The spin assignments are in agreement with laser spectroscopy values previously measured. Our work provides the first evidence for the J = 6 being the ground state.

  11. Primary transitions between the yrast superdeformed band and low-lying normal deformed states in {sup 194}Pb

    SciTech Connect

    Hauschild, K.; Bernstein, L.A.; Becker, J.A.

    1996-12-31

    The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.

  12. Low-lying spectra of {sup 9}{Lambda}Be and {sup 9}Be within three-cluster model

    SciTech Connect

    Filikhin, I.; Suslov, V. M.; Vlahovic, B.

    2011-10-24

    An {alpha}-cluster model is applied to study the low-lying spectra of the {sup 9}{Lambda}Be and {sup 9}Be nuclei. The {alpha}{alpha}{Lambda} and {alpha}{alpha}n three-body problems are numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials with spin-orbital {alpha}{Lambda} and {alpha}n interactions taken into account. For the {sup 9}{Lambda}Be hypernucleus we found a set of the potentials that reproduces the experimental data for the ground state (1/2 {sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2 {sup +} states, simultaneously. The LS coupling scheme is used for partial wave analysis. The total orbital momentum is fixed for each energy level. Under this assumption we calculated the {sup 9}Be spectrum within {alpha}{alpha}n model. The experiential data are well reproduced by the model, when a new classification for low-lying levels of {sup 9}Be as members of spin-flip doublets is applied.

  13. Electronic structure of vanadium and chromium carbide cations, VC+ and CrC+. Ground and low-lying states

    NASA Astrophysics Data System (ADS)

    Kerkines, Ioannis S. K.; Mavridis, Aristides

    2004-01-01

    The ground and low-lying states of the monopositive vanadium and chromium carbides, VC+ and CrC+ have been studied by multireference methods and quantitative basis sets. Potential energy curves for 17 (VC+) and 19 (CrC+) states have been fully calculated. A variety of binding modes is revealed in the low-lying spectrum of the two molecular cations, often accompanied with an electronic charge transfer from the metal cation towards carbon. Two states compete for the ground state identity in both systems. One state comprises two π and ½σ bonds (similarly to ScC+ and TiC+), while the other state forms a genuine triple bond. After a rather intricate analysis including core electron effects, scalar relativity and curve shifts, the formal ground states of VC+ and CrC+ are found to be of 3Δ and 2Δ symmetry, with estimated energy differences from the competing 1Σ+ and 4Σ- states of 1-3 and 3-7 kcal/mol, respectively. At the highest level of theory including core/valence correlation and one-electron relativistic effects, the calculated ground-state binding energies are in satisfactory agreement with available experimental values.

  14. Algebraic approach to the structure of the low-lying states in A ≈100 Ru isotopes

    NASA Astrophysics Data System (ADS)

    Kisyov, S.; Bucurescu, D.; Jolie, J.; Lalkovski, S.

    2016-04-01

    The structure of the low-lying states in the odd- and even-mass A ≈100 Ru isotopes is studied in the framework of two algebraic models. The even-mass Ru nuclei are first described within the interacting boson model 1 (IBM-1). The output of these calculations was then used to calculate the odd-A isotopes within the interacting boson-fermion model 1 (IBFM-1), where a coupling of the odd neutron to the even-even core is considered. The level energies and transition probabilities calculated in the present work are tested against the experimental data. One-nucleon transfer spectroscopic factors as well as electromagnetic moments were also calculated for the odd-A Ru and compared to the experimental values. The transitional character of the isotopes is studied. Most of the low-lying positive-parity states in the odd-A Ru nuclei below 2 MeV are interpreted on the basis of ν d5 /2 and ν g7 /2 configurations. The role of the ν s1 /2 orbital in the nuclear structure of the odd-mass Ru nuclei at low energies is also studied. The negative-parity states are interpreted as ν h11 /2 excitations coupled to the core. The evolution of the IBM-1 and IBFM-1 parameters is discussed.

  15. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    DOE PAGES

    Bross, David H.; Peterson, Kirk A.

    2015-11-13

    Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and themore » PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.« less

  16. Theoretical spectroscopy study of the low-lying electronic states of UX and UX{sup +}, X = F and Cl

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2015-11-14

    Spectroscopic constants (T{sub e}, r{sub e}, B{sub 0}, ω{sub e}, and ω{sub e}x{sub e}) have been calculated for the low-lying electronic states of UF, UF{sup +}, UCl, and UCl{sup +} using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U{sup +} and UF{sup +}. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm{sup −1} as opposed to the same state at 435 cm{sup −1} in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF{sup +} and UCl{sup +} both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl{sup +} than in UF{sup +}, ranging up to 776 cm{sup −1} in UF{sup +} and only 438 cm{sup −1} in UCl{sup +}. As in previous studies, the final PP-based SO-CASPT2 results for UF{sup +} and UF agree well with experiment and are expected to be predictive for UCl and UCl{sup +}, which are reported here for the first time.

  17. Theoretical spectroscopy study of the low-lying electronic states of UX and UX(+), X = F and Cl.

    PubMed

    Bross, David H; Peterson, Kirk A

    2015-11-14

    Spectroscopic constants (Te, re, B0, ωe, and ωexe) have been calculated for the low-lying electronic states of UF, UF(+), UCl, and UCl(+) using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U(+) and UF(+). Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm(-1) as opposed to the same state at 435 cm(-1) in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF(+) and UCl(+) both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl(+) than in UF(+), ranging up to 776 cm(-1) in UF(+) and only 438 cm(-1) in UCl(+). As in previous studies, the final PP-based SO-CASPT2 results for UF(+) and UF agree well with experiment and are expected to be predictive for UCl and UCl(+), which are reported here for the first time.

  18. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    NASA Astrophysics Data System (ADS)

    Bross, David H.; Peterson, Kirk A.

    2015-11-01

    Spectroscopic constants (Te, re, B0, ωe, and ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF+ and UCl+ both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous studies, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment and are expected to be predictive for UCl and UCl+, which are reported here for the first time.

  19. Elastic response of the atomic nucleus in gauge space: Giant Pairing Vibrations

    NASA Astrophysics Data System (ADS)

    Bortignon, P. F.; Broglia, R. A.

    2016-09-01

    Due to quantal fluctuations, the ground state of a closed shell system A0 can become virtually excited in a state made out of the ground state of the neighbour nucleus \\vert gs(A_0+2) rangle ( \\vert gs(A_0-2) rangle ) and of two uncorrelated holes (particles) below (above) the Fermi surface. These J^{π} = 0+ pairing vibrational states have been extensively studied with two-nucleon transfer reactions. Away from closed shells, these modes eventually condense, leading to nuclear superfluidity and thus to pairing rotational bands with excitation energies much smaller than hbarω0, the energy separation between major shells. Pairing vibrations are the plastic response of the nucleus in gauge space, in a similar way in which low-lying quadrupole vibrations, i.e. surface vibrations with energies much smaller than hbarω0 whose eventual condensation leads to quadrupole deformed nuclei, provide an example of the plastic nuclear response in 3D space. While much is known, in particular concerning its damping, regarding the counterpart of quadrupole plastic modes, i.e. regarding the giant quadrupole resonances (GQR), J^{π} = 2+ elastic response of the nucleus with energies of the order of hbarω0, little is known regarding this subject concerning pairing modes (giant pairing vibrations, GPV). Consequently, the recently reported observation of L = 0 resonances, populated in the reactions 12C(18O,16O)14C and 13C(18O,16O)15C and lying at an excitation energy of the order of hbarω0, likely constitutes the starting point of a new field of research, that of the study of the elastic response of nuclei in gauge space. Not only that, but also the fact that the GPV have likely been serendipitously observed in these light nuclei when it has failed to show up in more propitious nuclei like Pb, provides unexpected and fundamental insight into the relation existing between basic mechanisms -Landau, doorway, compound damping- through which giant resonances acquire a finite lifetime, let

  20. Electronic structure and rovibrational calculation of the low-lying states of the RbYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, S. N.; Korek, M.

    2013-01-01

    Complete Active Space Self Consistent Field (CASSCF) method with Multi Reference Configuration Interaction (MRCI) calculations is used to investigate the potential energy curves of the low-lying 29 electronic states in the representation 2s+1Λ(+/-) of the RbYb molecule (single and double excitations with Davidson corrections). The harmonic frequency ωe, the internuclear distance Re and the electronic energy with respect to the ground state Te have been calculated. The eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. The comparison between the values of the present work and those available in the literature for several states shows a very good agreement. Twenty-six new states have been studied here for the first time.

  1. The GSAM software: A global search algorithm of minima exploration for the investigation of low lying isomers of clusters

    SciTech Connect

    Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude

    2015-01-22

    The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.

  2. Quadrupole shape dynamics from the viewpoint of a theory of large-amplitude collective motion

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Hinohara, N.; Sato, K.; Matsuyanagi, K.; Nakatsukasa, T.; Yoshida, K.

    2014-05-01

    Low-lying quadrupole shape dynamics is a typical manifestation of large-amplitude collective motion in finite nuclei. To describe the dynamics on a microscopic foundation, we have formulated a consistent scheme in which the Bohr collective Hamiltonian for the five-dimensional quadrupole shape variables is derived on the basis of the time-dependent Hartree-Fock-Bogoliubov theory. It enables us to incorporate the Thouless-Valatin effect on the shape inertial functions, which has been neglected in previous microscopic Bohr Hamiltonian approaches. Quantitative successes are illustrated for the low-lying spectra in 68Se, 30-34Mg and 58-64Cr, which display shape-coexistence, shape-mixing and shape-transitional behavior.

  3. Microscopic derivation of five-dimensional collective Hamiltonian of large-amplitude quadrupole motion: application to shape coexistence in proton-rich Se isotopes

    SciTech Connect

    Hinohara, Nobuo; Nakatsukasa, Takashi; Sato, Koichi; Matsuo, Masayuki

    2010-05-12

    We present a new microscopic approach which consists of the constrained Hartree-Fock-Bogoliubov (CHFB) and the local quasiparticle random-phase approximation (LQRPA) to construct the five-dimensional quadrupole collective Hamiltonian for large-amplitude collective dynamics. The excitation spectra and the electric quadrupole transitions between the low-lying states in {sup 68}Se are calculated by solving the collective Schroedinger equation.

  4. Systematics of low-lying electric dipole excitations in the A{approx_equal}130{endash}200 mass region

    SciTech Connect

    Fransen, C.; von Brentano, P.; Herzberg, R.; Pietralla, N.; Zilges, A.; Beck, O.; Eckert, T.; Kneissl, U.; Maser, H.; Nord, A.; Pitz, H.H.; Zilges, A.

    1998-01-01

    The data from numerous high resolution photon scattering experiments allow an extensive survey of the lowest electric dipole excitations in the A{approx_equal}130{endash}200 mass region. In this mass region one can find spherical as well as transitional and strongly quadrupole deformed nuclei. The measured absolute E1 strengths are typically of the order of several milli Weisskopf units and exhibit in general a smooth variation with mass number. {copyright} {ital 1998} {ital The American Physical Society}

  5. A quantitative evaluation method of flood risks in low-lying areas associated with increase of heavy rainfall in Japan

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2012-12-01

    An increase in flood risk, especially in low-lying areas, is predicted as a consequence of global climate change or other causes. Immediate measures such as strengthening of drainage capacity are needed to minimize the damage caused by more-frequent flooding. Typically, drainage pump capacities of in paddy areas are planned by using a result of drainage analysis with design rainfall (e.g. 3-day rainfall amount with a 10-year return period). However, the result depends on a hyetograph of input rainfall even if a total amount of rainfall is equal, and the flood risk may be different with rainfall patterns. Therefore, it is important to assume various patterns of heavy rainfall for flood risk assessment. On the other hand, a rainfall synthesis simulation is useful to generate many patterns of rainfall data for flood studies. We previously proposed a rainfall simulation method called diurnal rainfall pattern generator which can generate short-time step rainfall and internal pattern of them. This study discusses a quantitative evaluation method for detecting a relationship between flood damage risk and heavy rainfall scale by using the diurnal rainfall pattern generator. In addition, we also approached an estimation of flood damage which focused on rice yield. Our study area was in the Kaga three-lagoon basin in Ishikawa Prefecture, Japan. There are two lagoons in the study area, and the low-lying paddy areas extend over about 4,000 ha in the lower reaches of the basin. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level on channels and paddies. Next, the heavy rainfall data for drainage analysis were generated. Here, the 3-day rainfalls amounts with 9 kinds of different return periods (2-, 3-, 5-, 8-, 10-, 15-, 50-, 100-, and 200-year) were derived, and three hundred hyetograph patterns were generated for each rainfall amount by using the diurnal rainfall pattern generator. Finally, all data

  6. Nucleosynthesis of 92Nb and the relevance of the low-lying isomer at 135.5 keV

    NASA Astrophysics Data System (ADS)

    Mohr, Peter

    2016-06-01

    Background: Because of its half-life of about 35 million years, 92Nb is considered as a chronometer for nucleosynthesis events prior to the birth of our sun. The abundance of 92Nb in the early solar system can be derived from meteoritic data. It has to be compared to theoretical estimates for the production of 92Nb to determine the time between the last nucleosynthesis event before the formation of the early solar system. Purpose: The influence of a low-lying short-lived isomer on the nucleosynthesis of 92Nb is analyzed. The thermal coupling between the ground state and the isomer via so-called intermediate states affects the production and survival of 92Nb. Method: The properties of the lowest intermediate state in 92Nb are known from experiment. From the lifetime of the intermediate state and from its decay branchings, the transition rate from the ground state to the isomer and the effective half-life of 92Nb are calculated as functions of the temperature. Results: The coupling between the ground state and the isomer is strong. This leads to thermalization of ground state and isomer in the nucleosynthesis of 92Nb in any explosive production scenario and almost 100% survival of 92Nb in its ground state. However, the strong coupling leads to a temperature-dependent effective half-life of 92Nb which makes the 92Nb survival very sensitive to temperatures as low as about 8 keV, thus turning 92Nb at least partly into a thermometer. Conclusions: The low-lying isomer in 92Nb does not affect the production of 92Nb in explosive scenarios. In retrospect this validates all previous studies where the isomer was not taken into account. However, the dramatic reduction of the effective half-life at temperatures below 10 keV may affect the survival of 92Nb after its synthesis in supernovae, which are the most likely astrophysical sites for the nucleosynthesis of 92Nb.

  7. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    NASA Astrophysics Data System (ADS)

    Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan

    2015-03-01

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  8. Operational flood control of a low-lying delta system using large time step Model Predictive Control

    NASA Astrophysics Data System (ADS)

    Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick

    2015-01-01

    The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.

  9. Computational simulation and interpretation of the low-lying excited electronic states and electronic spectrum of thioanisole.

    PubMed

    Li, Shaohong L; Xu, Xuefei; Truhlar, Donald G

    2015-08-21

    Three singlet states, namely a closed-shell ground state and two excited states with (1)ππ* and (1)nσ* character, have been suggested to be responsible for the radiationless decay or photochemical reaction of photoexcited thioanisole. The correct interpretation of the electronic spectrum is critical for understanding the character of these low-lying excited states, but the experimental spectrum is yet to be fully interpreted. In the work reported here, we investigated the nature of those three states and a fourth singlet state of thioanisole using electronic structure calculations by multireference perturbation theory, by completely-renormalized equation-of-motion coupled cluster theory with single and double excitations and noniterative inclusion of connected triples (CR-EOM-CCSD(T)), and by linear-response time-dependent density functional theory (TDDFT). We clarified the assignment of the electronic spectrum by simulating it using a normal-mode sampling approach combined with TDDFT in the Tamm-Dancoff approximation (TDA). The understanding of the electronic states and of the accuracy of the electronic structure methods lays the foundation of our future work of constructing potential energy surfaces. PMID:26088195

  10. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule

    SciTech Connect

    Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.

  11. Ab initio calculations of the electronic structure of the low-lying states for the ultracold LiYb molecule.

    PubMed

    Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan

    2015-03-21

    Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254

  12. Saltwater contamination in the managed low-lying farmland of the Venice coast, Italy: An assessment of vulnerability.

    PubMed

    Da Lio, Cristina; Carol, Eleonora; Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi

    2015-11-15

    The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater-surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined.

  13. Superconducting magnetic quadrupole

    SciTech Connect

    Kim, J.W.; Shepard, K.W.; Nolen, J.A.

    1995-08-01

    A design was developed for a 350 T/m, 2.6-cm clear aperture superconducting quadrupole focussing element for use in a very low q/m superconducting linac as discussed below. The quadrupole incorporates holmium pole tips, and a rectangular-section winding using standard commercially-available Nb-Ti wire. The magnet was modeled numerically using both 2D and 3D codes, as a basis for numerical ray tracing using the quadrupole as a linac element. Components for a prototype singlet are being procured during FY 1995.

  14. Search for global-minimum geometries of medium-sized germanium clusters. II. Motif-based low-lying clusters Ge21-Ge29

    NASA Astrophysics Data System (ADS)

    Yoo, S.; Zeng, X. C.

    2006-05-01

    We performed a constrained search for the geometries of low-lying neutral germanium clusters GeN in the size range of 21⩽N⩽29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N ˜65.

  15. Low-Lying Energy Isomers and Global Minima of Aqueous Nanoclusters: Structures and Spectroscopic Features of the Pentagonal Dodecahedron (H2O)20 and (H3O)+(H2O)20

    SciTech Connect

    Xantheas, Sotiris S.

    2012-08-01

    We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared to DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.

  16. Theoretical Study on Vibronic Interactions and Photophysics of Low-Lying Excited Electronic States of Polycyclic Aromatic Hydrocarbons

    NASA Astrophysics Data System (ADS)

    Samala, Nagaprasad Reddy; Mahapatra, S.

    2014-06-01

    Polycyclic aromatic hydrocarbons (PAHs), in particular, their radical cation (PAH^+), have long been postulated to be the important molecular species in connection with the spectroscopic observations in the interstellar medium. Motivated by numerous important observations by stellar as well as laboratory spectroscopists, we undertook detailed quantum mechanical studies of the structure and dynamics of electronically excited PAH^+ in an attempt to establish possible synergism with the recorded data In this study, we focus on the quantum chemistry and dynamics of the doublet ground (X) and low-lying excited (A, B and C) electronic states of the radical cation of tetracene (Tn), pentacene (Pn), and hexacene (Hn) molecule. This study is aimed to unravel photostability, spectroscopy, and time-dependent dynamics of their excited electronic states. In order to proceed with the theoretical investigations, we construct suitable multistate and multimode Hamiltonian for these systems with the aid of extensive ab initio calculations of their electronic energy surfaces. The diabatic coupling surfaces are derived from the calculated adiabatic electronic energies. First principles nuclear dynamics calculations are then carried out employing the constructed Hamiltonians and with the aid of time-independent and time-dependent quantum mechanical methods. We compared our theoretical results with available photoelectron spectroscopy, zero kinetic energy photoelectron (ZEKE) spectroscopy and matrix isolation spectroscopy (MIS) results. A peak at 8650 Å in the B state spectrum of Tn^+ is in good agreement with the DIB at 8648 Å observed by Salama et al. Similarly in Pn^+, a peak at 8350 Å can be correlated to the DIB at 8321 Å observed by Salama et al. J. Zhang et al., J. Chem. Phys., 128,104301 (2008).; F. Salama, Origins of Life Evol. Biosphere, 28, 349 (1998).; F. Salama et al., Planet. Space Sci., 43, 1165 (1995).; F. Salama et al., Astrophys. J., 526, 265 (1999).; J

  17. Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach

    NASA Astrophysics Data System (ADS)

    Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar

    2016-06-01

    Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica

  18. Electronic spectra and excited state dynamics of pentafluorophenol: Effects of low-lying πσ{sup ∗} states

    SciTech Connect

    Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas

    2015-05-14

    Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}←S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ{sup ∗} character in the vicinity of the lowest valence ππ{sup ∗} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ{sup ∗} and a nearby dissociative πσ{sup ∗} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of πσ{sup ∗} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the

  19. Vibrational Corrections to Molecular Properties: Second-Order Vibrational Perturbation Theory VS Variational Computations

    NASA Astrophysics Data System (ADS)

    Harding, Michael E.; Vázquez, Juana; Stanton, John F.; Diezemann, Gregor; Gauss, Jürgen

    2011-06-01

    For a small set of linear and non-linear molecules, a detailed comparison of two different procedures for predicting vibrationally averaged molecular properties, i.e., second-order vibrational perturbation theory (VPT2) and a variational approach, is carried out. Results for vibrational corrections to dipole and quadrupole moments, nuclear quadrupole moments, static electric-dipole polarizabilities, NMR chemical shielding tensors, nuclear spin-rotation tensors, magnetizabilities, and rotational g-tensors are reported.

  20. Correcting Quadrupole Roll in Magnetic Lenses with Skew Quadrupoles

    SciTech Connect

    Walstrom, Peter Lowell

    2014-11-10

    Quadrupole rolls (i.e. rotation around the magnet axis) are known to be a significant source of image blurring in magnetic quadrupole lenses. These rolls may be caused by errors in mechanical mounting of quadrupoles, by uneven radiation-induced demagnetization of permanent-magnet quadrupoles, etc. Here a four-quadrupole ×10 lens with so-called ”Russian” or A -B B-A symmetry is used as a model problem. Existing SLAC 1/2 in. bore high-gradient quadrupoles are used in the design. The dominant quadrupole roll effect is changes in the first-order part of the transfer map (the R matrix) from the object to the image plane (Note effects on the R matrix can be of first order in rotation angle for some R-matrix elements and second order in rotation angle for other elements, as shown below). It is possible to correct roll-induced image blur by mechanically adjusting the roll angle of one or more of the quadrupoles. Usually, rotation of one quadrupole is sufficient to correct most of the combined effect of rolls in all four quadrupoles. There are drawbacks to this approach, however, since mechanical roll correction requires multiple entries into experimental area to make the adjustments, which are made according to their effect on images. An alternative is to use a single electromagnetic skew quadrupole corrector placed either between two of the quadrupoles or after the fourth quadrupole (so-called “non-local” correction). The basic feasibility of skew quadrupole correction of quadrupole roll effects is demonstrated here. Rolls of the third lens quadrupole of up to about 1 milliradian can be corrected with a 15 cm long skew quadrupole with a gradient of up to 1 T/m. Since the effect of rolls of the remaining three lens quadrupoles are lower, a weaker skew quadrupole can be used to correct them. Non-local correction of quadrupole roll effects by skew quadrupoles is shown to be about one-half as effective as local correction (i.e. rotating individual quadrupoles to zero

  1. Electromagnetic mass splittings of the low lying hadrons and quark masses from 2+1 flavor lattice QCD+QED

    SciTech Connect

    Blum, Tom; Zhou Ran; Doi, Takumi; Hayakawa, Masashi; Izubuchi, Taku; Uno, Shunpei; Yamada, Norikazu

    2010-11-01

    Results computed in lattice QCD+QED are presented for the electromagnetic mass splittings of the low-lying hadrons. These are used to determine the renormalized, nondegenerate, light quark masses. It is found that m{sub u}{sup MS}=2.24(10)(34), m{sub d}{sup MS}=4.65(15)(32), and m{sub s}{sup MS}=97.6(2.9)(5.5) MeV at the renormalization scale 2 GeV, where the first error is statistical and the second systematic. We find the lowest-order electromagnetic splitting (m{sub {pi}{sup +}}-m{sub {pi}{sup 0}}){sub QED}=3.38(23) MeV, the splittings including next-to-leading order, (m{sub {pi}{sup +}}-m{sub {pi}{sup 0}}){sub QED}=4.50(23) MeV, (m{sub K{sup +}}-m{sub K{sup 0}}){sub QED}=1.87(10) MeV, and the m{sub u}{ne}m{sub d} contribution to the kaon mass difference, (m{sub K{sup +}}-m{sub K{sup 0}}){sub (m{sub u}-m{sub d})}=-5.840(96) MeV. All errors are statistical only, and the next-to-leading-order pion splitting is only approximate in that it does not contain all next-to-leading-order contributions. We also computed the proton-neutron mass difference, including for the first time, QED interactions in a realistic 2+1 flavor calculation. We find (m{sub p}-m{sub n}){sub QED}=0.383(68) MeV, (m{sub p}-m{sub n}){sub (m{sub u}-m{sub d})}=-2.51(14) MeV (statistical errors only), and the total m{sub p}-m{sub n}=-2.13(16)(70) MeV, where the first error is statistical, and the second, part of the systematic error. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations, using domain wall fermions and the Iwasaki gauge action (gauge coupling {beta}=2.13 and lattice cutoff a{sup -1}{approx_equal}1.78 GeV). We use two lattice sizes, 16{sup 3} and 24{sup 3} ((1.8 fm){sup 3} and (2.7 fm){sup 3}), to address finite-volume effects. Noncompact QED is treated in the quenched approximation. The valence pseudoscalar meson masses in our study cover a range of about 250 to 700 MeV, though we use only those up to about 400 MeV to quote final results. We

  2. The Blackwater NWR inundation model. Rising sea level on a low-lying coast: land use planning for wetlands

    USGS Publications Warehouse

    Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom

    2004-01-01

    shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.

  3. An Approach to Assessing Flood Risk in Low-lying Paddy Areas of Japan considering Economic Damage on Rice

    NASA Astrophysics Data System (ADS)

    Minakawa, H.; Masumoto, T.

    2013-12-01

    constructed in a rice paddy plot, which consisted of two zones, one in which the rice was cultivated as usual with normal water levels, and a flood zone, which was used for submerging rice plants. The flood zone, which was designed to reproduce actual flood disaster conditions in paddy fields, can be filled with water to a depth of 0.3, 0.6 or 0.9 m above ground level, and is divided into two plots, a clean water part and a turbid water part. Thus, the experimental conditions can vary according to 1) the development stage of rice, 2) complete or incomplete submersion, 3) clean or turbid water, and 4) duration of submergence. Finally, the reduction scales were formulated by using the resultant data and it was found that rice is most sensitive to damage during the development stage. Flood risk was evaluated by using calculated water level on each paddy. Here, the averaged duration of inundation to a depth of more than 0.3 m was used as the criteria for flood occurrence. The results indicated that the duration increased with larger heavy rainfall amounts. Furthermore, the damage to rice was predicted to increase especially in low-lying paddy fields. Mitigation measures, such as revising drainage planning and/or changing design standards for the capacity of drainage pumps may be necessary in the future.

  4. Exploring the nature of low-lying excited-states in molecular crystals from many-body perturbation theory beyond the Tamm-Dancoff Approximation

    NASA Astrophysics Data System (ADS)

    Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.

    Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.

  5. A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical

    NASA Technical Reports Server (NTRS)

    Jackels, C. F.

    1985-01-01

    Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.

  6. Extensive spectroscopic calculations on 12 low-lying electronic states of AlN molecule including transition properties

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Shi, Deheng; Sun, Jinfeng; Zhu, Zunlue

    2014-05-01

    Using the CASSCF method followed by the internally contracted MRCI approach in combination with the correlation-consistent basis sets, the potential energy curves (PECs) are calculated for the X3Π, A3Σ-, B3Σ+, C3Π, E3Δ, a1Σ+, b1Π, c1Δ, d1Σ+, e1Π, 23Σ- and 33Σ- electronic states of AlN molecule for internuclear separations from 0.1 to 1.0 nm. All the electronic states correlate to the three dissociation channels, Al(2Pu) + N(4Su), Al(2Pu) + N(2Du) and Al(2Pu) + N(2Pu). Of these 12 electronic states, only the 23Σ- possesses the double well. The PECs determined by the internally contracted MRCI approach are corrected for size-extensivity errors by means of the Davidson correction. The convergent behavior of present calculations is observed with respect to the basis set and level of theory. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is discussed. Scalar relativistic correction calculations are performed by the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated by fitting the first ten vibrational levels when available, which are obtained by solving the ro-vibrational Schrödinger equation with the Numerov's method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Σ-, B3Σ+, C3Π, a1Σ+ and b1Π electronic states to the ground state are calculated for several low vibrational levels, and some necessary discussion has been made.

  7. The Quadrupole Mass Spectrometer

    ERIC Educational Resources Information Center

    Matheson, E.; Harris, T. J.

    1969-01-01

    Describes the construction and operation of a quadrupole mass spectrometer for experiments in an advanced-teaching laboratory. Discusses the theory of operation of the spectrometer and the factors affecting the resolution. Some examples of mass spectra obtained with this instrument are presented and discussed. (LC)

  8. Theoretical study on the low-lying excited states of the phosphorus monoiodide (PI) including the spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomei; Liu, Xiaoting; Liang, Guiying; Li, Rui; Xu, Haifeng; Yan, Bing

    2016-01-01

    The potential energy curves (PECs) of the 22 Λ-S states of the phosphorus monoiodide (PI) molecule have been calculated at the level of MRCI+Q method with correlation-consistent quadruple-ζ quality basis set. The spectroscopic constants of the bound states are determined, which well reproduce the available measurements. The metastable a1Δ state has been reported for the first time, which lies between the X3Σ- and b1Σ+ states and have much deeper well than the ground state. The R-dependent spin-orbit (SO) matrix elements are calculated with the full-electron Breit-Pauli operator. Based on the SO matrix elements, the perturbations that the 23Π state may suffer from are analyzed in detail. The SOC effect makes the original Λ-S states split into 51 Ω states. In the zero-field splitting of the ground state X3Σ-, the spin-spin coupling contribution (2.23 cm-1) is found to be much smaller compared to the spin-orbit coupling contribution (50 cm-1). The avoided crossings between the Ω states lead to much shallower potential wells and the change of dissociation relationships of the states. The Ω-state wavefunctions are analyzed depending on their Λ-S compositions, showing the strong interactions among several quasidegenerate Λ-S states of the same total SO symmetry. The transition properties including electric dipole (E1), magnetic dipole (M1), and electric quadrupole (E2) transition moments (TMs), the Franck-Condon factors, the transition probabilities and the radiative lifetimes are computed for the transitions between Ω components of a1Δ and b1Σ+ states and ground state. The transition probabilities induced by the E1, E2, and M1 transitions are evaluated. The E2 makes little effect on transition probabilities. In contrast, the E1 transition makes the main contribution to the transition probability and the M1 transition also brings the influence that cannot be neglected. Finally, the radiative lifetimes are determined with the transition moments including E

  9. Variable Permanent Magnet Quadrupole

    SciTech Connect

    Mihara, T.; Iwashita, Y.; Kumada, M.; Spencer, C.M.; /SLAC

    2007-05-23

    A permanent magnet quadrupole (PMQ) is one of the candidates for the final focus lens in a linear collider. An over 120 T/m strong variable permanent magnet quadrupole is achieved by the introduction of saturated iron and a 'double ring structure'. A fabricated PMQ achieved 24 T integrated gradient with 20 mm bore diameter, 100 mm magnet diameter and 20 cm pole length. The strength of the PMQ is adjustable in 1.4 T steps, due to its 'double ring structure': the PMQ is split into two nested rings; the outer ring is sliced along the beam line into four parts and is rotated to change the strength. This paper describes the variable PMQ from fabrication to recent adjustments.

  10. Linac quadrupole connections

    SciTech Connect

    Stiening, R.

    1984-07-12

    Linac type QC and QCH quadrupoles are mounted on the accelerator with their power connection side facing the injector. The connections are on the top of the magnet. The correct polarity for magnets is shown. The magnetic centers of all magnets are measured. If the magnetic center is above the geometric center, the distance delta y is positive. If the magnetic center is to the right of the geometric center, the distance delta x is positive.

  11. Low-lying dipole response in the stable {sup 40,48}Ca nuclei within the second random-phase approximation

    SciTech Connect

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-10-20

    The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  12. Structure of Low-Lying Excited States of Guanine in DNA and Solution: Combined Molecular Mechanics and High-Level Coupled Cluster Studies

    DOE PAGES

    Kowalski, Karol; Valiev, Marat

    2007-01-01

    High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.

  13. Microscopic description of ground state magnetic moment and low-lying magnetic dipole excitations in heavy odd-mass 181Ta nucleus

    NASA Astrophysics Data System (ADS)

    Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar

    2016-07-01

    The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.

  14. Multiconfiguration Dirac-Hartree-Fock calculations of excitation energies, oscillator strengths, and hyperfine structure constants for low-lying levels of Sm I

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Qu, Yizhi; Li, Jiguang; Wang, Jianguo

    2015-11-01

    The multiconfiguration Dirac-Hartree-Fock method was employed to calculate the total and excitation energies, oscillator strengths, and hyperfine structure constants for low-lying levels of Sm i. In the first-order perturbation approximation, we systematically analyzed correlation effects from individual electrons and electron pairs. It was found that the core correlations are of importance for the physical quantities concerned. Based on the analysis, the important configuration state wave functions were selected to constitute atomic state wave functions. By using this computational model, our excitation energies, oscillator strengths, and hyperfine structure constants are in better agreement with experimental values than earlier theoretical works.

  15. Low-lying excited states and nonradiative processes of the adenine analogues 7H- and 9H-2-aminopurine

    NASA Astrophysics Data System (ADS)

    Lobsiger, Simon; Sinha, Rajeev K.; Trachsel, Maria; Leutwyler, Samuel

    2011-03-01

    We have investigated the UV vibronic spectra and excited-state nonradiative processes of the 7H- and 9H-tautomers of jet-cooled 2-aminopurine (2AP) and of the 9H-2AP-d4 and -d5 isotopomers, using two-color resonant two-photon ionization spectroscopy at 0.3 and 0.045 cm-1 resolution. The S1 ← S0 transition of 7H-2AP was observed for the first time. It lies ˜ 1600 cm-1 below that of 9H-2AP, is ˜1000 times weaker and exhibits only in-plane vibronic excitations. In contrast, the S1 ← S0 spectra of 9H-2AP, 9H-2AP-d4, and 9H-2AP-d5 show numerous low-frequency bands that can be systematically assigned to overtone and combinations of the out-of-plane vibrations ν1', ν2', and ν3'. The intensity of these out-of-plane bands reflects an out-of-plane deformation in the 1ππ*(La) state. Approximate second-order coupled-cluster theory also predicts that 2-aminopurine undergoes a "butterfly" deformation in its lowest 1ππ* state. The rotational contours of the 9H-2AP, 9H-2AP-d4, and 9H-2AP-d5 0^0_0 bands and of eight vibronic bands of 9H-2AP up to 0^0_0+600 cm-1 exhibit 75%-80% in-plane (a/b) polarization, which is characteristic for a 1ππ* excitation. A 20%-25% c-axis (perpendicular) transition dipole moment component may indicate coupling of the 1ππ* bright state to the close-lying 1nπ* dark state. However, no 1nπ* vibronic bands were detected below or up to 500 cm-1 above the 1ππ* 0^0_0 band. Following 1ππ* excitation, 9H-2AP undergoes a rapid nonradiative transition to a lower-lying long-lived state with a lifetime ⩾5μs. The ionization potential of 9H-2AP was measured via the 1ππ* state (IP = 8.020 eV) and the long-lived state (IP > 9.10 eV). The difference shows that the long-lived state lies ⩾1.08 eV below the 1ππ* state. Time-dependent B3LYP calculations predict the 3ππ* (T1) state 1.12 eV below the 1ππ* state, but place the 1nπ* (S1) state close to the 1ππ* state, implying that the long-lived state is the lowest triplet (T1) and not the

  16. Photon scattering experiments off 176Hf and the systematics of low-lying dipole modes in the stable even-even Hf isotopes 176,178,180Hf

    NASA Astrophysics Data System (ADS)

    Scheck, M.; Belic, D.; von Brentano, P.; Carroll, J. J.; Fransen, C.; Gade, A.; von Garrel, H.; Kneissl, U.; Kohstall, C.; Linnemann, A.; Pietralla, N.; Pitz, H. H.; Stedile, F.; Toman, R.; Werner, V.

    2003-06-01

    The low-lying dipole strength distribution in the rare isotope 176Hf was studied in nuclear resonance fluorescence experiments performed at the Stuttgart Dynamitron facility using bremsstrahlung beams with end- point energies of 4.1 and 2.4 MeV. In total, about 55 excited spin-1 states, unknown so far, were observed in the excitation energy range up to 4 MeV. Detailed spectroscopic information has been obtained on excitation energies, spins, decay widths, decay branchings, and transition probabilities. Ascribing a positive parity to all observed K=1 states, the detected total B(M1)↑ strength in the energy range of the scissors mode amounts to 2.56(6) μ2N, nearly as much as for well-deformed midshell rare-earth nuclei. The total strength is higher than in the heavier Hf isotopes 178,180Hf, but fits well into the systematics. The observed low-lying ΔK=0 transitions (with probable E1 character) lie in the energy range around 2 MeV, as expected from the systematics. The excitation probabilities correspond to values which are characteristic for nuclei in the transitional region from deformed rotors to more γ-soft nuclei.

  17. Quadrupole effects in tetragonal crystals PrCu₂Si₂ and DyCu₂Si₂.

    PubMed

    Mitsumoto, Keisuke; Goto, Saori; Nemoto, Yuichi; Akatsu, Mitsuhiro; Goto, Terutaka; Dung, Nguyen D; Matsuda, Tatsuma D; Haga, Yoshinori; Takeuchi, Tetsuya; Sugiyama, Kiyohiro; Settai, Rikio; Onuki, Yoshichika

    2013-07-24

    We have investigated quadrupole effects in tetragonal crystals of PrCu2Si2 and DyCu2Si2 by means of low-temperature ultrasonic measurements. The elastic constant C44 of PrCu2Si2 exhibits pronounced softening below 70 K down to a Néel temperature TN = 20 K, which is described in terms of a quadrupole susceptibility for a Γ5 doublet ground state and a Γ3 singlet first excited state located at 15.6 K in the crystalline electric field scheme. The C44 and C66 of DyCu2Si2 also show softening below 70 K down to TN1 = 9.7 K. A low-lying pseudo-sextet state consisting of three Kramers doublets of Γ6⊕2Γ7 brings about softening of C44 and C66 in DyCu2Si2.

  18. Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl

    SciTech Connect

    Bross, David H.; Peterson, Kirk A.

    2015-11-13

    Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.

  19. Vibration modes of giant gravitons

    SciTech Connect

    Das, Sumit R.; Jevicki, Antal; Mathur, Samir D.

    2001-01-15

    We examine the spectrum of small vibrations of giant gravitons when the gravitons expand in anti--de Sitter space and when they expand on the sphere. For any given angular harmonic, the modes are found to have frequencies related to the curvature length scale of the background; these frequencies are independent of radius (and hence angular momentum) of the brane itself. This implies that the holographic dual theory must have, in a given R charge sector, low-lying non-BPS excitations with level spacings independent of the R charge.

  20. Theoretical study of the low-lying excited states of ββ-carotene isomers by a multireference configuration interaction method

    NASA Astrophysics Data System (ADS)

    Cerón-Carrasco, José P.; Requena, Alberto; Marian, Christel M.

    2010-07-01

    The combined density functional theory and multireference configuration interaction method (DFT/MRCI) has been employed to explore the ground and low-lying electronically excited states of various β-carotene monocis and dicis isomers. Although the excitation energies are generally somewhat underestimated by DFT/MRCI, the experimental trends are well reproduced and allow an interpretation of the main bands of the UV-Vis spectra. The optically bright signal is correctly assigned to S→S, corresponding to the HOMO → LUMO transition, whereas the so-called cis-band originates mainly from the S→S transition and arises from HOMO-1 → LUMO and HOMO → LUMO+1 excitations. The calculations reveal a correlation between the oscillator strengths of these transitions and the C6-C6' distance thus explaining the effect of the molecular configuration on the shape of the UV-Vis spectra.

  1. Comparison of the AVI, modified SINTACS and GALDIT vulnerability methods under future climate-change scenarios for a shallow low-lying coastal aquifer in southern Finland

    NASA Astrophysics Data System (ADS)

    Luoma, Samrit; Okkonen, Jarkko; Korkka-Niemi, Kirsti

    2016-09-01

    A shallow unconfined low-lying coastal aquifer in southern Finland surrounded by the Baltic Sea is vulnerable to changes in groundwater recharge, sea-level rise and human activities. Assessment of the intrinsic vulnerability of groundwater under climate scenarios was performed for the aquifer area by utilising the results of a published study on the impacts of climate change on groundwater recharge and sea-level rise on groundwater-seawater interaction. Three intrinsic vulnerability mapping methods, the aquifer vulnerability index (AVI), a modified SINTACS and GALDIT, were applied and compared. According to the results, the degree of groundwater vulnerability is greatly impacted by seasonal variations in groundwater recharge during the year, and also varies depending on the climate-change variability in the long term. The groundwater is potentially highly vulnerable to contamination from sources on the ground surface during high groundwater recharge rates after snowmelt, while a high vulnerability to seawater intrusion could exist when there is a low groundwater recharge rate in dry season. The AVI results suggest that a change in the sea level will have an insignificant impact on groundwater vulnerability compared with the results from the modified SINTACS and GALDIT. The modified SINTACS method could be used as a guideline for the groundwater vulnerability assessment of glacial and deglacial deposits in inland aquifers, and in combination with GALDIT, it could provide a useful tool for assessing groundwater vulnerability to both contamination from sources on the ground surface and to seawater intrusion for shallow unconfined low-lying coastal aquifers under future climate-change conditions.

  2. Low-lying intruder and tensor-driven structures in 82As revealed by β decay at a new movable-tape-based experimental setup

    NASA Astrophysics Data System (ADS)

    Etilé, A.; Verney, D.; Arsenyev, N. N.; Bettane, J.; Borzov, I. N.; Cheikh Mhamed, M.; Cuong, P. V.; Delafosse, C.; Didierjean, F.; Gaulard, C.; Van Giai, Nguyen; Goasduff, A.; Ibrahim, F.; Kolos, K.; Lau, C.; Niikura, M.; Roccia, S.; Severyukhin, A. P.; Testov, D.; Tusseau-Nenez, S.; Voronov, V. V.

    2015-06-01

    The β decay of 82Ge Ge was re-investigated using the newly commissioned tape station BEDO at the electron-driven ISOL (isotope separation on line) facility ALTO operated by the Institut de Physique Nucléaire, Orsay. The original motivation of this work was focused on the sudden occurrence in the light N =49 odd-odd isotonic chain of a large number of J ≤1 states (positive or negative parity) in 80Ga by providing a reliable intermediate example, viz., 82As. The extension of the 82As level scheme towards higher energies from the present work has revealed three potential 1+ states above the already known one at 1092 keV. In addition our data allow ruling out the hypothesis that the 843 keV level could be a 1+ state. A detailed analysis of the level scheme using both an empirical core-particle coupling model and a fully microscopic treatment within a Skyrme-QRPA (quasiparticle random-phase approximation) approach using the finite-rank separable approximation was performed. From this analysis two conclusions can be drawn: (i) the presence of a large number of low-lying low-spin negative parity states is due to intruder states stemming from above the N =50 shell closure, and (ii) the sudden increase, from 82As to 80Ga, of the number of low-lying 1+ states and the corresponding Gamow-Teller fragmentation are naturally reproduced by the inclusion of tensor correlations and couplings to 2p-2h excitations.

  3. Distal and proximal ligand interactions in heme proteins: Correlations between C-O and Fe-C vibrational frequencies, oxygen-17 and carbon-13 nuclear magnetic resonance chemical shifts, and oxygen-17 nuclear quadrupole coupling constants in C sup 17 O- and sup 13 CO-labeled species

    SciTech Connect

    Ki Deok Park; Guo, K.; Adebodun, F.; Chiu, M.L.; Sligar, S.G.; Oldfield, E. )

    1991-03-05

    The authors have obtained the oxygen-17 nuclear magnetic resonance (NMR) spectra of a variety of C{sup 17}O-labeled heme proteins, including sperm whale (Physeter catodon) myoglobin, two synthetic sperm whale myoglobin mutants (His E7 {yields} Val E7; His E7 {yields} Phe E7), adult human hemoglobin, rabbit (Oryctolagus cuniculus) hemoglobin, horseradish (Cochlearia armoracia) peroxidase isoenzymes A and C, and Caldariomyces fumago chloroperoxidase, in some cases as a function of pH, and have determined their isotropic {sup 17}O NMR chemical shifts, {delta}{sub i}, and spin-lattice relaxation times, T{sub 1}. They have also obtained similar results on a picket fence prophyrin. The results show an excellent correlation between the infrared C-O vibrational frequencies, {nu}(C-O), and {delta}{sub i}, between {nu}(C-O) and the {sup 17}O nuclear quadrupole coupling constant, and as expected between e{sup 2}qQ/h and {delta}{sub i}. The results suggest the IR and NMR measurements reflect the same interaction, which is thought to be primarily the degree of {pi}-back-bonding from Fe d to CO {pi}* orbitals, as outlined previously.

  4. Application of recent double-hybrid density functionals to low-lying singlet-singlet excitation energies of large organic compounds

    NASA Astrophysics Data System (ADS)

    Meo, F. Di; Trouillas, P.; Adamo, C.; Sancho-García, J. C.

    2013-10-01

    The present work assesses some recently developed double-hybrid density functionals (B2π-PLYP, PBE0-DH, and PBE0-2) using linear-response Tamm-Dancoff Time-Dependent Density Functional Theory. This assessment is achieved against experimentally derived low-lying excitation energies of large organic dyes of recent interest, including some excitations dominated by charge-transfer transitions. Comparisons are made with some of the best-performing methods established from the literature, such as PBE0 or B3LYP hybrid or the recently proposed B2-PLYP and B2GP-PLYP double-hybrid models, to ascertain their quality and robustness on equal footing. The accuracy of parameter-free or empirical forms of double-hybrid functionals is also briefly discussed. Generally speaking, it turns out that double-hybrid expressions always provide more accurate estimates than corresponding hybrid methods. Double-hybrid functionals actually reach averaged accuracies of 0.2 eV, that can be admittedly considered close to any intended accuracy limit within the present theoretical framework.

  5. Effects of low-lying excitations on ground-state energy and energy gap of the Sherrington-Kirkpatrick model in a transverse field

    NASA Astrophysics Data System (ADS)

    Koh, Yang Wei

    2016-04-01

    We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.

  6. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen

    PubMed Central

    Boucher, Yan; Orata, Fabini D.; Alam, Munirul

    2015-01-01

    Cholera is a diarrheal disease that has changed the history of mankind, devastating the world with seven pandemics from 1817 to the present day. Although there is little doubt in the causative agent of these pandemics being Vibrio cholerae of the O1 serogroup, where, when, and how this pathogen emerged is not well understood. V. cholerae is a ubiquitous coastal species that likely existed for tens of thousands of years. However, the evolution of a strain capable of causing a large-scale epidemic is likely more recent historically. Here, we propose that the unique human and physical geography of low-lying river deltas made it possible for an environmental bacterium to evolve into a deadly human pathogen. Such areas are often densely populated and salt intrusion in drinking water frequent. As V. cholerae is most abundant in brackish water, its favored environment, it is likely that coastal inhabitants would regularly ingest the bacterium and release it back in the environment. This creates a continuous selection pressure for V. cholerae to adapt to life in the human gut. PMID:26539168

  7. The out-of-the-delta hypothesis: dense human populations in low-lying river deltas served as agents for the evolution of a deadly pathogen.

    PubMed

    Boucher, Yan; Orata, Fabini D; Alam, Munirul

    2015-01-01

    Cholera is a diarrheal disease that has changed the history of mankind, devastating the world with seven pandemics from 1817 to the present day. Although there is little doubt in the causative agent of these pandemics being Vibrio cholerae of the O1 serogroup, where, when, and how this pathogen emerged is not well understood. V. cholerae is a ubiquitous coastal species that likely existed for tens of thousands of years. However, the evolution of a strain capable of causing a large-scale epidemic is likely more recent historically. Here, we propose that the unique human and physical geography of low-lying river deltas made it possible for an environmental bacterium to evolve into a deadly human pathogen. Such areas are often densely populated and salt intrusion in drinking water frequent. As V. cholerae is most abundant in brackish water, its favored environment, it is likely that coastal inhabitants would regularly ingest the bacterium and release it back in the environment. This creates a continuous selection pressure for V. cholerae to adapt to life in the human gut.

  8. Investigating nuclear shell structure in the vicinity of 78Ni: Low-lying excited states in the neutron-rich isotopes Zn,8280

    NASA Astrophysics Data System (ADS)

    Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.

    2016-02-01

    The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.

  9. a Quantum Chemical Study of Familiar and Exotic Low-Lying Singlet and Triplet States of CH2, CF2, and Chf

    NASA Astrophysics Data System (ADS)

    Xu, Lu; Woon, D. E.; Dunning, T. H., Jr.

    2010-06-01

    High level MRCI and RCCSD(T) calculations using triple and quadruple zeta quality correlation consistent basis sets were used to study the low-lying singlet and triplet states of CH2, CF2, and CHF. The bonding in carbon was found to be very similar to that of sulfur, where there is also a competition between states that form through normal covalent bonding and recoupled pair bonding. The recoupled pair bonding model was used to investigate these states systematically to see how closely they resemble the behavior of SF2, which has a 1A1 ground state and 3B1 and 3A2 excited states. In addition to accounting for the separations and ordering of the lowest singlet and triplet states of each species, the less-studied 3A2 states of CH2 and CF2 and the 3A^" state of CHF were investigated and compared to gain insight into the underlying reasons for the energetic and bonding differences between these species. Interestingly, the 3A2 state of CH2 is a cyclic structure, the 3A2 state of CF2 is bent but not cyclic (resembling the same state of SF_2), and the analogous minimum structure on the 3A^" surface of CHF is a C---HF complex.

  10. The genetic legacy of aridification: climate cycling fostered lizard diversification in Australian montane refugia and left low-lying deserts genetically depauperate.

    PubMed

    Pepper, Mitzy; Ho, Simon Y W; Fujita, Matthew K; Scott Keogh, J

    2011-12-01

    It is a widely held assumption that populations historically restricted to mountain refugia tend to exhibit high levels of genetic diversity and deep coalescent histories, whereas populations distributed in surrounding low-lying regions tend to be genetically depauperate following recent expansion from refugia. These predicted genetic patterns are based largely on our understanding of glaciation history in Northern Hemisphere systems, yet remain poorly tested in analogous Southern Hemisphere arid systems because few examples in the literature allow the comparison of widespread taxa distributed across mountain and desert biomes. We demonstrate with multiple datasets from Australian geckos that topographically complex mountain regions harbor high nucleotide diversity, up to 18 times higher than that of the surrounding desert lowlands. We further demonstrate that taxa in topographically complex areas have older coalescent histories than those in the geologically younger deserts, and that both ancient and more recent aridification events have contributed to these patterns. Our results show that, despite differences in the details of climate and landscape changes that occurred in the Northern and Southern hemispheres (ice-sheets versus aridification), similar patterns emerge that illustrate the profound influence of the Pleistocene on contemporary genetic structure. PMID:21871574

  11. Observation of b2 symmetry vibrational levels of the SO2C 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    DOE PAGES

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-14

    Here, the C 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X~ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C state below 1600 cm–1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, itmore » allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry, and to determine accurately the vibrational dependence of the rotational constants in the distorted C electronic state.« less

  12. Observation of b2 symmetry vibrational levels of the SO2 C̃ (1)B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants.

    PubMed

    Park, G Barratt; Jiang, Jun; Saladrigas, Catherine A; Field, Robert W

    2016-04-14

    The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X̃ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C̃ state below 1600 cm(-1) of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C̃ electronic state.

  13. Observation of b2 symmetry vibrational levels of the SO2 C ˜ 1B2 state: Vibrational level staggering, Coriolis interactions, and rotation-vibration constants

    NASA Astrophysics Data System (ADS)

    Park, G. Barratt; Jiang, Jun; Saladrigas, Catherine A.; Field, Robert W.

    2016-04-01

    The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. However, low-lying levels with odd quanta of antisymmetric stretch (b2 vibrational symmetry) have not previously been observed because transitions into these levels from the zero-point level of the X ˜ state are vibronically forbidden. We use IR-UV double resonance to observe the b2 vibrational levels of the C ˜ state below 1600 cm-1 of vibrational excitation. This enables a direct characterization of the vibrational level staggering that results from the double-minimum potential. In addition, it allows us to deperturb the strong c-axis Coriolis interactions between levels of a1 and b2 vibrational symmetry and to determine accurately the vibrational dependence of the rotational constants in the distorted C ˜ electronic state.

  14. Cranking study of low lying yrast spectra and deformation systematics in some even-even neutron-deficient 130-136Nd

    NASA Astrophysics Data System (ADS)

    Sharma, Arun; Bharti, Arun; Khosa, S. K.

    2013-04-01

    In the present work, the results of calculations on various nuclear structure quantities in even-even neutron-deficient 130-136Nd using Cranked Hartree-Fock Bogoliubov (CHFB) technique have been presented. The various nuclear structure quantities that have been calculated in 130-136Nd isotopes are the yrast spectra, subshell occupation probabilities of various valence orbits and intrinsic quadrupole moments. Besides this, a comparative study of the calculated yrast spectra with the available experimental data as well as with the results of calculations obtained by using Variation-After-Projection (VAP) technique on these neutron - deficient 130-136Nd isotopes has also been presented.

  15. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1998-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Penning-Malmberg trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Penning-Malmberg traps. (ATHENA Collaboration.)

  16. Quadrupole Induced Resonant Particle Transport

    NASA Astrophysics Data System (ADS)

    Gilson, Erik; Fajans, Joel

    1999-11-01

    We have performed experiments that explore the effects of a magnetic quadrupole field on a pure electron plasma confined in a Malmberg-Penning trap. A model that we have developed describes the shape of the plasma and shows that a certain class of resonant particles follows trajectories that take them out of the plasma. Even though the quadrupole field destroys the cylindrical symmetry of the system, our theory predicts that if the electrons are off resonance, then the lifetime of the plasma will not be greatly affected by the quadrupole field. Our preliminary experimental results show that the shape of the plasma and the plasma lifetime agree with our model. We are investigating the scaling of this behavior with various experimental parameters such as the plasma length, density, and strength of the quadrupole field. In addition to being an example of resonant particle transport, this effect may find practical applications in experiments that plan to use magnetic quadrupole neutral atom traps to confine anti-hydrogen created in double-well positron/anti-proton Malmberg-Penning traps. (ATHENA Collaboration.)

  17. An ab initio investigation of the ground and low-lying singlet and triplet electronic states of XNO{sub 2} and XONO (X = Cl, Br, and I)

    SciTech Connect

    Peterson, Kirk A.; Francisco, Joseph S.

    2014-01-28

    A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.

  18. Theoretical study of solvent effects on the ground and low-lying excited free energy surfaces of a push-pull substituted azobenzene.

    PubMed

    Corchado, Jose C; Sánchez, M Luz; Fdez Galván, Ignacio; Martín, M Elena; Muñoz-Losa, Aurora; Barata-Morgado, Rute; Aguilar, Manuel A

    2014-10-30

    The ground and low-lying excited free energy surfaces of 4-amino-4'-cyano azobenzene, a molecule that has been proposed as building block for chiroptical switches, are studied in gas phase and a variety of solvents (benzene, chloroform, acetone, and water). Solvent effects on the absorption and emission spectra and on the cis-trans thermal and photo isomerizations are analyzed using two levels of calculation: TD-DFT and CASPT2/CASSCF. The solvent effects are introduced using a polarizable continuum model and a QM/MM method, which permits one to highlight the role played by specific interactions. We found that, in gas phase and in agreement with the results found for other azobenzenes, the thermal cis-trans isomerization follows a rotation-assisted inversion mechanism where the inversion angle must reach values close to 180° but where the rotation angle can take almost any value. On the contrary, in polar solvents the mechanism is controlled by the rotation of the CN═NC angle. The change in the mechanism is mainly related to a better solvation of the nitrogen atoms of the azo group in the rotational transition state. The photoisomerization follows a rotational pathway both in gas phase and in polar and nonpolar solvents. The solvent introduces only small modifications in the nπ* free energy surface (S1), but it has a larger effect on the ππ* surface (S2) that, in polar solvents, gets closer to S1. In fact, the S2 band of the absorption spectrum is red-shifted 0.27 eV for the trans isomer and 0.17 eV for the cis. In the emission spectrum the trend is similar: only S2 is appreciably affected by the solvent, but in this case a blue shift is found.

  19. Electron-impact excitation of Ni II. Collision strengths and effective collision strengths for low-lying fine-structure forbidden transitions

    NASA Astrophysics Data System (ADS)

    Cassidy, C. M.; Ramsbottom, C. A.; Scott, M. P.; Burke, P. G.

    2010-04-01

    Context. Considerable demand exists for electron excitation data for ion{Ni}{ii}, since lines from this abundant ion are observed in a wide variety of laboratory and astrophysical spectra. The accurate theoretical determination of these data can present a significant challenge however, due to complications arising from the presence of an open 3d-shell in the description of the target ion. Aims: In this work we present collision strengths and Maxwellian averaged effective collision strengths for the electron-impact excitation of ion{Ni}{ii}. Attention is concentrated on the 153 forbidden fine-structure transitions between the energetically lowest 18 levels of ion{Ni}{ii}. Effective collision strengths have been evaluated at 27 individual electron temperatures ranging from 30-100 000 K. To our knowledge this is the most extensive theoretical collisional study carried out on this ion to date. Methods: The parallel R-matrix package RMATRX II has recently been extended to allow for the inclusion of relativistic effects. This suite of codes has been utilised in the present work in conjunction with PSTGF to evaluate collision strengths and effective collision strengths for all of the low-lying forbidden fine-structure transitions. The following basis configurations were included in the target model - 3d9, 3d84s, 3d84p, 3d74s2 and 3d74s4p - giving rise to a sophisticated 295 jj-level, 1930 coupled channel scattering problem. Results: Comprehensive comparisons are made between the present collisional data and those obtained from earlier theoretical evaluations. While the effective collision strengths agree well for some transitions, significant discrepancies exist for others. Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A55

  20. Microscopic derivation of the Bohr-Mottelson collective Hamiltonian and its application to quadrupole shape dynamics

    NASA Astrophysics Data System (ADS)

    Matsuyanagi, Kenichi; Matsuo, Masayuki; Nakatsukasa, Takashi; Yoshida, Kenichi; Hinohara, Nobuo; Sato, Koichi

    2016-06-01

    We discuss the nature of the low-frequency quadrupole vibrations from small-amplitude to large-amplitude regimes. We consider full five-dimensional quadrupole dynamics including three-dimensional rotations restoring the broken symmetries as well as axially symmetric and asymmetric shape fluctuations. Assuming that the time evolution of the self-consistent mean field is determined by five pairs of collective coordinates and collective momenta, we microscopically derive the collective Hamiltonian of Bohr and Mottelson, which describes low-frequency quadrupole dynamics. We show that the five-dimensional collective Schrödinger equation is capable of describing large-amplitude quadrupole shape dynamics seen as shape coexistence/mixing phenomena. We summarize the modern concepts of microscopic theory of large-amplitude collective motion, which is underlying the microscopic derivation of the Bohr-Mottelson collective Hamiltonian.

  1. Nuclear Quadrupole Moments and Nuclear Shell Structure

    DOE R&D Accomplishments Database

    Townes, C. H.; Foley, H. M.; Low, W.

    1950-06-23

    Describes a simple model, based on nuclear shell considerations, which leads to the proper behavior of known nuclear quadrupole moments, although predictions of the magnitudes of some quadrupole moments are seriously in error.

  2. Geo-statistical modeling to evaluate the socio-economic impacts of households in the context of low-lying areas conversion in Colombo metropolitan region-Sri Lanka

    NASA Astrophysics Data System (ADS)

    Hemakumara, GPTS; Rainis, Ruslan

    2015-02-01

    Living in Low-lying areas is a challenging task, but due to the lack of suitable land at affordable prices, thousands of householders have been establishing their own houses on Low-lying areas. Manipulation and conversion of low lying areas have led to an increase in the frequency and severity of micro disasters because the cumulative effect of these settlements is very high. Therefore, it is needed to examine how individual households have been emerging in Low-lying areas. This process is primarily influenced and controlled by Socio-economic factors. In the field survey conducted for this study, 388 householders were interviewed face to face to obtain the primary data. Collected data were applied to the Multivariate binary logistic Model. The Dependent variable of the model was set as Stable Houses and Non-Stable Houses based on the weighted values that were obtained from the field observations. Independent variables of this study are nine key aspects of the socio-economic conditions in these areas. Units of analysis of the study were taken as individual housing plots in the study area. The particular combination of Socio-Economic factors that exerted influence on each housing plot was measured using predicted probability value of logistic model and linked it with GIS land plot's map. Accuracy of Final Model is 86.9 % and probability level of influencing factors given a clear idea about household distribution and status while providing guidance about how the planning authorities should monitor and manage low lying areas, taking into consideration the present housing condition of these areas.

  3. Ab initio MRCI + Q calculations on the low-lying excited states of the MgBr radical including spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Wu, Dong-lan; Tan, Bin; Wen, Yu-feng; Zeng, Xue-feng; Xie, An-dong; Yan, Bing

    2016-05-01

    Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI + Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X2Σ+ and the first excited state A2Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B2Σ+ correlated to ion-pair dissociation limit Mg+ (2Sg) + Br- (1Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30 Ω states, and the SOC splitting for the A2Π is calculated to be 102.58 cm- 1. The SOC effect, leading to the double-well potential of the Ω = (3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X2Σ+1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X2Σ+1/2 and (2)3/2-X2Σ+1/2 are particularly important to the observed transitions A2Π-X2Σ+ and C2Π-X2Σ+. The

  4. Geometries and electronic structures of the ground and low-lying excited states of FeCO: An ab initio study

    NASA Astrophysics Data System (ADS)

    Hirano, Tsuneo; Okuda, Rei; Nagashima, Umpei; Jensen, Per

    2012-12-01

    FeCO is a molecule of astrophysical interest. We report here theoretical calculations of its geometrical parameters, electronic structures, and molecular constants (such as dipole moment and spin-orbit coupling constant) in the electronic ground state tilde{X}3Σ - and the low-lying triplet and quintet excited states. The calculations were made at the MR-SDCI+Q_DK3/[5ZP ANO-RCC (Fe, C, O)] and MR-AQCC_DK3/[5ZP ANO-RCC (Fe, C, O)] levels of theory. A multi-reference calculation was required to describe correctly the wavefunctions of all states studied. For all triplet states, the σ-donation through the 10σ molecular orbital (MO) as well as the π-back-donation through the 4π MO are observed, and the dipole moment vector points from O toward Fe as expected. However, in the excited quintet states 5Π, 5Φ, and 5Δ, the almost negligible contribution of Fe 4s to the 10σ MO makes the dipole moment vector point from Fe toward O, i.e., in the same direction as in CO. In the tilde{X}3Σ - state, the electron provided by the σ-donation through the 10σ MO is shared between the Fe atom and the C end of the CO residue to form a coordinate-covalent Fe-C bond. In the tilde{a}5Σ - state (the high-spin counterpart of tilde{X}3Σ -), the σ-donation through the 10σ MO is not significant and so the Fe-C bond is rather ionic. The π-back-donation through the 4π MO is found to be of comparable importance in the two electronic states; it has a slightly larger magnitude in the tilde{X}3Σ - state. The difference in the molecular properties of the low-spin tilde{X}3Σ - and the high-spin tilde{a}5Σ - states can be understood in terms of the dynamical electron correlation effects.

  5. LCLS Undulator Quadrupole Fiducialization Plan

    SciTech Connect

    Wolf, Zachary; Levashov, Michael; Lundahl, Eric; Reese, Ed; LeCocq, Catherine; Ruland, Robert; /SLAC

    2010-11-24

    This note presents the fiducialization plan for the LCLS undulator quadrupoles. The note begins by summarizing the requirements for the fiducialization. A discussion of the measurement equipment is presented, followed by the methods used to perform the fiducialization and check the results. This is followed by the detailed fiducialization plan in which each step is enumerated. Finally, the measurement results and data storage formats are presented. The LCLS is made up of 33 assemblies consisting of an undulator, quadrupole, beam finder wire, and other components mounted on a girder. The components must be mounted in such a way that the beam passes down the axis of each component. In this note, we describe how the ideal beam axis is related to tooling balls on the quadrupole. This step, called fiducialization, is necessary because the ideal beam axis is determined magnetically, whereas tangible objects must be used to locate the quadrupole. The note begins with the list of fiducialization requirements. The laboratory in which the work will be performed and the relevant equipment is then briefly described. This is followed by a discussion of the methods used to perform the fiducialization and the methods used to check the results. A detailed fiducialization plan is presented in which all the steps of fiducialization are enumerated. A discussion of the resulting data files and directory structure concludes the note.

  6. Quasiparticle-phonon model and quadrupole mixed-symmetry states of 96Ru

    NASA Astrophysics Data System (ADS)

    Stoyanov, Ch.; Pietralla, N.

    2016-01-01

    The structure of low-lying quadrupole states of 96Ru was calculated within the Quasiparticle-Phonon Model. It is shown that symmetric and mixed-symmetry properties manifest themselves via the structure of the excited states. The first 2+ state is collective and neutron and proton transition matrix elements Mn and Mp are in-phase, while the neutron and proton transition matrix elements Mn and Mp have opposite signs for the third 2+ state. This property of the third 2+ state leads to a large M1 transition between the first and third 2+ states. It is an unambigous demonstration of the mixed-symmetry nature of the third 2+ state. The structure of the first 1+ state is calculated. The state is a member of the two-phonon multiplet generated by the coupling of the [21+]QRPA and the [22+]QRPA states.

  7. Low-lying levels of 77Se studied by thermal neutron capture and evidence for a new term in the E2 operator of RQM (IBM)

    NASA Astrophysics Data System (ADS)

    Tokunaga, Y.; Seyfarth, H.; Meyer, R. A.; Schult, O. W. B.; Börner, H. G.; Barreau, G.; Faust, H. R.; Schreckenbach, K.; Brant, S.; Paar, V.; Vouk, M.; Vretenar, D.

    1985-06-01

    A high-resolution study of the 76Se(n, γ) reaction was carried out with curved-crystal and pair spectrometers and conversion electrons were measured following slow-neutron capture. The resulting data yield very precise level energies and spin and parity assignments for most of the levels. The neutron separation energy of 77Se was measured as 7418.85 ± 0.07 keV. The experimental data were compared with theoretical results for the level energies in 77Se and the E2, M1 and E1 branching ratios obtained from the SU(6) particle-vibration model (PTQM). We used 76Se as a slightly perturbed SU(5) vibrational core and the particle-vibration interaction strengths from the PTQM calculation for 75Se. In this frame there is evidence for a Δn = 2 term in the E2 operator. This term has not been included so far in TQM and IBM calculations.

  8. Analytic formula for quadrupole-quadrupole matrix elements

    NASA Astrophysics Data System (ADS)

    Rosensteel, G.

    1990-12-01

    An analytic formula is reported for general matrix elements of the microscopic quadrupole-quadrupole operator in the U(3)-boson approximation. The complete infinite-dimensional basis of A-fermion wave functions is compatible with the harmonic-oscillator shell model and consists of np-nh configurations, with spurious center-of-mass excitations removed, which are symmetry adapted to the Elliott U(3) and symplectic Sp(3,R) models. The formula expresses the general Q2.Q2 matrix element with respect to this complete orthonormal basis as a Racah SU(3) U coefficient times a closed-shell matrix element. An oscillator closed-shell matrix element of Q2.Q2 is a square root of a rational function of the integer quantum numbers of the U(3) basis.

  9. Vibration manual

    NASA Technical Reports Server (NTRS)

    Green, C.

    1971-01-01

    Guidelines of the methods and applications used in vibration technology at the MSFC are presented. The purpose of the guidelines is to provide a practical tool for coordination and understanding between industry and government groups concerned with vibration of systems and equipments. Topics covered include measuring, reducing, analyzing, and methods for obtaining simulated environments and formulating vibration specifications. Methods for vibration and shock testing, theoretical aspects of data processing, vibration response analysis, and techniques of designing for vibration are also presented.

  10. Collective states of odd nuclei in a model with quadrupole-octupole degrees of freedom

    SciTech Connect

    Minkov, N. Drenska, S. B.; Yotov, P.; Bonatsos, D. Scheid, W.

    2007-08-15

    We apply the collective axial quadrupole-octupole Hamiltonian to describe the rotation-vibration motion of odd nuclei with Coriolis coupling between the even-even core and the unpaired nucleon.We consider that the core oscillates coherently with respect to the quadrupole and octupole axialdeformation variables. The coupling between the core and the unpaired nucleon provides a split paritydoublet structure of the spectrum. The formalism successfully reproduces the parity-doublet splitting in a wide range of odd-A nuclei. It provides model estimations for the third angular-momentum projection K on the intrinsic symmetry axis and the related intrinsic nuclear structure.

  11. Ab-initio calculations of low-lying excited states of water clusters (H2O)n, n = 2-6

    NASA Astrophysics Data System (ADS)

    Zvereva, Natalja A.; Ippolitov, Ivan I.

    1997-03-01

    In recent years there has been a great deal of interest in excited states of the water molecule with a number of experimental and theoretical studies reported. The umber of spectroscopic studies of complexes involving hydrogen bonding has greatly increased. However, most of this research has involved studies of the IR and Raman vibrational spectra of the molecule hydrogen bond formation strongly perturbs the vibrational transitions, but the changes in the electronic spectrum can also be observed. The interaction between water molecules is dominated by hydrogen bonding and the level of the ab initio theory is used because it accurately reproduces the major components of the interaction energy. Ab initio studies of cyclic water clusters (H2O)n, n equals 2 minus 6 and analysis of many-body interactions for ground states of these clusters has been done. The magnitudes of the two-through six-body energy terms and their contribution to the interaction energy of small ring water clusters has been computed at the Hartree-Fock (HF) and second-through fourth-order many-body perturbation (MP2, MP4) levels of theory. In this paper, we investigated the lowest S1 excited electronic states of the cyclic water clusters (H2O)n, n equals 2 minus 6 from the point of changes in the absorption spectra for many-body interactions and examined their trends as the cluster grew.

  12. Vibrational coupling in carboxylic acid dimers

    NASA Astrophysics Data System (ADS)

    Nandi, Chayan K.; Hazra, Montu K.; Chakraborty, Tapas

    2005-09-01

    The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 0-2000-cm-1 range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys. 119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface.

  13. Vibrational coupling in carboxylic acid dimers.

    PubMed

    Nandi, Chayan K; Hazra, Montu K; Chakraborty, Tapas

    2005-09-22

    The vibrational level splitting in the ground electronic state of carboxylic acid dimers mediated by the doubly hydrogen-bonded networks are investigated using pure and mixed dimers of benzoic acid with formic acid as molecular prototypes. Within the 0-2000-cm(-1) range, the frequencies for the fundamental and combination vibrations of the two dimers are experimentally measured by using dispersed fluorescence spectroscopy in a supersonic jet expansion. Density-functional-theory calculations predict that most of the dimer vibrations are essentially in-phase and out-of-phase combinations of the monomer modes, and many of such combinations show significantly large splitting in vibrational frequencies. The infrared spectrum of the jet-cooled benzoic acid dimer, reported recently by Bakker et al. [J. Chem. Phys. 119, 11180 (2003)], has been used along with the dispersed fluorescence spectra to analyze the coupled g-u vibrational levels. Assignments of the dispersed fluorescence spectra of the mixed dimer are suggested by comparing the vibronic features with those in the homodimer spectrum and the predictions of density-functional-theory calculation. The fluorescence spectra measured by excitations of the low-lying single vibronic levels of the mixed dimer reveal that the hydrogen-bond vibrations are extensively mixed with the ring modes in the S1 surface. PMID:16392485

  14. Low-lying electronic states in bismuth trimer Bi₃ as revealed by laser-induced NIR emission spectroscopy in solid Ne.

    PubMed

    Wakabayashi, Tomonari; Wada, Yoriko; Nakajima, Kyo; Morisawa, Yusuke; Kuma, Susumu; Miyamoto, Yuki; Sasao, Noboru; Yoshimura, Motohiko; Sato, Tohru; Kawaguchi, Kentarou

    2015-03-19

    Laser-induced near-infrared (NIR) emission spectra of neutral bismuth timer, Bi₃, embedded in solid neon matrixes at 3 K were recorded in a range 870-1670 nm. Using photoexcitation with low energy photons at 1064 nm, two emission band systems were newly identified by their origin bands at T₀ = 6600 and 8470 cm⁻¹. Accordingly, spectral assignment for three NIR emission band systems reported recently was partly revised for the one with its origin band at T₀ = 7755 cm⁻¹ and reconfirmed for the others at T₀ = 9625 and 11,395 cm⁻¹. Energy splitting by spin-orbit coupling between the pair of electronic energy levels in the ground state of bismuth trimer, Bi₃, both having a totally symmetric vibrational mode of frequency at ω(e)" = 150 cm⁻¹, was determined to be 1870 ± 1.5 cm⁻¹. Transitions from the pair of electronically excited states, locating at T₀ = 8470 and 9625 cm⁻¹ above the ground state and separated by spin–orbit coupling of 1155 cm⁻¹, have relatively long decay constants of τ ∼0.2 and ∼0.1 ms, respectively. PMID:25357154

  15. Time-dependent Hartree-Fock Study of Octupole Vibrations in doubly magic nuclei

    NASA Astrophysics Data System (ADS)

    Simenel, C.; Buete, J.; Vo-Phuoc, K.

    2016-09-01

    Octupole vibrations are studied in some doubly magic nuclei using the time-dependent Hartree-Fock (TDHF) theory with a Skyrme energy density functional. Through the use of the linear response theory, the energies and transition amplitudes of the low-lying vibrational modes for each of the nuclei were determined. Energies were found to be close to experimental results. However, transition amplitudes, quantified by the deformation parameter β3, are underestimated by TDHF. A comparison with single-particle excitations on the Hartree-Fock ground-state shows that the collective octupole vibrations have their energy lowered due to attractive RPA residual interaction.

  16. Ab initio spin-orbit CI calculations of the potential curves and radiative lifetimes of low-lying states of lead monofluoride

    NASA Astrophysics Data System (ADS)

    Das, Kalyan K.; Petsalakis, Ioannis D.; Liebermann, Heinz-Peter; Alekseyev, Aleksey B.; Buenker, Robert J.

    2002-01-01

    The electronic structure of the lead monofluoride molecule is studied by means of ab initio configuration interaction (CI) calculations including the spin-orbit interaction. Potential-energy curves are generated for a large number of electronic states, of which only the X12Π1/2 ground and X22Π3/2 and A 2Σ+ excited states have been observed experimentally. Two different methods are compared for the inclusion of spin-orbit effects in the theoretical treatment, a contracted CI which employs a basis of large-scale Λ-S eigenfunctions to form a rather small matrix representation of the full relativistic Hamiltonian (two-step approach), and a more computationally laborious technique which involves solution of a secular equation of order 250 000 S2 eigenfunctions of different spin and spatial symmetry to achieve a potentially more evenly balanced description of both relativistic and electron correlation effects (one-step approach). In the present application, it is found that both methods achieve quite good agreement with measured spectroscopic constants for the X1, X2, and A states. The simpler of these methods is also employed to predict the radiative lifetimes of the latter two states. The key A 2Σ+-X 2Π transition moment in these calculations is found to vary strongly with internuclear distance and to vanish in the neighborhood of the respective equilibrium distances of both participating states. The computed lifetime for the A, v'=0 state of 16 μs overestimates the corresponding measured value by a factor of three, but those of higher vibrational states are found to decrease rather sharply with increasing v', suggesting that only a slight displacement of the theoretical A-X transition moment curve is needed to explain the above discrepancy.

  17. Electrostatic quadrupoles for heavy-ion fusion

    SciTech Connect

    Seidl, P.; Faltens, A.

    1993-05-01

    Voltage-holding data for three quadrupole electrode sizes and inter-electrode spacings are reported. The dependence of the breakdown voltage on system size and its influence on the optimum quadrupole size for beam transport in a multiple beam array are discussed.

  18. Density Functional Theory in Transition-Metal Chemistry: Relative Energies of Low-Lying States of Iron Compounds and the Effect of Spatial Symmetry Breaking

    SciTech Connect

    Sorkin, Anastassia; Iron, Mark A.; Truhlar, Donald G.

    2008-02-01

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The ground and lower excited states of Fe2, Fe2 -, and FeO+ were studied using a number of density functional theory (DFT) methods. Specific attention was paid to the relative state energies, the internuclear distances (re), and the harmonic vibrational frequencies (öe). A number of factors influencing the calculated values of these properties were examined. These include basis sets, the nature of the density functional chosen, the percentage of Hartree- Fock exchange in the density functional, and constraints on orbital symmetry. A number of different types of generalized gradient approximation (GGA) density functionals (straight GGA, hybrid GGA, meta-GGA, and hybrid meta-GGA) were examined, and it was found that the best results were obtained with hybrid GGA or hybrid meta-GGA functionals that contain nonzero fractions of HF exchange; specifically, the best overall results were obtained with B3LYP, M05, and M06, closely followed by B1LYP. One significant observation was the effect of enforcing symmetry on the orbitals. When a degenerate orbital (ð or ä) is partially occupied in the 4¼ excited state of FeO+, reducing the enforced symmetry (from C6v to C4v to C2v) results in a lower energy since these degenerate orbitals are split in the lower symmetries. The results obtained were compared to higher level ab initio results from the literature and to recent PBE+U plane wave results by Kulik et al. (Phys. Rev. Lett. 2006, 97, 103001). It was found that some of the improvements that were afforded by the semiempirical +U correction can also be accomplished by improving the form of the DFT functional and, in one case, by not enforcing high symmetry on the orbitals.

  19. QUADRUPOLE BEAM-BASED ALIGNMENT AT RHIC.

    SciTech Connect

    NIEDZIELA, J.; MONTAG, C.; SATOGATA, T.

    2005-05-16

    Successful implementation of a beam-based alignment algorithm, tailored to different types of quadrupoles at RHIC, provides significant benefits to machine operations for heavy ions and polarized protons. This algorithm was used to calibrate beam position monitor centers relative to interaction region quadrupoles to maximize aperture. This approach was also used to determine the optimal orbit through transition jump quadrupoles to minimize orbit changes during the transition jump for heavy ion acceleration. This paper provides background discussion and results from first measurements during the RHIC 2005 run.

  20. Measurements of ground motion and magnet vibrations at the APS

    SciTech Connect

    Shiltsev, V.

    1996-09-01

    This article presents results of ground motion and magnet vibrations measurements at the Advanced Photon Source. The experiments were done over a wide, frequency range (0-05-100 Hz) with the use of SM-3KV-type seismic probes from the Budker Institute of Nuclear Physics (Russia). Spectral power densities of vertical and horizontal motions of the APS hall floor and quadrupoles on regular supports were obtained. Also investigated were magnet vibrations induced by designed cooling water flow and spectral characteristics of spatial correlation of the quadrupole vibrations at different sectors of the ring. The influence of personnel activity in the hall and traffic under the ring on the slow motion of storage ring elements were observed. Amplitudes of vibrations at the APS are compared with results of seismic measurements at some other accelerators.

  1. How do nuclei really vibrate or rotate

    SciTech Connect

    Andresen, H.G.; Kunz, J.; Mosel, U.; Mueller, M.; Schuh, A.; Wust, U.

    1983-01-01

    By means of the adiabatic cranking model the properties of the current and velocity fields of nuclear quadrupole vibrations for even-even nuclei in the rare-earth region are investigated. BCS correlated wave functions based on the Nilsson single particle Hamiltonian have been used. The current fields are analyzed in terms of vector spherical harmonics. The realistic microscopic currents show a vortex structure not present in the classical irrotational flow. The microscopic origin of the vortex structure is investigated.

  2. Clusterization and quadrupole deformation in nuclei

    SciTech Connect

    Cseh, J.; Algora, A.; Antonenko, N. V.; Jolos, R. V.; Scheid, W.; Darai, J.; Hess, P. O.

    2006-04-26

    We study the interrelation of the clusterization and quadrupole deformation of atomic nuclei, by applying cluster models. Both the energetic stability and the exclusion principle is investigated. Special attention is paid to the relative orientations of deformed clusters.

  3. Nonuniform radiation damage in permanent magnet quadrupoles

    SciTech Connect

    Danly, C. R.; Merrill, F. E.; Barlow, D.; Mariam, F. G.

    2014-08-15

    We present data that indicate nonuniform magnetization loss due to radiation damage in neodymium-iron-boron Halbach-style permanent magnet quadrupoles. The proton radiography (pRad) facility at Los Alamos uses permanent-magnet quadrupoles for magnifying lenses, and a system recently commissioned at GSI-Darmsdadt uses permanent magnets for its primary lenses. Large fluences of spallation neutrons can be produced in close proximity to these magnets when the proton beam is, intentionally or unintentionally, directed into the tungsten beam collimators; imaging experiments at LANL’s pRad have shown image degradation with these magnetic lenses at proton beam doses lower than those expected to cause damage through radiation-induced reduction of the quadrupole strength alone. We have observed preferential degradation in portions of the permanent magnet quadrupole where the field intensity is highest, resulting in increased high-order multipole components.

  4. Vibrational rainbows

    SciTech Connect

    Drolshagen, G.; Mayne, H.R.; Toennies, J.P.

    1981-07-01

    We extend the theory of inelastic rainbows to include vibrationally inelastic scattering, showing how the existence of vibrational rainbows can be deduced from collinear classical scattering theory. Exact close-coupling calculations are carried out for a breathing sphere potential, and rainbow structures are, in fact, observed. The location of the rainbows generally agrees well with the classical prediction. In addition, the sensitivity of the location of the rainbow to changes in the vibrational coupling has been investigated. It is shown that vibrational rainbows persist in the presence of anisotropy. Experimental results (R. David, M. Faubel, and J. P. Toennies, Chem. Phys. Lett. 18, 87 (1973)) are examined for evidence of vibrational rainbow structure, and it is shown that vibrational rainbow theory is not inconsistent with these results.

  5. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, R.O.

    1997-01-21

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis. 10 figs.

  6. Permanent magnet edge-field quadrupole

    DOEpatents

    Tatchyn, Roman O.

    1997-01-01

    Planar permanent magnet edge-field quadrupoles for use in particle accelerating machines and in insertion devices designed to generate spontaneous or coherent radiation from moving charged particles are disclosed. The invention comprises four magnetized rectangular pieces of permanent magnet material with substantially similar dimensions arranged into two planar arrays situated to generate a field with a substantially dominant quadrupole component in regions close to the device axis.

  7. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1997-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  8. Miniature quadrupole mass spectrometer array

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

    1998-01-01

    The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

  9. Integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, Steven R.

    1989-01-01

    An improved radio frequency quadrupole (10) is provided having an elongate housing (11) with an elongate central axis (12) and top, bottom and two side walls (13a-d) symmetrically disposed about the axis, and vanes (14a-d) formed integrally with the walls (13a-d), the vanes (14a-d) each having a cross-section at right angles to the central axis (12) which tapers inwardly toward the axis to form electrode tips (15a-d) spaced from each other by predetermined distances. Each of the four walls (13a-d), and the vanes (14a-d) integral therewith, is a separate structural element having a central lengthwise plane (16) passing through the tip of the vane, the walls (13a-d) having flat mounting surfaces (17, 18) at right angles to and parallel to the control plane (16), respectively, which are butted together to position the walls and vane tips relative to each other.

  10. Electromagnetic properties of vibrational bands in 170Er

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cederkall, J.; Fahlander, C.; Ekström, A.; Golubev, P.; Mattsson, K.; Rudolph, D.; de Angelis, G.; Aydin, S.; Deo, A. Y.; Farnea, E.; Farrelly, G.; Geibel, K.; He, C.; Iwanicki, J.; Kempley, R.; Marginean, N.; Menegazzo, R.; Mengoni, D.; Orlandi, R.; Podolyak, Z.; Recchia, F.; Reiter, P.; Sahin, E.; Smith, J.; Söderström, P. A.; Torres, D. A.; Tveten, G. M.; Ur, C. A.; Valiente-Dobón, J. J.; Wendt, A.; Zielińska, M.

    2011-02-01

    Excited states of the nucleus 170Er have been studied by Coulomb excitation using the GASP γ -ray detector system at the Laboratori Nazionali di Legnaro. The ground-state band along with a low-lying ensuremath K^{π}=0^+ band and γ -vibrational band were populated during the experiment. Based on the measured γ -ray yields, a set of interband and intraband matrix elements has been extracted using the Coulomb excitation code GOSIA. The resulting E2 matrix elements are compared to collective model predictions.

  11. Quantum restricted effects on ballistic thermal conductance associated with six types of vibration modes in nanowire superlattice

    NASA Astrophysics Data System (ADS)

    Peng, Xiao-Fang; Wang, Xin-Jun

    2011-08-01

    We study ballistic phonon transport and thermal conductance associated with six low-lying vibrational modes in a quadrate nanowire superlattice at low temperatures. The results show that the transmission rates of the six vibrational modes display periodic forbidden regions of frequencies and have different relations with geometrical details of the nanowire superlattice. The thermal conductances contributed from different vibrational modes show different characteristics. On the basis of the theoretical analysis and calculated simulation, quantum restricted effects on ballistic thermal conductance in the quadrate nanowire superlattice are revealed.

  12. Low-lying E1,M1, and E2 strength distributions in Xe124,126,128,129,130,131,132,134,136: Systematic photon scattering experiments in the mass region of a nuclear shape or phase transition

    NASA Astrophysics Data System (ADS)

    von Garrel, H.; Brentano, P. Von; Fransen, C.; Friessner, G.; Hollmann, N.; Jolie, J.; Käppeler, F.; Käubler, L.; Kneissl, U.; Kohstall, C.; Kostov, L.; Linnemann, A.; Mücher, D.; Pietralla, N.; Pitz, H. H.; Rusev, G.; Scheck, M.; Schilling, K. D.; Scholl, C.; Schwengner, R.; Stedile, F.; Walter, S.; Werner, V.; Wisshak, K.

    2006-05-01

    Systematic nuclear resonance fluorescence (NRF) experiments on all nine stable (seven even-even and two odd-mass) Xe isotopes have been performed at the bremsstrahlung facility of the 4.3-MV Stuttgart Dynamitron accelerator. For the first time thin-walled, high-pressure gas targets (about 70 bar) with highly enriched target material were used in NRF experiments. Precise excitation energies, transition strengths, spins, and decay branching ratios were obtained for numerous states, most of them previously unknown. The systematics of the observed E1 two-phonon excitations (2+⊗3-) and M1 excitations to 1+ mixed-symmetry states in the even-even isotopes are discussed with respect to the new critical point symmetry E(5). The fragmentation of these fundamental dipole excitation modes in the odd-mass isotopes Xe129,131 is shown and discussed. In the even-even nuclei several low-lying E2 excitations were observed.

  13. An improved model electronic Hamiltonian for potential energy surfaces and spin−orbit couplings of low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+}

    SciTech Connect

    Iuchi, Satoru Koga, Nobuaki

    2014-01-14

    With the aim of exploring excited state dynamics, a model electronic Hamiltonian for several low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+} complex [S. Iuchi, J. Chem. Phys. 136, 064519 (2012)] is refined using density-functional theory calculations of singlet, triplet, and quintet states as benchmarks. Spin−orbit coupling elements are also evaluated within the framework of the model Hamiltonian. The accuracy of the developed model Hamiltonian is determined by examining potential energies and spin−orbit couplings at surface crossing regions between different spin states. Insights into the potential energy surfaces around surface crossing regions are also provided through molecular dynamics simulations. The results demonstrate that the constructed model Hamiltonian can be used for studies on the d−d excited state dynamics of [Fe(bpy){sub 3}]{sup 2+}.

  14. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si39, Si40, Si50, Si60, Si70, and Si80

    NASA Astrophysics Data System (ADS)

    Yoo, Soohaeng; Shao, N.; Zeng, X. C.

    2008-03-01

    We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si39, Si40, Si50, Si60, Si70, and Si80. We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si39, we examined six endohedral fullerene structures using all six homolog C34 fullerene isomers as cage motifs. We found that the Si39 constructed based on the C34(Cs:2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C34(Cs:2) cage motif also leads to a new candidate for the lowest-energy structure of Si40 whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C34(C1:1). Low-lying structures of larger silicon clusters Si50 and Si60 are also obtained on the basis of preconstructed endohedral fullerene structures. For Si50, Si60, and Si80, the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si50.

  15. Structures and relative stability of medium- and large-sized silicon clusters. VI. Fullerene cage motifs for low-lying clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80).

    PubMed

    Yoo, Soohaeng; Shao, N; Zeng, X C

    2008-03-14

    We performed a constrained search, combined with density-functional theory optimization, of low-energy geometric structures of silicon clusters Si(39), Si(40), Si(50), Si(60), Si(70), and Si(80). We used fullerene cages as structural motifs to construct initial configurations of endohedral fullerene structures. For Si(39), we examined six endohedral fullerene structures using all six homolog C(34) fullerene isomers as cage motifs. We found that the Si(39) constructed based on the C(34)(C(s):2) cage motif results in a new leading candidate for the lowest-energy structure whose energy is appreciably lower than that of the previously reported leading candidate obtained based on unbiased searches (combined with tight-binding optimization). The C(34)(C(s):2) cage motif also leads to a new candidate for the lowest-energy structure of Si(40) whose energy is notably lower than that of the previously reported leading candidate with outer cage homolog to the C(34)(C(1):1). Low-lying structures of larger silicon clusters Si(50) and Si(60) are also obtained on the basis of preconstructed endohedral fullerene structures. For Si(50), Si(60), and Si(80), the obtained low-energy structures are all notably lower in energy than the lowest-energy silicon structures obtained based on an unbiased search with the empirical Stillinger-Weber potential of silicon. Additionally, we found that the binding energy per atom (or cohesive energy) increases typically >10 meV with addition of every ten Si atoms. This result may be used as an empirical criterion (or the minimal requirement) to identify low-lying silicon clusters with size larger than Si(50).

  16. Vibrational Coupling

    SciTech Connect

    2011-01-01

    By homing in on the distribution patterns of electrons around an atom, a team of scientists team with Berkeley Lab's Molecular Foundry showed how certain vibrations from benzene thiol cause electrical charge to "slosh" onto a gold surface (left), while others do not (right). The vibrations that cause this "sloshing" behavior yield a stronger SERS signal.

  17. VIBRATION COMPACTION

    DOEpatents

    Hauth, J.J.

    1962-07-01

    A method of compacting a powder in a metal container is described including the steps of vibrating the container at above and below the resonant frequency and also sweeping the frequency of vibration across the resonant frequency several times thereby following the change in resonant frequency caused by compaction of the powder. (AEC)

  18. SUPERCONDUCTING QUADRUPOLE ARRAYS FOR MULTIPLE BEAM TRANSPORT

    SciTech Connect

    Rainer Meinke Carl Goodzeit Penny Ball Roger Bangerter

    2003-10-01

    The goal of this research was to develop concepts for affordable, fully functional arrays of superconducting quadrupoles for multi-beam transport and focusing in heavy ion fusion (HIF)accelerators. Previous studies by the Virtual National Laboratory (VNL) collaboration have shown that the multi-beam transport system (consisting of alternating gradient quadrupole magnets, a beam vacuum system, and the beam monitor and control system) will likely be one of the most expensive and critical parts of such an accelerator. This statement is true for near-term fusion research accelerators as well as accelerators for the ultimate goal of power production via inertial fusion. For this reason, research on superconducting quadrupole arrays is both timely and important for the inertial fusion energy (IFE) research program. This research will also benefit near-term heavy ion fusion facilities such as the Integrated Research Experiment (IRE)and/or the Integrated Beam Experiment (IBX). We considered a 2-prong approach that addresses the needs of both the nearer and longer term requirements of the inertial fusion program. First, we studied the flat coil quadrupole design that was developed by LLNL; this magnet is 150 mm long with a 50 mm aperture and thus is suitable for near term experiments that require magnets of a small length to aperture ratio. Secondly, we studied the novel double-helix quadrupole (DHQ) design in a small (3 x 3) array configuration; this design can provide an important step to the longer term solution of low-cost, easy to manufacture array constructions. Our Phase I studies were performed using the AMPERES magnetostatic analysis software. Consideration of these results led to plans for future magnet R&D construction projects. The first objective of Phase I was to develop the concept of a superconducting focusing array that meets the specific requirements of a heavy ion fusion accelerator. Detailed parameter studies for such quadrupole arrays were performed

  19. Quantum Monte Carlo for vibrating molecules

    SciTech Connect

    Brown, W.R. |

    1996-08-01

    Quantum Monte Carlo (QMC) has successfully computed the total electronic energies of atoms and molecules. The main goal of this work is to use correlation function quantum Monte Carlo (CFQMC) to compute the vibrational state energies of molecules given a potential energy surface (PES). In CFQMC, an ensemble of random walkers simulate the diffusion and branching processes of the imaginary-time time dependent Schroedinger equation in order to evaluate the matrix elements. The program QMCVIB was written to perform multi-state VMC and CFQMC calculations and employed for several calculations of the H{sub 2}O and C{sub 3} vibrational states, using 7 PES`s, 3 trial wavefunction forms, two methods of non-linear basis function parameter optimization, and on both serial and parallel computers. In order to construct accurate trial wavefunctions different wavefunctions forms were required for H{sub 2}O and C{sub 3}. In order to construct accurate trial wavefunctions for C{sub 3}, the non-linear parameters were optimized with respect to the sum of the energies of several low-lying vibrational states. In order to stabilize the statistical error estimates for C{sub 3} the Monte Carlo data was collected into blocks. Accurate vibrational state energies were computed using both serial and parallel QMCVIB programs. Comparison of vibrational state energies computed from the three C{sub 3} PES`s suggested that a non-linear equilibrium geometry PES is the most accurate and that discrete potential representations may be used to conveniently determine vibrational state energies.

  20. Induced CMB quadrupole from pointing offsets

    SciTech Connect

    Moss, Adam; Scott, Douglas; Sigurdson, Kris E-mail: dscott@phas.ubc.ca

    2011-01-01

    Recent claims in the literature have suggested that the WMAP quadrupole is not primordial in origin, and arises from an aliasing of the much larger dipole field because of incorrect satellite pointing. We attempt to reproduce this result and delineate the key physics leading to the effect. We find that, even if real, the induced quadrupole would be smaller than the WMAP value. We discuss reasons why the WMAP data are unlikely to suffer from this particular systematic effect, including the implications for observations of point sources. Given this evidence against the reality of the effect, the similarity between the pointing-offset-induced signal and the actual quadrupole then appears to be quite puzzling. However, we find that the effect arises from a convolution between the gradient of the dipole field and anisotropic coverage of the scan direction at each pixel. There is something of a directional conspiracy here — the dipole signal lies close to the Ecliptic Plane, and its direction, together with the WMAP scan strategy, results in a strong coupling to the Y{sub 2,−1} component in Ecliptic co-ordinates. The dominant strength of this component in the measured quadrupole suggests that one should exercise increased caution in interpreting its estimated amplitude. The Planck satellite has a different scan strategy which does not so directly couple the dipole and quadrupole in this way and will soon provide an independent measurement.

  1. Nuclear charge radii and electric quadrupole moments of even-even isotopes

    SciTech Connect

    Nerlo-Pomorska, B.; Mach, B.

    1995-07-01

    Isotope shifts of the charge mean-square radii and electric quadrupole moments of even-even nuclei with 20{le}{Zeta}{le}98 are calculated using a dynamical microscopic model. A single-particle Nilsson potential with the Seo set of correction terms, pairing forces in the BCS formalism, and a long-range interaction in the local approximation are used. A collective Hamiltionian is obtained using a generator coordinate method with the Gaussian overlap approximation. The potential energy of the nucleus consists of a microscopic-macroscopic Strutinsky energy and a zero-point vibrational term. A liquid droplet model is used for the macroscopic part of the potential. A BCS wave function is taken as a generator function, and two collective variables, quadrupole and hexadecapole deformations, serve as the generator coordinates. In general, good agreement between the theory and experimental data is achieved. 16 refs., 8 figs., 1 tab.

  2. Magnetic Measurement Results of the LCLS Undulator Quadrupoles

    SciTech Connect

    Anderson, Scott; Caban, Keith; Nuhn, Heinz-Dieter; Reese, Ed; Wolf, Zachary; /SLAC

    2011-08-18

    This note details the magnetic measurements and the magnetic center fiducializations that were performed on all of the thirty-six LCLS undulator quadrupoles. Temperature rise, standardization reproducibility, vacuum chamber effects and magnetic center reproducibility measurements are also presented. The Linac Coherent Light Source (LCLS) undulator beam line has 33 girders, each with a LCLS undulator quadrupole which focuses and steers the beam through the beam line. Each quadrupole has main quadrupole coils, as well as separate horizontal and vertical trim coils. Thirty-six quadrupoles, thirty-three installed and three spares were, manufactured for the LCLS undulator system and all were measured to confirm that they met requirement specifications for integrated gradient, harmonics and for magnetic center shifts after current changes. The horizontal and vertical dipole trims of each quadrupole were similarly characterized. Each quadrupole was also fiducialized to its magnetic center. All characterizing measurements on the undulator quads were performed with their mirror plates on and after a standardization of three cycles from -6 to +6 to -6 amps. Since the undulator quadrupoles could be used as a focusing or defocusing magnet depending on their location, all quadrupoles were characterized as focusing and as defocusing quadrupoles. A subset of the undulator quadrupoles were used to verify that the undulator quadrupole design met specifications for temperature rise, standardization reproducibility and magnetic center reproducibility after splitting. The effects of the mirror plates on the undulator quadrupoles were also measured.

  3. Revelation of non-statistical behavior in HO2 vibration by a new ab initio potential energy surface

    NASA Astrophysics Data System (ADS)

    Lin, Shi Ying; Xie, Daiqian; Guo, Hua

    2006-09-01

    The hydroperoxyl radical (HO2) has long been considered as a prototype for statistical vibrational dynamics. In this work, however, it is shown that the bound state energy levels (up to the dissociation threshold) and low-lying resonances of the HO2 system (J=0) obtained on a new ab initio potential energy surface exhibit surprisingly large regularity. The implications of the non-statistical behavior of the HO2 system in unimolecular and bimolecular reactions are discussed.

  4. The nuclear electric quadrupole moment of copper.

    PubMed

    Santiago, Régis Tadeu; Teodoro, Tiago Quevedo; Haiduke, Roberto Luiz Andrade

    2014-06-21

    The nuclear electric quadrupole moment (NQM) of the (63)Cu nucleus was determined from an indirect approach by combining accurate experimental nuclear quadrupole coupling constants (NQCCs) with relativistic Dirac-Coulomb coupled cluster calculations of the electric field gradient (EFG). The data obtained at the highest level of calculation, DC-CCSD-T, from 14 linear molecules containing the copper atom give rise to an indicated NQM of -198(10) mbarn. Such result slightly deviates from the previously accepted standard value given by the muonic method, -220(15) mbarn, although the error bars are superimposed.

  5. SKEW QUADRUPOLE FOCUSING LATTICES AND APPLICATIONS.

    SciTech Connect

    PARKER,B.

    2001-06-18

    In this paper we revisit using skew quadrupole fields in place of traditional normal upright quadrupole fields to make beam focusing structures. We illustrate by example skew lattice decoupling, dispersion suppression and chromatic correction using the neutrino factory Study-II muon storage ring design. Ongoing BNL investigation of flat coil magnet structures that allow building a very compact muon storage ring arc and other flat coil configurations that might bring significant magnet cost reduction to a VLHC motivate our study of skew focusing.

  6. Electric quadrupole transition probabilities for atomic lithium

    SciTech Connect

    Çelik, Gültekin; Gökçe, Yasin; Yıldız, Murat

    2014-05-15

    Electric quadrupole transition probabilities for atomic lithium have been calculated using the weakest bound electron potential model theory (WBEPMT). We have employed numerical non-relativistic Hartree–Fock wavefunctions for expectation values of radii and the necessary energy values have been taken from the compilation at NIST. The results obtained with the present method agree very well with the Coulomb approximation results given by Caves (1975). Moreover, electric quadrupole transition probability values not existing in the literature for some highly excited levels have been obtained using the WBEPMT.

  7. Seawater-overwash impacts on freshwater-lens water supplies of low-lying oceanic islands: example from Roi-Namur Island, Kwajalein Atoll, Republic of the Marshall Islands

    NASA Astrophysics Data System (ADS)

    Voss, C. I.; Gingerich, S. B.

    2015-12-01

    Low-lying oceanic islands host thin freshwater lenses subject to long-term aquifer salinization by seawater overwash. The lens is often the sole-source water supply for inhabitants. As maximum elevation for these islands is only a few meters above sea level, overwash can occur during high tides and storm surges. Sea level rise due to climate change will make overwash events even more common. The thin freshwater lenses, a few meters thick, are underlain by seawater, so pumping must be done carefully, often with horizontal skimming wells. Even a small amount of downward seawater infiltration from an overwash event can render the water supply non-potable. Where permeability is high, seawater infiltrates quickly, but seawater that infiltrates lower-permeability zones may remain for many months causing groundwater to remain non-potable, leaving residents without a reliable freshwater source. Initial post-overwash salinization is driven by the higher density of the invading saltwater, which sinks and mixes into the fresher water in potentially-complex patterns determined by: distribution of flooding and post-flood ponding, locations of permeable paths, and the inherently complex flow fields generated when fluid of higher density overlies lower-density fluid. The flow patterns cannot generally be measured or predicted in detail. This study develops basic understanding of overwash salinization processes impacting water supply on low-level islands, using a rare example of a monitored seawater overwash event that occurred in December 2008 at Roi-Namur Island in Kwajalein Atoll, Republic of the Marshall Islands, in which the salinity evolution of well water was measured. Due to typical lack of field data on such islands, a set of plausible alternative simulation-model descriptions of the hydrogeology and overwash event are created for analysis of the monitored salinization and recovery. Despite inability to know the 'true and complete' description of the event and the

  8. Nuclear quadrupole resonance studies in semi-metallic structures

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1974-01-01

    Both experimental and theoretical studies are presented on spectrum analysis of nuclear quadrupole resonance of antimony and arsenic tellurides. Numerical solutions for secular equations of the quadrupole interaction energy are also discussed.

  9. Structures, energetics and vibrational spectra of (H2O)32 clusters: a journey from model potentials to correlated theory

    NASA Astrophysics Data System (ADS)

    Sahu, Nityananda; Khire, Subodh S.; Gadre, Shridhar R.

    2015-10-01

    Empirical model potentials are found to be very useful for generating most competitive minima of large water clusters, whereas correlated (e.g. second order-Møller-Plesset perturbation (MP2) theory or higher) calculations are necessary for predicting their accurate energetics and vibrational features. The present study reports the structures and energetics of (H2O)32 clusters at MP2 level using aug-cc-pvDZ basis set, starting with low-lying structures generated from model potentials. Such high-end and accurate calculations are made feasible by the cost-effective fragment-based molecular tailoring approach (MTA) in conjunction with the grafting procedure. The latter is found to yield electronic energies with a sub-millihartree accuracy with reference to their full calculation counterparts. The vibrational spectra of nine low-lying (H2O)32 isomers are obtained from the corresponding MTA-based Hessian matrix. All these low-lying isomers show almost similar spectral features, which are in fair agreement with the experiment. The experimental spectrum of (H2O)32 is thus better understood from the vibrational features of this set of very closely spaced isomers. The present case study of (H2O)32 clearly demonstrates the efficacy in obtaining accurate structures, energetics and spectra at correlated level of theory by combining model potential-based structures with fragmentation methods.

  10. Coupling of nuclear quadrupole and octupole degrees of freedom in an angular momentum dependent potential of two deformation variables

    SciTech Connect

    Minkov, N.; Yotov, P.; Drenska, S.; Scheid, W.; Bonatsos, Dennis; Lenis, D.; Petrellis, D.

    2006-04-26

    We propose a collective rotation-vibration Hamiltonian of nuclei in which the axial quadrupole {beta}2 and octupole {beta}3 variables are coupled through the centrifugal interaction. We consider that the system oscillates between positive and negative {beta}3-values by rounding a potential core in the ({beta}2,{beta}3)- space. We examine the effect of the 'rounding' in the structure of the spectrum.

  11. The fundamental quadrupole band of (N-14)2 - Line positions from high-resolution stratospheric solar absorption spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Gunson, M. R.; Farmer, C. B.

    1991-01-01

    Accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen (N-14)2 are reported. Improved Dunham coefficients were derived from a simultaneous least squares analysis of these measurements and selected infrared and far infrared data. The new measurements were performed using stratospheric solar occultation spectra recorded with Fourier transform spectrometer instruments, operated at unapodized spectral resolutions of 0.002 and 0.01/cm.

  12. Random Vibrations

    NASA Technical Reports Server (NTRS)

    Messaro. Semma; Harrison, Phillip

    2010-01-01

    Ares I Zonal Random vibration environments due to acoustic impingement and combustion processes are develop for liftoff, ascent and reentry. Random Vibration test criteria for Ares I Upper Stage pyrotechnic components are developed by enveloping the applicable zonal environments where each component is located. Random vibration tests will be conducted to assure that these components will survive and function appropriately after exposure to the expected vibration environments. Methodology: Random Vibration test criteria for Ares I Upper Stage pyrotechnic components were desired that would envelope all the applicable environments where each component was located. Applicable Ares I Vehicle drawings and design information needed to be assessed to determine the location(s) for each component on the Ares I Upper Stage. Design and test criteria needed to be developed by plotting and enveloping the applicable environments using Microsoft Excel Spreadsheet Software and documenting them in a report Using Microsoft Word Processing Software. Conclusion: Random vibration liftoff, ascent, and green run design & test criteria for the Upper Stage Pyrotechnic Components were developed by using Microsoft Excel to envelope zonal environments applicable to each component. Results were transferred from Excel into a report using Microsoft Word. After the report is reviewed and edited by my mentor it will be submitted for publication as an attachment to a memorandum. Pyrotechnic component designers will extract criteria from my report for incorporation into the design and test specifications for components. Eventually the hardware will be tested to the environments I developed to assure that the components will survive and function appropriately after exposure to the expected vibration environments.

  13. Significant contribution of As 4 p orbitals to the low-lying electronic structure of the 112-type iron-based superconductor Ca 0.9La 0.1FeAs 2

    NASA Astrophysics Data System (ADS)

    Li, M. Y.; Liu, Z. T.; Zhou, W.; Yang, H. F.; Shen, D. W.; Li, W.; Jiang, J.; Niu, X. H.; Xie, B. P.; Sun, Y.; Fan, C. C.; Yao, Q.; Liu, J. S.; Shi, Z. X.; Xie, X. M.

    2015-01-01

    We report a systematic polarization-dependent angle-resolved photoemission spectroscopy study of the three-dimensional electronic structure of the recently discovered 112-type iron-based superconductor Ca1 -xLaxFeAs2 (x =0.1 ). Besides the commonly reported three holelike and two electronlike bands in iron-based superconductors, we resolve one additional holelike band around the zone center and one more fast-dispersing band near the X point in the vicinity of the Fermi level. By tuning the polarization and the energy of incident photons, we are able to identify the specific orbital character and the kz dependence of all bands. Combining these results with band calculations, we find that As 4 pz and 4 px(4 py) orbitals contribute significantly to the additional three-dimensional holelike band and the narrow band, respectively. Also, there is considerable hybridization between the As 4 pz and Fe 3 d orbitals in the additional holelike band, which suggests strong coupling between the unique arsenic zigzag bond layers and the FeAs layers therein. Our findings provide a comprehensive picture of the orbital character of the low-lying band structure of 112-type iron-based superconductors, which can be a starting point for the further understanding of their unconventional superconductivity.

  14. Assessing the impacts of sea-level rise and precipitation change on the surficial aquifer in the low-lying coastal alluvial plains and barrier islands, east-central Florida (USA)

    NASA Astrophysics Data System (ADS)

    Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.

    2016-07-01

    A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.

  15. Contribution of low-lying vector resonances to polarization observables in B{sub d}{sup 0}{yields}K{sup *0}e{sup +}e{sup -} decay

    SciTech Connect

    Korchin, Alexander Yu.; Kovalchuk, Vladimir A.

    2010-08-01

    The branching ratio and other observables for the rare flavor-changing neutral current decay B{sub d}{sup 0}{yields}K{sup *0}({yields}K{sup -}{pi}{sup +})e{sup +}e{sup -} are studied below the cc threshold. The total amplitude for this decay includes the term coming from the standard model effective Hamiltonian and the term generated by the processes B{sub d}{sup 0}{yields}K{sup *0}({yields}K{sup -}{pi}{sup +})V with intermediate low-lying vector resonances V={rho}(770), {omega}(782), {phi}(1020) decaying into the e{sup +}e{sup -} pair. The resonance contribution to the branching ratio, polarization fractions of the K{sup *} meson, and coefficients in the angular distribution is calculated. The influence of the resonances on the integrated observables in the region of electron-positron invariant mass up to 1 GeV is studied in view of the planned measurements of the photon polarization at the LHCb.

  16. Closed orbit response to quadrupole strength variation

    SciTech Connect

    Wolski, Andrzej; Zimmermann, Frank

    2004-01-20

    We derive two formulae relating the variation in closed orbit in a storage ring to variations in quadrupole strength, neglecting nonlinear and dispersive effects. These formulae correct results previously reported [1,2,3]. We compare the results of the formulae applied to the ATF with simulations using MAD, and consider their application to beam-based alignment.

  17. Tevatron low-beta quadrupole triplet interconnects

    SciTech Connect

    Oleck, A.R.; Carson, J.A.; Koepke, K.; Sorenson, D.

    1992-04-01

    Installation of cold iron quadrupole magnets in the Low Beta (Superconducting High-Luminosity) upgrade at Fermilab required a newly designed magnet interconnect. The interconnect design and construction experience is presented. Considered are the connections carrying cryogenic fluids, beam vacuum, insulating vacuum, superconducting bus leads, their insulation and mechanical support. Details of the assembly and assembly experience are presented. 2 refs.

  18. Full-dimensional quantum calculations of vibrational levels of NH4+ and isotopomers on an accurate ab initio potential energy surface

    DOE PAGES

    Hua -Gen Yu; Han, Huixian; Guo, Hua

    2016-03-29

    Vibrational energy levels of the ammonium cation (NH4+) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4+ and ND4+ exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. As a result, the low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm–1.

  19. Full-Dimensional Quantum Calculations of Vibrational Levels of NH4(+) and Isotopomers on An Accurate Ab Initio Potential Energy Surface.

    PubMed

    Yu, Hua-Gen; Han, Huixian; Guo, Hua

    2016-04-14

    Vibrational energy levels of the ammonium cation (NH4(+)) and its deuterated isotopomers are calculated using a numerically exact kinetic energy operator on a recently developed nine-dimensional permutation invariant semiglobal potential energy surface fitted to a large number of high-level ab initio points. Like CH4, the vibrational levels of NH4(+) and ND4(+) exhibit a polyad structure, characterized by a collective quantum number P = 2(v1 + v3) + v2 + v4. The low-lying vibrational levels of all isotopomers are assigned and the agreement with available experimental data is better than 1 cm(-1).

  20. Analysis of peculiarities of the SEHRS and SERS spectra of 4,4‧-Bipyridine molecule on the base of the dipole-quadrupole theory

    NASA Astrophysics Data System (ADS)

    Golovin, A. V.; Polubotko, A. M.

    2016-10-01

    The SEHRS and SERS spectra analysis of 4,4‧-Bipyridine indicated existence of strong lines with vibrations transforming after a unit irreducible representation for probable geometries with D2 and D2h symmetry groups. They are associated with a strong quadrupole light - molecule interaction existing in this system. In addition, there are the lines caused by contributions from both the vibrations transforming after the unit irreducible representations A or Ag and the representations B1 and B1u . This result is associated with the molecule geometry, when the indicated vibrations can be nearly degenerated and cannot be resolved by the SEHRS and SERS spectra analysis.

  1. The Microwave Spectroscopy of Aminoacetonitrile in the Vibrational Excited States 2

    NASA Astrophysics Data System (ADS)

    Fujita, Chiho; Higurashi, Haruka; Ozeki, Hiroyuki; Kobayashi, Kaori

    2016-06-01

    Aminoacetonitrile (NH_2CH_2CN) is a potential precursor of the simplest amino acid, glycine in the interstellar space and was detected toward SgrB2(N). We have extended measurements up to 1.3 THz so that the strongest transitions that may be found in the terahertz region should be covered. Aminoacetonitrile has a few low-lying vibrational excited states and indeed the pure rotational transitions in these vibrational excited states were found. The pure rotational transitions in six vibrational excited states in the 80-180 GHz range have been assigned and centrifugal distortion constants up to the sextic terms were determined. Based on spectral intensities and the vibrational information from Bak et al., They were assigned to the 3 low-lying fundamentals, 1 overtone and 2 combination bands. In the submillimeter wavelength region, perturbations were recognized and some of the lines were off by more than a few MHz. At this moment, these perturbed transitions are not included in our analysis. A. Belloche, K. M. Menten, C. Comito, H. S. P. Müller, P. Schilke, J. Ott, S. Thorwirth, and C. Hieret, 2008, Astronom. & Astrophys. 482, 179 (2008). Y. Motoki, Y. Tsunoda, H. Ozeki, and K. Kobayashi, Astrophys. J. Suppl. Ser. 209, 23 (2013). B. Bak, E. L. Hansen, F. M. Nicolaisen, and O. F. Nielsen, Can. J. Phys. 53, 2183 (1975) C. Fujita, H. Ozeki, and K. Kobayashi, 70th International Symposium on Molecular Spectroscopy (2015), MH14.

  2. Vibration analyzer

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1990-01-01

    The invention relates to monitoring circuitry for the real time detection of vibrations of a predetermined frequency and which are greater than a predetermined magnitude. The circuitry produces an instability signal in response to such detection. The circuitry is particularly adapted for detecting instabilities in rocket thrusters, but may find application with other machines such as expensive rotating machinery, or turbines. The monitoring circuitry identifies when vibration signals are present having a predetermined frequency of a multi-frequency vibration signal which has an RMS energy level greater than a predetermined magnitude. It generates an instability signal only if such a vibration signal is identified. The circuitry includes a delay circuit which responds with an alarm signal only if the instability signal continues for a predetermined time period. When used with a rocket thruster, the alarm signal may be used to cut off the thruster if such thruster is being used in flight. If the circuitry is monitoring tests of the thruster, it generates signals to change the thruster operation, for example, from pulse mode to continuous firing to determine if the instability of the thruster is sustained once it is detected.

  3. Modal response of 4-rod type radio frequency quadrupole linac.

    PubMed

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-01

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  4. Modal response of 4-rod type radio frequency quadrupole linac

    NASA Astrophysics Data System (ADS)

    Chatterjee, Avik; Mahapatra, Abhijit; Mondal, Manas; Chakrabarti, Alok

    2009-10-01

    This paper deals with the analysis and experimental study of natural frequencies of vibration of a 4-rod type radio frequency quadrupole (RFQ) linear accelerator. The eigenvalue analysis of the structure has been done both analytically (multispan beam concept) as well as using blocked Lanczos eigenvalue finite element solver with an ability to extract the rigid body modes. This has been done in the mechanical design phase to find the level of agreement between the output of simplified analytical analysis results and the output of a commercial finite element method (FEM) solver, since a full scale RFQ structure is too complex to handle analytically. Experimental validation of the analysis results has been done on the physical 1.7 m RFQ at the installation site. The experimental data obtained were later analyzed and found to be in close agreement with the predicted frequencies in the lower frequency ranges. It gets more and more deviated in the higher frequency ranges. Also some frequencies were observed during experimentation, which were not found in the finite element analysis results. The source of those frequencies are to be further investigated as it may play a predominant role in the design high quality factor beam line cavities for higher operational efficiency.

  5. Bifacial Metasurface with Quadrupole Optical Response

    NASA Astrophysics Data System (ADS)

    Shevchenko, Andriy; Kivijärvi, Ville; Grahn, Patrick; Kaivola, Matti; Lindfors, Klas

    2015-08-01

    We design, fabricate, and characterize a metasurface, whose multipole optical response depends significantly on the illumination direction. The metasurface is composed of gold-nanodisc dimers embedded in glass. In spite of their nanoscale size, the dimers exhibit a dominating electric-current-quadrupole response in a wide range of wavelengths around 700 nm when illuminated from one side, and a primarily electric-dipole response when illuminated from the opposite side. This leads to two consequences. First, the reflection coefficient of the metasurface considerably differs for the two sides of illumination. Second, quadrupole excitation results in a significant local enhancement of both electric and magnetic fields around the dimers. Our experimental spectroscopic data are in good agreement with simulations obtained using a multipole expansion model.

  6. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidize, G.; Dietderich, D.; Feher, S.; Ferracin, P.; Ghosh, A.; Hafalia, R.; Hannaford, R.; Kashikhin, V.V.; Kerby, J.; Lamm, M.; Lietzke, A.; McInturff, A.; Muratore, J.; Nobrega, F.; Novitsky, I.; Sabbi, G.L.; Schmalzle, J.; Tartaglia, M.; Turrioni, D.; Wanderer, P.; Whitson, G.; Zlobin, A.V.

    2008-06-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb{sub 3}Sn conductor. The goal of these magnets is to be a proof of principle that Nb{sub 3}Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  7. LARP Long Nb3Sn Quadrupole Design

    SciTech Connect

    Ambrosio, G.; Andreev, N.; Anerella, M.; Barzi, E.; Bossert, R.; Caspi, S.; Chlachidze, G.; Dietderich, D.; Feher, S.; Felice, H.; Ferracin, P.; /Fermilab /Brookhaven /LBL, Berkeley /Texas A-M

    2007-08-01

    A major milestone for the LHC Accelerator Research Program (LARP) is the test, by the end of 2009, of two 4m-long quadrupole magnets (LQ) wound with Nb3Sn conductor. The goal of these magnets is to be a proof of principle that Nb3Sn is a viable technology for a possible LHC luminosity upgrade. The design of the LQ is based on the design of the LARP Technological Quadrupoles, presently under development at FNAL and LBNL, with 90-mm aperture and gradient higher than 200 T/m. The design of the first LQ model will be completed by the end of 2007 with the selection of a mechanical design. In this paper we present the coil design addressing some fabrication technology issues, the quench protection study, and three designs of the support structure.

  8. Radio frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, Alfred

    1985-01-01

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  9. Muon cooling in a quadrupole magnet channel

    SciTech Connect

    Neuffer, David; Poklonskiy, A.; /Michigan State U.

    2007-10-01

    As discussed before,[1] a cooling channel using quadrupole magnets in a FODO transport channel can be used for initial cooling of muons. In the present note we discuss this possibility of a FODO focusing channel for cooling, and we present ICOOL simulations of muon cooling within a FODO channel. We explore a 1.5m cell-length cooling channel that could be used for the initial transverse cooling stage of a muon collider or neutrino factory.

  10. 15 T And Beyond - Dipoles and Quadrupoles

    SciTech Connect

    Sabbi, GianLuca

    2008-05-19

    Starting with the invention of the cyclotron by Lawrence, accelerator-based experiments have been the primary source of new discoveries in particle physics. In order to progress toward higher energy and luminosity, higher field magnets are required. R&D programs are underway to take advantage of new developments in superconducting materials, achieve better efficiency and simplify magnet fabrication while preserving accelerator-class field quality. A review of recent progress on high field dipole and quadrupole magnets is presented.

  11. Electrostatic quadrupole DC accelerators for BNCT applications

    SciTech Connect

    Kwan, J.W.; Anderson, O.A.; Reginato, L.L.; Vella, M.C.; Yu, S.S.

    1994-04-01

    A dc electrostatic quadrupole (ESQ) accelerator is capable of producing a 2.5 MeV, 100 mA proton beam for the purpose of generating neutrons for Boron Neutron Capture Therapy. The ESQ accelerator is better than the conventional aperture column in high beam current application due to the presence of stronger transverse field for beam focusing and for suppressing secondary electrons. The major challenge in this type of accelerator is in developing the proper power supply system.

  12. LHC INTERACTION REGION QUADRUPOLE ERROR IMPACT STUDIES

    SciTech Connect

    FISCHER,W.; PTITSIN,V.; WEI,J.

    1999-09-07

    The performance of the Large Hadron Collider (LHC) at collision energy is limited by the field quality of the interaction region (IR) quadrupoles and dipoles. In this paper the authors study the impact of the expected field errors of these magnets on the dynamic aperture. The authors investigate different magnet arrangements and error strength. Based on the results they propose and evaluate a corrector layout to meet the required dynamic aperture performance in a companion paper.

  13. Table of nuclear electric quadrupole moments

    NASA Astrophysics Data System (ADS)

    Stone, N. J.

    2016-09-01

    This Table is a compilation of experimental measurements of static electric quadrupole moments of ground states and excited states of atomic nuclei throughout the periodic table. To aid identification of the states, their excitation energy, half-life, spin and parity are given, along with a brief indication of the method and any reference standard used in the particular measurement. Experimental data from all quadrupole moment measurements actually provide a value of the product of the moment and the electric field gradient [EFG] acting at the nucleus. Knowledge of the EFG is thus necessary to extract the quadrupole moment. A single recommended moment value is given for each state, based, for each element, wherever possible, upon a standard reference moment for a nuclear state of that element studied in a situation in which the electric field gradient has been well calculated. For several elements one or more subsidiary EFG/moment reference is required and their use is specified. The literature search covers the period to mid-2015.

  14. VIBRATIONALLY EXCITED C{sub 6}H

    SciTech Connect

    Gottlieb, C. A.; McCarthy, M. C.; Thaddeus, P.

    2010-08-15

    Rotational spectra of the linear carbon chain radical C{sub 6}H in two low-lying excited vibrational states were observed both at millimeter wavelengths in a low-pressure glow discharge and at centimeter wavelengths in a supersonic molecular beam. Two series of harmonically related lines with rotational constants within 0.3% of the {sup 2{Pi}} ground state were assigned to the {sup 2{Sigma}} and {sup 2{Delta}} vibronic components of an excited bending vibrational level. Measurements of the intensities of the lines in the glow discharge indicate that the {sup 2{Sigma}} component lies very close to ground, but the {sup 2{Delta}} component is much higher in energy. The standard Hamiltonian for an isolated {sup 2{Delta}} state with five spectroscopic constants reproduces the observed rotational spectrum, but several high-order distortion terms in the spin-rotation interaction are needed to reproduce the spectrum of the {sup 2{Sigma}} component in C{sub 6}H and C{sub 6}D. The derived spectroscopic constants allow astronomers to calculate the rotational spectra of the {sup 2{Sigma}} and {sup 2{Delta}} states up to 260 GHz to within 0.1 km s{sup -1} or better in equivalent radial velocity.

  15. Vibrational conical intersections in the water dimer

    NASA Astrophysics Data System (ADS)

    Hamm, Peter; Stock, Gerhard

    2013-08-01

    A recent paper by Hamm and Stock [Phys. Rev. Lett. 109, 173201 (2012)] has introduced the concept of vibrational conical intersections as a potential source of ultrafast vibrational relaxation, using the coupling between high-frequency OH modes and low-frequency intramolecular hydrogen bonding modes of malonaldehyde as an example. Here, the question is addressed whether such conical intersections may also appear for intermolecular hydrogen bonds. To that end, the water dimer [(H2O)2] is studied as a minimal model for the hydrogen bonding in liquid water. Although a significant separation of time scales between intramolecular and intermolecular degrees of freedom exists in (H2O)2, a standard normal-mode description is found to lead to a complete breakdown of the adiabatic ansatz. This is due to strong nonlinear couplings between high- and low-frequency normal modes, which in turn give rise to large overall non-adiabatic couplings. A valid adiabatic picture is obtained, on the other hand, when internal coordinates are employed. The resulting adiabatic potential energy surfaces indeed exhibit low-lying conical intersections, whose possible relevance for ultrafast relaxation and energy transfer in water is discussed.

  16. Good Vibrations

    NASA Technical Reports Server (NTRS)

    2001-01-01

    A Small Business Innovation Research (SBIR) sponsorship from NASA's Dryden Flight Research Center, assisted MetroLaser, of Irvine, California, in the development of a self-aligned laser vibrometer system. VibroMet, capable of measuring surface vibrations in a variety of industries, provides information on the structural integrity and acoustical characteristics of manufactured products. This low-cost, easy-to-use sensor performs vibration measurement from distances of up to three meters without the need for adjustment. The laser beam is simply pointed at the target and the system then uses a compact laser diode to illuminate the surface and to subsequently analyze the reflected light. The motion of the surface results in a Doppler shift that is measured with very high precision. VibroMet is considered one of the many behind-the-scenes tools that can be relied on to assure the quality, reliability and safety of everything from airplane panels to disk brakes

  17. Photoassociation of a cold-atom-molecule pair: Long-range quadrupole-quadrupole interactions

    SciTech Connect

    Lepers, M.; Dulieu, O.; Kokoouline, V.

    2010-10-15

    The general formalism of the multipolar expansion of electrostatic interactions is applied to the calculation of the potential energy between an excited atom (without fine structure) and a ground-state diatomic molecule at large mutual separations. Both partners exhibit a permanent quadrupole moment so that their mutual long-range interaction is dominated by a quadrupole-quadrupole term, which is attractive enough to bind trimers. Numerical results are given for an excited Cs(6{sup 2}P) atom and a ground-state Cs{sub 2} molecule. The prospects for achieving photoassociation of a cold-atom-dimer pair are thus discussed and found promising. The formalism can be generalized to the long-range interaction between molecules to investigate the formation of cold tetramers.

  18. Current analysis for rotating and vibrating heavy nuclei

    NASA Astrophysics Data System (ADS)

    Kunz, J.; Schuh, A.; Mosel, U.; Wuest, E.

    Microscopic current distributions are calculated for rotations and quadrupole vibrations of heavy nuclei in the cranking model using the Nilsson Hamiltonian and pairing correlations. The currents are analyzed in terms of vector spherical harmonics; symmetry relations are taken into account. In the case of collective rotations magnetic and electric current contributions occur. The two dominant contributions correspond to rigid and irrotational flow. The strong influence of pairing on the rotational currents is demonstrated. It can be understood by investigating the delta N = 0 and delta N = 2 contributions to the currents. For collective quadrupole vibrations only electric current contributions occur. In contrast to the irrotational Bohr-Tassie flow the realistic current fields show a vortex structure.

  19. Modeled changes in extreme wave climates in the Pacific Ocean during the 21st century and implications for low-lying U.S. and U.S.-affiliated atoll islands

    NASA Astrophysics Data System (ADS)

    Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.

    2014-12-01

    . As most atoll islets accrete during large wave events, decreasing wave heights during other seasons may inhibit atoll islet accretion such that the low-lying islets may not be able to keep up with projected sea-level rise.

  20. Intramolecular charge transfer in aminobenzonitriles and tetrafluoro counterparts: fluorescence explained by competition between low-lying excited states and radiationless deactivation. Part I: A mechanistic overview of the parent system ABN.

    PubMed

    Segado, Mireia; Gómez, Isabel; Reguero, Mar

    2016-03-01

    Recent theoretical and experimental studies on the Intramolecular Charge Transfer (ICT) reaction of some members of the aminobezonitrile family (ABN) suggest the involvement of a (π-σ*) excited state (called ICT(CN) in this work) in the ICT process and the existence of a partially twisted ICT species that could be responsible for the anomalous fluorescence observed. These suggestions made us to revise our previous study on the photophysics of ABN and dimethyl-ABN (DMABN), based on the analysis of the potential energy surfaces of the low-lying excited states by means of ab initio calculations, using the CASSCF/CASPT2 protocol. We have first focused our attention to ABN. We have found that the (π-σ*) excited state can be in fact an intermediary state in the path to populate the ICT bright state, although its involvement in the process is not very probable. Our results suggest that the ICT most stable species is the twisted ICT(TICT) and that the partially twisted ICT minimum found in previous studies could be an artefact of the computational method. We have also found that radiationless deactivation is a competitive reaction that must be taken into account to explain the fluorescence patterns of these systems. To confirm our theories, we have also studied other systems with a similar architecture but with a very different luminescence behaviour: dimethyl-ABN, and the 2,3,4,5-tetrafluoro derivatives of ABN and DMABN (ABN-4F and DMABN-4F). The extension of the work and the different approaches in the study of the parent system and of the derivatives make the division of the work in two parts advisable. Part I collects the characterization of the minima and reaction paths connecting the critical points of the potential energy surfaces of the states involved in the ICT reaction of ABN. We have obtained, for the first time, the pathways of radiationless deactivation for this compound. We have also computed transition energies from the excited minima, to interpret the

  1. Intermediate energy electron impact excitation of composite vibrational modes in phenol

    SciTech Connect

    Neves, R. F. C.; Jones, D. B.; Lopes, M. C. A.; Nixon, K. L.; Oliveira, E. M. de; Lima, M. A. P.; Costa, R. F. da; Varella, M. T. do N.; Bettega, M. H. F.; Silva, G. B. da; Brunger, M. J.

    2015-05-21

    We report differential cross section results from an experimental investigation into the electron impact excitation of a number of the low-lying composite (unresolved) vibrational modes in phenol (C{sub 6}H{sub 5}OH). The measurements were carried out at incident electron energies in the range 15–40 eV and for scattered-electron angles in the range 10–90°. The energy resolution of those measurements was typically ∼80 meV. Calculations, using the GAMESS code, were also undertaken with a B3LYP/aug-cc-pVDZ level model chemistry, in order to enable us to assign vibrational modes to the features observed in our energy loss spectra. To the best of our knowledge, the present cross sections are the first to be reported for vibrational excitation of the C{sub 6}H{sub 5}OH molecule by electron impact.

  2. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, P.

    1993-04-20

    A quadrupole mass spectrometer (QMS) system is described having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  3. Noise reduction in negative-ion quadrupole mass spectrometry

    DOEpatents

    Chastagner, Philippe

    1993-01-01

    A quadrupole mass spectrometer (QMS) system having an ion source, quadrupole mass filter, and ion collector/recorder system. A weak, transverse magnetic field and an electron collector are disposed between the quadrupole and ion collector. When operated in negative ion mode, the ion source produces a beam of primarily negatively-charged particles from a sample, including electrons as well as ions. The beam passes through the quadrupole and enters the magnetic field, where the electrons are deflected away from the beam path to the electron collector. The negative ions pass undeflected to the ion collector where they are detected and recorded as a mass spectrum.

  4. Magnetic mirror structure for testing shell-type quadrupole coils

    SciTech Connect

    Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Tartaglia, N.; Turrioni, D.; /Fermilab

    2009-10-01

    This paper presents magnetic and mechanical designs and analyses of the quadrupole mirror structure to test single shell-type quadrupole coils. Several quadrupole coils made of different Nb{sub 3}Sn strands, cable insulation and pole materials were tested using this structure at 4.5 and 1.9 K. The coils were instrumented with voltage taps, spot heaters, temperature sensors and strain gauges to study their mechanical and thermal properties and quench performance. The results of the quadrupole mirror model assembly and test are reported and discussed.

  5. ANALYTICAL SOLUTIONS OF SINGULAR ISOTHERMAL QUADRUPOLE LENS

    SciTech Connect

    Chu Zhe; Lin, W. P.; Yang Xiaofeng E-mail: linwp@shao.ac.cn

    2013-06-20

    Using an analytical method, we study the singular isothermal quadrupole (SIQ) lens system, which is the simplest lens model that can produce four images. In this case, the radial mass distribution is in accord with the profile of the singular isothermal sphere lens, and the tangential distribution is given by adding a quadrupole on the monopole component. The basic properties of the SIQ lens have been studied in this Letter, including the deflection potential, deflection angle, magnification, critical curve, caustic, pseudo-caustic, and transition locus. Analytical solutions of the image positions and magnifications for the source on axes are derived. We find that naked cusps will appear when the relative intensity k of quadrupole to monopole is larger than 0.6. According to the magnification invariant theory of the SIQ lens, the sum of the signed magnifications of the four images should be equal to unity, as found by Dalal. However, if a source lies in the naked cusp, the summed magnification of the left three images is smaller than the invariant 1. With this simple lens system, we study the situations where a point source infinitely approaches a cusp or a fold. The sum of the magnifications of the cusp image triplet is usually not equal to 0, and it is usually positive for major cusps while negative for minor cusps. Similarly, the sum of magnifications of the fold image pair is usually not equal to 0 either. Nevertheless, the cusp and fold relations are still equal to 0 in that the sum values are divided by infinite absolute magnifications by definition.

  6. An Investigation of low beta triplet vibrational issues at Fermilab's Collider Detector

    SciTech Connect

    Michael W. McGee

    2004-06-08

    The vibrational aspects of recent disturbances at the low beta focusing quadrupoles, which caused proton beam loss at the Collider Detector at Fermilab (CDF), are discussed. Two low beta focusing quadrupoles are supported by a girder, which is extended over the CDF collision hall pit on each side. The low beta girder has a ledge mount support at an alcove's face and two Invar rods near the opposite end. Forced response measurements were taken on the low beta girder, where the power spectral density (PSD) function was used to obtain RMS displacement. The effects of local excitation due to operating equipment and near-field excitation due to ambient ground motion caused by local traffic are examined. The discussion explores dynamic response characteristics of the low beta quadrupoles and supporting girder using beam loss as the vibrational stability criteria. This paper also presents practical problem-solving approaches for similar accelerator components.

  7. Nuclear Quadrupole Resonance Studies in MICA

    NASA Astrophysics Data System (ADS)

    Sengupta, S.; Rhadakrishna, S.; Marino, R. A.

    1986-02-01

    Aluminum-27 NQR transitions were detected in Muscovite Mica at room temperature using double resonance by level crossing (DRLC) techniques. Three lines were observed with frequencies of 572.5, 1052.0, and 1624.5 kHz. These lines are assigned to the octahedrally coordinated site, AlO4(OH)2. The corresponding quadrupole coupling constant, e2q Q/h, and asymmetry parameter, η, are 3554.8 kHz and 0.265, respectively. The remaining tetrahedrally coordinated sites, AlO4, gave no discernible signal, perhaps due to the greater 27Al- 1H distance.

  8. Multi-Pass Quadrupole Mass Analyzer

    NASA Technical Reports Server (NTRS)

    Prestage, John D.

    2013-01-01

    Analysis of the composition of planetary atmospheres is one of the most important and fundamental measurements in planetary robotic exploration. Quadrupole mass analyzers (QMAs) are the primary tool used to execute these investigations, but reductions in size of these instruments has sacrificed mass resolving power so that the best present-day QMA devices are still large, expensive, and do not deliver performance of laboratory instruments. An ultra-high-resolution QMA was developed to resolve N2 +/CO+ by trapping ions in a linear trap quadrupole filter. Because N2 and CO are resolved, gas chromatography columns used to separate species before analysis are eliminated, greatly simplifying gas analysis instrumentation. For highest performance, the ion trap mode is used. High-resolution (or narrow-band) mass selection is carried out in the central region, but near the DC electrodes at each end, RF/DC field settings are adjusted to allow broadband ion passage. This is to prevent ion loss during ion reflection at each end. Ions are created inside the trap so that low-energy particles are selected by low-voltage settings on the end electrodes. This is beneficial to good mass resolution since low-energy particles traverse many cycles of the RF filtering fields. Through Monte Carlo simulations, it is shown that ions are reflected at each end many tens of times, each time being sent back through the central section of the quadrupole where ultrahigh mass filtering is carried out. An analyzer was produced with electrical length orders of magnitude longer than its physical length. Since the selector fields are sized as in conventional devices, the loss of sensitivity inherent in miniaturizing quadrupole instruments is avoided. The no-loss, multi-pass QMA architecture will improve mass resolution of planetary QMA instruments while reducing demands on the RF electronics for high-voltage/high-frequency production since ion transit time is no longer limited to a single pass. The

  9. Explosives detection with quadrupole resonance analysis

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; Thorson, Benjamin D.; Beevor, Simon; West, Rebecca; Krauss, Ronald A.

    1997-02-01

    The increase in international terrorist activity over the past decade has necessitated the exploration of new technologies for the detection of plastic explosives. Quadrupole resonance analysis (QRA) has proven effective as a technique for detecting the presence of plastic, sheet, and military explosive compounds in small quantities, and can also be used to identify narcotics such as heroin and cocaine base. QRA is similar to the widely used magnetic resonance (MR) and magnetic resonance imaging (MRI) techniques, but has the considerable advantage that the item being inspected does not need to be immersed in a steady, homogeneous magnetic field. The target compounds are conclusively identified by their unique quadrupole resonance frequencies. Quantum magnetics has develop and introduced a product line of explosives and narcotics detection devices based upon QRA technology. The work presented here concerns a multi-compound QRA detection system designed to screen checked baggage, cargo, and sacks of mail at airports and other high-security facilities. The design philosophy and performance are discussed and supported by test results from field trials conducted in the United States and the United Kingdom. This detection system represents the current state of QRA technology for field use in both commercial and government sectors.

  10. SSC Quadrupole Magnet Performance at LBL

    SciTech Connect

    Lietzke, A.F.; Barale, P.; Benjegerdes, r.; Caspi, S.; Cortella, J.; Dell'Orco, D.; Gilbert, W.; Green, M.I.; Mirk, K.; Peters, C.; Scalan, R.; Taylor, C.E.; Wandesforde, A.

    1992-10-01

    Lawrence Berkeley Laboratory (LBL) contracted to design, construct, and test four short (1m) models and six full-size (5m) models of the Superconducting Super Collider (SSC) main-ring 5 meter focusing quadrupole magnet (211 Tesla/meter). The training performance of these magnets is summarized. Magnets were tested in a horizontal boiling helium (1 Atm) cryostat. The magnetic, strain-gage and training responses to two thermal cycles were measured. The quadrupole gradient, and relative multipole purity were determined from Fourier analysis of the rotating coil signals. Magnetic and strain-gage measurements were taken on-the-fly. The voltage-tap data was analyzed to determine quench-origin and propagation characteristics. Quench-training proceeded at 4.3K until a plateau was achieved or sub-cooling (2.5K) was used to accelerate the training process. The early short (1m) magnets were also trained at 1.8K (10kA) to help identify potential weak areas. The MIITs were calculated to compare various magnet protection methods. Except for modest training above the anticipated SSC operating point, the magnets performed very well and proved to be self-protecting. Some design flaws were identified and corrected. The last two 1 m models and all the 5m models have been reinstalled in cryostats at the SSC Laboratory, retested and used to achieve various milestones in their program.

  11. Quadrupole Polarizabilities in A ~150 Superdeformed Bands

    NASA Astrophysics Data System (ADS)

    Satula, Wojciech; Nazarewicz, Witold; Dobaczewski, Jacek; Dudek, Jerzy

    1996-10-01

    In this study, the quadrupole and hexadecapole moments of superdeformed (SD) bands in the A ~150 mass region have been analyzed in the cranking Skyrme-Hartree-Fock model. The analysis shows that the relative quadrupole moments, δ Q_20(X_A)≡ Q_20(X_A)-Q_20(^152Dy;yrast), follow experimental trends rather well and that they can be written as a sum of independent contributions from the single-particle/hole states around the doubly-magic SD core of ^152Dy with a surpisingly high accuracy. For more than 90% of the SD bands considered, the deviation |δ Q_20 ( X_A) - sum_Nn_zΛδ q^[Nn_zΛ]| is less than 0.04 b. It suggests that the SD high-spin bands around ^152Dy are excellent examples of an almost undisturbed single-particle motion, i.e., can be described by the extreme shell model.

  12. Quadrupole Collectivity in Neutron Deficient Sn Isotopes

    NASA Astrophysics Data System (ADS)

    Gade, Alexandra

    2014-03-01

    One of the overarching goals of nuclear physics is the development of a comprehensive model of the atomic nucleus with predictive power across the nuclear chart. Of particular importance for the development of nuclear models is experimental data that consistently track the effect of isospin and changed binding, for example. The chain of Sn isotopes has been a formidable testing ground for nuclear models as some spectroscopic data is available from N = Z = 50 100Sn in the proximity of the proton dripline to 134Sn, beyond the very neutron-rich doubly magic nucleus 132Sn. In even-even nuclei, the electromagnetic quadrupole excitation strength is a measure of quadrupole collectivity, sensitive to the presence of shell gaps, nuclear deformation, and nucleon-nucleon correlations, for example. In the Sn isotopes, this transition strength has been reported from 104Sn to 130Sn, spanning a chain of 14 even-even Sn isotopes. The trend is asymmetric with respect to midshell and not even the largest-scale shell-model calculations have been able to describe the evolution of transition strength across the isotopic chain without varying effective charges. Implications will be discussed. This work was supported by the National Science Foundation under Grant No. PHY-1102511.

  13. Differentially pumped dual linear quadrupole ion trap mass spectrometer

    SciTech Connect

    Owen, Benjamin C.; Kenttamaa, Hilkka I.

    2015-10-20

    The present disclosure provides a new tandem mass spectrometer and methods of using the same for analyzing charged particles. The differentially pumped dual linear quadrupole ion trap mass spectrometer of the present disclose includes a combination of two linear quadrupole (LQIT) mass spectrometers with differentially pumped vacuum chambers.

  14. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, Alfred W.

    1985-01-01

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow throughout the assembly.

  15. Electrostatic quadrupole focused particle accelerating assembly with laminar flow beam

    DOEpatents

    Maschke, A.W.

    1984-04-16

    A charged particle accelerating assembly provided with a predetermined ratio of parametric structural characteristics and with related operating voltages applied to each of its linearly spaced focusing and accelerating quadrupoles, thereby to maintain a particle beam traversing the electrostatic fields of the quadrupoles in the assembly in an essentially laminar flow through the assembly.

  16. Feedback damper system for quadrupole oscillations after transition at RHIC.

    SciTech Connect

    Abreu,N.; Blaskiewicz, M.; Brennan, J.M.; Schultheiss, C.

    2008-06-23

    The heavy ion beam at RHIC undergoes strong quadrupole oscillations just after it crosses transition, which leads to an increase in bunch length making rebucketing less effective. A feedback system was built to damp these quadrupole oscillations and in this paper the characteristics of the system and the results obtained are presented and discussed.

  17. Double-photoionization of helium including quadrupole radiation effects

    SciTech Connect

    Colgan, James; Ludlow, J A; Lee, Teck - Ghee; Pindzola, M S; Robicheaux, F

    2009-01-01

    Non-perturbative time-dependent close-coupling calculations are carried out for the double photoionization of helium including both dipole and quadrupole radiation effects. At a photon energy of 800 eV, accessible at CUlTent synchrotron light sources, the quadrupole interaction contributes around 6% to the total integral double photoionization cross section. The pure quadrupole single energy differential cross section shows a local maxima at equal energy sharing, as opposed to the minimum found in the pure dipole single energy differential cross section. The sum of the pure dipole and pure quadrupole single energy differentials is insensitive to non-dipole effects at 800 eV. However, the triple differential cross section at equal energy sharing of the two ejected electrons shows strong non-dipole effects due to the quadrupole interaction that may be experimentally observable.

  18. Quadrupole photoionization of hydrogen atoms in Debye plasmas

    SciTech Connect

    Lin, C. Y.; Ho, Y. K.

    2010-09-15

    Although a great deal of effort has been devoted to investigating dipole photoionization of plasma-embedded atoms, far less is known about the corresponding quadrupole transitions. In the present work, quadrupole photoionization processes for the ground and excited states of hydrogen atoms in Debye plasma are explored using the method of complex coordinate rotation. The plasma shielding effects on the quadrupole photoionization cross sections are reported for a variety of Debye screening lengths and compared to the dipole results accordingly. Under the perturbation of plasma screening, shape resonances and Cooper-type minima occurring in both dipole and quadrupole photoionization cross sections are presented and discussed. Comparisons are made to other theoretical calculations for the dipole photoionization with good agreement. The present quadrupole results are the first predictions for hydrogen photoionization in Debye plasmas.

  19. Supersonic Quadrupole Noise Theory for High-Speed Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Brentner, Kenneth S.

    1997-01-01

    High-speed helicopter rotor impulsive noise prediction is an important problem of aeroacoustics. The deterministic quadrupoles have been shown to contribute significantly to high-speed impulsive (HSI) noise of rotors, particularly when the phenomenon of delocalization occurs. At high rotor-tip speeds, some of the quadrupole sources lie outside the sonic circle and move at supersonic speed. Brentner has given a formulation suitable for efficient prediction of quadrupole noise inside the sonic circle. In this paper, we give a simple formulation based on the acoustic analogy that is valid for both subsonic and supersonic quadrupole noise prediction. Like the formulation of Brentner, the model is exact for an observer in the far field and in the rotor plane and is approximate elsewhere. We give the full analytic derivation of this formulation in the paper. We present the method of implementation on a computer for supersonic quadrupoles using marching cubes for constructing the influence surface (Sigma surface) of an observer space- time variable (x; t). We then present several examples of noise prediction for both subsonic and supersonic quadrupoles. It is shown that in the case of transonic flow over rotor blades, the inclusion of the supersonic quadrupoles improves the prediction of the acoustic pressure signature. We show the equivalence of the new formulation to that of Brentner for subsonic quadrupoles. It is shown that the regions of high quadrupole source strength are primarily produced by the shock surface and the flow over the leading edge of the rotor. The primary role of the supersonic quadrupoles is to increase the width of a strong acoustic signal.

  20. Free exciton emission and vibrations in pentacene monolayers

    NASA Astrophysics Data System (ADS)

    He, Rui

    2011-03-01

    Pentacene is a benchmark organic semiconductor material because of its potential applications in electronic and optoelectronic devices. Recently we demonstrated that optical and vibrational characterizations of pentacene films can be carried out down to the sub-monolayer limit. These milestones were achieved in highly uniform pentacene films that were grown on a compliant polymeric substrate. Films with thickness ranging from sub- monolayer to tens of monolayers were studied at low temperatures. The intensity of the free exciton (FE) luminescence band increases quadratically with the number of layers N when N is small. This quadratic dependence is explained as arising from the linear dependence of the intensity of absorption and the probability of emission on the number of layers N. Large enhancements of Raman scattering intensities at the FE resonance enable the first observations of low-lying lattice modes in the monolayers. The measured low- lying modes (in the 20 to 100 cm-1 range) display characteristic changes when going from a single monolayer to two layers. The Raman intensities by high frequency intra-molecular vibrations display resonance enhancement double-peaks when incident or scattered photon energies overlap the FE optical emission. The double resonances are about the same strength which suggests that Franck-Condon overlap integrals for the respective vibronic transitions have the same magnitude. The interference between scattering amplitudes in the Raman resonance reveals quantum coherence of the symmetry-split states (Davydov doublet) of the lowest intrinsic singlet exciton. These results demonstrate novel venues for ultra-thin film characterization and studies of fundamental physics in organic semiconductor structures. In collaboration with Nancy G. Tassi (Dupont), Graciela B. Blanchet (Nanoterra, Cambridge, MA), and Aron Pinczuk (Columbia University).

  1. Explosives detection by nuclear quadrupole resonance (NQR)

    NASA Astrophysics Data System (ADS)

    Garroway, Allen N.; Buess, Michael L.; Yesinowski, James P.; Miller, Joel B.; Krauss, Ronald A.

    1994-10-01

    Pure nuclear quadrupole resonance (NQR) of 14N nuclei is quite promising as a method for detecting explosives such as RDX and contraband narcotics such as cocaine and heroin in quantities of interest. Pure NQR is conducted without an external applied magnetic field, so potential concerns about damage to magnetically encoded data or exposure of personnel to large magnetic fields are not relevant. Because NQR frequencies of different compounds are quite distinct, we do not encounter false alarms from the NQR signals of other benign materials. We have constructed a laboratory prototype NQR explosives detector which interrogates a volume of 300 liters (10 ft3). This paper presents abbreviated results from a demonstration of the laboratory prototype NQR explosives detector conducted at the Federal Aviation Administration Technical Center in May 1994 on RDX-based explosives.

  2. Quadrupole resonance scanner for narcotics detection

    NASA Astrophysics Data System (ADS)

    Shaw, Julian D.; Moeller, C. R.; Magnuson, Erik E.; Sheldon, Alan G.

    1994-10-01

    Interest in non-invasive, non-hazardous, bulk detection technologies for narcotics interdiction has risen over the last few years. As part of our continuing research and development programs in detection of narcotics and explosives using sensitive magnetic measuring devices, we present the first commercially available prototype Quadrupole Resonance (QR) scanner for narcotics detection. The portable narcotics detection system was designed in modular form such that a single QR base system could be easily used with a variety of custom detection heads. The QR system presented in this paper is suitable for scanning items up to 61 X 35 X 13 cm in size, and was designed to scan mail packages and briefcase-sized items for the presence of narcotics. System tests have shown that detection sensitivity is comparable that obtained in laboratory systems.

  3. Development of a quadrupole resonance confirmation system

    NASA Astrophysics Data System (ADS)

    Barrall, Geoffrey A.; Derby, Kevin A.; Drew, Adam J.; Ermolaev, Konstantine V.; Huo, Shouqin; Lathrop, Daniel K.; Petrov, Todor R.; Steiger, Matthew J.; Stewart, Stanley H.; Turner, Peter J.

    2004-09-01

    Quantum Magnetics has developed a Quadrupole Resonance (QR) system for the detection of anti-tank and anti-vehicle landmines. The QR confirmation sensor (QRCS) is a part of the Army GSTAMIDS Block 1 program and is designed to confirm the presence of landmines initially flagged by a primary sensor system. The ultimate goal is to significantly reduce the number of sites that require neutralization or other time consuming investigation into the presence of a landmine. Government tests in 2002 and 2003 demonstrated the performance of the system in a wide variety of conditions including high radio frequency interference (RFI) and piezo electric ringing (PER) environments. Field test results are presented along with an overall description of the system design and methods used to solve prior issues with RFI and PER.

  4. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations.

  5. Improving IRMPD in a quadrupole ion trap.

    PubMed

    Newsome, G Asher; Glish, Gary L

    2009-06-01

    A focused laser is used to make infrared multiphoton photodissociation (IRMPD) more efficient in a quadrupole ion trap mass spectrometer. Efficient (up to 100%) dissociation at the standard operating pressure of 1 x 10(-3) Torr can be achieved without any supplemental ion activation and with shorter irradiation times. The axial amplitudes of trapped ion clouds are measured using laser tomography. Laser flux on the ion cloud is increased six times by focusing the laser so that the beam waist approximates the ion cloud size. Unmodified peptide ions from 200 Da to 3 kDa are completely dissociated in 2.5-10 ms at a bath gas pressure of 3.3 x 10(-4) Torr and in 3-25 ms at 1.0 x 10(-3) Torr. Sequential dissociation of product ions is increased by focusing the laser and by operating at an increased bath gas pressure to minimize the size of the ion cloud.

  6. Atomic Quadrupole Moment Measurement Using Dynamic Decoupling.

    PubMed

    Shaniv, R; Akerman, N; Ozeri, R

    2016-04-01

    We present a method that uses dynamic decoupling of a multilevel quantum probe to distinguish small frequency shifts that depend on m_{j}^{2}, where m_{j}^{2} is the angular momentum of level |j⟩ along the quantization axis, from large noisy shifts that are linear in m_{j}, such as those due to magnetic field noise. Using this method we measured the electric-quadrupole moment of the 4D_{5/2} level in ^{88}Sr^{+} to be 2.973_{-0.033}^{+0.026}ea_{0}^{2}. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in ^{88}Sr^{+} based optical atomic clocks and verifies complicated many-body quantum calculations. PMID:27104691

  7. An improved integrally formed radio frequency quadrupole

    DOEpatents

    Abbott, S.R.

    1987-10-05

    An improved radio frequency quadrupole is provided having an elongate housing with an elongate central axis and top, bottom and two side walls symmetrically disposed about the axis, and vanes formed integrally with the walls, the vanes each having a cross-section at right angles to the central axis which tapers inwardly toward the axis to form electrode tips spaced from each other by predetermined distances. Each of the four walls, and the vanes integral therewith, is a separate structural element having a central lengthwise plane passing through the tip of the vane, the walls having flat mounting surfaces at right angles to and parallel to the control plane, respectively, which are butted together to position the walls and vane tips relative to each other. 4 figs.

  8. RADIATION RESISTANT HTS QUADRUPOLES FOR RIA.

    SciTech Connect

    GUPTA,R.; ANERELLA,M.; HARRISON,M.; ET AL.

    2004-10-03

    Extremely high radiation, levels with accumulated doses comparable to those in nuclear reactors than in accelerators, and very high heat loads ({approx}15 kw) make the quadrupole magnets in the fragment separator one of the most challenging elements of the proposed Rare Isotope Accelerator (RIA). Removing large heat loads, protecting the superconducting coils against quenching, the long term survivability of magnet components, and in particular, insulation that can retain its functionality in such a harsh environment, are the major challenges associated with such magnets. A magnet design based on commercially available high temperature superconductor (HTS) and stainless steel tape insulation has been developed. HTS will efficiently remove these large heat loads and stainless steel can tolerate these large radiation doses. Construction of a model magnet has been started with several coils already built and tested. This paper presents the basic magnet design, results of the coil tests, the status and the future plans. In addition, preliminary results of radiation calculations are also presented.

  9. Cryostat design for SSC quadrupole magnets

    SciTech Connect

    Lehmann, G.A.; Grut, K.E.; Hiller, M.W.; Huang, X.; Stutzki, D.T.; Waynert, J.A.

    1994-12-31

    The baseline design of the SSC Collider Quadrupole Magnet (CQM) cryostat is complete. The cryostat is designed to minimize cost and maximize system reliability. Many components have already been procured. Material characterization and component tests for many of the parts have been completed or are ongoing. The first CQM cryostat will be assembled in September of 1993. This paper describes the cryostat design for the CQM developed at Babcock & Wilcox (B&W). The CQM cryostat operates at cryogenic temperatures with a very stringent heat load budget. The cryostat supports the cold mass within the cryostat and insulates the cold mass against heating by conduction, thermal radiation and residual gas conduction. A description of the major components highlighting the key design features is given. The tradeoff studies performed for each component are summarized. The results of a static thermal analysis of the cryostat are presented.

  10. Radio-frequency quadrupole linear accelerator

    SciTech Connect

    Wangler, T.P.; Stokes, R.H.

    1980-01-01

    The radio-frequency quadrupole (RFQ) is a new linear accelerator concept in which rf electric fields are used to focus, bunch, and accelerate the beam. Because the RFQ can provide strong focusing at low velocities, it can capture a high-current dc ion beam from a low-voltage source and accelerate it to an energy of 1 MeV/nucleon within a distance of a few meters. A recent experimental test at the Los Alamos Scientific Laboratory (LASL) has confirmed the expected performance of this structure and has stimulated interest in a wide variety of applications. The general properties of the RFQ are reviewed and examples of applications of this new accelerator are presented.

  11. Quadrupole magnet for a rapid cycling synchrotron

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    Rapid Cycling Synchrotrons (RCS) feature interleaved warm and cold dipole magnets; the field of the warm magnets is used to modulate the average bending field depending on the particle energy. It has been shown that RCS can be an attractive option for fast acceleration of particles, for example, muons, which decay quickly. In previous studies it was demonstrated that in principle warm dipole magnets can be designed which can provide the required ramp rates, which are equivalent to frequencies of about 1 kHz. To reduce the losses it is beneficial to employ two separate materials for the yoke; it was also shown that by employing an optimized excitation coil geometry the eddy current losses are acceptable. In this paper we show that the same principles can be applied to quadrupole magnets targeting 30 T/m with a repetition rate of 1kHz and good field quality.

  12. Quadrupole and monopole transition properties of 0+2 in Gd isotopes

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Masayuki; Ueno, Tomoya

    2016-04-01

    The longstanding problem of characterization of the 0^+_2 states in Gd isotopes is revisited by adopting the Nilsson+BCS mean field and the random-phase approximation. The interband electric quadrupole transition strengths varying almost two orders of magnitude are nicely reproduced at the same time as other observables. These results indicate that the 0^+_2 states, in particular those in lighter isotopes, are well described as β vibrations excited on top of deformed ground states without recourse to the shape-coexistence picture.

  13. Noncontact Electromagnetic Vibration Source

    NASA Technical Reports Server (NTRS)

    Namkung, Min; Fulton, James P.; Wincheski, Buzz A.

    1994-01-01

    Metal aircraft skins scanned rapidly in vibration tests. Relatively simple combination of permanent magnets and electromagnet serves as noncontact vibration source for nondestructive testing of metal aircraft skins. In test, source excites vibrations, and vibration waveforms measured, then analyzed for changes in resonances signifying cracks and other flaws.

  14. Flow-induced vibration

    SciTech Connect

    Blevins, R.D.

    1990-01-01

    This book reports on dimensional analysis; ideal fluid models; vortex-induced vibration; galloping and flutter; instability of tube and cylinder arrays; vibrations induced by oscillating flow; vibration induced by turbulence and sound; damping of structures; sound induced by vortex shedding; vibrations of a pipe containing a fluid flow; indices. It covers the analysis of the vibrations of structures exposed to fluid flows; explores applications for offshore platforms and piping; wind-induced vibration of buildings, bridges, and towers; and acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.

  15. Quantum mechanics in rotating-radio-frequency traps and Penning traps with a quadrupole rotating field

    SciTech Connect

    Abe, K.; Hasegawa, T.

    2010-03-15

    Quantum-mechanical analysis of ion motion in a rotating-radio-frequency (rrf) trap or in a Penning trap with a quadrupole rotating field is carried out. Rrf traps were introduced by Hasegawa and Bollinger [Phys. Rev. A 72, 043404 (2005)]. The classical motion of a single ion in this trap is described by only trigonometric functions, whereas in the conventional linear radio-frequency (rf) traps it is by the Mathieu functions. Because of the simple classical motion in the rrf trap, it is expected that the quantum-mechanical analysis of the rrf traps is also simple compared to that of the linear rf traps. The analysis of Penning traps with a quadrupole rotating field is also possible in a way similar to the rrf traps. As a result, the Hamiltonian in these traps is the same as the two-dimensional harmonic oscillator, and energy levels and wave functions are derived as exact results. In these traps, it is found that one of the vibrational modes in the rotating frame can have negative energy levels, which means that the zero-quantum-number state (''ground'' state) is the highest energy state.

  16. The effective temperature of ions stored in a linear quadrupole ion trap mass spectrometer.

    PubMed

    Donald, William A; Khairallah, George N; O'Hair, Richard A J

    2013-06-01

    The extent of internal energy deposition into ions upon storage, radial ejection, and detection using a linear quadrupole ion trap mass spectrometer is investigated as a function of ion size (m/z 59 to 810) using seven ion-molecule thermometer reactions that have well characterized reaction entropies and enthalpies. The average effective temperatures of the reactants and products of the ion-molecule reactions, which were obtained from ion-molecule equilibrium measurements, range from 295 to 350 K and do not depend significantly on the number of trapped ions, m/z value, ion trap q z value, reaction enthalpy/entropy, or the number of vibrational degrees of freedom for the seven reactions investigated. The average of the effective temperature values obtained for all seven thermometer reactions is 318 ± 23 K, which indicates that linear quadrupole ion trap mass spectrometers can be used to study the structure(s) and reactivity of ions at near ambient temperature.

  17. Automated beam based alignment of the ALS quadrupoles

    SciTech Connect

    Portmann, G.; Robin, D.; Schachinger, L.

    1995-04-01

    Knowing the electrical offset of the storage ring beam position monitors (BPM) to an adjacent quadrupole magnetic center is important in order to correct the orbit in the ring. The authors describe a simple, fast and reliable technique to measure the BPM electrical centers relative to the quadrupole magnetic centers. By varying individual quadrupole magnets and observing the effects on the orbit they were able to measure the BPM offsets in half the horizontal and vertical BPMs (48) in the ALS. These offsets were measured to an accuracy of better than 50{mu}m. The technique is completely automated and takes less than 3 hours for the whole ring.

  18. Development of Superconducting Focusing Quadrupoles for Heavy Ion Drivers

    SciTech Connect

    Martovetsky, N; Manahan, R; Lietzke, A F

    2001-09-10

    Heavy Ion Fusion (HIF) is exploring a promising path to a practical inertial-confinement fusion reactor. The associated heavy ion driver will require a large number of focusing quadrupole magnets. A concept for a superconducting quadrupole array, using many simple racetrack coils, was developed at LLNL. Two, single-bore quadrupole prototypes of the same design, with distinctly different conductor, were designed, built, and tested. Both prototypes reached their short sample currents with little or no training. Magnet design, and test results, are presented and discussed.

  19. Electronic structure and normal vibrations of the 1-ethyl-3-methylimidazolium ethyl sulfate ion pair.

    PubMed

    Dhumal, Nilesh R; Kim, Hyung J; Kiefer, Johannes

    2011-04-21

    Electronic and structural properties of the ion pair 1-ethyl-3-methylimidazolium ethyl sulfate are studied using density functional methods. Three locally stable conformers of the ion pair complex are considered to analyze molecular interactions between its cation and anion. Manifestations of these interactions in the vibrational spectra are discussed and compared with experimental IR and Raman spectroscopy data. NBO analysis and difference electron density coupled with molecular electron density topography are used to interpret the frequency shifts of the normal vibrations of the ion pair, compared to the free anion and cation. Excitation energies of low-lying singlet excited states of the conformers are also studied. The density functional theory results are found to be in a reasonable agreement with experimental UV/vis absorption spectra.

  20. PRINCIPLE OF SKEW QUADRUPOLE MODULATION TO MEASURE BETATRON COUPLING.

    SciTech Connect

    LUO.Y.PILAT,F.ROSER,T.ET AL.

    2004-07-05

    The measurement of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of different skew quadrupole families the two eigentunes are precisely measured with the phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation directions are determined. The residual linear coupling could be corrected according to the measurement. An analytical solution for skew quadrupole modulation based on Hamiltonian perturbation approximation is given, and simulation code using smooth accelerator model is also developed. Some issues concerning the practical applications of this technique are discussed.

  1. Thermal Analysis of the ILC Superconductin Quadrupole

    SciTech Connect

    Ross, Ian; /Rose-Hulman Inst., Terre Haute /SLAC

    2006-09-13

    Critical to a particle accelerator's functioning, superconducting magnets serve to focus and aim the particle beam. The Stanford Linear Accelerator Center (SLAC) has received a prototype superconducting quadrupole designed and built by the Centro de Investigaciones Energ{acute e}ticas, Medioambientales y Tecnol{acute o}gicas (CIEMAT) to be evaluated for the International Linear Collider (ILC) project. To ensure proper functioning of the magnet, the device must be maintained at cryogenic temperatures by use of a cooling system containing liquid nitrogen and liquid helium. The cool down period of a low temperature cryostat is critical to the success of an experiment, especially a prototype setup such as this one. The magnet and the dewar each contain unique heat leaks and material properties. These differences can lead to tremendous thermal stresses. The system was analyzed mathematically, leading to ideal liquid helium and liquid nitrogen flow rates during the magnet's cool-down to 4.2 K, along with a reasonable estimate of how long this cool-down will take. With a flow rate of ten gaseous liters of liquid nitrogen per minute, the nitrogen shield will take approximately five hours to cool down to 77 K. With a gaseous helium flow rate of sixty liters per minute, the magnet will take at least nineteen hours to cool down to a temperature of 4.2 K.

  2. Quadrupole resonance spectroscopic study of narcotic materials

    NASA Astrophysics Data System (ADS)

    Rayner, Timothy J.; West, Rebecca; Garroway, Allen N.; Lyndquist, R.; Yesinowski, James P.

    1997-02-01

    Bulk narcotic detection systems based upon Quadrupole Resonance Analysis (QRA) technology have a major advantage over imaging technologies, in that QRA is chemical-specific and consequently has a lower rate of false alarms. QRA is a magnetic resonance technology which occurs as a result of the inherent molecular properties of the atomic nuclei in crystalline and amorphous solids. The QRA response is characterized by 1) the precessional frequency of the nucleus, and 2) the nature of the electric field gradient experienced by the nucleus,due to its molecular environment. Another important detection parameter is linewidth, resonant quality. All of these parameters depend on sample purity and manufacturing process. Quantum Magnetics recently carried out a study on the QRA signatures of various narcotic materials with the support of the US Army, US Customs, and the Office of National Drug Control Policy. The aim of the study was to fully characterize the variation in QRA spectroscopic parameters of different samples of cocaine base and cocaine hydrochloride. The results from this study ar discussed here.

  3. Adjustable rare earth quadrupole drift tube magnets

    SciTech Connect

    Feinberg, B.; Tanabe, J.; Halbach, K.; Koehler, G.; Green, M.I.

    1987-03-01

    A prototype permanent-magnet drift tube quadrupole with adjustable field strength has been constructed and tested. The magnet uses iron pole pieces to provide the required field shape along with rare earth permanent-magnet material (samarium cobalt) to energize the magnet. A unique feature of the configuration is the adjustability of the field, accomplished by rotating the outer rings consisting of permanent magnets and iron. In contrast with a previous prototype magnet, this new design uses ball bearings in place of slide bearings to eliminate potential failures. The rotation is now achieved with a bevel gear mechanism. The prototype design also incorporates a new drift tube shell vacuum seal to allow easy disassembly. Tests were made of the magnetic properties and the mechanical performance of this magnet. Field errors are extremely small, and the magnet passed an accelerated ten year lifetime test. It is planned to use this type of magnet to replace 24 of the SuperHILAC prestripper drift tubes.

  4. Autonomously Calibrating a Quadrupole Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Lee, Seungwon; Bornstein, Benjamin J.

    2009-01-01

    A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.

  5. Dynamics of a charged drop in a quadrupole electric field

    NASA Astrophysics Data System (ADS)

    Das, Sudip; Mayya, Y. S.; Thaokar, Rochish

    2015-07-01

    Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field-based technologies for emulsification of water in oil.

  6. Control System Damps Vibrations

    NASA Technical Reports Server (NTRS)

    Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.

    1983-01-01

    New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.

  7. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator

    SciTech Connect

    Peng, Shixiang Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Zhang, Ailing; Chen, Jia'er

    2014-02-15

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  8. Commissioning of helium injector for coupled radio frequency quadrupole and separated function radio frequency quadrupole accelerator.

    PubMed

    Peng, Shixiang; Chen, Jia; Ren, Haitao; Zhao, Jie; Xu, Yuan; Zhang, Tao; Zhang, Ailing; Xia, Wenlong; Gao, Shuli; Wang, Zhi; Luo, Yuting; Guo, Zhiyu; Chen, Jia'er

    2014-02-01

    A project to study a new type of acceleration structure has been launched at Peking University, in which a traditional radio frequency quadrupole (RFQ) and a separated function radio frequency quadrupole are coupled in one cavity to accelerate the He+ beam. A helium injector for this project is developed. The injector consists of a 2.45 GHz permanent magnet electron cyclotron resonance ion source and a 1.16 m long low energy beam transport (LEBT). The commissioning of this injector was carried out and an onsite test was held in June 2013. A 14 mA He+ beam with the energy of 30 keV has been delivered to the end of the LEBT, where a diaphragm with the diameter of 7 mm is located. The position of the diaphragm corresponds to the entrance of the RFQ electrodes. The beam emittance and fraction were measured after the 7 mm diaphragm. Its rms emittance is about 0.14 π mm mrad and the fraction of He+ is about 99%.

  9. Nuclear Schiff moment and soft vibrational modes

    SciTech Connect

    Zelevinsky, Vladimir; Volya, Alexander; Auerbach, Naftali

    2008-07-15

    The atomic electric dipole moment (EDM) currently searched by a number of experimental groups requires that both parity and time-reversal invariance be violated. According to current theoretical understanding, the EDM is induced by the nuclear Schiff moment. The enhancement of the Schiff moment by the combination of static quadrupole and octupole deformation was predicted earlier. Here we study a further idea of the possible enhancement in the absence of static deformation but in a nuclear system with soft collective vibrations of two types. Both analytical approximation and numerical solution of the simplified problem confirm the presence of the enhancement. We discuss related aspects of nuclear structure which should be studied beyond mean-field and random phase approximations.

  10. Hermetically sealed vibration damper

    NASA Technical Reports Server (NTRS)

    Wheatley, D. G.

    1969-01-01

    Simple fluidic vibration damper for installation at each pivotal mounting between gimbals isolates inertial measuring units from external vibration and other disruptive forces. Installation between each of the three gimbal axes can dampen vibration and shock in any direction while permitting free rotation of the gimbals.

  11. Vibration ride comfort criteria

    NASA Technical Reports Server (NTRS)

    Dempsey, T. K.; Leatherwood, J. D.

    1976-01-01

    Results are presented for an experimental study directed to derive equal vibration discomfort curves, to determine the influence of vibration masking in order to account for the total discomfort of any random vibration, and to develop a scale of total vibration discomfort in the case of human response to whole-body vertical vibration. Discomfort is referred to as a subjective discomfort associated with the acceleration level of a particular frequency band. It is shown that passenger discomfort to whole-body vibration increases linearly with acceleration level for each frequency. Empirical data provide a mechanism for determining the degree of masking (or summation) of the discomfort of multiple frequency vibration. A scale for the prediction of passenger discomfort is developed.

  12. Anti-vibration gloves?

    PubMed

    Hewitt, Sue; Dong, Ren G; Welcome, Daniel E; McDowell, Thomas W

    2015-03-01

    For exposure to hand-transmitted vibration (HTV), personal protective equipment is sold in the form of anti-vibration (AV) gloves, but it remains unclear how much these gloves actually reduce vibration exposure or prevent the development of hand-arm vibration syndrome in the workplace. This commentary describes some of the issues that surround the classification of AV gloves, the assessment of their effectiveness and their applicability in the workplace. The available information shows that AV gloves are unreliable as devices for controlling HTV exposures. Other means of vibration control, such as using alternative production techniques, low-vibration machinery, routine preventative maintenance regimes, and controlling exposure durations are far more likely to deliver effective vibration reductions and should be implemented. Furthermore, AV gloves may introduce some adverse effects such as increasing grip force and reducing manual dexterity. Therefore, one should balance the benefits of AV gloves and their potential adverse effects if their use is considered.

  13. Higher order parametric excitation modes for spaceborne quadrupole mass spectrometers

    SciTech Connect

    Gershman, D. J.; Block, B. P.; Rubin, M.; Zurbuchen, T. H.; Benna, M.; Mahaffy, P. R.

    2011-12-15

    This paper describes a technique to significantly improve upon the mass peak shape and mass resolution of spaceborne quadrupole mass spectrometers (QMSs) through higher order auxiliary excitation of the quadrupole field. Using a novel multiresonant tank circuit, additional frequency components can be used to drive modulating voltages on the quadrupole rods in a practical manner, suitable for both improved commercial applications and spaceflight instruments. Auxiliary excitation at frequencies near twice that of the fundamental quadrupole RF frequency provides the advantages of previously studied parametric excitation techniques, but with the added benefit of increased sensed excitation amplitude dynamic range and the ability to operate voltage scan lines through the center of upper stability islands. Using a field programmable gate array, the amplitudes and frequencies of all QMS signals are digitally generated and managed, providing a robust and stable voltage control system. These techniques are experimentally verified through an interface with a commercial Pfeiffer QMG422 quadrupole rod system. When operating through the center of a stability island formed from higher order auxiliary excitation, approximately 50% and 400% improvements in 1% mass resolution and peak stability were measured, respectively, when compared with traditional QMS operation. Although tested with a circular rod system, the presented techniques have the potential to improve the performance of both circular and hyperbolic rod geometry QMS sensors.

  14. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    This research developed theories and conducted numerical investigations of electrostatic flute modes in a plasma confined in a magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low-frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. The frequency is predicted to be inversely proportional to the wave number. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion bounce frequencies in a plasma confined to a magnetic quadrupole. Chapter VIII presents a summary of the research described.

  15. Theoretical investigation of flute modes in a magnetic quadrupole

    SciTech Connect

    Wu, H.S.

    1988-01-01

    The objective of this research is to develop theories and conduct numerical investigations of electrostatic flute modes in a plasma confined in magnetic quadrupole. Chapter I presents the discussion of relevant background. Chapter II contains a brief discussion of the basic flute-mode operator L{sub 0} for intermediate- and low frequency regimes. Chapter III develops a simple theory for a flute mode with frequency between the electron and ion bounce frequencies in the uniform density and temperature regions of a magnetic quadrupole. Chapter IV describes the kinetic approach. Chapter V contains the derivation of an eigenvalue equation for electrostatic waves with frequencies below the ion frequency in the private flux region of a magnetic quadrupole. Chapter VI develops a theory for electrostatic waves with frequency below the ion bounce frequency in the shared flux region of a magnetic quadrupole. Chapter VII contains the derivation of a dispersion equation for flute modes with frequencies between the electron and ion ounce frequencies in a plasma confined to a magnetic quadrupole. Two intermediate-frequency modes are predicted.

  16. OPERATIONAL MEASUREMENT OF COUPLING BY SKEW QUADRUPOLE MODULATION.

    SciTech Connect

    LUO.Y.CAMERON,P.LEE,R.ET AL.

    2004-07-05

    The measurement and correction of the residual betatron coupling via skew quadrupole modulation is a new diagnostics technique that has been developed and tested at the Relativistic Heavy Ion Collider (RHIC) as a very promising method for the linear decoupling on the ramp. By modulating the strengths of the skew quadrupole families the two eigentune modulations are precisely measured with a high resolution phase lock loop system. The projections of the residual coupling coefficient onto the skew quadrupole coupling modulation direction are determined. The residual linear coupling could be corrected according the measurement. We report the results from the dedicated beam studies carried on at RHIC injection, store and on the ramp. A capability of measuring coupling on the ramp opens possibility of continuous coupling corrections during acceleration.

  17. Space charge induced nonlinear effects in quadrupole ion traps.

    PubMed

    Guo, Dan; Wang, Yuzhuo; Xiong, Xingchuang; Zhang, Hua; Zhang, Xiaohua; Yuan, Tao; Fang, Xiang; Xu, Wei

    2014-03-01

    A theoretical method was proposed in this work to study space charge effects in quadrupole ion traps, including ion trapping, ion motion frequency shift, and nonlinear effects on ion trajectories. The spatial distributions of ion clouds within quadrupole ion traps were first modeled for both 3D and linear ion traps. It is found that the electric field generated by space charge can be expressed as a summation of even-order fields, such as quadrupole field, octopole field, etc. Ion trajectories were then solved using the harmonic balance method. Similar to high-order field effects, space charge will result in an "ocean wave" shape nonlinear resonance curve for an ion under a dipolar excitation. However, the nonlinear resonance curve will be totally shifted to lower frequencies and bend towards ion secular frequency as ion motion amplitude increases, which is just the opposite effect of any even-order field. Based on theoretical derivations, methods to reduce space charge effects were proposed.

  18. Study of a micro chamber quadrupole mass spectrometer

    SciTech Connect

    Wang Jinchan; Zhang Xiaobing; Mao Fuming; Xiao Mei; Cui Yunkang; Engelsen, Daniel den; Lei Wei

    2008-03-15

    The design of a micro chamber quadrupole mass spectrometer (MCQMS) having a small total volume of only 20 cm{sup 3}, including Faraday cup ion detector and ion source, is described. This MCQMS can resist a vacuum baking temperature of 400-500 deg. C. The quadrupole elements with a hyperbolic surface are made of a ceramic material and coated with a thin metal layer. The quadrupole mass filter has a field radius of 3 mm and a length of 100 mm. Prototypes of this new MCQMS can detect a minimum partial pressure of 10{sup -8} Pa, have a peak width of {delta}M=1 at 10% peak height from mass number 1 to 60, and show an excellent long-term stability. The new MCQMS is intended to be used in residual gas analyses of electron devices during a mutual pumping and baking process.

  19. Mechanical design of a large bore quadrupole triplet magnet

    SciTech Connect

    Abbott, S.; Caylor, R.; Fong, E.; Tanabe, J.

    1987-03-01

    The mechanical design and construction of a 1 meter bore, low gradient quadrupole triplet is described. The magnet will be used for focussing a proton beam in accelerator studies of neutral particle at the Los Alamos National Laboratory. A significant feature of this magnet design is the precision location of the coil conductors within the steel yoke tube. Each of the quadrupole coils have been fabricated from water cooled aluminum conductor, wound in a cosine 2-theta geometry. The conductor bundles have been wound to a positional accuracy within +-0.050 cm which was required to reduce the harmonic content to less than 0.04% of the quadrupole field. Important aspects of the design, construction and assembly are described.

  20. Variable-field permanent magnet quadrupole for the SSC

    SciTech Connect

    Barlow, D.B.; Kraus, R.H. Jr.; Martinez, R.P.; Meyer, R.E.

    1993-10-01

    A set of compact variable-field permanent-magnet quadrupoles have been designed, fabricated, and tested for use In the SSC linac matching section. The quadrupoles have 24 mm-diameter apertures and 40 mm-long poles. The hybrid (permanent-magnet and iron) design, uses a fixed core of magnet material (NdFeB) and iron (C-1006) surrounded by a rotating ring of the same magnet material and iron. The quadrupole gradient-length product can be smoothly varied from a minimum of 0.7 T up to a maximum, of 4.3 T by a 90{degrees} rotation of the outer ring of iron and magnet material.

  1. Cryogen free superconducting splittable quadrupole magnet for linear accelerators

    SciTech Connect

    Kashikhin, V.S.; Andreev, N.; Kerby, J.; Orlov, Y.; Solyak, N.; Tartaglia, M.; Velev, G.; /Fermilab

    2011-09-01

    A new superconducting quadrupole magnet for linear accelerators was fabricated at Fermilab. The magnet is designed to work inside a cryomodule in the space between SCRF cavities. SCRF cavities must be installed inside a very clean room adding issues to the magnet design, and fabrication. The designed magnet has a splittable along the vertical plane configuration and could be installed outside of the clean room around the beam pipe previously connected to neighboring cavities. For more convenient assembly and replacement a 'superferric' magnet configuration with four racetrack type coils was chosen. The magnet does not have a helium vessel and is conductively cooled from the cryomodule LHe supply pipe and a helium gas return pipe. The quadrupole generates 36 T integrated magnetic field gradient, has 600 mm effective length, and the peak gradient is 54 T/m. In this paper the quadrupole magnetic, mechanical, and thermal designs are presented, along with the magnet fabrication overview and first test results.

  2. High and ulta-high gradient quadrupole magnets

    SciTech Connect

    Brunk, W.O.; Walz, D.R.

    1985-05-01

    Small bore conventional dc quadrupoles with apertures from 1 to 2.578cm were designed and prototypes built and measured. New fabrication techniques including the use of wire electric discharge milling (EDM) to economically generate the pole tip contours and aperture tolerances are described. Magnetic measurement data from a prototype of a 1cm aperture quadrupole with possible use in future e/sup +//e/sup -/ super colliders are presented. At a current of 400A, the lens achieved a gradient of 2.475 T/cm, and had an efficiency of 76.6%.

  3. Conceptual design of a quadrupole magnet for eRHIC

    SciTech Connect

    Witte, H.; Berg, J. S.

    2015-05-03

    eRHIC is a proposed upgrade to the existing Relativistic Heavy Ion Collider (RHIC) hadron facility at Brookhaven National Laboratory, which would allow collisions of up to 21 GeV polarized electrons with a variety of species from the existing RHIC accelerator. eRHIC employs an Energy Recovery Linac (ERL) and an FFAG lattice for the arcs. The arcs require open-midplane quadrupole magnets of up to 30 T/m gradient of good field quality. In this paper we explore initial quadrupole magnet design concepts based on permanent magnetic material which allow to modify the gradient during operation.

  4. Quadrupole Collective Inertia in Nuclear Fission: Cranking Approximation

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Dobaczewski, J.; Nazarewicz, Witold

    2011-01-01

    Collective mass tensor derived from the cranking approximation to the adiabatic time-dependent Hartree-Fock-Bogoliubov (ATDHFB) approach is compared with that obtained in the Gaussian Overlap Approximation (GOA) to the generator coordinate method. Illustrative calculations are carried out for one-dimensional quadrupole fission pathways in ^{256}Fm. It is shown that the collective mass exhibits strong variations with the quadrupole collective coordinate. These variations are related to the changes in the intrinsic shell structure. The differences between collective inertia obtained in cranking and perturbative cranking approximations to ATDHFB, and within GOA, are discussed.

  5. Global investigation of the fine structure of the isoscalar giant quadrupole resonance

    SciTech Connect

    Shevchenko, A.; Burda, O.; Kalmykov, Y.; Neumann-Cosel, P. von; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Carter, J.; Sideras-Haddad, E.; Cooper, G. R. J.; Fearick, R. W.; Foertsch, S. V.; Lawrie, J. J.; Neveling, R.; Smit, F. D.; Fujita, H.; Fujita, Y.; Lacroix, D.

    2009-04-15

    Fine structure in the region of the isoscalar giant quadrupole resonance (ISGQR) in {sup 58}Ni, {sup 89}Y, {sup 90}Zr, {sup 120}Sn, {sup 166}Er, and {sup 208}Pb has been observed in high-energy-resolution ({delta}E{sub 1/2}{approx_equal}35-50 keV) inelastic proton scattering measurements at E{sub 0}=200 MeV at iThemba LABS. Calculations of the corresponding quadrupole excitation strength functions performed within models based on the random-phase approximation (RPA) reveal similar fine structure when the mixing of one-particle one-hole states with two-particle two-hole states is taken into account. A detailed comparison of the experimental data is made with results from the quasiparticle-phonon model (QPM) and the extended time-dependent Hartree-Fock (ETDHF) method. For {sup 208}Pb, additional theoretical results from second RPA and the extended theory of finite Fermi systems (ETFFS) are discussed. A continuous wavelet analysis of the experimental and the calculated spectra is used to extract dominant scales characterizing the fine structure. Although the calculations agree with qualitative features of these scales, considerable differences are found between the model and experimental results and amongst different models. Within the framework of the QPM and ETDHF calculations it is possible to decompose the model spaces into subspaces approximately corresponding to different damping mechanisms. It is demonstrated that characteristic scales mainly arise from the collective coupling of the ISGQR to low-energy surface vibrations.

  6. Vibrating fuel grapple. [LMFBR

    DOEpatents

    Chertock, A.J.; Fox, J.N.; Weissinger, R.B.

    A reactor refueling method is described which utilizes a vibrating fuel grapple for removing spent fuel assemblies from a reactor core. It incorporates a pneumatic vibrator in the grapple head which allows additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  7. Vibrating fuel grapple

    DOEpatents

    Chertock, deceased, Alan J.; Fox, Jack N.; Weissinger, Robert B.

    1982-01-01

    A reactor refueling method utilizing a vibrating fuel grapple for removing spent fuel assemblies from a reactor core which incorporates a pneumatic vibrator in the grapple head, enabling additional withdrawal capability without exceeding the allowable axial force limit. The only moving part in the vibrator is a steel ball, pneumatically driven by a gas, such as argon, around a track, with centrifugal force created by the ball being transmitted through the grapple to the assembly handling socket.

  8. Simple loss scaling laws for quadrupoles and higher-order multipoles used in antihydrogen traps

    SciTech Connect

    Fajans, J.; Bertsche, W.; Burke, K.; Deutsch, A.; Chapman, S. F.; Gomberoff, K.; Wurtele, J. S.; Werf, D. P. van der

    2006-10-18

    Simple scaling laws strongly suggest that for antihydrogen relevant parameters, quadrupole magnetic fields will transport particles into, or near to, the trap walls. Consequently quadrupoles are a poor choice for antihydrogen trapping. Higher order multipoles lead to much less transport.

  9. Elucidating the Structure of Chiral Molecules by using Amplified Vibrational Circular Dichroism: From Theory to Experimental Realization.

    PubMed

    Domingos, Sérgio R; Hartl, František; Buma, Wybren Jan; Woutersen, Sander

    2015-11-16

    Recent experimental observations of enhanced vibrational circular dichroism (VCD) in molecular systems with low-lying electronically excited states suggest interesting new applications of VCD spectroscopy. The theory describing VCD enhancement through vibronic coupling schemes was derived by Nafie in 1983, but only recently experimental evidence of VCD amplification has demonstrated the extent to which this effect can be exploited as a structure elucidation tool to probe local structure. In this Concept paper, we give an overview of the physics behind vibrational circular dichroism, in particular the equations governing the VCD amplification effect, and review the latest experimental developments with a prospective view on the application of amplified VCD to locally probe biomolecular structure.

  10. Excited vibrational level rotational constants for SiC2: A sensitive molecular diagnostic for astrophysical conditions

    NASA Astrophysics Data System (ADS)

    Fortenberry, Ryan C.; Lee, Timothy J.; Müller, Holger S. P.

    2015-11-01

    Silacyclopropynylidene, SiC2, is a known and highly abundant circumstellar molecule. Its spectrum has been established as a major component of lines observed toward the carbon-rich star IRC +10216 (CW Leonis). It has been detected in its low-lying v3 = 1 and 2 vibrational states as well as in various isotopic compositions. Increasing sensitivity and spatial resolution will enable many more emission or absorption lines to be detected. In order to detect new molecular species, unassigned lines of known species must be identified. This work uses established ab initio quartic force fields to produce data necessary for this classification of lines related to SiC2. Agreement between the theoretical vibrational frequencies and known rotational and spectroscopic constants is quite good, as good as 5 cm-1 and 3 MHz, respectively in some cases. In addition, experimentally unknown vibrational frequencies and rotational constants are provided for the first overtones and combination bands in addition to 3ν3, the second overtone of the low-lying antisymmetric stretch/carbide rotation mode. Frequencies of v3 = 3 low-J rotational transitions of the main isotopic species are also estimated from published data for v3 ≤ 2. Further, we determine rotational and centrifugal distortion parameters for which in most cases vibrational effects due to the ν3 mode were reduced to first, and in several cases also to second order. These values may approximate equilibrium values better than the ground state values. The data produced herein will aid in the experimental and observational characterization of this known astromolecule in order to identify some of the unassigned lines for a known entity.

  11. LARP Long Quadrupole: A "Long" Step Toward an LHC

    ScienceCinema

    Giorgio Ambrosio

    2016-07-12

    The beginning of the development of Nb3Sn magnets for particle accelerators goes back to the 1960’s. But only very recently has this development begun to face the challenges of fabricating Nb3Sn magnets which can meet the requirements of modern particle accelerators. LARP (the LHC Accelerator Research Program) is leading this effort focusing on long models of the Interaction Region quadrupoles for a possible luminosity upgrade of the Large Hadron Collider. A major milestone in this development is to test, by the end of 2009, 4m-long quadrupole models, which will be the first Nb3Sn accelerator-type magnets approaching the length of real accelerator magnets. The Long Quadrupoles (LQ) are “Proof-of-Principle” magnets which are to demonstrate that Nb3Sn technology is sufficiently mature for use in high energy particle accelerators. Their design is based on the LARP Technological Quadrupole (TQ) models, under development at FNAL and LBNL, which have design gradients higher than 200 T/m and an aperture of 90 mm. Several challenges must be addressed for the successful fabrication of long Nb3Sn coils and magnets. These challenges and the solutions adopted will be presented together with the main features of the LQ magnets. Several R&D lines are participating to this effort and their contributions will be also presented.

  12. Measurement of an atomic quadrupole moment using dynamic decoupling

    NASA Astrophysics Data System (ADS)

    Akerman, Nitzan; Shaniv, Ravid; Ozeri, Roee

    2016-05-01

    Some of the best clocks today are ion-based optical clocks. These clocks are referenced to a narrow optical transition in a trapped ion. An example for such a narrow transition is the electric quadrupole E 2 transition between states with identical parity. An important systematic shift of such a transition is the quadrupole shift resulting from the electric field gradient inherent to the ion trap. We present a new dynamic decoupling method that rejects magnetic field noise while measuring the small quadrupole shift of the optical clock transition. Using our sequence we measured the quadrupole moment of the 4D5/2 level in a trapped 88 Sr+ ion to be 2 .973-0 . 033 + 0 . 026 ea02 , where e is the electron charge and a0 is the Bohr radius. Our measurement improves the uncertainty of this value by an order of magnitude and thus helps mitigate an important systematic uncertainty in 88 Sr+ based optical atomic clocks and verifies complicated many-body quantum calculations.

  13. The low-energy quadrupole mode of nuclei

    NASA Astrophysics Data System (ADS)

    Frauendorf, S.

    2015-08-01

    The phenomenological classification of collective quadrupole excitations by means of the Bohr-Hamiltonian (BH) is reviewed with focus on signatures for triaxility. The variants of the microscopic BH derived by means of the Adiabatic Time-Dependent Mean Field theory from the Pairing-plus-quadrupole-quadrupole interaction, the Shell Correction Method, the Skyrme Energy Density Functional, the Relativistic Mean Field Theory and the Gogny interaction are discussed and applications to concrete nuclides reviewed. The Generator Coordinate Method for the five-dimensional quadrupole deformation space and first applications to triaxial nuclei are presented. The phenomenological classification in the framework of the Interacting Boson Model is discussed with a critical view on the boson number counting rule. The recent success in calculating the model parameters by mapping the mean field deformation energy surface on the bosonic one is discussed and the applications listed. A critical assessment of the models is given with focus on the limitations due to the adiabatic approximation. The Tidal Wave approach and the Triaxial Projected Shell Model are presented as practical approaches to calculate spectral properties outside the adiabatic region.

  14. Magnetic field data on Fermilab Energy-Saver quadrupoles

    SciTech Connect

    Schmidt, E.E.; Brown, B.C.; Cooper, W.E.; Fisk, H.E.; Gross, D.A.; Hanft, R.; Ohnuma, S.; Turkot, F.T.

    1983-03-01

    The Fermilab Energy Saver/Doubler (Tevatron) accelerator contains 216 superconducting quadrupole magnets. Before installation in the Tevatron ring, these magnets plus an additional number of spares were extensively tested at the Fermilab Magnet Test Facility (MTF). Details on the results of the tests are presented here.

  15. Large energy-spread beam diagnostics through quadrupole scans

    SciTech Connect

    Frederico, Joel; Adli, Erik; Hogan, Mark; Raubenheimer, Tor

    2012-12-21

    The Facility for Advanced Accelerator and Experimental Tests (FACET) is a new user facility at the SLAC National Accelerator Laboratory, servicing next-generation accelerator experiments. The 1.5% RMS energy spread of the FACET beam causes large chromatic aberrations in optics. These aberrations necessitate updated quadrupole scan fits to remain accurate.

  16. Hybrid quadrupole excitons and polaritons in cuprous oxide

    NASA Astrophysics Data System (ADS)

    Roslyak, Oleksiy

    In this thesis I consider novel type of materials such as hybrid organic/inorganic heteoro-structures and polystyrene micro-spheres/inorganic composites. The organic/inorganic compound is presented by DCM2:CA:PS/cuprous oxide material. Using "solid state solvent" mechanism I propose to bring the Frenkel exciton (FE) of the DCM2 into resonance with 1S quadrupole Wanier-Mott exciton (WE) in cuprous oxide. This two types of the excitons form new type of quadrupole-dipole hybrid exciton. This hybrid is characterized by long lifetime and big oscillator strength inherited from the organic FE. In the part I of the thesis I investigate the enhancement of the quadrupole properties generic to cuprous oxide exciton by means of such resonant hybridization. I consider enhancement of photo-thermal bi-stability and second harmonic generation. The second part is devoted to the problems of light-matter interaction in cuprous oxide crystals such as weak interaction with LA phonons and whispering gallery modes (WGM) in adjacent layer of polystyrene micro-spheres. While the first effect is likely to impeded BEC of the polaritons, the second mechanism provides necessary temporal coherence. It is possible by trapping the light part of the polariton into resonant WGM through big gradient of the evanescent tail which provides big lifetime of such evanescent polariton. Due to big gradient of the evanescent field it couples "naturally" to the quadrupole WE in cuprous oxide.

  17. Driving a quadrupole mass spectrometer via an isolating stage

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Aalami, Dean (Inventor); Darrach, Murray (Inventor); Orient, Otto (Inventor)

    2002-01-01

    Driving a quadrupole mass spectrometer includes obtaining an air core transformer with a primary and a secondary, matching the secondary to the mass spectrometer, and driving the primary based on first and second voltage levels. Driving of the primary is via an isolating stage that minimizes low level drive signal coupling.

  18. Force limited vibration testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry D.

    1991-01-01

    A new method of conducting lab vibration tests of spacecraft equipment was developed to more closely simulate the vibration environment experienced when the spacecraft is launched on a rocket. The improved tests are tailored to identify equipment design and workmanship problems without inducing artificial failures that would not have occurred at launch. These new, less destructive types of vibration tests are essential to JPL's protoflight test approach in which lab testing is conducted using the flight equipment, often one of a kind, to save time and money. In conventional vibration tests, only the input vibratory motion is specified; the feedback, or reaction force, between the test item and the vibration machine is ignored. Most test failures occur when the test item goes into resonance, and the reaction force becomes very large. It has long been recognized that the large reaction force is a test artifact which does not occur with the lightweight, flexible mounting structures characteristic of spacecraft and space vehicles. In new vibration tests, both the motion and the force provided to the test item by the vibration machine are controlled, so that the vibration ride experienced by the test item is as in flight.

  19. Vibrational Schroedinger Cats

    NASA Technical Reports Server (NTRS)

    Kis, Z.; Janszky, J.; Vinogradov, An. V.; Kobayashi, T.

    1996-01-01

    The optical Schroedinger cat states are simple realizations of quantum states having nonclassical features. It is shown that vibrational analogues of such states can be realized in an experiment of double pulse excitation of vibrionic transitions. To track the evolution of the vibrational wave packet we derive a non-unitary time evolution operator so that calculations are made in a quasi Heisenberg picture.

  20. Multiple direction vibration fixture

    DOEpatents

    Cericola, Fred; Doggett, James W.; Ernest, Terry L.; Priddy, Tommy G.

    1991-01-01

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  1. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.

    1991-08-27

    An apparatus is discussed for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 {degrees} around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis.

  2. Multiple direction vibration fixture

    SciTech Connect

    Cericola, F.; Doggett, J.W.; Ernest, T.L.; Priddy, T.G.

    1990-03-21

    An apparatus for simulating a rocket launch environment on a test item undergoing centrifuge testing by subjecting the item simultaneously or separately to vibration along an axis of centripetal force and along an axis perpendicular to the centripetal force axis. The apparatus includes a shaker motor supported by centrifuge arms and a right angle fixture pivotally connected to one of the shaker motor mounts. When the shaker motor vibrates along the centripetal force axis, the vibrations are imparted to a first side of the right angle fixture. The vibrations are transmitted 90 degrees around the pivot and are directed to a second side of the right angle fixture which imparts vibrations perpendicular to the centripetal force axis. The test item is in contact with a third side of the right angle fixture and receives both centripetal-force-axis vibrations and perpendicular axis vibrations simultaneously. A test item can be attached to the third side near the flexible coupling or near the air bag to obtain vibrations along the centripetal force axis or transverse to the centripetal force axis. 1 fig.

  3. Conformational landscape and low lying excited states of imatinib.

    PubMed

    Vinţeler, Emil; Stan, Nicoleta-Florina; Luchian, Raluca; Căinap, Călin; Ramalho, João P Prates; Chiş, Vasile

    2015-04-01

    The conformational changes of imatinib (IMT) are crucial for understanding the ligand-receptor interaction and its mechanism of action [Agofonov et al. (2014) Nature Struct Mol Biol 21:848-853]. Therefore, here we investigated the free energy conformational landscape of the free IMT base, aiming to describe the three-dimensional structures and energetic stability of its conformers. Forty-five unique conformers, within an energy window of 4.8 kcal mol(-1) were identified by a conformational search in gas-phase, at the B3LYP/6-31G(d) theoretical level. Among these, the 20 most stable, as well as 4 conformers resulting from optimization of experimental structures found in the two known polymorphs of IMT and in the c-Abl complex were further refined using the 6-31+G(d,p) basis set and the polarizable continuum solvation model. The most stable conformers in gas-phase and water exhibit a V-shaped structure. The major difference between the most stable free conformers and the bioactive conformers consists in the relative orientation of the pyrimidine-pyridine groups responsible for hydrogen bonding interactions in the ATP-binding pocket. The ratio of mole fractions corresponding to the two known (α and β) polymorphic forms of IMT was estimated from the calculated thermochemical data, in quantitative agreement with the existing experimental data related to their solubility. The electronic absorption spectrum of this compound was investigated in water and explained based on the theoretical TD-DFT results, considering the Boltzmann population-averaged computed data at CAM-B3LYP/6-31+G(d,p) level of theory for the nine most stable conformers. PMID:25764326

  4. Scattering of low lying states in the black hole atmosphere

    NASA Astrophysics Data System (ADS)

    Giribet, Gaston

    2016-07-01

    We investigate finite α' effects in string theory on a black hole background. By explicitly computing tree-level scattering amplitudes, we confirm a duality between seemingly different states recently conjectured by Giveon, Itzhaki, and Kutasov. We verify that the relevant 3-point functions factorize in such a way that the duality between oscillator and winding states becomes manifest. This leads us to determine the precise normalization of the dual vertex operators, and confirms at the level of the interacting theory the identification of states suggested by the analysis of the spectrum. This result implies a duality between two seemingly distinct mechanisms driving the violation of the string winding number in the black hole atmosphere.

  5. Radiative Decays of Low-Lying Excited-State Hyperons

    SciTech Connect

    Simon Taylor

    2000-05-01

    The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a {bar K}N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small ({approx}1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p {yields} K{sup +} Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma{sup 0}(1385) relative to the Sigma{sup 0}(1385) {yields} Lambda pi{sup 0} channel was measured to be 0.021 {+-} 0.008{sub -0.007}{sup +0.004}, corresponding to a partial width of 640 {+-} 270{sub -220}{sup +130} keV.

  6. Variational upper bounds for low-lying states of lithium

    SciTech Connect

    Wang, L. M.; Qiao, H. X.; Yan, Z.-C.; Drake, G. W. F.

    2011-03-15

    We present improved calculations of variational energy eigenvalues for the 1s{sup 2}2s {sup 2}S, 1s{sup 2}3s {sup 2}S, and 1s{sup 2}2p {sup 2}P states of lithium using basis sets with up to 30 224 terms in Hylleraas coordinates. The nonrelativistic energies for infinite nuclear mass are -7.478 060 323 910 143 7(45) a.u. for 1s{sup 2}2s {sup 2}S, -7.354 098 421 444 316 4(32) a.u. for 1s{sup 2}3s {sup 2}S, and -7.410 156 532 651 6(5) a.u. for 1s{sup 2}2p {sup 2}P, which represent the most accurate variational upper bounds to date. An important advantage of the basis sets with multiple distance scales is their exceptional numerical stability.

  7. Extracting Low-Lying Lambda Resonances Using Correlation Matrix Techniques

    SciTech Connect

    Menadue, Benjamin J.; Kamleh, Waseem; Leinweber, Derek B.; Mahbub, M. S.

    2011-05-24

    The lowest-lying negative-parity state of the Lambda is investigated in (2+1)-flavour full-QCD on the PACS-CS configurations made available through the ILDG. We show that a variational analysis using multiple source and sink smearings can extract a state lying lower than that obtained by using a standard fixed smeared source and sink operator alone.

  8. Xanadu Is Old, Rugged And Low-lying

    NASA Astrophysics Data System (ADS)

    Wood, Charles; Kirk, R. L.; Stofan, E.; Stiles, B.; Zebker, H.; Ostro, S.; Radebaugh, J.; Lorenz, R. D.; Callahan, P.; Wall, S.

    2007-10-01

    Xanadu was the first surface feature discovered on Titan. It is anomalously bright in the IR, and is also radar bright with unusual physical properties. Xanadu is continent size ( 4000 km wide) with a sharp boundary to the west against the dark dunes of Shangri-La, and less distinct boundaries in other areas. Because of its size and reflectivity it had been proposed that Xanadu is an elevated continent. But it is not. A new topography-from-SAR technique shows that along the T13 Radar swath which completely transects Xanadu, the average topographic elevation is indistinguishable from that of the surrounding terrain. There are many mountains with peaks locally rising up to 1-2 km, but the average elevation of the T13 pass is 200 m +/- 300 m lower than the radius of Titan. The highest point is near the swath center. Photogeologic interpretation suggests that Xanadu slopes to the south; three major river systems begin in the north and flow southward. The lack of significant average elevation means that it is not necessary to create models to explain how Xanadu is dynamically supported. Its eroded-looking terrain, large number of possible eroded impact craters, dune encroachment on its western edge, and apparent detached patches of similar material near its margins all suggest that Xanadu is a relict terrain, currently being disaggregated. The only sign of current activity is the river channels. We speculate that Xanadu was originally a landform of higher elevation (2 km higher if the mountain tops are remnants of an original surface) that has been modified by erosion and/or isostatic adjustment. If the observed river systems have eroded and removed the putative higher terrain there may be significant sediment deposits in the central or southern parts of Xanadu, and/or this material may have been redistributed by winds.

  9. The low-lying electronic states of SiO

    NASA Astrophysics Data System (ADS)

    Bauschlicher, Charles W.

    2016-08-01

    The singlet states of SiO that correlate with ground state atoms have been studied. The computed spectroscopic constants are in good agreement with experiment. The lifetime of the E state has been calculated to be 10.9 ns; this is larger than the results of previous computations and is in excellent agreement with the experimental value of 10.5 ± 1.1 ns. The lifetime of the A state is about three times larger than found in experiment. We suggest that absorption from the X state to the (2)1 Π state is responsible for the unidentified lines in the experiment of Hormes et al.

  10. Low-lying levels in /sup 148/Pm

    SciTech Connect

    Norman, E.B.; Lesko, K.T.; Champagne, A.E.

    1988-02-01

    The /sup 149/Sm(d,/sup 3/He) reaction has been used to populate levels in /sup 148/Pm. Nineteen new excited states have been observed below 1 MeV excitation energy in /sup 148/Pm. The possible astrophysical implications of these results are discussed.

  11. Vibrational Spectroscopy of Biomembranes

    NASA Astrophysics Data System (ADS)

    Schultz, Zachary D.; Levin, Ira W.

    2011-07-01

    Vibrational spectroscopy, commonly associated with IR absorption and Raman scattering, has provided a powerful approach for investigating interactions between biomolecules that make up cellular membranes. Because the IR and Raman signals arise from the intrinsic properties of these molecules, vibrational spectroscopy probes the delicate interactions that regulate biomembranes with minimal perturbation. Numerous innovative measurements, including nonlinear optical processes and confined bilayer assemblies, have provided new insights into membrane behavior. In this review, we highlight the use of vibrational spectroscopy to study lipid-lipid interactions. We also examine recent work in which vibrational measurements have been used to investigate the incorporation of peptides and proteins into lipid bilayers, and we discuss the interactions of small molecules and drugs with membrane structures. Emerging techniques and measurements on intact cellular membranes provide a prospective on the future of vibrational spectroscopic studies of biomembranes.

  12. Vibration control in accelerators

    SciTech Connect

    Montag, C.

    2011-01-01

    In the vast majority of accelerator applications, ground vibration amplitudes are well below tolerable magnet jitter amplitudes. In these cases, it is necessary and sufficient to design a rigid magnet support structure that does not amplify ground vibration. Since accelerator beam lines are typically installed at an elevation of 1-2m above ground level, special care has to be taken in order to avoid designing a support structure that acts like an inverted pendulum with a low resonance frequency, resulting in untolerable lateral vibration amplitudes of the accelerator components when excited by either ambient ground motion or vibration sources within the accelerator itself, such as cooling water pumps or helium flow in superconducting magnets. In cases where ground motion amplitudes already exceed the required jiter tolerances, for instance in future linear colliders, passive vibration damping or active stabilization may be considered.

  13. The Fundamental Quadrupole Band of (14)N2: Line Positions from High-Resolution Stratospheric Solar Absorption Spectra

    NASA Technical Reports Server (NTRS)

    Rinsland, C. P.; Zander, R.; Goldman, A.; Murcray, F. J.; Murcray, D. G.; Grunson, M. R.; Farmer, C. B.

    1991-01-01

    The purpose of this note is to report accurate measurements of the positions of O- and S-branch lines of the (1-0) vibration-rotation quadrupole band of molecular nitrogen ((14)N2) and improved Dunham coefficients derived from a simultaneous least-squares analysis of these measurements and selected infrared and far infrared data taken from the literature. The new measurements have been derived from stratospheric solar occultation spectra recorded with Fourier transform spectrometer (FTS) instruments operated at unapodized spectral resolutions of 0.002 and 0.01 /cm. The motivation for the present investigation is the need for improved N2 line parameters for use in IR atmospheric remote sensing investigations. The S branch of the N2 (1-0) quadrupole band is ideal for calibrating the line-of-sight airmasses of atmospheric spectra since the strongest lines are well placed in an atmospheric window, their absorption is relatively insensitive to temperature and is moderately strong (typical line center depths of 10 to 50% in high-resolution ground-based solar spectra and in lower stratospheric solar occultation spectra), and the volume mixing ratio of nitrogen is constant in the atmosphere and well known. However, a recent investigation has'shown the need to improve the accuracies of the N2 fine positions, intensities, air-broadened half-widths, and their temperature dependences to fully exploit this calibration capability (1). The present investigation addresses the problem of improving the accuracy of the N2 line positions.

  14. Particle-vibration coupling effect on the β decay of magic nuclei.

    PubMed

    Niu, Y F; Niu, Z M; Colò, G; Vigezzi, E

    2015-04-10

    Nuclear β decay in magic nuclei is investigated, taking into account the coupling between particles and collective vibrations, on top of self-consistent random phase approximation calculations based on Skyrme density functionals. The low-lying Gamow-Teller strength is shifted downwards and at times becomes fragmented; as a consequence, the β-decay half-lives are reduced due to the increase of the phase space available for the decay. In some cases, this leads to a very good agreement between theoretical and experimental lifetimes: this happens, in particular, in the case of the Skyrme force SkM* that can also reproduce the line shape of the high-energy Gamow-Teller resonance as was previously shown.

  15. Particle-Vibration Coupling Effect on the β Decay of Magic Nuclei

    NASA Astrophysics Data System (ADS)

    Niu, Y. F.; Niu, Z. M.; Colò, G.; Vigezzi, E.

    2015-04-01

    Nuclear β decay in magic nuclei is investigated, taking into account the coupling between particles and collective vibrations, on top of self-consistent random phase approximation calculations based on Skyrme density functionals. The low-lying Gamow-Teller strength is shifted downwards and at times becomes fragmented; as a consequence, the β -decay half-lives are reduced due to the increase of the phase space available for the decay. In some cases, this leads to a very good agreement between theoretical and experimental lifetimes: this happens, in particular, in the case of the Skyrme force SkM* that can also reproduce the line shape of the high-energy Gamow-Teller resonance as was previously shown.

  16. Measurement reports for the cryogenically-cooled drift tube quadrupoles

    SciTech Connect

    1993-12-31

    This compilation contains quadrupole measurement reports for LANL type A and type E drift tube cryoquads. The cryoquad information gives s/n, vendor, field strength, phase, b3/b2, b4/b2, b5/b2, b6/b2, center wire location. The measurements for the harmonic measuring system gives time and date of measurements, magnet p/n, coil p/n, coil radii, coil turns, low and high gain, and temperature. Quadrupole information includes effective B` X L, and magnetic center. Bucked and unbucked calculations give signal in {mu}V{center_dot}sec, field in Tesla{center_dot}meter, B(n)/B(2), absolute and relative phase.

  17. Development and test of LARP technological quadrupole (TQC) magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; /Fermilab /LBL, Berkeley

    2006-08-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90-mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5K are presented, including magnet training, current ramp rate studies and magnet quench current . Results of magnetic measurements at helium temperature are also presented.

  18. Development and Test of LARP Technological Quadrupole (TQC) Magnet

    SciTech Connect

    Feher, S.; Bossert, R.C.; Ambrosio, G.; Andreev, N.; Barzi, E.; Carcagno, R.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.J.; Nobrega, F.; Novitski, I.; Pischalnikov, Yu.; Sylvester, C.; Tartaglia, M.; Turrioni, D.; Whitson, G.; Yamada, R.; Zlobin, A.V.; Caspi, S.; Dietderich, D.; Ferracin, P.; Hannaford, R.; Hafalia, A.R.; Sabbi, G.

    2007-06-01

    In support of the development of a large-aperture Nb{sub 3}Sn superconducting quadrupole for the Large Hadron Collider (LHC) luminosity upgrade, two-layer quadrupole models (TQC and TQS) with 90 mm aperture are being constructed at Fermilab and LBNL within the framework of the US LHC Accelerator Research Program (LARP). This paper describes the construction and test of model TQC01. ANSYS calculations of the structure are compared with measurements during construction. Fabrication experience is described and in-process measurements are reported. Test results at 4.5 K are presented, including magnet training, current ramp rate studies and magnet quench current. Results of magnetic measurements at helium temperature are also presented.

  19. Performance of An Adjustable Strength Permanent Magnet Quadrupole

    SciTech Connect

    Gottschalk, S.C.; DeHart, T.E.; Kangas, K.W.; Spencer, C.M.; Volk, J.T.; /Fermilab

    2006-03-01

    An adjustable strength permanent magnet quadrupole suitable for use in Next Linear Collider has been built and tested. The pole length is 42cm, aperture diameter 13mm, peak pole tip strength 1.03Tesla and peak integrated gradient * length (GL) is 68.7 Tesla. This paper describes measurements of strength, magnetic CL and field quality made using an air bearing rotating coil system. The magnetic CL stability during -20% strength adjustment proposed for beam based alignment was < 0.2 microns. Strength hysteresis was negligible. Thermal expansion of quadrupole and measurement parts caused a repeatable and easily compensated change in the vertical magnetic CL. Calibration procedures as well as CL measurements made over a wider tuning range of 100% to 20% in strength useful for a wide range of applications will be described. The impact of eddy currents in the steel poles on the magnetic field during strength adjustments will be reported.

  20. Nuclear quadrupole moment of the {sup 99}Tc ground state

    SciTech Connect

    Errico, Leonardo; Darriba, German; Renteria, Mario; Tang Zhengning; Emmerich, Heike; Cottenier, Stefaan

    2008-05-15

    By combining first-principles calculations and existing nuclear magnetic resonance (NMR) experiments, we determine the quadrupole moment of the 9/2{sup +} ground state of {sup 99}Tc to be (-)0.14(3)b. This confirms the value of -0.129(20)b, which is currently believed to be the most reliable experimental determination, and disagrees with two earlier experimental values. We supply ab initio calculated electric-field gradients for Tc in YTc{sub 2} and ZrTc{sub 2}. If this calculated information would be combined with yet to be performed Tc-NMR experiments in these compounds, the error bar on the {sup 99}Tc ground state quadrupole moment could be further reduced.

  1. Superferric quadrupoles for FAIR Super FRS energy buncher

    NASA Astrophysics Data System (ADS)

    Pal, G.; Bhunia, U.; Akhter, J.; Nandi, C.; Datta, A.; Sarma, P. R.; Roy, S.; Bajirao, S.; Bhattacharyya, S.; Bhattacharyya, T. K.; Dey, M. K.; Mallik, C.; Bhandari, R. K.

    2012-12-01

    The quadrupole magnets for FAIR Super FRS energy buncher have large usable aperture, high magnetic pole-tip field and high gradient field quality. The iron-dominated magnets with superconducting coils have to be used in this application. The NbTi coil, laminated iron, and support structure of about 22 tons is immersed in liquid helium. The 4.5 K helium chamber is completely covered with a thermal shield cooled by helium at 50-80 K on its outer and inner surface. The helium chamber and thermal shield is enclosed in a vacuum shell. The paper presents design details of the long quadrupole. Coupled thermal, magnetic and structural analysis was carried out to design the magnet iron, magnet coil, helium vessel and support links and ensure the required gradient field quality is achieved. The paper also presents the design of support links and outer vacuum chamber.

  2. ELECTRON TRAPPING IN WIGGLER AND QUADRUPOLE MAGNETS OF CESRTA

    SciTech Connect

    Wang, Lanfa; Huang, Xiaobiao; Pivi, Mauro; /SLAC

    2010-08-25

    The Cornell Electron Storage Ring (CESR) has been reconfigured as an ultra low emittance damping ring for use as a test accelerator (CesrTA) for International Linear Collider (ILC) damping ring R&D [1]. One of the primary goals of the CesrTA program is to investigate the interaction of the electron cloud with low emittance positron beam to explore methods to suppress the electron cloud, develop suitable advanced instrumentation required for these experimental studies and benchmark predictions by simulation codes. This paper reports the simulation of the electron-cloud formation in the wiggler and quadrupole magnets using the 3D code CLOUDLAND. We found that electrons can be trapped with long lifetime in a quadrupole magnet due to the mirror field trapping mechanism and photoelectrons produced in the wiggler zero field zone have long lifetime due to their complicated trajectory.

  3. Detection of the quadrupole hyperfine structure in HCNH(+)

    NASA Technical Reports Server (NTRS)

    Ziurys, L. M.; Apponi, A. J.; Yoder, J. T.

    1992-01-01

    We report the first measurement of the electric quadrupole hyperfine structure of HCNH(+). The J = 1-0 transition of this interstellar molecular ion was observed toward the cold, dark cloud TMC-1, using the NRAO 12 m telescope at 74 GHz. The three hyperfine components of this transition were clearly detected and resolved, enabling the first experimental determination of the quadrupole coupling constant eqQ of HCNH(+). The value of this constant is calculated to be eqQ = -0.49 +/- 0.07 MHz. The column density of HCNH(+) toward TMC-1 was found to be N(tot) about 2.8 x 10 exp 13/sq cm, corresponding to a fractional abundance relative to H2 of f about 3 x 10 exp -9. This abundance is at least one order of magnitude higher than the predictions of ion-molecule chemistry. Detection of the hyperfine structure clearly establishes the presence of HCNH(+) in interstellar space.

  4. Specification of multipole tolerances for the APS quadrupole magnet

    SciTech Connect

    Kramer, S.L.

    1988-08-01

    This note will address a proposed method for specifying the multipole tolerance for the design and production of APS quadrupole magnets. The tolerances for the multipole components for the quadrupole magnets will be set to that level which reduces the dynamic aperture by about 10--15% from the ideal machine dynamic aperture (as specified in CDR-87). This level may appear rather stringent, especially compared to the 50--60% reduction resulting from quad placement errors. However, when all tolerances are taken together, the residual dynamic aperture would be prohibitively small and commissioning would be difficult if these tolerances were at twice this level. The dynamic aperture was determined using the numerical tracking program RACETRACK.

  5. SKEW QUADRUPOLES IN RHIC DIPOLE MAGNETS AT HIGH FIELDS.

    SciTech Connect

    JAIN, A.; GUPTA, P.; THOMPSON, P.; WANDERER, P.

    1995-06-11

    In the RHIC arc dipoles, the center of the cold mass lies above the center of the cryostat. At the maximum design field, the magnetic flux lines leak through the yoke to the asymmetrically located cryostat, which provides an additional return path. This introduces a systematic top-bottom asymmetry leading to a skew quadrupole term at high fields. A similar asymmetry is also created by any difference in weights of the upper and the lower yoke halves. Data from measurements of several RHIC dipoles are presented to study this effect. In the current production series of the RDIC dipoles, an attempt is made to compensate the effect of the cryostat by an asymmetry in the iron yoke. Seven dipoles with this type of yoke have been cold tested, and show a reduced saturation in the skew quadrupole term, as expected.

  6. Quadrupole moments of wobbling excitations in 163Lu

    SciTech Connect

    Gorgen, A.; Clark, R.M.; Cromaz, M.; Fallon, P.; Hagemann, G.B.; Hubel, H.; Lee, I.Y.; Macchiavelli, A.O.; Sletten, G.; Ward, D.; Bengtsson, R.

    2004-01-01

    Lifetimes of states in the triaxial strongly deformed bands of {sup 163}Lu have been measured in a Gammasphere experiment using the Doppler-shift attenuation method. The bands are interpreted as wobbling-phonon excitations from the characteristic electromagnetic properties of the transitions connecting the bands. Quadrupole moments were extracted for the 0-phonon yrast band and, for the first time, for the 1-phonon wobbling band. The very similar results found for both bands suggest a similar intrinsic structure confirming the wobbling interpretation. While the in-band quadrupole moments for the bands show a decreasing trend towards higher spin, the strength of the inter-band transitions remains constant. Both features can be understood by a small increase in triaxiality towards higher spin. Such a change in triaxiality is also found in cranking calculations, to which the experimental results are compared.

  7. Improved performance of a quadrupole based glow discharge mass spectrometer

    SciTech Connect

    Valiga, R.E.; Duckworth, D.C.; Smith, D.H.

    1995-12-31

    Glow discharge mass spectrometry (GDMS) has experienced most of its commercial success in trace multi-element analysis using sector-based mass spectrometry. In most cases, the mass resolution available with these instruments allows elements of interest to be analyzed, even in the presence of polyatomic interferences (e.g., ArC+, ArN+, ArO+). Because quadrupole mass filters have little more than unit resolution, background equivalent concentrations (BEC`s) for many elements can be quite high (1-100 ppm). Because of this, many have discounted quadrupole GDMS as a useful trace analysis technique. In this work, the authors have explored methods of reducing the polyatomic interferences.

  8. 120-mm supercondcting quadrupole for interaction regions of hadron colliders

    SciTech Connect

    Zlobin, A.V.; Kashikhin, V.V.; Mokhov, N.V.; Novitski, I.; /Fermilab

    2010-05-01

    Magnetic and mechanical designs of a Nb{sub 3}Sn quadrupole magnet with 120-mm aperture suitable for interaction regions of hadron colliders are presented. The magnet is based on a two-layer shell-type coil and a cold iron yoke. Special spacers made of a low-Z material are implemented in the coil mid-planes to reduce the level of radiation heat deposition and radiation dose in the coil. The quadrupole mechanical structure is based on aluminum collars supported by an iron yoke and a stainless steel skin. Magnet parameters including maximum field gradient and field harmonics, Nb3Sn coil pre-stress and protection at the operating temperatures of 4.5 and 1.9 K are reported. The level and distribution of radiation heat deposition in the coil and other magnet components are discussed.

  9. Quadrupole association and dissociation of hydrogen in the early Universe

    NASA Astrophysics Data System (ADS)

    Forrey, Robert C.

    2016-10-01

    Radiative association and photodissociation rates are calculated for quadrupole transitions of H2. A complete set of bound and unbound states are included in a self-consistent master equation to obtain steady-state concentrations for a dilute system of hydrogen atoms and molecules. Phenomenological rate constants computed from the steady-state concentrations satisfy detailed balance for any combination of matter and radiation temperature. Simple formulas are derived for expressing the steady-state distributions in terms of equilibrium distributions. The rate constant for radiative association is found to be generally small for all temperature combinations. The photodissociation rate constant for quadrupole transitions is found to dominate the rate constants for other H2 photodestruction mechanisms for {T}{{R}} ≤slant 3000 K. Implications for the formation and destruction of H2 in the early Universe are discussed.

  10. Vibration considerations in the design of the Advanced Photon Source at Argonne National Laboratory

    SciTech Connect

    Jendrzejczyk, J.A.; Wambsganss, M.W.

    1991-01-01

    The Advanced Photon Source (APS), a new synchrotron radiation facility being built at Argonne National Laboratory, will provide the world's most brilliant X-ray beams for research in a wide range of technical fields. Successful operation of the APS requires an extremely stable positron closed orbit. Vibration of the storage ring quadrupole magnets, even in the submicron range, can lead to distortion of the positron closed orbit and to potentially unacceptable beam emittance growth, which results in degraded performance. This paper presents an overview of the technical approach used to minimize vibration response, beginning at the conceptual stage, through design and construction, and on to successful operation. Acceptance criteria relating to maximum allowable quadrupole magnet vibration are discussed. Soil properties are used to determine resonant frequencies of foundations and to predict attenuation characteristics. Two sources are considered to have the potential to excite the foundation: far-field sources, which are produced external to the facility, and near-field sources, which are produced within the facility. Measurements of ambient ground motion, monitored to determine far- field excitation, are presented. Ambient vibration was measured at several operating facilities within Argonne to gain insight on typical near-field excitation sources. Discussion covers the dynamic response characteristics of a prototypic magnet support structure to various excitations, including ambient floor motion, coolant flow, and magnet power. 19 refs., 10 figs., 5 tabs.

  11. Electrostatic quadrupole array for focusing parallel beams of charged particles

    DOEpatents

    Brodowski, John

    1982-11-23

    An array of electrostatic quadrupoles, capable of providing strong electrostatic focusing simultaneously on multiple beams, is easily fabricated from a single array element comprising a support rod and multiple electrodes spaced at intervals along the rod. The rods are secured to four terminals which are isolated by only four insulators. This structure requires bias voltage to be supplied to only two terminals and eliminates the need for individual electrode bias and insulators, as well as increases life by eliminating beam plating of insulators.

  12. Radio-frequency quadrupole resonator for linear accelerator

    DOEpatents

    Moretti, A.

    1982-10-19

    An RFQ resonator for a linear accelerator having a reduced level of interfering modes and producing a quadrupole mode for focusing, bunching and accelerating beams of heavy charged particles, with the construction being characterized by four elongated resonating rods within a cylinder with the rods being alternately shorted and open electrically to the shell at common ends of the rods to provide an LC parallel resonant circuit when activated by a magnetic field transverse to the longitudinal axis.

  13. Gravitational radiation quadrupole formula is valid for gravitationally interacting systems

    NASA Technical Reports Server (NTRS)

    Walker, M.; Will, C. M.

    1980-01-01

    An argument is presented for the validity of the quadrupole formula for gravitational radiation energy loss in the far field of nearly Newtonian (e.g., binary stellar) systems. This argument differs from earlier ones in that it determines beforehand the formal accuracy of approximation required to describe gravitationally self-interacting systems, uses the corresponding approximate equation of motion explicitly, and evaluates the appropriate asymptotic quantities by matching along the correct space-time light cones.

  14. Microfabricated quadrupole ion trap for mass spectrometer applications.

    PubMed

    Pau, S; Pai, C S; Low, Y L; Moxom, J; Reilly, P T A; Whitten, W B; Ramsey, J M

    2006-03-31

    An array of miniaturized cylindrical quadrupole ion traps, with a radius of 20 microm, is fabricated using silicon micromachining using phosphorus doped polysilicon and silicon dioxide for the purpose of creating a mass spectrometer on a chip. We have operated the array for mass-selective ion ejection and mass analysis using Xe ions at a pressure of 10(-4). The scaling rules for the ion trap in relation to operating pressure, voltage, and frequency are examined. PMID:16605890

  15. Magnetic performance of new Fermilab high gradient quadrupoles

    SciTech Connect

    Hanft, R.; Brown, B.C.; Carson, J.A.; Gourlay, S.A.; Lamm, M.J.; McInturff, A.D.; Mokhtarani, A.; Riddiford, A.

    1991-05-01

    For the Fermilab Tevatron low beta insertions installed in 1990--1991 as part of a luminosity upgrade there were built approximately 35 superconducting cold iron quadrupoles utilizing a two layer cos 2{theta} coil geometry with 76 mm diameter aperature. The field harmonics and strengths of these magnets obtained by measurement at cryogenic conditions are presented. Evidence for a longitudinal periodic structure in the remnant field is shown. 6 refs., 2 figs., 3 tabs.

  16. Analysis on linac quadrupole misalignment in FACET commissioning 2012

    SciTech Connect

    Sun, Yipeng; /SLAC

    2012-07-05

    In this note, the analysis on linac quadrupole misalignment is presented for the FACET linac section LI05-09 plus LI11-19. The effectiveness of the beam-based alignment technique is preliminarily confirmed by the measurement. Beam-based alignment technique was adopted at SLAC linac since SLC time. Here the beam-based alignment algorithms are further developed and applied in the FACET commissioning during 2012 run.

  17. MEASURING LOCAL GRADIENT AND SKEW QUADRUPOLE ERRORS IN RHIC IRS.

    SciTech Connect

    CARDONA,J.; PEGGS,S.; PILAT,R.; PTITSYN,V.

    2004-07-05

    The measurement of local linear errors at RHIC interaction regions using an ''action and phase'' analysis of difference orbits has already been presented. This paper evaluates the accuracy of this technique using difference orbits that were taken when known gradient errors and skew quadrupole errors were intentionally introduced. It also presents action and phase analysis of simulated orbits when controlled errors are intentionally placed in a RHIC simulation model.

  18. Design and Measurement of the NSLS II Quadrupole Prototypes

    SciTech Connect

    Rehak,M.; Jain, A. K.; Skaritka, J.; Spataro, C.

    2009-05-04

    The design and measurement of the NSLS-II ring quadrupoles prototypes are presented. These magnets are part of a larger prototype program described in [1]. Advances in software, hardware, and manufacturing have led to some new level of insight in the quest for the perfect magnet design. Three geometric features are used to minimize the first three allowed harmonics by way of optimization. Validations through measurement and confidence levels in calculations are established.

  19. Vibration Analysis and the Accelerometer

    ERIC Educational Resources Information Center

    Hammer, Paul

    2011-01-01

    Have you ever put your hand on an electric motor or motor-driven electric appliance and felt it vibrate? Ever wonder why it vibrates? What is there about the operation of the motor, or the object to which it is attached, that causes the vibrations? Is there anything "regular" about the vibrations, or are they the result of random causes? In this…

  20. PREFACE: Vibrations at surfaces Vibrations at surfaces

    NASA Astrophysics Data System (ADS)

    Rahman, Talat S.

    2011-12-01

    This special issue is dedicated to the phenomenon of vibrations at surfaces—a topic that was indispensible a couple of decades ago, since it was one of the few phenomena capable of revealing the nature of binding at solid surfaces. For clean surfaces, the frequencies of modes with characteristic displacement patterns revealed how surface geometry, as well as the nature of binding between atoms in the surface layers, could be different from that in the bulk solid. Dispersion of the surface phonons provided further measures of interatomic interactions. For chemisorbed molecules on surfaces, frequencies and dispersion of the vibrational modes were also critical for determining adsorption sites. In other words, vibrations at surfaces served as a reliable means of extracting information about surface structure, chemisorption and overlayer formation. Experimental techniques, such as electron energy loss spectroscopy and helium-atom-surface scattering, coupled with infra-red spectroscopy, were continually refined and their resolutions enhanced to capture subtleties in the dynamics of atoms and molecules at surfaces. Theoretical methods, whether based on empirical and semi-empirical interatomic potential or on ab initio electronic structure calculations, helped decipher experimental observations and provide deeper insights into the nature of the bond between atoms and molecules in regions of reduced symmetry, as encountered on solid surfaces. Vibrations at surfaces were thus an integral part of the set of phenomena that characterized surface science. Dedicated workshops and conferences were held to explore the variety of interesting and puzzling features revealed in experimental and theoretical investigations of surface vibrational modes and their dispersion. One such conference, Vibrations at Surfaces, first organized by Harald Ibach in Juelich in 1980, continues to this day. The 13th International Conference on Vibrations at Surfaces was held at the University of

  1. Laboratory spectroscopic study and astronomical detection of vibrationally excited n-propyl cyanide

    NASA Astrophysics Data System (ADS)

    Müller, Holger S. P.; Walters, Adam; Wehres, Nadine; Belloche, Arnaud; Wilkins, Olivia H.; Liu, Delong; Vicente, Rémi; Garrod, Robin T.; Menten, Karl M.; Lewen, Frank; Schlemmer, Stephan

    2016-11-01

    Context. We performed a spectral line survey called Exploring Molecular Complexity with ALMA (EMoCA) toward Sagittarius B2(N) between 84.1 and 114.4 GHz with the Atacama Large Millimeter/submillimeter Array (ALMA) in its Cycles 0 and 1. We determined line intensities of n-propyl cyanide in the ground vibrational states of its gauche and anti conformers toward the hot molecular core Sagittarius B2(N2) which suggest that we should also be able to detect transitions pertaining to excited vibrational states. Aims: We wanted to determine spectroscopic parameters of low-lying vibrational states of both conformers of n-propyl cyanide to search for them in our ALMA data. Methods: We recorded laboratory rotational spectra of n-propyl cyanide in two spectral windows between 36 and 127 GHz. We searched for emission lines produced by these states in the ALMA spectrum of Sagittarius B2(N2). We modeled their emission and the emission of the ground vibrational states assuming local thermodynamic equilibrium (LTE). Results: We have made extensive assignments of a- and b-type transitions of the four lowest vibrational states of the gauche conformer which reach J and Ka quantum numbers of 65 and 20, respectively. We assigned mostly a-type transitions for the anti conformer with J and Ka quantum numbers up to 48 and 24, respectively. Rotational and Fermi perturbations between two anti states allowed us to determine their energy difference. The resulting spectroscopic parameters enabled us to identify transitions of all four vibrational states of each conformer in our ALMA data. The emission features of all states, including the ground vibrational state, are well-reproduced with the same LTE modeling parameters, which gives us confidence in the reliability of the identifications, even for the states with only one clearly detected line. Conclusions: Emission features pertaining to the highest excited vibrational states of n-propyl cyanide reported in this work have been identified just

  2. NIF Ambient Vibration Measurements

    SciTech Connect

    Noble, C.R.; Hoehler, M.S., S.C. Sommer

    1999-11-29

    LLNL has an ongoing research and development project that includes developing data acquisition systems with remote wireless communication for monitoring the vibrations of large civil engineering structures. In order to establish the capability of performing remote sensing over an extended period of time, the researchers needed to apply this technology to a real structure. The construction of the National Ignition Facility provided an opportunity to test the data acquisition system on a large structure to monitor whether the facility is remaining within the strict ambient vibration guidelines. This document will briefly discuss the NIF ambient vibration requirements and summarize the vibration measurements performed during the Spring and Summer of 1999. In addition, a brief description of the sensors and the data acquisition systems will be provided in Appendix B.

  3. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  4. Transverse beam emittance measurement using quadrupole variation at KIRAMS-430

    NASA Astrophysics Data System (ADS)

    An, Dong Hyun; Hahn, Garam; Park, Chawon

    2015-02-01

    In order to produce a 430 MeV/u carbon ion (12 C 6+) beam for medical therapy, the Korea Institute of Radiological & Medical Sciences (KIRAMS) has carried out the development of a superconducting isochronous cyclotron, the KIRAMS-430. At the extraction of the cyclotron, an Energy Selection System (ESS) is located to modulate the fixed beam energy and to drive the ion beam through High Energy Beam Transport (HEBT) into the treatment room. The beam emittance at the ion beamline is to be measured to provide information on designing a beam with high quality. The well-known quadrupole variation method was used to determine the feasibility of measuring the transverse beam emittance. The beam size measured at the beam profile monitor (BPM) is to be utilized and the transformation of beam by transfer matrix is to be applied being taken under various transport condition of varying quadrupole magnetic strength. Two different methods where beam optics are based on the linear matrix formalism and particle tracking with a 3-D magnetic field distribution obtained by using OPERA3D TOSCA, are applied to transport the beam. The fittings for the transformation parameters are used to estimate the transverse emittance and the twiss parameters at the entrance of the quadrupole in the ESS. Including several systematic studies, we conclude that within the uncertainty the estimated emittances are consistent with the ones calculated by using Monte Carlo simulations.

  5. CMB quadrupole suppression. II. The early fast roll stage

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    Within the effective field theory of inflation, an initialization of the classical dynamics of the inflaton with approximate equipartition between the kinetic and potential energy of the inflaton leads to a brief fast roll stage that precedes the slow roll regime. The fast roll stage leads to an attractive potential in the wave equations for the mode functions of curvature and tensor perturbations. The evolution of the inflationary perturbations is equivalent to the scattering by this potential and a useful dictionary between the scattering data and observables is established. Implementing methods from scattering theory we prove that this attractive potential leads to a suppression of the quadrupole moment for CMB and B-mode angular power spectra. The scale of the potential is determined by the Hubble parameter during slow roll. Within the effective field theory of inflation at the grand unification (GUT) energy scale we find that if inflation lasts a total number of e-folds N{sub tot}{approx}59, there is a 10%-20% suppression of the CMB quadrupole and about 2%-4% suppression of the tensor quadrupole. The suppression of higher multipoles is smaller, falling off as 1/l{sup 2}. The suppression is much smaller for N{sub tot}>59, therefore if the observable suppression originates in the fast roll stage, there is the upper bound N{sub tot}{approx}59.

  6. Perfect 2-d quadrupole fields from permanent magnets

    SciTech Connect

    Lee, E.P.; Vella, M.

    1996-04-01

    Consider the 13-beam channel array shown in Figure 1. It is asserted that, under mathematically ideal assumptions, a pure quadrupole field is centered in each of the 13 beam channel boxes. An identical quadrupole field (for {bar H}, not {bar B}) is also centered in each of the 4 boxes containing 4 magnetic wedges located near the center of the system. An iron yoke ({mu} = {infinity}) with the displayed zig-zag shape provides a boundary condition (H{sub {parallel}} = 0) that makes the 13 channels equivalent to a portion of an infinite array. A similar array can be readily drawn for any number of beams. The quadrupole gradient in the beam channels is B{prime} = M{sub o}/2b, where M{sub o} is the remnant field of the magnetic wedges, and the channel diameter (wedge-to-wedge) is 2b. Note that a unit cell of the array, containing one beam, has diameter 2{radical}2 b (viewed from 45{degree} tilt) so its area is 8 b{sup 2}. A significant advantage of this design over those using dipolar blocks is the large fraction of cross section devoted to beam channels (50% vs 25%). Application to a heavy ion fusion driver is discussed.

  7. 2008 Vibrational Spectroscopy

    SciTech Connect

    Philip J. Reid

    2009-09-21

    The conference focuses on using vibrational spectroscopy to probe structure and dynamics of molecules in gases, liquids, and interfaces. The goal is to bring together a collection of researchers who share common interests and who will gain from discussing work at the forefront of several connected areas. The intent is to emphasize the insights and understanding that studies of vibrations provide about a variety of systems.

  8. A comparison of force fields and calculation methods for vibration intervals of isotopic H3(+) molecules

    NASA Astrophysics Data System (ADS)

    Carney, G. D.; Adler-Golden, S. M.; Lesseski, D. C.

    1986-04-01

    This paper reports (1) improved values for low-lying vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) calculated using the variational method and Simons-Parr-Finlan (1973) representations of the Carney-Porter (1976) and Dykstra-Swope (1979) ab initio H3(+) potential energy surfaces, (2) quartic normal coordinate force fields for isotopic H3(+) molecules, (3) comparisons of variational and second-order perturbation theory, and (4) convergence properties of the Lai-Hagstrom internal coordinate vibrational Hamiltonian. Standard deviations between experimental and ab initio fundamental vibration intervals of H3(+), H2D(+), D2H(+), and D3(+) for these potential surfaces are 6.9 (Carney-Porter) and 1.2/cm (Dykstra-Swope). The standard deviations between perturbation theory and exact variational fundamentals are 5 and 10/cm for the respective surfaces. The internal coordinate Hamiltonian is found to be less efficient than the previously employed 't' coordinate Hamiltonian for these molecules, except in the case of H2D(+).

  9. Vibrational and electronic optical activity of the chiral disulphide group: implications for disulphide bridge conformation.

    PubMed

    Bednárová, Lucie; Bour, Petr; Malon, Petr

    2010-05-15

    Using dihydrogendisulphide (H(2)S(2)), dimethyl- ((CH(3))(2)S(2)), and diethyldisulphide ((CH(3)CH(2))(2)S(2))as model molecules, theoretical ECD, VCD, and ROA spectra of nonplanar disulphides were calculated by DFT methods. Most of the calculated electronic and vibrational chiroptical features suffer an equivocal relation between calculatedsigns of ECD, VCD, or ROA and the sense of disulphide nonplanarity as noted earlier for low-lying ECD bands. This is a consequence of local C(2) symmetry of a disulphide group causing most electronic and vibrational transitions to occur as pairs falling to alternative A, B symmetry species, which become degenerate and switch their succession (and consequently the observed chiroptical sign pattern) at the energetically most favorable perpendicular conformation. According to present calculations, the key to resolving this ambiguity may involve the S-S stretching vibrational mode at approximately 500 cm(-1). The relation of signs of the relevant VCD and ROA features to sense of disulphide chirality seems simpler and less ambiguous. The right-handed arrangement of the S-S group (0 < chi(S-S) < 180 degrees) results in mostly negative VCD signals. Although relation to ROA still suffers some ambiguity, it gets clearer along the series H(2)S(2)-(CH(3))(2)S(2)-(CH(3)CH(2))(2)S(2). ROA is also attractive for the analysis of disulphide-containing peptides and proteins, because applying it to aqueous solutions is not problematic.

  10. Strong nonlinearity of mesoscopic vibrational modes induced by electron-phonon coupling

    NASA Astrophysics Data System (ADS)

    Moskovtsev, Kirill; Dykman, M. I.

    We show that the electron-phonon coupling can lead to a strong nonlinearity of vibrational modes in semiconductor nano- and micro-resonators. For typical mode frequencies, the electron distribution adiabatically follows lattice strain. Therefore strain leads to redistribution of the electron density over the valleys of the conduction band. It also leads to the onset of a spatial charge. The parameter that controls the distribution is the ratio of the deformation potential to the electron chemical potential or temperature. It is ~102 for many semiconductors of interest even when they are heavily doped. Therefore the change of the electron distribution is strongly nonlinear in the strain. As a consequence, the stress induced by the electron-phonon coupling is also strongly nonlinear. We have found the vibration nonlinearity parameters for n-doped Si and calculated the amplitude dependence of the frequencies of several low-lying Si resonator modes with account taken of their spatial structure. The results are compared with the recent experimental data that shows strong effect of doping on the vibration nonlinearity.

  11. Force Limited Vibration Testing

    NASA Technical Reports Server (NTRS)

    Scharton, Terry; Chang, Kurng Y.

    2005-01-01

    This slide presentation reviews the concept and applications of Force Limited Vibration Testing. The goal of vibration testing of aerospace hardware is to identify problems that would result in flight failures. The commonly used aerospace vibration tests uses artificially high shaker forces and responses at the resonance frequencies of the test item. It has become common to limit the acceleration responses in the test to those predicted for the flight. This requires an analysis of the acceleration response, and requires placing accelerometers on the test item. With the advent of piezoelectric gages it has become possible to improve vibration testing. The basic equations have are reviewed. Force limits are analogous and complementary to the acceleration specifications used in conventional vibration testing. Just as the acceleration specification is the frequency spectrum envelope of the in-flight acceleration at the interface between the test item and flight mounting structure, the force limit is the envelope of the in-flight force at the interface . In force limited vibration tests, both the acceleration and force specifications are needed, and the force specification is generally based on and proportional to the acceleration specification. Therefore, force limiting does not compensate for errors in the development of the acceleration specification, e.g., too much conservatism or the lack thereof. These errors will carry over into the force specification. Since in-flight vibratory force data are scarce, force limits are often derived from coupled system analyses and impedance information obtained from measurements or finite element models (FEM). Fortunately, data on the interface forces between systems and components are now available from system acoustic and vibration tests of development test models and from a few flight experiments. Semi-empirical methods of predicting force limits are currently being developed on the basis of the limited flight and system test

  12. Microscopic structure of high-spin vibrational states in superdeformed A=190 nuclei

    SciTech Connect

    Nakatsukasa, Takashi; Matsuyanagi, Kenichi; Mizutori, Shoujirou

    1996-12-31

    Microscopic RPA calculations based on the cranked shell model are performed to investigate the quadrupole and octupole correlations for excited superdeformed (SD) bands in even-even A=190 nuclei. The K = 2 octupole vibrations are predicted to be the lowest excitation modes at zero rotational frequency. The Coriolis coupling at finite frequency produces different effects depending on the neutron and proton number of nucleus. The calculations also indicate that some collective excitations may produce moments of inertia almost identical to those of the yrast SD band. An interpretation of the observed excited bands invoking the octupole vibrations is proposed, which suggests those octupole vibrations may be prevalent in even-even SD A=190 nuclei.

  13. Testing of Nb3Sn quadrupole coils using magnetic mirror structure

    SciTech Connect

    Zlobin, A.V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V.S.; Kashikhin, V.V.; Lamm, M.; Novitski, I.; Tartaglia, M.; Tompkins, J.C.; /Fermilab

    2009-07-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb{sub 3}Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  14. Testing of NB3SN Quadrupole Coils Using Magnetic Mirror Structure

    NASA Astrophysics Data System (ADS)

    Zlobin, A. V.; Andreev, N.; Barzi, E.; Bossert, R.; Chlachidze, G.; Kashikhin, V. S.; Kashikhin, V. V.; Lamm, M. J.; Novitski, I.; Tartaglia, M.; Tompkins, J. C.; Turrioni, D.; Yamada, R.

    2010-04-01

    This paper describes the design and parameters of a quadrupole mirror structure for testing the mechanical, thermal and quench performance of single shell-type superconducting quadrupole coils at field, current and force levels similar to that of real magnet. The concept was experimentally verified by testing two quadrupole coils, previously used in quadrupole models, in the developed mirror structure in the temperature range from 4.5 to 1.9 K. The coils were instrumented with voltage taps, heaters, and strain gauges to monitor their mechanical and thermal properties and quench performance. A new quadrupole coil made of improved Nb3Sn RRP-108/127 strand and cable insulation based on E-glass tape was also tested using this structure. The fabrication and test results of the quadrupole mirror models are reported and discussed.

  15. Sensitivity of nuclear-quadrupole double-resonance detection of half-integer spin nuclei

    NASA Astrophysics Data System (ADS)

    Seliger, J.; Žagar, V.

    2008-10-01

    The sensitivity of the Slusher and Hahn's nuclear quadrupole double resonance technique is calculated in general for an arbitrary nuclear spin S of the quadrupole nuclei and for an arbitrary asymmetry parameter η of the electric field gradient tensor. The nuclear spin S = 5/2 ( 17O, 25Mg, …) is treated in details. The influence of the cross-relaxation rate between the quadrupole nuclei and the abundant spin system on the sensitivity of double resonance is discussed. The results of the theoretical analysis are applied in the analysis of the 1H- 17O nuclear quadrupole double resonance spectra in p-toluenesulfonamide and 2-nitrobenzoic acid. The 17O nuclear quadrupole resonance frequencies from a sulfonamide group are determined for the first time. The proton-oxygen cross-relaxation rates and the proton local frequency in zero external magnetic field are experimentally determined from the nuclear quadrupole double resonance spectra.

  16. The vibrations of texture.

    PubMed

    BensmaIa, Sliman J; Hollins, Mark

    2003-01-01

    The Pacinian channel has been implicated in the perception of fine textures (Hollins et al., Somatosens Mot Res 18: 253-262, 2001a). In the present study, we investigate candidate codes for Pacinian-mediated roughness perception. We use a Hall effect transducer to record the vibrations elicited in the skin when a set of textured surfaces is passively presented to the index finger. The peak frequency of the vibrations is found to decrease systematically as spatial period increases. The power of the vibrations--weighted according to the spectral sensitivity of the Pacinian system--increases with spatial period for all but the coarsest surfaces. By varying the scanning velocity, we manipulate the temporal and intensive characteristics of the texture-induced vibrations and assess the effect of the manipulation on perceived roughness. We find that doubling the scanning velocity does not result in the substantial decrease in roughness predicted by a frequency theory of vibrotactile roughness perception. On the other hand, the effects of speed on roughness match those of speed on power. We propose that the roughness of a fine surface (spatial period<200 microm) is a function of the Pacinian-weighted power of the vibrations it elicits.

  17. The Physics of Vibration

    NASA Astrophysics Data System (ADS)

    Pippard, A. B.

    1989-11-01

    The study of vibration in physical systems is an important part of almost all fields in physics and engineering. This work, originally published in two volumes, examines the classical aspects in Part I and the quantum oscillator in Part II. The classical linear vibrator is treated first and the underlying unity of all linear oscillations in electrical, mechanical and acoustic systems is emphasized. Following this the book turns to the treatment of nonlinear vibrations, a field with which engineers and physicists are generally less familiar. In Part II the emphasis turns to quantum systems, that is those systems which can only be adequately described by quantum mechanics. The treatment concentrates on vibrations in atoms and molecules and their interaction with electromagnetic radiation. The similarities of classical and quantum methods are stressed and the limits of the classical treatment are examined. Throughout the book, each phenomenon discussed is illustrated with many examples and theory and experiment are compared. Although the reader may find that the physics discussed is demanding and the concepts are subtle in places, all mathematics used is familiar to both engineers and experimental scientists. Although not a textbook this is a useful introduction to the more advanced mathematical treatment of vibrations as it bridges the gap between the basic principles and more specialized concepts. It will be of great interest to advanced undergraduates and postgraduates as well as applied mathematicians, physicists and engineers in university and industry.

  18. Design and construction of a radiation resistant quadrupole using metal oxide insulated CICC

    SciTech Connect

    Albert F. Zeller

    2012-12-28

    The construction of a engineering test model of a radiation resistant quadrupole is described. The cold-iron quadrupole uses coils fabricated from metal-oixide (synthetic spinel) insulated Cable-In-Conduit-Conductor (CICC). The superconductor is NbTi in a copper matrix. The quadrupole is designed to produce a pole-tip field of 2 T with an operating current of 7,000 A.

  19. Progress in the Development of Superconducting Quadrupoles forHeavy-ion Fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, R.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-08-19

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  20. Progress in the development of superconducting quadrupoles for heavy ion fusion

    SciTech Connect

    Faltens, A.; Lietzke, A.; Sabbi, G.; Seidl, P.; Lund, S.; Manahan, B.; Martovetsky, N.; Gung, C.; Minervini, J.; Schultz, J.; Myatt, L.; Meinke, R.

    2002-05-24

    The Heavy Ion Fusion program is developing single aperture superconducting quadrupoles based on NbTi conductor, for use in the High Current Experiment at Lawrence Berkeley National Laboratory. Following the fabrication and testing of prototypes using two different approaches, a baseline design has been selected and further optimized. A prototype cryostat for a quadrupole doublet, with features to accommodate induction acceleration modules, is being fabricated. The single aperture magnet was derived from a conceptual design of a quadrupole array magnet for multi-beam transport. Progress on the development of superconducting quadrupole arrays for future experiments is also reported.

  1. Comparison of conventional and novel quadrupole drift tube magnets inspired by Klaus Halbach

    SciTech Connect

    Feinberg, B.

    1995-02-01

    Quadrupole drift tube magnets for a heavy-ion linac provide a demanding application of magnet technology. A comparison is made of three different solutions to the problem of providing an adjustable high-field-strength quadrupole magnet in a small volume. A conventional tape-wound electromagnet quadrupole magnet (conventional) is compared with an adjustable permanent-magnet/iron quadrupole magnet (hybrid) and a laced permanent-magnet/iron/electromagnet (laced). Data is presented from magnets constructed for the SuperHILAC heavy-ion linear accelerator, and conclusions are drawn for various applications.

  2. Quadrupole-induced resonant-particle transport in a pure electron plasma.

    PubMed

    Gilson, E P; Fajans, J

    2003-01-10

    Small transverse magnetic quadrupole fields sharply degrade the confinement of non-neutral plasmas held in Malmberg-Penning traps. For example, a quadrupole magnetic field of only 0.02 G/cm doubles the diffusion rate in a trap with a 100 G axial magnetic field. Larger quadrupole fields noticeably change the shape of the plasma. The transport is greatest at an orbital resonance. These results cast doubt on plans to use magnetic quadrupole neutral atom traps to confine antihydrogen atoms created in double-well positron/antiproton Malmberg-Penning traps.

  3. Fiber optic vibration sensor

    DOEpatents

    Dooley, J.B.; Muhs, J.D.; Tobin, K.W.

    1995-01-10

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity. 2 figures.

  4. Externally tuned vibration absorber

    DOEpatents

    Vincent, Ronald J.

    1987-09-22

    A vibration absorber unit or units are mounted on the exterior housing of a hydraulic drive system of the type that is powered from a pressure wave generated, e.g., by a Stirling engine. The hydraulic drive system employs a piston which is hydraulically driven to oscillate in a direction perpendicular to the axis of the hydraulic drive system. The vibration absorbers each include a spring or other resilient member having one side affixed to the housing and another side to which an absorber mass is affixed. In a preferred embodiment, a pair of vibration absorbers is employed, each absorber being formed of a pair of leaf spring assemblies, between which the absorber mass is suspended.

  5. Fiber optic vibration sensor

    DOEpatents

    Dooley, Joseph B.; Muhs, Jeffrey D.; Tobin, Kenneth W.

    1995-01-01

    A fiber optic vibration sensor utilizes two single mode optical fibers supported by a housing with one optical fiber fixedly secured to the housing and providing a reference signal and the other optical fiber having a free span length subject to vibrational displacement thereof with respect to the housing and the first optical fiber for providing a signal indicative of a measurement of any perturbation of the sensor. Damping or tailoring of the sensor to be responsive to selected levels of perturbation is provided by altering the diameter of optical fibers or by immersing at least a portion of the free span length of the vibration sensing optical fiber into a liquid of a selected viscosity.

  6. CMB quadrupole suppression. I. Initial conditions of inflationary perturbations

    SciTech Connect

    Boyanovsky, D.; Vega, H. J. de; Sanchez, N. G.

    2006-12-15

    We investigate the issue of initial conditions of curvature and tensor perturbations at the beginning of slow roll inflation and their effect on the power spectra. Renormalizability and small backreaction constrain the high k behavior of the Bogoliubov coefficients that define these initial conditions. We introduce a transfer function D(k) which encodes the effect of generic initial conditions on the power spectra. The constraint from renormalizability and small backreaction entails that D(k)(less-or-similar sign){mu}{sup 2}/k{sup 2} for large k, implying that observable effects from initial conditions are more prominent in the low multipoles. This behavior affects the CMB quadrupole by the observed amount {approx}10%-20% when {mu} is of the order of the energy scale of inflation. The effects on high l-multipoles are suppressed by a factor {approx}1/l{sup 2} due to the falloff of D(k) for large wave vectors k. We show that the determination of generic initial conditions for the fluctuations is equivalent to the scattering problem by a potential V({eta}) localized just prior to the slow roll stage. Such potential leads to a transfer function D(k) which automatically obeys the renormalizability and small backreaction constraints. We find that an attractive potential V({eta}) yields a suppression of the lower CMB multipoles. Both for curvature and tensor modes, the quadrupole suppression depends only on the energy scale of V({eta}), and on the time interval where V({eta}) is nonzero. A suppression of the quadrupole for curvature perturbations consistent with the data is obtained when the scale of the potential is of the order of k{sub Q}{sup 2} where k{sub Q} is the wave vector whose physical wavelength is the Hubble radius today.

  7. Optimized Superconducting Quadrupole Arrays for Multiple Beam Transport

    SciTech Connect

    Meinke, Rainer, B.; Goodzeit, Carl, L.; Ball, Millicent, J.

    2005-09-20

    This research project advanced the development of reliable, cost-effective arrays of superconducting quadrupole magnets for use in multi-beam inertial fusion accelerators. The field in each array cell must be identical and meet stringent requirements for field quality and strength. An optimized compact array design using flat double-layer pancake coils was developed. Analytical studies of edge termination methods showed that it is feasible to meet the requirements for field uniformity in all cells and elimination of stray external field in several ways: active methods that involve placement of field compensating coils on the periphery of the array or a passive method that involves use of iron shielding.

  8. Beam acceleration through proton radio frequency quadrupole accelerator in BARC

    NASA Astrophysics Data System (ADS)

    Bhagwat, P. V.; Krishnagopal, S.; Mathew, J. V.; Singh, S. K.; Jain, P.; Rao, S. V. L. S.; Pande, M.; Kumar, R.; Roychowdhury, P.; Kelwani, H.; Rama Rao, B. V.; Gupta, S. K.; Agarwal, A.; Kukreti, B. M.; Singh, P.

    2016-05-01

    A 3 MeV proton Radio Frequency Quadrupole (RFQ) accelerator has been designed at the Bhabha Atomic Research Centre, Mumbai, India, for the Low Energy High Intensity Proton Accelerator (LEHIPA) programme. The 352 MHz RFQ is built in 4 segments and in the first phase two segments of the LEHIPA RFQ were commissioned, accelerating a 50 keV, 1 mA pulsed proton beam from the ion source, to an energy of 1.24 MeV. The successful operation of the RFQ gave confidence in the physics understanding and technology development that have been achieved, and indicate that the road forward can now be traversed rather more quickly.

  9. Nuclear quadrupole resonance studies project. [spectrometer design and spectrum analysis

    NASA Technical Reports Server (NTRS)

    Murty, A. N.

    1978-01-01

    The participation of undergraduates in nuclear quadrupole resonance research at Grambling University was made possible by NASA grants. Expanded laboratory capabilities include (1) facilities for high and low temperature generation and measurement; (2) facilities for radio frequency generation and measurement with the modern spectrum analyzers, precision frequency counters and standard signal generators; (3) vacuum and glass blowing facilities; and (4) miscellaneous electronic and machine shop facilities. Experiments carried out over a five year period are described and their results analyzed. Theoretical studies on solid state crystalline electrostatic fields, field gradients, and antishielding factors are included.

  10. Superconducting focusing quadrupoles for heavy ion fusion experiments

    SciTech Connect

    Sabbi, G.L.; Faltens, A.; Leitner, M.; Lietzke, A.; Seidl, P.; Barnard, J.; Lund, S.; Martovetsky, N.; Gung, C.; Minervini, J.; Radovinsky, A.; Schultz, J.; Meinke, R.

    2003-05-01

    The Heavy Ion Fusion (HIF) Program is developing superconducting focusing magnets for both near-term experiments and future driver accelerators. In particular, single bore quadrupoles have been fabricated and tested for use in the High Current Experiment (HCX) at Lawrence Berkeley National Laboratory (LBNL). The next steps involve the development of magnets for the planned Integrated Beam Experiment (IBX) and the fabrication of the first prototype multi-beam focusing arrays for fusion driver accelerators. The status of the magnet R&D program is reported, including experimental requirements, design issues and test results.

  11. Cool Down Analysis of a Cryocooler Based Quadrupole Magnet Cryostat

    NASA Astrophysics Data System (ADS)

    Choudhury, A.; Kar, S.; Chacko, J.; Kumar, M.; Babu, S.; Sahu, S.; Kumar, R.; Antony, J.; Datta, T. S.

    A superconducting quadrupole doublet magnet with cold superferric iron cover for the Hybrid Recoil Mass Analyzer (HYRA) beam line has been commissioned. The total cold mass of the helium vessel with iron yoke and pole is 2 ton. A set of two Sumitomo cryocoolers take care of various heat loads to the cryostat. The first successful cool down of the cryostat has been completed recently, magnets have been powered and magnetic field profiling has been done inside theroom temperature beam tube. This paper will highlight the cryostat details along with the cool down and operational test results obtained from the first cool down.

  12. Miniature quadrupole mass spectrometer having a cold cathode ionization source

    DOEpatents

    Felter, Thomas E.

    2002-01-01

    An improved quadrupole mass spectrometer is described. The improvement lies in the substitution of the conventional hot filament electron source with a cold cathode field emitter array which in turn allows operating a small QMS at much high internal pressures then are currently achievable. By eliminating of the hot filament such problems as thermally "cracking" delicate analyte molecules, outgassing a "hot" filament, high power requirements, filament contamination by outgas species, and spurious em fields are avoid all together. In addition, the ability of produce FEAs using well-known and well developed photolithographic techniques, permits building a QMS having multiple redundancies of the ionization source at very low additional cost.

  13. Quench margin measurement in Nb3Sn quadrupole magnet

    SciTech Connect

    Kashikhin, V.V.; Bossert, R.; Chlachidze, G.; Lamm, M.; Novitski, I.; Zlobin, A.V.; /Fermilab

    2008-08-01

    One of the possible practical applications of the Nb{sub 3}Sn accelerator magnets is the LHC luminosity upgrade that involves replacing the present NbTi focusing quadrupoles in two high-luminosity interaction regions (IR). The IR magnets are exposed to strong radiation from the interaction point that requires a detailed investigation of the magnet operating margins under the expected radiation-induced heat depositions. This paper presents the results of simulation and measurement of quench limits and temperature margins for a Nb{sub 3}Sn model magnet using a special midplane strip heater.

  14. Vibrational spectroscopy of resveratrol

    NASA Astrophysics Data System (ADS)

    Billes, Ferenc; Mohammed-Ziegler, Ildikó; Mikosch, Hans; Tyihák, Ernő

    2007-11-01

    In this article the authors deal with the experimental and theoretical interpretation of the vibrational spectra of trans-resveratrol (3,5,4'-trihydroxy- trans-stilbene) of diverse beneficial biological activity. Infrared and Raman spectra of the compound were recorded; density functional calculations were carried out resulting in the optimized geometry and several properties of the molecule. Based on the calculated force constants, a normal coordinate analysis yielded the character of the vibrational modes and the assignment of the measured spectral bands.

  15. Vibration Propagation in Spider Webs

    NASA Astrophysics Data System (ADS)

    Hatton, Ross; Otto, Andrew; Elias, Damian

    Due to their poor eyesight, spiders rely on web vibrations for situational awareness. Web-borne vibrations are used to determine the location of prey, predators, and potential mates. The influence of web geometry and composition on web vibrations is important for understanding spider's behavior and ecology. Past studies on web vibrations have experimentally measured the frequency response of web geometries by removing threads from existing webs. The full influence of web structure and tension distribution on vibration transmission; however, has not been addressed in prior work. We have constructed physical artificial webs and computer models to better understand the effect of web structure on vibration transmission. These models provide insight into the propagation of vibrations through the webs, the frequency response of the bare web, and the influence of the spider's mass and stiffness on the vibration transmission patterns. Funded by NSF-1504428.

  16. Blade Vibration Measurement System

    NASA Technical Reports Server (NTRS)

    Platt, Michael J.

    2014-01-01

    The Phase I project successfully demonstrated that an advanced noncontacting stress measurement system (NSMS) could improve classification of blade vibration response in terms of mistuning and closely spaced modes. The Phase II work confirmed the microwave sensor design process, modified the sensor so it is compatible as an upgrade to existing NSMS, and improved and finalized the NSMS software. The result will be stand-alone radar/tip timing radar signal conditioning for current conventional NSMS users (as an upgrade) and new users. The hybrid system will use frequency data and relative mode vibration levels from the radar sensor to provide substantially superior capabilities over current blade-vibration measurement technology. This frequency data, coupled with a reduced number of tip timing probes, will result in a system capable of detecting complex blade vibrations that would confound traditional NSMS systems. The hardware and software package was validated on a compressor rig at Mechanical Solutions, Inc. (MSI). Finally, the hybrid radar/tip timing NSMS software package and associated sensor hardware will be installed for use in the NASA Glenn spin pit test facility.

  17. Compact Vibration Damper

    NASA Technical Reports Server (NTRS)

    Ivanco, Thomas G. (Inventor)

    2014-01-01

    A vibration damper includes a rigid base with a mass coupled thereto for linear movement thereon. Springs coupled to the mass compress in response to the linear movement along either of two opposing directions. A converter coupled to the mass converts the linear movement to a corresponding rotational movement. A rotary damper coupled to the converter damps the rotational movement.

  18. Nonlinear vibrational microscopy

    DOEpatents

    Holtom, Gary R.; Xie, Xiaoliang Sunney; Zumbusch, Andreas

    2000-01-01

    The present invention is a method and apparatus for microscopic vibrational imaging using coherent Anti-Stokes Raman Scattering or Sum Frequency Generation. Microscopic imaging with a vibrational spectroscopic contrast is achieved by generating signals in a nonlinear optical process and spatially resolved detection of the signals. The spatial resolution is attained by minimizing the spot size of the optical interrogation beams on the sample. Minimizing the spot size relies upon a. directing at least two substantially co-axial laser beams (interrogation beams) through a microscope objective providing a focal spot on the sample; b. collecting a signal beam together with a residual beam from the at least two co-axial laser beams after passing through the sample; c. removing the residual beam; and d. detecting the signal beam thereby creating said pixel. The method has significantly higher spatial resolution then IR microscopy and higher sensitivity than spontaneous Raman microscopy with much lower average excitation powers. CARS and SFG microscopy does not rely on the presence of fluorophores, but retains the resolution and three-dimensional sectioning capability of confocal and two-photon fluorescence microscopy. Complementary to these techniques, CARS and SFG microscopy provides a contrast mechanism based on vibrational spectroscopy. This vibrational contrast mechanism, combined with an unprecedented high sensitivity at a tolerable laser power level, provides a new approach for microscopic investigations of chemical and biological samples.

  19. Vibration of Shells

    NASA Technical Reports Server (NTRS)

    Leissa, A. W.

    1973-01-01

    The vibrational characteristics and mechanical properties of shell structures are discussed. The subjects presented are: (1) fundamental equations of thin shell theory, (2) characteristics of thin circular cylindrical shells, (3) complicating effects in circular cylindrical shells, (4) noncircular cylindrical shell properties, (5) characteristics of spherical shells, and (6) solution of three-dimensional equations of motion for cylinders.

  20. Performance of Nb3Sn Quadrupole Under High Stress

    SciTech Connect

    Felice, H.; Bajko, M.; Bingham, B.; Bordini, B.; Bottura, L.; Caspi, S.; Rijk, G. De; Dietderich, D.; Ferracin, P.; Giloux, C.; Godeke, A.; Hafalia, R.; Milanese, A.; Rossi, L.; Sabbi, G. L.

    2010-08-01

    Future upgrades of the Large Hadron Collider (LHC) will require large aperture and high gradient quadrupoles. Nb{sub 3}Sn is the most viable option for this application but is also known for its strain sensitivity. In high field magnets, with magnetic fields above 12 T, the Lorentz forces will generate mechanical stresses that may exceed 200 MPa in the windings. The existing measurements of critical current versus strain of Nb{sub 3}Sn strands or cables are not easily applicable to magnets. In order to investigate the impact of high mechanical stress on the quench performance, a series of tests was carried out within a LBNL/CERN collaboration using the magnet TQS03 (a LHC Accelerator Research Program (LARP) 1-meter long, 90-mm aperture Nb{sub 3}Sn quadrupole). The magnet was tested four times at CERN under various pre-stress conditions. The average mechanical compressive azimuthal pre-stress on the coil at 4.2 K ranged from 120 MPa to 200 MPa. This paper reports on the magnet performance during the four tests focusing on the relation between pre-stress conditions and the training plateau.

  1. Heavy ion plasma confinement in an RF quadrupole trap

    NASA Technical Reports Server (NTRS)

    Schermann, J.; Major, F. G.

    1971-01-01

    The confinement of an electron free plasma in a pure quadrupole RF electric trap was considered. The ultimate goal was to produce a large density of mercury ions, in order to realize a trapped ion frequency standard using the hyperfine resonance of 199 Hg(+) at 40.7 GHz. An attempt was made to obtain an iodine plasma consisting of equal numbers of positive and negative ions of atomic iodine, the positive iodine ions, being susceptible to charge-exchange with mercury atoms, will produce the desired mercury ions. The experiment showed that the photoproduction of ions pairs in iodine using the necessary UV radiation occurs with a small cross-section, making it difficult to demonstrate the feasibility of space charge neutralization in a quadrupole trap. For this reason it was considered expedient to choose thallium iodide, which has a more favorable absorption spectrum (in the region of 2000 to 2100 A). The results indicate that, although the ionic recombination is a serious limiting factor, a considerable improvement can be obtained in practice for the density of trapped ions, with a considerable advantage in lifetimes for spectroscopic purposes. The ion pair formation by photoionization is briefly reviewed.

  2. Adjustable permanent quadrupoles for the next linear collider

    SciTech Connect

    James T. Volk et al.

    2001-06-22

    The proposed Next Linear Collider (NLC) will require over 1400 adjustable quadrupoles between the main linacs' accelerator structures. These 12.7 mm bore quadrupoles will have a range of integrated strength from 0.6 to 138 Tesla, with a maximum gradient of 141 Tesla per meter, an adjustment range of +0 to {minus}20% and effective lengths from 324 mm to 972 mm. The magnetic center must remain stable to within 1 micron during the 20% adjustment. In an effort to reduce costs and increase reliability, several designs using hybrid permanent magnets have been developed. Four different prototypes have been built. All magnets have iron poles and use Samarium Cobalt to provide the magnetic fields. Two use rotating permanent magnetic material to vary the gradient, one uses a sliding shunt to vary the gradient and the fourth uses counter rotating magnets. Preliminary data on gradient strength, temperature stability, and magnetic center position stability are presented. These data are compared to an equivalent electromagnetic prototype.

  3. Low-frequency nuclear quadrupole resonance with a dc SQUID

    SciTech Connect

    Chang, J.W.

    1991-07-01

    Conventional pure nuclear quadrupole resonance (NQR) is a technique well suited for the study of very large quadrupolar interactions. Numerous nuclear magnetic resonance (NMR) techniques have been developed for the study of smaller quadrupolar interactions. However, there are many nuclei which have quadrupolar interactions of intermediate strength. Quadrupolar interactions in this region have traditionally been difficult or unfeasible to detect. This work describes the development and application of a SQUID NQR technique which is capable of measuring intermediate strength quadrupolar interactions, in the range of a few hundred kilohertz to several megahertz. In this technique, a dc SQUID (Superconducting QUantum Interference Device) is used to monitor the longitudinal sample magnetization, as opposed to the transverse magnetization, as a rf field is swept in frequency. This allows the detection of low-frequency nuclear quadrupole resonances over a very wide frequency range with high sensitivity. The theory of this NQR technique is discussed and a description of the dc SQUID system is given. In the following chapters, the spectrometer is discussed along with its application to the study of samples containing half-odd-integer spin quadrupolar nuclei, in particular boron-11 and aluminum-27. The feasibility of applying this NQR technique in the study of samples containing integer spin nuclei is discussed in the last chapter. 140 refs., 46 figs., 6 tabs.

  4. Precision Magnet Measurements for X-Band Accelerator Quadrupole Triplets

    SciTech Connect

    Marsh, R A; Anderson, S G; Armstrong, J P

    2012-05-16

    An X-band test station is being developed at LLNL to investigate accelerator optimization for future upgrades to mono-energetic gamma-ray (MEGa-Ray) technology at LLNL. Beamline magnets will include an emittance compensation solenoid, windowpane steering dipoles, and quadrupole magnets. Demanding tolerances have been placed on the alignment of these magnets, which directly affects the electron bunch beam quality. A magnet mapping system has been established at LLNL in order to ensure the delivered magnets match their field specification, and the mountings are aligned and capable of reaching the specified alignment tolerances. The magnet measurement system will be described which uses a 3-axis Lakeshore gauss probe mounted on a 3-axis translation stage. Alignment accuracy and precision will be discussed, as well as centering measurements and analysis. The dependence on data analysis over direct multi-pole measurement allows a significant improvement in useful alignment information. Detailed analysis of measurements on the beamline quadrupoles will be discussed, including multi-pole content both from alignment of the magnets, and the intrinsic level of multi-pole magnetic field.

  5. High-Temperature Vibration Damper

    NASA Technical Reports Server (NTRS)

    Clarke, Alan; Litwin, Joel; Krauss, Harold

    1987-01-01

    Device for damping vibrations functions at temperatures up to 400 degrees F. Dampens vibrational torque loads as high as 1,000 lb-in. but compact enough to be part of helicopter rotor hub. Rotary damper absorbs energy from vibrating rod, dissipating it in turbulent motion of viscous hydraulic fluid forced by moving vanes through small orifices.

  6. Vibration characteristics of ultrasonic complex vibration for hole machining

    NASA Astrophysics Data System (ADS)

    Asami, Takuya; Miura, Hikaru

    2012-05-01

    Complex vibration sources that use diagonal slits as a longitudinal-torsional vibration converter have been applied to ultrasonic motors, ultrasonic rock drilling, and ultrasonic welding. However, there are few examples of the application of these sources to ultrasonic machining in combination with an abrasive. Accordingly, a new method has been developed for machining of holes in brittle materials by using the ultrasonic longitudinal and torsional vibration of a hollow-type stepped horn with a diagonal slit vibration converter. In this paper, we compared vibration of a uniform rod and a hollow-type stepped horn, both with diagonal slits, when the conditions of the diagonal slits are constant.

  7. Active vibration control of structures undergoing bending vibrations

    NASA Technical Reports Server (NTRS)

    Pla, Frederic G. (Inventor); Rajiyah, Harindra (Inventor)

    1995-01-01

    An active vibration control subassembly for a structure (such as a jet engine duct or a washing machine panel) undergoing bending vibrations caused by a source (such as the clothes agitator of the washing machine) independent of the subassembly. A piezoceramic actuator plate is vibratable by an applied electric AC signal. The plate is connected to the structure such that vibrations in the plate induced by the AC signal cause canceling bending vibrations in the structure and such that the plate is compressively pre-stressed along the structure when the structure is free of any bending vibrations. The compressive prestressing increases the amplitude of the canceling bending vibrations before the critical tensile stress level of the plate is reached. Preferably, a positive electric DC bias is also applied to the plate in its poling direction.

  8. Effects of extreme magnetic quadrupole fields on penning traps and the consequences for antihydrogen trapping.

    PubMed

    Fajans, J; Bertsche, W; Burke, K; Chapman, S F; van der Werf, D P

    2005-10-01

    Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

  9. Effects of Extreme Magnetic Quadrupole Fields on Penning Traps and the Consequences for Antihydrogen Trapping

    SciTech Connect

    Fajans, J.; Bertsche, W.; Burke, K.; Chapman, S.F.; Werf, D.P. van der

    2005-10-07

    Measurements on electrons confined in a Penning trap show that extreme quadrupole fields destroy particle confinement. Much of the particle loss comes from the hitherto unrecognized ballistic transport of particles directly into the wall. The measurements scale to the parameter regime used by ATHENA and ATRAP to create antihydrogen, and suggest that quadrupoles cannot be used to trap antihydrogen.

  10. Measuring the Magnetic Center Behavior of an ILC Superconducting Quadrupole Prototype

    SciTech Connect

    Spencer, Cherrill M.; Adolphsen, Chris; Berndt, Martin; Jensen, David R.; Rogers, Ron; Sheppard, John C.; Lorant, Steve St; Weber, Thomas B.; Weisend, John, II; Brueck, Heinrich; Toral, Fernando; /Madrid, CIEMAT

    2011-02-07

    The main linacs of the proposed International Linear Collider (ILC) consist of superconducting cavities operated at 2K. The accelerating cavities are contained in a contiguous series of cryogenic modules that also house the main linac quadrupoles, thus the quadrupoles also need to be superconducting. In an early ILC design, these magnets are about 0.6 m long, have cos (2{theta}) coils, and operate at constant field gradients up to 60 T/m. In order to preserve the small beam emittances in the ILC linacs, the e+ and e- beams need to traverse the quadrupoles near their magnetic centers. A quadrupole shunting technique is used to measure the quadrupole alignment with the beams; this process requires the magnetic centers move by no more than about 5 micrometers when their strength is changed. To determine if such tight stability is achievable in a superconducting quadrupole, we at SLAC measured the magnetic center motions in a prototype ILC quadrupole built at CIEMAT in Spain. A rotating coil technique was used with a better than 0.1 micrometer precision in the relative field center position, and less than a 2 micrometer systematic error over 30 minutes. This paper describes the warm-bore cryomodule that houses the quadrupole in its Helium vessel, the magnetic center measurement system, the measured center data and strength and harmonics magnetic data.

  11. Free vibrations of delaminated beams

    NASA Technical Reports Server (NTRS)

    Shen, M.-H. H.; Grady, J. E.

    1992-01-01

    Free vibration of laminated composite beams is studied. The effect of interply delaminations on natural frequencies and mode shapes is evaluated both analytically and experimentally. A generalized vibrational principle is used to formulate the equation of motion and associated boundary conditions for the free vibration of a composite beam with a delamination of arbitrary size and location. The effect of coupling between longitudinal vibration and bending vibration is considered. This coupling effect is shown to significantly affect the calculated natural frequencies and mode shapes of the delaminated beam.

  12. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1987-07-07

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  13. Vibration sensing method and apparatus

    DOEpatents

    Barna, B.A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure are disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration. 4 figs.

  14. Vibration sensing method and apparatus

    DOEpatents

    Barna, Basil A.

    1989-04-25

    A method and apparatus for nondestructive evaluation of a structure is disclosed. Resonant audio frequency vibrations are excited in the structure to be evaluated and the vibrations are measured and characterized to obtain information about the structure. The vibrations are measured and characterized by reflecting a laser beam from the vibrating structure and directing a substantial portion of the reflected beam back into the laser device used to produce the beam which device is capable of producing an electric signal containing information about the vibration.

  15. Determination of nuclear quadrupole moments – An example of the synergy of ab initio calculations and microwave spectroscopy

    SciTech Connect

    Kellö, Vladimir

    2015-01-22

    Highly correlated scalar relativistic calculations of electric field gradients at nuclei in diatomic molecules in combination with accurate nuclear quadrupole coupling constants obtained from microwave spectroscopy are used for determination of nuclear quadrupole moments.

  16. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  17. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  18. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and aligrnent for use in a final quadrupole mass spectrometer device.

  19. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2001-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  20. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Hecht, Michael (Inventor); Orient, Otto (Inventor); Wiberg, Dean (Inventor); Brennen, Reid A. (Inventor)

    2000-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  1. Miniature micromachined quadrupole mass spectrometer array and method of making the same

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Fuerstenau, Stephen D. (Inventor); Orient, Otto J. (Inventor); Yee, Karl Y. (Inventor); Rice, John T. (Inventor)

    2002-01-01

    The present invention provides a quadrupole mass spectrometer and an ion filter, or pole array, for use in the quadrupole mass spectrometer. The ion filter includes a thin patterned layer including a two-dimensional array of poles forming one or more quadrupoles. The patterned layer design permits the use of very short poles and with a very dense spacing of the poles, so that the ion filter may be made very small. Also provided is a method for making the ion filter and the quadrupole mass spectrometer. The method involves forming the patterned layer of the ion filter in such a way that as the poles of the patterned layer are formed, they have the relative positioning and alignment for use in a final quadrupole mass spectrometer device.

  2. Animal Communications Through Seismic Vibrations

    SciTech Connect

    Hill, Peggy

    2001-05-02

    Substrate vibration has been important to animals as a channel of communication for millions of years, but our literature on vibration in this context of biologically relevant information is only decades old. The jaw mechanism of the earliest land vertebrates allowed them to perceive substrate vibrations as their heads lay on the ground long before airborne sounds could be heard. Although the exact mechanism of vibration production and the precise nature of the wave produced are not always understood, recent development of affordable instrumentation to detect and measure vibrations has allowed researchers to answer increasingly sophisticated questions about how animals send and receive vibration signals. We now know that vibration provides information used in predator defense, prey detection, recruitment to food, mate choice, intrasexual competition, and maternal/brood social interactions in a variety of insect orders, spiders, crabs, scorpions, chameleons, frogs, golden moles, mole rats, kangaroos rats, wallabies, elephants and bison.

  3. Two-dimensional electronic-vibrational spectra: modeling correlated electronic and nuclear motion.

    PubMed

    Terenziani, F; Painelli, A

    2015-05-21

    We calculate 2D electronic-vibrational (2D-EV) spectra of solvated organic dyes modeled in terms of a reduced set of electronic diabatic states (the essential states) non-adiabatically coupled to molecular vibrations. An effective overdamped coordinate, whose dynamics is described by the Smoluchowski diffusion equation, accounts for polar solvation. Results are discussed for two dyes with distinctively different spectroscopic behavior: 4-(dicyanomethylene)-2-methyl-6-(4-dimethylaminostyryl)-4H-pyran (DCM) and 8-(N,N-dibutylamino)-2-azachrysene (AAC). Linear absorption and fluorescence spectra of DCM are well reproduced based on a minimal two-state model. The same model leads to 2D-EV spectra in good agreement with the recent experimental data reported by Oliver and coworkers for DCM in DMSO. In contrast, linear spectra of AAC show a subtle interplay between a locally-excited (LE) and a charge-transfer (CT) excitation, calling for a three-state model. Calculated 2D-EV spectra for AAC show a qualitatively different behavior, demonstrating that the experimental data for DCM do not support a LE/CT interplay. This resolves the long-lasting discussion about the nature of low-lying excitations of DCM in favor of the simplest picture. PMID:25912698

  4. Ab initio tensorial electronic friction for molecules on metal surfaces: Nonadiabatic vibrational relaxation

    NASA Astrophysics Data System (ADS)

    Maurer, Reinhard J.; Askerka, Mikhail; Batista, Victor S.; Tully, John C.

    2016-09-01

    Molecular adsorbates on metal surfaces exchange energy with substrate phonons and low-lying electron-hole pair excitations. In the limit of weak coupling, electron-hole pair excitations can be seen as exerting frictional forces on adsorbates that enhance energy transfer and facilitate vibrational relaxation or hot-electron-mediated chemistry. We have recently reported on the relevance of tensorial properties of electronic friction [M. Askerka et al., Phys. Rev. Lett. 116, 217601 (2016), 10.1103/PhysRevLett.116.217601] in dynamics at surfaces. Here we present the underlying implementation of tensorial electronic friction based on Kohn-Sham density functional theory for condensed phase and cluster systems. Using local atomic-orbital basis sets, we calculate nonadiabatic coupling matrix elements and evaluate the full electronic friction tensor in the Markov limit. Our approach is numerically stable and robust, as shown by a detailed convergence analysis. We furthermore benchmark the accuracy of our approach by calculation of vibrational relaxation rates and lifetimes for a number of diatomic molecules at metal surfaces. We find friction-induced mode-coupling between neighboring CO adsorbates on Cu(100) in a c (2 ×2 ) overlayer to be important for understanding experimental findings.

  5. COMPENSATION OF FAST KICKER ROLLS WITH SKEW QUADRUPOLES

    SciTech Connect

    Pinayev, I.

    2011-03-28

    The development of the third generation light sources lead to the implementation of the top-up operation, when injection occurs while users collect data. The beam excursions due to the non-closure of the injection bump can spoil the data and need to be suppressed. In the horizontal plane compensation can be achieved by adjusting timing and kick amplitudes. The rolls of the kicker magnets create non-closure in the vertical plane and usually there is no means for correction. In the paper we describe proposed compensation scheme utilizing two skew quadrupoles placed inside the injection bump. The third generation light sources implement top-up operation firstly introduced at Advanced Photon Source. In this mode the circulating beam current is supported near constant by frequent injection of small charge, while photon beam is delivered for users. The beam perturbations caused by the mismatched injection bump can provide undesired noise in the user data. Usually the injection trigger is distributed to the users end stations so that those affected would be able to blank data acquisition. Nevertheless, as good operational practice such transients should be suppressed as much as possible. In the horizontal plane (which is commonly used for injection) one can adjust individual kicker strength as well as trigger delay while observing motion of the stored beam centroid. In the vertical plane such means are unavailable in the most cases. The possible solutions include dedicated weak vertical kickers and motorized adjustment of the roll angle of the injection kickers. Both abovementioned approaches are expensive and can significantly deteriorate reliability. We suggest two employ two skew quadrupoles (to correct both angle and position) placed inside the injection bump. In this case the beam position itself serves as measure of the kicker strength (assuming that kickers are well matched) and vertical kicks from the skew quadrupoles will be self synchronized with injection bump

  6. Molecular vibrational energy flow

    NASA Astrophysics Data System (ADS)

    Gruebele, M.; Bigwood, R.

    This article reviews some recent work in molecular vibrational energy flow (IVR), with emphasis on our own computational and experimental studies. We consider the problem in various representations, and use these to develop a family of simple models which combine specific molecular properties (e.g. size, vibrational frequencies) with statistical properties of the potential energy surface and wavefunctions. This marriage of molecular detail and statistical simplification captures trends of IVR mechanisms and survival probabilities beyond the abilities of purely statistical models or the computational limitations of full ab initio approaches. Of particular interest is IVR in the intermediate time regime, where heavy-atom skeletal modes take over the IVR process from hydrogenic motions even upon X H bond excitation. Experiments and calculations on prototype heavy-atom systems show that intermediate time IVR differs in many aspects from the early stages of hydrogenic mode IVR. As a result, IVR can be coherently frozen, with potential applications to selective chemistry.

  7. [Capillaroscopy in vibration disease].

    PubMed

    Vayssairat, M; Patri, B; Guilmot, J L; Housset, E; Dubrisay, J

    1982-10-23

    The results of nailfold capillary microscopy were compared in 107 lumberers who had been using a chain saw for more than 3 years and 115 manual workers who had never used vibrating tools. The prevalence of Raynaud's phenomenon was 61.7% in lumberers and 5.2% in the control group. The mean time of exposure to risk before the condition developed was 7.86 years. The syndrome was usually mild, but the patients had an abnormally high incidence of accidents at work, including wounds and cut off fingers. The number of capillary loops was significantly reduced. The lumberers affected showed an abnormal spasm of the digital artery in response to cold; the predictive value of this test was 88%. It is suggested that nailfold capillary microscopy should be systematically used in industrial medicine for monitoring workers using a vibrating tool.

  8. Thermoelastic vibration test techniques

    NASA Technical Reports Server (NTRS)

    Kehoe, Michael W.; Snyder, H. Todd

    1991-01-01

    The structural integrity of proposed high speed aircraft can be seriously affected by the extremely high surface temperatures and large temperature gradients throughout the vehicle's structure. Variations in the structure's elastic characteristics as a result of thermal effects can be observed by changes in vibration frequency, damping, and mode shape. Analysis codes that predict these changes must be correlated and verified with experimental data. The experimental modal test techniques and procedures used to conduct uniform, nonuniform, and transient thermoelastic vibration tests are presented. Experimental setup and elevated temperature instrumentation considerations are also discussed. Modal data for a 12 by 50 inch aluminum plate heated to a temperature of 475 F are presented. These data show the effect of heat on the plate's modal characteristics. The results indicated that frequency decreased, damping increased, and mode shape remained unchanged as the temperature of the plate was increased.

  9. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    SciTech Connect

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently from XEFT predictions to order N3LO.

  10. Covariant spectator theory of np scattering: Deuteron quadrupole moment

    DOE PAGES

    Gross, Franz

    2015-01-26

    The deuteron quadrupole moment is calculated using two CST model wave functions obtained from the 2007 high precision fits to np scattering data. Included in the calculation are a new class of isoscalar np interaction currents automatically generated by the nuclear force model used in these fits. The prediction for model WJC-1, with larger relativistic P-state components, is 2.5% smaller that the experiential result, in common with the inability of models prior to 2014 to predict this important quantity. However, model WJC-2, with very small P-state components, gives agreement to better than 1%, similar to the results obtained recently frommore » XEFT predictions to order N3LO.« less

  11. Quasiclassical description of bremsstrahlung accompanying {alpha} decay including quadrupole radiation

    SciTech Connect

    Jentschura, U. D.; Milstein, A. I.; Terekhov, I. S.; Boie, H.; Scheit, H.; Schwalm, D.

    2008-01-15

    We present a quasiclassical theory of {alpha} decay accompanied by bremsstrahlung with a special emphasis on the case of {sup 210}Po, with the aim of finding a unified description that incorporates both the radiation during the tunneling through the Coulomb wall and the finite energy E{sub {gamma}} of the radiated photon up to E{sub {gamma}}{approx}Q{sub {alpha}}/{radical}({eta}), where Q{sub {alpha}} is the {alpha}-decay Q-value and {eta} is the Sommerfeld parameter. The corrections with respect to previous quasiclassical investigations are found to be substantial, and excellent agreement with a full quantum mechanical treatment is achieved. Furthermore, we find that a dipole-quadrupole interference significantly changes the {alpha}-{gamma} angular correlation. We obtain good agreement between our theoretical predictions and experimental results.

  12. Plasma-beam traps and radiofrequency quadrupole beam coolers

    SciTech Connect

    Maggiore, M. Cavenago, M.; Comunian, M.; Chirulotto, F.; Galatà, A.; De Lazzari, M.; Porcellato, A. M.; Roncolato, C.; Stark, S.; Caruso, A.; Longhitano, A.; Cavaliere, F.; Maero, G.; Paroli, B.; Pozzoli, R.; Romé, M.

    2014-02-15

    Two linear trap devices for particle beam manipulation (including emittance reduction, cooling, control of instabilities, dust dynamics, and non-neutral plasmas) are here presented, namely, a radiofrequency quadrupole (RFQ) beam cooler and a compact Penning trap with a dust injector. Both beam dynamics studies by means of dedicated codes including the interaction of the ions with a buffer gas (up to 3 Pa pressure), and the electromagnetic design of the RFQ beam cooler are reported. The compact multipurpose Penning trap is aimed to the study of multispecies charged particle samples, primarily electron beams interacting with a background gas and/or a micrometric dust contaminant. Using a 0.9 T solenoid and an electrode stack where both static and RF electric fields can be applied, both beam transport and confinement operations will be available. The design of the apparatus is presented.

  13. Design of general apochromatic drift-quadrupole beam lines

    NASA Astrophysics Data System (ADS)

    Lindstrøm, C. A.; Adli, E.

    2016-07-01

    Chromatic errors are normally corrected using sextupoles in regions of large dispersion. In low emittance linear accelerators, use of sextupoles can be challenging. Apochromatic focusing is a lesser-known alternative approach, whereby chromatic errors of Twiss parameters are corrected without the use of sextupoles, and has consequently been subject to renewed interest in advanced linear accelerator research. Proof of principle designs were first established by Montague and Ruggiero and developed more recently by Balandin et al. We describe a general method for designing drift-quadrupole beam lines of arbitrary order in apochromatic correction, including analytic expressions for emittance growth and other merit functions. Worked examples are shown for plasma wakefield accelerator staging optics and for a simple final focus system.

  14. Uranus' (3-0) H2 quadrupole line profiles

    NASA Astrophysics Data System (ADS)

    Trafton, L.

    1987-04-01

    Spectra of Uranus' S3(0) and S3(1) H2 quadrupole lines, obtained during the 1978-1980 apparitions, are analyzed, and are found to require the presence of a deep cloud. Modifications of the Baines and Bergstralh (1986) standard model, including an additional haze layer above the 16-km-am H2 level which contains strongly absorbing particles, are needed to fit the observations. For a Rayleigh phase function, such a haze (uniformly mixed with the gas above this level) would have an absorption optical depth of 0.16 and a single scattering particle albedo of 0.30. This modification would imply a fraction of normal H2 equal to 0.25 + or - 0.10, in agreement with the Baines and Bergstralh standard model.

  15. Super Strong Permanent Magnet Quadrupole for a Linear Collider

    SciTech Connect

    Mihara, Takanori

    2004-02-19

    The field strength generated by permanent magnets has been further extended by the introduction of saturated iron. A permanent magnet quadrupole (PMQ) lens with such saturated iron is one of the candidates for the final focus lens for an e{sup +}e{sup -} Linear Collider accelerator, because of its compactness and low power consumption. The first prototype of the PMQ has been fabricated and demonstrated to have an integrated strength of 28.5T with an overall length of 10 cm and a 7mm bore radius. Two drawbacks should be considered: its negative temperature coefficient of field strength and its fixed strength. A thermal compensation material is being tested to cure the first problem. The other problem may be solved by rotating sectioned magnet bricks, but that may lead to movement of the magnetic center and introduction of multipoles beyond some strict requirements.

  16. Nb3Sn Quadrupole Magnets for the LHC IR

    SciTech Connect

    Sabbi, G.; Caspi, S.; Chiesa, L.; Coccoli, M.; Dietderich, D.r.; Ferracin, P.; Gourlay, S.A.; Hafalia, R.R.; Lietzke, A.F.; McInturff, A.D.; Scanlan, R.M.

    2001-08-01

    The development of insertion quadrupoles with 205 T/m gradient and 90 mm bore represents a promising strategy to achieve the ultimate luminosity goal of 2.5 x 10{sup 34} cm{sup -2}s{sup -1} at the Large Hadron Collider (LHC). At present, Nb{sub 3}Sn is the only practical conductor which can meet these requirements. Since Nb{sub 3}Sn is brittle, and considerably more strain sensitive than NbTi, the design concepts and fabrication techniques developed for NbTi magnets need to be modified appropriately. In addition, IR magnets must provide high field quality and operate reliably under severe radiation loads. The results of conceptual design studies addressing these issues are presented.

  17. Restoring the skew quadrupole moment in the Tevatron dipoles

    SciTech Connect

    Harding, D.J.; Bauer, P.C.; Blowers, J.N.; DiMarco, J.; Glass, H.D.; Hanft, R.W.; Carson, J.A.; Robotham, W.F.; Tartaglia, M.A.; Tompkins, J.C.; Velev, G.; /Fermilab

    2005-05-01

    In early 2003 it was realized that mechanical changes in the Tevatron dipoles had led to a deterioration of the magnetic field quality that was hindering operation of the accelerator. After extensive study, a remediation program was started in late 2003 that will continue through 2005. The mechanical and magnetic effects are discussed. The readjustment process and experience are reported, along with other observations on aging magnets. In January 2003 two lines of inquiry converged, leading to the recognition that the severe betatron coupling that was hindering operation of the Tevatron could be explained by a systematic shift on the skew quadrupole field in the dipole magnets of the same size expected from observed mechanical movement of the coils inside the magnet yokes [1]. This paper reports on subsequent magnet studies that were conducted in parallel with additional beam studies and accelerator modeling [2] exploring the feasibility of the eventual remediation effort [3].

  18. High gradient quadrupoles for low emittance storage rings

    NASA Astrophysics Data System (ADS)

    Le Bec, G.; Chavanne, J.; Benabderrahmane, C.; Farvacque, L.; Goirand, L.; Liuzzo, S.; Raimondi, P.; Villar, F.

    2016-05-01

    High gradient quadrupoles are key components for the coming generation of storage ring based light sources. The typical specifications of these magnets are: almost 100 T /m gradient, half a meter long, and a vertical aperture for the extraction of the x-ray beam. This paper presents the preparation work done at the European Synchrotron Radiation Facility, from the design to the manufacture and measurements of a prototype. It demonstrates the feasibility of such magnets. Different aspects of magnet engineering are discussed, including the study of the main scale factors and the preliminary design, the pole shaping, the impact of mechanical errors, and the magnetic measurements of a prototype with a stretched-wire system.

  19. Revision of Spin Echoes in Pure Nuclear Quadrupole Resonance

    NASA Astrophysics Data System (ADS)

    Meriles, C. A.

    2001-04-01

    Goldman's spin-1/2 formalism has been used for describing the response of an I=3/2 spin system to a two-pulse sequence in a pure nuclear quadrupole resonance experiment. A detailed analysis of the polarization evolution and quadrupolar echo generation is carried out through the use of explicit expressions for secular homo- and heteronuclear dipolar interactions. In striking contrast with previous studies, it is predicted that Van Vleck's second moments governing a classical solid-echo or Hahn sequence differ from those obtained by equivalent means in magnetic resonance. In fact, it is shown that, although measured moments still complement each other, the combined use of standard sequences does not allow the separate determination of homo- and heteronuclear dipolar contributions to the linewidth, not even in an indirect manner. In this context, the importance and potential usefulness of a crossed coil probe are also briefly discussed.

  20. Massive higher spin states in string theory and gravitational quadrupoles

    SciTech Connect

    Giannakis, I. |; Liu, J.T.; Porrati, M. ||

    1999-05-01

    In this paper we study three point functions of the type II superstring involving one graviton and two massive states, focusing in particular on the spin- (7) /(2) fermions at the first mass level. Defining a gravitational quadrupole {open_quotes}{ital h} factor,{close_quotes} we find that the nonminimal interactions of string states in general are parametrized by h{ne}1, in contrast with the preferred field theory value of h=1 (for tree-level unitarity). This difference arises from the fact that consistent gravitational interactions of strings are related to the presence of a complete tower of massive states, not present in the ordinary field theory case. {copyright} {ital 1999} {ital The American Physical Society}

  1. Investigation of a quadrupole ultra-high vacuum ion pump

    NASA Technical Reports Server (NTRS)

    Schwarz, H. J.

    1974-01-01

    The new nonmagnetic ion pump resembles the quadrupole ionization gage. The dimensions are larger, and hyperbolically shaped electrodes replace the four rods. Their surfaces follow y sq. = 36 + x sq. (x, y in centimeters). The electrodes, 55 cm long, are positioned lengthwise in a tube. At one end a cathode emits electrons; at the other end a narrowly wound flat spiral of tungsten clad with titanium on cathode potential can be heated for titanium evaporation. Electrons accelerated by a dc potential of the surface electrodes oscillate between the ends on rotational trajectories, if a high frequency potential superimposed on the dc potential is properly adjusted. Pumping speeds (4-100 liter/sec) for different gases at different peak voltages (1000-3000V) at corresponding frequencies (57-100 MHz), and at different pressures 0.00001 to the minus 9 power Torr were observed. The lowest pressure reached was below 10 to the minus 10 power Torr.

  2. Vibrational stability of graphene

    NASA Astrophysics Data System (ADS)

    Hu, Yangfan; Wang, Biao

    2013-05-01

    The mechanical stability of graphene as temperature rises is analyzed based on three different self-consistent phonon (SCP) models. Compared with three-dimensional (3-D) materials, the critical temperature Ti at which instability occurs for graphene is much closer to its melting temperature Tm obtained from Monte Carlo simulation (Ti ≃ 2Tm, K. V. Zakharchenko, A. Fasolino, J. H. Los, and M. I. Katsnelson, J. Phys. Condens. Matter 23, 202202). This suggests that thermal vibration plays a significant role in melting of graphene while melting for 3-D materials is often dominated by topologic defects. This peculiar property of graphene derives from its high structural anisotropy, which is characterized by the vibrational anisotropic coefficient (VAC), defined upon its Lindermann ratios in different directions. For any carbon based material with a graphene-like structure, the VAC value must be smaller than 5.4 to maintain its stability. It is also found that the high VAC value of graphene is responsible for its negative thermal expansion coefficient at low temperature range. We believe that the VAC can be regarded as a new criterion concerning the vibrational stability of any low-dimensional (low-D) materials.

  3. Vibrational Dynamics of Tricyanomethanide

    NASA Astrophysics Data System (ADS)

    Weidinger, Daniel; Houchins, Cassidy; Owrutsky, Jeffrey C.

    2011-06-01

    Time-resolved and steady-state IR spectroscopy have been used to characterize vibrational spectra and energy relaxation dynamics of the CN stretching band of the tricyanomethanide (TCM, C(CN)3-) anion near 2170 Cm-1 in solutions of water, heavy water, methanol, formamide, dimethyl sulfoxide (DMSO) and the ionic liquid 1-butyl methyl imidazolium tetrafluoroborate ([BMIM][BF4]). The band intensity is strong (˜1500 M-1Cm-1) and the vibrational energy relaxation times are relatively long (˜5 ps in water, 12 ps in heavy water, and ˜30 ps in DMSO and [BMIM][BF4]). They are longer than those previously reported for dicyanamide in the same solvents. Although the static TCM frequency generally shifts to higher frequency with more strongly interacting solvents, the shift does not follow the same trend as the vibrational dynamics. The results for the experimental frequencies and intensities agree well with results from ab initio calculations. Proton and electron affinities for TCM are also calculated because they are relevant to potential applications of this anion in low viscosity ionic liquids.

  4. Vibrational Echo Correlation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Asbury, John B.; Steinel, Tobias; Fayer, M. D.

    Multidimensional vibrational echo correlation spectroscopy with full phase resolution is used to measure hydrogen bond dynamics in water and methanol. The OD hydroxyl stretches of methanol-OD oligomers in CCl4 and HOD inH2O are studied using the shortest mid-IR pulses (< 45 fs, < 4 cycles of light) produced to date. The pulses have sufficient spectral bandwidth to span the very broad (> 400 cm-1) spectrum of the 0-1 and 1-2 vibrational transitions. Hydrogen bond population dynamics are extricated with exceptional detail in MeOD oligomers because the different hydrogen-bonded species are spectrally distinct. The experimental results along with detailed calculations indicate the strongest hydrogen bonds are selectively broken through a non-equilibrium relaxation pathway following vibrational relaxation of the hydroxyl stretch. Following hydrogen bond breaking, the broken MeOD oligomers retain a detailed structural memory of the prior intact hydrogen bond network. The correlation spectra are also a sensitive probe of the structural fluctuations in water and provide a stringent test of water models that are widely used in simulations of aqueous systems. The analysis of the 2D band shapes demonstrates that different hydrogen-bonded species are subject to distinct (wavelength-dependent) ultrafast (˜ 100 fs) local fluctuations and essentially identical slower (0.4 ps and ˜ 2 ps) structural rearrangements. Observation of wavelength-dependent dynamics demonstrates that standard theoretical approaches assuming Gaussian fluctuations cannot adequately describe water dynamics.

  5. Estimate exchanger vibration

    SciTech Connect

    Nieh, C.D.; Zengyan, H.

    1986-04-01

    Based on the classical beam theory, a simple method for calculating the natural frequency of unequally spanned tubes is presented. The method is suitable for various boundary conditions. Accuracy of the calculations is sufficient for practical applications. This method will help designers and operators estimate the vibration of tubular exchangers. In general, there are three reasons why a tube vibrates in cross flow: vortex shedding, fluid elasticity and turbulent buffeting. No matter which is the cause, the basic reason is that the frequency of exciting force is approximately the same as or equal to the natural frequency of the tube. To prevent the heat exchanger from vibrating, it is necessary to select correctly the shell-side fluid velocity so that the frequency of exciting force is different from the natural frequency of the tube, or to vary the natural frequency of the heat exchanger tube. So precisely determining the natural frequency of the heat exchanger, especially its foundational frequency under various supporting conditions, is of significance.

  6. First Observation of a Quadrupole Cooper Minimum in the Photoionization of Xe 5p

    NASA Astrophysics Data System (ADS)

    Deshmukh, P. C.; Hemmers, O.; Guillemin, R.; Wolska, A.; Lindle, D. W.; Rolles, D.; Yu, S. W.; Manson, S. T.

    2006-05-01

    The nondipole photoelectron angular distribution parameter ξ (= 3δ+γ) for xenon 5p1/2 and 5p3/2 has been studied experimentally in the 80 - 200 eV range. In addition, calculations have been performed using the relativistic-random-phase approximation (RRPA) methodology with all relativistic single excitation/ionization channels down to 4s coupled in both the dipole and quadrupole manifolds. The results show significant disagreement between theory and experiment above about 130 eV photon energy, in contradistinction to the Xe 5s case where rather good agreement is found. Since it is known that the dipole amplitudes are well-represented by RRPA, the difficulty must be in the quadrupole channels. It was expected that the quadrupole channels should be accurate as well since the f-wave is resonant in Xe and the main quadrupole transitions, the 5p->kf, are included in the calculation. However, we have found that these transitions each have a quadrupole Cooper minimum in the energy region of interest, so that quadrupole satellites, which are not included in the RRPA calculation, become important. This might be the first experimental indication of a quadrupole Cooper minimum.

  7. High-level ab-initio calculations for the four low-lying families of minima of (H2O)20: II. Spectroscopic signatures of the dodecahedron, fused cubes, face-sharing pentagonal prisms, and edge-sharing pentagonal prisms hydrogen bonding networks

    SciTech Connect

    Fanourgakis, Georgios S.; Apra, Edoardo; De Jong, Wibe A.; Xantheas, Sotiris S.

    2005-04-01

    We report the first harmonic vibrational spectra for each of the lowest lying isomers within the four major families of minima of (H{sub 2}O){sub 20}, namely the dodecahedron, fused cubes, face-sharing pentagonal prisms and edge-sharing pentagonal prisms. These were obtained at the second-order Moeller-Plesset perturbation level of theory (MP2) with the augmented correlation consistent basis set of double zeta quality (aug-cc-pVDZ) at the corresponding minimum energy geometries. The computed infrared (IR) spectra are the first ones obtained from first principles for these clusters. They were found to contain spectral features, which can be directly mapped onto the distinctive spectroscopic signatures of their constituent tetramer, pentamer and octamer fragments. The dodecahedron spectra show the richest structure in the OH stretching region and are associated with the most red-shifted OH vibrations with respect to the monomer. The lowest lying face-sharing pentagonal prism isomer displays intense IR active vibrations that are red-shifted by {approx}600 cm{sup -1} with respect to the water monomer. The zero-point energy corrected MP2/CBS (complete basis set) limit binding energies (D{sub 0}) for the four isomers are -163.1 kcal/mol (face-sharing pentagonal prism), -160.1 kcal/mol (edgesharing pentagonal prism), -157.5 kcal/mol (fused cubes) and -148.1 kcal/mol (dodecahedron).

  8. Vibrational averages along thermal lines

    NASA Astrophysics Data System (ADS)

    Monserrat, Bartomeu

    2016-01-01

    A method is proposed for the calculation of vibrational quantum and thermal expectation values of physical properties from first principles. Thermal lines are introduced: these are lines in configuration space parametrized by temperature, such that the value of any physical property along them is approximately equal to the vibrational average of that property. The number of sampling points needed to explore the vibrational phase space is reduced by up to an order of magnitude when the full vibrational density is replaced by thermal lines. Calculations of the vibrational averages of several properties and systems are reported, namely, the internal energy and the electronic band gap of diamond and silicon, and the chemical shielding tensor of L-alanine. Thermal lines pave the way for complex calculations of vibrational averages, including large systems and methods beyond semilocal density functional theory.

  9. The Coriolis Interaction between the v2 = 1 and v3 = 2 States of Nitrosyl Bromide: Anomalous Quadrupole Patterns and Interstate Transitions in the Millimeter-Wave Spectrum.

    PubMed

    Esposti; Fuganti; Kisiel; Tamassia

    1998-10-01

    The millimeter-wave rotational spectra of 79BrNO and 81BrNO in the v2 = 1 and v3 = 2 vibrational states have been reinvestigated. Measurements of the rotational spectrum in the region of maximum c-type Coriolis interaction between the two states allowed the previous analysis to be extended to account for some uncommon effects. For the most perturbed transitions the nuclear quadrupole hyperfine structure arises from coupling of not only the bromine nucleus, but also the nitrogen nucleus with the rotational angular momentum. These effects were satisfactorily fitted with a Hamiltonian describing Coriolis coupling in a molecule with two quadrupolar nuclei. The successful analysis of pure rotational transitions then allowed accurate prediction of rovibrational transitions, six of which were measured for 79BrNO and four for 81BrNO. Copyright 1998 Academic Press.

  10. Vibrational Spectra of Cryogenic Peptide Ions Using H_2 Predissociation Spectroscopy

    NASA Astrophysics Data System (ADS)

    Leavitt, Christopher M.; Wolk, Arron B.; Kamrath, Michael Z.; Garand, Etienne; Johnson, Mark A.; Stipdonk, Michael J. Van

    2011-06-01

    H_2 predissociation spectroscopy was used to collect the vibrational spectra of the model protonated peptides, GlyGly, GlySar, SarGly and SarSar (Gly=glycine and Sar=sarcosine). H_2 molecules were condensed onto protonated peptide ions in a quadrupole ion trap cooled to approximately 10 K. The resulting spectra yielded clearly resolved vibrational transitions throughout the mid IR region, 600-4200 Cm-1, with linewidths of approximately 6 Cm-1. Protonation nominally occurred on the amino terminus giving rise to an intramolecular H-bond between the protonated amine and the neighboring amide oxygen. The sarcosine containing peptides incorporate a methyl group onto either the amino group or the amide nitrogen causing the peptide backbone to adopt a different structure, resulting in the shifts in the amide I and II bands and the N-H stretches.

  11. Effect of Triplet Magnet Vibrations on RHIC Performance with High Energy Protons

    SciTech Connect

    Minty, M.

    2010-05-23

    In this report we present recent experimental data from the Relativistic Heavy Ion Collider (RHIC) illustrating effects resulting from {approx}10 Hz vibrations of the triplet quadrupole magnets in the interactions regions and evaluate the impact of these vibrations on RHIC collider performance. Measurements revealed modulation of the betatron tunes of appreciable magnitude relative to the total beam-beam parameter. Comparison of the discrete frequencies in the spectra of the measured beam positions and betatron tunes confirmed a common source. The tune modulations were shown to result from feed-down in the sextupole magnets in the interaction regions. In addition we show that the distortions to the closed orbit of the two counter-rotating beams produced a modulated crossing angle at the interaction point(s).

  12. Vibrating wire for beam profile scanning

    NASA Astrophysics Data System (ADS)

    Arutunian, S. G.; Dobrovolski, N. M.; Mailian, M. R.; Sinenko, I. G.; Vasiniuk, I. E.

    1999-12-01

    A method that measures the transverse profile (emittance) of the bunch by detecting radiation arising at the scattering of the bunch on scanning wire is widely used. In this work information about bunch scattering is obtained by measuring the oscillation frequency of the tightened scanning wire. In such a way, the system of radiation (or secondary particles) extraction and measurement can be removed. The entire unit consists of a compact fork with tightened wire and a scanning system. Normal oscillation frequency of a wire depends on wire tension, its geometric parameters, and, in a second approximation, its elastic characteristics. Normal oscillations are generated by interaction of an alternating current through the wire with magnetic field of a permanent magnet. In this case, it is suggested that the magnetic field of the accelerator (field of dipole magnets or quadrupole magnets) be used for excitation of oscillations. The dependence of oscillation frequency on beam scattering is determined by several factors, including changes of wire tension caused by transverse force of the beam and influence of beam self-field. Preliminary calculations show that the influence of wire heating will dominate. We have studied strain gauges on the basis of vibrating wire from various materials (tungsten, beryl bronze, and niobium zirconium alloys). A scheme of normal oscillation generation by alternating current in autogeneration circuit with automatic frequency adjustment was selected. A special method of wire fixation and elimination of transverse degrees of freedom allows us to achieve relative stability better than 10-5 during several days at a relative resolution of 10-6. Experimental results and estimates of wire heating of existing scanners show that the wire heats up to a few hundred grades, which is enough for measurements. The usage of wire of micrometer thickness diminishes the problem of wire thermalization speed during the scanning of the bunch.

  13. Flow-induced vibrations-1987

    SciTech Connect

    Au-Yang, M.K.; Chen, S.S.

    1987-01-01

    This book contains 20 selections. Some of the titles are: Acoustic resonance in heat exchanger tube bundles--Part 1. Physical nature of the phenomenon; Theoretical and experimental studies on heat exchanger U-bend tube bundle vibration characteristics; Experimental model analysis of metallic pipeline conveying fluid; Leakage flow-induced vibration of an eccentric tube-in-tube slip joint; and A study on the vibrations of pipelines caused by internal pulsating flows.

  14. Vibration damping method and apparatus

    DOEpatents

    Redmond, J.M.; Barney, P.S.; Parker, G.G.; Smith, D.A.

    1999-06-22

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof. 38 figs.

  15. Vibration damping method and apparatus

    DOEpatents

    Redmond, James M.; Barney, Patrick S.; Parker, Gordon G.; Smith, David A.

    1999-01-01

    The present invention provides vibration damping method and apparatus that can damp vibration in more than one direction without requiring disassembly, that can accommodate varying tool dimensions without requiring re-tuning, and that does not interfere with tool tip operations and cooling. The present invention provides active dampening by generating bending moments internal to a structure such as a boring bar to dampen vibration thereof.

  16. Wireless power transfer based on magnetic quadrupole coupling in dielectric resonators

    NASA Astrophysics Data System (ADS)

    Song, Mingzhao; Iorsh, Ivan; Kapitanova, Polina; Nenasheva, Elizaveta; Belov, Pavel

    2016-01-01

    We numerically investigate a magnetic resonant wireless power transfer system based on high refractive index dielectric resonators. We propose to operate at magnetic quadrupole mode of the resonators to enlarge the efficiency due to minimization of ohmic and radiation losses. Numerical estimation predicts the 80% efficiency of the wireless power transfer (WPT) system operating at quadrupole mode at 300 MHz. Moreover, the system operating at magnetic quadrupole mode is capable of transferring power with 70% efficiency when the receiver rotates 90°. We verify the simulated results by experimental investigation of the WPT system based on microwave ceramic resonators (ɛ = 80 and tanδ = 10-4).

  17. Production techniques for the Superconducting Super Collider Low Energy Booster quadrupole magnet

    SciTech Connect

    Morrison, M.E.; Behrsing, G.U.; Fulton, R.L.

    1994-07-01

    The manufacturing techniques used for a prototype quadrupole magnet, developed at Lawrence Berkeley Laboratory (LBL) for the Superconducting Super Collider (SSC) Low Energy Booster (LEB), are described. The SSC LEB Ring employs 96 dipoles and 90 quadrupoles connected in series to form the magnetic lattice, requiring the use of a 21.9 mm x 23.0 mm hollow conductor for the quadrupoles. Due to the large conductor size and small bend radii required, development of special fixtures was necessary. A unique coil-forming method with close attention paid to tooling design and special assembly procedures was required to manufacture this prototype to stringent specifications.

  18. Electric quadrupole transition probabilities and line strengths of Ti{sup 11+}

    SciTech Connect

    Gökçe, Yasin; Çelik, Gültekin; Yıldız, Murat

    2014-07-15

    Electric quadrupole transition probabilities and line strengths have been calculated using the weakest bound electron potential model for sodium-like titanium, considering many transition arrays. We employed numerical Coulomb approximation and non-relativistic Hartree–Fock wavefunctions for the expectation values of radii in determination of parameters of the model. The necessary energy values have been taken from experimental data in the literature. The calculated electric quadrupole line strengths have been compared with available data in the literature and good agreement has been obtained. Moreover, some electric quadrupole transition probability and line strength values not existing in the literature for some highly excited levels have been obtained using this method.

  19. Reconstruction of the number and positions of dipoles and quadrupoles using an algebraic method

    NASA Astrophysics Data System (ADS)

    Nara, Takaaki

    2008-11-01

    Localization of dipoles and quadrupoles is important in inverse potential analysis, since they can effectively express spatially extended sources with a small number of parmeters. This paper proposes an algebraic method for reconstruction of pole positions as well as the number of dipole-quadrupoles without providing an initial parameter guess or iterative computing forward solutions. It is also shown that a magnetoencephalography inverse problem with a source model of dipole-quadrupoles in 3D space is reduced into the same problem as in 2D space.

  20. On the dipole and quadrupole kinematic anisotropy in the brightness of the cosmic background radiation

    SciTech Connect

    De Bernardis, P.; Epifani, M.; Guarini, G.; Masi, S.; Melchiorri, F. )

    1990-04-01

    This paper studies the dipole and quadrupole anisotropy brightness arising from the motion of the observer in the presence of a pure Planckian spectrum and in the case of a submillimeter excess. It is found that the dipole anisotropy is enhanced in the case of the excess measured by the Japanese-U.S. groups, while it is decreased in the case of the excess found by the Canadian group. The quadrupole term is absent in the radio region, while it acquires detectable values in the IR. Comparisons are made with the observational values, and the possibility of observing the quadrupole pattern in the presence of galactic dust contamination is discussed. 15 refs.

  1. Nb3Sn Quadrupoles in the LHC IR Phase I Upgrade

    SciTech Connect

    Zlobin,A.; Johnstone, J.; Kashikhin, V.; Mokhov, N.; Rakhno, I.; deMaria, R.; Peggs, S.; Robert-Demolaize, F.; Wanderer, P.

    2008-06-23

    After a number of years of operation at nominal parameters, the LHC will be upgraded for higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  2. Nb3Sn quadrupoles in the LHC IR Phase I upgrade

    SciTech Connect

    Zlobin, A.V.; Johnstone, J.A.; Kashikhin, V.V.; Mokhov, N.V.; Rakhno, I.L.; de Maria, R.; Peggs, S.; Robert-Demolaize, G.; Wanderer, P.; /Brookhaven

    2008-06-01

    After a number of years of operation at nominal parameters, the LHC will be upgraded to a higher luminosity. This paper discusses the possibility of using a limited number of Nb{sub 3}Sn quadrupoles for hybrid optics layouts for the LHC Phase I luminosity upgrades with both NbTi and Nb{sub 3}Sn quadrupoles. Magnet parameters and issues related to using Nb{sub 3}Sn quadrupoles including aperture, gradient, magnetic length, field quality, operation margin, et cetera are discussed.

  3. Measuring Vibrations With Nonvibration Sensors

    NASA Technical Reports Server (NTRS)

    Hill, Arthur J.

    1988-01-01

    Information about vibrations of structure and/or of nonvibration sensor attached to structure extracted from output of sensor. Sensor operated in usual way except, output fed to power-spectral-density analyzer. Vibrational components easily distinguishable in analyzer output because they have frequencies much higher than those of more-slowly-varying temperature, pressure, or other normally desired components. Spectral-analysis technique applied successfully to high-frequency resistance changes in output of platinum-wire resistance thermometer: vibrational peaks in resistance frequency spectrum confirmed by spectrum from accelerometer. Technique also showed predicted 17-kHz vibrational resonance in strain-guage-supporting beam in pressure sensor.

  4. Computer analysis of railcar vibrations

    NASA Technical Reports Server (NTRS)

    Vlaminck, R. R.

    1975-01-01

    Computer models and techniques for calculating railcar vibrations are discussed along with criteria for vehicle ride optimization. The effect on vibration of car body structural dynamics, suspension system parameters, vehicle geometry, and wheel and rail excitation are presented. Ride quality vibration data collected on the state-of-the-art car and standard light rail vehicle is compared to computer predictions. The results show that computer analysis of the vehicle can be performed for relatively low cost in short periods of time. The analysis permits optimization of the design as it progresses and minimizes the possibility of excessive vibration on production vehicles.

  5. Electronic damping of mechanical vibrations

    NASA Technical Reports Server (NTRS)

    Vasilyev, P.; Navitskas, A.

    1973-01-01

    The conditions required for measuring and recording the patterns of vibration of a process are discussed. It is stated that the frequency of the process being investigated must be an order of magnitude lower than the natural frequency of the sensitive receiving element for sufficient accuracy. The elastic element must damp so the frequency range of the vibrational patterns being investigated can be expanded. This is especially true of the tensile stresses of a moving signal carrier. A method is proposed for damping mechanical vibrations of elastic sensitive elements with semiconductor strain gages, based on electronic compensation of the natural vibrations. A schematic diagram is provided to show the conditions.

  6. Resonance vibrations of aircraft propellers

    NASA Technical Reports Server (NTRS)

    Liebers, Fritz

    1932-01-01

    On the basis of the consideration of various possible kinds of propeller vibrations, the resonance vibrations caused by unequal impacts of the propeller blades appear to be the most important. Their theoretical investigation is made by separate analysis of torsional and bending vibrations. This method is justified by the very great difference in the two natural frequencies of aircraft propeller blades. The calculated data are illustrated by practical examples. Thereby the observed vibration phenomenon in the given examples is explained by a bending resonance, for which the bending frequency of the propeller is equal to twice the revolution speed.

  7. Turbine blade vibration dampening

    DOEpatents

    Cornelius, C.C.; Pytanowski, G.P.; Vendituoli, J.S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass ``M`` or combined mass ``CM`` of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics. 5 figs.

  8. Turbine blade vibration dampening

    DOEpatents

    Cornelius, Charles C.; Pytanowski, Gregory P.; Vendituoli, Jonathan S.

    1997-07-08

    The present turbine wheel assembly increases component life and turbine engine longevity. The combination of the strap and the opening combined with the preestablished area of the outer surface of the opening and the preestablished area of the outer circumferential surface of the strap and the friction between the strap and the opening increases the life and longevity of the turbine wheel assembly. Furthermore, the mass "M" or combined mass "CM" of the strap or straps and the centrifugal force assist in controlling vibrations and damping characteristics.

  9. Chaotic vortex induced vibrations

    SciTech Connect

    Zhao, J.; Sheridan, J.; Leontini, J. S.; Lo Jacono, D.

    2014-12-15

    This study investigates the nature of the dynamic response of an elastically mounted cylinder immersed in a free stream. A novel method is utilized, where the motion of the body during a free vibration experiment is accurately recorded, and then a second experiment is conducted where the cylinder is externally forced to follow this recorded trajectory. Generally, the flow response during both experiments is identical. However, particular regimes exist where the flow response is significantly different. This is taken as evidence of chaos in these regimes.

  10. High-Accuracy Calculation of cu Electric-Field Gradients: a Revision of the cu Nuclear Quadrupole Moment Value

    NASA Astrophysics Data System (ADS)

    Cheng, Lan; Matthews, Devin A.; Gauss, Jürgen; Stanton, John F.

    2015-06-01

    A revision of the value for the Cu nuclear quadrupole moment (NQM) is reported based on high-accuracy ab initio calculations on the Cu electric field gradients in the CuF and CuCl molecules. Electron-correlation effects have systematically been taken into account using a hierarchy of coupled-cluster methods including up to quadruple excitations. It is shown that the CCSD(T)_Λ method provides a more reliable treatment of triples corrections for Cu electric-field gradients than the ubiquitously applied CCSD(T) method, which is tentatively attributed to the importance of the wavefunction relaxation in the calculations of a core property. Augmenting large-basis-set CCSD(T)_Λ results with the remaining corrections obtained using additive schemes, including full triples contributions, quadruples contributions, zero-point vibrational corrections, spin-orbit corrections, as well as the correction from the Gaunt term, a new value of 209.7(50) mbarn for the Cu NQM has been obtained. The new value substantially reduces the uncertainty of this parameter in comparison to the standard value of 220(15) mbarn obtained from a previous muonic experiment.

  11. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    SciTech Connect

    Wu, C.Y.; Cline, D.

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  12. Triple Quadrupole Versus High Resolution Quadrupole-Time-of-Flight Mass Spectrometry for Quantitative LC-MS/MS Analysis of 25-Hydroxyvitamin D in Human Serum

    NASA Astrophysics Data System (ADS)

    Geib, Timon; Sleno, Lekha; Hall, Rabea A.; Stokes, Caroline S.; Volmer, Dietrich A.

    2016-08-01

    We describe a systematic comparison of high and low resolution LC-MS/MS assays for quantification of 25-hydroxyvitamin D3 in human serum. Identical sample preparation, chromatography separations, electrospray ionization sources, precursor ion selection, and ion activation were used; the two assays differed only in the implemented final mass analyzer stage; viz. high resolution quadrupole-quadrupole-time-of-flight (QqTOF) versus low resolution triple quadrupole instruments. The results were assessed against measured concentration levels from a routine clinical chemiluminescence immunoassay. Isobaric interferences prevented the simple use of TOF-MS spectra for extraction of accurate masses and necessitated the application of collision-induced dissociation on the QqTOF platform. The two mass spectrometry assays provided very similar analytical figures of merit, reflecting the lack of relevant isobaric interferences in the MS/MS domain, and were successfully applied to determine the levels of 25-hydroxyvitamin D for patients with chronic liver disease.

  13. Kinetic equilibrium of space charge dominated beams in a misaligned quadrupole focusing channel

    SciTech Connect

    Goswami, A.; Sing Babu, P.; Pandit, V. S.

    2013-07-15

    The dynamics of intense beam propagation through the misaligned quadrupole focusing channel has been studied in a self-consistent manner using nonlinear Vlasov-Maxwell equations. The equations of motion of the beam centroid have been developed and found to be independent of any specific beam distribution. A Vlasov equilibrium distribution and beam envelope equations have been obtained, which provide us a theoretical tool to investigate the dynamics of intense beam propagating in a misaligned quadrupole focusing channel. It is shown that the displaced quadrupoles only cause the centroid of the beam to wander off axis. The beam envelope around the centroid obeys the familiar Kapchinskij-Vladimirskij envelope equation that is independent of the centroid motion. However, the rotation of the quadrupole about its optical axis affects the beam envelope and causes an increase in the projected emittances in the two transverse planes due to the inter-plane coupling.

  14. A modified quadrupole mass spectrometer with custom RF link rods driver for remote operation

    NASA Technical Reports Server (NTRS)

    Tashbar, P. W.; Nisen, D. B.; Moore, W. W., Jr.

    1973-01-01

    A commercial quadrupole residual gas analyzer system has been upgraded for operation at extended cable lengths. Operation inside a vacuum chamber for the standard quadrupole nude head is limited to approximately 2 m from its externally located rf/dc generator because of the detuning of the rf oscillator circuits by the coaxial cable reactance. The advance of long distance remote operation inside a vacuum chamber for distances of 45 and 60 m was made possible without altering the quadrupole's rf/dc generator circuit by employing an rf link to drive the quadrupole rods. Applications of the system have been accomplished for in situ space simulation thermal/vacuum testing of sophisticated payloads.

  15. A compact beam focusing and steering element using quadrupoles with independently excited poles

    NASA Astrophysics Data System (ADS)

    Grime, Geoffrey W.

    2013-07-01

    Beam steering elements for accelerator beam transport are conventionally and conveniently incorporated into beamlines by fitting magnetic dipole elements around the vacuum tube of the line. Two steerers in each plane (X and Y) together with a quadrupole doublet constitute a module providing full control of the direction, position and focus of the beam. In some installations however, there may be insufficient space on the beamline to mount separate steerer elements. To provide steering capabilities in such a situation we have used a magnetic quadrupole doublet with the coils of each pole independently excited to synthesise the desired combination of quadrupole, horizontal dipole and vertical dipole fields. This paper describes the quadrupole steerer and its multichannel power supply and presents calculated magnetic field distributions together with raytracing simulation of its performance.

  16. Design and operation of a laminar-flow electrostatic-quadrupole-focused acceleration column

    SciTech Connect

    Maschke, A.W.

    1983-06-20

    This report deals with the design principles involved in the design of a laminar-flow electrostatic-quadrupole-focused acceleration column. In particular, attention will be paid to making the parameters suitable for incorporation into a DC MEQALAC design.

  17. Fission Quadrupole Mass Parameters in HF+BCS and HFB Methods

    SciTech Connect

    Baran, A.; Sheikh, J. A.; Staszczak, A.; Nazarewicz, Witold

    2009-01-01

    The self-consistent Hartree-Fock+BCS and Hartree-Fock-Bogoliubov methods are compared at large nuclear deformations. The calculations are carried out for the fission pathway and quadrupole mass parameter of ^{252}Fm.

  18. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System...

  19. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System...

  20. 14 CFR 27.907 - Engine vibration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... engine to excessive vibration stresses. This must be shown by a vibration investigation. (c) No part of the rotor drive system may be subjected to excessive vibration stresses. Rotor Drive System...