Zhang Yuanjiang; Zhao Qiang
2010-02-01
We investigate the DD production in e{sup +}e{sup -} annihilations near threshold in an effective Lagrangian approach. This shows that the lineshape of the cross section near threshold is sensitive to the contributions from {psi}{sup '}, though it is below the DD threshold. The recent experimental data from the BES and Belle collaborations allow us to determine the {psi}{sup '}DD coupling constant, which appears to be consistent with other theoretical studies. As a consequence, the {psi}{sup '}-{psi}(3770) mixing parameter can be extracted around the {psi}(3770) mass region. Resonance parameters for {psi}(3770), X(3900), {psi}(4040), and {psi}(4160) are also investigated. The X(3900) appears as an enhancement at around 3.9 GeV in the Belle data. In addition to treating it as a resonance, we also study the mechanism through which the enhancement is produced by the DD*+c.c. open channel effects. Our result shows that such a possibility cannot be eliminated.
Low-lying resonances and relativistic screening in Big Bang nucleosynthesis
NASA Astrophysics Data System (ADS)
Famiano, M. A.; Balantekin, A. B.; Kajino, T.
2016-04-01
We explore effects of the screening due to the relativistic electron-positron plasma and presence of resonances in the secondary reactions leading to A =7 nuclei during the Big Bang nucleosynthesis. In particular, we investigate and examine possible low-lying resonances in the 7Be (3He,γ ) 10C reaction and examine the resultant destruction of 7Be for various resonance locations and strengths. While a resonance in the 10C compound nucleus is thought to have negligible effects we explore the possibility of an enhancement from plasma screening that may adjust the final 7Be abundance. We find the effects of relativistic screening and possible low-lying resonances to be relatively small in the standard Early Universe models.
{sup 10}Li low-lying resonances populated by one-neutron transfer
Cavallaro, M. Agodi, C.; Carbone, D.; Cunsolo, A.; De Napoli, M.; Cappuzzello, F.; Bondì, M.; Davids, B.; Galinski, N.; Ruiz, C.; Davinson, T.; Sanetullaev, A.; Foti, A.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.
2015-10-15
The {sup 9}Li + {sup 2}H → {sup 10}Li + {sup 1}H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a {sup 9}Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing {sup 9}Li produced by the {sup 10}Li breakup at forward angles and the recoil protons emitted at backward angles. The {sup 10}Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.
10Li low-lying resonances populated by one-neutron transfer
NASA Astrophysics Data System (ADS)
Cavallaro, M.; De Napoli, M.; Cappuzzello, F.; Agodi, C.; Bondı, M.; Carbone, D.; Cunsolo, A.; Davids, B.; Davinson, T.; Foti, A.; Galinski, N.; Kanungo, R.; Lenske, H.; Orrigo, S. E. A.; Ruiz, C.; Sanetullaev, A.
2015-10-01
The 9Li + 2H → 10Li + 1H one-neutron transfer reaction has been performed at 100 MeV incident energy at TRIUMF using a 9Li beam delivered by the ISAC-II facility. A setup based on double-sided silicon strip detectors has been used in order to detect and identify the outgoing 9Li produced by the 10Li breakup at forward angles and the recoil protons emitted at backward angles. The 10Li low-lying resonances, whose energies, widths and configurations are still unclear, have been populated with significant statistics.
Low-lying even-parity meson resonances and spin-flavor symmetry
Garcia-Recio, C.; Geng, L. S.; Nieves, J.; Salcedo, L. L.
2011-01-01
Based on a spin-flavor extension of chiral symmetry, a novel s-wave meson-meson interaction involving members of the {rho} nonet and of the {pi} octet is introduced, and its predictions are analyzed. The starting point is the SU(6) version of the SU(3)-flavor Weinberg-Tomozawa Lagrangian. SU(6) symmetry-breaking terms are then included to account for the physical meson masses and decay constants in a way that preserves (broken) chiral symmetry. Next, the T-matrix amplitudes are obtained by solving the Bethe-Salpeter equation in a coupled-channel scheme, and the poles are identified with their possible Particle Data Group counterparts. It is shown that most of the low-lying even-parity Particle Data Group meson resonances, especially in the J{sup P}=0{sup +} and 1{sup +} sectors, can be classified according to multiplets of SU(6). The f{sub 0}(1500), f{sub 1}(1420), and some 0{sup +}(2{sup ++}) resonances cannot be accommodated within this scheme, and thus they would be clear candidates to be glueballs or hybrids. Finally, we predict the existence of five exotic resonances (I{>=}3/2 and/or |Y|=2) with masses in the range of 1.4-1.6 GeV, which would complete the 27{sub 1}, 10{sub 3}, and 10{sub 3}* multiplets of SU(3) x SU(2).
Anharmonic Resonances among Low-Lying Vibrational Levels of Methyl Iso-Cyanide (H_3CNC)
NASA Astrophysics Data System (ADS)
Pracna, P.; Urban, J.; Urban, V. S.; Varga, J.; Horneman, V.-M.
2010-06-01
Vibrational levels up to 1000 wn of H_3C-N≡C are currently studied in FTIR spectra together with rotational transitions within these levels. This investigation comprises the low-lying excited vibrational levels of the CNC doubly degenerate bending vibration v8=1^± 1 (267.3 wn), v8=20,± 2 (524.6 wn (A), 545.3 wn (E)), and v8=3^± 1,± 3 (792.5 wn (A1+A2), 833.9 wn (E)), respectively, and the next higher fundamental level of the C-N valence vibration v4=1 (945 wn). All these vibrational levels exhibit cubic and quartic anharmonic resonances localized to moderate values of the rotational quantum number K≤10. Therefore the system of rovibrational levels has to be treated as a global polyad in order to describe all the available data quantitatively. The ground state constants have been improved considerably by extending the assignments to higher J/K rotational states both in the purely rotational spectra recorded in the ground vibrational level and in the ground state combination differences generated from the wavenumbers assigned in the fundamental ν_4 band. Similarities and differences with respect to isoelectronic molecules CH_3CN and CH_3CCH are discussed.
Testing the tetraquark structure for the X resonances in the low-lying region
NASA Astrophysics Data System (ADS)
Kim, Hungchong; Kim, K. S.; Cheoun, Myung-Ki; Jido, Daisuke; Oka, Makoto
2016-07-01
Assuming the four-quark structure for the X resonances in the low-lying region, we calculate their masses using the color-spin interaction. Specifically, the hyperfine masses of the color-spin interaction are calculated for the possible states in spin-0, spin-1, spin-2 channels. The two states in spin-0 channel as well as the two states in spin-1 channel are diagonalized in order to generate the physical hyperfine masses. By matching the difference in hyperfine masses with the splitting in corresponding hadron masses and using the X(3872) mass as an input, we estimate the masses corresponding to the states J^{PC}=0^{++} , 1^{+-} , 2^{++} . We find that the masses of two states in 1^{+-} are close to those of X(3823) , X(3900) , and the mass of the 2^{++} state is close to that of X(3940) . For them, the discrepancies are about ˜ 10 MeV. This may suggest that the quantum numbers of the controversial states are X(3823)=1^{+-} , X(3900)=1^{+-} , X(3940)=2^{++} . In this work, we use the same inputs parameters, the constituent quark masses and the strength of the color-spin interaction, that have been adopted in the previous work on the D - or B -meson excited states. There, it was shown that the four-quark structure can be manifested in their excited states. Thus, our results in this work provide a consistent treatment on open- and hidden-charm mesons as far as the four-quark model is concerned.
Giacoppo, F.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Larsen, A. C.; Kheswa, B. V.; Klintefjord, M.; Koehler, P. E.; et al
2015-05-28
An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of 195,196Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of 195,196Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.
NASA Astrophysics Data System (ADS)
Raeder, S.; Sonnenschein, V.; Gottwald, T.; Moore, I. D.; Reponen, M.; Rothe, S.; Trautmann, N.; Wendt, K.
2011-08-01
In-source resonance ionization spectroscopy was used to identify an efficient and selective three-step excitation/ionization scheme of thorium, suitable for titanium:sapphire (Ti:sa) lasers. The measurements were carried out in the preparation of laser spectroscopic investigations for an identification of the low-lying 229mTh isomer predicted at 7.6 ± 0.5 eV above the nuclear ground state. Using a sample of 232Th, a multitude of optical transitions leading to over 20 previously unknown intermediate states of even parity as well as numerous high-lying odd parity auto-ionizing (AI) states were identified. Level energies were determined with an accuracy of 0.06 cm-1 for intermediate and 0.15 cm-1 for AI states. Using different excitation pathways, an assignment of total angular momenta for several energy levels was possible. One particularly efficient ionization scheme of thorium, exhibiting saturation in all three optical transitions, was studied in detail. For all three levels in this scheme, the isotope shifts of the isotopes 228Th, 229Th and 230Th relative to 232Th were measured. An overall efficiency including ionization, transport and detection of 0.6% was determined, which was predominantly limited by the transmission of the mass spectrometer ion optics.
Giacoppo, F.; Bello Garrote, F. L.; Eriksen, T. K.; Görgen, A.; Guttormsen, M.; Hagen, T. W.; Larsen, A. C.; Kheswa, B. V.; Klintefjord, M.; Koehler, P. E.; Moretto, L. G.; Nyhus, H. T.; Renstrøm, T.; Sahin, E.; Siem, S.; Tornyi, T. G.; Schwengner, R.; Zuber, K.
2015-05-28
An excess of strength on the low-energy tail of the giant dipole resonance recently has been observed in the γ-decay from the quasicontinuum of ^{195,196}Pt. The nature of this phenomenon is not yet fully investigated. If this feature is present also in the γ-ray strength of the neutron-rich isotopes, it can affect the neutron-capture reactions involved in the formation of heavy-elements in stellar nucleosynthesis. The experimental level density and γ-ray strength function of ^{195,196}Pt are presented together with preliminary calculations of the corresponding neutron-capture cross sections.
Coupling vector and pseudoscalar mesons to study baryon resonances
Khemchandani, K. P.; Kaneko, H.; Hosaka, A.; Martinez Torres, A.; Nagahiro, H.
2011-11-01
A study of meson-baryon systems with total strangeness -1 is made within a framework based on the chiral and hidden local symmetries. These systems consist of octet baryons, pseudoscalar and vector mesons. The pseudoscalar meson-baryon (PB) dynamics has been earlier found determinant for the existence of some strangeness -1 resonances, for example, {Lambda}(1405), {Lambda}(1670), etc. The motivation of the present work is to study the effect of coupling the closed vector meson-baryon (VB) channels to these resonances. To do this, we obtain the PB{yields}PB and VB{yields}VB amplitudes from the t-channel diagrams and the PB{r_reversible}VB amplitudes are calculated using the Kroll-Ruddermann term where, considering the vector meson dominance phenomena, the photon is replaced by a vector meson. The calculations done within this formalism reveal a very strong coupling of the VB channels to the {Lambda}(1405) and {Lambda}(1670). In the isospin 1 case, we find evidence for a double pole structure of the {Sigma}(1480) which, like the isospin 0 resonances, is also found to couple strongly to the VB channels. The strong coupling of these low-lying resonances to the VB channels can have important implications on certain reactions producing them.
Vector resonances and electromagnetic nucleon structure
Robert Williams; Siegfried Krewald; Kevin Linen
1995-02-01
Motivated by new, precise magnetic proton form factor data in the timelike region, a hybrid vector meson dominance (hVMD) formalism is employed to investigate the significance of excited vector meson resonances on electromagnetic nucleon structure. We find that the rho (1700), omega (1600), and two previously unobserved states are required to reproduce the local structure seen in the new LEAR data just above the pp-bar threshold. We also investigate sensitivity to the phi meson. The model dependence of our result is tested by introducing an alternative model which couples the isoscalar vector meson states to a hypothetical vector glueball resonance. We obtain nearly identical results from both models, except for GnE(q2) in the spacelike region which is very sensitive to the glueball mass and the effective phi NN coupling.
NASA Astrophysics Data System (ADS)
Morales, A. I.; Benzoni, G.; Watanabe, H.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoyborg, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Shaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.
2016-03-01
Low-lying excited states in 72Ni have been investigated in an in-flight fission experiment at the RIBF facility of the RIKEN Nishina Center. The combination of the state-of-the-art BigRIPS and EURICA setups has allowed for a very accurate study of the β decay from 72Co to 72Ni, and has provided first experimental information on the decay sequence 72Fe→72Co→72Ni and on the delayed neutron-emission branch 73Co→72Ni . Accordingly, we report nearly 60 previously unobserved γ transitions which deexcite 21 new levels in 72Ni. Evidence for the location of the so-sought-after (42+) ,(62+) , and (81+) seniority states is provided. As well, the existence of a low-spin β -decaying isomer in odd-odd neutron-rich Co isotopes is confirmed for mass A =72 . The new experimental information is compared to simple shell-model calculations including only neutron excitations across the f p g shells. It is shown that, in general, the calculations reproduce well the observed states.
Resonance vector soliton of the Rayleigh wave.
Adamashvili, G T
2016-02-01
A theory of acoustic vector solitons of self-induced transparency of the Rayleigh wave is constructed. A thin resonance transition layer on an elastic surface is considered using a model of a two-dimensional gas of impurity paramagnetic atoms or quantum dots. Explicit analytical expressions for the profile and parameters of the Rayleigh vector soliton with two different oscillation frequencies is obtained, as well as simulations of this nonlinear surface acoustic wave with realistic parameters, which can be used in acoustic experiments. It is shown that the properties of a surface vector soliton of the Rayleigh wave depend on the parameters of the resonance layer, the elastic medium, and the transverse structure of the surface acoustic wave. PMID:26986400
Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance Three Axis Vector Magnetometer
NASA Astrophysics Data System (ADS)
Bulatowicz, Michael; Clark, Philip; Griffith, Robert; Larsen, Michael; Mirijanian, James
2012-06-01
The Northrop Grumman Corporation is leveraging the technology developed for the Nuclear Magnetic Resonance Gyroscope (NMRG) to build a combined Electron Paramagnetic Resonance -- Nuclear Magnetic Resonance (EPR-NMR) magnetometer. The EPR-NMR approach provides a high bandwidth and high sensitivity simultaneous measurement of all three vector components of the magnetic field averaged over the small volume of the sensor's one vapor cell. This poster will describe the history, operational principles, and design basics of the EPR-NMR magnetometer including an overview of the NSD designs developed and demonstrated to date. General performance results will also be presented.
On the low-lying states of TiC
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Siegbahn, P. E. M.
1984-01-01
The ground and low-lying excited states of TiC are investigated using a CASSCF-externally contracted CI approach. The calculations yield a 3Sigma(+) ground state, but the 1Sigma(+) state is only 780/cm higher and cannot be ruled out. The low-lying states have some triple bond character. The nature of the bonding and origin of the states are discussed.
Low-lying Gamow-Teller transitions in spherical nuclei
Cakmak, N.; Uenlue, S.; Selam, C.
2012-01-15
The Pyatov Method has been used to study the low-lying Gamow-Teller transitions in the mass region of 98 Less-Than-Or-Slanted-Equal-To A Less-Than-Or-Slanted-Equal-To 130. The eigenvalues and eigenfunctions of the total Hamiltonian have been solved within the framework of proton-neutron quasiparticle random-phase approximation. The low-lying {beta} decay log(ft) values have been calculated for the nuclei under consideration.
Low-lying lattice modes of highly uniform pentacene monolayers
NASA Astrophysics Data System (ADS)
He, Rui; Tassi, Nancy G.; Blanchet, Graciela B.; Pinczuk, Aron
2009-06-01
The authors report that monolayers of pentacene grown on a functionalized polymeric substrate display high uniformity that enable observations of Raman spectra of low-lying optical vibrations. The evolution of the frequencies and widths of the modes has been studied in films reaching the single monolayer level. Raman spectra of low-lying lattice modes display major changes when the film thickness changes from 1 to 2 monolayers, revealing that a phase akin to a thin film phase of pentacene already emerges in films of only 2 monolayers.
Experimental investigation of low-lying states of pionic atoms
Amian, W.B.; Cloth, P.; Djaloeis, A.; Filges, D.; Gotta, D.; Kilian, K.; Machner, H.; Morsch, H.P.; Protic, D.; Riepe, G.; Roderburg, E.; von Rossen, P.; Turek, P.; Watzlawik, K.H. ); Jarczyk, L.; Smyrski, J.; Stralkowski, A. ); Budzanowski, A.; Dabrowski, H.; Skwirczynska, I. ); Plendl, H. ); Konijn, J. )
1991-04-10
We propose to study pionic atoms in low-lying states. The pions will be produced with the help of recoil free kinematics at small energies in the laboratory. A dedicated detector will be applied allowing the measurements of the width as well as the energy shift of these states.
The Low-Lying Electronic States of Mg2(+)
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W., Jr.
1994-01-01
The low-lying doublet and quartet states of Mg+ have been studied using a multireference configuration interaction approach. The effect of inner-shell correlation has been included using the core-polarization potential method. The computed spectroscopic constants, lifetimes, and oscillator strengths should help resolve the difference between the recent experiments and previous theoretical calculations.
Organic semiconductor interfaces: low-lying lattice modes of pentacene monolayers
NASA Astrophysics Data System (ADS)
He, Rui; Blanchet, Graciela; Pinczuk, Aron
2010-03-01
Highly uniform monolayers of pentacene that are grown on polymeric substrate of poly alpha-methylstyrene exhibit sharp and intense free exciton luminescence. Large enhancements of Raman scattering intensities at the free exciton resonance enable the first observations of low-lying lattice vibration modes in films reaching the single monolayer level.footnotetextRui He, et al. Appl. Phys. Lett. 94, 223310 (2009). The low- lying modes display characteristic changes when going from a single monolayer to two layers, revealing that a phase akin to a thin film phase of pentacene already emerges in structures of only two monolayers. A simple analysis of mode splittings offers estimates of the strength of inter-layer interactions. The results demonstrate novel venues for ultra-thin film characterization and studies of interface effects in organic molecular semiconductor structures.
Testing resonating vector strength: Auditory system, electric fish, and noise
NASA Astrophysics Data System (ADS)
Leo van Hemmen, J.; Longtin, André; Vollmayr, Andreas N.
2011-12-01
Quite often a response to some input with a specific frequency ν○ can be described through a sequence of discrete events. Here, we study the synchrony vector, whose length stands for the vector strength, and in doing so focus on neuronal response in terms of spike times. The latter are supposed to be given by experiment. Instead of singling out the stimulus frequency ν○ we study the synchrony vector as a function of the real frequency variable ν. Its length turns out to be a resonating vector strength in that it shows clear maxima in the neighborhood of ν○ and multiples thereof, hence, allowing an easy way of determining response frequencies. We study this "resonating" vector strength for two concrete but rather different cases, viz., a specific midbrain neuron in the auditory system of cat and a primary detector neuron belonging to the electric sense of the wave-type electric fish Apteronotus leptorhynchus. We show that the resonating vector strength always performs a clear resonance correlated with the phase locking that it quantifies. We analyze the influence of noise and demonstrate how well the resonance associated with maximal vector strength indicates the dominant stimulus frequency. Furthermore, we exhibit how one can obtain a specific phase associated with, for instance, a delay in auditory analysis.
Vector resonances and electromagnetic nucleon structure
Williams, R.A.; Krewald, S.; Linen, K. )
1995-02-01
Motivated by new, precise magnetic proton form factor data in the timelike reigon, a hybrid vector meson dominance (hVMD) formalism is employed to investigate the significance of excited vector meson rsonances on electromagnetic nucleon structure. We find that the [rho](1700), [omega](1600), and two previously unobserved states are required to reproduce the local structure seen in the new LEAR data just above the [ital p[bar p
A theoretical study of the low-lying states of Ti2 and Zr2
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Partridge, Harry; Langhoff, Stephen R.; Rosi, Marzio
1991-01-01
The low-lying states of Ti2 and the valence isoelectronic Zr2 are examined theoretically by means of a multireference configuration-interaction (MRCI) method. MRCI calculations demonstrate that two of the Zr2 states are very low-lying and that the resulting vertical excitation is consistent with the optical spectrum of Zr2. The ground state is predicted for Ti2 on the basis of valence correlation with the MRCI method and the average coupled-pair functional technique. Calculations of the inner-shell correlation effects are estimated and found to lower the 3Delta g state to a ground state, and another to a very low-lying state. The ground state of Ti2 is assigned to 3Delta g since it is lower than the other state at all levels of correlation and is derived from the same atomic asymptote. This conclusion is supported by the lack of an electron-spin resonance signal but contradicts the absence of subcomponents on the Raman spectral lines.
Transition properties of low-lying states in atomic indium
Sahoo, B. K.; Das, B. P.
2011-07-15
We present here the results of our relativistic many-body calculations of various properties of the first six low-lying excited states of indium. The calculations were performed using the relativistic coupled-cluster method in the framework of the singles, doubles, and partial triples approximation. The lifetime of the [4p{sup 6}]5s{sup 2}5p{sub 3/2} state in this atom is determined. Our results could be used to shed light on the reliability of the lifetime measurements of the excited states of atomic indium that we have considered in the present work.
Spectroscopic study of low-lying {sup 16}N levels
Bardayan, D. W.; Nesaraja, C. D.; Pain, S. D.; Smith, M. S.; O'Malley, P. D.; Cizewski, J. A.; Hatarik, R.; Peters, W. A.; Blackmon, J. C.; Chae, K. Y.; Jones, K. L.; Moazen, B. H.; Paulauskas, S.; Pittman, S. T.; Schmitt, K. T.; Chipps, K. A.; Kozub, R. L.; Shriner, J. F. Jr.; Matei, C.
2008-11-15
The magnitude of the {sup 15}N(n,{gamma}){sup 16}N reaction rate in asymptotic giant branch stars depends directly on the neutron spectroscopic factors of low-lying {sup 16}N levels. A new study of the {sup 15}N(d,p){sup 16}N reaction is reported populating the ground and first three excited states in {sup 16}N. The measured spectroscopic factors are near unity as expected from shell model calculations, resolving a long-standing discrepancy with earlier measurements that had never been confirmed or understood. Updated {sup 15}N(n,{gamma}){sup 16}N reaction rates are presented.
Low-lying Collective States in {sup 136}Ba
Scheck, M.; Mukhopadhyay, S.; Crider, B.; Choudry, S. N.; Elhami, E.; Peters, E. E.; McEllistrem, M. T.; Orce, J. N.; Yates, S. W.
2009-01-28
Low-lying collective states in {sup 136}Ba were investigated with (n,n'{gamma}) techniques, including Doppler-shift attenuation lifetime measurements. The level spins, lifetimes, branching ratios, multipole-mixing ratios and transition strengths reveal candidates for symmetric-phonon states up to third order. The 2{sub ms}{sup +} mixed-symmetry state was confirmed as unfragmented and a candidate for a [2{sub 1}{sup +} x 2{sub ms}{sup +}]{sub 3}{sup +} two-phonon mixed-symmetry state is proposed.
Noncollisional excitation of low-lying states in gaseous nebulae
NASA Technical Reports Server (NTRS)
Rubin, Robert H.
1986-01-01
Consideration is given to the effects of processes other than electron collisional excitation on the energy level populations of species of C, N, and O. It is found that dielectronic as well as direct-radiative recombination may contribute significantly and in some cases be the major input to populating the low-lying metastable levels. It is concluded that the most pronounced changes occur when there is a large effective recombination coefficient to a level and when T(e) is low. The most dramatic change among the forbidden lines occurs for the O II forbidden lines.
Low-lying Level Structure of 150Nd
NASA Astrophysics Data System (ADS)
Chakraborty, A.; Prados-Estévez, F. M.; Yates, S. W.; Choudry, S. N.; Crider, B. P.; Kumar, A.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Mynk, M. G.; Peters, E. E.; Garrett, P. E.; Kulp, W. D.; Wood, J. L.
2011-10-01
To address the issue of whether the 150Nd nucleus represents an example of a phase transition in the shape degree of freedom or a complex example of shape coexistence, its level structure, up to about 2 MeV excitation and 6 ℏ, has been explored via the (n ,n' γ) reaction at the University of Kentucky accelerator facility. Level lifetimes, in the sub-picosecond regime, were extracted with a Doppler-shift attenuation analysis. A significant extension of the level scheme was possible, and the observed low-lying level structure of 150Nd indicates a close resemblance to its neighboring 152Sm isotone. Results from the ongoing analysis will be presented. This material is based on work supported by the U.S. National Science Foundation under Grant No. PHY-0956310.
On the low lying singlet states of BeO
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Lengsfield, B. H.; Yarkony, D. R.
1980-01-01
Calculations of the ground and low-lying singlet states of BeO are performed in order to gain an understanding of the techniques needed to treat the excited states of other, more complex, ionic molecules. The MCSCF and CI calculations are based on a Gaussian basis set of slightly better than double zeta plus polarization quality for single configuration descriptions of the states. The calculated X-A and X-B state separations are found to be in agreement with experimental measurements. The 1 Sigma - and 1 Delta states are predicted to lie approximately 40,000 kaysers above the ground state and are identified as the C and D states.The 2 1 Pi state is found to be approximately 15,000 kaysers and the 3 1 Sigma + state is found to be approximately 65,000 kaysers above the ground state.
Fully vectorial laser resonator modeling by vector extrapolation methods
NASA Astrophysics Data System (ADS)
Asoubar, Daniel; Kuhn, Michael; Wyrowski, Frank
2015-02-01
The optimization of multi-parameter resonators requires flexible simulation techniques beyond the scalar approximation. Therefore we generalize the scalar Fox and Li algorithm for the transversal eigenmode calculation to a fully vectorial model. This modified eigenvalue problem is solved by two polynomial-type vector extrapolation methods, namely the minimal polynomial extrapolation and the reduced rank extrapolation. Compared to other eigenvalue solvers these techniques can also be applied to resonators including nonlinear components. As an example we show the calculation of an azimuthally polarized eigenmode emitted by a resonator containing a discontinuous phase element and a nonlinear active medium. The simulation is verified by experiments.
Low-lying continuum states of drip-line oxygen isotopes
NASA Astrophysics Data System (ADS)
Tsukiyama, Koshiroh; Otsuka, Takaharu; Fujimoto, Rintaro
2015-09-01
Low-lying continuum states of exotic oxygen isotopes with A=23-26 are studied, by introducing the continuum-coupled shell model (CCSM) characterized by an infinite wall placed very far away and by an interaction for continuum coupling constructed in a close relation to the realistic shell-model Hamiltonian. Neutron-emission spectra from exotic oxygen isotopes are calculated by the doorway-state approach in heavy-ion multi-nucleon transfer reactions. The results agree with experiment remarkably well, providing evidence that the continuum effects are stronger than ˜ 1 MeV, consistent with the shell evolution in exotic nuclei. The peaks in the neutron spectra are understood as doorway-state resonances. The results by this CCSM doorway-state approach are compared with calculations on neutron-scattering resonance peaks made within the CCSM phase-shift approach and also with those obtained in the Gamow shell model, by taking the same Hamiltonian.
Low-lying excitations in a strongly interacting Fermi gas
NASA Astrophysics Data System (ADS)
Vale, Christopher; Hoinka, Sascha; Dyke, Paul; Lingham, Marcus
2016-05-01
We present measurements of the low-lying excitation spectrum of a strongly interacting Fermi gas across the Bardeen-Cooper-Schrieffer (BCS) to Bose-Einstein condensate (BEC) crossover using Bragg spectroscopy. By focussing the Bragg lasers onto the central volume of the cloud we can probe atoms at near-uniform density allowing measurement of the homogeneous density-density response function. The Bragg wavevector is set to be approximately half of the Fermi wavevector to probe the collective response. Below the superfluid transition temperature the Bragg spectra dominated by the Bogoliubov-Anderson phonon mode. Single particle excitations become visible at energies greater than twice the pairing gap. As interactions are tuned from the BCS to BEC regime the phonon and single particle modes separate apart and both the pairing gap and speed of sound can be directly read off in certain regions of the crossover. Single particle pair-breaking excitations become heavily suppressed as interactions are tuned from the BCS to BEC regimes.
Low-lying isomeric levels in 75Cu
Daugas, J. M.; Faul, T.; Grawe, H.; Pfutzner, M.; Grzywacz, R.; Lewitowicz, M.; Achouri, N. L.; Bentida, R.; Beraud, R.; Borcea, C.; Bingham, C. R.; Catford, W.; Emsallem, A.; De France, G.; Grzywacz, K. L.; Lemmon, R.; Lopez Jimenez, M. J.; de Oliveira Santos, F.; Regan, P. H.; Rykaczewski, Krzysztof Piotr; Sauvestre, J. E.; Sawicka, M.; Stanoiu, M.; Sieja, K.; Nowacki, F.
2010-01-01
Isomeric low-lying states were identified and investigated in the 75Cu nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as 75m1Cu and 75m2Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2 , 3/2 , and 5/2 states for the neutron-rich odd-mass Cu isotopes when filling the g9/2. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2 state coexists with more and more collective 3/2 and 1/2 levels at low excitation energies.
Low-lying isomeric levels in {sup 75}Cu
Daugas, J. M.; Faul, T.; Sauvestre, J. E.; Grawe, H.; Pfuetzner, M.; Sawicka, M.; Grzywacz, R.; Lewitowicz, M.; France, G. de; Lopez Jimenez, M. J.; Oliveira Santos, F. de; Baiborodin, D.; Bentida, R.; Beraud, R.; Emsallem, A.; Bingham, C. R.; Grzywacz, K. L.
2010-03-15
Isomeric low-lying states were identified and investigated in the {sup 75}Cu nucleus. Two states at 61.8(5)- and 128.3(7)-keV excitation energies with half-lives of 370(40)- and 170(15)-ns were assigned as {sup 75m1}Cu and {sup 75m2}Cu, respectively. The measured half-lives combined with the recent spin assignment of the ground state allow one to deduce tentatively spin and parity of the two isomers and the dominant multipolarities of the isomeric transitions with respect to the systematics of the Cu isotopes. Shell-model calculations using an up-to-date effective interaction reproduce the evolution of the 1/2{sup -}, 3/2{sup -}, and 5/2{sup -} states for the neutron-rich odd-mass Cu isotopes when filling the nug{sub 9/2}. The results indicate a significant change in the nuclear structure in this region, where a single-particle 5/2{sup -} state coexists with more and more collective 3/2{sup -} and 1/2{sup -} levels at low excitation energies.
Low-Lying Electronic States of CuAu.
Alizadeh Sanati, Davood; Andrae, Dirk
2016-07-28
Coinage metal diatomic molecules are building blocks for nanostructured materials, electronic devices, and catalytically or photochemically active systems that are currently receiving lively interest in both fundamental and applied research. The theoretical study presented here elucidates the electronic structure in the ground and several low-lying excited states of the diatomic molecule CuAu that result from the combination of the atoms in their ground states nd(10)(n + 1)s(1 2)S and lowest excited d-hole states nd(9)(n + 1)s(2 2)D (n = 3 for Cu, n = 5 for Au). Full and smooth potential energy curves, obtained at the multireference configuration interaction (MRCI) level of theory, are presented for the complete set of the thus resulting 44 Λ-S terms and 86 Ω terms. Our approach is based on a scalar relativistic description using the Douglas-Kroll-Hess (DKH) Hamiltonian, with subsequent perturbative inclusion of spin-orbit (SO) coupling via the spin-orbit terms of the Breit-Pauli (BP) Hamiltonian. The Ω terms span an energy interval of about 7 eV at the ground state's equilibrium distance. Spectroscopic constants, calculated for all terms, are shown to accurately reproduce the observation for those nine terms that are experimentally known. PMID:27379475
On the low-lying states of CuO
NASA Technical Reports Server (NTRS)
Bagus, P. S.; Nelin, C. J.; Bauschlicher, C. W., Jr.
1984-01-01
Self consistent field and correlated wave functions have been computed for the ground and for several low-lying states of CuO. The ground state is X(2)PI and the lowest excited state, at approximately 8,000/cm above X(2)PI, is a previously unidentified 2-sigma(+) state. The separation of these states is compared to that for the similar states of KO and is analysed in terms of integrals between orbitals of the separated free ions. A classification of the states of the molecule based on states of Cu(+) and O(-) which leads to a division into manifolds of states arising from Cu(+) 3d(10) and Cu(+) 3d(9) 4s(1) is considered. It is predicted that the state of the 3d(9) 4s(1) manifold are 10,000 to 30,000/cm above the ground state and assign the observed A2-sigma(+) state at 16,500/cm to this manifold.
Black holes with a single Killing vector field: black resonators
NASA Astrophysics Data System (ADS)
Dias, Óscar J. C.; Santos, Jorge E.; Way, Benson
2015-12-01
We numerically construct asymptotically anti-de Sitter (AdS) black holes in four dimensions that contain only a single Killing vector field. These solutions, which we coin black resonators, link the superradiant instability of Kerr-AdS to the nonlinear weakly turbulent instability of AdS by connecting the onset of the superradiance instability to smooth, horizonless geometries called geons. Furthermore, they demonstrate non-uniqueness of Kerr-AdS by sharing asymptotic charges. Where black resonators coexist with Kerr-AdS, we find that the black resonators have higher entropy. Nevertheless, we show that black resonators are unstable and comment on the implications for the endpoint of the superradiant instability.
Park, In Ja; Yu, Chang Sik; Lim, Seok-Byung; Lee, Jong Lyul; Kim, Chan Wook; Yoon, Yong Sik; Park, Seong Ho; Kim, Jin Cheon
2016-01-01
Abstract The present study explored the benefit of preoperative chemoradiotherapy (PCRT) for sphincter preservation in locally advanced low-lying rectal cancer patients who underwent stapled anastomosis, especially in those with deep and narrow pelvises determined by magnetic resonance imaging. Patients with locally advanced low-lying rectal cancer (≤5 cm from the anal verge) who underwent stapled anastomosis were included. Patients were categorized into two groups (PCRT+ vs. PCRT–) according to PCRT application. Patients in the PCRT+ group were matched to those in the PCRT– group according to potential confounding factors (age, gender, clinical stage, and body mass index) for sphincter preservation. Sphincter preservation, permanent stoma, and anastomosis-related complications were compared between the groups. Pelvic magnetic resonance imaging was used to measure 12 dimensions representing pelvic cavity depth and width with which deep and narrow pelvis was defined. The impact of PCRT on sphincter preservation and permanent stoma in pelvic dimensions defined as deep and narrow pelvis was evaluated, and factors associated with sphincter preservation and permanent stoma were analyzed. One hundred sixty-six patients were one-to-one matched between the PCRT+ and PCRT− groups. Overall, sphincter-saving surgery was performed in 66.3% and the rates were not different between the 2 groups. Anastomotic complications and permanent stoma occurred nonsignificantly more frequently in the PCRT+ group. PCRT was not associated with higher rate of sphincter preservation in all pelvic dimensions defined as deep and narrow pelvis, while PCRT was related to higher rate of permanent stoma in shorter transverse diameter and interspinous distance. On logistic regression analysis, PCRT was not shown to influence both sphincter preservation and permanent stoma, while longer transverse diameter and interspinous distance were associated with lower rate of permanent stoma. PCRT had
Bounding wide composite vector resonances at the LHC
NASA Astrophysics Data System (ADS)
Barducci, Daniele; Delaunay, Cédric
2016-02-01
In composite Higgs models (CHMs), electroweak precision data generically push colourless composite vector resonances to a regime where they dominantly decay into pairs of light top partners. This greatly attenuates their traces in canonical collider searches, tailored for narrow resonances promptly decaying into Standard Model final states. By reinterpreting the CMS same-sign dilepton (SS2 ℓ) analysis at the Large Hadron Collider (LHC), originally designed to search for top partners with electric charge 5/3, we demonstrate its significant coverage over this kinematical regime. We also show the reach of the 13 TeV run of the LHC, with various integrated luminosity options, for a possible upgrade of the SS2ℓ search. The top sector of CHMs is found to be more fine-tuned in the presence of colourless composite resonances in the few TeV range.
Vector and scalar charmonium resonances with lattice QCD
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa
2015-09-15
We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯scattering in p-wave yields the well-known vector resonance ψ(3770). For m π = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state χ c0(1P ) is well understood, while there is no commonly accepted candidate for its first excitation. We then simulatemore » DD¯scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at χ c0(1P), we found, agrees with the energy-dependence of our phase shift. Further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.« less
Vector and scalar charmonium resonances with lattice QCD
Lang, C. B.; Leskovec, Luka; Mohler, Daniel; Prelovsek, Sasa
2015-09-15
We perform an exploratory lattice QCD simulation of DD¯ scattering, aimed at determining the masses as well as the decay widths of charmonium resonances above open charm threshold. Neglecting coupling to other channels, the resulting phase shift for DD¯scattering in p-wave yields the well-known vector resonance ψ(3770). For m _{π} = 156 MeV, the extracted resonance mass and the decay width agree with experiment within large statistical uncertainty. The scalar charmonium resonances present a puzzle, since only the ground state χ _{c0}(1P ) is well understood, while there is no commonly accepted candidate for its first excitation. We then simulate DD¯scattering in s-wave in order to shed light on this puzzle. The resulting phase shift supports the existence of a yet-unobserved narrow resonance with a mass slightly below 4 GeV. A scenario with this narrow resonance and a pole at χ _{c0}(1P), we found, agrees with the energy-dependence of our phase shift. Further lattice QCD simulations and experimental efforts are needed to resolve the puzzle of the excited scalar charmonia.
Low-lying dipole strength of the open-shell nucleus 94Mo
NASA Astrophysics Data System (ADS)
Romig, C.; Beller, J.; Glorius, J.; Isaak, J.; Kelley, J. H.; Kwan, E.; Pietralla, N.; Ponomarev, V. Yu.; Sauerwein, A.; Savran, D.; Scheck, M.; Schnorrenberger, L.; Sonnabend, K.; Tonchev, A. P.; Tornow, W.; Weller, H. R.; Zilges, A.; Zweidinger, M.
2013-10-01
The low-lying dipole strength of the open-shell nucleus 94Mo was studied via the nuclear resonance fluorescence technique up to 8.7 MeV excitation energy at the bremsstrahlung facility at the Superconducting Darmstadt Electron Linear Accelerator (S-DALINAC), and with Compton backscattered photons at the High Intensity γ-ray Source (HIγS) facility. In total, 83 excited states were identified. Exploiting polarized quasi-monoenergetic photons at HIγS, parity quantum numbers were assigned to 41 states excited by dipole transitions. The electric dipole-strength distribution was determined up to 8.7 MeV and compared to microscopic calculations within the quasiparticle phonon model. Calculations and experimental data are in good agreement for the fragmentation, as well as for the integrated strength. The average decay pattern of the excited states was investigated exploiting the HIγS measurements at five energy settings. Mean branching ratios to the ground state and first excited 21+ state were extracted from the measurements with quasi-monoenergetic photons and compared to γ-cascade simulations within the statistical model. The experimentally deduced mean branching ratios exhibit a resonance-like maximum at 6.4 MeV which cannot be reproduced within the statistical model. This indicates a nonstatistical structure in the energy range between 5.5 and 7.5 MeV.
Resonance energy transfer: The unified theory via vector spherical harmonics.
Grinter, Roger; Jones, Garth A
2016-08-21
In this work, we derive the well-established expression for the quantum amplitude associated with the resonance energy transfer (RET) process between a pair of molecules that are beyond wavefunction overlap. The novelty of this work is that the field of the mediating photon is described in terms of a spherical wave rather than a plane wave. The angular components of the field are constructed in terms of vector spherical harmonics while Hankel functions are used to define the radial component. This approach alleviates the problem of having to select physically correct solution from non-physical solutions, which seems to be inherent in plane wave derivations. The spherical coordinate system allows one to easily decompose the photon's fields into longitudinal and transverse components and offers a natural way to analyse near-, intermediate-, and far-zone RET within the context of the relative orientation of the transition dipole moments for the two molecules. PMID:27544087
Barborini, Matteo; Sorella, Sandro; Guidoni, Leonardo
2014-01-01
We present full structural optimizations of the ground state and of the low lying triplet state of the ethylene molecule by means of Quantum Monte Carlo methods. Using the efficient structural optimization method based on renormalization techniques and on adjoint differentiation algorithms recently proposed [Sorella, S.; Capriotti, L. J. Chem. Phys. 2010, 133, 234111], we present the variational convergence of both wave function parameters and atomic positions. All of the calculations were done using an accurate and compact wave function based on Pauling’s resonating valence bond representation: the Jastrow Antisymmetrized Geminal Power (JAGP). All structural and wave function parameters are optimized, including coefficients and exponents of the Gaussian primitives of the AGP and the Jastrow atomic orbitals. Bond lengths and bond angles are calculated with a statistical error of about 0.1% and are in good agreement with the available experimental data. The Variational and Diffusion Monte Carlo calculations estimate vertical and adiabatic excitation energies in the ranges 4.623(10)–4.688(5) eV and 3.001(5)–3.091(5) eV, respectively. The adiabatic gap, which is in line with other correlated quantum chemistry methods, is slightly higher than the value estimated by recent photodissociation experiments. Our results demonstrate how Quantum Monte Carlo calculations have become a promising and computationally affordable tool for the structural optimization of correlated molecular systems. PMID:24634617
Two-photon excitation of low-lying electronic quadrupole states in atomic clusters
Nesterenko, V. O.; Reinhard, P.-G.; Halfmann, T.; Pavlov, L. I.
2006-02-15
A simple scheme of population and detection of low-lying electronic quadrupole modes in free small deformed metal clusters is proposed. The scheme is analyzed in terms of the time-dependent local density approximation calculations. As a test case, the deformed cluster Na{sub 11}{sup +} is considered. Long-living quadrupole oscillations are generated via resonant two-photon (two-dipole) excitation and then detected through the appearance of satellites in the photoelectron spectra generated by a probe pulse. Femtosecond pump and probe pulses with intensities I=2x10{sup 10}-2x10{sup 11} W/cm{sup 2} and pulse duration T=200-500 fs are found to be optimal. The modes of interest are dominated by a single electron-hole pair and so their energies, being combined with the photoelectron data for hole states, allow us to gather full mean-field spectra of valence electrons near the Fermi energy. Besides, the scheme allows us to estimate the lifetime of electron-hole pairs and hence the relaxation time of electronic energy into ionic heat.
Vector resonances from a strong electroweak sector at linear colliders
NASA Astrophysics Data System (ADS)
Casalbuoni, R.; Chiappetta, P.; Deandrea, A.; de Curtis, S.; Dominici, D.; Gatto, R.
1993-06-01
We explore the usefulness of very energetic linear e + e - colliders in the TeV range in studying an alternative scheme of electroweak symmetry breaking based on a strong interacting sector. The calculations are performed within the BESS model which contains new vector resonances. If the mass M V of the new boson multiplet lies not far from the maximum machine energy, or if it is lower, such a resonant contribution would be quite manifest. A result of our analysis is that also virtual effects are important. It appears that annihilation into a fermion pair in such machines, at the considered luminosities, would improve only marginally on existing limits if polarized beams are available and left-right asymmetries are measured. On the other hand, the process of W-pair production by e + e - annihilation would allow for sensitive tests of the hypothesized strong sector, especially if the W polarizations are reconstructed from their decay distributions, and the more so the higher the energy of the machine. An e + e - collider with c.m. energysqrt s = 500 GeV could improve the limits on the model for the range 500< M V (GeV)<1000 when W polarization is not reconstructed. If W polarizations are reconstructed, then the bounds improve for the entire expected range of M V . These bounds become more stringent for larger energy of the collider. We have also studied the detectability of the new resonances through the fusion subprocesses, but this channel does not seem to be interesting even for a collider with a c.m. energysqrt s = 2 TeV.
Low-lying states of ruthenium isotopes within the nucleon pair approximation
NASA Astrophysics Data System (ADS)
Jiang, H.; Li, B.; Lei, Y.
2016-05-01
Low-lying states of even-even and odd-mass ruthenium isotopes with mass numbers from 95 to 102, including level schemes, electric quadrupole and magnetic dipole moments, and E 2 transition rates, are studied within the framework of the nucleon pair approximation (NPA) of the shell model, by using the phenomenological pairing plus quadrupole interactions. Good agreement is obtained between the calculated results and experimental data. The interesting behaviors of g (J1+) factors versus nuclear spin J (and mass number A ) in even-even Ru-10296 nuclei are analyzed. The dominant configurations of yrast low-lying states in odd-mass Ru-10195 isotopes are discussed in the collective nucleon-pair subspace. The calculated electric quadrupole moments and magnetic moments of low-lying states, many of which have not yet been measured for these nuclei, are useful for future studies.
Low-lying states of valence-hole nuclei in the 208Pb region
NASA Astrophysics Data System (ADS)
Jiang, H.; Shen, J. J.; Zhao, Y. M.; Arima, A.
2011-04-01
Systematic calculations of low-lying states for Ir, Pt, Au, Hg and Tl isotopes with neutron numbers between 120 and 125 have been performed within the framework of the SDG-pair approximation of the shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole-type interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate binding energies of the ground states, low energy level schemes, electric quadrupole and magnetic dipole moments, and E2 transition rates. Our results are reasonably consistent with the available experimental data as well as previous theoretical studies, in particular, for low-lying yrast states. We also demonstrate that low-lying states of nuclei studied here are usually well represented by very simple configurations in collective nucleon-pair basis.
Energies and Electric Dipole Transitions for Low-Lying Levels of Protactinium IV and Uranium V
NASA Astrophysics Data System (ADS)
Ürer, Güldem; Özdemir, Leyla
2012-02-01
We have reported a relativistic multiconfiguration Dirac-Fock (MCDF) study on low-lying level structures of protactinium IV (Z =91) and uranium V (Z =92) ions. Excitation energies and electric dipole (E1) transition parameters (wavelengths, oscillator strengths, and transition rates) for these low-lying levels have been given. We have also investigated the influence of the transverse Breit and quantum electrodynamic (QED) contributions besides correlation effects on the level structure. A comparison has been made with a few available data for these ions in the literature.
Effects of tensor correlations on low-lying collective states in finite nuclei
Cao Ligang; Sagawa, H.; Colo, G.
2011-03-15
We present a systematic analysis of the effects induced by tensor correlations on low-lying collective states of magic nuclei, by using the fully self-consistent random phase approximation (RPA) model with Skyrme interactions. The role of the tensor correlations is analyzed in detail in the case of quadrupole (2{sup +}) and octupole (3{sup -}) low-lying collective states in {sup 208}Pb. The example of {sup 40}Ca is also discussed, as well as the case of magnetic dipole states (1{sup +}).
NASA Astrophysics Data System (ADS)
Margolis, Jack S.; Liu, Karen Y.; Moynihan, Philip I.
1999-01-01
The sensitivity of spectroscopic detection of low-lying gas clouds by an arbitrary spectrometer may be determined by simulating the observation using a high spectral resolution radiative transfer code. The instrumental characteristics may be superimposed on the simulation and the accuracy of the retrieval of the desired parameters may be estimated by use of the covariance matrix.
Low-lying 1- and 2+ states in 124Sn via inelastic scattering of 17O
NASA Astrophysics Data System (ADS)
Pellegri, L.; Bracco, A.; Crespi, F. C. L.
2016-05-01
The γ decay of low-lying 1-and 2+ states up to the neutron separation energy in 124Sn populate by the inelastic scattering of 17O was measured. The Angular distributions were measured both for the γ rays and the scattered 17O ions. The results are presented.
New extrapolation method for low-lying states of nuclei in the sd and the pf shells
Shen, J. J.; Zhao, Y. M.; Arima, A.; Yoshinaga, N.
2011-04-15
We study extrapolation approaches to evaluate energies of low-lying states for nuclei in the sd and pf shells, by sorting the diagonal matrix elements of the nuclear shell-model Hamiltonian. We introduce an extrapolation method with perturbation and apply our new method to predict both low-lying state energies and E2 transition rates between low-lying states. Our predicted results arrive at an accuracy of the root-mean-squared deviations {approx}40-60 keV for low-lying states of these nuclei.
Low-lying structure of neutron-rich Zn and Ga isotopes
NASA Astrophysics Data System (ADS)
Jiang, H.; Fu, G. J.; Zhao, Y. M.; Arima, A.
2011-09-01
Low-lying states of even-even Zn and odd-mass Ga nuclei with neutron numbers between 42 and 50 have been calculated within the framework of the SDG-pair approximation of the nuclear shell model. We employ a monopole and quadrupole pairing plus quadrupole-quadrupole interaction with optimized parameters, which are assumed to be constants for nuclei with the same proton number or neutron number. We calculate low-lying level schemes, electric quadrupole and magnetic dipole moments, and E2 and M1 transition rates. Reasonable agreement is achieved between the calculated results and experimental data. Dominant configurations in the ground states of odd-mass Ga nuclei are discussed in terms of pair correlations. The weak-coupling picture for some states of odd-mass Ga nuclei is studied.
Calculations of energy levels and lifetimes of low-lying states of barium and radium
Dzuba, V. A.; Ginges, J. S. M.
2006-03-15
We use the configuration-interaction method and many-body perturbation theory to perform accurate calculations of energy levels, transition amplitudes, and lifetimes of low-lying states of barium and radium. Calculations for radium are needed for the planning of measurements of parity- and time-invariance-violating effects which are strongly enhanced in this atom. Calculations for barium are used to control the accuracy of the calculations.
Spectroscopic Properties and Potential Energy Curves of Low-lying electronic States of RuC
Balasubramanian, K; Guo, R
2003-12-22
The RuC molecule has been a challenging species due to the open-shell nature of Ru resulting in a large number of low-lying electronic states. We have carried out state-of-the-art calculations using the complete active space multi-configuration self-consistent field (CASSCF) followed by multireference configuration interaction (MRCI) methods that included up 18 million configurations, in conjunction with relativistic effects. We have computed 29 low-lying electronic states of RuC with different spin multiplicities and spatial symmetries with energy separations less than 38 000 cm{sup -1}. We find two very closely low-lying electronic states for RuC, viz., {sup 1}{Sigma}{sup +} and {sup 3}{Delta} with the {sup 1}{Sigma}{sup +} being stabilized at higher levels of theory. Our computed spectroscopic constants and dipole moments are in good agreement with experiment although we have reported more electronic states than those that have been observed experimentally. Our computations reveal a strongly bound X{sup 1}{Sigma}{sup +} state with a large dipole moment and an energetically close {sup 3}{Delta} state with a smaller dipole moment. Overall our computed spectroscopic constants of the excited states with energy separations less than 18000 cm{sup -1} agree quite well with those of the corresponding observed states.
Scalar Resonance at 750 GeV as Composite of Heavy Vector-Like Fermions
NASA Astrophysics Data System (ADS)
Liao, Wei; Zheng, Han-Qing
2016-08-01
We study a model of scalars which includes both the SM Higgs and a scalar singlet as composites of heavy vector-like fermions. The vector-like fermions are bounded by the super-strong four-fermion interactions. The scalar singlet decays to SM vector bosons through loop of heavy vector-like fermions. We show that the surprisingly large production cross section of di-photon events at 750 GeV resonance and the odd decay properties can all be explained. This model serves as a good model for both SM Higgs and a scalar resonance at 750 GeV. Supported by National Natural Science Foundation of China (NSFC) under Grant Nos. 11135009, 11375065 and 10925522
Wolf, A.; Zamfir, N.V.; Caprio, M.A.; Berant, Z.; Brenner, D.S.; Pietralla, N.; Gill, R.L.; Casten, R.F.; Beausang, C.W.; Kruecken, R.; Zyromski, K.E.; Barton, C.J.; Cooper, J.R.; Hecht, A.A.; Newman, H.; Novak, J.R.; Cederkall, J.
2002-08-27
A study of the low-lying levels of 128Ba was performed using three clover detectors in a compact arrangement. The decay properties of several low-lying states were investigated, spin assignments were made for two states, and several E2/M1 mixing ratios were determined.
Low-Lying Structure of 132,134Xe from Inelastic Neutron Scattering
NASA Astrophysics Data System (ADS)
Peters, E. E.; Chakraborty, A.; Crider, B. P.; Kumar, A.; Prados-Estèvez, F. M.; Ashley, S. F.; Elhami, E.; Mukhopadhyay, S.; Orce, J. N.; McEllistrem, M. T.; Yates, S. W.
2013-03-01
The low-lying structure of 132Xe and 134Xe has been studied using the (n, n' γ) reaction at the University of Kentucky 7-MV Van de Graaff accelerator facility. Gamma-ray excitation function and angular distribution measurements were performed. Lifetimes were measured using the Doppler-shift attenuation method, and transition probabilities were obtained. Previous assignments of mixed-symmetry states in each nucleus are supported. Also, a tentative Jπ = 0+ state is supported for 134Xe, and a new one is proposed for 134Xe.
Microscopic study of low-lying collective bands in 77 Kr
NASA Astrophysics Data System (ADS)
Tripathy, K. C.; Sahu, R.; Mishra, S.
2006-02-01
The structure of the collective bands in ^{77}Kr is investigated within our deformed shell model (DSM) based on Hartree-Fock states. The different levels are classified into collective bands on the basis of their B(E2) values. The calculated K= 5/2^+ ground band agrees reasonably well with the experiment. An attempt has been made to study the structure of the 3-quasiparticle band based on large J state in this nucleus. The calculated collective bands, the B(E2), and B(M1) values are compared with available experimental data. The nature of alignments in the low-lying bands is also analyzed.
Regularities of low-lying states with random interactions in the fermion dynamical symmetry model
NASA Astrophysics Data System (ADS)
Fu, G. J.; Zhao, Y. M.; Arima, A.
2014-12-01
In this paper we study low-lying states under random interactions in the framework of the fermion dynamical symmetry model (FDSM), regardless of the ground state spin. Very strong correlations are found for R6 versus R4 (where RI≡EI1+/E21+ ) for the entire ensemble. We present arguments on the origin of these regular patterns in terms of the dynamical symmetries of the FDSM. The regular patterns of B (E 2 ;41+→21+) versus B (E 2 ;21+→01+) are found.
Origin of low-lying enhanced E1 strength in rare-Earth nuclei.
Spieker, M; Pascu, S; Zilges, A; Iachello, F
2015-05-15
The experimental E1 strength distribution below 4 MeV in rare-earth nuclei suggests a local breaking of isospin symmetry. In addition to the octupole states, additional J^{π}=1^{-} states with enhanced E1 strength have been observed in rare-earth nuclei by means of (γ,γ') experiments. By reproducing the experimental results, the spdf interacting boson model calculations provide further evidence for the formation of an α cluster in medium-mass nuclei and might provide a new understanding of the origin of low-lying E1 strength. PMID:26024168
Low-Lying Dirac Eigenmodes, Topological Charge Fluctuations and the Instanton Liquid Model
I. Horvath; S.J. Dong; T. Draper; F.X. Lee; H.B. Thacker; J.B. Zhang
2002-05-01
The local structure of low-lying eigenmodes of the overlap Dirac operator is studied. It is found that these modes cannot be described as linear combinations of 't Hooft ''would-be'' zeromodes associated with instanton excitations that underly the Instanton Liquid Model. This implies that the instanton liquid scenario for spontaneous chiral symmetry breaking in QCD is not accurate. More generally, our data suggests that the vacuum fluctuations of topological charge are not effectively dominated by localized lumps of unit charge with which the topological ''would-be'' zeromodes could be associated.
STS-31 Discovery, OV-103, rockets through low-lying clouds after KSC liftoff
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, rides above the firey glow of the solid rocket boosters (SRBs) and space shuttle main engines (SSMEs) and a long trail of exhaust as it heads toward Earth orbit. Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B is covered in an exhaust cloud moments after the liftoff of OV-103 at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The exhaust plume pierces the low-lying clouds as OV-103 soars into the clear skies above. A nearby waterway appears in the foreground.
STS-31 Discovery, OV-103, is hidden in low-lying clouds after KSC liftoff
NASA Technical Reports Server (NTRS)
1990-01-01
STS-31 Discovery, Orbiter Vehicle (OV) 103, is hidden in low-lying cloud cover as it rises above Kennedy Space Center (KSC) Launch Complex (LC) Pad 39B just after its liftoff at 8:33:51.0492 am (Eastern Daylight Time (EDT)). The glow of the solid rocket booster (SRB) and the space shuttle main engine (SSME) firings appears just below the cloud cover and is reflected in the nearby waterway (foreground). An exhaust plume trails from OV-103 and its SRBs and covers the launch pad area.
Computed potential surfaces for six low-lying states of Ni3
NASA Technical Reports Server (NTRS)
Walch, Stephen P.
1987-01-01
Selected portions of the potential surfaces for six low lying states of Ni3 are the subject of the present SCF/CCI calculations using the effective core potentials developed by Hay and Wadt (1985); the four states are studied for near-equilateral triangle geometries are within 0.04 eV of each other. Two states are studied for linear geometries, of which the first is 0.16 eV higher than the corresponding near-equilateral triangle state and the second is estimated to be nearly degenerate with the near-equilateral triangle structures.
A numerical study of the thermal stability of low-lying coronal loops
NASA Technical Reports Server (NTRS)
Klimchuk, J. A.; Antiochos, S. K.; Mariska, J. T.
1986-01-01
The nonlinear evolution of loops that are subjected to a variety of small but finite perturbations was studied. Only the low-lying loops are considered. The analysis was performed numerically using a one-dimensional hydrodynamical model developed at the Naval Research Laboratory. The computer codes solve the time-dependent equations for mass, momentum, and energy transport. The primary interest is the active region filaments, hence a geometry appropriate to those structures was considered. The static solutions were subjected to a moderate sized perturbation and allowed to evolve. The results suggest that both hot and cool loops of the geometry considered are thermally stable against amplitude perturbations of all kinds.
NASA Astrophysics Data System (ADS)
Es'kin, V. A.; Ivoninsky, A. V.; Kudrin, A. V.; Krafft, C.
2016-01-01
The energy-flow structure during the resonance scattering of a normally incident plane electromagnetic H wave by a gyrotropic cylinder is studied. The main attention is focused on the bifurcations of the time-averaged Poynting vector field at the surface and volume plasmon resonances in the case where the cylinder is aligned with a gyrotropy axis. The behaviour of the Poynting vector field in this case is compared with that observed during the scattering by an isotropic cylinder, and significant differences in the energy-flow structures in the two cases are revealed. Conditions are found under which the maximum magnitude of the Poynting vector at the boundary of a gyrotropic cylinder turns out to be much greater than that at the boundary of an isotropic scatterer of the same shape and size.
Low-Lying Structure of 50Ar and the N =32 Subshell Closure
NASA Astrophysics Data System (ADS)
Steppenbeck, D.; Takeuchi, S.; Aoi, N.; Doornenbal, P.; Matsushita, M.; Wang, H.; Utsuno, Y.; Baba, H.; Go, S.; Lee, J.; Matsui, K.; Michimasa, S.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Sakurai, H.; Shiga, Y.; Shimizu, N.; Söderström, P.-A.; Sumikama, T.; Taniuchi, R.; Valiente-Dobón, J. J.; Yoneda, K.
2015-06-01
The low-lying structure of the neutron-rich nucleus 50Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ -ray spectroscopy with 9Be (54Ca, 50Ar +γ )X , 9Be (55Sc, 50Ar +γ )X , and 9Be (56Ti, 50Ar +γ )X multinucleon removal reactions at ˜220 MeV /u . A γ -ray peak at 1178(18) keV is reported and assigned as the transition from the first 2+ state to the 0+ ground state. A weaker, tentative line at 1582(38) keV is suggested as the 41+→21+ transition. The experimental results are compared to large-scale shell-model calculations performed in the s d p f model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for 50Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N =32 subshell gap in 50Ar is similar in magnitude to those in 52Ca and 54Ti and, notably, predict an N =34 subshell closure in 52Ar that is larger than the one recently reported in 54Ca.
Low-lying {Lambda} baryons with spin 1/2 in two-flavor lattice QCD
Takahashi, Toru T.; Oka, Makoto
2010-02-01
Low-lying {Lambda} baryons with spin 1/2 are analyzed in full (unquenched) lattice QCD. We construct 2x2 cross correlators from flavor SU(3) octet and singlet baryon operators, and diagonalize them so as to extract information of two low-lying states for each parity. The two-flavor CP-PACS gauge configurations are used, which are generated in the renormalization-group improved gauge action and the O(a)-improved quark action. Three different {beta}'s, {beta}=1.80, 1.95, and 2.10, are employed, whose corresponding lattice spacings are a=0.2150, 0.1555, and 0.1076 fm. For each cutoff, we use four hopping parameters, ({kappa}{sub val},{kappa}{sub sea}), which correspond to the pion masses ranging about from 500 MeV to 1.1 GeV. Results indicate that there are two negative-parity {Lambda} states nearly degenerate at around 1.6 GeV, while no state as low as {Lambda}(1405) is observed. By decomposing the flavor components of each state, we find that the lowest (1st-excited) negative-parity state is dominated by flavor-singlet (flavor-octet) component. We also discuss meson-baryon components of each state, which has drawn considerable attention in the context of multiquark pictures of {Lambda}(1405).
On the nature of an emergent symmetry in QCD with low-lying Dirac modes removed
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.
2016-02-01
Remarkable symmetry properties appear to arise in lattice calculations of correlation functions in which the lowest-lying eigenmodes of the Dirac operator in quark propagators are removed by hand. The Banks-Casher relation ties the chiral condensate to the density of low-lying modes; thus, it is plausible that removal of such modes could lead to a regime where spontaneous chiral symmetry breaking does not occur. Surprising, a pattern of identical correlation functions was observed that is larger than can be explained by a restoration of chiral symmetry. This suggests that a larger symmetry—one that is not present in the QCD Lagrangian—emerges when these modes are removed. Previously it was argued that this emergent symmetry was SU(4). However, when the low-lying modes are removed, the correlation functions of sources in the SU(4) 15-plet of spin-1 mesons appear to coincide with the correlation function of the SU(4) singlet. A natural explanation for this is an emergent symmetry larger than SU(4). In this work, it is shown that there exists no continuous symmetry whose generators in the field theory are spatial integrals of local operators that can account for the full pattern of identical correlation functions unless the apparent coincidence of the singlet channel with the 15-plet is accidental.
Ozone absorption spectroscopy in search of low-lying electronic states
NASA Technical Reports Server (NTRS)
Anderson, S. M.; Mauersberger, K.
1995-01-01
A spectrometer capable of detecting ozone absorption features 9 orders of magnitude weaker than the Hartley band has been employed to investigate the molecule's near-infrared absorption spectrum. At this sensitivity a wealth of information on the low-lying electronically excited states often believed to play a role in atmospheric chemistry is available in the form of vibrational and rotational structure. We have analyzed these spectra using a combination of digital filtering and isotope substitution and find evidence for three electronically excited states below 1.5 eV. The lowest of these states is metastable, bound by approximately 0.1 eV and probably the (3)A2 rather than the (3)B2 state. Its adiabatic electronic energy is 1.24 +/- 0.01 eV, slightly above the dissociation energy of the ground state. Two higher states, at 1.29 +/- 0.03 and 1.48 +/- 0.03 eV are identified as the (3)B2 and the (3)B1, respectively. Combined with other recent theoretical and experimental data on the low-lying electronic states of ozone, these results imply that these are, in fact, the lowest three excited states; that is, there are no electronically excited states of ozone lying below the energy of O(3P) + O2((3)Sigma(-), v = 0). Some of the implications for atmospheric chemistry are considered.
Kohstall, C.; Belic, D.; Kneissl, U.; Nord, A.; Pitz, H.H.; Scheck, M.; Stedile, F.; Brentano, P. von; Fransen, C.; Gade, A.; Herzberg, R.-D.; Jolie, J.; Linnemann, A.; Pietralla, N.; Werner, V.; Yates, S.W.
2005-09-01
High-resolution nuclear resonance fluorescence experiments (NRF) were performed on {sup 110,111,112,114,116}Cd at the bremsstrahlung facility of the 4.3-MV Dynamitron accelerator in Stuttgart to study the low-lying dipole strength distributions in these vibrational nuclei. Numerous excited states, most of them previously unknown, were observed in the excitation energy range up to 4 MeV. Detailed spectroscopic information has been obtained on excitation energies, spins, decay widths, decay branchings, and transition probabilities. For states in the even-even isotopes {sup 110,112,114,116}Cd, parities could be assigned from linear polarization measurements. Together with our previous results for {sup 108,112,113,114}Cd from NRF studies without polarization measurements, systematics was established for the dipole strength distributions of the stable nuclei within the Cd isotopic chain. The results are discussed with respect to the systematics of E1 two-phonon excitations and mixed-symmetry states in even-even nuclei near the Z=50 shell closure and the fragmentation of these excitation modes in the odd-mass Cd isotopes.
Low-lying Structure of 132Xe from Inelastic Neutron Scattering
NASA Astrophysics Data System (ADS)
Peters, E. E.; Chakraborty, A.; Crider, B. P.; Kumar, A.; Prados-Estévez, F. M.; Ashley, S. F.; McEllistrem, M. T.; Yates, S. W.
2011-10-01
The stable isotopes of xenon span a region which exhibits the transition from spherical vibrators to gamma-soft nuclei and could thus provide some insight into this lesser understood shape transition. Many measurements to examine the nuclear structure of the xenon isotopes are constrained, however, as xenon is a gas under ambient conditions. Recently, highly enriched samples of 132Xe and 134Xe were converted to solid XeF2 and were studied at the University of Kentucky 7-MV Van de Graaff accelerator facility using inelastic neutron scattering with gamma-ray detection. Lifetimes for some of the low-lying levels were determined via the Doppler-shift attenuation method and reduced transition probabilities were determined. First results of the experiments on 132Xe will be presented. This material is based on work supported by the U.S. National Science Foundation under grant no. PHY-0956310.
Low-lying Structure of ^134Xe from Inelastic Neutron Scattering
NASA Astrophysics Data System (ADS)
Peters, E. E.; Crider, B. P.; Ashley, S. F.; McEllistrem, M. T.; Yates, S. W.
2010-11-01
Unlike the transition from spherical vibrators to axially symmetric rotors, little is known about the transition from spherical vibrators to gamma-soft nuclei. The stable isotopes of xenon span a region which exhibits this lesser understood shape transition. While ^136Xe shows evidence of being a spherical vibrator, the lighter xenon nuclei demonstrate gamma-soft behavior. Measurements to determine the nuclear structure of the xenon isotopes are difficult, however, since they are gases under ambient conditions, and solid targets are much more amenable to typical methods. Recently, highly enriched (>99.9%) samples of ^132Xe and ^134Xe were converted to solid XeF2. These isotopes were studied at the University of Kentucky 7-MV Van de Graaff accelerator facility using the inelastic neutron scattering reaction with gamma-ray detection. Both excitation function and angular distribution data were obtained for the low-lying levels. First results of the experiments on ^134Xe will be presented.
Microscopic structure of low-lying states in {sup 188,190,192}Os
Lo Iudice, N.; Sushkov, A. V.
2008-11-15
The phonon and quasiparticle structure of the low-lying states in {sup 188,190,192}Os is investigated within the microscopic quasiparticle-phonon model. An overall agreement with the data is obtained for energies and transitions. The properties of the 0{sup +} states are found to be correlated with the evolution of the nuclear shape toward the {gamma}-soft region. Special attention is devoted at the 4{sub 3}{sup +} state. This state is found to be composed of a large double-{gamma} phonon component coexisting with an even larger one-phonon hexadecapole piece. Such a mixed phonon structure explains the observed, apparently contradictory, properties of the 4{sub 3}{sup +} states in Os isotopes.
Study of low-lying electronic states of ozone by anion photoelectron spectroscopy of O - 3
NASA Astrophysics Data System (ADS)
Arnold, Don W.; Xu, Cangshan; Kim, Eun H.; Neumark, Daniel M.
1994-07-01
The low-lying electronic states of ozone are studied using anion photoelectron spectroscopy of O-3. The spectra show photodetachment transitions from O-3 to the X˜ 1A1 ground state and to the five lowest lying electronic states of the ozone molecule, namely the 3A2, 3B2, 1A2, 3B1, and 1B1 states. The geometry of the ozonide anion determined from a Franck-Condon analysis of the O3 X 1A1 ground state spectrum agrees reasonably well with previous work. The excited state spectra are dominated by bending vibrational progressions which, for some states, extend well above the dissociation asymptote without noticeable lifetime broadening effects. Preliminary assignments are based upon photoelectron angular distributions and comparison with ab initio calculations. None of the excited states observed lies below the ground state dissociation limit of O3 as suggested by previous experimental and theoretical results.
Low-lying states in 96Nb from the (t,α) reaction
NASA Astrophysics Data System (ADS)
Cloessner, Paul F.; Stöffl, Wolfgang; Sheline, Raymond K.; Lanier, Robert G.
1984-02-01
The nuclear structure of 96Nb has been studied with the (t,α) reaction at 17 MeV on an isotopically enriched target of 97Mo using a quadrupole-three-dipole spectrometer. Measured angular distributions were compared with distorted-wave Born approximation calculations to assign l transfer values. The results are combined with published data and shell model considerations to reassign the 3- state of the low-lying π(p12)1ν(d52)-1 configuration and to confirm the assignments of the spins and parities of the other levels observed. [NUCLEAR REACTIONS 97Mo(t,α)96Nb, Et=17 MeV, enriched target; measured Eα,σ(θ). DWBA analysis. 96Nb deduced levels, Jπ. Compared 96Nb and 92Nb using Pandya relation.
Theoretical study of the low-lying excited states of ABCO, DABCO and homologous cage amines
NASA Astrophysics Data System (ADS)
Galasso, V.
1997-02-01
The electronic spectra of 1-azabicyclo[2.2.2]octane (ABCO), 1,4-diazabicyclo[2.2.2]octane (DABCO), and their [1.1.1] and [3.3.3] congeners have been studied at the ab initio level using the symmetry adapted cluster configuration interaction method. A comprehensive theoretical prediction of the discrete excitation spectra, up to the HOMO → 5s transition, is presented. All the low-lying singlet and triplet electronic states of these symmetric cage amines are found to have essentially Rydberg nature and originate from excitations out of the n-type molecular orbitals. The theoretical results correlate with the available spectroscopic data satisfactorily and provide quantitative support to a number of experimental assignments based on REMPI and MCD measurements.
RDDS lifetime measurements of low-lying superdeformed states in {sup 194}Hg
Kuehn, R.; Dewald, A.; Kruecken, R.
1996-12-31
The lifetimes of three low-lying states in the superdeformed (SD) yrast band of {sup 194}Hg were measured by the recoil-distance Doppler-shift method. The deduced transition quadrupole moments, Q{sub t}, equal those extracted from a DSAM measurement for the high-lying states of the band corroborate the assumption that the decay out of SD bands does not strongly affect the structure of the corresponding states. By a simple mixing-model the decay can be described assuming a very small admixture of normal-deformed (ND) states to the decaying SD states. The deduced ND mixing amplitudes for the yrast SD bands in {sup 192,194}Hg and {sup 194}Pb are presented along with average transition quadrupole moments for the lower parts of the excited SD bands.
Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei
Jakobsson, U. Cederwall, B.; Uusitalo, J.; Auranen, K.; Badran, H.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; Herzáň, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; and others
2015-10-15
Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2{sup +} state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2{sup +} state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2{sup +} state and the spherical 9/2{sup −} ground state in {sup 203}Fr and {sup 205}Fr.
Regularities in low-lying states of atomic nuclei with random interactions
NASA Astrophysics Data System (ADS)
Fu, G. J.; Shen, J. J.; Zhao, Y. M.; Arima, A.
2015-05-01
In this paper we study low-lying states of atomic nuclei with random interactions, within the framework of the nuclear shell model. The distributions of R6 versus R4 (where RI≡EI1+/E21+ ), empirical proton-neutron interaction, and charge radius are investigated by using a two-body random ensemble. The Mallmann plot exhibits statistical correlations between R6 and R4. The proton-neutron interaction between the last proton and the last neutron in even-A nuclei is found to be stronger than that in odd-A nuclei, and that in N =Z nuclei is even stronger. Simple relations of nuclear charge radii for neighboring nuclei are found to survive remarkably for the random ensemble.
Low-lying hypernuclei in the relativistic quark-gluon model
NASA Astrophysics Data System (ADS)
Gerasyuta, S. M.; Matskevich, E. E.
2013-06-01
Low-lying hypernuclei HΛ3, Σ30H, HeΛ3, Σ30He are described by the relativistic nine-quark equations in the framework of the dispersion relation technique. The approximate solutions of these equations are obtained using a method based on the extraction of leading singularities of the amplitudes. The relativistic nine-quark amplitudes of hypernuclei, including the quarks of three flavors (u,d,s), are calculated. The poles of these amplitudes determine the masses of hypernuclei. The mass of state HΛ3 with the isospin projection I3=0 and the spin-parity JP=(1)/(2)(+)/() is equal to M=2991MeV.
Low-lying isovector 2+ valence-shell excitations of 212Po
NASA Astrophysics Data System (ADS)
Kocheva, D.; Rainovski, G.; Jolie, J.; Pietralla, N.; Stahl, C.; Petkov, P.; Blazhev, A.; Hennig, A.; Astier, A.; Braunroth, Th.; Cortés, M. L.; Dewald, A.; Djongolov, M.; Fransen, C.; Gladnishki, K.; Karayonchev, V.; Litzinger, J.; Müller-Gatermann, C.; Scheck, M.; Scholz, Ph.; Stegmann, R.; Thöle, P.; Werner, V.; Witt, W.; Wölk, D.; Van Isacker, P.
2016-01-01
We present the results from an experiment dedicated to search for quadrupole-collective isovector valence-shell excitations, states with so-called mixed proton-neutron symmetry (MSS), of 212Po. This nucleus was studied in an α -transfer reaction. The lifetimes of two short-lived excited states, candidates for the one-phonon MSS, were determined by utilizing the Doppler shift attenuation method. The experimental results are in qualitative agreement with a simple single-j shell model calculation, which, together with the observed lack of quadrupole collectivity, indicates that the isovector nature of low-lying states is a property of the leading single-particle valence shell configuration.
Low-Lying ππ* States of Heteroaromatic Molecules: A Challenge for Excited State Methods.
Prlj, Antonio; Sandoval-Salinas, María Eugenia; Casanova, David; Jacquemin, Denis; Corminboeuf, Clémence
2016-06-14
The description of low-lying ππ* states of linear acenes by standard electronic structure methods is known to be challenging. Here, we broaden the framework of this problem by considering a set of fused heteroaromatic rings and demonstrate that standard electronic structure methods do not provide a balanced description of the two (typically) lowest singlet state (La and Lb) excitations. While the Lb state is highly sensitive to correlation effects, La suffers from the same drawbacks as charge transfer excitations. We show that the comparison between CIS/CIS(D) can serve as a diagnostic for detecting the two problematic excited states. Standard TD-DFT and even its spin-flip variant lead to inaccurate excitation energies and interstate gaps, with only a double hybrid functional performing somewhat better. The complication inherent to a balanced description of these states is so important that even CC2 and ADC(2) do not necessarily match the ADC(3) reference. PMID:27144975
Excitation of the Yb II transitions terminating on the low-lying odd levels
NASA Astrophysics Data System (ADS)
Smirnov, Yu. M.
2007-10-01
Excitation of the transitions from the even levels of a singly charged ytterbium ion that terminate on the low-lying odd levels 4 f 13(2 F °)6 s 2 2 F °, 4 f 14(1 S)6 p 2 P °, and 4 f 13(2 F °7/2) 5 d6 p(3 D)3[3/2]° is experimentally studied by measuring 51 excitation cross sections at an electron energy of 50 eV, and 16 optical excitation functions are determined within the electron energy range 0 200 eV. The largest magnitudes of the measured cross sections exceed 3 × 10-17 cm2.
Spectroscopy of low-lying states in neutron-deficient astatine and francium nuclei
NASA Astrophysics Data System (ADS)
Jakobsson, U.; Uusitalo, J.; Auranen, K.; Badran, H.; Cederwall, B.; Cox, D. M.; Grahn, T.; Greenlees, P. T.; Julin, R.; Juutinen, S.; HerzáÅ, A.; Konki, J.; Leino, M.; Mallaburn, M.; Pakarinen, J.; Papadakis, P.; Partanen, J.; Rahkila, P.; Sandzelius, M.; Sarén, J.; Scholey, C.; Sorri, J.; Stolze, S.
2015-10-01
Low-lying states in neutron-deficient astatine and francium nuclei have been studied by means of in-beam and delayed spectroscopy. The 13/2+ state has been observed in francium nuclei with a similar down-sloping trend as in neighbouring astatine and bismuth isotopes, as a function of decreasing neutron number. A systematic trend can also now be seen for the 1/2+ state both in astatine and francium nuclei, where the level energy decreases steeply as a function of neutron number when moving further away from the neutron shell closure. This trend is very similar between astatine nuclei and their francium isotones. Moreover, shape coexistence has been observed between the 13/2+ state and the spherical 9/2- ground state in 203Fr and 205Fr.
Investigation of solvatochromism in the low-lying singlet states of dithienyl polyenes
NASA Astrophysics Data System (ADS)
Cooper, Thomas M.; Natarajan, Lalgudi V.; Sowards, Laura A.; Spangler, Charles W.
1999-09-01
To understand the low-lying singlet states of dithienyl polyenes, we investigated the solvatochromism of a series of α,ω-di(2-dithienyl 3,4-butyl) polyenes having n=1-5 double bonds. Absorption and emission spectra were collected in a series of aprotic solvents. The absorption energy dispersion effect sensitivity increased smoothly with n, reaching asymptotic behavior as n approached 5. The emission energy had less solvent sensitivity. The trends gave evidence for the existence of a 1B∗u absorbing state and a 1A∗g emitting state. We observed sensitivity of the absorbing and emitting states to solute-solvent electrostatic interactions, suggesting the dithienyl polyenes had a polar ground state conformation.
Electron-impact excitation of the low-lying electronic states of HCN
NASA Technical Reports Server (NTRS)
Chutjian, A.; Tanaka, H.; Srivastava, S. K.; Wicke, B. G.
1977-01-01
The first study of the low-energy electron-impact excitation of low-lying electronic transitions in the HCN molecule is reported. Measurements were made at incident electron energies of 11.6 and 21.6 eV in the energy-loss range of 3-10 eV, and at scattering angles of 20-130 deg. Inelastic scattering spectra were placed on the absolute cross-section scale by determining first the ratio of inelastic-to-elastic scattering cross sections, and then separately measuring the absolute elastic scattering cross section. Several new electronic transitions are observed which are intrinsically overlapped in the molecule itself. Assignments of these electronic transitions are suggested. These assignments are based on present spectroscopic and cross-sections measurements, high-energy electron scattering spectra, optical absorption spectra, and ab initio molecular orbital calculations.
The fate of water deposited in the low-lying northern plains
NASA Technical Reports Server (NTRS)
Carr, M. H.
1993-01-01
Many large outflow channels terminate in the low-lying northern plains. If the outflow channels formed by running water, as appears likely, then standing bodies of water must have accumulated at the ends of the channels. Most of the observed channels, and hence the bodies of water, are post-Noachian. They formed after the period for which we have the most abundant evidence of climate change. While it has been speculated that the post-Noachian period has experienced large, episodic, climatic excursions, this paper takes the more conservative view that the climatic conditions on Mars, at least from mid-Hesperian onward, were mostly similar to the climatic conditions that prevail in the present epoch. Thus obliquity variations are taken into account, but massive climate changes induced by the floods are considered so improbable that they are ignored.
On the low-lying states of MgO. II
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Lengsfield, B. H., III; Silver, D. M.; Yarkony, D. R.
1981-01-01
Using a double zeta plus polarization basis set of Slater orbitals, full valence MCSCF (FVMCSCF) calculations were performed for the low-lying states of MgO. For each state the FVMCSCF calculations were used to identify the important configurations which are then used in the MCSCF calculation and subsequently as references in a single and double excitation CI calculation. This approach is found to treat all states equivalently, with the maximum error in the computed transition energies and equilibrium bond lengths of 800/cm and approximately 0.03 A, respectively. The b 3 Sigma + state which has yet to be characterized experimentally is predicted to have a transition energy of approximately 8300/cm and a bond length of 1.79 A. A spectroscopic analysis of the potential curves indicates that their shapes are in quite reasonable agreement with the range of experimental results.
Theoretical Study of the Low-Lying States of MgN+2
NASA Technical Reports Server (NTRS)
Maitre, Philippe; Bauschlicher, Charles W., Jr.; Gross, Anthony R. (Technical Monitor)
1994-01-01
The structure and binding energies of the low-lying states of MgN2+ have been computed at the multireference configuration interaction level of theory. The effect of Mg inner-shell correlation have been included using the core-polarization potential method. The charge-quadrupole interaction results in a linear 2Sigma+ ground state as expected. The excited states can arise from either the interaction of the 2-P state of Mg+ with N2 or from charge transfer states with Mg(sup 2+)N2- bonding character. The lowest lying excited state, 2-B2, is mixture of these two mechanisms, which results in a C2v, geometry with Mg atoms sitting at the N2 bond midpoint. The small barrier in the bending potential exists between this state and the 2-II State which is the lowest lying linear excited state.
Ab initio study of low-lying electronic states of SnCl2+.
Lee, Edmond P F; Dyke, John M; Chow, Wan-ki; Mok, Daniel K W; Chau, Foo-tim
2007-12-20
Complete active space self-consistent field (CASSCF), multireference configuration interaction (MRCI), and restricted-spin coupled-cluster singles-doubles with perturbative triples [RCCSD(T)] calculations have been carried out on low-lying doublet and quartet states of SnCl2+, employing basis sets of up to aug-cc-pV5Z quality. Effects of core correlation and off-diagonal spin-orbit interaction on computed vertical ionization energies were investigated. The best theoretical estimate of the adiabatic ionization energy (including zero-point vibrational energy correction) to the X2A1 state of SnCl2+ is 10.093+/-0.010 eV. The first photoelectron band of SnCl2 has also been simulated by employing RCCSD(T)/aug-cc-pV5Z potential energy functions and including Duschinsky rotation and anharmonicity. PMID:18034464
Semirelativistic potential model for low-lying three-gluon glueballs
Mathieu, Vincent; Semay, Claude; Silvestre-Brac, Bernard
2006-09-01
The three-gluon glueball states are studied with the generalization of a semirelativistic potential model giving good results for two-gluon glueballs. The Hamiltonian depends only on 3 parameters fixed on two-gluon glueball spectra: the strong coupling constant, the string tension, and a gluon size which removes singularities in the potential. The Casimir scaling determines the structure of the confinement. Low-lying J{sup PC} states are computed and compared with recent lattice calculations. A good agreement is found for 1{sup --} and 3{sup --} states, but our model predicts a 2{sup --} state much higher in energy than the lattice result. The 0{sup -+} mass is also computed.
Ground and Low-Lying Collective States of Rotating Three-Boson System
NASA Astrophysics Data System (ADS)
Imran, Mohd.; Ahsan, M. A. H.
2016-04-01
The ground and low-lying collective states of a rotating system of N = 3 bosons harmonically confined in quasi-two-dimension and interacting via repulsive finite-range Gaussian potential is studied in weakly to moderately interacting regime. The N-body Hamiltonian matrix is diagonalized in subspaces of quantized total angular momenta 0 ≥ L ≥ 4N to obtain the ground and low-lying eigenstates. Our numerical results show that breathing modes with N-body eigenenergy spacing of 2ħω⊥, known to exist in strictly 2D system with zero-range (δ-function) interaction potential, may as well exist in quasi-2D system with finite-range Gaussian interaction potential. To gain an insight into the many-body states, the von Neumann entropy is calculated as a measure of quantum correlation and the conditional probability distribution is analyzed for the internal structure of the eigenstates. In the rapidly rotating regime the ground state in angular momentum subspaces L = (q/2)N (N ‑ 1) with q = 2, 4 is found to exhibit the anticorrelation structure suggesting that it may variationally be described by a Bose-Laughlin like state. We further observe that the first breathing mode exhibits features similar to the Bose-Laughlin state in having eigenenergy, von Neumann entropy and internal structure independent of interaction for the three-boson system considered here. On the contrary, for eigenstates lying between the Bose-Laughlin like ground state and the first breathing mode, values of eigenenergy, von Neumann entropy and internal structure are found to vary with interaction.
Cluster correlations for low-lying intruder states of 12Be
NASA Astrophysics Data System (ADS)
Ito, M.; Itagaki, N.; Ikeda, K.
2012-01-01
The formation of intruder states in the low-lying states of 12Be=α+α+4N is studied by applying the generalized two-center cluster model, which can optimize the excess neutrons' orbits depending on the α-α distance. The correlation energy for the intruder states is analyzed from the viewpoint of two different pictures based on the cluster structure: the covalent picture around two α clusters and the binary He-cluster picture. In the covalent picture, the binding energy of (π32-)2(σ12+)2, corresponding to ν(0p)4(1s0d)2 in a naive shell model, gains largely owing to the spin-triplet pairing of the 0d-wave neutrons, which is induced by the two-body spin-orbit interaction. The spin-triplet pairing gives rise to the reduction of the kinetic energy and the increase of the attractive spin-orbit interaction for the excess neutrons. As a result of these correlation energies, the ν(0p)4(1s0d)2 configuration becomes dominant in the ground state. In the binary cluster picture, the correlation energy is investigated from the coupled channels among α+8He, 6He+6He, and 5He+7He. The coupling to 5He+7He, which is neglected in usual binary-cluster models, plays an important role for a large reduction of kinetic energy and the formation of a pair of the low-lying 0+ states with a close energy spacing recently observed in experiment. The rotational bands are also discussed from the viewpoint of these two cluster pictures.
Mirmiran, Roya; Squire, Chad; Wassell, Daniel
2015-01-01
A low lying peroneus brevis muscle belly is a rare anomaly. There are few published studies that support presence of this anomaly as an etiology for peroneal tendon tear. However, the association between a low lying peroneus muscle belly (LLMB) and tendon subluxation is not well explored. In this retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing a primary peroneal tendon surgery, in a five year period, were assessed. The sensitivity and specificity of MRI, in comparison to intraoperative findings for identifying peroneal tendon disease was investigated. Presence of associated peroneal tendon pathologies in patients with and without LLMB was compared. Sensitivity of MRI was high in identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, LLMB was seen in 62.00% of patients with chronic lateral ankle pain and was associated with 64.52% cases of tenosynovitis, 29.03% cases of tendon subluxation, and 80.65% cases of peroneus brevis tendon tear. While presence of a LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, among the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant LLMB. More studies with a larger patient population are needed to better study the role of a low lying muscle belly as a mass occupying lesion resulting in peroneal tendon subluxation. PMID:25998478
Properties of the low-lying electronic states of phenanthrene: Exact PPP results
Chakrabarti, A.; Ramasesha, S.
1996-10-05
The authors report properties of the exact low-lying states of phenanthrene, its anion and dianion within the Pariser-Parr-Pople (PPP) model. The experimentally known singlet states of the neutral molecule are well reproduced by the model. The intensities for one and two photon absorption to various single states are also in good agreement with experiment. From the bond orders of these states, the authors predict the equilibrium geometries. The relaxation energies of these states, computed from charge-charge correlations and bond orders, are presented. The authors also present results of ring current calculations in the singlet ground state of phenanthrene. The authors have also reported energies, spin densities, bond orders, and relaxation energies of several triplet states and compared then with experiments as well as with other calculations, where available. The fine structure constants D and E, computed in the lowest triplet state, compare well with those obtained from experiments. These properties are also presented for the anions and the dianions. The PPP model in these cases predicts a low-energy (< 1 eV) dipole excitation. 31 refs., 4 figs., 9 tabs.
Low-lying electronic states of LiF molecule with inner electrons correlation
NASA Astrophysics Data System (ADS)
Wan, Ming-jie; Huang, Duo-hui; Yang, Jun-sheng; Cao, Qi-long; Jin, Cheng-guo; Wang, Fan-hou
2015-06-01
The potential energy curves and dipole moments of the low-lying electronic states of LiF molecule are performed by using highly accurate multi-reference configuration interaction with Awcv5z basis sets. 1s, the inner shell of Li is considered as the closed orbit, which is used to characterise the spectroscopic properties of a manifold of singlet and triplet states. 16 electronic states correlate with two lowest dissociation channels Li(2S)+F(2P) and Li(2P)+F(2P) are investigated. Spectroscopic parameters of the ground state X1Σ+ have been evaluated and critically compared with the available experimental values and the other theoretical data. However, spectroscopic parameters of 13Π, 11Δ, 11Σ-, 11Π, 13Σ+, 23Σ+, 13Δ, 13Σ-, 23Π, 21Π, 33Π, 31Π and 33Σ+ states are studied for the first time. These 13 excited states have shallow potential wells, and the dispersion coefficients of these excited states are predicted. In additional, oscillator strengths of excited states at equilibrium distances are also predicted.
Potential energy curves for the ground and low-lying excited states of CuAg
Alizadeh, Davood; Shayesteh, Alireza E-mail: ashayesteh@ut.ac.ir; Jamshidi, Zahra E-mail: ashayesteh@ut.ac.ir
2014-10-21
The ground and low-lying excited states of heteronuclear diatomic CuAg are examined by multi-reference configuration interaction (MRCI) method. Relativistic effects were treated and probed in two steps. Scalar terms were considered using the spin-free DKH Hamiltonian as a priori and spin-orbit coupling was calculated perturbatively via the spin-orbit terms of the Breit-Pauli Hamiltonian based on MRCI wavefunctions. Potential energy curves of the spin-free states and their corresponding Ω components correlating with the separated atom limits {sup 2}S(Cu) + {sup 2}S(Ag) and {sup 2}D(Cu) + {sup 2}S(Ag) are obtained. The results are in fine agreement with the experimental measurements and tentative conclusions for the ion-pair B0{sup +} state are confirmed by our theoretical calculations. Illustrative results are presented to reveal the relative importance and magnitude of the scalar and spin-orbit effects on the spectroscopic properties of this molecule. Time dependent density functional theory calculations, using the LDA, BLYP, B3LYP, and SAOP functionals have been carried out for CuAg and the accuracy of TD-DFT has been compared with ab initio results.
A theoretical study on low-lying electronic states and spectroscopic properties of PH
NASA Astrophysics Data System (ADS)
Gao, Yufeng; Gao, Tao
2014-01-01
The low-lying electronic states (X3∑-, a1Δ, b1Σ+, A3Π, c1Π and 5∑-) of the PH species correlating with the first three dissociation channels have been investigated at the MRCI + Q/aug-cc-PV5Z level of theory. Accurate adiabatic potential energy curves and spectroscopic constants (Te, Re, ωeχe, ωe, Be, De) of these electronic states have been reported. Effect of the spin-orbit coupling on the A3Π and 5∑- states of the PH has been calculated, which lead to the spin-orbit-induced predissociation of the A3Π state. Electronic transition moment, Einstein coefficients and Franck-Condon factors for the A3Π - X3∑- system have been calculated. Dipole moment functions (μe) and radiative lifetime (τv‧) for the A3Π state has also been determined. The radiative lifetime for A3Π - X3∑- transition is computed and compared with the available data.
The low-lying electronic states of pentacene and their roles in singlet fission.
Zeng, Tao; Hoffmann, Roald; Ananth, Nandini
2014-04-16
We present a detailed study of pentacene monomer and dimer that serves to reconcile extant views of its singlet fission. We obtain the correct ordering of singlet excited-state energy levels in a pentacene molecule (E (S1) < E (D)) from multireference calculations with an appropriate active orbital space and dynamical correlation being incorporated. In order to understand the mechanism of singlet fission in pentacene, we use a well-developed diabatization scheme to characterize the six low-lying singlet states of a pentacene dimer that approximates the unit cell structure of crystalline pentacene. The local, single-excitonic diabats are not directly coupled with the important multiexcitonic state but rather mix through their mutual couplings with one of the charge-transfer configurations. We analyze the mixing of diabats as a function of monomer separation and pentacene rotation. By defining an oscillator strength measure of the coherent population of the multiexcitonic diabat, essential to singlet fission, we find this population can, in principle, be increased by small compression along a specific crystal direction. PMID:24697685
Low-lying stepwise paths for ethylene 1,3-dipolar cycloadditions: A DFT study
NASA Astrophysics Data System (ADS)
Kavitha, K.; Venuvanalingam, P.
Ethylene reacts with 1,3-dipoles such as diazomethane, nitrile oxide, and nitrone to give a single adduct and the potential energy surfaces of these reactions were completely surveyed with Density Functional Theory at the B3LYP/6-31G(d) level; B3LYP/6-311+G(d,p), QCISD/6-31G(d) level calculations were performed for comparison. These reactions were found to have one concerted and four stepwise paths and all of them were thoroughly examined. Calculations show that anti and syn approaches in the stepwise paths merge at one point in the potential energy surface and the stepwise processes (i.e., through syn transition states) are low-lying and concerted paths that are in close competition with them. A closer examination of the computed barriers of the reactions of ethylene with the above dipoles, cyclopentadiene, 1,3-butadiene, and allyl anion reveals that there is a mechanistic cross-over from concerted to stepwise path. While the neutral cycloaddition partners prefer a concerted path, the charged partners strongly favor a stepwise path. The dipoles have both concerted and stepwise (syn) paths in close competition. Such a mechanistic cross-over has been induced by the polar influence of the charged species and this change-over in mechanism could not be observed with allene cycloadditions with the same set of partners because allene is strongly biased towards the stepwise mechanism.
Impulsive thermal x-ray emission from a low-lying coronal loop
Liu, Siming; Li, Youping; Fletcher, Lyndsay
2013-06-01
Understanding the relationship among different emission components plays an essential role in the study of particle acceleration and energy conversion in solar flares. In flares where gradual and impulsive emission components can be readily identified, the impulsive emission has been attributed to non-thermal particles. We carry out detailed analysis of Hα and X-ray observations of a GOES class B microflare loop on the solar disk. The impulsive hard X-ray emission, however, is found to be consistent with a hot, quasi-thermal origin, and there is little evidence of emission from chromospheric footpoints, which challenges conventional models of flares and reveals a class of microflares associated with dense loops. Hα observations indicate that the loop lies very low in the solar corona or even in the chromosphere and both emission and absorption materials evolve during the flare. The enhanced Hα emission may very well originate from the photosphere when the low-lying flare loop heats up the underlying chromosphere and reduces the corresponding Hα opacity. These observations may be compared with detailed modeling of flare loops with the internal kink instability, where the mode remains confined in space without apparent change in the global field shape, to uncover the underlying physical processes and to probe the structure of solar atmosphere.
Pauli blocking in the low-lying, low-spin states of {sup 141}Pr
Scheck, M.; Choudry, S. N.; Elhami, E.; McEllistrem, M. T.; Mukhopadhyay, S.; Orce, J. N.; Yates, S. W.
2008-09-15
The low-lying, low-spin levels of {sup 141}Pr were investigated using (n,n{sup '}{gamma}) techniques. Level energies, branching ratios, and tentative spin assignments for more than 100 states, linked by nearly 300 transitions, were obtained from two angular distributions (E{sub n}=2.0 and 3.0 MeV) and an excitation function measurement (E{sub n}=1.5-3.2 MeV). The application of the Doppler-shift attenuation method led to the determination of lifetimes. The obtained spectroscopic data provide insight into the wave functions of the states observed. A detailed analysis of the [2{sub 1}{sup +} x d{sub 5/2}] and [2{sub 1}{sup +} x g{sub 7/2}] multiplets provides the first quantitative evidence for Pauli blocking in a spherical odd-mass nucleus. The unpaired particle is used to probe the microscopic structure of the first 2{sup +} state of the adjacent core nuclei {sup 140}Ce and {sup 142}Nd.
Structure and spectroscopic properties of low-lying states of the HOC(O)O radical.
Linguerri, Roberto; Puzzarini, Cristina; Francisco, Joseph S
2016-02-28
The HOC(O)O radical is a product of the reaction of HOCO radicals with oxygen atoms. The present study provides theoretical prediction of critical spectroscopic features of this radical that should aid in its experimental characterization. Energies, structures, rotational constants, and harmonic frequencies are presented for the ground and two low-lying excited electronic states of HOC(O)O. The energies for the Ã(2)A(″)←X̃(2)A(') and B̃(2)A(')←X̃(2)A(') electronic transitions are reported. The band origin of the B̃←X̃ transition of HOC(O)O is predicted to occur in the near infrared region of the spectrum at around 1.5 eV and it is suggested to be the most promising one for observing this radical spectroscopically. The structural and spectroscopic similarities between HOC(O)O and the isoelectronic radical FC(O)O are discussed. The abundance of experimental data on the FC(O)O radical should guide the spectroscopic characterization of HOC(O)O and serve as a benchmark for the structural and spectroscopic parameters obtained from theory. PMID:26931701
Plant, Nathaniel G.; Thompson, David M.; Elias, Edwin
2011-01-01
Using Delft3D, a Chandeleur Island model was constructed to examine the sediment-transport patterns and morphodynamic change caused by Hurricane Katrina and similar storm events. The model setup included a coarse Gulf of Mexico domain and a nested finer-resolution Chandeleur Island domain. The finer-resolution domain resolved morphodynamic processes driven by storms and tides. A sensitivity analysis of the simulated morphodynamic response was performed to investigate the effects of variations in surge levels. The Chandeleur morphodynamic model reproduced several important features that matched observed morphodynamic changes. A simulation of bathymetric change driven by storm surge alone (no waves) along the central portion of the Chandeleur Islands showed (1) a general landward retreat and lowering of the island chain and (2) multiple breaches that increased the degree of island dissection. The locations of many of the breaches correspond with the low-lying or narrow sections of the initial bathymetry. The major part of the morphological change occurred prior to the peak of the surge when overtopping of the islands produced a strong water-level gradient and induced significant flow velocities.
Numerical simulation of a low-lying barrier island's morphological response to Hurricane Katrina
Lindemer, C.A.; Plant, N.G.; Puleo, J.A.; Thompson, D.M.; Wamsley, T.V.
2010-01-01
Tropical cyclones that enter or form in the Gulf of Mexico generate storm surge and large waves that impact low-lying coastlines along the Gulf Coast. The Chandeleur Islands, located 161. km east of New Orleans, Louisiana, have endured numerous hurricanes that have passed nearby. Hurricane Katrina (landfall near Waveland MS, 29 Aug 2005) caused dramatic changes to the island elevation and shape. In this paper the predictability of hurricane-induced barrier island erosion and accretion is evaluated using a coupled hydrodynamic and morphodynamic model known as XBeach. Pre- and post-storm island topography was surveyed with an airborne lidar system. Numerical simulations utilized realistic surge and wave conditions determined from larger-scale hydrodynamic models. Simulations included model sensitivity tests with varying grid size and temporal resolutions. Model-predicted bathymetry/topography and post-storm survey data both showed similar patterns of island erosion, such as increased dissection by channels. However, the model under predicted the magnitude of erosion. Potential causes for under prediction include (1) errors in the initial conditions (the initial bathymetry/topography was measured three years prior to Katrina), (2) errors in the forcing conditions (a result of our omission of storms prior to Katrina and/or errors in Katrina storm conditions), and/or (3) physical processes that were omitted from the model (e.g., inclusion of sediment variations and bio-physical processes). ?? 2010.
Low-Lying S-States of Two-Electron Systems
NASA Astrophysics Data System (ADS)
Khan, Md. Abdul
2014-04-01
The energies of the low-lying bound S-states of some two-electron systems (treating them as three-body systems) like negatively charged hydrogen, neutral helium, positively charged-lithium, beryllium, carbon, oxygen, neon, argon and negatively charged muonium and exotic positronium ions have been calculated employing hyperspherical harmonics expansion method. The matrix elements of two-body interactions involve Raynal-Revai coefficients which are particularly essential for the numerical solution of three-body Schrődinger equation when the two-body potentials are other from Coulomb or harmonic. The technique has been applied for to two-electron ions 1H- (Z = 1) to 40Ar16+ (Z = 18), negatively charged-muonium Mu- and exotic positronium ion Ps-(e + e - e -) considering purely Coulomb interaction. The available computer facility restricted reliable calculations up to 28 partial waves (i.e. K m = 28) and energies for higher K m have been obtained by applying an extrapolation scheme suggested by Schneider.
Theoretical calculation of low-lying states of NaAr and NaXe
NASA Technical Reports Server (NTRS)
Laskowski, B. C.; Langhoff, S. R.; Stallcop, J. R.
1981-01-01
Potential curves as well as dipole moments and linking transition moments are calculated for the ground X 2 Sigma + and low lying excited A 2 Pi, B 2 Sigma +, C 2 Sigma +, (4) 2 Sigma +, (2) 2 Pi and (1) 2 Delta states of NaAr and NaXe. Calculations are performed using a self-consistent field plus configuration-interaction procedure with the core electrons replaced by an ab initio effective core potential. The potential curves obtained are found to be considerably less repulsive than the semiempirical curves of Pascale and Vandeplanque (1974) and to agree well with existing experimental data, although the binding energies of those states having potential minima due to van der Waals interactions are underestimated. Emission bands are also calculated for the X 2 Sigma + - C 2 Sigma + excimer transitions of NaAr and NaXe using the calculated transition moments and potential curves, and shown to agree well with experiment on the short-wavelength side of the maximum.
Theoretical studies of the low-lying states of ScO, ScS, VO, and VS
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.
1986-01-01
Bonding in the low-lying states of ScO, ScS, VO, and VS is theoretically studied. Excellent agreement is obtained with experimental spectroscopic constants for the low-lying states of ScO and VO. The results for VS and ScS show that the bonding in the oxides and sulfides is similar, but that the smaller electronegativity in S leads to a smaller ionic component in the bonding. The computed D0 of the sulfides are about 86 percent of the corresponding oxides, and the low-lying excited states are lower in the sulfides than in the corresponding oxides. The CPF method is shown to be an accurate and cost-effective method for obtaining reliable spectroscopic constants for these systems.
Propagation of vector solitons in a quasi-resonant medium with stark deformation of quantum states
Sazonov, S. V.; Ustinov, N. V.
2012-11-15
The nonlinear dynamics of a vector two-component optical pulse propagating in quasi-resonance conditions in a medium of nonsymmetric quantum objects is investigated for Stark splitting of quantum energy levels by an external electric field. We consider the case when the ordinary component of the optical pulse induces {sigma} transitions, while the extraordinary component induces the {pi} transition and shifts the frequencies of the allowed transitions due to the dynamic Stark effect. It is found that under Zakharov-Benney resonance conditions, the propagation of the optical pulse is accompanied by generation of an electromagnetic pulse in the terahertz band and is described by the vector generalization of the nonlinear Yajima-Oikawa system. It is shown that this system (as well as its formal generalization with an arbitrary number of optical components) is integrable by the inverse scattering transformation method. The corresponding Darboux transformations are found for obtaining multisoliton solutions. The influence of transverse effects on the propagation of vector solitons is investigated. The conditions under which transverse dynamics leads to self-focusing (defocusing) of solitons are determined.
Theoretical spectroscopic constants for the low-lying states of the oxides and sulfides of Mo and Tc
NASA Technical Reports Server (NTRS)
Langhoff, Stephen R.; Bauschlicher, Charles W., Jr.; Pettersson, Lars G. M.; Siegbahn, Per E. M.
1989-01-01
Spectroscopic results were determined for the ground and low-lying states of the oxides and sulfides of Mo and Tc, using the single-reference-based modified coupled pair functional method of Ahlrichs et al. (1985) and Chong et al. (1986) and the multireference-based state-averaged CASSCF/MRCI method. Spectroscopic constants, dipole moments, Mulliken populations, and radiative lifetimes were calculated for selected low-lying states of these molecular systems. The spectroscopy of the MoS and TcS molecules was found to be quite analogous to the corresponding oxides.
Generalized Eigenvectors for Resonances in the Friedrichs Model and Their Associated Gamov Vectors
NASA Astrophysics Data System (ADS)
Baumgärtel, Hellmut
A Gelfand triplet for the Hamiltonian H of the Friedrichs model on ℝ with multiplicity space { K}, dim { K}<∞ , is constructed such that exactly the resonances (poles of the inverse of the Livšic-matrix) are (generalized) eigenvalues of H. The corresponding eigen(anti)linear forms are calculated explicitly. Using the wave matrices for the wave (Möller) operators the corresponding eigen(anti)linear forms on the Schwartz space { S} for the unperturbed Hamiltonian H0 are also calculated. It turns out that they are of pure Dirac type and can be characterized by their corresponding Gamov vector λ → k/(ζ0 - λ)-1, ζ0 resonance, k∈ { K}, which is uniquely determined by restriction of { S} to { S} cap { H}+2, where { H}+2 denotes the Hardy space of the upper half-plane. Simultaneously this restriction yields a truncation of the generalized evolution to the well-known decay semigroup for t ≥ 0 of the Toeplitz type on { H}+2. That is: Exactly those pre-Gamov vectors λ → k/(ζ - λ)-1, ζ from the lower half-plane, k in { K}, have an extension to a generalized eigenvector of H if ζ is a resonance and if k is from that subspace of { K} which is uniquely determined by its corresponding Dirac type antilinear form.
Low-lying levels of 76Ge, a candidate for neutrinoless double- β decay
NASA Astrophysics Data System (ADS)
Mukhopadhyay, S.; B. P. Crider Team; E. E. Peters Team; F. M. Prados-Este'vez Team; M. T. McEllistrem Team; S. W. Yates Team
2015-10-01
The low-spin structure of 76Ge was studied at the University of Kentucky with the (n,n' γ) reaction. This nucleus is a parent in double- β decay and is also a rare example of a nucleus to exhibit rigid triaxial deformation in the low-lying states. Excitation function measurements performed with neutrons from 1.6 to 3.7 MeV helped determine the threshold for the γ rays and hence their placement in the level scheme. Lifetimes, spins,multipolarities, and branching ratios were obtained from angular distributions measured at neutron energies of 3.0 and 3.5 MeV. New levels identified around 2 MeV will give insight to the nuclear structure aspects of 76Ge. It is also important to identify any γ rays around 2039 keV, as the experimental signature for neutrinoless double- β decay is a weak peak at this energy. In a recent study with 4.9-MeV neutrons, a reported 2039-keV γ ray from the 3952-keV level was not observed. However, definitely a new level at 3147 keV with 2584- and 2038-keV γ rays to the 21+ and 22+ states, respectively was established. These findings indicate that backgrounds in the search for the neutrinoless double- β decay of 76Ge may be more complex. This material is based upon work supported by the U.S. National Science Foundation under Grant No. PHY-1305801.
Fourier Transform Emission Spectroscopy of the Low-Lying Electronic States of NbN
NASA Astrophysics Data System (ADS)
Ram, R. S.; Bernath, P. F.
2000-06-01
The high-resolution spectrum of NbN has been investigated in emission in the 3000-15 000 cm-1 region using a Fourier transform spectrometer. The bands were excited in a microwave discharge through a mixture of NbCl5 vapor, ∼5 mTorr of N2, and 3 Torr of He. Numerous bands observed in the near-infrared region have been classified into the following transitions: f1Φ-c1Γ, e1Π-a1Δ, C3Π0+-A3Σ-1, C3Π0--A3Σ-1, C3Π1-a1Δ, C3Π1-A3Σ-0, d1Σ+-A3Σ-0, and d1Σ+-b1Σ+. These observations are consistent with the energy level diagram provided by laser excitation and emission spectroscopy [Y. Azuma, G. Huang, M. P. J. Lyne, A. J. Merer, and V. I. Srdanov, J. Chem. Phys. 100, 4138-4155 (1993)]. The missing d1Σ+ state has been observed for the first time and its spectroscopic parameters are consistent with the theoretical predictions of S. R. Langhoff and W. Bauschlicher, Jr. [J. Mol. Spectrosc. 143, 169-179 (1990)]. Rotational analysis of a number of bands has been obtained and improved spectroscopic parameters have been extracted for the low-lying electronic states. The observation of several vibrational bands with v = 1 has enabled us to determine the vibrational intervals and equilibrium bond lengths for the A3Σ-0, a1Δ, b1Σ+, d1Σ+, and C3Π1 states.
Searching for low-lying multi-particle thresholds in lattice spectroscopy
Mahbub, M. Selim; Kamleh, Waseem; Leinweber, Derek B.; Williams, Anthony G.
2014-03-15
We explore the Euclidean-time tails of odd-parity nucleon correlation functions in a search for the S-wave pion–nucleon scattering-state threshold contribution. The analysis is performed using 2+1 flavor 32{sup 3}×64 PACS-CS gauge configurations available via the ILDG. Correlation matrices composed with various levels of fermion source/sink smearing are used to project low-lying states. The consideration of 25,600 fermion propagators reveals the presence of more than one state in what would normally be regarded as an eigenstate-projected correlation function. This observation is in accord with the scenario where the eigenstates contain a strong mixing of single and multi-particle states but only the single particle component has a strong coupling to the interpolating field. Employing a two-exponential fit to the eigenvector-projected correlation function, we are able to confirm the presence of two eigenstates. The lower-lying eigenstate is consistent with a Nπ scattering threshold and has a relatively small coupling to the three-quark interpolating field. We discuss the impact of this small scattering-state contamination in the eigenvector projected correlation function on previous results presented in the literature. -- Highlights: • Correlation-matrix projected correlators reveal more than one state contributing. • Results are associated with strong mixing of single and multi-particle states in QCD. • A two-exponential fit confirms the presence of two QCD eigenstates. •The lower-lying eigenstate is consistent with a nucleon–pion scattering threshold. •The impact of this small contamination on the higher-lying state is examined.
Tricking Landau-Yang: How to obtain the diphoton excess from a vector resonance
NASA Astrophysics Data System (ADS)
Chala, Mikael; Duerr, Michael; Kahlhoefer, Felix; Schmidt-Hoberg, Kai
2016-04-01
We show that contrary to naive expectations the recently observed diphoton excess can be explained by a vector resonance, which decays to a photon and a light scalar s, followed by a decay of the scalar into two photons: Z‧ → γs → 3 γ. As the two photons from the scalar decay are highly boosted, the experimental signature is an apparent diphoton final state. In fact all the necessary ingredients are naturally present in Z‧ models: Additional fermions with electroweak quantum numbers are required in order to render the theory anomaly free and naturally induce the required effective couplings, while the hidden Higgs which gives mass to the Z‧ can be very light. In particular no new coloured states are required in this framework. We also show that in such a setup the width of the resonance can be rather large, while all couplings remain perturbative.
Yoshinaga, N.; Arima, A.
2010-04-15
We propose some new, efficient, and practical extrapolation methods to obtain a few low-lying eigenenergies of a large-dimensional Hamiltonian matrix in the nuclear shell model. We obtain those energies at the desired accuracy by extrapolation after diagonalizing small-dimensional submatrices of the sorted Hamiltonian matrix.
Novel triaxial structure in low-lying states of neutron-rich nuclei around A ≈100
NASA Astrophysics Data System (ADS)
Xiang, J.; Yao, J. M.; Fu, Y.; Wang, Z. H.; Li, Z. P.; Long, W. H.
2016-05-01
Background: In recent years, the study of triaxiality in the low-lying states of atomic nuclei with transition character or shape coexistence has been of great interest. Previous studies indicate that the neutron-rich nuclei in the A ˜100 mass region with Z ˜40 ,N ˜60 serve as good grounds for examining the role of triaxiality in nuclear low-lying states. Purpose: The aim of this work is to provide a microscopic study of low-lying states for nuclei in the A ˜100 mass regions and to examine in detail the role of triaxiality in the shape-coexistence phenomena and the variation of shape with the isospin and spin values at the beyond mean-field level. Method: The starting point of our method is a set of relativistic mean-field plus BCS wave functions generated with a constraint on triaxial deformations (β ,γ ) . The excitation energies and electric multipole transition strengths of low-lying states are calculated by solving a five-dimensional collective Hamiltonian (5DCH) with parameters determined by the mean-field wave functions. Results: The low-lying states of Mo isotopes and of N =60 isotones in the A ˜100 mass region are calculated. The results indicate that triaxiality is essential to reproduce the data of excitation energies and electric quadrupole transition strengths in low-lying states and plays an important role in the shape evolution as a function of nucleon number. However, the decrease of nuclear collectivity with the increase of angular momentum in neutron-rich Mo isotopes has not been reproduced. Conclusions: The evolution of nuclear collectivity in the low-lying states of neutron-rich nuclei in the A ˜100 mass region as a function of nucleon number is governed by the novel triaxial structure. However, the mechanism that governs the variation of nuclear shape with spin in Mo isotopes remains unclear and deserves further investigation by taking into account the effects other than the collective motions.
Vector leptoquarks and the 750 GeV diphoton resonance at the LHC
NASA Astrophysics Data System (ADS)
Murphy, Christopher W.
2016-06-01
The ATLAS and CMS Collaborations recently presented evidence of a resonance decaying to pairs of photons around 750 GeV. In addition, the BaBar, Belle, and LHCb Collaborations have evidence of lepton non-universality in the semileptonic decays of B mesons. In this work, we make a first step towards a unified explanation of these anomalies. Specifically, we extend the Standard Model by including vector leptoquarks and a scalar singlet that couples linearly to pairs of the leptoquarks. We find there is parameter space that gives the correct cross section for a putative 750 GeV resonance decaying to photons that is consistent with unitarity, measurements of the properties of the 125 GeV Higgs boson, and direct searches for resonances in other channels. In addition, we also show that constraints can be derived on any Beyond the Standard Model explanation of the 750 GeV resonance where the only new particles are scalars, which are strong enough to rule out certain types of models entirely.
Sea Level Rise Enhanced Halocarbon Production in Low-lying Coastal Ecosystem in the Southeastern US
NASA Astrophysics Data System (ADS)
Chow, A. T.; Conner, W.; Williams, T.; Song, B.
2010-12-01
Saltwater tides bring high concentrations of chloride and bromide inland where it mixes with terrestrial humic substances from surrounding forested watersheds and ferric/ferrous ions from shallow groundwater. With all the essential precursors (i.e., chloride, bromide, and humic substances) and catalysts (ferric/ferrous ions with sunlight), low-lying coastal ecosystems could be a hotspot for halocarbon formation. Fluctuating water levels and salinity due to the tidal cycle alter both redox reactions and water chemistry, influencing the formation and fate of halocarbons. A controlled study was conducted to confirm the abiotic formation of trihalomethanes (THMs) by the photo-Fenton reaction and the effects of the precursors on their formation. Four THM species, including chloroform (CHCl3), bromodichloromethane (CHBrCl2), dibromochloromethane (CHBr2Cl), and bromoform (CHBr3), were examined. Sets of aqueous solutions were prepared using filtered Waccamaw River samples and synthesized NaCl / NaBr, and Fe2(SO4)3 and H2O2 solutions. Solutions were enclosed in quartz tubes and exposed for 7 days to natural sunlight. Although total THM formation increased with DOC concentration, the reactivity of C in forming THM was relatively consistent across DOC concentrations, with an average of 2.6 nmol-THM mmol-C-1. The reactivity in forming THMs through the photo-Fenton reaction was significantly lower than that in chlorinated water. Reactivity generally ranged from 3-20 mmol-THM mol-C-1. The differences in reactivity suggested that greater yield of THMs could be produced under the right reaction condition. In particular, the study showed that bromide increases the reactivity of DOC in forming THMs and enhances the formation of brominated THMs. The bromine substitution factor in the NaCl treatment ranged from 19 to 24% but increased to 43 and 46% when NaBr was added. Results suggest that increased salinity and bromide concentration in saltwater-impacted coastal ecosystems could
Taming the low-lying electronic states of FeH.
DeYonker, Nathan J; Allen, Wesley D
2012-12-21
The low-lying electronic states (X (4)Δ, A (4)Π, a (6)Δ, b (6)Π) of the iron monohydride radical, which are especially troublesome for electronic structure theory, have been successfully described using a focal point analysis (FPA) approach that conjoined a correlation-consistent family of basis sets up to aug-cc-pwCV5Z-DK with high-order coupled cluster theory through hextuple (CCSDTQPH) excitations. Adiabatic excitation energies (T(0)) and spectroscopic constants (r(e), r(0), B(e), B(0), D(e), ω(e), v(0), α(e), ω(e)x(e)) were extrapolated to the valence complete basis set Douglas-Kroll (DK) aug-cc-pwCV∞Z-DK CCSDT level of theory, and additional treatments accounted for higher-order valence electron correlation, core correlation, spin-orbit coupling, and the diagonal Born-Oppenheimer correction. The purely ab initio FPA approach yields the following T(0) results (in eV) for the lowest spin-orbit components of each electronic state: 0 (X (4)Δ) < 0.132 (A (4)Π) < 0.190 (a (6)Δ) < 0.444 (b (6)Π). The computed anharmonic fundamental vibrational frequencies (v(0)) for the (4,6)Δ electronic states are within 3 cm(-1) of experiment and provide reliable predictions for the (4,6)Π states. With the cc-pVDZ basis set, even CCSDTQPH energies give an incorrect ground state of FeH, highlighting the importance of combining high-order electron correlation treatments with robust basis sets when studying transition-metal radicals. The FPA computations provide D(0) = 1.86 eV (42.9 kcal mol(-1)) for the 0 K dissociation energy of FeH and Δ(f)H(298) (∘) [FeH((g))] = 107.7 kcal mol(-1) for the enthalpy of formation at room temperature. Despite sizable multireference character in the quartet states, high-order single-reference coupled cluster computations improve the spectroscopic parameters over previous multireference theoretical studies; for example, the X (4)Δ → A (4)Π and a (6)Δ → b (6)Π transition energies are reproduced to 0
NASA Astrophysics Data System (ADS)
Zhang, Guojun; Zhao, Peng; Zhang, Wendong
2015-04-01
The MEMS vector hydrophone developed by the North University of China has advantages of high Signal to Noise Ratio, ease of array integration, etc. However, the resonance frequency of the MEMS device in the liquid is different from that in the air due to the fluid-structure interaction (FSI). Based on the theory of Fluid-Solid Coupling, a generalized distributed mass attached on the micro-structure has been found, which results in the resonance frequency of the microstructure in the liquid being lower than that in the air. Then, an FSI simulation was conducted by ANSYS software. Finally, the hydrophone was measured by using a shaking table and a vector hydrophone calibration system respectively. Results show that, due to the FSI, the resonance frequency of the MEMS devices of the bionic vector hydrophone in the liquid declines approximately 30% compared to the case in the air.
The water budget of a coastal low-lying wetland area at the German Baltic Coast
NASA Astrophysics Data System (ADS)
Bronstert, Axel; Graeff, Thomas; Selle, Benny; Salzmann, Thomas; Franck, Christian; Miegel, Konrad
2016-04-01
that despite low slope, sandy soils and forest vegetation, the catchment's hydrology is dominated by quick discharge components, for which the near-surface groundwater and the reaction for open water surfaces are the main cause. The seasonality of the area's discharge is characterized by the formation of quick discharge components mainly during the winter half-year, and by the retention effect of the lowland/fen. This retention is especially high in summer, when the surface and ground water levels have decreased due to high evaporation rates and the discharge out of the area may cease. The magnitude of the area's outflow thus generally depends on the catchment's water level. Due to the possible backlog of surface water caused by high water levels of the Baltic Sea, the direction of flow may reverse episodically. In the subareas between the trenches of the lowland, vertical exchange processes from precipitation and evaporation dominate. The lateral sub-surface interaction from/to the Baltic Sea is rather small due to the particular low local subsurface hydraulic conductivity and the very small hydraulic gradient. In summary, it can be said that this coastal low-lying wetland in the restoration phase shows rather heterogeneous hydrological processes and water balance. Characteristic are the high relevance of the subsurface processes and a strong seasonal variation, i.e. very low discharge rates in summer (except for summer convective rain storms) and considerable discharge rates in winter. The anthropogenic interventions in those coastal areas during the last two centuries have changed their water balance exceedingly. The interaction with the Baltic Sea via groundwater exchange under the dunes is very small.
Dixit, Gopal; Majumder, Sonjoy; Sahoo, Bijaya K.; Chaudhuri, Rajat K.
2007-10-15
We report electric quadrupole (E2) and magnetic dipole (M1) transition amplitudes of the first few low-lying states of quadruply ionized vanadium (V{sup 4+}), which are important in various experimental applications and astrophysics. To our knowledge, most of these presented results are determined for the first time in the literature. A relativistic multireference Fock-space coupled-cluster theory with single (S), double (D), and partial triple (T) excitations is employed to compute the forbidden transition probabilities and lifetimes of the low-lying states in V{sup 4+}. Estimations of different correlation effects arising through the above formalism have been highlighted by investigating core and valence electron excitations. A long lifetime is found for the first excited 3d {sup 2}D{sub 5/2} state, which suggests that V{sup 4+} may be one of the useful candidates for many important studies.
Das, Mousumi
2014-03-28
We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties. PMID:24697451
Das, Mousumi
2014-03-28
We studied the nature of the ground state and low-lying excited states of armchair polyacene oligomers (Polyphenanthrene) within long-range Pariser-Parr-Pople model Hamiltonian with up to 14 monomers using symmetrized density matrix renormalization group technique. The ground state of all armchair polyacenes studied is found to be singlet. The results show that lowest singlet dipole allowed excited state has higher energy for armchair polyacenes as compared to linear fused polyacenes. Moreover, unlike linear fused polyacenes, the lowest singlet excited state of these oligomers is always found to lie below the lowest dipole forbidden two-photon state indicating that these armchair polyacene oligomers strongly fluoresce. The calculations of low-lying excitations on singly and triply electron doped armchair polyacene oligomers show a low energy band with strong transition dipole moment that coupled to charge conductivity. This implies armchair polyacene posses novel field-effect transistor properties.
NASA Technical Reports Server (NTRS)
Langhoff, Stephen R.; Pettersson, Lars G. M.; Bauschlicher, Charles W., Jr.; Partridge, Harry
1987-01-01
A systematic analysis of the low-lying states of all of the second-row transition metal (TM) hydrides except CdH is reported. The calculations included the dominant relativistic contributions through the use of the relativistic effective core potentials of Hay and Wadt (1985). Electron correlation was incorporated, using single-plus-double configuration interaction, the coupled pair functional (CPF) formalism of Ahlrichs et al. (1985), and the Chong and Langhoff (1986) modified version of the CPF method. The spectroscopic parameters D(e), r(e), and mu(e) determined for the low-lying states are compared with the available experimental data and previous theoretical results. In contrast to the first-row TM hydrides studied earlier (Chong et al., 1986), the spectroscopic constants for the second-row TM hydrides were found to be much less sensitive to the level of correlation treatment.
Impact of the electron environment on the lifetime of the {sup 229}Th{sup m} low-lying isomer
Karpeshin, F. F.; Trzhaskovskaya, M. B.
2007-11-15
The question of the lifetime of the {sup 229}Th{sup m} low-lying isomer is considered in light of current experimental research. A strong effect of the electron shell on lifetime is demonstrated, depending on the energy of the isomer. Calculations are performed within the framework of the multiconfiguration Dirac-Fock method. The calculated lifetime ranges from around 1 min down to 10{sup -5} s. Prospects for further experimental research of the isomer are discussed.
Rajesh Sharma, R.; Marikkannu, P.
2015-01-01
A novel hybrid approach for the identification of brain regions using magnetic resonance images accountable for brain tumor is presented in this paper. Classification of medical images is substantial in both clinical and research areas. Magnetic resonance imaging (MRI) modality outperforms towards diagnosing brain abnormalities like brain tumor, multiple sclerosis, hemorrhage, and many more. The primary objective of this work is to propose a three-dimensional (3D) novel brain tumor classification model using MRI images with both micro- and macroscale textures designed to differentiate the MRI of brain under two classes of lesion, benign and malignant. The design approach was initially preprocessed using 3D Gaussian filter. Based on VOI (volume of interest) of the image, features were extracted using 3D volumetric Square Centroid Lines Gray Level Distribution Method (SCLGM) along with 3D run length and cooccurrence matrix. The optimal features are selected using the proposed refined gravitational search algorithm (RGSA). Support vector machines, over backpropagation network, and k-nearest neighbor are used to evaluate the goodness of classifier approach. The preliminary evaluation of the system is performed using 320 real-time brain MRI images. The system is trained and tested by using a leave-one-case-out method. The performance of the classifier is tested using the receiver operating characteristic curve of 0.986 (±002). The experimental results demonstrate the systematic and efficient feature extraction and feature selection algorithm to the performance of state-of-the-art feature classification methods. PMID:26509188
Blum, H; Salerno, J C; Prince, R C; Leigh, J S; Ohnishi, T
1977-01-01
The temperature dependence of the EPR spectrum of oxidized high-potential iron protein from Chromatium vinosum has been studied. From line width and intensity measurements it is possible to determine the position of the first excited unoccupied state, 160 +/- 10 cm-1 above the ground state orbital. PMID:198036
Evaluating the 100 year floodplain as an indicator of flood risk in low-lying coastal watersheds
NASA Astrophysics Data System (ADS)
Sebastian, A.; Brody, S.; Bedient, P. B.
2013-12-01
The Gulf of Mexico is the fastest growing region in the United States. Since 1960, the number of housing units built in the low-lying coastal counties has increased by 246%. The region experiences some of the most intense rainfall events in the country and coastal watersheds are prone to severe flooding characterized by wide floodplains and ponding. This flooding is further exacerbated as urban development encroaches on existing streams and waterways. While the 100 year floodplain should play an important role in our ability to develop disaster resilient communities, recent research has indicated that existing floodplain delineations are a poor indicator of actual flood losses in low-lying coastal regions. Between 2001 and 2005, more than 30% of insurance claims made to FEMA in the Gulf Coast region were outside of the 100 year floodplain and residential losses amounted to more than $19.3 billion. As population density and investments in this region continue to increase, addressing flood risk in coastal communities should become a priority for engineers, urban planners, and decision makers. This study compares the effectiveness of 1-D and a 2-D modeling approaches to spatially capture flood claims from historical events. Initial results indicate that 2-D models perform much better in coastal environments and may serve better for floodplain modeling helping to prevent unintended losses. The results of this study encourage a shift towards better engineering practices using existing 2-D models in order to protect resources and provide guidance for urban development in low-lying coastal regions.
Hauschild, K.; Bernstein, L.A.; Becker, J.A.
1996-12-31
The observation of one-step `primary` gamma-ray transitions directly linking the superdeformed (SD) states to the normal deformed (ND) low-lying states of known excitation energies (E{sub x}), spins and parities (J{sup {pi}}) is crucial to determining the E{sub x} and J{sup {pi}} of the SD states. With this knowledge one can begin to address some of the outstanding problems associated with SD nuclei, such as the identical band issue, and one can also place more stringent restrictions on theoretical calculations which predict SD states and their properties. Brinkman, et al., used the early implementation of the GAMMASPHERE spectrometer array (32 detectors) and proposed a single, candidate {gamma} ray linking the {sup 194}Pb yrast SD band to the low-lying ND states in {sup 194}Pb. Using 55 detectors in the GAMMASPHERE array Khoo, et al., observed multiple links between the yrast SD band in {sup 194}Hg and the low-lying level scheme and conclusively determined E{sub x} and J of the yrast SD states. Here the authors report on an experiment in which Gammasphere with 88 detectors was used and the E{sub x} and J{sup {pi}} values of the yrast SD states in {sup 194}Pb were uniquely determined. Twelve one-step linking transitions between the yrast SD band and low-lying states in {sup 194}Pb have been identified, including the transition proposed by Brinkman. These transitions have been placed in the level scheme of {sup 194}Pb using coincidence relationships and agreements between the energies of the primary transitions and the energy differences in level spacings. Furthermore, measurements of angular asymmetries have yielded the multipolarities of the primaries which have allowed J{sup {pi}} assignments of the {sup 194}Pb SD states to be unambiguously determined for the first time without a priori assumptions about the character of SD bands. A study performed in parallel to this work using the EUROGAM-II array reports similar, but somewhat less extensive, results.
Sharma, Neetika; Dahiya, Harleen; Chatley, P. K.; Gupta, Manmohan
2010-04-01
Magnetic moments of the low lying and charmed spin (1/2){sup +} and spin (3/2){sup +} baryons have been calculated in the SU(4) chiral constituent quark model ({chi}CQM) by including the contribution from cc fluctuations. Explicit calculations have been carried out for the contribution coming from the valence quarks, ''quark sea'' polarizations and their orbital angular momentum. The implications of such a model have also been studied for magnetic moments of the low lying spin (3/2){sup +{yields}}(1/2){sup +} and (1/2){sup +{yields}}(1/2){sup +} transitions as well as the transitions involving charmed baryons. The predictions of {chi}CQM not only give a satisfactory fit for the baryons where experimental data is available but also show improvement over the other models. In particular, for the case of {mu}(p), {mu}({Sigma}{sup +}), {mu}({Xi}{sup 0}), {mu}({Lambda}), Coleman-Glashow sum rule for the low lying spin (1/2){sup +} baryons and {mu}({Delta}{sup +}), {mu}({Omega}{sup -}) for the low lying spin (3/2){sup +} baryons, we are able to achieve an excellent agreement with data. For the spin (1/2){sup +} and spin (3/2){sup +} charmed baryon magnetic moments, our results are consistent with the predictions of the QCD sum rules, light cone sum rules and spectral sum rules. For the cases where light quarks dominate in the valence structure, the sea and orbital contributions are found to be fairly significant however, they cancel in the right direction to give the correct magnitude of the total magnetic moment. On the other hand, when there is an excess of heavy quarks, the contribution of the quark sea is almost negligible, for example, {mu}({Omega}{sub c}{sup 0}), {mu}({Lambda}{sub c}{sup +}), {mu}({Xi}{sub c}{sup +}), {mu}({Xi}{sub c}{sup 0}), {mu}({Omega}{sub cc}{sup +}), {mu}({Omega}{sup -}), {mu}({Omega}{sub c}*{sup 0}), {mu}({Omega}{sub cc}*{sup +}), and {mu}({Omega}{sub ccc}*{sup ++}). The effects of configuration mixing and quark masses have also been
Vibronic effects on the low-lying electronic excitations in N2O induced by electron impact
NASA Astrophysics Data System (ADS)
Watanabe, Noboru; Takahashi, Masahiko
2014-08-01
We report a theoretical study on the valence-shell electronic excitations of N2O induced by electron impact. Momentum transfer-dependent generalized oscillator strengths (GOSs) or GOS profiles have been calculated for the low-lying electronic excitations using theoretical wave functions at the equation-of-motion coupled-cluster singles and doubles level. In the calculation, Herzberg-Teller vibronic effects are taken into account. The computed results are in overall agreement with experimental GOS profiles reported in the literature and reveal prominent roles of the bending vibration of N2O in the B1Δ and C1Π transitions.
On the low-lying states of WO - A comparison with CrO and MoO
NASA Technical Reports Server (NTRS)
Nelin, C. J.; Bauschlicher, C. W., Jr.
1985-01-01
The four low-lying states of WO were investigated and compared with similar states of CrO and MoO. For all these systems the ground state is 5 Pi, but the ordering of the upper states is different between WO and either CrO or MoO. The difference in the state ordering arises in part from the fact that in WO all of the states are formed from W(+) in a d4S1 configuration, whereas in both CrO and MoO some states are formed from the d5 configuration and others from the d4S1 configuration.
Discovery of low-lying E1 and M1 strengths in {sup 232}Th
Adekola, A. S.; Hammond, S. L.; Hill, A.; Karwowski, H. J.; Angell, C. T.; Howell, C. R.; Kwan, E.; Kelley, J. H.
2011-03-15
Properties of low-energy dipole states in {sup 232}Th have been investigated with the nuclear resonance fluorescence technique. The present work used monoenergetic {gamma}-ray beams at energies of 2-4 MeV from the high-intensity {gamma}-ray source at Triangle Universities Nuclear Laboratory. Over 40 transitions corresponding to deexcitation to the ground state and first excited state were observed for the first time. Excitation energies, integrated cross sections, decay widths, branching ratios, and transition strengths for those states in {sup 232}Th were determined and compared with quasiparticle random-phase-approximation calculations. A large number of E1 transitions were observed for the first time in actinide nuclei with summed strength of 3.28(69)x10{sup -3} e{sup 2} fm{sup 2}. The observed summed M1 strength of 4.26(63){mu}{sub N}{sup 2} is in good agreement with the other actinides and with the systematics of the scissors mode in deformed rare-earth nuclei.
Low-lying spectra of {sup 9}{Lambda}Be and {sup 9}Be within three-cluster model
Filikhin, I.; Suslov, V. M.; Vlahovic, B.
2011-10-24
An {alpha}-cluster model is applied to study the low-lying spectra of the {sup 9}{Lambda}Be and {sup 9}Be nuclei. The {alpha}{alpha}{Lambda} and {alpha}{alpha}n three-body problems are numerically solved by the Faddeev equations in configuration space using phenomenological pair potentials with spin-orbital {alpha}{Lambda} and {alpha}n interactions taken into account. For the {sup 9}{Lambda}Be hypernucleus we found a set of the potentials that reproduces the experimental data for the ground state (1/2 {sup +}) binding energy and excitation energy of the 5/2{sup +} and 3/2 {sup +} states, simultaneously. The LS coupling scheme is used for partial wave analysis. The total orbital momentum is fixed for each energy level. Under this assumption we calculated the {sup 9}Be spectrum within {alpha}{alpha}n model. The experiential data are well reproduced by the model, when a new classification for low-lying levels of {sup 9}Be as members of spin-flip doublets is applied.
Ab initio study of the low lying electronic states of ZnF and ZnF-.
Hayashi, Shinsuke; Léonard, Céline; Chambaud, Gilberte
2008-07-28
Highly correlated ab initio calculations have been performed for an accurate determination of the electronic structure and of the spectroscopy of the low lying electronic states of the ZnF system. Using effective core pseudopotentials and aug-cc-pVQZ basis sets for both atoms, the potential curves, the dipole moment functions, and the transition dipole moments between relevant electronic states have been calculated at the multireference-configuration-interaction level. The spectroscopic constants calculated for the X(2)Sigma(+) ground state are in good agreement with the most recent theoretical and experimental values. It is shown that, besides the X(2)Sigma(+) ground state, the B(2)Sigma(+), the C(2)Pi, and the D(2)Sigma(+) states are bound. The A(2)Pi state, which has been mentioned in previous works, is not bound but its potential presents a shoulder in the Franck-Condon region of the X(2)Sigma(+) ground state. All of the low lying quartet states are found to be repulsive. The absorption transitions from the v=0 level of the X(2)Sigma(+) ground state toward the three bound states have been evaluated and the spectra are presented. The potential energy of the ZnF(-) molecular anion has been determined in the vicinity of its equilibrium geometry and the electronic affinity of ZnF (EA=1.843 eV with the zero energy point correction) has been calculated in agreement with the photoelectron spectroscopy experiments. PMID:18681652
NASA Astrophysics Data System (ADS)
Kerkines, Ioannis S. K.; Mavridis, Aristides
2004-01-01
The ground and low-lying states of the monopositive vanadium and chromium carbides, VC+ and CrC+ have been studied by multireference methods and quantitative basis sets. Potential energy curves for 17 (VC+) and 19 (CrC+) states have been fully calculated. A variety of binding modes is revealed in the low-lying spectrum of the two molecular cations, often accompanied with an electronic charge transfer from the metal cation towards carbon. Two states compete for the ground state identity in both systems. One state comprises two π and ½σ bonds (similarly to ScC+ and TiC+), while the other state forms a genuine triple bond. After a rather intricate analysis including core electron effects, scalar relativity and curve shifts, the formal ground states of VC+ and CrC+ are found to be of 3Δ and 2Δ symmetry, with estimated energy differences from the competing 1Σ+ and 4Σ- states of 1-3 and 3-7 kcal/mol, respectively. At the highest level of theory including core/valence correlation and one-electron relativistic effects, the calculated ground-state binding energies are in satisfactory agreement with available experimental values.
Algebraic approach to the structure of the low-lying states in A ≈100 Ru isotopes
NASA Astrophysics Data System (ADS)
Kisyov, S.; Bucurescu, D.; Jolie, J.; Lalkovski, S.
2016-04-01
The structure of the low-lying states in the odd- and even-mass A ≈100 Ru isotopes is studied in the framework of two algebraic models. The even-mass Ru nuclei are first described within the interacting boson model 1 (IBM-1). The output of these calculations was then used to calculate the odd-A isotopes within the interacting boson-fermion model 1 (IBFM-1), where a coupling of the odd neutron to the even-even core is considered. The level energies and transition probabilities calculated in the present work are tested against the experimental data. One-nucleon transfer spectroscopic factors as well as electromagnetic moments were also calculated for the odd-A Ru and compared to the experimental values. The transitional character of the isotopes is studied. Most of the low-lying positive-parity states in the odd-A Ru nuclei below 2 MeV are interpreted on the basis of ν d5 /2 and ν g7 /2 configurations. The role of the ν s1 /2 orbital in the nuclear structure of the odd-mass Ru nuclei at low energies is also studied. The negative-parity states are interpreted as ν h11 /2 excitations coupled to the core. The evolution of the IBM-1 and IBFM-1 parameters is discussed.
Strong Electron-Phonon Coupling Superconductivity Induced by a Low-Lying Phonon in IrGe
Hirai, Daigorou; Ali, Mazhar N.; Cava, Robert J.
2014-02-26
The physical properties of the previously reported superconductor IrGe and the Rh_{1-x}Ir_{x}Ge solid solution are investigated. IrGe has an exceptionally high superconducting transition temperature (T_{c}=4.7 K) among the isostructural 1:1 late-metal germanides MGe (M=Rh, Pd, Ir, and Pt). Specific-heat measurements reveal that IrGe has an anomalously low Debye temperature, originating from a low-lying phonon, compared to the other MGe phases. A large jump at T_{c} in the specific-heat data clearly indicates that IrGe is a strong coupling superconductor. In the Rh_{1-x}Ir_{x}Ge solid solution, a relationship between an anomalous change in lattice constants and the Debye temperature is observed. We conclude that the unusually high T_{c} for IrGe is likely due to strong electron–phonon coupling derived from the presence of a low-lying phonon.
Experimental study of the low-lying structure of {sup 94}Zr with the (n,n{sup '}{gamma}) reaction
Elhami, E.; Orce, J. N.; Scheck, M.; Mukhopadhyay, S.; Choudry, S. N.; McEllistrem, M. T.; Yates, S. W.; Angell, C.; Boswell, M.; Karwowski, H. J.; Fallin, B.; Howell, C. R.; Hutcheson, A.; Parpottas, Y.; Tonchev, A. P.; Tornow, W.; Kelley, J. H.
2008-12-15
The low-lying structure of {sub 40}{sup 94}Zr was studied with the (n,n{sup '}{gamma}) reaction, and a level scheme was established based on excitation function and {gamma}{gamma} coincidence measurements. Branching ratios, multipole mixing ratios, and spin assignments were determined from angular distribution measurements. Lifetimes of levels up to 3.4 MeV were measured by the Doppler-shift attenuation method, and for many transitions the reduced transition probabilities were determined. In addition to the anomalous 2{sub 2}{sup +} state, which has a larger B(E2;2{sub 2}{sup +}{yields}0{sub 1}{sup +}) value than the B(E2;2{sub 1}{sup +}{yields}0{sub 1}{sup +}), the experimental results revealed interesting and unusual properties of the low-lying states in {sup 94}Zr. In a simple interpretation, the excited states are classified in two distinct categories, i.e., those populating the 2{sub 2}{sup +} state and those decaying to the 2{sub 1}{sup +} state.
An investigation into low-lying electronic states of HCS{sub 2} via threshold photoelectron imaging
Qin, Zhengbo; Cong, Ran; Liu, Zhiling; Xie, Hua; Tang, Zichao E-mail: fanhj@dicp.ac.cn; Fan, Hongjun E-mail: fanhj@dicp.ac.cn
2014-06-07
Low-energy photoelectron imaging spectra of HCS{sub 2}{sup −} are reported for the first time. Vibrationally resolved photodetachment transitions from the ground state of HCS{sub 2}{sup −} to the ground state and low-lying excited states of HCS{sub 2} are observed. Combined with the ab intio calculations and Franck-Condon simulations, well-resolved vibrational spectra demonstrate definitive evidence for the resolution of the ground-state and excited states of HCS{sub 2} radical in the gaseous phase. The ground state and two low-lying excited states of HCS{sub 2} radical are assigned as {sup 2}B{sub 2}, {sup 2}A{sub 2}, and {sup 2}A{sub 1} states, respectively. The adiabatic electron affinity is determined to be 2.910 ± 0.007 eV. And the term energies of the excited states, T{sub 0} = 0.451 ± 0.009 eV and 0.553 ± 0.009 eV, are directly measured from the experimental data, respectively. Angular filtering photoelectron spectra are carried out to assist in the spectral band assignment.
Gambacurta, D.; Catara, F.
2011-09-15
Low-energy dipole excitations are analyzed for the stable isotopes {sup 40}Ca and {sup 48}Ca in the framework of the Skyrme-second random-phase approximation. The corresponding random-phase approximation calculations provide a negligible strength distribution for both nuclei in the energy region from 5 to 10 MeV. The inclusion and the coupling of 2 particle-2 hole configurations in the second random-phase approximation lead to an appreciable dipole response at low energies for the neutron-rich nucleus {sup 48}Ca. The presence of a neutron skin in the nucleus {sup 48}Ca would suggest the interpretation of the low-lying response in terms of a pygmy excitation. The composition of the excitation modes (content of 1 particle-1 hole and 2 particle-2 hole configurations), their transition densities and their collectivity (number and coherence of the different contributions) are analyzed. This analysis indicates that, in general, these excitations cannot be clearly interpreted in terms of oscillations of the neutron skin against the core with the exception of the peak with the largest B(E1) value, which is located at 9.09 MeV. For this peak the neutron transition density dominates and the neutron and proton transition densities oscillate out of phase in the internal part of the nucleus leading to a strong mixing of isoscalar and isovector components. Therefore, this state shows some features usually associated to pygmy resonances.
Low-lying excited states and nonradiative processes of 9-methyl-2-aminopurine
Trachsel, Maria A.; Lobsiger, Simon; Schär, Tobias; Leutwyler, Samuel
2014-01-28
The UV spectrum of the adenine analogue 9-methyl-2-aminopurine (9M-2AP) is investigated with one- and two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm{sup −1} resolution in a supersonic jet. The electronic origin at 32 252 cm{sup −1} exhibits methyl torsional subbands that originate from the 0A{sub 1}{sup ′′} (l = 0) and 1E{sup ″} (l = ±1) torsional levels. These and further torsional bands that appear up to 0{sub 0}{sup 0}+230 cm{sup −1} allow to fit the threefold (V{sub 3}) barriers of the torsional potentials as |V{sub 3}{sup ′′}|=50 cm{sup −1} in the S{sub 0} and |V{sub 3}{sup ′}|=126 cm{sup −1} in the S{sub 1} state. Using the B3LYP density functional and correlated approximate second-order coupled cluster CC2 methods, the methyl orientation is calculated to be symmetric relative to the 2AP plane in both states, with barriers of V{sub 3}{sup ′′}=20 cm{sup −1} and V{sub 3}{sup ′}=115 cm{sup −1}. The 0{sub 0}{sup 0} rotational band contour is 75% in-plane (a/b) polarized, characteristic for a dominantly long-axis {sup 1}ππ{sup *} excitation. The residual 25% c-axis polarization may indicate coupling of the {sup 1}ππ{sup *} to the close-lying {sup 1}nπ{sup *} state, calculated at 4.00 and 4.01 eV with the CC2 method. However, the CC2 calculated {sup 1}nπ oscillator strength is only 6% of that of the {sup 1}ππ{sup *} transition. The {sup 1}ππ{sup *} vibronic spectrum is very complex, showing about 40 bands within the lowest 500 cm{sup −1}. The methyl torsion and the low-frequency out-of-plane ν{sub 1}{sup ′} and ν{sub 2}{sup ′} vibrations are strongly coupled in the {sup 1}ππ{sup *} state. This gives rise to many torsion-vibration combination bands built on out-of-plane fundamentals, which are without precedence in the {sup 1}ππ{sup *} spectrum of 9H-2-aminopurine [S. Lobsiger, R. K. Sinha, M. Trachsel, and S. Leutwyler, J. Chem. Phys. 134, 114307 (2011)]. From the Lorentzian
Theoretical spectroscopy study of the low-lying electronic states of UX and UX+, X = F and Cl
Bross, David H.; Peterson, Kirk A.
2015-11-13
Spectroscopic constants (Te, re, B0, ωe, ωexe) have been calculated for the low-lying electronic states of UF, UF+, UCl, and UCl+ using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U+ and UF+. Complete basis set (CBS) limits were obtained by extrapolation where possible and themore » PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm-1 as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl+ than in UF+, ranging up to 776 cm-1 in UF+ and only 438 cm-1 in UCl+. As in previous research, the final PP-based SO-CASPT2 results for UF+ and UF agree well with experiment, and are expected to be predictive for UCl and UCl+, which are reported here for the first time.« less
Theoretical spectroscopy study of the low-lying electronic states of UX and UX{sup +}, X = F and Cl
Bross, David H.; Peterson, Kirk A.
2015-11-14
Spectroscopic constants (T{sub e}, r{sub e}, B{sub 0}, ω{sub e}, and ω{sub e}x{sub e}) have been calculated for the low-lying electronic states of UF, UF{sup +}, UCl, and UCl{sup +} using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess Hamiltonians for the U atom. Spin orbit (SO) effects were included a posteriori using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component methods for U{sup +} and UF{sup +}. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω = 9/2 ground states. The first excited state of UCl was calculated to be an Ω = 7/2 state at 78 cm{sup −1} as opposed to the same state at 435 cm{sup −1} in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise, UF{sup +} and UCl{sup +} both have Ω = 4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states was energetically closer together in UCl{sup +} than in UF{sup +}, ranging up to 776 cm{sup −1} in UF{sup +} and only 438 cm{sup −1} in UCl{sup +}. As in previous studies, the final PP-based SO-CASPT2 results for UF{sup +} and UF agree well with experiment and are expected to be predictive for UCl and UCl{sup +}, which are reported here for the first time.
Marchal, Rémi; Carbonnière, Philippe; Pouchan, Claude
2015-01-22
The study of atomic clusters has become an increasingly active area of research in the recent years because of the fundamental interest in studying a completely new area that can bridge the gap between atomic and solid state physics. Due to their specific properties, such compounds are of great interest in the field of nanotechnology [1,2]. Here, we would present our GSAM algorithm based on a DFT exploration of the PES to find the low lying isomers of such compounds. This algorithm includes the generation of an intial set of structure from which the most relevant are selected. Moreover, an optimization process, called raking optimization, able to discard step by step all the non physically reasonnable configurations have been implemented to reduce the computational cost of this algorithm. Structural properties of Ga{sub n}Asm clusters will be presented as an illustration of the method.
Electronic structure and rovibrational calculation of the low-lying states of the RbYb molecule
NASA Astrophysics Data System (ADS)
Tohme, S. N.; Korek, M.
2013-01-01
Complete Active Space Self Consistent Field (CASSCF) method with Multi Reference Configuration Interaction (MRCI) calculations is used to investigate the potential energy curves of the low-lying 29 electronic states in the representation 2s+1Λ(+/-) of the RbYb molecule (single and double excitations with Davidson corrections). The harmonic frequency ωe, the internuclear distance Re and the electronic energy with respect to the ground state Te have been calculated. The eigenvalues Ev, the rotational constant Bv, and the abscissas of the turning points Rmin and Rmax have been investigated using the canonical functions approach. The comparison between the values of the present work and those available in the literature for several states shows a very good agreement. Twenty-six new states have been studied here for the first time.
Spin Tests of a Low-lying Monoplane in Flight and in the Free-spinning Wind Tunnel
NASA Technical Reports Server (NTRS)
Seidman, Oscar; Mcavoy, William H
1940-01-01
Comparative full-scale and model spin tests were made with a low-lying monoplane in order to extend the available information as to the utility of the free-spinning wind tunnel as an aid in predicting full-scale spin characteristics. For a given control disposition the model indicated steeper spins than were actually obtained with the airplane, the difference being most pronounced for spins with elevators up. Recovery characteristics for the model, on the whole, agreed with those for the airplane, but a disagreement was noted for the case of recovery with elevators held full up. Free-spinning wind-tunnel tests are a useful aid in estimating spin characteristics of airplanes, but it must be appreciated that model results can give only general indications of full-scale behavior.
Reduced transition strengths of low-lying yrast states in chromium isotopes in the vicinity of N =40
NASA Astrophysics Data System (ADS)
Braunroth, Thomas; Dewald, A.; Iwasaki, H.; Lenzi, S. M.; Albers, M.; Bader, V. M.; Baugher, T.; Baumann, T.; Bazin, D.; Berryman, J. S.; Fransen, C.; Gade, A.; Ginter, T.; Gottardo, A.; Hackstein, M.; Jolie, J.; Lemasson, A.; Litzinger, J.; Lunardi, S.; Marchi, T.; Modamio, V.; Morse, C.; Napoli, D. R.; Nichols, A.; Recchia, F.; Stroberg, S. R.; Wadsworth, R.; Weisshaar, D.; Whitmore, K.; Wimmer, K.
2015-09-01
Background: In neutron-rich nuclei around N =40 rapid changes in nuclear structure can be observed. While 68Ni exhibits signatures of a doubly magic nucleus, experimental data along the isotopic chains in even more exotic Fe and Cr isotopes—such as excitation energies and transition strengths—suggest a sudden rise in collectivity toward N =40 . Purpose: Reduced quadrupole transition strengths for low-lying transitions in neutron-rich 58,60,62Cr are investigated. This gives quantitative new insights into the evolution of quadrupole collectivity in the neutron-rich region close to N =40 . Method: The recoil distance Doppler-shift (RDDS) technique was applied to measure lifetimes of low-lying states in 58,60,62>Cr. The experiment was carried out at the National Superconducting Cyclotron Laboratory (NSCL) with the SeGA array in a plunger configuration coupled to the S800 magnetic spectrograph. The states of interest were populated by means of one-proton knockout reactions. Results: Data reveal a rapid increase in quadrupole collectivity for 58,60,62>Cr toward N =40 and point to stronger quadrupole deformations compared to neighboring Fe isotopes. The experimental B (E 2 ) values are reproduced well with state-of-the-art shell-model calculations using the LNPS effective interaction. A consideration of intrinsic quadrupole moments and B42 ratios suggest an evolution toward a rotational nature of the collective structures in Cr,6260. Compared to 58Cr, experimental B42 and B62 values for 60Cr are in better agreement with the E (5 ) limit. Conclusion: Our results indicate that collective excitations in neutron-rich Cr isotopes saturate at N =38 , which is in agreement with theoretical predictions. More detailed experimental data of excited structures and interband transitions are needed for a comprehensive understanding of quadrupole collectivity close to N =40 . This calls for additional measurements in neutron-rich Cr and neighboring Ti and Fe nuclei.
NASA Astrophysics Data System (ADS)
Holding, S.; Allen, D. M.
2015-02-01
Freshwater lenses on small islands are vulnerable to many climate change-related stressors, which can act over relatively long time periods, on the order of decades (e.g., sea level rise, changes in recharge), or short time periods, such as days (storm surge overwash). This study evaluates the response of the freshwater lens on a small low-lying island to various stressors. To account for the varying temporal and spatial scales of the stressors, two different density-dependent flow and solute transport codes are used: SEAWAT (saturated) and HydroGeoSphere (unsaturated/saturated). The study site is Andros Island in the Bahamas, which is characteristic of other low-lying carbonate islands in the Caribbean and Pacific regions. In addition to projected sea level rise and reduced recharge under future climate change, Andros Island experienced a storm surge overwash event during Hurricane Francis in 2004, which contaminated the main wellfield. Simulations of reduced recharge result in a greater loss of freshwater lens volume (up to 19%), while sea level rise contributes a lower volume loss (up to 5%) due to the flux-controlled conceptualization of Andros Island, which limits the impact of sea level rise. Reduced recharge and sea level rise were simulated as incremental instantaneous shifts. The lens responds relatively quickly to these stressors, within 0.5 to 3 years, with response time increasing as the magnitude of the stressor increases. Simulations of the storm surge overwash indicate that the freshwater lens recovers over time; however, prompt remedial action can restore the lens to potable concentrations up to 1 month sooner.
NASA Astrophysics Data System (ADS)
McPherson, David M.
An inverse kinematic proton scattering experiment was performed at the National Superconducting Cyclotron Laboratory (NSCL) using the GRETINA-S800 detector system in conjunction with the Ursinus College liquid hydrogen target. gamma-ray yields from the experiment were determined using geant4 simulations, generating state population cross sections. These cross sections were used to extract the delta_3 deformation length for the low-lying octupole vibration excitations in Ca-48,49 using the coupled channels analysis code fresco. Particle-core coupling in Ca-49 was studied in comparison to Ca-48 through determination of the neutron and proton deformation lengths. The total inverse kinematic proton scattering deformation lengths were evaluated for the low-lying octupole vibration excitations in Ca-48,49 to be delta_3(Ca-48, 3. -_1) = 1.0(2)fm,delta_3(Ca-49, 9/2. +_1) = 1.2(1)fm, delta_3 (Ca-49, 9/2. +_1) = 1.5(2)fm, delta_3(Ca-49,5/2. +_1) = 1.1(1)fm. Proton and neutron deformation lengths for two of theseoctupole states were also determined to be delta_p(Ca-48, 3. -_1) = 0.9(1)fm,delta_p (Ca-49, 9/2. +_1) = 1.0(1)fm, delta_n(Ca-48, 3. -_1) = 1.1(3)fm, anddelta_n(Ca-49, 9/2. +_1) = 1.3(3)fm. Additionally, the ratios of the neutronto proton transition matrix elements were also determined for these two states to be M_n/M_p(Ca-48, 3. -_1) = 1.7(6) and M_n/M_p(Ca-49, 9/2. +_1) = 2.0(5).Statistically, the derived values for these two nuclei are nearly identical.
NASA Astrophysics Data System (ADS)
Müller, Holger S. P.; Ordu, Matthias H.; Lewen, Frank; Brown, Linda; Drouin, Brian; Pearson, John; Sung, Keeyoon; Kleiner, Isabelle; Sams, Robert
2015-06-01
Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627~GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2ν_8 around 717~cm-1 with assignments covering 684-765~cm-1. Additional spectra in the ν _8 region were used to validate the analysis. Using ν _8 data as well as spectroscopic parameters for v_4 = 1, v_7 = 1, and v_8 = 3 from previous studies, we analyzed rotational data involving v = 0, v_8 = 1, and v_8 = 2 up to high J and K quantum numbers. We analyzed a strong Δ v_8 = ± 1, Δ K = 0, Δ l = ±3 Fermi resonance between v_8 = 1-1 and v_8 = 2+2 at K = 14 and obtained preliminary results for two further Fermi resonances between v_8 = 2 and 3. We also found resonant Δ v_8 = ± 1, Δ K = ∓ 2, Δ l = ± 1 interactions between v_8 = 1 and 2 and present the first detailed analysis of such a resonance between v_8 = 0 and 1. We discuss the impact of this analysis on the v_8 = 1 and 2 as well as on the axial v = 0 parameters and compare selected CH_3CN parameters with those of CH_3CCH and CH_3NC. We evaluated transition dipole moments of ν _8, 2ν _8 - ν _8, and 2ν _8 for remote sensing in the IR. Part of this work was carried out at the Jet Propulsion Laboratory under contract with the National Aeronautics and Space Administration. M. Koivusaari et al., J. Mol. Spectrosc. 152 (1992) 377-388. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.
NASA Astrophysics Data System (ADS)
Minakawa, H.; Masumoto, T.
2012-12-01
An increase in flood risk, especially in low-lying areas, is predicted as a consequence of global climate change or other causes. Immediate measures such as strengthening of drainage capacity are needed to minimize the damage caused by more-frequent flooding. Typically, drainage pump capacities of in paddy areas are planned by using a result of drainage analysis with design rainfall (e.g. 3-day rainfall amount with a 10-year return period). However, the result depends on a hyetograph of input rainfall even if a total amount of rainfall is equal, and the flood risk may be different with rainfall patterns. Therefore, it is important to assume various patterns of heavy rainfall for flood risk assessment. On the other hand, a rainfall synthesis simulation is useful to generate many patterns of rainfall data for flood studies. We previously proposed a rainfall simulation method called diurnal rainfall pattern generator which can generate short-time step rainfall and internal pattern of them. This study discusses a quantitative evaluation method for detecting a relationship between flood damage risk and heavy rainfall scale by using the diurnal rainfall pattern generator. In addition, we also approached an estimation of flood damage which focused on rice yield. Our study area was in the Kaga three-lagoon basin in Ishikawa Prefecture, Japan. There are two lagoons in the study area, and the low-lying paddy areas extend over about 4,000 ha in the lower reaches of the basin. First, we developed a drainage analysis model that incorporates kinematic and diffusive runoff models for calculating water level on channels and paddies. Next, the heavy rainfall data for drainage analysis were generated. Here, the 3-day rainfalls amounts with 9 kinds of different return periods (2-, 3-, 5-, 8-, 10-, 15-, 50-, 100-, and 200-year) were derived, and three hundred hyetograph patterns were generated for each rainfall amount by using the diurnal rainfall pattern generator. Finally, all data
NASA Astrophysics Data System (ADS)
Kang, Jing; Cheng, Xiao
2014-05-01
Global sea level rise has certainly accelerated through the 21st and far beyond the previous projections and will continue to rise, while the frequencies and strength of extreme events such like flood and storm will increase due to global warming. Coastal cities where always be with densely population and accumulated social wealth will be under enormous affects. Using Landsat TM/ETM+ satellite images (1990, 2010) to extract urban built-up area, 17 China's developed coastal cities, which account for only 1.2% of total land area but boast 18.3% of urban population and nearly 19.6% of GDP in 2010, are spotted a 550% increase of urban land from 1990 to 2010. Shuttle Radar Topography Mission (SRTM) with 90m resolution data were used to calculate average elevation of extracted urban area. Then we found that these cities are all expanding seaward, occupying the most vulnerable neighborhoods, often in low-lying areas, alongside waterways prone to flooding. 11 cities show a reducing trend of mean elevations with the total average of more than 3 meters. Particularly, Shanghai, Tianjin and Ningbo in Delta area are most serious with the mean urban elevation less than 5 meters in 2010. The rapid expansion to seawards and accumulation of population and social wealth processed in coastal cities will increase the vulnerability and exposure, which will exacerbated the existing risks of rising sea level or extreme events. Referring to Defense Meteorological Satellite Program (DMSP/OLS) city-lights data and SRTM data, we built the Urban Vulnerability Index (UVI) to do semi-quantitative assessment on vulnerabilities of coastal cities. The UVI case study in GuangZhou showed the most vulnerability region concentrated at the low-lying south area where is with the much higher relative South Sea level than other sea area of China. With relative sea level rise of 1-1.5 m by 2100 and increased frequency of extreme sea level due to cyclone propagation, and weak urban drain-off system, Chinese
Nucleosynthesis of 92Nb and the relevance of the low-lying isomer at 135.5 keV
NASA Astrophysics Data System (ADS)
Mohr, Peter
2016-06-01
Background: Because of its half-life of about 35 million years, 92Nb is considered as a chronometer for nucleosynthesis events prior to the birth of our sun. The abundance of 92Nb in the early solar system can be derived from meteoritic data. It has to be compared to theoretical estimates for the production of 92Nb to determine the time between the last nucleosynthesis event before the formation of the early solar system. Purpose: The influence of a low-lying short-lived isomer on the nucleosynthesis of 92Nb is analyzed. The thermal coupling between the ground state and the isomer via so-called intermediate states affects the production and survival of 92Nb. Method: The properties of the lowest intermediate state in 92Nb are known from experiment. From the lifetime of the intermediate state and from its decay branchings, the transition rate from the ground state to the isomer and the effective half-life of 92Nb are calculated as functions of the temperature. Results: The coupling between the ground state and the isomer is strong. This leads to thermalization of ground state and isomer in the nucleosynthesis of 92Nb in any explosive production scenario and almost 100% survival of 92Nb in its ground state. However, the strong coupling leads to a temperature-dependent effective half-life of 92Nb which makes the 92Nb survival very sensitive to temperatures as low as about 8 keV, thus turning 92Nb at least partly into a thermometer. Conclusions: The low-lying isomer in 92Nb does not affect the production of 92Nb in explosive scenarios. In retrospect this validates all previous studies where the isomer was not taken into account. However, the dramatic reduction of the effective half-life at temperatures below 10 keV may affect the survival of 92Nb after its synthesis in supernovae, which are the most likely astrophysical sites for the nucleosynthesis of 92Nb.
Mirmiran, Roya; Squire, Chad; Wassell, Daniel
2015-01-01
A peroneus brevis low-lying muscle belly (LLMB) is a rare anomaly. A few published studies have supported the presence of this anomaly as an etiology for a peroneal tendon tear. However, the association between a peroneus brevis LLMB and tendon subluxation has not been well explored. In the present retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing primary peroneal tendon surgery during a 5-year period were assessed. The sensitivity and specificity of MRI compared with the intraoperative findings for identifying peroneal tendon disease were investigated. The presence of associated peroneal tendon pathologic features in patients with and without a peroneus brevis LLMB was also compared. The sensitivity of MRI was high for identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a peroneus brevis LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, a peroneus brevis LLMB was seen in 62.00% of the patients with chronic lateral ankle pain and was associated with 64.52% of the patients with tenosynovitis, 29.03% of those with tendon subluxation, and 80.65% of those with a peroneus brevis tendon tear. Although the presence of a peroneus brevis LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, of the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant peroneus brevis LLMB. More studies with larger patient populations are needed to better investigate the role of a peroneus brevis LLMB as a mass-occupying lesion resulting in peroneal tendon subluxation. PMID:25998478
NASA Astrophysics Data System (ADS)
Hirano, Tsuneo; Okuda, Rei; Nagashima, Umpei; Jensen, Per
2012-12-01
FeCO is a molecule of astrophysical interest. We report here theoretical calculations of its geometrical parameters, electronic structures, and molecular constants (such as dipole moment and spin-orbit coupling constant) in the electronic ground state tilde{X}3Σ - and the low-lying triplet and quintet excited states. The calculations were made at the MR-SDCI+Q_DK3/[5ZP ANO-RCC (Fe, C, O)] and MR-AQCC_DK3/[5ZP ANO-RCC (Fe, C, O)] levels of theory. A multi-reference calculation was required to describe correctly the wavefunctions of all states studied. For all triplet states, the σ-donation through the 10σ molecular orbital (MO) as well as the π-back-donation through the 4π MO are observed, and the dipole moment vector points from O toward Fe as expected. However, in the excited quintet states 5Π, 5Φ, and 5Δ, the almost negligible contribution of Fe 4s to the 10σ MO makes the dipole moment vector point from Fe toward O, i.e., in the same direction as in CO. In the tilde{X}3Σ - state, the electron provided by the σ-donation through the 10σ MO is shared between the Fe atom and the C end of the CO residue to form a coordinate-covalent Fe-C bond. In the tilde{a}5Σ - state (the high-spin counterpart of tilde{X}3Σ -), the σ-donation through the 10σ MO is not significant and so the Fe-C bond is rather ionic. The π-back-donation through the 4π MO is found to be of comparable importance in the two electronic states; it has a slightly larger magnitude in the tilde{X}3Σ - state. The difference in the molecular properties of the low-spin tilde{X}3Σ - and the high-spin tilde{a}5Σ - states can be understood in terms of the dynamical electron correlation effects.
Lee, Jae-Kwang; Fujiwara, Takashige; Kofron, William G.; Zgierski, Marek Z.; Lim, Edward C.
2008-04-28
Electronic absorption spectra of the low-lying {pi}{pi}* and {pi}{sigma}* states of several aminobenzonitriles and 4-dimethylaminobenzethyne have been studied by time-resolved transient absorption and time-dependent density functional theory calculation. In acetonitrile, the lifetime of the {pi}{sigma}*-state absorption is very short (picoseconds or subpicosecond) for molecules that exhibit intramolecular charge transfer (ICT), and very long (nanoseconds) for those that do not. Where direct comparison of the temporal characteristics of the {pi}{sigma}*-state and the ICT-state transients could be made, the formation rate of the ICT state is identical to the decay rate of the {pi}{sigma}* state within the experimental uncertainty. These results are consistent with the {pi}{sigma}*-mediated ICT mechanism, L{sub a} ({pi}{pi}*){yields}{pi}{sigma}*{yields}ICT, in which the decay rate of the {pi}{sigma}* state is determined by the rate of the solvent-controlled {pi}{sigma}*{yields}ICT charge-shift reaction. The {pi}{pi}*{yields}{pi}{sigma}* state crossing does not occur in 3-dimethylaminobenzonitrile or 2-dimethylaminobenzonitrile, as predicted by the calculation, and 4-aminobenzonitrile and 4-dimethylaminobenzethyne does not exhibit the ICT reaction, consistent with the higher energy of the ICT state relative to the {pi}{sigma}* state.
Patacchiola, F; D'Alfonso, A; Di Fonso, A; Di Febbo, G; Kaliakoudas, D; Carta, G
2012-01-01
The aim of the present study was to evaluate the effectiveness of Bakri balloon in preventing and treating postpartum haemorrhage (PPH). Intrauterine Bakri balloon was used in a total of 16 patients with two different purposes: prophylactic placement of the balloon after cesarean section (CS) in six patients with low-lying placenta and therapeutic placement in ten patients with persistent bleeding from uterine atony, after spontaneous delivery, and administration of uterotonics. Intrauterine Bakri balloon was a successful approach in controlling and preventing PPH in all 16 patients. The median nadir hematocrit was 26.6% in six patients who underwent CS and 25.6% in ten patients with persistent bleeding after spontaneous delivery. The intrauterine balloon was in place for a duration of 24 hours. The median balloon infusion volume was 345 ml (range 250-455). No complications were reported. Bakri balloon tamponade was a useful measure in treating PPH unresponsive to pharmacological therapy in patients who delivered vaginally. Moreover, it was able to prevent persistent bleeding in patients who underwent CS for central placenta previa. PMID:23444752
Tohme, Samir N.; Korek, Mahmoud E-mail: fkorek@yahoo.com; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born–Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ω{sub e}, R{sub e}, B{sub e}, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, E{sub v}, the rotational constant, B{sub v}, the centrifugal distortion constant, D{sub v}, and the abscissas of the turning points, R{sub min} and R{sub max}, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Tohme, Samir N; Korek, Mahmoud; Awad, Ramadan
2015-03-21
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time. PMID:25796254
NASA Astrophysics Data System (ADS)
Tohme, Samir N.; Korek, Mahmoud; Awad, Ramadan
2015-03-01
Ab initio techniques have been applied to investigate the electronic structure of the LiYb molecule. The potential energy curves have been computed in the Born-Oppenheimer approximation for the ground and 29 low-lying doublet and quartet excited electronic states. Complete active space self-consistent field, multi-reference configuration interaction, and Rayleigh Schrödinger perturbation theory to second order calculations have been utilized to investigate these states. The spectroscopic constants, ωe, Re, Be, …, and the static dipole moment, μ, have been investigated by using the two different techniques of calculation with five different types of basis. The eigenvalues, Ev, the rotational constant, Bv, the centrifugal distortion constant, Dv, and the abscissas of the turning points, Rmin and Rmax, have been calculated by using the canonical functions approach. The comparison between the values of the present work, calculated by different techniques, and those available in the literature for several electronic states shows a very good agreement. Twenty-one new electronic states have been studied here for the first time.
Da Lio, Cristina; Carol, Eleonora; Kruse, Eduardo; Teatini, Pietro; Tosi, Luigi
2015-11-15
The original morphology and hydrogeology of many low-lying coastlands worldwide have been significantly modified over the last century through river diversion, embankment built-up, and large-scale land reclamation projects. This led to a progressive shifting of the groundwater-surficial water exchanges from naturally to anthropogenically driven. In this human-influenced hydrologic landscape, the saltwater contamination usually jeopardizes the soil productivity. In the coastland south of Venice (Italy), several well log measurements, chemical and isotope analyses have been performed over the last decade to characterize the occurrence of the salt contamination. The processing of this huge dataset highlights a permanent variously-shaped saline contamination up to 20km inland, with different conditions in relation with the various geomorphological features of the area. The results point out the important role of the land reclamation in shaping the present-day salt contamination and reveal the contribution of precipitation, river discharge, lagoon and sea water to the shallow groundwater in the various coastal sectors. Moreover, an original vulnerability map to salt contamination in relation to the farmland productivity has been developed taking into account the electrical conductivity of the upper aquifer in the worst condition, the ground elevation, and the distance from salt and fresh surface water sources. Finally, the study allows highlighting the limit of traditional investigations in monitoring saltwater contamination at the regional scale in managed Holocene coastal environments. Possible improvements are outlined. PMID:26172603
Operational flood control of a low-lying delta system using large time step Model Predictive Control
NASA Astrophysics Data System (ADS)
Tian, Xin; van Overloop, Peter-Jules; Negenborn, Rudy R.; van de Giesen, Nick
2015-01-01
The safety of low-lying deltas is threatened not only by riverine flooding but by storm-induced coastal flooding as well. For the purpose of flood control, these deltas are mostly protected in a man-made environment, where dikes, dams and other adjustable infrastructures, such as gates, barriers and pumps are widely constructed. Instead of always reinforcing and heightening these structures, it is worth considering making the most of the existing infrastructure to reduce the damage and manage the delta in an operational and overall way. In this study, an advanced real-time control approach, Model Predictive Control, is proposed to operate these structures in the Dutch delta system (the Rhine-Meuse delta). The application covers non-linearity in the dynamic behavior of the water system and the structures. To deal with the non-linearity, a linearization scheme is applied which directly uses the gate height instead of the structure flow as the control variable. Given the fact that MPC needs to compute control actions in real-time, we address issues regarding computational time. A new large time step scheme is proposed in order to save computation time, in which different control variables can have different control time steps. Simulation experiments demonstrate that Model Predictive Control with the large time step setting is able to control a delta system better and much more efficiently than the conventional operational schemes.
Li, Shaohong L; Xu, Xuefei; Truhlar, Donald G
2015-08-21
Three singlet states, namely a closed-shell ground state and two excited states with (1)ππ* and (1)nσ* character, have been suggested to be responsible for the radiationless decay or photochemical reaction of photoexcited thioanisole. The correct interpretation of the electronic spectrum is critical for understanding the character of these low-lying excited states, but the experimental spectrum is yet to be fully interpreted. In the work reported here, we investigated the nature of those three states and a fourth singlet state of thioanisole using electronic structure calculations by multireference perturbation theory, by completely-renormalized equation-of-motion coupled cluster theory with single and double excitations and noniterative inclusion of connected triples (CR-EOM-CCSD(T)), and by linear-response time-dependent density functional theory (TDDFT). We clarified the assignment of the electronic spectrum by simulating it using a normal-mode sampling approach combined with TDDFT in the Tamm-Dancoff approximation (TDA). The understanding of the electronic states and of the accuracy of the electronic structure methods lays the foundation of our future work of constructing potential energy surfaces. PMID:26088195
Vector analyzing power of {pi}{sup +7}Li scattering in the region of the {delta}{sub 33} resonance
Ibraeva, E. T.; Zhusupov, M. A.; Zaykin, A. Yu.; Imambekov, O.
2006-04-15
Within Glauber diffraction theory, the vector analyzing power iT{sub 11} is calculated at three energies of positively charged pions, 134, 164, and 194 MeV, incident to {sup 7}Li nuclei. These energy values lie in the region of the {delta}{sub 33} resonance in {pi}{sup {+-}}N interaction, the resonance maximum being at 180 MeV. The calculation of iT{sub 11} was performed with several model {sup 7}Li wave functions, including the {alpha}t-cluster and shell-model ones. The properties of {pi}{sup +7}Li scattering are found to be sensitive to the structural features of the target nucleus. A comparison of the results of the calculations with experimental data shows that the wave functions in question and the potentials used to calculate them are quite appropriate.
Study of low-lying electronic states of ozone by multireference Møller-Plesset perturbation method
NASA Astrophysics Data System (ADS)
Tsuneda, T.; Nakano, H.; Hirao, K.
1995-10-01
The geometry and relative energy of the seven low-lying electronic states of ozone and the ground state of ozonide anion have been determined in C2v symmetry by the complete active space self-consistent field (CASSCF) and the multireference Møller-Plesset perturbation (MRMP) methods. The results are compared with the photodetachment spectra of O-3 observed recently by Arnold et al. The theoretical electron affinity of ozone is 1.965 eV, which is 0.14 eV below the experimental result of 2.103 eV. The calculated adiabatic excitation energies (assignment of Arnold et al. in parentheses) of ozone are 3A2 0.90 eV (1.18 eV), 3B2, 1.19 eV (1.30 eV), 3B1, 1.18 eV (1.45 eV), 1A2, 1.15 eV (˜1.6 eV), 1B1, 1.65 eV (2.05 eV), and 1B2, 3.77 eV (3.41 eV), respectively. Overall the present theory supports the assignment of Arnold et al. However, the simple considerations of geometry and energy are insufficient to determine a specific assignment of the 3B2 and 3B1 states. The dissociation energy of the ground state of ozone is computed to be 0.834 eV at the present level of theory. The present theory also predicts that none of the excited states lies below the ground state dissociation limit of O3.
NASA Astrophysics Data System (ADS)
Goswami, Ganesh Chandra
Differential cross sections have been measured for the ground state and for the low-lying levels of ('232)Th, ('235)U, ('238)U via neutron time-of-flight technique. This work consists of the study of neutron scattering cross sections in the following areas: (i) The cross sections of ('232)Th in the incident energy range 185-2400 keV for ground state rotational band (GSRB) levels 0('+) (ground state), 2('+) (49 keV), and 4('+) (162 keV), (ii) the cross sections of ('235)U at incident energies of 185 keV and 550 keV for groups of levels, ground state + 77 eV + 13 keV and 46 + 52 keV, and (iii) the cross sections of ('238)U in the incident energy range 185-920 keV for GSRB levels 0('+) (ground state), 2('+) (45 keV) and 4('+) (148 keV). The University of Lowell 5.5 MV pulsed Van -de-Graaff accelerator with Mobley bunching system was employed. Neutrons were generated via the ('7)Li(p,n)('7)Be reaction in a metallic lithium target having thickness 8-10 keV. An overall resolution of 15-20 keV was maintained throughout the measurements. The scatterers were disk shaped. Careful attention has been paid to data reduction, angular resolution, multiple scattering corrections, and attenuation corrections. The results are compared with data of other investigators and ENDF/B-V.
Excitation of the low lying vibrational levels of H2O by O(3P) as measured on Spacelab 2
NASA Astrophysics Data System (ADS)
Meyerott, R. E.; Swenson, G. R.; Schweitzer, E. L.; Koch, D. G.
1994-09-01
The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.
Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl)
NASA Astrophysics Data System (ADS)
Kurosaki, Yuzuru; Yokoyama, Keiichi
2012-08-01
Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X1Σ+, A1Σ+, 3Σ+, 1Π, and 3Π, and then obtain PECs for 13 SO Ω states, X0+, A0+, B0+, 0-(I), 0-(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X1Σ+ and X0+ PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X1Σ+ and X0+ PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics.
Excitation of the low lying vibrational levels of H2O by O(3P) as measured on Spacelab 2
NASA Technical Reports Server (NTRS)
Meyerott, R. E.; Swenson, G. R.; Schweitzer, E. L.; Koch, D. G.
1994-01-01
The data from the infrared telescope (IRT), which was flown on space shuttle Challenger Spacelab 2 mission (July 1985), were originally reported by Koch et al. (1987) as originating from near orbital emissions, primarily H2O. In this study, analysis of this data was extended to determine the collisional cross sections for the excitation of the low lying vibrational levels of H2O, present in the orbiter cloud, by atmospheric O(3P). The evaluation of the contribution to the measured signal from solar excitation and ram O excitation of outgassing H2O permits the determination of the H2O column density and the excitation cross section of the (101) level at an O(3P) velocity of approximately 7.75 km/s. Contributions to the radiation in the 1.7-3.0 micron band by transitions from the (100), (001), and multiquantum excited levels are discussed. The findings of the study are (1) the IRT data for the 4.5-9.5 micron and the nighttime data for the 1.7-3.0 micron sensors are consistent with being explained by collision excitation of H2O by O(3P), (2) diurnal variations of 4.5-9.5 micron intensities follow the model predicted O density for a full orbit, (3) daytime increases in the H2O cloud density were not evident, (4) the cross sections for the collisional excitation process are derived and compared to values computated by Johnson (1986) and Redmon et al. (1986), (5) theoretical investigation suggests greater than 60% of the radiation from H2O is a result of multiphoton emission resulting from collisional multiquanta excitation, and (6) the large daytime increase in the 1.7-3.0 micron intensity data suggests that O(+) may likely be instrumental in producing excited H2O(+) through charge exchange.
Ab initio MRSDCI study on the low-lying electronic states of the lithium chloride molecule (LiCl).
Kurosaki, Yuzuru; Yokoyama, Keiichi
2012-08-14
Potential energy curves (PECs) for the low-lying states of the lithium chloride molecule (LiCl) have been calculated using the internally contracted multireference single- and double-excitation configuration interaction (MRSDCI) method with the aug-cc-PVnZ (AVnZ) and aug-cc-PCVnZ (ACVnZ) basis sets, where n = T, Q, and 5. First, we calculate PECs for 7 spin-orbit (SO)-free Λ-S states, X(1)Σ(+), A(1)Σ(+), (3)Σ(+), (1)Π, and (3)Π, and then obtain PECs for 13 SO Ω states, X0(+), A0(+), B0(+), 0(-)(I), 0(-)(II), 1(I), 1(II), 1(III), and 2, by diagonalizing the matrix of the electronic Hamiltonian plus the Breit-Pauli SO Hamiltonian. The MRSDCI calculations not including core orbital correlation through the single and double excitations are also performed with the AV5Z and ACV5Z basis sets. The Davidson corrections (Q0) are added to both the Λ-S and Ω state energies. Vibrational eigenstates for the obtained X(1)Σ(+) and X0(+) PECs are calculated by solving the time-independent Schrödinger equation with the grid method. Thus, the effects of basis set, core orbital correlation, and the Davidson correction on the X(1)Σ(+) and X0(+) PECs of LiCl are investigated by comparing the spectroscopic constants calculated from the PECs with one another and with experiment. It is confirmed that to accurately predict the spectroscopic constants we need to include core-electron correlation in the CI expansion and use the basis sets designed to describe core-valence correlation, i.e., ACVnZ. The SO PECs presented in this paper will be of help in the future study of diatomic alkali halide dynamics. PMID:22897271
Coastline evolution of Portuguese low-lying sandy coast in the last 50 years: an integrated approach
NASA Astrophysics Data System (ADS)
Ponte Lira, Cristina; Nobre Silva, Ana; Taborda, Rui; Freire de Andrade, Cesar
2016-06-01
Regional/national-scale information on coastline rates of change and trends is extremely valuable, but these studies are scarce. A widely accepted standardized methodology for analysing long-term coastline change has been difficult to achieve, but it is essential to conduct an integrated and holistic approach to coastline evolution and hence support coastal management actions. Additionally, databases providing knowledge on coastline evolution are of key importance to support both coastal management experts and users.The main objective of this work is to present the first systematic, national-scale and consistent long-term coastline evolution data of Portuguese mainland low-lying sandy coasts.The methodology used quantifies coastline evolution using a unique and robust coastline indicator (the foredune toe), which is independent of short-term changes.The dataset presented comprises (1) two polyline sets, mapping the 1958 and 2010 sandy beach-dune system coastline, both optimized for working at 1 : 50 000 scale or smaller; (2) one polyline set representing long-term change rates between 1958 and 2010, each estimated at 250 m; and (3) a table with minimum, maximum and mean of evolution rates for sandy beach-dune system coastline. All science data produced here are openly accessible at https://doi.pangaea.de/10.1594/PANGAEA.859136 and can be used in other studies.Results show beach erosion as the dominant trend, with a mean change rate of -0.24 ± 0.01 m year-1 for all mainland Portuguese beach-dune systems. Although erosion is dominant, this evolution is variable in signal and magnitude in different coastal sediment cells and also within each cell. The most relevant beach erosion issues were found in the coastal stretches of Espinho-Torreira and Costa Nova-Praia de Mira, Cova da Gala-Leirosa, and Cova do Vapor-Costa da Caparica. The coastal segments Minho River-Nazaré and Costa da Caparica
Karmakar, Shreetama; Mukhopadhyay, Deb Pratim; Chakraborty, Tapas
2015-05-14
Multiple fluorine atom substitution effect on photophysics of an aromatic chromophore has been investigated using phenol as the reference system. It has been noticed that the discrete vibronic structure of the S{sub 1}←S{sub 0} absorption system of phenol vapor is completely washed out for pentafluorophenol (PFP), and the latter also shows very large Stokes shift in the fluorescence spectrum. For excitations beyond S{sub 1} origin, the emission yield of PFP is reduced sharply with increase in excess vibronic energy. However, in a collisional environment like liquid hydrocarbon, the underlying dynamical process that drives the non-radiative decay is hindered drastically. Electronic structure theory predicts a number of low-lying dark electronic states of πσ{sup ∗} character in the vicinity of the lowest valence ππ{sup ∗} state of this molecule. Tentatively, we have attributed the excitation energy dependent non-radiative decay of the molecule observed only in the gas phase to an interplay between the lowest ππ{sup ∗} and a nearby dissociative πσ{sup ∗} state. Measurements in different liquids reveal that some of the dark excited states light up with appreciable intensity only in protic liquids like methanol and water due to hydrogen bonding between solute and solvents. Electronic structure theory methods indeed predict that for PFP-(H{sub 2}O){sub n} clusters (n = 1-11), intensities of a number of πσ{sup ∗} states are enhanced with increase in cluster size. In contrast with emitting behavior of the molecule in the gas phase and solutions of nonpolar and polar aprotic liquids, the fluorescence is completely switched off in polar protic liquids. This behavior is a chemically significant manifestation of perfluoro effect, because a very opposite effect occurs in the case of unsubstituted phenol for which fluorescence yield undergoes a very large enhancement in protic liquids. Several dynamical mechanisms have been suggested to interpret the
NASA Astrophysics Data System (ADS)
Samala, Nagaprasad Reddy; Mahapatra, S.
2014-06-01
Polycyclic aromatic hydrocarbons (PAHs), in particular, their radical cation (PAH^+), have long been postulated to be the important molecular species in connection with the spectroscopic observations in the interstellar medium. Motivated by numerous important observations by stellar as well as laboratory spectroscopists, we undertook detailed quantum mechanical studies of the structure and dynamics of electronically excited PAH^+ in an attempt to establish possible synergism with the recorded data In this study, we focus on the quantum chemistry and dynamics of the doublet ground (X) and low-lying excited (A, B and C) electronic states of the radical cation of tetracene (Tn), pentacene (Pn), and hexacene (Hn) molecule. This study is aimed to unravel photostability, spectroscopy, and time-dependent dynamics of their excited electronic states. In order to proceed with the theoretical investigations, we construct suitable multistate and multimode Hamiltonian for these systems with the aid of extensive ab initio calculations of their electronic energy surfaces. The diabatic coupling surfaces are derived from the calculated adiabatic electronic energies. First principles nuclear dynamics calculations are then carried out employing the constructed Hamiltonians and with the aid of time-independent and time-dependent quantum mechanical methods. We compared our theoretical results with available photoelectron spectroscopy, zero kinetic energy photoelectron (ZEKE) spectroscopy and matrix isolation spectroscopy (MIS) results. A peak at 8650 Å in the B state spectrum of Tn^+ is in good agreement with the DIB at 8648 Å observed by Salama et al. Similarly in Pn^+, a peak at 8350 Å can be correlated to the DIB at 8321 Å observed by Salama et al. J. Zhang et al., J. Chem. Phys., 128,104301 (2008).; F. Salama, Origins of Life Evol. Biosphere, 28, 349 (1998).; F. Salama et al., Planet. Space Sci., 43, 1165 (1995).; F. Salama et al., Astrophys. J., 526, 265 (1999).; J
Observation of Pseudoscalar and Axial Vector Resonances in pi- p -> K+ K- pi0 n at 18 GeV
G.S. Adams; T. Adams; Z. Bar-Yam; J.M. Bishop; V.A. Bodyagin; D.S. Brown; N.M. Cason; S.U. Chung; J.P. Cummings; K. Danyo; A.I. Demianov; S. Denisov; V. Dorofeev; J.P. Dowd; P. Eugenio; X.L. Fan; A.M. Gribushin; R.W. Hackenburg; M. Hayek; J. Hu; E.I. Ivanov; D. Joffe; I. Kachaev; W. Kern; E. King; O.L. Kodolova; V.L. Korotkikh; M.A. Kostin; Joachim Kuhn; V. Lipaev; J.M. Losecco; M. Lu; J.J. Manak; J. Napolitano; M. Nozar; C. Olchanski; A.I. Ostrovidov; T.K. Pedlar; A. Popov; D. Ryabchikov; A.H. Sanjari; L.I. Sarycheva; K.K. Seth; N. Shenhav; X. Shen; W.D. Shephard; N.B. Sinev; D.L. Stienike; S.A. Taegar; D.R. Thompson; A. Tomaradze; I.N. Vardanyan; D.P. Weygand; D. White; H.J. Willutzki; A.A. Yershov
2001-09-01
The number of pseudoscalar mesons in the mass range from 1400 to 1500 MeV/c{sup 2} has been a subject of considerable interest for many years, with several experiments having presented evidence for two closely spaced states. A new measurement of the reaction {pi}{sup -} p {yields} K{sup +} K{sup -} {pi}{sup 0}n has been made at a beam energy of 18 GeV. A partial wave analysis of the K{sup +} K{sup -} {pi}{sup 0} system shows evidence for three pseudoscalar resonances, {eta}(1295), {eta}(1416), and {eta}(1485), as well as two axial vectors, f{sub 1}(1285), and f{sub 1}(1420). Their observed masses, widths and decay properties are reported. No signal was observed for C(1480), an I{sub G} J{sup PC} = 1{sup +} 1{sup --} state previously reported in {phi}{pi}{sup 0} decay.
Sub-terahertz spectroscopy of magnetic resonance in BiFeO3 using a vector network analyzer
NASA Astrophysics Data System (ADS)
Caspers, Christian; Gandhi, Varun P.; Magrez, Arnaud; de Rijk, Emile; Ansermet, Jean-Philippe
2016-06-01
Detection of sub-THz spin cycloid resonances (SCRs) of stoichiometric BiFeO3 (BFO) was demonstrated using a vector network analyzer. Continuous wave absorption spectroscopy is possible, thanks to heterodyning and electronic sweep control using frequency extenders for frequencies from 480 to 760 GHz. High frequency resolution reveals SCR absorption peaks with a frequency precision in the ppm regime. Three distinct SCR features of BFO were observed and identified as Ψ1 and Φ2 modes, which are out-of-plane and in-plane modes of the spin cycloid, respectively. A spin reorientation transition at 200 K is evident in the frequency vs temperature study. The global minimum in linewidth for both Ψ modes at 140 K is ascribed to the critical slowing down of spin fluctuations.
Larsen, Curt; Clark, Inga; Guntenspergen, Glenn; Cahoon, Don; Caruso, Vincent; Hupp, Cliff; Yanosky, Tom
2004-01-01
shallow water surfaces has solved this problem. Our team has developed a detailed LIDAR map of the BNWR area at a 30 centimeter (ca. 1 ft) contour interval (figure 2). The new map allows us to identify the present marsh vegetation zones and to predict the location and area of future zones on a decade-by- decade basis over the next century at increments of sea level rise on the order of 3 cm/decade (ca. 1 inch). We have developed two scenarios for the model. The first is a steady-state model that uses the historic rate of sea level rise of 3.1 mm/yr to predict marsh areas. The second is a 'global warming' scenario utilizing a conservative IPCC model with an exponentially-increasing rate of sea level rise. Under either scenario, the BNWR is progressively inundated with an expanding core of open water. Although their positions change in the future, the areas of intertidal marsh as well as those of the critical high marsh remain fairly constant until the year 2050. Beyond that time, the low-lying land surface is overtopped by rising sea level and the area is dominated by open water. Our model suggests that wetland habitat in the Blackwater area might be maintained and sustained through a combination of public and private preservation efforts through easements in combination with judicious Federal land acquisition into the predicted areas of suitable marsh formation - but for only the next 50 years. Beyond that time much of this area will become open water.
NASA Astrophysics Data System (ADS)
Minakawa, H.; Masumoto, T.
2013-12-01
constructed in a rice paddy plot, which consisted of two zones, one in which the rice was cultivated as usual with normal water levels, and a flood zone, which was used for submerging rice plants. The flood zone, which was designed to reproduce actual flood disaster conditions in paddy fields, can be filled with water to a depth of 0.3, 0.6 or 0.9 m above ground level, and is divided into two plots, a clean water part and a turbid water part. Thus, the experimental conditions can vary according to 1) the development stage of rice, 2) complete or incomplete submersion, 3) clean or turbid water, and 4) duration of submergence. Finally, the reduction scales were formulated by using the resultant data and it was found that rice is most sensitive to damage during the development stage. Flood risk was evaluated by using calculated water level on each paddy. Here, the averaged duration of inundation to a depth of more than 0.3 m was used as the criteria for flood occurrence. The results indicated that the duration increased with larger heavy rainfall amounts. Furthermore, the damage to rice was predicted to increase especially in low-lying paddy fields. Mitigation measures, such as revising drainage planning and/or changing design standards for the capacity of drainage pumps may be necessary in the future.
NASA Astrophysics Data System (ADS)
Rangel, Tonatiuh; Sharifzadeh, Sahar; Rinn, Andre; da Jornada, Felipe H.; Shao, Meiyue; Witte, Gregor; Yang, Chao; Louie, Steven G.; Chatterjee, Sangaam; Kronik, Leeor; Neaton, Jeffrey B.
Organic semiconductors have attracted attention due to their potential for optoelectronics and novel phenomena, such as singlet fission. Here, we use many-body perturbation theory to simulate neutral excitations in acene and perylene crystals. By diagonalizing the full Bethe-Salpether (BSE) Hamiltonian beyond the Tamm Dancoff approximation (TDA), we find that both low-lying excitation energies and oscillator strengths are in improved agreement with experiments relative to the TDA. We characterize the low-lying excitons, focusing in the degree of charge-transfer and spatial delocalization, connecting their relevance to singlet fission. For perylene, we find overall good agreement with absorption measurements, and we see evidence for the formation of an ``exciton-polariton'' band in β-perylene. This work is supported by the DOE.
NASA Astrophysics Data System (ADS)
Berriche, Hamid; Gadea, Florent Xavier
1995-12-01
The permanent dipole moments of the eight low-lying 1Σ states of the LiH molecule are calculated by an ab initio approach for both the adiabatic and the diabatic representations. The results shed light on the interplay between the ionic and the neutral states producing a direct illustration of the ionic character of the electronic wavefunction. Our results suggest that the location and the width of the avoided crossings for the potential energy curves could be experimentally derived.
A potential-energy surface study of the 2A1 and low-lying dissociative states of the methoxy radical
NASA Technical Reports Server (NTRS)
Jackels, C. F.
1985-01-01
Accurate, ab initio quantum chemical techniques are applied in the present study of low lying bound and dissociative states of the methoxy radical at C3nu conformations, using a double zeta quality basis set that is augmented with polarization and diffuse functions. Excitation energy estimates are obtained for vertical excitation, vertical deexcitation, and system origin. The rate of methoxy photolysis is estimated to be too small to warrant its inclusion in atmospheric models.
Narra, Sudhakar; Shigeto, Shinsuke
2015-03-01
Low-lying excited triplet states of aromatic carbonyl compounds exhibit diverse photophysical and photochemical properties of fundamental importance. Despite tremendous effort in studying those triplet states, the effects of substituents and solvents on the energetics of the triplet manifold and on photoreactivity remain to be fully understood. We have recently studied the ordering of the low-lying nπ* and ππ* excited triplet states and its substituent dependence in acetophenone derivatives using nanosecond time-resolved near-IR (NIR) spectroscopy. Here we address the other important issue, the solvent effects, by directly observing the electronic bands in the NIR that originate from the lowest nπ* and ππ* states of acetophenone derivatives in four solvents of different polarity (n-heptane, benzene, acetonitrile, and methanol). The two transient NIR bands decay synchronously in all the solvents, indicating that the lowest nπ* and ππ* states are in thermal equilibrium irrespective of the solvent polarity studied here. We found that the ππ* band increases in intensity relative to the nπ* band as solvent polarity increases. These results are compared with the photoreduction rate constant for the acetophenone derivatives in the solvents to which 2-propanol was added as a hydrogen-atom donor. Based on the present findings, we present a comprehensive, solvent- and substituent-dependent energy level diagram of the low-lying nπ* and ππ* excited triplet states. PMID:25686256
Watari, H; Murakami, M; Seo, Y; Shimoyama, Y
1989-07-31
Superimposed plots of electron paramagnetic resonance spectra with the first and second harmonic displays of ferrihemoglobin at pH 9.1 and 90 K were measured at 20 degree intervals of phase angle using a phase-sensitive detector. The high spin signal in the g = 6 region was observed in both displays, and a small splitting of the signal was found in the calculated amplitude spectrum of the second harmonic display, with g values of 5.95 and 6.05. Low spin signals were observed at g = 2.55, 2.25 and 1.82 in both harmonic displays. A signal in the g = 2.05 region was observed only in the second harmonic display. The signal is probably associated with the low spin spectrum; however, its origin is obscure. PMID:2547369
NASA Astrophysics Data System (ADS)
Wang, Peng; Nakamura, Ryosuke; Kanematsu, Yasuo; Koyama, Yasushi; Nagae, Hiroyoshi; Nishio, Tomohiro; Hashimoto, Hideki; Zhang, Jian-Ping
2005-07-01
Electronic absorption spectra were recorded at room temperature in solutions of carotenoids having different numbers of conjugated double bonds, n = 8-13, including a spheroidene derivatives, neurosporene, spheroidene, lycopene, anhydrorhodovibrin and spirilloxanthin. The vibronic states of 1Bu+(v=0-4), 2Ag-(v=0-3), 3Ag- (0) and 1Bu- (0) were clearly identified. The arrangement of the four electronic states determined by electronic absorption spectroscopy was identical to that determined by measurement of resonance Raman excitation profiles [K. Furuichi et al., Chem. Phys. Lett. 356 (2002) 547] for carotenoids in crystals.
Guo, Jin-Chang; Hou, Gaolei; Li, Si-Dian; Wang, Xue B.
2012-02-02
Despite a seemingly simple appearance, cyclobutanetetraone (C{sub 4}O{sub 4}) has four low-lying electronic states. Determining the energetic ordering of these states and the ground state of C{sub 4}O{sub 4}{sup -} theoretically has been proven to be considerably challenging and remains largely unresolved to date. Here we report a low-temperature negative ion photoelectron spectroscopic approach. A well structured spectrum with evenly spaced features was obtained at 193 nm due to excitation of the ring breathing mode of the C{sub 4}O{sub 4} neutral, whereas each 193-nm feature was observed to further split into a three-peak manifold at 266 nm assigned due to three electronic transitions from the ground state of the anion to the ground and two low-lying excited states of the neutral. Combined with recent theoretical studies and our own Franck-Condon factors simulations, the ground state of C{sub 4}O{sub 4}{sup -}, as well as the ground and two low-lying excited states of C{sub 4}O{sub 4} are determined to be {sup 2}A{sub 2u}, and {sup 3}B{sub 2u}, {sup 1}A{sub 1g} (8{pi}), {sup 1}B{sub 2u}, respectively. The frequency of the ring breathing mode (1810 {+-} 20 cm{sup -1}), the electron affinity (3.475 {+-} 0.005 eV), and the term values of {sup 1}A{sub 1g} (8{pi}) (6.27 {+-} 0.5 kJ/mol) and {sup 1}B{sub 2u} (13.50 {+-} 0.5 kJ/mol) are also directly obtained from the experiments.
Kowalski, Karol; Valiev, Marat
2007-01-01
High-level ab-initio equation-of-motion coupled-cluster methods with singles, doubles, and noniterative triples are used, in conjunction with the combined quantum mechanical molecular mechanics approach, to investigate the structure of low-lying excited states of the guanine base in DNA and solvated environments. Our results indicate that while the excitation energy of the first excited state is barely changed compared to its gas-phase counterpart, the excitation energy of the second excited state is blue-shifted by 0.24 eV.
Muller, H. S.; Brown, Linda R.; Drouin, B. J.; Pearson, J. C.; Kleiner, Isabelle; Sams, Robert L.; Sung, Keeyoon; Ordu, Matthias H.; Lewen, Frank
2015-06-01
Rotational and rovibrational spectra of methyl cyanide were recorded to analyze interactions in low-lying vibrational states and to construct line lists for radio astronomical observations as well as for infrared spectroscopic investigations of planetary atmospheres. The rotational spectra cover large portions of the 36-1627 GHz region. In the infrared (IR), a spectrum was recorded for this study in the region of 2v(8) around 717 cm(-1) with assignments covering 684-765 cm-1. Additional spectra in the vs region were used to validate the analysis.
Zou, Wenli; Suo, Bingbing
2016-08-18
The low-lying electronic states of platinum ions (Pt(+)) and platinum monohalides (PtX; X = F, Cl, Br, and I) are calculated using the multireference configuration interaction method with relativistic effective core potentials. The spin-orbit coupling is taken into account through the perturbative state-interaction approach. For the Ω states of PtX below 35000 cm(-1), the potential energy curves and the corresponding spectroscopic constants are reported. It is found that the lowest Ω = 3/2 state is the ground one for the four species of PtX. Overall, the theoretical results are in reasonable agreement with the available experimental data. PMID:27463417
NASA Astrophysics Data System (ADS)
Tabar, Emre; Yakut, Hakan; Kuliev, Ali Akbar
2016-07-01
The ground state magnetic moments and the low-lying magnetic dipole (Ml) transitions from the ground to excited states in heavy deformed odd-mass 181Ta have been microscopically investigated on the basis of the quasiparticle-phonon nuclear model (QPNM). The problem of the spurious state mixing in M1 excitations is overcome by a restoration method allowing a self-consistent determination of the separable effective restoration forces. Due to the self-consistency of the method, these effective forces contain no arbitrary parameters. The results of calculations are compared with the available experimental data, the agreement being reasonably satisfactory.
NASA Astrophysics Data System (ADS)
Yao, J. M.; Engel, J.
2016-07-01
We present a generator-coordinate calculation, based on a relativistic energy-density functional, of the low-lying spectra in the isotopes 150Nd and 150Sm and of the nuclear matrix element that governs the neutrinoless double-β decay of the first isotope to the second. We carefully examine the impact of octupole correlations on both nuclear structure and the double-β decay matrix element. Octupole correlations turn out to reduce quadrupole collectivity in both nuclei. Shape fluctuations, however, dilute the effects of octupole deformation on the double-β decay matrix element, so that the overall octupole-induced quenching is only about 7 % .
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.; Silver, D. M.; Yarkony, D. R.
1980-01-01
The paper presents the multiconfiguration-self-consistent (MCSCF) and configuration state functions (CSF) for the low-lying electronic states of MgO. It was shown that simple description of these states was possible provided the 1 Sigma(+) states are individually optimized at the MCSCF level, noting that the 1(3 Sigma)(+) and 2(1 Sigma)(+) states which nominally result from the same electron occupation are separated energetically. The molecular orbitals obtained at this level of approximation should provide a useful starting point for extended configuration interaction calculations since they have been optimized for the particular states of interest.
NASA Astrophysics Data System (ADS)
Vershovskii, A. K.; Dmitriev, A. K.
2015-11-01
We used synchronous radio-frequency excitation of three components of a hyperfine resonance line in the scheme of the vector sensor of a magnetic field based on optically detected magnetic resonance in the nitrogen-vacancy centers in diamond crystal. As a result, for the first time, the sensitivity of order 1.5 nT Hz-1/2 in the frequency range of 0-100 Hz was reached in the crystal with a volume of 0.01 mm3 glued to the end of an optical fiber.
NASA Astrophysics Data System (ADS)
Pillet, N.; Zelevinsky, V. G.; Dupuis, M.; Berger, J.-F.; Daugas, J. M.
2012-04-01
A multiconfiguration microscopic method has been applied with the Gogny effective interaction to the calculation of low-lying positive-parity states in even-even 26-32Si isotopes. The aim of the study is to compare the results of this approach with those of a standard method of generator coordinate method (GCM) type and to get insight into the predictive power of multiconfiguration methods employed with effective nucleon-nucleon force tailored to mean-field calculations. It is found that the multiconfiguration approach leads to an excellent description of the low-lying spectroscopy of 26Si, 28Si, and 32Si, but gives a systematic energy shift in 30Si. A careful analysis of this phenomenon shows that this discrepancy originates from too large proton-neutron matrix elements supplied by the Gogny interaction at the level of the approximate resolution of the multiparticle-multihole configuration mixing method done in the present study. These proton-neutron matrix elements enter in the definition of both single-particle orbital energies and coupling matrix elements. Finally, a statistical analysis of highly excited configurations in 28Si is performed, revealing exponential convergence in agreement with previous work in the context of the shell model approach. This latter result provides strong arguments toward an implicit treatment of highly excited configurations.
Jun, Ye
2015-12-24
Low-lying band shapes of absorption and fluorescence spectra for a member of a newly synthesized family of phenylene-containing oligoacenes (POA 6) reported in J. Am. Chem. Soc. 2012 , 134 , 15351 are studied theoretically with two different approaches with TIPS-anthracene as a comparison. Underlying photophysics and exciton-phonon interactions in both molecules are investigated in details with the aid of the time-dependent density functional theory and multimode Brownian oscillator model. The first two low-lying excited-states of POA 6 were found to exhibit excitation characteristics spanning entire conjugated backbone despite the presence of antiaromatic phenylene section. Absorption and fluorescence spectra calculated from both time-dependent density functional theory and multimode Brownian oscillator model are shown to reach good agreement with experimental ones. The coupling between phonon modes and optical transitions is generally weak as suggested by the multimode Brownian oscillator model. Broader peaks of POA 6 spectra are found to relate to stronger coupling between low frequency phonon modes such as backbone twisting (with frequency <300 cm(-1)) and optical transitions. Furthermore, POA 6 exhibits weaker exciton-phonon coupling for the phonon modes above 1000 cm(-1) compared to TIPS-anthracene owing to extended conjugated backbone. A significant coupling between an in-plane breathing mode localized around the antiaromatic phenylene segment with frequency at 1687 cm(-1) and optical transitions for the first two excited-states of POA 6 is also observed. PMID:26611665
NASA Astrophysics Data System (ADS)
Yuan, Jian-Hui; Zhang, Yan; Guo, Xinxia; Zhang, Jinjin; Mo, Hua
2015-04-01
Using the configuration-integration method, we investigated theoretically the low-lying states and optical absorption properties of a hydrogenic impurity in a parabolic quantum dot modulation by applied electric field. The low-lying states and optical absorption properties depend sensitively on the electric field F and the strength of the parabolic confinement ℏω0 . We discuss the linear and third-order nonlinear optical absorption coefficients of the dot (i) with the impurity ion and (ii) without the impurity ion. In the first case, the increase of the parabolic confinement ℏω0 (or the electric field F) can induce the blueshift (or redshift) of the peak of the absorption coefficient. Also the optical intensity can induce the increase of the third-order nonlinear optical absorption coefficients to weaken and even bleach the total optical absorption coefficients. Similar behavior has also been observed in the second case, but there is no redshift of the peak positions of the absorption coefficient with the increase of the electric field F. Compared with the second case, it is easily seen that there are the blueshifts of the peak of the absorption coefficients, which can be used as a technical means for detecting impurities.
NASA Astrophysics Data System (ADS)
Gatos, I.; Tsantis, S.; Karamesini, M.; Skouroliakou, A.; Kagadis, G.
2015-09-01
Purpose: The design and implementation of a computer-based image analysis system employing the support vector machine (SVM) classifier system for the classification of Focal Liver Lesions (FLLs) on routine non-enhanced, T2-weighted Magnetic Resonance (MR) images. Materials and Methods: The study comprised 92 patients; each one of them has undergone MRI performed on a Magnetom Concerto (Siemens). Typical signs on dynamic contrast-enhanced MRI and biopsies were employed towards a three class categorization of the 92 cases: 40-benign FLLs, 25-Hepatocellular Carcinomas (HCC) within Cirrhotic liver parenchyma and 27-liver metastases from Non-Cirrhotic liver. Prior to FLLs classification an automated lesion segmentation algorithm based on Marcov Random Fields was employed in order to acquire each FLL Region of Interest. 42 texture features derived from the gray-level histogram, co-occurrence and run-length matrices and 12 morphological features were obtained from each lesion. Stepwise multi-linear regression analysis was utilized to avoid feature redundancy leading to a feature subset that fed the multiclass SVM classifier designed for lesion classification. SVM System evaluation was performed by means of leave-one-out method and ROC analysis. Results: Maximum accuracy for all three classes (90.0%) was obtained by means of the Radial Basis Kernel Function and three textural features (Inverse- Different-Moment, Sum-Variance and Long-Run-Emphasis) that describe lesion's contrast, variability and shape complexity. Sensitivity values for the three classes were 92.5%, 81.5% and 96.2% respectively, whereas specificity values were 94.2%, 95.3% and 95.5%. The AUC value achieved for the selected subset was 0.89 with 0.81 - 0.94 confidence interval. Conclusion: The proposed SVM system exhibit promising results that could be utilized as a second opinion tool to the radiologist in order to decrease the time/cost of diagnosis and the need for patients to undergo invasive examination.
Theoretical spectroscopy study of the low-lying electronic states of UX and UX^{+}, X = F and Cl
Bross, David H.; Peterson, Kirk A.
2015-11-13
Spectroscopic constants (T_{e}, r_{e}, B_{0}, ω_{e}, ω_{e}x_{e}) have been calculated for the low-lying electronic states of UF, UF^{+}, UCl, and UCl^{+} using complete active space 2nd-order perturbation theory (CASPT2), with a series of correlation consistent basis sets. The latter included those based on both pseudopotential (PP) and all-electron Douglas-Kroll-Hess (DK) Hamiltonians for the U atom. Spin orbit effects were included a posteri using the state interacting method using both PP and Breit Pauli (BP) operators, as well as from exact two-component (X2C) methods for U^{+} and UF^{+}. Complete basis set (CBS) limits were obtained by extrapolation where possible and the PP and BP calculations were compared at their respective CBS limits. The PP-based method was shown to be reliable in calculating spectroscopic constants, in particular when using the state interacting method with CASPT2 energies (SO-CASPT2). The two component calculations were limited by computational resources and could not include electron correlation from the nominally closed shell 6s and 6p orbitals of U. UF and UCl were both calculated to have Ω=9/2 ground states. The first excited state of UCl was calculated to be an Ω=7/2 state at 78 cm^{-1} as opposed to the same state at 435 cm-1 in UF, and the other low-lying states of UCl showed a similar compression relative to UF. Likewise UF+ and UCl+ both have Ω=4 ground states and the manifold of low-lying excited Ω = 3, 2, 1, 0 states were energetically closer together in UCl^{+} than in UF^{+}, ranging up to 776 cm^{-1} in UF^{+} and only 438 cm^{-1} in UCl^{+}. As in previous research, the final PP-based SO-CASPT2 results for UF^{+} and UF agree well with experiment, and are expected to be predictive for UCl and UCl^{+}, which are reported here for the first time.
NASA Astrophysics Data System (ADS)
Miyashita, Yuji; Ouchi, Hiroyuki; Izumi, Sayaka; Sasaki, Ayako; Sato, Nozomi; Tateoka, Miki; Hoshino, Sayo; Nagano, Tetsuya; Yamashita, Wataru; Yamazaki, Akiyoshi; Shimada, Kenzi; Ishida, Takashi; Wakui, Takashi; Shinozuka, Tsutomu; Tanigaki, Minoru
2009-10-01
To extend the studies on neutron-rich nuclei, we have developed an RF-IGISOL technique, which is combination of the gas catcher technique and the electrical field guiding technique with a large volume gas cell. As the first step to such approach, we are planning and trying the systematic measurement of g-factor in the neutron rich nuclei extracted as an radioactive beam from our RF-IGISOL at Tohoku University. The g-factor measurement for the low-lying state of ^109Rh (Ex = 225.98 keV, T1/2 = 1.66 μs) is the first on-line experiment with our RF-IGISOL system. The g-factor for this state has been determined to be g = 0.78 ^+0.17-0.03 μN by the on-line TDPAC method. In this contribution, the details of experimental results will be reported.
NASA Astrophysics Data System (ADS)
Marwa, N. El-Hammamy
2015-03-01
The experimental data on elastic and inelastic scattering of 270 MeV 3He particles to several low lying states in 90Zr, 116Sn and 208Pb are analyzed within the double folding model (DFM). Fermi density distribution (FDD) of target nuclei is used to obtain real potentials with different powers. DF results are introduced into a modified DWUCK4 code to calculate the elastic and inelastic scattering cross sections. Two choices of potentials form factors are used; Woods Saxon (WS) and Woods Saxon Squared (WS2) for real potential, while the imaginary part is taken as phenomenological Woods Saxon (PWS) and phenomenological Woods Saxon Squared (PWS2). This comparison provides information about the similarities and differences of the models used in calculations.
Xie Wenfang
2013-01-31
Optical absorptions of the low-lying states with higher angular momenta of the D{sup -} system in a spherical quantum dot (QD) with the Gaussian potential are studied by using the matrix diagonalisation method and the compact density-matrix approach. The linear, nonlinear third-order and total optical absorption coefficients are calculated for the {sup 1}P{sup -} {yields} {sup 1}D{sup +} and {sup 1}D{sup +} {yields} {sup 1}F{sup -} transitions. Numerical results for GaAs/Ga{sub 1-x}Al{sub x}As QDs are presented. The calculated results show that with increasing quantum numbers describing the angular momenta of transitions the optical absorption peaks shift towards lower energies and their intensities increase. (quantum dots)
NASA Astrophysics Data System (ADS)
Etilé, A.; Verney, D.; Arsenyev, N. N.; Bettane, J.; Borzov, I. N.; Cheikh Mhamed, M.; Cuong, P. V.; Delafosse, C.; Didierjean, F.; Gaulard, C.; Van Giai, Nguyen; Goasduff, A.; Ibrahim, F.; Kolos, K.; Lau, C.; Niikura, M.; Roccia, S.; Severyukhin, A. P.; Testov, D.; Tusseau-Nenez, S.; Voronov, V. V.
2015-06-01
The β decay of 82Ge Ge was re-investigated using the newly commissioned tape station BEDO at the electron-driven ISOL (isotope separation on line) facility ALTO operated by the Institut de Physique Nucléaire, Orsay. The original motivation of this work was focused on the sudden occurrence in the light N =49 odd-odd isotonic chain of a large number of J ≤1 states (positive or negative parity) in 80Ga by providing a reliable intermediate example, viz., 82As. The extension of the 82As level scheme towards higher energies from the present work has revealed three potential 1+ states above the already known one at 1092 keV. In addition our data allow ruling out the hypothesis that the 843 keV level could be a 1+ state. A detailed analysis of the level scheme using both an empirical core-particle coupling model and a fully microscopic treatment within a Skyrme-QRPA (quasiparticle random-phase approximation) approach using the finite-rank separable approximation was performed. From this analysis two conclusions can be drawn: (i) the presence of a large number of low-lying low-spin negative parity states is due to intruder states stemming from above the N =50 shell closure, and (ii) the sudden increase, from 82As to 80Ga, of the number of low-lying 1+ states and the corresponding Gamow-Teller fragmentation are naturally reproduced by the inclusion of tensor correlations and couplings to 2p-2h excitations.
NASA Astrophysics Data System (ADS)
Garzon, E. J.; Oset, E.
2015-02-01
We study the meson-baryon interaction with JP=1 /2- using the hidden-gauge Lagrangians and mixing pseudoscalar meson-baryon with the vector meson-baryon states in a coupled channels scheme with π N ,η N ,K Λ ,K Σ ,ρ N , and π Δ (d wave). We fit the subtraction constants of each channel to the S11 partial wave amplitude of the π N scattering data extracted from the partial wave analysis of the George Washington group. We find two poles that we associate to the N*(1535 ) and the N*(1650 ) resonances, with negative subtraction constants of natural size, and compare the results with empirical determinations of these pole positions. We calculate the branching ratios for the different channels of each resonance and we find a good agreement with the experimental data. The cross section for the π-p →η n scattering is also evaluated and compared with experiment.
Biselli, A. S.; Burkert, V. D.; Avakian, H.; Boiarinov, S.; Bosted, P.; Carman, D. S.; Degtyarenko, P. V.; Deur, A.; Egiyan, H.; Elouadrhiri, L.; Guo, L.; Gyurjyan, V.; Ito, M. M.; Kubarovsky, V.; Laget, J. M.; Mecking, B. A.; Mestayer, M. D.; Niczyporuk, B. B.; Nozar, M.; Sapunenko, V.
2008-10-15
The exclusive channel p-vectore-vector,e{sup '}p){pi}{sup 0} was studied in the first and second nucleon resonance regions in the Q{sup 2} range from 0.187 to 0.770 GeV{sup 2} at Jefferson Lab using the CEBAF Large Acceptance Spectrometer. Longitudinal target and beam-target asymmetries were extracted over a large range of center-of-mass angles of the {pi}{sup 0} and compared to the unitary isobar model MAID, the dynamic model by Sato and Lee, and the dynamic model DMT. A strong sensitivity to individual models was observed, in particular for the target asymmetry and in the higher invariant mass region. This data set, once included in the global fits of the above models, is expected to place strong constraints on the electrocoupling amplitudes A{sub 1/2} and S{sub 1/2} for the Roper resonance N(1400)P{sub 11} and the N(1535)S{sub 11} and N(1520)D{sub 13} states.
NASA Astrophysics Data System (ADS)
Koh, Yang Wei
2016-04-01
We present an extensive numerical study of the Sherrington-Kirkpatrick model in a transverse field. Recent numerical studies of quantum spin glasses have focused on exact diagonalization of the full Hamiltonian for small systems (≈20 spins). However, such exact numerical treatments are difficult to apply on larger systems. We propose making an approximation by using only a subspace of the full Hilbert space spanned by low-lying excitations consisting of one-spin-flipped and two-spin-flipped states. The approximation procedure is carried out within the theoretical framework of the Hartree-Fock approximation and configuration interaction. Although not exact, our approach allows us to study larger system sizes comparable to that achievable by state-of-the-art quantum Monte Carlo simulations. We calculate two quantities of interest due to recent advances in quantum annealing, the ground-state energy and the energy gap between the ground and first excited states. For the energy gap, we derive a formula that enables it to be calculated using just the ground-state wave function, thereby circumventing the need to diagonalize the Hamiltonian. We calculate the scalings of the energy gap and the leading correction to the extensive part of the ground-state energy with system size, which are difficult to obtain with current methods.
NASA Astrophysics Data System (ADS)
Shiga, Y.; Yoneda, K.; Steppenbeck, D.; Aoi, N.; Doornenbal, P.; Lee, J.; Liu, H.; Matsushita, M.; Takeuchi, S.; Wang, H.; Baba, H.; Bednarczyk, P.; Dombradi, Zs.; Fulop, Zs.; Go, S.; Hashimoto, T.; Honma, M.; Ideguchi, E.; Ieki, K.; Kobayashi, K.; Kondo, Y.; Minakata, R.; Motobayashi, T.; Nishimura, D.; Otsuka, T.; Otsu, H.; Sakurai, H.; Shimizu, N.; Sohler, D.; Sun, Y.; Tamii, A.; Tanaka, R.; Tian, Z.; Tsunoda, Y.; Vajta, Zs.; Yamamoto, T.; Yang, X.; Yang, Z.; Ye, Y.; Yokoyama, R.; Zenihiro, J.
2016-02-01
The low-lying level structures of nuclei in the vicinity of 78Ni were investigated using in-beam γ -ray spectroscopy to clarify the nature of the nuclear magic numbers Z =28 and N =50 in systems close to the neutron drip line. Nucleon knockout reactions were employed to populate excited states in 80Zn and 82Zn. A candidate for the 41+ level in 80Zn was identified at 1979(30) keV, and the lifetime of this state was estimated to be 136-67+92 ps from a line-shape analysis. Moreover, the energy of the 21+ state in 82Zn is reported to lie at 621(11) keV. The large drop in the 21+ energy at 82Zn indicates the presence of a significant peak in the E (21+) systematics at N =50 . Furthermore, the E (41+) /E (21+) and B (E 2 ;41+→21+) /B (E 2 ;21+→0g.s . +) ratios in 80Zn were deduced to be 1.32 (3 ) and 1 .12-60+80 , respectively. These results imply that 80Zn can be described in terms of two-proton configurations with a 78Ni core and are consistent with a robust N =50 magic number along the Zn isotopic chain. These observations, therefore, indicate a persistent N =50 shell closure in nuclei far from the line of β stability, which in turn suggests a doubly magic structure for 78Ni.
Pepper, Mitzy; Ho, Simon Y W; Fujita, Matthew K; Scott Keogh, J
2011-12-01
It is a widely held assumption that populations historically restricted to mountain refugia tend to exhibit high levels of genetic diversity and deep coalescent histories, whereas populations distributed in surrounding low-lying regions tend to be genetically depauperate following recent expansion from refugia. These predicted genetic patterns are based largely on our understanding of glaciation history in Northern Hemisphere systems, yet remain poorly tested in analogous Southern Hemisphere arid systems because few examples in the literature allow the comparison of widespread taxa distributed across mountain and desert biomes. We demonstrate with multiple datasets from Australian geckos that topographically complex mountain regions harbor high nucleotide diversity, up to 18 times higher than that of the surrounding desert lowlands. We further demonstrate that taxa in topographically complex areas have older coalescent histories than those in the geologically younger deserts, and that both ancient and more recent aridification events have contributed to these patterns. Our results show that, despite differences in the details of climate and landscape changes that occurred in the Northern and Southern hemispheres (ice-sheets versus aridification), similar patterns emerge that illustrate the profound influence of the Pleistocene on contemporary genetic structure. PMID:21871574
NASA Astrophysics Data System (ADS)
Guo, Jiangang; Yamaura, Jun-ichi; Lei, Hechang; Matsuishi, Satoru; Qi, Yanpeng; Hosono, Hideo
2013-10-01
We report on new superconductors Ban+2Ir4nGe12n+4 (n = 1, 2) with critical temperatures Tc = 6.1 and 3.2 K, respectively, along with their crystal structures, electron transport, and specific heat. The compounds are composed of alternating Ba@Ir8Ge16 and Ba@Ir2Ge16 cages, both of which are larger in the n = 1 sample than in the n = 2 sample. The normal-state heat capacity reveals two low-lying vibration modes associated with guest Ba cations, and both characteristic temperatures in Ba3Ir4Ge16 are smaller than those in Ba4Ir8Ge28. Meanwhile, the density functional theory calculations reveal that the Ge-4p bands dominated the Fermi level in both samples. We propose that the softening of localized phonons due to expansion of the cage strengthens the electron-phonon coupling between Ba cations and Ge anions, leading to the higher Tc in Ba3Ir4Ge16.
Boucher, Yan; Orata, Fabini D.; Alam, Munirul
2015-01-01
Cholera is a diarrheal disease that has changed the history of mankind, devastating the world with seven pandemics from 1817 to the present day. Although there is little doubt in the causative agent of these pandemics being Vibrio cholerae of the O1 serogroup, where, when, and how this pathogen emerged is not well understood. V. cholerae is a ubiquitous coastal species that likely existed for tens of thousands of years. However, the evolution of a strain capable of causing a large-scale epidemic is likely more recent historically. Here, we propose that the unique human and physical geography of low-lying river deltas made it possible for an environmental bacterium to evolve into a deadly human pathogen. Such areas are often densely populated and salt intrusion in drinking water frequent. As V. cholerae is most abundant in brackish water, its favored environment, it is likely that coastal inhabitants would regularly ingest the bacterium and release it back in the environment. This creates a continuous selection pressure for V. cholerae to adapt to life in the human gut. PMID:26539168
NASA Astrophysics Data System (ADS)
Meo, F. Di; Trouillas, P.; Adamo, C.; Sancho-García, J. C.
2013-10-01
The present work assesses some recently developed double-hybrid density functionals (B2π-PLYP, PBE0-DH, and PBE0-2) using linear-response Tamm-Dancoff Time-Dependent Density Functional Theory. This assessment is achieved against experimentally derived low-lying excitation energies of large organic dyes of recent interest, including some excitations dominated by charge-transfer transitions. Comparisons are made with some of the best-performing methods established from the literature, such as PBE0 or B3LYP hybrid or the recently proposed B2-PLYP and B2GP-PLYP double-hybrid models, to ascertain their quality and robustness on equal footing. The accuracy of parameter-free or empirical forms of double-hybrid functionals is also briefly discussed. Generally speaking, it turns out that double-hybrid expressions always provide more accurate estimates than corresponding hybrid methods. Double-hybrid functionals actually reach averaged accuracies of 0.2 eV, that can be admittedly considered close to any intended accuracy limit within the present theoretical framework.
NASA Astrophysics Data System (ADS)
Karamanis, P.; Marchal, R.; Carbonnierre, P.; Pouchan, C.
2012-12-01
The (hyper)polarizabilities of the global minima and of low lying isomers of ground doped aluminum clusters of the AlSin type (n=3-9) have been studied within the density functional framework. Our results show that the polarizabilities and first hyperpolarizabilities per atom of these doped Al doped clusters rabidly degrease with the cluster size. Also by tracing a significant number of stable low lying isomers we demonstrate that both the average values of the mean polarizabilities per atom and of the total fist hyperpolarizabilities of those species follow closely the evolution that is observed in the case of their ground state structures.
NASA Astrophysics Data System (ADS)
Zu, Dong-Lin; Guo, Hua; Song, Xiao-Yu; Bao, Shang-Lian
2002-10-01
The approach of expanding the magnetic scalar potential in a series of Legendre polynomials is suitable for designing a conventional superconducting magnetic resonance imaging magnet of distributed solenoidal configuration. Whereas the approach of expanding the magnetic vector potential in associated Legendre harmonics is suitable for designing a single-solenoid magnet that has multiple tiers, in which each tier may have multiple layers with different winding lengths. A set of three equations to suppress some of the lowest higher-order harmonics is found. As an example, a 4T single-solenoid magnetic resonance imaging magnet with 4×6 layers of superconducting wires is designed. The degree of homogeneity in the 0.5m diameter sphere volume is better than 5.8 ppm. The same degree of homogeneity is retained after optimal integralization of turns in each correction layer. The ratio Bm/B0 in the single-solenoid magnet is 30% lower than that in the conventional six-solenoid magnet. This tolerates higher rated superconducting current in the coil. The Lorentz force of the coil in the single-solenoid system is also much lower than in the six-solenoid system. This novel type of magnet possesses significant advantage over conventional magnets, especially when used as a super-high field functional magnetic resonance imaging magnet.
Luk'yanchuk, B. S.; Ternovsky, V.
2006-06-15
We analyze the energy flow during the scattering of a plane wave by a small homogeneous cylinder in the vicinity of surface-plasmon resonance, where {epsilon}{sup '}=Re {epsilon}=-1 ({epsilon} stands for permittivity). For the case of small dissipation, {epsilon}{sup ''}=Im {epsilon}<<1, this scattering can strongly deviate from the classical dipole approximation (Rayleigh scattering). In certain specified cases, the Rayleigh scattering is replaced with an anomalous light scattering regardless the wire smallness. The phenomenon is based on interplay of the usual dissipative and radiative damping, where the latter is related to inverse transformation of localized resonant plasmons into scattered light. The anomalous light scattering possesses a variety of unusual features, such as an inverse hierarchy of optical resonances and a complicated near-field structure, which may include optical vortexes, optical whirlpools, and other peculiarities in nanoscale area.
NASA Astrophysics Data System (ADS)
Lee, Edmond P. F.; Mok, Daniel K. W.; Chau, Foo-tim; Dyke, John M.
2006-09-01
Geometry optimization calculations were carried out on the X˜A11 state of SF2 and the X˜B12, ÃA12, B˜B22, C˜B22, D˜A12, and ẼA22 states of SF2+ employing the restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] method and basis sets of up to the augmented correlation-consistent polarized quintuple-zeta [aug-cc-pV(5+d )Z] quality. Effects of core electron (S 2s22p6 and F 1s2 electrons) correlation and basis set extension to the complete basis set limit on the computed minimum-energy geometries and relative electronic energies (adiabatic and vertical ionization energies) were investigated. RCCSD(T) potential energy functions (PEFs) were calculated for the X˜A11 state of SF2 and the low-lying states of SF2+ listed above employing the aug-cc-pV(5+d )Z and aug-cc-pV5Z basis sets for S and F, respectively. Anharmonic vibrational wave functions of these neutral and cationic states of SF2, and Franck-Condon (FC) factors of the lowest four one-electron allowed neutral photoionizations were computed employing the RCCSD(T) PEFs. Calculated FC factors with allowance for Duschinsky rotation and anharmonicity were used to simulate the first four photoelectron bands of SF2. The agreement between the simulated and observed first bands in the HeI photoelectron spectrum reported by de Leeuw et al. [Chem. Phys. 34, 287 (1978)] is excellent. Our calculations largely support assignments made by de Leeuw et al. on the higher ionization energy bands of SF2.
Li, Xia; Zhang, Xiaomei; Yan, Bing
2015-05-01
Ab initio calculations have been performed on the low-lying excited and ground states of PH(+). The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A(2)Δ-(4)Π and 1(2)Σ(+)-(4)Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15Ω states. The Ω=1/2 state generated from the X(2)Π state is confirmed to the ground Ω state. And the SOC splitting for the X(2)Π is calculated to be 294cm(-1). The SOC effect has large effect on the PECs of the A(2)Δ and 1(2)Σ(+) states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A(2)Δ-X(2)Π and 1(2)Σ(-)-X(2)Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A(2)Δ and 1(2)Σ(-) states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A(2)Δ state is almost uninfluenced by the perturbation via the SOC effect. PMID:25688687
NASA Astrophysics Data System (ADS)
Barker, Beau; Meyer, Edmund; Schacht, Mike; Collins, Lee; Wilkerson, Marianne; Zhao, Xinxin
2016-05-01
The low-lying (7.8 eV) isomeric state in 229 Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF2 for use in the direct search of the transition. Of interest is the oxidation state of the implanted 229 Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted 229 Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than + 4. Our search focused on detecting emission from Th3+ ions. The DFT calculations predicted the Th3+ state to be the most likely to be present in the crystal after Th4+. We also calculated the band structure for the Th3+ doped MgF2 crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th3+ in the MgF2 plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th3+ atoms that we could detect is quite small compared to the number of implanted 229 Th recoils. The number of implanted 229 Th recoils was derived from a γ-ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF2 plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442.
NASA Astrophysics Data System (ADS)
Li, Xia; Zhang, Xiaomei; Yan, Bing
2015-05-01
Ab initio calculations have been performed on the low-lying excited and ground states of PH+. The potential energy curves (PECs) of the Λ-S states were calculated with multi-reference configuration interaction (MRCI) method along with the basis sets at 5-ξ level. In order to improve the PECs, the Davidson(+Q) correction and the Scalar relativistic effect are included. The corresponding spectroscopic constants were determined and good agreements with the available measurement were found. The interactions of the A2Δ-4Π and 12Σ+-4Π by the spin-orbit coupling (SOC) effect were well described by the spin-orbit matrix elements. The SOC effect makes the original 8 Λ-S states split into 15 Ω states. The Ω = 1/2 state generated from the X2Π state is confirmed to the ground Ω state. And the SOC splitting for the X2Π is calculated to be 294 cm-1. The SOC effect has large effect on the PECs of the A2Δ and 12Σ+ states, leading to much more shallow potential wells as well as potential barriers. The analysis of the wavefunction for the Ω states shows that the strong spin-orbit interaction exists near the crossing points of the PECs for the Λ-S states. The transition dipole moments (TDMs) of transitions A2Δ-X2Π and 12Σ--X2Π are evaluated with the MRCI wavefunction. Based on the TDMs along with the calculated Franck-Condon factors, the radiative lifetimes for the selected vibrational levels of A2Δ and 12Σ- states are predicted at the microseconds (μs). Good agreement with the measurement shows that the lowest vibrational level for A2Δ state is almost uninfluenced by the perturbation via the SOC effect.
NASA Astrophysics Data System (ADS)
Chattopadhyay, Anjan
2012-02-01
Ab initio-based configuration interaction studies on RbHe and He-Rb-He have explored some key features of the low-lying electronic states of these van der Waals systems. The radiative lifetime of the Rb*He exciplex has been calculated to be around 24.5 ns, which is slightly higher than the HeRb*He lifetime (˜20 ns) and lower than the atomic fluorescence lifetime of Rb, by roughly 3.5 ns. Better exciplex stability of the symmetric triatomic system is evidenced by its higher binding energy value in comparison to the diatomic system by a substantial margin. BSSE-corrected spin-orbit calculations of RbHe have predicted a potential barrier of the 12Π1/2 state with a height of 15 cm-1 and width of 2.57 Å. The 2Πu state of the triatomic molecule shows a conical intersection of its Renner-Teller components (12A1 and 12B2) near a 99° bond angle along the bending path. Their unstable higher excited states (12Σ+1/2 or 12Σ+g,1/2) can trigger the pumping of the blue side of the ns2S1/2 → np2P3/2 transition, and this may eventually lead to the np2P1/2 →ns2S1/2 lasing transition. The broad fluorescence band with a peak near 11 900 cm-1 is found to arise from the 12Π3/2-X2Σ+1/2 transition of RbHe.
Peterson, Kirk A.; Francisco, Joseph S.
2014-01-28
A systematic ab initio treatment of the nitryl halides (XNO{sub 2}) and the cis- and trans- conformers of the halide nitrites (XONO), where X = Cl, Br, and I, have been carried out using highly correlated methods with sequences of correlation consistent basis sets. Equilibrium geometries and harmonic frequencies have been accurately calculated in all cases at the explicitly correlated CCSD(T)-F12b level of theory, including the effects of core-valence correlation for the former. Where experimental values are available for the equilibrium structures (ClNO{sub 2} and BrNO{sub 2}), the present calculations are in excellent agreement; however, the X-O distances are slightly too long by about 0.01 Å due to missing multireference effects. Accurate predictions for the iodine species are made for the first time. The vertical electronic excitation spectra have been calculated using equation-of-motion coupled cluster methods for the low-lying singlet states and multireference configuration interaction for both singlet and triplet states. The latter also included the effects of spin-orbit coupling to provide oscillator strengths for the ground state singlet to excited triplet transitions. While for ClNO{sub 2} the transitions to excited singlet states all occur at wavelengths shorter than 310 nm, there is one longer wavelength singlet transition in BrNO{sub 2} and two in the case of INO{sub 2}. The long wavelength tail in the XNO{sub 2} species is predicted to be dominated by transitions to triplet states. In addition to red-shifting from X = Cl to I, the triplet transitions also increase in oscillator strength, becoming comparable to many of the singlet transitions in the case of INO{sub 2}. Hence in particular, the latter species should be very photolabile. Similar trends are observed and reported for the halogen nitrites, many of which for the first time.
NASA Astrophysics Data System (ADS)
Perozzi, E.; Murdin, P.
2000-11-01
A resonance in CELESTIAL MECHANICS occurs when some of the quantities characterizing the motion of two or more celestial bodies can be considered as commensurable, i.e. their ratio is close to an integer fraction. In a simplified form, this can be expressed as ...
NASA Astrophysics Data System (ADS)
Hemakumara, GPTS; Rainis, Ruslan
2015-02-01
Living in Low-lying areas is a challenging task, but due to the lack of suitable land at affordable prices, thousands of householders have been establishing their own houses on Low-lying areas. Manipulation and conversion of low lying areas have led to an increase in the frequency and severity of micro disasters because the cumulative effect of these settlements is very high. Therefore, it is needed to examine how individual households have been emerging in Low-lying areas. This process is primarily influenced and controlled by Socio-economic factors. In the field survey conducted for this study, 388 householders were interviewed face to face to obtain the primary data. Collected data were applied to the Multivariate binary logistic Model. The Dependent variable of the model was set as Stable Houses and Non-Stable Houses based on the weighted values that were obtained from the field observations. Independent variables of this study are nine key aspects of the socio-economic conditions in these areas. Units of analysis of the study were taken as individual housing plots in the study area. The particular combination of Socio-Economic factors that exerted influence on each housing plot was measured using predicted probability value of logistic model and linked it with GIS land plot's map. Accuracy of Final Model is 86.9 % and probability level of influencing factors given a clear idea about household distribution and status while providing guidance about how the planning authorities should monitor and manage low lying areas, taking into consideration the present housing condition of these areas.
NASA Astrophysics Data System (ADS)
Mok, Daniel K. W.; Chau, Foo-tim; Lee, Edmond P. F.; Dyke, John M.
2006-09-01
Geometry optimization calculations were carried out on the X˜A11 state of SCl2 and the X˜B12, ÃB22, B˜A12, C˜A12, D˜A22, and ẼB22 states of SCl2+ at the restricted-spin coupled-cluster single-double plus perturbative triple excitation [RCCSD(T)] level with basis sets of up to the augmented correlation-consistent polarized quintuple-zeta [aug-cc-pV(5+d )Z] quality. Effects of core electron correlation, basis set extension to the complete basis set limit, and relativistic contributions on computed minimum-energy geometrical parameters and/or relative electronic energies were also investigated. RCCSD(T) potential energy functions (PEFs) were calculated for the X˜A11 state of SCl2 and the low-lying states of SCl2+ listed above employing the aug-cc-pV(5+d )Z basis set. Anharmonic vibrational wave functions of these neutral and cationic states of SCl2, and Franck-Condon (FC) factors of the lowest four one-electron allowed neutral photoionizations were computed employing the RCCSD(T )/aug-cc-pV(5+d)Z PEFs. Calculated FC factors with allowance for the Duschinsky rotation and anharmonicity were used to simulate the first four photoelectron (PE) bands of SCl2. The agreement between simulated and observed He I PE spectra reported by Colton et al. [J. Electron Spectrosc. Relat. Phenom. 3, 345 (1974)] and Solouki et al. [Chem. Phys. Lett. 26, 20 (1974)] is excellent. However, our FC spectral simulations indicate that the first observed vibrational component in the first PE band of SCl2 is a "hot" band arising from the SCl2+X˜B12(0,0,0)←SCl2X˜A11(1,0,0) ionization. Consequently, the experimental adiabatic ionization energy of SCl2 is revised to 9.55±0.01eV, in excellent agreement with results obtained from state-of-the-art ab initio calculations in this work.
NASA Astrophysics Data System (ADS)
Wu, Dong-lan; Tan, Bin; Wen, Yu-feng; Zeng, Xue-feng; Xie, An-dong; Yan, Bing
2016-05-01
Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI + Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X2Σ+ and the first excited state A2Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B2Σ+ correlated to ion-pair dissociation limit Mg+ (2Sg) + Br- (1Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30 Ω states, and the SOC splitting for the A2Π is calculated to be 102.58 cm- 1. The SOC effect, leading to the double-well potential of the Ω = (3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X2Σ+1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X2Σ+1/2 and (2)3/2-X2Σ+1/2 are particularly important to the observed transitions A2Π-X2Σ+ and C2Π-X2Σ+. The
Wu, Dong-Lan; Tan, Bin; Wen, Yu-Feng; Zeng, Xue-Feng; Xie, An-Dong; Yan, Bing
2016-05-15
Accurate theoretical calculations on the MgBr radical have been carried out by using the high-level relativistic multireference configuration interaction method with Davidson correction (MRCI+Q) using correlation-consistent Quintuple-ζ quality basis set. The potential energy curves (PECs) of the 14 Λ-S states of MgBr have been computed. In order to improve the PECs, the core-valence correlation, scalar relativistic effect, and spin-orbit coupling effect are taken into account in the computations. The spectroscopic constants of the bound states have been determined from the computed PECs. The results of the ground state X(2)Σ(+) and the first excited state A(2)Π are in good agreement with those from the available experiments, while spectroscopic constants of the other electronic states are firstly reported. The low-lying ion-pair state B(2)Σ(+) correlated to ion-pair dissociation limit Mg(+) ((2)Sg)+Br(-) ((1)Sg) is characterized. The permanent dipole moments (PDMs) of Λ-S states and the R-dependent spin-orbit (SO) matrix elements are computed. The results indicate that the abrupt changes of PDMs and the SO matrix elements are attributed to the changes of the electronic configurations near the avoided crossing point. After taking the SOC effect into account, the 14 Λ-S states split into 30Ω states, and the SOC splitting for the A(2)Π is calculated to be 102.58cm(-1). The SOC effect, leading to the double-well potential of the Ω=(3)1/2 state, is found to be substantial for MgBr. In order to further illustrate the SOC effect and the avoided crossing phenomenon of the PECs, the Λ-S compositions in the Ω state wavefunctions are analyzed in detail. Finally, the transition dipole moments (TDMs) of several transitions from upper Ω states to the ground X(2)Σ(+)1/2 state and the corresponding radiative lifetimes have been studied. It is shown that the (1)3/2-X(2)Σ(+)1/2 and (2)3/2-X(2)Σ(+)1/2 are particularly important to the observed transitions A(2)Π-X(2)
ERIC Educational Resources Information Center
Roche, John
1997-01-01
Suggests an approach to teaching vectors that promotes active learning through challenging questions addressed to the class, as opposed to subtle explanations. Promotes introducing vector graphics with concrete examples, beginning with an explanation of the displacement vector. Also discusses artificial vectors, vector algebra, and unit vectors.…
Low-lying {sup 3}P{sup o} and {sup 3}S{sup e} states of Rb{sup -}, Cs{sup -}, and Fr{sup -}
Bahrim, C.; Thumm, U.
2000-02-01
Our Dirac R-matrix calculations suggest that none of the heavy alkali-metal negative ions, Rb, Cs, and Fr, has an excited bound state. Their lowest excited state appears to be a multiplet of {sup 3}P{sub J}{sup o}-shape resonances, the J=1 component of which was recently observed in photodetachment experiments on Cs{sup -}. We analyze these {sup 3}P{sub J}{sup o} and the {sup 3}S{sup e} excited negative ion states in partial and converged total scattering cross sections for slow electrons with incident kinetic energies below 120 meV. Our results are in excellent agreement with available experimental data. We also propose a new value for the electron affinity of Fr, provide the scattering length for electronic collisions with Rb, Cs, and Fr, and discuss the nuclear charge dependence of relativistic effects in the resonance profiles. (c) 2000 The American Physical Society.
Long, Zhuqing; Jing, Bin; Yan, Huagang; Dong, Jianxin; Liu, Han; Mo, Xiao; Han, Ying; Li, Haiyun
2016-09-01
Mild cognitive impairment (MCI) represents a transitional state between normal aging and Alzheimer's disease (AD). Non-invasive diagnostic methods are desirable to identify MCI for early therapeutic interventions. In this study, we proposed a support vector machine (SVM)-based method to discriminate between MCI patients and normal controls (NCs) using multi-level characteristics of magnetic resonance imaging (MRI). This method adopted a radial basis function (RBF) as the kernel function, and a grid search method to optimize the two parameters of SVM. The calculated characteristics, i.e., the Hurst exponent (HE), amplitude of low-frequency fluctuations (ALFF), regional homogeneity (ReHo) and gray matter density (GMD), were adopted as the classification features. A leave-one-out cross-validation (LOOCV) was used to evaluate the classification performance of the method. Applying the proposed method to the experimental data from 29 MCI patients and 33 healthy subjects, we achieved a classification accuracy of up to 96.77%, with a sensitivity of 93.10% and a specificity of 100%, and the area under the curve (AUC) yielded up to 0.97. Furthermore, the most discriminative features for classification were found to predominantly involve default-mode regions, such as hippocampus (HIP), parahippocampal gyrus (PHG), posterior cingulate gyrus (PCG) and middle frontal gyrus (MFG), and subcortical regions such as lentiform nucleus (LN) and amygdala (AMYG). Therefore, our method is promising in distinguishing MCI patients from NCs and may be useful for the diagnosis of MCI. PMID:27343830
Beck, Eric V; Brozell, Scott R; Blaudeau, Jean-Philippe; Burggraf, Larry W; Pitzer, Russell M
2009-11-12
Multireference spin-orbit configuration interaction calculations were used to determine the accuracy of 60-, 68-, and 78-electron shape-consistent relativistic effective core potentials (RECPs) for uranium V and VI ground and low-lying excited states. Both 5f(n) and (5f6d)(n), (n = 1, 2) reference spaces were investigated using correlation-consistent double-zeta quality basis sets. Accuracy was assessed against gas-phase experimental spectra. The 68-electron RECP calculations yielded low relative and rms errors and predicted the empirical ordering of states most consistently. PMID:19888778
Park, G Barratt; Jiang, Jun; Field, Robert W
2016-04-14
The C̃ (1)B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3(') progression. We have recently made the first observation of low-lying levels with odd quanta of v3('), which allows us-in the current work-to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 (1)A1 state and indirect coupling with the repulsive 3 (1)A1 state. The degree of staggering in the ν3(') levels increases with quanta of bending excitation, which is consistent with the approach along the C̃ state potential energy surface to a conical intersection with the 2 (1)A1 surface at a bond angle of ∼145°. PMID:27083727
Park, G. Barratt; Jiang, Jun; Field, Robert W.
2016-04-14
Here the C1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the v'3 progression. We have recently made the first observation of low-lying levels with odd quanta of v'3, which allows us--in the current work--to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamicallymore » important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the v'3 levels increases with quanta of bending excitation, which is consistent with the approach along the C state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ~145°.« less
NASA Astrophysics Data System (ADS)
Park, G. Barratt; Jiang, Jun; Field, Robert W.
2016-04-01
The C ˜ 1B2 state of SO2 has a double-minimum potential in the antisymmetric stretch coordinate, such that the minimum energy geometry has nonequivalent SO bond lengths. The asymmetry in the potential energy surface is expressed as a staggering in the energy levels of the ν3' progression. We have recently made the first observation of low-lying levels with odd quanta of v3', which allows us—in the current work—to characterize the origins of the level staggering. Our work demonstrates the usefulness of low-lying vibrational level structure, where the character of the wavefunctions can be relatively easily understood, to extract information about dynamically important potential energy surface crossings that occur at much higher energy. The measured staggering pattern is consistent with a vibronic coupling model for the double-minimum, which involves direct coupling to the bound 2 1A1 state and indirect coupling with the repulsive 3 1A1 state. The degree of staggering in the ν3' levels increases with quanta of bending excitation, which is consistent with the approach along the C ˜ state potential energy surface to a conical intersection with the 2 1A1 surface at a bond angle of ˜145°.
Search for resonances in positron-atom systems
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Drachman, Richard J.
1990-01-01
No one likes to see a scattering cross section curve that is too smooth; it is much more interesting to find bumps and wiggles and most interesting if it is possible to understand their cause. Several types of resonances were clearly established in positron-containing systems: those lying just below a degenerate threshold (like 2s-2p in hydrogenic atoms or ions) and those representing Coulomb bound states in a rearranged channel (like Ps + H reversing positron +H(-)). Recently, two new sorts of resonances have been reported for which the resonant mechanism is not clear. The first is a very low lying resonance in the e-Ps system (obtained by an adiabatic expansion method), and the second is a similarly low lying two channel resonance in the positron -H system (obtained by a close-coupling technique.) These developments encouraged the examination of such systems using the standard methods of stabilization and complex rotation. Most of the results are negative; the low lying resonances in either system are verified. Some indication of new resonances in the e(+)-He(+) system is found; this may be caused by the attraction between Ps in the n=2 state and the He(++) nucleus.
Iuchi, Satoru Koga, Nobuaki
2014-01-14
With the aim of exploring excited state dynamics, a model electronic Hamiltonian for several low-lying d−d states of [Fe(bpy){sub 3}]{sup 2+} complex [S. Iuchi, J. Chem. Phys. 136, 064519 (2012)] is refined using density-functional theory calculations of singlet, triplet, and quintet states as benchmarks. Spin−orbit coupling elements are also evaluated within the framework of the model Hamiltonian. The accuracy of the developed model Hamiltonian is determined by examining potential energies and spin−orbit couplings at surface crossing regions between different spin states. Insights into the potential energy surfaces around surface crossing regions are also provided through molecular dynamics simulations. The results demonstrate that the constructed model Hamiltonian can be used for studies on the d−d excited state dynamics of [Fe(bpy){sub 3}]{sup 2+}.
Xantheas, Sotiris S.
2012-08-01
We rely on a hierarchy of methods to identify the low-lying isomers for the pentagonal dodecahedron (H2O)20 and the H3O+(H2O)20 clusters. Initial screening of isomers was performed with classical potentials [TIP4P, TTM2-F, TTM2.1-F for (H2O)20 and ASP for H3O+(H2O)20] and the networks obtained with those potentials were subsequently reoptimized at the DFT (B3LYP) and MP2 levels of theory. For the pentagonal dodecahedron (H2O)20 it was found that DFT (B3LYP) and MP2 produced the same global minimum. However, this was not the case for the H3O+(H2O)20 cluster, for which MP2 produced a different network for the global minimum when compared to DFT (B3LYP). All low-lying minima of H3O+(H2O)20 correspond to hydrogen bonding networks having 9 ''free'' OH bonds and the hydronium ion on the surface of the cluster. The fact that DFT (B3LYP) and MP2 produce different results and issues related to the use of a smaller basis set, explains the discrepancy between the current results and the structure previously suggested [Science 304, 1137 (2004)] for the global minimum of the H3O+(H2O)20 cluster. Additionally, the IR spectra of the MP2 global minimum are closer to the experimentally measured ones than the spectra of the previously suggested DFT global minimum. The latter exhibit additional bands in the most red-shifted region of the OH stretching vibrations (corresponding to the ''fingerprint'' of the underlying hydrogen bonding network), which are absent from both the experimental as well as the spectra of the new structure suggested for the global minimum of this cluster.
Low-lying electronic states of carotenoids.
DeCoster, B; Christensen, R L; Gebhard, R; Lugtenburg, J; Farhoosh, R; Frank, H A
1992-08-28
Four all-trans carotenoids, spheroidene, 3,4-dihydrospheroidene, 3,4,5,6-tetrahydrospheroidene, and 3,4,7,8-tetrahydrospheroidene, have been purified using HPLC techniques and analyzed using absorption, fluorescence and fluorescence excitation spectroscopy of room temperature solutions. This series of molecules, for which the extent of pi-electron conjugation decreases from 10 to seven carbon-carbon double bonds, exhibits a systematic crossover from S2----S0 (1(1)Bu----1(1)Ag) to S1----S0 (2(1)Ag----1(1)Ag) emission with decreasing chain length. Extrapolation of the S1----S0 transition energies indicates that the 2(1)Ag states of longer carotenoids have considerably lower energies than previously thought. The energies of the S1 states of spheroidenes and other long carotenoids are correlated with the S1 energies of their chlorophyll partners in antenna complexes of photosynthetic systems. Implications for energy transfer in photosynthetic antenna are discussed. PMID:1510992
Multiscale hierarchical support vector clustering
NASA Astrophysics Data System (ADS)
Hansen, Michael Saas; Holm, David Alberg; Sjöstrand, Karl; Ley, Carsten Dan; Rowland, Ian John; Larsen, Rasmus
2008-03-01
Clustering is the preferred choice of method in many applications, and support vector clustering (SVC) has proven efficient for clustering noisy and high-dimensional data sets. A method for multiscale support vector clustering is demonstrated, using the recently emerged method for fast calculation of the entire regularization path of the support vector domain description. The method is illustrated on artificially generated examples, and applied for detecting blood vessels from high resolution time series of magnetic resonance imaging data. The obtained results are robust while the need for parameter estimation is reduced, compared to support vector clustering.
Analysis of Three Body Resonances in the Complex Scaled Orthogonal Condition Model
Odsuren, M.; Katō, K.; Aikawa, M.
2014-06-15
Although the resonance structures of α+α+n have been studied experimentally and theoretically, it is still necessary to have more accurate and comprehensive understandings of the structure and decay of the low-lying excited states in {sup 9}Be. To perform calculations of an α+α+n system, we investigate five resonant states of α+α subsystem by utilizing different potential parameters and basis functions. In addition, two resonance states of α+n subsystem are computed.
Meier, R.; Boschitz, E.; Brinkmoeller, B.; Buehler, J.; Ritt, S.; Wessler, M. ); Konter, J.A.; Mango, S.; van den Brandt, B. ); Efimovykh, V.A.; Kovalev, A.I.; Prokofiev, A.N.; Polyakov, V.V. ); Chaumette, P.; Deregel, J.; Durand, G.; Fabre, J. ); Mach, R. ); Tacik, R. )
1994-01-01
The inclusive vector analyzing power [ital iT][sub 11] of [pi][sup +][r arrow][sup 7]Li elastic scattering and inelastic scattering to the 0.47 MeV excited state was measured at several angles for [ital T][sub [pi
NASA Astrophysics Data System (ADS)
Voss, C. I.; Gingerich, S. B.
2015-12-01
Low-lying oceanic islands host thin freshwater lenses subject to long-term aquifer salinization by seawater overwash. The lens is often the sole-source water supply for inhabitants. As maximum elevation for these islands is only a few meters above sea level, overwash can occur during high tides and storm surges. Sea level rise due to climate change will make overwash events even more common. The thin freshwater lenses, a few meters thick, are underlain by seawater, so pumping must be done carefully, often with horizontal skimming wells. Even a small amount of downward seawater infiltration from an overwash event can render the water supply non-potable. Where permeability is high, seawater infiltrates quickly, but seawater that infiltrates lower-permeability zones may remain for many months causing groundwater to remain non-potable, leaving residents without a reliable freshwater source. Initial post-overwash salinization is driven by the higher density of the invading saltwater, which sinks and mixes into the fresher water in potentially-complex patterns determined by: distribution of flooding and post-flood ponding, locations of permeable paths, and the inherently complex flow fields generated when fluid of higher density overlies lower-density fluid. The flow patterns cannot generally be measured or predicted in detail. This study develops basic understanding of overwash salinization processes impacting water supply on low-level islands, using a rare example of a monitored seawater overwash event that occurred in December 2008 at Roi-Namur Island in Kwajalein Atoll, Republic of the Marshall Islands, in which the salinity evolution of well water was measured. Due to typical lack of field data on such islands, a set of plausible alternative simulation-model descriptions of the hydrogeology and overwash event are created for analysis of the monitored salinization and recovery. Despite inability to know the 'true and complete' description of the event and the
The spectrum of scalar-meson nonets in the Resonance-Spectrum Expansion
Beveren, Eef van; Rupp, George
2008-08-31
We argue that the low-lying scalar-meson nonet makes part of a subset of a family of infinitely many scalar-meson nonets, which in turn makes part of a family of infinitely many quark-antiquark bound states and resonances. We outline the properties of this subset.
NASA Astrophysics Data System (ADS)
Taylor, David P.
2001-01-01
Vector addition is an important skill for introductory physics students to master. For years, I have used a fun example to introduce vector addition in my introductory physics classes based on one with which my high school physics teacher piqued my interest many years ago.
NASA Astrophysics Data System (ADS)
Xiao, Han; Wang, Dingbao; Hagen, Scott C.; Medeiros, Stephen C.; Hall, Carlton R.
2016-07-01
A three-dimensional variable-density groundwater flow and salinity transport model is implemented using the SEAWAT code to quantify the spatial variation of water-table depth and salinity of the surficial aquifer in Merritt Island and Cape Canaveral Island in east-central Florida (USA) under steady-state 2010 hydrologic and hydrogeologic conditions. The developed model is referred to as the `reference' model and calibrated against field-measured groundwater levels and a map of land use and land cover. Then, five prediction/projection models are developed based on modification of the boundary conditions of the calibrated `reference' model to quantify climate change impacts under various scenarios of sea-level rise and precipitation change projected to 2050. Model results indicate that west Merritt Island will encounter lowland inundation and saltwater intrusion due to its low elevation and flat topography, while climate change impacts on Cape Canaveral Island and east Merritt Island are not significant. The SEAWAT models developed for this study are useful and effective tools for water resources management, land use planning, and climate-change adaptation decision-making in these and other low-lying coastal alluvial plains and barrier island systems.
Baryon Spectroscopy and Resonances
Robert Edwards
2011-12-01
A short review of current efforts to determine the highly excited state spectrum of QCD, and in particular baryons, using lattice QCD techniques is presented. The determination of the highly excited spectrum of QCD is a major theoretical and experimental challenge. The experimental investigation of the excited baryon spectrum has been a long-standing element of the hadronic-physics program, an important component of which is the search for so-called 'missing resonances', baryonic states predicted by the quark model based on three constituent quarks but which have not yet been observed experimentally. Should such states not be found, it may indicate that the baryon spectrum can be modeled with fewer effective degrees of freedom, such as in quark-diquark models. In the past decade, there has been an extensive program to collect data on electromagnetic production of one and two mesons at Jefferson Lab, MIT-Bates, LEGS, MAMI, ELSA, and GRAAL. To analyze these data, and thereby refine our knowledge of the baryon spectrum, a variety of physics analysis models have been developed at Bonn, George Washington University, Jefferson Laboratory and Mainz. To provide a theoretical determination and interpretation of the spectrum, ab initio computations within lattice QCD have been used. Historically, the calculation of the masses of the lowest-lying states, for both baryons and mesons, has been a benchmark calculation of this discretized, finite-volume computational approach, where the aim is well-understood control over the various systematic errors that enter into a calculation; for a recent review. However, there is now increasing effort aimed at calculating the excited states of the theory, with several groups presenting investigations of the low-lying excited baryon spectrum, using a variety of discretizations, numbers of quark flavors, interpolating operators, and fitting methodologies. Some aspects of these calculations remain unresolved and are the subject of intense
Guilfoyle, R.A.; Smith, L.M.
1994-12-27
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site. 2 figures.
Guilfoyle, Richard A.; Smith, Lloyd M.
1994-01-01
A vector comprising a filamentous phage sequence containing a first copy of filamentous phage gene X and other sequences necessary for the phage to propagate is disclosed. The vector also contains a second copy of filamentous phage gene X downstream from a promoter capable of promoting transcription in a bacterial host. In a preferred form of the present invention, the filamentous phage is M13 and the vector additionally includes a restriction endonuclease site located in such a manner as to substantially inactivate the second gene X when a DNA sequence is inserted into the restriction site.
ERIC Educational Resources Information Center
Levine, Robert
2004-01-01
The cross-product is a mathematical operation that is performed between two 3-dimensional vectors. The result is a vector that is orthogonal or perpendicular to both of them. Learning about this for the first time while taking Calculus-III, the class was taught that if AxB = AxC, it does not necessarily follow that B = C. This seemed baffling. The…
NASA Technical Reports Server (NTRS)
Gray, Robert M.
1989-01-01
During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts.
Shape resonant features in the photoionization spectra of NO
Wallace, Scott; Dill, Dan; Dehmer, Joseph L.
1982-01-01
Calculations of core and valence level photoionization spectra of NO are presented and compared with available experimental data. A low-lying continuum shape resonance is identified in the sigma photoionization channel, which is the analog of similar states found in other first-row diatomic molecules. Both partial cross sections and photoelectron angular distributions are discussed, and the effect of nuclear motion on these observables is treated.
Shell structure of one-particle resonances in deformed potentials
NASA Astrophysics Data System (ADS)
Hamamoto, Ikuko
2016-05-01
The shell structure of low-lying neutron resonance levels in axially symmetric quadrupole-deformed potentials is discussed, which seems analogous to that of weakly bound neutrons. As numerical examples, nuclei slightly outside the neutron drip line, 27 12 39Mg and 15 6 21C, are studied. For the lowest resonance I obtain Iπ=Ωπ=5 /2- for 39Mg which is likely to be prolately deformed, while Iπ=Ωπ=1 /2+ may be assigned to the nucleus 21C which may be oblately deformed. Consequently, 21C will not be observed as a recognizable resonance state, in agreement with the experimental information.
Segado, Mireia; Gómez, Isabel; Reguero, Mar
2016-03-01
Recent theoretical and experimental studies on the Intramolecular Charge Transfer (ICT) reaction of some members of the aminobezonitrile family (ABN) suggest the involvement of a (π-σ*) excited state (called ICT(CN) in this work) in the ICT process and the existence of a partially twisted ICT species that could be responsible for the anomalous fluorescence observed. These suggestions made us to revise our previous study on the photophysics of ABN and dimethyl-ABN (DMABN), based on the analysis of the potential energy surfaces of the low-lying excited states by means of ab initio calculations, using the CASSCF/CASPT2 protocol. We have first focused our attention to ABN. We have found that the (π-σ*) excited state can be in fact an intermediary state in the path to populate the ICT bright state, although its involvement in the process is not very probable. Our results suggest that the ICT most stable species is the twisted ICT(TICT) and that the partially twisted ICT minimum found in previous studies could be an artefact of the computational method. We have also found that radiationless deactivation is a competitive reaction that must be taken into account to explain the fluorescence patterns of these systems. To confirm our theories, we have also studied other systems with a similar architecture but with a very different luminescence behaviour: dimethyl-ABN, and the 2,3,4,5-tetrafluoro derivatives of ABN and DMABN (ABN-4F and DMABN-4F). The extension of the work and the different approaches in the study of the parent system and of the derivatives make the division of the work in two parts advisable. Part I collects the characterization of the minima and reaction paths connecting the critical points of the potential energy surfaces of the states involved in the ICT reaction of ABN. We have obtained, for the first time, the pathways of radiationless deactivation for this compound. We have also computed transition energies from the excited minima, to interpret the
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.
2014-12-01
. As most atoll islets accrete during large wave events, decreasing wave heights during other seasons may inhibit atoll islet accretion such that the low-lying islets may not be able to keep up with projected sea-level rise.
The decay pattern of the Pygmy Dipole Resonance of 140Ce
NASA Astrophysics Data System (ADS)
Löher, B.; Savran, D.; Aumann, T.; Beller, J.; Bhike, M.; Cooper, N.; Derya, V.; Duchêne, M.; Endres, J.; Hennig, A.; Humby, P.; Isaak, J.; Kelley, J. H.; Knörzer, M.; Pietralla, N.; Ponomarev, V. Yu.; Romig, C.; Scheck, M.; Scheit, H.; Silva, J.; Tonchev, A. P.; Tornow, W.; Wamers, F.; Weller, H.; Werner, V.; Zilges, A.
2016-05-01
The decay properties of the Pygmy Dipole Resonance (PDR) have been investigated in the semi-magic N = 82 nucleus 140Ce using a novel combination of nuclear resonance fluorescence and γ-γ coincidence techniques. Branching ratios for transitions to low-lying excited states are determined in a direct and model-independent way both for individual excited states and for excitation energy intervals. Comparison of the experimental results to microscopic calculations in the quasi-particle phonon model exhibits an excellent agreement, supporting the observation that the Pygmy Dipole Resonance couples to the ground state as well as to low-lying excited states. A 10% mixing of the PDR and the [21+ × PDR ] is extracted.
Lowest l=0 proton resonance in {sup 26}Si and implications for nucleosynthesis of {sup 26}Al
Peplowski, P. N.; Baby, L. T.; Wiedenhoever, I.; Diffenderfer, E.; Hoeflich, P.; Rojas, A.; Volya, A.; Dekat, S. E.; Gay, D. L.; Grubor-Urosevic, O.; Kaye, R. A.; Keeley, N.
2009-03-15
Using a beam of the radioactive isotope {sup 25}Al, produced with the new RESOLUT facility, we measured the direct (d,n) proton-transfer reaction leading to low-lying proton resonances in {sup 26}Si. We observed the lowest l=0 proton resonance, identified with the 3{sup +} state at 5.914-MeV excitation energy. This result eliminates the largest uncertainty in astrophysical reaction rates involved in the nucleosynthesis of {sup 26}Al.
Relativistic Gamow vectors: State vectors for unstable particles
NASA Astrophysics Data System (ADS)
Kaldas, Hany Kamel Halim
The relativistic Gamow vectors are derived from the analytic continuation of the angular momentum velocity kets to the resonance pole of the S- matrix. This construction is justifiable within a Rigged Hilbert Space of Hardy class functions. The kets obtained | p j3[
Contemporary research with nuclear resonance fluorescence at the S-DALINAC
Zweidinger, M.; Beck, T.; Beller, J.; Gayer, U.; Mertes, L.; Pai, H.; Pietralla, N.; Ries, P.; Romig, C.; Werner, V.
2015-02-24
In the last decades many nuclear resonance fluorescence experiments aiming for low-lying dipole excitations were performed at the Darmstadt High Intensity Photon Setup at S-DALINAC facility. On the electric dipole side, quadrupole-octupole coupled states and the Pygmy Dipole Resonance are of particular interest. On the magnetic dipole side, the so-called scissors mode is in the focus of interest. Furthermore, using the method of resonant self absorption, the decay behavior of J{sup π} = 1{sup −} states was investigated in {sup 140}Ce.
NASA Astrophysics Data System (ADS)
Müller, Holger S. P.; Drouin, B. J.; Pearson, J. C.; Brown, L. R.; Kleiner, I.; Sams, R. L.
2010-06-01
Methyl cyanide, CH_3CN, is an important interstellar molecule, in particular in hot and dense molecular cores, and it may play a role in the atmospheres of planets or of Titan. Therefore, we have recorded extensive rotational and rovibrational spectra up to ˜ 1.6 THz and ˜ 1500 cm-1, respectively. The present investigation extends our analysis of states with v_8 ≤ 2 at vibrational energies below 740 cm-1 and takes into consideration findings from an analysis of the ν _4 band and the higher-lying ν _7 (at ˜1042 cm-1) and 3ν _8 ^1 (at ˜1078 cm-1) bands. The rotational data extend to J = 87 and K = 15, infrared assignments currently extend to 55 and 12, respectively. Parameters affecting only v_7 = 1 or v_8 = 3 as well as some additional interaction parameters were kept fixed to values from (b). The largest perturbations of v_4 = 1 are caused by a Δ k = 0, Δ l = 3 interaction with v_8 = 3 at K = 8. Despite the inclusion of the interaction parameter and a centrifugal distortion correction, residuals amount to more than 200 MHz very close to the resonance. Removal of these residuals probably requires explicit inclusion of v_8 = 3 data. Several additional perturbations exist at lower as well as higher K with v_8 = 2, v_7 = 1 and v_8 = 3. Higher values of K are difficult to reproduce in spite of an extensive set of distortion parameters which, at highest orders, have rather large magnitudes, possibly indicating unaccounted interactions which would probably occur with states even higher than v_8 = 3. H. S. P. Müller et al., contribution WG03, presented at the 62nd International Symposium on Molecular Spectroscopy, June 18-22, 2007, Columbus, Ohio, USA. A.-M. Tolonen et al., J. Mol. Spectrosc. 160 (1993) 554-565.
On the nature of the Dipole Pygmy Resonance
Lanza, E. G.; Vitturi, A.; Andres, M. V.; Catara, F.; Gambacurta, D.
2011-10-28
The nature of the low-lying dipole states in neutron-rich nuclei, often associated to the Pygmy Dipole Resonance, has been investigated. This has been done by describing them within the Hartree-Fock plus RPA formalism. The analysis shows that they are not of collective nature although many particle-hole configurations participate to their formation. Taking advantage of their strong isospin mixing one can envisage combined reaction processes involving the Coulomb and different mixtures of isoscalar and isovector nuclear interactions in order to provide more hints to unveil the characteristic features of these states.
Rotations with Rodrigues' Vector
ERIC Educational Resources Information Center
Pina, E.
2011-01-01
The rotational dynamics was studied from the point of view of Rodrigues' vector. This vector is defined here by its connection with other forms of parametrization of the rotation matrix. The rotation matrix was expressed in terms of this vector. The angular velocity was computed using the components of Rodrigues' vector as coordinates. It appears…
Russell, D W; Miller, A D
1996-01-01
Human foamy virus (HFV) is a retrovirus of the spumavirus family. We have constructed vectors based on HFV that encode neomycin phosphotransferase and alkaline phosphatase. These vectors are able to transduce a wide variety of vertebrate cells by integration of the vector genome. Unlike vectors based on murine leukemia virus, HFV vectors are not inactivated by human serum, and they transduce stationary-phase cultures more efficiently than murine leukemia virus vectors. These properties, as well as their large packaging capacity, make HFV vectors promising gene transfer vehicles. PMID:8523528
Resonances and resonance widths
Collins, T.
1986-05-01
Two-dimensional betatron resonances are much more important than their simple one-dimensional counterparts and exhibit a strong dependence on the betatron phase advance per cell. A practical definition of ''width'' is expanded upon in order to display these relations in tables. A primarily pedagogical introduction is given to explain the tables, and also to encourage a wider capability for deriving resonance behavior and wider use of ''designer'' resonances.
NASA Technical Reports Server (NTRS)
Shapiro, I. I.; Chandler, J. F.; Campbell, D. B.; Hine, A. A.; Stacy, N. J. S.
1990-01-01
Analysis of radar observations from 1964 through 1983 yields the following values for the components of the spin vector of Venus: P = 243.026 + or - 0.006 d (retrograde); alpha = 272.75 + or - 0.09 deg; and delta = 67.10 + or - 0.09 deg, where the standard errors quoted are three- to five-fold larger than the statistical standard errors and encompass the changes in results obtained by various tests designed to expose possible systematic errors. These values demonstrate conclusively that the spin state of Venus is not in resonance with the relative orbital motions of Venus and earth.
Carbon monoxide dissociative attachment and resonant dissociation by electron-impact
NASA Astrophysics Data System (ADS)
Laporta, V.; Tennyson, J.; Celiberto, R.
2016-02-01
Low-energy dissociative electron attachment and resonant electron impact dissociation of CO molecule are considered. Ro-vibrationally resolved cross sections and rate coefficients for both the processes are calculated using an ab-initio model based on the low-lying \\text{X}{{}2}\\Pi resonance of CO-. Final results show that the cross sections increases very rapidly as a function of the ro-vibrational level; these cross sections should be useful for understanding kinetic dissociation of CO in strongly non-equilibrium plasmas.
Mirror and Bragg reflections of neutrons at a nuclear resonance: (Final technical report)
Batigun, C.M.; Brugger, R.M.
1987-01-01
These experiments have observed the mirror reflection and Bragg diffraction of neutrons at the energy of a low lying nuclear resonance of /sup 115/In. The reflector was a mirror of In metal with the resonance at 1.457 eV. The mirror reflection for different angles of incidence has been measured and sets of data showing the relative reflectivities have been obtained. For the Bragg diffraction, the crystal was a wafer of InP and several examples of Bragg reflections near 1.455 eV were measured. 4 refs., 12 figs.
NASA Technical Reports Server (NTRS)
Patel, Umesh D.; Torre, Edward Della; Day, John H. (Technical Monitor)
2002-01-01
A new vector Preisach model, called the Reduced Vector Preisach model (RVPM), was developed for fast computations. This model, derived from the Simplified Vector Preisach model (SVPM), has individual components that like the SVPM are calculated independently using coupled selection rules for the state vector computation. However, the RVPM does not require the rotational correction. Therefore, it provides a practical alternative for computing the magnetic susceptibility using a differential approach. A vector version, using the framework of the DOK model, is implemented. Simulation results for the reduced vector Preisach model are also presented.
Integrated optic vector-matrix multiplier
Watts, Michael R.
2011-09-27
A vector-matrix multiplier is disclosed which uses N different wavelengths of light that are modulated with amplitudes representing elements of an N.times.1 vector and combined to form an input wavelength-division multiplexed (WDM) light stream. The input WDM light stream is split into N streamlets from which each wavelength of the light is individually coupled out and modulated for a second time using an input signal representing elements of an M.times.N matrix, and is then coupled into an output waveguide for each streamlet to form an output WDM light stream which is detected to generate a product of the vector and matrix. The vector-matrix multiplier can be formed as an integrated optical circuit using either waveguide amplitude modulators or ring resonator amplitude modulators.
Understanding Singular Vectors
ERIC Educational Resources Information Center
James, David; Botteron, Cynthia
2013-01-01
matrix yields a surprisingly simple, heuristical approximation to its singular vectors. There are correspondingly good approximations to the singular values. Such rules of thumb provide an intuitive interpretation of the singular vectors that helps explain why the SVD is so…
NASA Technical Reports Server (NTRS)
Zahm, A F
1924-01-01
The theory, structure and working of a vector slide rule is presented in this report. This instrument is used for determining a vector in magnitude and position when given its components and its moment about a point in their plane.
Restart 68000 vector remapping
Gustin, J.
1984-05-03
The circuit described allows power-on-reset (POR) vector fetch from ROM for a 68000 microprocessor. It offers programmability of exception vectors, including the restart vector. This method eliminates the need for high-resolution, address-decoder peripheral circuitry.
ERIC Educational Resources Information Center
Aminu, Abdulhadi
2010-01-01
By rhotrix we understand an object that lies in some way between (n x n)-dimensional matrices and (2n - 1) x (2n - 1)-dimensional matrices. Representation of vectors in rhotrices is different from the representation of vectors in matrices. A number of vector spaces in matrices and their properties are known. On the other hand, little seems to be…
2001-10-18
PETRA V2 provides matrix and vector services and the ability construct, query, and use matrix and vector objects that are used and computed by TRILINOS solvers. It provides all basic matr5ix and vector operations for solvers in TRILINOS.
Insulated Foamy Viral Vectors.
Browning, Diana L; Collins, Casey P; Hocum, Jonah D; Leap, David J; Rae, Dustin T; Trobridge, Grant D
2016-03-01
Retroviral vector-mediated gene therapy is promising, but genotoxicity has limited its use in the clinic. Genotoxicity is highly dependent on the retroviral vector used, and foamy viral (FV) vectors appear relatively safe. However, internal promoters may still potentially activate nearby genes. We developed insulated FV vectors, using four previously described insulators: a version of the well-studied chicken hypersensitivity site 4 insulator (650cHS4), two synthetic CCCTC-binding factor (CTCF)-based insulators, and an insulator based on the CCAAT box-binding transcription factor/nuclear factor I (7xCTF/NF1). We directly compared these insulators for enhancer-blocking activity, effect on FV vector titer, and fidelity of transfer to both proviral long terminal repeats. The synthetic CTCF-based insulators had the strongest insulating activity, but reduced titers significantly. The 7xCTF/NF1 insulator did not reduce titers but had weak insulating activity. The 650cHS4-insulated FV vector was identified as the overall most promising vector. Uninsulated and 650cHS4-insulated FV vectors were both significantly less genotoxic than gammaretroviral vectors. Integration sites were evaluated in cord blood CD34(+) cells and the 650cHS4-insulated FV vector had fewer hotspots compared with an uninsulated FV vector. These data suggest that insulated FV vectors are promising for hematopoietic stem cell gene therapy. PMID:26715244
Conformational landscape and low lying excited states of imatinib.
Vinţeler, Emil; Stan, Nicoleta-Florina; Luchian, Raluca; Căinap, Călin; Ramalho, João P Prates; Chiş, Vasile
2015-04-01
The conformational changes of imatinib (IMT) are crucial for understanding the ligand-receptor interaction and its mechanism of action [Agofonov et al. (2014) Nature Struct Mol Biol 21:848-853]. Therefore, here we investigated the free energy conformational landscape of the free IMT base, aiming to describe the three-dimensional structures and energetic stability of its conformers. Forty-five unique conformers, within an energy window of 4.8 kcal mol(-1) were identified by a conformational search in gas-phase, at the B3LYP/6-31G(d) theoretical level. Among these, the 20 most stable, as well as 4 conformers resulting from optimization of experimental structures found in the two known polymorphs of IMT and in the c-Abl complex were further refined using the 6-31+G(d,p) basis set and the polarizable continuum solvation model. The most stable conformers in gas-phase and water exhibit a V-shaped structure. The major difference between the most stable free conformers and the bioactive conformers consists in the relative orientation of the pyrimidine-pyridine groups responsible for hydrogen bonding interactions in the ATP-binding pocket. The ratio of mole fractions corresponding to the two known (α and β) polymorphic forms of IMT was estimated from the calculated thermochemical data, in quantitative agreement with the existing experimental data related to their solubility. The electronic absorption spectrum of this compound was investigated in water and explained based on the theoretical TD-DFT results, considering the Boltzmann population-averaged computed data at CAM-B3LYP/6-31+G(d,p) level of theory for the nine most stable conformers. PMID:25764326
Scattering of low lying states in the black hole atmosphere
NASA Astrophysics Data System (ADS)
Giribet, Gaston
2016-07-01
We investigate finite α' effects in string theory on a black hole background. By explicitly computing tree-level scattering amplitudes, we confirm a duality between seemingly different states recently conjectured by Giveon, Itzhaki, and Kutasov. We verify that the relevant 3-point functions factorize in such a way that the duality between oscillator and winding states becomes manifest. This leads us to determine the precise normalization of the dual vertex operators, and confirms at the level of the interacting theory the identification of states suggested by the analysis of the spectrum. This result implies a duality between two seemingly distinct mechanisms driving the violation of the string winding number in the black hole atmosphere.
Radiative Decays of Low-Lying Excited-State Hyperons
Simon Taylor
2000-05-01
The quark wave-functions of the lower-lying excited-state hyperons Lambda(1405), Sigma(1385), and Lambda(1520) are not well understood. For example, the Lambda(1405) may not be a regular three-quark state but a {bar K}N molecule. Several competing models have been proposed, but none have been convincingly eliminated. Measuring radiative decays provides a means of discriminating between the models. The radiative branching of ratios are predicted to be small ({approx}1%), but the radiative widths vary by factors of 2-10 from model to model. The existing experimental data is sparse and inconsistent; moreover, the radiative decay of the Sigma(1385) has never been observed before (except for one event). These lower-lying excited state hypersons were produced in a tagged photon-beam experiment in the CLAS detector at TJNAF in the reaction gamma p {yields} K{sup +} Y* for photon energies from threshold to 2.4 GeV. The radiative branching ration for the Sigma{sup 0}(1385) relative to the Sigma{sup 0}(1385) {yields} Lambda pi{sup 0} channel was measured to be 0.021 {+-} 0.008{sub -0.007}{sup +0.004}, corresponding to a partial width of 640 {+-} 270{sub -220}{sup +130} keV.
Xanadu Is Old, Rugged And Low-lying
NASA Astrophysics Data System (ADS)
Wood, Charles; Kirk, R. L.; Stofan, E.; Stiles, B.; Zebker, H.; Ostro, S.; Radebaugh, J.; Lorenz, R. D.; Callahan, P.; Wall, S.
2007-10-01
Xanadu was the first surface feature discovered on Titan. It is anomalously bright in the IR, and is also radar bright with unusual physical properties. Xanadu is continent size ( 4000 km wide) with a sharp boundary to the west against the dark dunes of Shangri-La, and less distinct boundaries in other areas. Because of its size and reflectivity it had been proposed that Xanadu is an elevated continent. But it is not. A new topography-from-SAR technique shows that along the T13 Radar swath which completely transects Xanadu, the average topographic elevation is indistinguishable from that of the surrounding terrain. There are many mountains with peaks locally rising up to 1-2 km, but the average elevation of the T13 pass is 200 m +/- 300 m lower than the radius of Titan. The highest point is near the swath center. Photogeologic interpretation suggests that Xanadu slopes to the south; three major river systems begin in the north and flow southward. The lack of significant average elevation means that it is not necessary to create models to explain how Xanadu is dynamically supported. Its eroded-looking terrain, large number of possible eroded impact craters, dune encroachment on its western edge, and apparent detached patches of similar material near its margins all suggest that Xanadu is a relict terrain, currently being disaggregated. The only sign of current activity is the river channels. We speculate that Xanadu was originally a landform of higher elevation (2 km higher if the mountain tops are remnants of an original surface) that has been modified by erosion and/or isostatic adjustment. If the observed river systems have eroded and removed the putative higher terrain there may be significant sediment deposits in the central or southern parts of Xanadu, and/or this material may have been redistributed by winds.
Low-lying levels in /sup 148/Pm
Norman, E.B.; Lesko, K.T.; Champagne, A.E.
1988-02-01
The /sup 149/Sm(d,/sup 3/He) reaction has been used to populate levels in /sup 148/Pm. Nineteen new excited states have been observed below 1 MeV excitation energy in /sup 148/Pm. The possible astrophysical implications of these results are discussed.
Mitchell, J. P.; Rogachev, G. V.; Johnson, E. D.; Baby, L. T.; Kemper, K. W.; Peplowski, P. N.; Volya, A.; Wiedenhoever, I.; Moro, A. M.
2010-07-15
Excitation functions of elastic and inelastic {sup 7}Be+p scattering were measured in the energy range between 1.6 and 2.8 MeV in the c.m. An R-matrix analysis of the excitation functions provides strong evidence for new positive parity states in {sup 8}B. A new 2{sup +} state at an excitation energy of 2.55 MeV was observed, and a new 0{sup +} state at 1.9 MeV is tentatively suggested. The R-matrix and time-dependent continuum shell model were used in the analysis of the excitation functions. The new results are compared to the calculations of contemporary theoretical models.
The low-lying electronic states of LiC
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The spectroscopic constants for the doublet and quartet states of LiC below about 30,000/cm are determined using an internally contracted multireference configuration-interaction approach in conjunction with a [6s 5p 3d 2f] atomic natural orbital basis sets. All of the strongly bound states, X(sup 4)(SIGMA)(sup -),(1)(sup 2)(DELTA), (1)(sup 2)(SIGMA)(sup +), and (2)(sup 2) II, very ionic in character. The only bound-bound quartet transition in this energy range is (2)(sup 4)SIGMA(sup -) and Franck-Condon factors, Einstein A values, and lifetimes are reported for this transition.
The Low-Lying Electronic States of YCu
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The spectroscopic constants for the singlet and triplet states of YCu below about 15 000 per centimeter are determined using an internally contracted multireference configuration-interaction approach. These calculations are calibrated by studies of fewer states using higher levels of correlation treatment and/or larger basis sets. The computed T(sub e) values and radiative lifetimes are in reasonable agreement with experiment. The calculations confirm the previous experimental assignment for all but one state, where theory helps resolve between two possible assignments.
On the low-lying states of TiN
NASA Technical Reports Server (NTRS)
Bauschlicher, C. W., Jr.
1983-01-01
A series of CAS SCF and multi-reference CI calculations are used to describe the lowest states of TiN. The bonding in all states is described as a triple bond involving the Ti 3d orbitals. The system has some ionic character as seen from both population analysis and dipole moment. The origins of the excited states are discussed.
The Low-Lying Electronic States of LiB
NASA Technical Reports Server (NTRS)
Ricca, Alessandra; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
The spectroscopic constants for the triplet and singlet states of LiB below about 30 000/ cm are determined using an internally contracted multireference configuration interaction approach in conjunction with [6s 5p 3d 2f] atomic natural orbital basis sets. The ground state is (sup 3)Pi as found in previous work. No excited triplet states are found to be ideal for characterizing the ground state; the (1)(sup 3)Sigma(sup -) state has a transition energy that is too small for many experimental approaches and the (2)(sup 3)Pi and (3)(sup 3)Pi states have bond lengths that are significantly longer than the ground state, resulting in transition intensities that are spread out over many vibrational levels of the ground state.
Covariantized vector Galileons
NASA Astrophysics Data System (ADS)
Hull, Matthew; Koyama, Kazuya; Tasinato, Gianmassimo
2016-03-01
Vector Galileons are ghost-free systems containing higher derivative interactions of vector fields. They break the vector gauge symmetry, and the dynamics of the longitudinal vector polarizations acquire a Galileon symmetry in an appropriate decoupling limit in Minkowski space. Using an Arnowitt-Deser-Misner approach, we carefully reconsider the coupling with gravity of vector Galileons, with the aim of studying the necessary conditions to avoid the propagation of ghosts. We develop arguments that put on a more solid footing the results previously obtained in the literature. Moreover, working in analogy with the scalar counterpart, we find indications for the existence of a "beyond Horndeski" theory involving vector degrees of freedom that avoids the propagation of ghosts thanks to secondary constraints. In addition, we analyze a Higgs mechanism for generating vector Galileons through spontaneous symmetry breaking, and we present its consistent covariantization.
Keasler, J A
2012-03-27
Vectorization is data parallelism (SIMD, SIMT, etc.) - extension of ISA enabling the same instruction to be performed on multiple data items simultaeously. Many/most CPUs support vectorization in some form. Vectorization is difficult to enable, but can yield large efficiency gains. Extra programmer effort is required because: (1) not all algorithms can be vectorized (regular algorithm structure and fine-grain parallelism must be used); (2) most CPUs have data alignment restrictions for load/store operations (obey or risk incorrect code); (3) special directives are often needed to enable vectorization; and (4) vector instructions are architecture-specific. Vectorization is the best way to optimize for power and performance due to reduced clock cycles. When data is organized properly, a vector load instruction (i.e. movaps) can replace 'normal' load instructions (i.e. movsd). Vector operations can potentially have a smaller footprint in the instruction cache when fewer instructions need to be executed. Hybrid index sets insulate users from architecture specific details. We have applied hybrid index sets to achieve optimal vectorization. We can extend this concept to handle other programming models.
Ultra thin fiber laser vector hydrophone
NASA Astrophysics Data System (ADS)
Ma, Rui; Zhang, Wentao; He, Jun; Li, Fang; Liu, Yuliang
2011-05-01
This paper presents a two-axis fiber laser vector hydrophone which uses a V-shaped flexed beam to enhance the sensitivity and reduce the dimensions. Theoretical analyses of the sensitivity and frequent response are given. The key parameters that determine the sensitivity and resonant frequency are discussed. The experimental results show an acceleration sensitivity of 39.2 pm/g and 53.2 pm/g at the x, y axis respectively, a resonant frequency of about 310 Hz, and a directivity resolution larger than 20 dB.
An above-barrier narrow resonance in 15F
NASA Astrophysics Data System (ADS)
de Grancey, F.; Mercenne, A.; de Oliveira Santos, F.; Davinson, T.; Sorlin, O.; Angélique, J. C.; Assié, M.; Berthoumieux, E.; Borcea, R.; Buta, A.; Celikovic, I.; Chudoba, V.; Daugas, J. M.; Dumitru, G.; Fadil, M.; Grévy, S.; Kiener, J.; Lefebvre-Schuhl, A.; Michel, N.; Mrazek, J.; Negoita, F.; Okołowicz, J.; Pantelica, D.; Pellegriti, M. G.; Perrot, L.; Płoszajczak, M.; Randisi, G.; Ray, I.; Roig, O.; Rotaru, F.; Saint Laurent, M. G.; Smirnova, N.; Stanoiu, M.; Stefan, I.; Stodel, C.; Subotic, K.; Tatischeff, V.; Thomas, J. C.; Ujić, P.; Wolski, R.
2016-07-01
Intense and purified radioactive beam of post-accelerated 14O was used to study the low-lying states in the unbound 15F nucleus. Exploiting resonant elastic scattering in inverse kinematics with a thick target, the second excited state, a resonance at ER = 4.757 (6) (10) MeV with a width of Γ = 36 (5) (14) keV was measured for the first time with high precision. The structure of this narrow above-barrier state in a nucleus located two neutrons beyond the proton drip line was investigated using the Gamow Shell Model in the coupled channel representation with a 12C core and three valence protons. It is found that it is an almost pure wave function of two quasi-bound protons in the 2s1/2 shell.
High-spin molecular resonances in 12C + 12C
NASA Astrophysics Data System (ADS)
Uegaki, E.; Abe, Y.
2016-05-01
Resonances observed in the 12C + 12C collisions are studied with a molecular model. At high spins J = 10-18, a stable dinuclear configuration is found to be an equator-equator touching one. Firstly, normal modes have been solved around the equilibrium, with spin J and K-quantum number being specified for rotation of the whole system. Secondly, with respect to large centrifugal energy, Coriolis coupling has been diagonalized among low-lying 11 states of normal-mode excitations, which brings K-mixing. The analyses of decay widths and excitation functions have been done. The molecular ground state exhibits alignments of the orbital angular momentum and the 12C spins, while some of the molecular excited states exhibit disalignments with small widths. Those results are surprisingly in good agreement with the experiments, which will light up a new physical picture of the highspin 12C + 12C resonances.
Symbolic computer vector analysis
NASA Technical Reports Server (NTRS)
Stoutemyer, D. R.
1977-01-01
A MACSYMA program is described which performs symbolic vector algebra and vector calculus. The program can combine and simplify symbolic expressions including dot products and cross products, together with the gradient, divergence, curl, and Laplacian operators. The distribution of these operators over sums or products is under user control, as are various other expansions, including expansion into components in any specific orthogonal coordinate system. There is also a capability for deriving the scalar or vector potential of a vector field. Examples include derivation of the partial differential equations describing fluid flow and magnetohydrodynamics, for 12 different classic orthogonal curvilinear coordinate systems.
Collider Signal I :. Resonance
NASA Astrophysics Data System (ADS)
Tait, Tim M. P.
2010-08-01
These TASI lectures were part of the summer school in 2008 and cover the collider signal associated with resonances in models of physics beyond the Standard Model. I begin with a review of the Z boson, one of the best-studied resonances in particle physics, and review how the Breit-Wigner form of the propagator emerges in perturbation theory and discuss the narrow width approximation. I review how the LEP and SLAC experiments could use the kinematics of Z events to learn about fermion couplings to the Z. I then make a brief survey of models of physics beyond the Standard Model which predict resonances, and discuss some of the LHC observables which we can use to discover and identify the nature of the BSM physics. I finish up with a discussion of the linear moose that one can use for an effective theory description of a massive color octet vector particle.
Impact of 6Li resonances on the near-barrier elastic scattering with 144Sm
NASA Astrophysics Data System (ADS)
Camacho, A. Gómez; Diaz-Torres, A.; Gomes, P. R. S.; Lubian, J.
2016-02-01
Converged continuum discretized coupled-channel calculations of elastic-scattering differential cross sections for reactions induced by the 6Li projectile on the 144Sm target, at energies around the Coulomb barrier, are presented. The impact of the low-lying α -deuteron resonant states in 6Li (l =2 ,Jπ=3+,2+,1+ ) on those elastic angular distributions is quantified. This is done by two types of calculations, namely, (a) by omitting from the continuum energy spectrum all states where the resonances are constructed in the discretization process, and (b) by considering only the resonance discretized space. Dynamical polarization potentials are used for interpreting the effect of continuum couplings. Resonant couplings play a more significant role than nonresonance ones at back-scattering angles and at incident energies below the Coulomb barrier. However, their effect becomes weaker as the incident energy increases above the barrier energy.
Possibility of generating a 4-neutron resonance with a T =3 /2 isospin 3-neutron force
NASA Astrophysics Data System (ADS)
Hiyama, E.; Lazauskas, R.; Carbonell, J.; Kamimura, M.
2016-04-01
We consider the theoretical possibility of generating a narrow resonance in the 4-neutron system as suggested by a recent experimental result. To that end, a phenomenological T =3 /2 3-neutron force is introduced, in addition to a realistic N N interaction. We inquire what the strength should be of the 3 n force to generate such a resonance. The reliability of the 3-neutron force in the T =3 /2 channel is examined, by analyzing its consistency with the low-lying T =1 states of 4H,4He, and 4Li and the 3H+n scattering. The ab initio solution of the 4 n Schrödinger equation is obtained using the complex scaling method with boundary conditions appropriate to the four-body resonances. We find that to generate narrow 4 n resonant states a remarkably attractive 3 N force in the T =3 /2 channel is required.
Frequency splitting of a multi-layered electric ring resonator
NASA Astrophysics Data System (ADS)
Kim, S. G.; Kim, K. H.; Jung, H. S.; Cho, H.; Choi, E. M.
2011-07-01
We present experimental results on the multilayering effects of an electric ring resonator. The electromagnetic response of the electric ring resonator is measured via a scattering matrix using a vector network analyzer at the X-band frequency. Structures of the electric ring resonator with up to four layers were tested and analyzed using commercial software. We demonstrate that, in an electric ring resonator, the electric and magnetic dipole polarization effect gives rise to resonance frequency splitting when the cell is multilayered.
Esposito-Farese, Gilles; Pitrou, Cyril; Uzan, Jean-Philippe
2010-03-15
This article provides a general study of the Hamiltonian stability and the hyperbolicity of vector field models involving both a general function of the Faraday tensor and its dual, f(F{sup 2},FF-tilde), as well as a Proca potential for the vector field, V(A{sup 2}). In particular it is demonstrated that theories involving only f(F{sup 2}) do not satisfy the hyperbolicity conditions. It is then shown that in this class of models, the cosmological dynamics always dilutes the vector field. In the case of a nonminimal coupling to gravity, it is established that theories involving Rf(A{sup 2}) or Rf(F{sup 2}) are generically pathologic. To finish, we exhibit a model where the vector field is not diluted during the cosmological evolution, because of a nonminimal vector field-curvature coupling which maintains second-order field equations. The relevance of such models for cosmology is discussed.
Vector generator scan converter
Moore, J.M.; Leighton, J.F.
1988-02-05
High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardware for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold. 7 figs.
Vector generator scan converter
Moore, James M.; Leighton, James F.
1990-01-01
High printing speeds for graphics data are achieved with a laser printer by transmitting compressed graphics data from a main processor over an I/O (input/output) channel to a vector generator scan converter which reconstructs a full graphics image for input to the laser printer through a raster data input port. The vector generator scan converter includes a microprocessor with associated microcode memory containing a microcode instruction set, a working memory for storing compressed data, vector generator hardward for drawing a full graphic image from vector parameters calculated by the microprocessor, image buffer memory for storing the reconstructed graphics image and an output scanner for reading the graphics image data and inputting the data to the printer. The vector generator scan converter eliminates the bottleneck created by the I/O channel for transmitting graphics data from the main processor to the laser printer, and increases printer speed up to thirty fold.
ERIC Educational Resources Information Center
Balabanian, Norman
This programed booklet is designed for the engineering student who understands and can use vector and unit vector notation, components of a vector, parallel law of vector addition, and the dot product of two vectors. Content begins with work done by a force in moving a body a certain distance along some path. For each of the examples and problem…
Integrated multi vector vortex beam generator
NASA Astrophysics Data System (ADS)
Schulz, Sebastian A.; Machula, Taras; Karimi, Ebrahim; Boyd, Robert W.
2013-07-01
A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10 dB between different orbital angular momentum channels.
Integrated multi vector vortex beam generator.
Schulz, Sebastian A; Machula, Taras; Karimi, Ebrahim; Boyd, Robert W
2013-07-01
A novel method to generate and manipulate vector vortex beams in an integrated, ring resonator based geometry is proposed. We show numerically that a ring resonator, with an appropriate grating, addressed by a vertically displaced access waveguide emits a complex optical field. The emitted beam possesses a specific polarization topology, and consequently a transverse intensity profile and orbital angular momentum. We propose a combination of several concentric ring resonators, addressed with different bus guides, to generate arbitrary orbital angular momentum qudit states, which could potentially be used for classical and quantum communications. Finally, we demonstrate numerically that this device works as an orbital angular momentum sorter with an average cross-talk of -10dB between different orbital angular momentum channels. PMID:23842399
Fractal vector optical fields.
Pan, Yue; Gao, Xu-Zhen; Cai, Meng-Qiang; Zhang, Guan-Lin; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2016-07-15
We introduce the concept of a fractal, which provides an alternative approach for flexibly engineering the optical fields and their focal fields. We propose, design, and create a new family of optical fields-fractal vector optical fields, which build a bridge between the fractal and vector optical fields. The fractal vector optical fields have polarization states exhibiting fractal geometry, and may also involve the phase and/or amplitude simultaneously. The results reveal that the focal fields exhibit self-similarity, and the hierarchy of the fractal has the "weeding" role. The fractal can be used to engineer the focal field. PMID:27420485
ERIC Educational Resources Information Center
Curjel, C. R.
1990-01-01
Presented are activities that help students understand the idea of a vector field. Included are definitions, flow lines, tangential and normal components along curves, flux and work, field conservation, and differential equations. (KR)
NASA Technical Reports Server (NTRS)
Wang, Li-Jun; Bacon, A. M.; Zhao, H.-Z.; Thomas, J. E.
1994-01-01
In the optical measurement of the Bloch vector components describing a system of N two-level atoms, the quantum fluctuations in these components are coupled into the measuring optical field. This paper develops the quantum theory of optical measurement of Bloch vector projection noise. The preparation and probing of coherence in an effective two-level system consisting of the two ground states in an atomic three-level lambda-scheme are analyzed.
Carrigan, Charles R.
2011-08-02
A determination is made of frequency components associated with a particular bearing or location resulting from sources emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. The broadband frequency components associated with a specific direction or location of interest are isolated from other components in the power spectrum that are not associated with the direction or location of interest. The collection of pointing vectors can be used to characterize the source.
Interpolation of vector fields from human cardiac DT-MRI
NASA Astrophysics Data System (ADS)
Yang, F.; Zhu, Y. M.; Rapacchi, S.; Luo, J. H.; Robini, M.; Croisille, P.
2011-03-01
There has recently been increased interest in developing tensor data processing methods for the new medical imaging modality referred to as diffusion tensor magnetic resonance imaging (DT-MRI). This paper proposes a method for interpolating the primary vector fields from human cardiac DT-MRI, with the particularity of achieving interpolation and denoising simultaneously. The method consists of localizing the noise-corrupted vectors using the local statistical properties of vector fields, removing the noise-corrupted vectors and reconstructing them by using the thin plate spline (TPS) model, and finally applying global TPS interpolation to increase the resolution in the spatial domain. Experiments on 17 human hearts show that the proposed method allows us to obtain higher resolution while reducing noise, preserving details and improving direction coherence (DC) of vector fields as well as fiber tracking. Moreover, the proposed method perfectly reconstructs azimuth and elevation angle maps.
Molecular structure, spectral constants, and fermi resonances in chlorine nitrate
NASA Astrophysics Data System (ADS)
Petkie, Douglas T.; Butler, Rebecca A. H.; Helminger, Paul; De Lucia, Frank C.
2004-06-01
Chlorine nitrate has two low-lying vibrational modes that lead to a series of Fermi resonances in the 9 υ97 υ7 family of levels that include the 9 2⇔7 1 and 9 3⇔7 19 1 dyads and the 9 4⇔9 27 1⇔7 2 and 9 5⇔9 37 1⇔9 17 2 triads. These states, along with the ground and 9 1 vibrational states, have been previously analyzed with millimeter and submillimeter wave spectroscopy and provide a substantial body of data for the investigation of these resonances and their impact on calculated spectroscopic constants and structural parameters. Due to fitting indeterminacies, these previous analyses did not include the main Fermi resonance interaction term. Consequently, the fitted rotational constants are linear combinations of the unmixed rotational constants of the basis vibrational states. In this paper, we have calculated the contributions of the Fermi resonances to the observed rotational constants in a model that determines the vibrational-rotational constants, the Fermi term and the mixing between interacting vibrational states, the cubic potential constant ( φ997) that connects interacting levels through a Fermi resonance, and the inertial defects. These results agree with predictions from ab initio and harmonic force field calculations and provide further experimental information for the determination of the fundamental molecular properties of chlorine nitrate.
Shape resonance spectra of uracil, 5-fluorouracil, and 5-chlorouracil
Kossoski, F.; Varella, M. T. do N.; Bettega, M. H. F.
2014-01-14
We report on the shape resonance spectra of uracil, 5-fluorouracil, and 5-chlorouracil, as obtained from fixed-nuclei elastic scattering calculations performed with the Schwinger multichannel method with pseudopotentials. Our results are in good agreement with the available electron transmission spectroscopy data, and support the existence of three π* resonances in uracil and 5-fluorouracil. As expected, the anion states are more stable in the substituted molecules than in uracil. Since the stabilization is stronger in 5-chlorouracil, the lowest π* resonance in this system becomes a bound anion state. The present results also support the existence of a low-lying σ{sub CCl{sup *}} shape resonance in 5-chlorouracil. Exploratory calculations performed at selected C–Cl bond lengths suggest that the σ{sub CCl{sup *}} resonance could couple to the two lowest π* states, giving rise to a very rich dissociation dynamics. These facts would be compatible with the complex branching of the dissociative electron attachment cross sections, even though we cannot discuss any details of the vibration dynamics based only on the present fixed-nuclei results.
Splitting of the Pygmy Dipole Resonance
NASA Astrophysics Data System (ADS)
Endres, J.; Butler, P.; Harakeh, M. N.; Harissopulos, S.; Herzberg, R.-D.; Krücken, R.; Lagoyannis, A.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Popescu, L.; Ring, P.; Savran, D.; Scheck, M.; Sonnabend, K.; Stoica, V. I.; Wörtche, H. J.; Zilges, A.
2011-10-01
In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution (γ,γ') photon scattering method is used. In complementary (α,α'γ) coincidence experiments at Eα = 136 MeV a similar γ-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the (γ,γ') method a structural splitting of the PDR is observed in the N = 82 nuclei 138Ba and 140Ce and in the Z = 50 nucleus 124Sn. The low energy part is excited in (γ,γ') as well as in (α,α'γ) while the high energy part is observed in (γ,γ') only. The experimental results together with theoretical QPM and RQTBA calculations on 124Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of Jπ = 1- states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).
Splitting of the Pygmy Dipole Resonance
Endres, J.; Zilges, A.; Butler, P.; Herzberg, R.-D.; Scheck, M.; Harakeh, M. N.; Harissopulos, S.; Lagoyannis, A.; Kruecken, R.; Ring, P.; Litvinova, E.; Pietralla, N.; Ponomarev, V. Yu.; Sonnabend, K.; Popescu, L.; Savran, D.; Stoica, V. I.; Woertche, H. J.
2011-10-28
In recent years investigations have been made to study the electric Pygmy Dipole Resonance (PDR) systematically, mainly in semi-magic nuclei. For this purpose the well understood high resolution ({gamma},{gamma}') photon scattering method is used. In complementary ({alpha},{alpha}'{gamma}) coincidence experiments at E{sub {alpha}} = 136 MeV a similar {gamma}-energy resolution and a high selectivity to E1 transitions can be obtained at the Big-Bite Spectrometer (BBS) at KVI, Groningen. In comparison to the ({gamma},{gamma}') method a structural splitting of the PDR is observed in the N = 82 nuclei {sup 138}Ba and {sup 140}Ce and in the Z = 50 nucleus {sup 124}Sn. The low energy part is excited in ({gamma},{gamma}') as well as in ({alpha},{alpha}'{gamma}) while the high energy part is observed in ({gamma},{gamma}') only. The experimental results together with theoretical QPM and RQTBA calculations on {sup 124}Sn which are able to reproduce the splitting of the PDR qualitatively are presented. The low-lying group of J{sup {pi}} = 1{sup -} states seem to represent the more isoscalar neutron-skin oscillation of the PDR while the energetically higher-lying states seemingly belong to the transitional region between the PDR and the isovector Giant Dipole Resonance (IVGDR).
Excitation and photon decay of giant resonances excited by intermediate energy heavy ions
Bertrand, F.E.; Beene, J.R.
1987-01-01
Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the giant resonances. In particular, recent measurements have been made of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented. 22 refs., 19 figs., 1 tab.
NASA Astrophysics Data System (ADS)
Abe, Tomohiro; Kakizaki, Mitsuru; Matsumoto, Shigeki; Seto, Osamu
2012-07-01
Weakly interacting massive particle (WIMP) is well known to be a good candidate for dark matter, and it is also predicted by many new physics models beyond the standard model at the TeV scale. We found that, if the WIMP is a vector particle (spin-one particle) which is associated with some gauge symmetry broken at the TeV scale, the Higgs mass is often predicted to be 120-125 GeV, which is very consistent with the result of Higgs searches recently reported by ATLAS and CMS Collaborations at the Large Hadron Collider experiment. In this Letter, we consider the vector WIMP using a non-linear sigma model in order to confirm this result as general as possible in a bottom-up approach. Near-future prospects to detect the vector WIMP at both direct and indirect detection experiments of dark matter are also discussed.
NASA Astrophysics Data System (ADS)
Yan, Zhenya
2011-11-01
The coupled nonlinear volatility and option pricing model presented recently by Ivancevic is investigated, which generates a leverage effect, i.e., stock volatility is (negatively) correlated to stock returns, and can be regarded as a coupled nonlinear wave alternative of the Black-Scholes option pricing model. In this Letter, we analytically propose vector financial rogue waves of the coupled nonlinear volatility and option pricing model without an embedded w-learning. Moreover, we exhibit their dynamical behaviors for chosen different parameters. The vector financial rogue wave (rogon) solutions may be used to describe the possible physical mechanisms for the rogue wave phenomena and to further excite the possibility of relative researches and potential applications of vector rogue waves in the financial markets and other related fields.
Appel, A.W.; Bendiksen, A.
1988-01-01
Garbage collection can be done in vector mode on supercomputers like the Cray-2 and the Cyber 205. Both copying collection and mark-and-sweep can be expressed as breadth-first searches in which the queue can be processed in parallel. The authors have designed a copying garbage collector whose inner loop works entirely in vector mode. The only significant limitation of the algorithm is that if the size of the records is not constant, the implementation becomes much more complicated. The authors give performance measurements of the algorithm as implemented for Lisp CONS cells on the Cyber 205. Vector-mode garbage collection performs up to 9 times faster than scalar-mode collection.
Bunyavirus-Vector Interactions
Horne, Kate McElroy; Vanlandingham, Dana L.
2014-01-01
The Bunyaviridae family is comprised of more than 350 viruses, of which many within the Hantavirus, Orthobunyavirus, Nairovirus, Tospovirus, and Phlebovirus genera are significant human or agricultural pathogens. The viruses within the Orthobunyavirus, Nairovirus, and Phlebovirus genera are transmitted by hematophagous arthropods, such as mosquitoes, midges, flies, and ticks, and their associated arthropods not only serve as vectors but also as virus reservoirs in many cases. This review presents an overview of several important emerging or re-emerging bunyaviruses and describes what is known about bunyavirus-vector interactions based on epidemiological, ultrastructural, and genetic studies of members of this virus family. PMID:25402172
NASA Astrophysics Data System (ADS)
Rejon-Barrera, Fernando; Robbins, Daniel
2016-01-01
We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.
NASA Technical Reports Server (NTRS)
Taghavi-Larigani, Shervin (Inventor); Vanzyl, Jakob J. (Inventor); Yariv, Amnon (Inventor)
2006-01-01
The invention discloses a semi-ring Fabry-Perot (SRFP) optical resonator structure comprising a medium including an edge forming a reflective facet and a waveguide within the medium, the waveguide having opposing ends formed by the reflective facet. The performance of the SRFP resonator can be further enhanced by including a Mach-Zehnder interferometer in the waveguide on one side of the gain medium. The optical resonator can be employed in a variety of optical devices. Laser structures using at least one SRFP resonator are disclosed where the resonators are disposed on opposite sides of a gain medium. Other laser structures employing one or more resonators on one side of a gain region are also disclosed.
Collins, T.
1986-06-01
Protons lost in a ring leave at a few preferred locations, determined by some non-linear property of the dipoles. This paper suggests taking control of lost protons by beating the magnets at their own game - by means of a designed resonance used as a beam scraper. It is a study of suitable resonances, including estimates of the required multipole element strengths. The appropriate resonances are two-dimensional. A large number of figures is included.
NASA Astrophysics Data System (ADS)
Ogata, Kazuyuki; Myo, Takayuki; Furumoto, Takenori; Matsumoto, Takuma; Yahiro, Masanobu
2013-08-01
The breakup cross section (BUX) of 22C by 12C at 250 MeV/nucleon is evaluated by the continuum-discretized coupled-channels method incorporating the cluster-orbital shell model (COSM) wave functions. Contributions of the low-lying 02+ and 21+ resonances predicted by COSM to the BUX are investigated. The 21+ resonance gives a narrow peak in the BUX, as in usual resonant reactions, whereas the 02+ resonant cross section has a peculiar shape due to the coupling to the nonresonant continuum, i.e., the background-phase effect (BPE). By changing the scattering angle of 22C after the breakup, a variety of shapes of the 02+ resonant cross sections are obtained. The mechanism of the appearance of the sizable BPE in the breakup of 22C is discussed.
NASA Astrophysics Data System (ADS)
Ullmann, J. L.; Bredeweg, T. A.; Couture, A. J.; Haight, R. C.; Jandel, M.; Kawano, T.; Keksis, A. L.; O'Donnell, J. M.; Rundberg, R. S.; Vieira, D. J.; Wouters, J. M.; Wilhelmy, J. B.; Wu, C. Y.; Becker, J. A.; Chyzh, A.; Baramsai, B.; Mitchell, G. E.; Krticka, M.
2013-03-01
An accurate knowledge of the radiative strength function and level density is needed to calculate of neutron-capture cross sections. An additional constraint on these quantities is provided by measurements of γ-ray emission spectra following capture. We present γ-emission spectra from several neutron resonances in 234,236,238U, measured using the DANCE detector at LANSCE. The measurements are compared to preliminary calculations of the cascade. It is observed that the generalized Lorentzian form of the E1 strength function cannot reproduce the shape of the emission spectra, but a better description is made by adding low-lying M1 Lorentzian strength.
Production of lentiviral vectors
Merten, Otto-Wilhelm; Hebben, Matthias; Bovolenta, Chiara
2016-01-01
Lentiviral vectors (LV) have seen considerably increase in use as gene therapy vectors for the treatment of acquired and inherited diseases. This review presents the state of the art of the production of these vectors with particular emphasis on their large-scale production for clinical purposes. In contrast to oncoretroviral vectors, which are produced using stable producer cell lines, clinical-grade LV are in most of the cases produced by transient transfection of 293 or 293T cells grown in cell factories. However, more recent developments, also, tend to use hollow fiber reactor, suspension culture processes, and the implementation of stable producer cell lines. As is customary for the biotech industry, rather sophisticated downstream processing protocols have been established to remove any undesirable process-derived contaminant, such as plasmid or host cell DNA or host cell proteins. This review compares published large-scale production and purification processes of LV and presents their process performances. Furthermore, developments in the domain of stable cell lines and their way to the use of production vehicles of clinical material will be presented. PMID:27110581
NASA Technical Reports Server (NTRS)
Garay, Michael J.; Mazzoni, Dominic; Davies, Roger; Wagstaff, Kiri
2004-01-01
Support Vector Machines (SVMs) are a type of supervised learning algorith,, other examples of which are Artificial Neural Networks (ANNs), Decision Trees, and Naive Bayesian Classifiers. Supervised learning algorithms are used to classify objects labled by a 'supervisor' - typically a human 'expert.'.
Singular Vectors' Subtle Secrets
ERIC Educational Resources Information Center
James, David; Lachance, Michael; Remski, Joan
2011-01-01
Social scientists use adjacency tables to discover influence networks within and among groups. Building on work by Moler and Morrison, we use ordered pairs from the components of the first and second singular vectors of adjacency matrices as tools to distinguish these groups and to identify particularly strong or weak individuals.
Killing vectors and anisotropy
Krisch, J. P.; Glass, E. N.
2009-08-15
We consider an action that can generate fluids with three unequal stresses for metrics with a spacelike Killing vector. The parameters in the action are directly related to the stress anisotropies. The field equations following from the action are applied to an anisotropic cosmological expansion and an extension of the Gott-Hiscock cosmic string.
Gubler, D J
2009-08-01
Vector-borne diseases have been the scourge of man and animals since the beginning of time. Historically, these are the diseases that caused the great plagues such as the 'Black Death' in Europe in the 14th Century and the epidemics of yellow fever that plagued the development of the New World. Others, such as Nagana, contributed to the lack of development in Africa for many years. At the turn of the 20th Century, vector-borne diseases were among the most serious public and animal health problems in the world. For the most part, these diseases were controlled by the middle of the 20th Century through the application of knowledge about their natural history along with the judicious use of DDT (dichlorodiphenyltrichloroethane) and other residual insecticides to interrupt the transmission cycle between arthropod and vertebrate host. However, this success initiated a period of complacency in the 1960s and 1970s, which resulted in the redirection of resources away from prevention and control of vector-borne diseases. The 1970s was also a time in which there were major changes to public health policy. Global trends, combined with changes in animal husbandry, urbanisation, modern transportation and globalisation, have resulted in a global re-emergence of epidemic vector-borne diseases affecting both humans and animals over the past 30 years. PMID:20128467
Quarterman, K. D.
1963-01-01
Current research on vector control is directed mainly at finding answers to the problem of resistance. Despite considerable advances in knowledge of the genetics, biochemistry, physiology, and ecology of resistant vectors, the only practical answer found so far has been the development of new, substitute insecticides. At present the operational needs of existing large-scale control or eradication programmes swallow up much of the funds, personnel and facilities that might otherwise be devoted to basic research. Moreover, to back up these programmes, there is a continuing need for applied research on such questions as the packaging of pesticides, improvements in equipment and the development of new formulations. The author gives examples of applied research already carried out or in progress and indicates some areas of both basic and applied research demanding urgent attention. Like other participants in the seminar, he stresses the fundamental importance of ecological studies. He also examines the concept of integrated vector control and points out that the realization of this concept presupposes close co-ordination between basic and applied research, laboratory and field studies, and investigations on chemical and non-chemical vector control measures. PMID:20604177
Nuclear Resonance Fluorescence off 54Cr: The Onset of the Pygmy Dipole Resonance
NASA Astrophysics Data System (ADS)
Ries, P. C.; Beck, T.; Beller, J.; Krishichayan; Gayer, U.; Isaak, J.; Löher, B.; Mertes, L.; Pai, H.; Pietralla, N.; Romig, C.; Savran, D.; Schilling, M.; Tornow, W.; Werner, V.; Zweidinger, M.
2016-06-01
Low-lying electric and magnetic dipole excitations (E1 and M1) below the neutron separation threshold, particularly the Pygmy Dipole Resonance (PDR), have drawn considerable attention in the last years. So far, mostly moderately heavy nuclei in the mass regions around A = 90 and A = 140 were examined with respect to the PDR. In the present work, the systematics of the PDR have been extended by measuring excitation strengths and parity quantum numbers of J = 1 states in lighter nuclei near A = 50 in order to gather information on the onset of the PDR. The nuclei 50,52,54Cr and 48,50Ti were examined via bremsstrahlung produced at the DArmstadt Superconducting electron Linear Accelerator (S-DALINAC) with photon energies up to 9.7 MeV with the method of nuclear resonance fluorescence. Numerous excited states were observed, many of which for the first time. The parity quantum numbers of these states have been determined at the High Intensity Gamma-ray Source (HIγS) of the Triangle Universities Nuclear Laboratory in Durham, NC, USA. Informations to the methods and the experimental setups will be provided and the results on 54Cr achieved will be discussed with respect to the onset of the PDR.
Preloadable vector sensitive latch
NASA Technical Reports Server (NTRS)
Acres, William R. (Inventor)
1987-01-01
A preloadable vector-sensitive latch which automatically releases when the force vector from a latch memebr reaches a specified release angle is presented. In addition, it contains means to remove clearance between the latched members and to preload the latch to prevent separation at angles less than the specified release angle. The latch comprises a triangular main link, a free link connected between a first corner of the main link and a yoke member, a housing, and an actuator connected between the yoke member and the housing. A return spring bias means connects the main link to a portion of the housing. A second corner of the main link is slidably and pivotally connected to the housing via a slot in a web portion of the housing. The latch housing has a rigid docking ring alignable with a mating locking ring which is engageable by a locking roller journalled on the third corner of the triangular main link.
NASA Technical Reports Server (NTRS)
Chipman, Russell A.
1996-01-01
This report covers work performed during the period of November 1994 through March 1996 on the design of a Space-borne Solar Vector Magnetograph. This work has been performed as part of a design team under the supervision of Dr. Mona Hagyard and Dr. Alan Gary of the Space Science Laboratory. Many tasks were performed and this report documents the results from some of those tasks, each contained in the corresponding appendix. Appendices are organized in chronological order.
Some experiences with Krylov vectors and Lanczos vectors
NASA Technical Reports Server (NTRS)
Craig, Roy R., Jr.; Su, Tzu-Jeng; Kim, Hyoung M.
1993-01-01
This paper illustrates the use of Krylov vectors and Lanczos vectors for reduced-order modeling in structural dynamics and for control of flexible structures. Krylov vectors and Lanczos vectors are defined and illustrated, and several applications that have been under study at The University of Texas at Austin are reviewed: model reduction for undamped structural dynamics systems, component mode synthesis using Krylov vectors, model reduction of damped structural dynamics systems, and one-sided and two-sided unsymmetric block-Lanczos model-reduction algorithms.
Isomap based supporting vector machine
NASA Astrophysics Data System (ADS)
Liang, W. N.
2015-12-01
This research presents a new isomap based supporting vector machine method. Isomap is a dimension reduction method which is able to analyze nonlinear relationship of data on manifolds. Accordingly, support vector machine is established on the isomap manifold to classify given and predict unknown data. A case study of the isomap based supporting vector machine for environmental planning problems is conducted.
The Spin Vector of (832) Karin
NASA Astrophysics Data System (ADS)
Slivan, Stephen M.; Molnar, L. A.
2010-10-01
We observed rotation lightcurves of Koronis family and Karin cluster member (832) Karin during its four consecutive apparitions in 2006-2009, and combined the new observations with previously published lightcurves to determine its spin vector orientation and preliminary model shape. Karin is a prograde rotator with a period of 18.352 h, spin obliquity near 41°, and pole ecliptic longitude near either 51° or 228°. Although the two ambiguous pole solutions are near the clustered pole solutions of four Koronis family members whose spins are thought to be trapped in a spin-orbit resonance (Vokrouhlický et al., 2003), Karin does not seem to be trapped in the resonance; this is consistent with the expectation that the 6 My age of Karin (Nesvorný et al., 2002) is too young for YORP torques to have modified its spin since its formation. The spin vector and shape results for Karin will constrain family formation models that include spin properties, and we discuss the Karin results in the context of the other members of the Karin cluster, the Karin parent body, and the parent body's siblings in the Koronis family.
On a simple way to calculate electronic resonances for polyatomic molecules
Horáček, J.; Paidarová, I.; Čurík, R.
2015-11-14
We propose a simple method for calculation of low-lying shape electronic resonances of polyatomic molecules. The method introduces a perturbation potential and requires only routine bound-state type calculations in the real domain of energies. Such a calculation is accessible by most of the free or commercial quantum chemistry software. The presented method is based on the analytical continuation in a coupling constant model, but unlike its previous variants, we experience a very stable and robust behavior for higher-order extrapolation functions. Moreover, the present approach is independent of the correlation treatment used in quantum many-electron computations and therefore we are able to apply Coupled Clusters (CCSD-T) level of the correlation model. We demonstrate these properties on determination of the resonance position and width of the {sup 2}Π{sub u} temporary negative ion state of diacetylene using CCSD-T level of theory.
A detailed assignment of NEXAFS resonances of imidazolium based ionic liquids.
Ehlert, Christopher; Holzweber, Markus; Lippitz, Andreas; Unger, Wolfgang E S; Saalfrank, Peter
2016-03-16
In Near Edge X-Ray Absorption Fine Structure (NEXAFS) spectroscopy X-Ray photons are used to excite tightly bound core electrons to low-lying unoccupied orbitals of the system. This technique offers insight into the electronic structure of the system as well as useful structural information. In this work, we apply NEXAFS to two kinds of imidazolium based ionic liquids ([CnC1im](+)[NTf2](-) and [C4C1im](+)[I](-)). A combination of measurements and quantum chemical calculations of C K and N K NEXAFS resonances is presented. The simulations, based on the transition potential density functional theory method (TP-DFT), reproduce all characteristic features observed by the experiment. Furthermore, a detailed assignment of resonance features to excitation centers (carbon or nitrogen atoms) leads to a consistent interpretation of the spectra. PMID:26948544
Vector representation of tourmaline compositions
NASA Technical Reports Server (NTRS)
Burt, Donald M.
1989-01-01
The vector method for representing mineral compositions of amphibole and mica groups is applied to the tourmaline group. Consideration is given to the methods for drawing the relevant vector diagrams, relating the exchange vectors to one another, and contouring the diagrams for constant values of Na, Ca, Li, Fe, Mg, Al, Si, and OH. The method is used to depict a wide range of possible tourmaline end-member compositions and solid solutions, starting from a single point. In addition to vector depictions of multicomponent natural tourmalines, vectors are presented for simpler systems such as (Na,Al)-tourmalines, alkali-free tourmalines, and elbaites.
Vector Theory of Ultrasonic Imaging
NASA Astrophysics Data System (ADS)
Gan, W. S.
So far, works on ultrasonic diffraction imaging are based on scalar theory of sound wave. This is not correct as sound has vector nature. But when sound propagates in solids, its vector nature has to be considered as polarization occurs and transverse wave as well as longitudinal wave will appear. Vector theory is especially needed when the obstacle size is smaller than the wavelength. We use the Smythe-Kirchhoff approach for the vector theory of diffraction. We derive the image formation theory based on the vector diffraction theory. The effect of polarization on acoustical imaging is discussed.
Photoproduction of exotic baryon resonances
NASA Astrophysics Data System (ADS)
Karliner, Marek; Rosner, Jonathan L.
2016-01-01
We point out that the new exotic resonances recently reported by LHCb in the J / ψ p channel are excellent candidates for photoproduction off a proton target. This test is crucial to confirming the resonant nature of such states, as opposed to their being kinematical effects. We specialize to an interpretation of the heavier narrow state as a molecule composed of Σc and Dbar*, and estimate its production cross section using vector dominance. The relevant photon energies and fluxes are well within the capabilities of the GlueX and CLAS12 detectors at Thomas Jefferson National Accelerator Facility (JLAB). A corresponding calculation is also performed for photoproduction of an analogous resonance which is predicted to exist in the ϒp channel.
Vector ecology of equine piroplasmosis.
Scoles, Glen A; Ueti, Massaro W
2015-01-01
Equine piroplasmosis is a disease of Equidae, including horses, donkeys, mules, and zebras, caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick vectors, and although they have inherent differences they are categorized together because they cause similar pathology and have similar morphologies, life cycles, and vector relationships. To complete their life cycle, these parasites must undergo a complex series of developmental events, including sexual-stage development in their tick vectors. Consequently, ticks are the definitive hosts as well as vectors for these parasites, and the vector relationship is restricted to a few competent tick species. Because the vector relationship is critical to the epidemiology of these parasites, we highlight current knowledge of the vector ecology of these tick-borne equine pathogens, emphasizing tick transmissibility and potential control strategies to prevent their spread. PMID:25564746
Aerodynamics of thrust vectoring
NASA Technical Reports Server (NTRS)
Tseng, J. B.; Lan, C. Edward
1989-01-01
Thrust vectoring as a means to enhance maneuverability and aerodynamic performane of a tactical aircraft is discussed. This concept usually involves the installation of a multifunction nozzle. With the nozzle, the engine thrust can be changed in direction without changing the attitude of the aircraft. Change in the direction of thrust induces a significant change in the aerodynamic forces on the aircraft. Therefore, this device can be used for lift-augmenting as well as stability and control purposes. When the thrust is deflected in the longitudinal direction, the lift force and the pitching stability can be manipulated, while the yawing stability can be controlled by directing the thrust in the lateral direction.
Vector-vector production in photon-photon interactions
NASA Astrophysics Data System (ADS)
Ronan, Micheal T.
1989-04-01
Measurements of exclusive untagged ρ0ρ0,ρφ,K*K¯*, and ρω production and tagged ρ0ρ0 production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.
Plasmonic fiber-optic vector magnetometer
NASA Astrophysics Data System (ADS)
Zhang, Zhaochuan; Guo, Tuan; Zhang, Xuejun; Xu, Jian; Xie, Wenping; Nie, Ming; Wu, Qiang; Guan, Bai-Ou; Albert, Jacques
2016-03-01
A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously.
Parallel collective resonances in arrays of gold nanorods.
Vitrey, Alan; Aigouy, Lionel; Prieto, Patricia; García-Martín, José Miguel; González, María U
2014-01-01
In this work we discuss the excitation of parallel collective resonances in arrays of gold nanoparticles. Parallel collective resonances result from the coupling of the nanoparticles localized surface plasmons with diffraction orders traveling in the direction parallel to the polarization vector. While they provide field enhancement and delocalization as the standard collective resonances, our results suggest that parallel resonances could exhibit greater tolerance to index asymmetry in the environment surrounding the arrays. The near- and far-field properties of these resonances are analyzed, both experimentally and numerically. PMID:24645987
Quasistationary resonances induced by intense infrared fields in HD{sup +} and their decay
Dutta, Bibhas; Bhattacharyya, S. S.
2010-12-15
The nature of a few low-lying laser-induced resonances of HD{sup +} along with their linewidths due to dissociation, has been investigated in the intensity range of (1-6) x10{sup 13}W/cm{sup 2} for three different laser frequencies. In the length gauge representation of the interaction Hamiltonian used by us, these resonances for the lower intensities are basically the vibrational states of the unperturbed molecule, shifted and broadened by radiative interactions. At higher intensities the resonances are obtained as quasistationary states on different adiabatic potentials. They are formed by the mixing of various unperturbed vibrational states by multiphoton interactions. In this mixing, the proportion of vibrational states further away from the resonance energy increases with the increase in intensity. At high enough intensities, signature of dissociation through a nonresonant intermediate vibrational transition to the v=6 and v=7 state is observed for a laser frequency of 12 500 cm{sup -1}. The width of the lowest resonance increases sharply with intensity, while its shift from the v=0 state increases only linearly with intensity. The branching ratios to different photon absorption channels change with intensity and they can be interpreted using the adiabatic potential curves. For a frequency of 2000 cm{sup -1}, which is close to the frequency of v=0 to v=1 transition, the resonances arise from the mixing of various vibrational levels through stepwise transitions, resulting in a dissociation linewidth larger compared to that obtained for higher frequencies.
Bound, virtual, and resonance S-matrix poles from the Schroedinger equation
Mukhamedzhanov, A. M.; Goldberg, V. Z.; Irgaziev, B. F.; Qazi, I.; Orlov, Yu. V.
2010-05-15
A general method, which we call the potential S-matrix pole method, is developed for obtaining the S-matrix pole parameters for bound, virtual, and resonant states based on numerical solutions of the Schroedinger equation. This method is well known for bound states. In this work we generalize it for resonant and virtual states, although the corresponding solutions increase exponentially when r->infinity. Concrete calculations are performed for the 1{sup +} ground state of {sup 14}N, the resonance {sup 15}F states (1/2{sup +}, 5/2{sup +}), low-lying states of {sup 11}Be and {sup 11}N, and the subthreshold resonance in the proton-proton system. We also demonstrate that in the case of broad resonances, their energy and width can be found from the fitting the experimental phase shifts using the analytical expression for the elastic-scattering S matrix. We compare the S-matrix pole and the R matrix methods for broad resonances in the {sup 14}O-p and in {sup 26}Mg-n systems.
NASA Astrophysics Data System (ADS)
Vivaldi, Franco
2015-12-01
The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.
NASA Astrophysics Data System (ADS)
Vivaldi, Franco
The concept of resonance has been instrumental to the study of Hamiltonian systems with divided phase space. One can also define such systems over discrete spaces, which have a finite or countable number of points, but in this new setting the notion of resonance must be re-considered from scratch. I review some recent developments in the area of arithmetic dynamics which outline some salient features of linear and nonlinear stable (elliptic) orbits over a discrete space, and also underline the difficulties that emerge in their analysis.
NASA Technical Reports Server (NTRS)
Harper, L. L. (Inventor)
1983-01-01
An optical resonator cavity configuration has a unitary mirror with oppositely directed convex and concave reflective surfaces disposed into one fold and concertedly reversing both ends of a beam propagating from a laser rod disposed between two total internal reflection prisms. The optical components are rigidly positioned with perpendicularly crossed virtual rooflines by a compact optical bed. The rooflines of the internal reflection prisms, are arranged perpendicularly to the axis of the laser beam and to the optical axes of the optical resonator components.
Electromagnetic production of vector mesons at low energies
Oh, Y.; Titov, A. I.; Lee, T.-S. H.
2000-05-17
The authors have investigated exclusive photoproduction of light vector mesons ({omega}, {rho} and {phi}) on the nucleon at low energies. In order to explore the questions concerning the so-called missing nucleon resonances, they first establish the predictions from a model based on the Pomeron and meson exchange mechanisms. They have also explored the contributions due to the mechanisms involving s- and u-channel intermediate nucleon state. Some discrepancies found at the energies near threshold and large scattering angles suggest a possibility of using this reaction to identify the nucleon resonances.
Bertrand, F.E.; Beene, J.R.; Horen, D.J.
1988-01-01
Inelastic scattering of medium energy heavy ions provides very large cross sections and peak-to-continuum ratios for excitation of giant resonances. For energies above about 50 MeV/nucleon, giant resonances are excited primarily through Coulomb excitation, which is indifferent to isospin, thus providing a good probe for the study of isovector giant resonances. The extremely large cross sections available from heavy ion excitation permit the study of rare decay modes of the photon decay of giant resonances following excitation by 22 and 84 MeV/nucleon /sup 17/O projectiles. The singles results at 84 MeV/nucleon yield peak cross sections for the isoscalar giant quadrupole resonance and the isovector giant dipole resonance of approximately 0.8 and 3 barns/sr, respectively. Data on the ground state decay of the isoscalar giant quadrupole and isovector giant dipole resonances are presented and compared with calculations. Decays to low-lying excited states are also discussed. Preliminary results from an experiment to isolate the /sup 208/Pb isovector quadrupole resonance using its gamma decay are presented.
VLSI Processor For Vector Quantization
NASA Technical Reports Server (NTRS)
Tawel, Raoul
1995-01-01
Pixel intensities in each kernel compared simultaneously with all code vectors. Prototype high-performance, low-power, very-large-scale integrated (VLSI) circuit designed to perform compression of image data by vector-quantization method. Contains relatively simple analog computational cells operating on direct or buffered outputs of photodetectors grouped into blocks in imaging array, yielding vector-quantization code word for each such block in sequence. Scheme exploits parallel-processing nature of vector-quantization architecture, with consequent increase in speed.
Localization and vector spherical harmonics
NASA Astrophysics Data System (ADS)
von Brecht, James H.
2016-01-01
This paper establishes the following localization property for vector spherical harmonics: a wide class of non-local, vector-valued operators reduce to local, multiplication-type operations when applied to a vector spherical harmonic. As localization occurs in a very precise, quantifiable and explicitly computable fashion, the localization property provides a set of useful formulae for analyzing vector-valued fractional diffusion and non-local differential equations defined on S d - 1. As such analyses require a detailed understanding of operators for which localization occurs, we provide several applications of the result in the context of non-local differential equations.
NASA Astrophysics Data System (ADS)
Hagyard, M. J.; Cumings, N. P.; West, E. A.; Smith, J. E.
1982-09-01
The NASA/Marshall Space Flight Center's solar vector magnetograph system is described; this system allows measurements of all components of the Sun's photospheric magnetic field over a 5 × 5 or 2.0 × 2.0 arc min square field-of-view with an optimum time resolution of ˜ 100 s and an optimum signal-to-noise of ˜1600. The basic system components are described, including the optics, detector, digital system and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration. Scientific investigations which utilize the unique characteristics of the instrument are described and typical results are presented.
NASA Astrophysics Data System (ADS)
Hagyard, M. J.; Cumings, N. P.; West, E. A.
1981-02-01
The NASA/Marshall Space Flight Center's solar vector magnetograph system allows measurements of all components of the Sun's photospheric magnetic field over a 5 x 5 or 2.5 x 2.5 arc min square field of view with an optimum time resolution of approximately 100 sec and an optimum signal-to-noise of approximately 1000. The basic system components are described, including the optics, detector, digital system, and associated electronics. Automatic sequencing and control functions are outlined as well as manual selections of system parameters which afford unique system flexibility. Results of system calibration and performance are presented, including linearity, dynamic range, uniformity, spatial and spectral resolutions, signal-to-noise, electro-optical retardation and polarization calibration.
Multistage vector (MSV) therapeutics.
Wolfram, Joy; Shen, Haifa; Ferrari, Mauro
2015-12-10
One of the greatest challenges in the field of medicine is obtaining controlled distribution of systemically administered therapeutic agents within the body. Indeed, biological barriers such as physical compartmentalization, pressure gradients, and excretion pathways adversely affect localized delivery of drugs to pathological tissue. The diverse nature of these barriers requires the use of multifunctional drug delivery vehicles that can overcome a wide range of sequential obstacles. In this review, we explore the role of multifunctionality in nanomedicine by primarily focusing on multistage vectors (MSVs). The MSV is an example of a promising therapeutic platform that incorporates several components, including a microparticle, nanoparticles, and small molecules. In particular, these components are activated in a sequential manner in order to successively address transport barriers. PMID:26264836
Solar imaging vector magnetograph
NASA Technical Reports Server (NTRS)
Canfield, Richard C.
1993-01-01
This report describes an instrument which has been constructed at the University of Hawaii to make observations of the magnetic field in solar active regions. Detailed knowledge of active region magnetic structures is crucial to understanding many solar phenomena, because the magnetic field both defines the morphology of structures seen in the solar atmosphere and is the apparent energy source for solar flares. The new vector magnetograph was conceived in response to a perceived discrepancy between the capabilities of X ray imaging telescopes to be operating during the current solar maximum and those of existing magnetographs. There were no space-based magnetographs planned for this period; the existing ground-based instruments variously suffered from lack of sensitivity, poor time resolution, inadequate spatial resolution or unreliable sites. Yet the studies of flares and their relationship to the solar corona planned for the 1991-1994 maximum absolutely required high quality vector magnetic field measurements. By 'vector' measurements we mean that the observation attempts to deduce the complete strength and direction of the field at the measurement site, rather than just the line of sight component as obtained by a traditional longitudinal magnetograph. Knowledge of the vector field permits one to calculate photospheric electric currents, which might play a part in heating the corona, and to calculate energy stored in coronal magnetic fields as the result of such currents. Information about the strength and direction of magnetic fields in the solar atmosphere can be obtained in a number of ways, but quantitative data is best obtained by observing Zeeman-effect polarization in solar spectral lines. The technique requires measuring the complete state of polarization at one or more wavelengths within a magnetically sensitive line of the solar spectrum. This measurement must be done for each independent spatial point for which one wants magnetic field data. All the
An efficient method for recovering Lyapunov vectors from singular vectors
NASA Astrophysics Data System (ADS)
Wolfe, Christopher L.; Samelson, Roger M.
2007-05-01
Lyapunov vectors are natural generalizations of normal modes for linear disturbances to aperiodic deterministic flows and offer insights into the physical mechanisms of aperiodic flow and the maintenance of chaos. Most standard techniques for computing Lyapunov vectors produce results which are norm-dependent and lack invariance under the linearized flow (except for the leading Lyapunov vector) and these features can make computation and physical interpretation problematic. An efficient, norm-independent method for constructing the n most rapidly growing Lyapunov vectors from n - 1 leading forward and n leading backward asymptotic singular vectors is proposed. The Lyapunov vectors so constructed are invariant under the linearized flow in the sense that, once computed at one time, they are defined, in principle, for all time through the tangent linear propagator. An analogous method allows the construction of the n most rapidly decaying Lyapunov vectors from n decaying forward and n - 1 decaying backward singular vectors. This method is demonstrated using two low-order geophysical models.
A new radar determination of the spin vector of Venus
NASA Technical Reports Server (NTRS)
Zohar, S.; Goldstein, R. M.; Rumsey, H. C.
1980-01-01
Two radar observations of a set of three relatively small features on the surface of Venus have facilitated a refined determination of the spin vector of Venus. The period is found to be 243.019 + or 0.014 days, while the obliquity is 177.22 + or - 0.18 deg. The effects of deviations from exact sphericity on the interpretation of the measurements are discussed at length and the question of resonance with earth is reexamined.
Round Randomized Learning Vector Quantization for Brain Tumor Imaging
2016-01-01
Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807
Round Randomized Learning Vector Quantization for Brain Tumor Imaging.
Sheikh Abdullah, Siti Norul Huda; Bohani, Farah Aqilah; Nayef, Baher H; Sahran, Shahnorbanun; Al Akash, Omar; Iqbal Hussain, Rizuana; Ismail, Fuad
2016-01-01
Brain magnetic resonance imaging (MRI) classification into normal and abnormal is a critical and challenging task. Owing to that, several medical imaging classification techniques have been devised in which Learning Vector Quantization (LVQ) is amongst the potential. The main goal of this paper is to enhance the performance of LVQ technique in order to gain higher accuracy detection for brain tumor in MRIs. The classical way of selecting the winner code vector in LVQ is to measure the distance between the input vector and the codebook vectors using Euclidean distance function. In order to improve the winner selection technique, round off function is employed along with the Euclidean distance function. Moreover, in competitive learning classifiers, the fitting model is highly dependent on the class distribution. Therefore this paper proposed a multiresampling technique for which better class distribution can be achieved. This multiresampling is executed by using random selection via preclassification. The test data sample used are the brain tumor magnetic resonance images collected from Universiti Kebangsaan Malaysia Medical Center and UCI benchmark data sets. Comparative studies showed that the proposed methods with promising results are LVQ1, Multipass LVQ, Hierarchical LVQ, Multilayer Perceptron, and Radial Basis Function. PMID:27516807
Vectors on the Basketball Court
ERIC Educational Resources Information Center
Bergman, Daniel
2010-01-01
An Idea Bank published in the April/May 2009 issue of "The Science Teacher" describes an experiential physics lesson on vectors and vector addition (Brown 2009). Like its football predecessor, the basketball-based investigation presented in this Idea Bank addresses National Science Education Standards Content B, Physical Science, 9-12 (NRC 1996)…
Bubble vector in automatic merging
NASA Technical Reports Server (NTRS)
Pamidi, P. R.; Butler, T. G.
1987-01-01
It is shown that it is within the capability of the DMAP language to build a set of vectors that can grow incrementally to be applied automatically and economically within a DMAP loop that serves to append sub-matrices that are generated within a loop to a core matrix. The method of constructing such vectors is explained.
GPU Accelerated Vector Median Filter
NASA Technical Reports Server (NTRS)
Aras, Rifat; Shen, Yuzhong
2011-01-01
Noise reduction is an important step for most image processing tasks. For three channel color images, a widely used technique is vector median filter in which color values of pixels are treated as 3-component vectors. Vector median filters are computationally expensive; for a window size of n x n, each of the n(sup 2) vectors has to be compared with other n(sup 2) - 1 vectors in distances. General purpose computation on graphics processing units (GPUs) is the paradigm of utilizing high-performance many-core GPU architectures for computation tasks that are normally handled by CPUs. In this work. NVIDIA's Compute Unified Device Architecture (CUDA) paradigm is used to accelerate vector median filtering. which has to the best of our knowledge never been done before. The performance of GPU accelerated vector median filter is compared to that of the CPU and MPI-based versions for different image and window sizes, Initial findings of the study showed 100x improvement of performance of vector median filter implementation on GPUs over CPU implementations and further speed-up is expected after more extensive optimizations of the GPU algorithm .
Divergence-based vector quantization.
Villmann, Thomas; Haase, Sven
2011-05-01
Supervised and unsupervised vector quantization methods for classification and clustering traditionally use dissimilarities, frequently taken as Euclidean distances. In this article, we investigate the applicability of divergences instead, focusing on online learning. We deduce the mathematical fundamentals for its utilization in gradient-based online vector quantization algorithms. It bears on the generalized derivatives of the divergences known as Fréchet derivatives in functional analysis, which reduces in finite-dimensional problems to partial derivatives in a natural way. We demonstrate the application of this methodology for widely applied supervised and unsupervised online vector quantization schemes, including self-organizing maps, neural gas, and learning vector quantization. Additionally, principles for hyperparameter optimization and relevance learning for parameterized divergences in the case of supervised vector quantization are given to achieve improved classification accuracy. PMID:21299418
Rice Reoviruses in Insect Vectors.
Wei, Taiyun; Li, Yi
2016-08-01
Rice reoviruses, transmitted by leafhopper or planthopper vectors in a persistent propagative manner, seriously threaten the stability of rice production in Asia. Understanding the mechanisms that enable viral transmission by insect vectors is a key to controlling these viral diseases. This review describes current understanding of replication cycles of rice reoviruses in vector cell lines, transmission barriers, and molecular determinants of vector competence and persistent infection. Despite recent breakthroughs, such as the discoveries of actin-based tubule motility exploited by viruses to overcome transmission barriers and mutually beneficial relationships between viruses and bacterial symbionts, there are still many gaps in our knowledge of transmission mechanisms. Advances in genome sequencing, reverse genetics systems, and molecular technologies will help to address these problems. Investigating the multiple interaction systems among the virus, insect vector, insect symbiont, and plant during natural infection in the field is a central topic for future research on rice reoviruses. PMID:27296147
A neural support vector machine.
Jändel, Magnus
2010-06-01
Support vector machines are state-of-the-art pattern recognition algorithms that are well founded in optimization and generalization theory but not obviously applicable to the brain. This paper presents Bio-SVM, a biologically feasible support vector machine. An unstable associative memory oscillates between support vectors and interacts with a feed-forward classification pathway. Kernel neurons blend support vectors and sensory input. Downstream temporal integration generates the classification. Instant learning of surprising events and off-line tuning of support vector weights trains the system. Emotion-based learning, forgetting trivia, sleep and brain oscillations are phenomena that agree with the Bio-SVM model. A mapping to the olfactory system is suggested. PMID:20092978
Strategies for targeting lentiviral vectors.
Frecha, Cecilia; Szécsi, Judit; Cosset, Francois-Loîc; Verhoeyen, Els
2008-12-01
Vectors derived from retroviruses such as lentiviruses and onco-retroviruses are probably among the most suitable tools to achieve a long-term gene transfer since they allow stable integration of a transgene and its propagation in daughter cells. Lentiviral vectors should be preferred gene delivery vehicles over vectors derived from onco-retroviruses (MLV) since in contrast to the latter they can transduce non-proliferating target cells. Moreover, lentiviral vectors that have the capacity to deliver transgenes into specific tissues are expected to be of great value for various gene transfer approaches in vivo. Here we provide an overview of innovative approaches to upgrade lentiviral vectors for tissue or cell targeting and which have potential for in vivo gene delivery. In this overview we distinguish between three types of lentiviral vector targeting strategies (Fig 1): 1) targeting of vectors at the level of vector-cell entry through lentiviral vector surface modifications; 2) targeting at the level of transgene transcription by insertion of tissue specific promoters into lentiviral vectors; 3) a novel microRNA technology that rather than targeting the 'right' cells will 'detarget' transgene expression from non-target cells while achieving high expression in the target-cell. It is clear that each strategy is of enormous value for several gene therapy approaches but combining these three layers of transgene expression control will offer tools to really overcome several drawbacks in the field such as side-effect of off-target expression, clearance of transgene modified cells by immune response to the transgene and lack of biosecurity and efficiency in in vivo approaches. PMID:19075628
Resonant behavior of dielectric objects (electrostatic resonances).
Fredkin, D R; Mayergoyz, I D
2003-12-19
Resonant behavior of dielectric objects occurs at certain frequencies for which the object permittivity is negative and the free-space wavelength is large in comparison with the object dimensions. Unique physical features of these resonances are studied and a novel technique for the calculation of resonance values of permittivity, and hence resonance frequencies, is proposed. Scale invariance of resonance frequencies, unusually strong orthogonality properties of resonance modes, and a two-dimensional phenomenon of "twin" spectra are reported. The paper concludes with brief discussions of optical controllability of these resonances in semiconductor nanoparticles and a plausible, electrostatic resonance based, mechanism for nucleation and formation of ball lightning. PMID:14754117
Resonant primordial gravitational waves amplification
NASA Astrophysics Data System (ADS)
Lin, Chunshan; Sasaki, Misao
2016-01-01
We propose a mechanism to evade the Lyth bound in models of inflation. We minimally extend the conventional single-field inflation model in general relativity (GR) to a theory with non-vanishing graviton mass in the very early universe. The modification primarily affects the tensor perturbation, while the scalar and vector perturbations are the same as the ones in GR with a single scalar field at least at the level of linear perturbation theory. During the reheating stage, the graviton mass oscillates coherently and leads to resonant amplification of the primordial tensor perturbation. After reheating the graviton mass vanishes and we recover GR.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
The advanced launch system (ALS), is a launch vehicle that is designed to be cost-effective, highly reliable, and operationally efficient with a goal of reducing the cost per pound to orbit. An electromechanical actuation (EMA) system is being developed as an attractive alternative to the hydraulic systems. The controller will integrate 20 kHz resonant link power management and distribution (PMAD) technology and pulse population modulation (PPM) techniques to implement field-oriented vector control (FOVC) of a new advanced induction motor. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a built-in test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance, and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA thrust vector control (TVC) system. The EMA system and work proposed for the future are discussed.
Applying new tools to old problems—experimental studies of resonances in 12C
NASA Astrophysics Data System (ADS)
Kirsebom, O. S.; Fynbo, H. O. U.; Howard, A. M.; Laursen, K. L.
2014-12-01
We report preliminary results from an experimental study of the p + 11B reaction at beam energies of 2.00 MeV, 2.63 MeV and 3.12 MeV, corresponding to three known 0+, 2+ and 3- resonances in 12C at excitation energies of 17.79 MeV, 18.38 MeV and 18.81 MeV. The resonances have small γ-decay branches to lower-lying resonances of the order of 10-6- 10-5. By detecting the three outgoing a particles in coincidence and measuring their momenta, we obtain complete kinematics information. From the combined energy of the α particles we determine the energy of the γ transition. In this way, we identify two previously observed transitions, (0+, 17.79) → (1+, 12.71) and (3-, 18.38) → (3- 9.64), and one new transition, (2+, 18.81) → (1+, 12.71). The results demonstrate the usefulness of γ decay as a probe of the low-lying resonance spectrum of 12C in the search for new broad (cluster) resonances.
1997-10-20
Vector network analyzers are a convenient way to measure scattering parameters of a variety of microwave devices. However, these instruments, unlike oscilloscopes for example, require a relatively high degree of user knowledge and expertise. Due to the complexity of the instrument and of the calibration process, there are many ways in which an incorrect measurement may be produced. The Microwave Project, which is part of Sandia National Laboratories Primary Standards Laboratory, routinely uses check standardsmore » to verify that the network analyzer is operating properly. In the past, these measurements were recorded manually and, sometimes, interpretation of the results was problematic. To aid our measurement assurance process, a software program was developed to automatically measure a check standard and compare the new measurements with an historical database of measurements of the same device. The program acquires new measurement data from selected check standards, plots the new data against the mean and standard deviation of prior data for the same check standard, and updates the database files for the check standard. The program is entirely menu-driven requiring little additional work by the user.« less
Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra
NASA Astrophysics Data System (ADS)
van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian
2016-04-01
We develop techniques for computing the (un)stable manifold at a hyperbolic equilibrium of an analytic vector field. Our approach is based on the so-called parametrization method for invariant manifolds. A feature of this approach is that it leads to a posteriori analysis of truncation errors which, when combined with careful management of round off errors, yields a mathematically rigorous enclosure of the manifold. The main novelty of the present work is that, by conjugating the dynamics on the manifold to a polynomial rather than a linear vector field, the computer-assisted analysis is successful even in the case when the eigenvalues fail to satisfy non-resonance conditions. This generically occurs in parametrized families of vector fields. As an example, we use the method as a crucial ingredient in a computational existence proof of a connecting orbit in an amplitude equation related to a pattern formation model that features eigenvalue resonances.
Computing (Un)stable Manifolds with Validated Error Bounds: Non-resonant and Resonant Spectra
NASA Astrophysics Data System (ADS)
van den Berg, Jan Bouwe; Mireles James, Jason D.; Reinhardt, Christian
2016-08-01
We develop techniques for computing the (un)stable manifold at a hyperbolic equilibrium of an analytic vector field. Our approach is based on the so-called parametrization method for invariant manifolds. A feature of this approach is that it leads to a posteriori analysis of truncation errors which, when combined with careful management of round off errors, yields a mathematically rigorous enclosure of the manifold. The main novelty of the present work is that, by conjugating the dynamics on the manifold to a polynomial rather than a linear vector field, the computer-assisted analysis is successful even in the case when the eigenvalues fail to satisfy non-resonance conditions. This generically occurs in parametrized families of vector fields. As an example, we use the method as a crucial ingredient in a computational existence proof of a connecting orbit in an amplitude equation related to a pattern formation model that features eigenvalue resonances.
Vector-vector production in photon-photon interactions
Ronan, M.T.
1988-12-09
Measurements of exclusive untagged /rho//sup 0//rho//sup 0/, /rho//phi/, K/sup *//bar K//sup */, and /rho/..omega.. production and tagged /rho//sup 0//rho//sup 0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented. 10 refs., 9 figs.
Vector-vector production in photon-photon interactions
Ronan, M. T.
1989-04-25
Measurements of exclusive untagged /rho//sup 0//rho0/,/rho//phi/,/ital K//sup *//ital K/bar /*/, and /rho/..omega.. production and tagged /rho//sup 0//rho0/ production in photon-photon interactions by the TPC/Two-Gamma experiment are reviewed. Comparisons to the results of other experiments and to models of vector-vector production are made. Fits to the data following a four quark model prescription for vector meson pair production are also presented.
Chikungunya Virus–Vector Interactions
Coffey, Lark L.; Failloux, Anna-Bella; Weaver, Scott C.
2014-01-01
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes chikungunya fever, a severe, debilitating disease that often produces chronic arthralgia. Since 2004, CHIKV has emerged in Africa, Indian Ocean islands, Asia, Europe, and the Americas, causing millions of human infections. Central to understanding CHIKV emergence is knowledge of the natural ecology of transmission and vector infection dynamics. This review presents current understanding of CHIKV infection dynamics in mosquito vectors and its relationship to human disease emergence. The following topics are reviewed: CHIKV infection and vector life history traits including transmission cycles, genetic origins, distribution, emergence and spread, dispersal, vector competence, vector immunity and microbial interactions, and co-infection by CHIKV and other arboviruses. The genetics of vector susceptibility and host range changes, population heterogeneity and selection for the fittest viral genomes, dual host cycling and its impact on CHIKV adaptation, viral bottlenecks and intrahost diversity, and adaptive constraints on CHIKV evolution are also discussed. The potential for CHIKV re-emergence and expansion into new areas and prospects for prevention via vector control are also briefly reviewed. PMID:25421891
Enhancing poxvirus vectors vaccine immunogenicity
García-Arriaza, Juan; Esteban, Mariano
2014-01-01
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought. PMID:25424927
Emerging Vector-Borne Diseases - Incidence through Vectors.
Savić, Sara; Vidić, Branka; Grgić, Zivoslav; Potkonjak, Aleksandar; Spasojevic, Ljubica
2014-01-01
Vector-borne diseases use to be a major public health concern only in tropical and subtropical areas, but today they are an emerging threat for the continental and developed countries also. Nowadays, in intercontinental countries, there is a struggle with emerging diseases, which have found their way to appear through vectors. Vector-borne zoonotic diseases occur when vectors, animal hosts, climate conditions, pathogens, and susceptible human population exist at the same time, at the same place. Global climate change is predicted to lead to an increase in vector-borne infectious diseases and disease outbreaks. It could affect the range and population of pathogens, host and vectors, transmission season, etc. Reliable surveillance for diseases that are most likely to emerge is required. Canine vector-borne diseases represent a complex group of diseases including anaplasmosis, babesiosis, bartonellosis, borreliosis, dirofilariosis, ehrlichiosis, and leishmaniosis. Some of these diseases cause serious clinical symptoms in dogs and some of them have a zoonotic potential with an effect to public health. It is expected from veterinarians in coordination with medical doctors to play a fundamental role at primarily prevention and then treatment of vector-borne diseases in dogs. The One Health concept has to be integrated into the struggle against emerging diseases. During a 4-year period, from 2009 to 2013, a total number of 551 dog samples were analyzed for vector-borne diseases (borreliosis, babesiosis, ehrlichiosis, anaplasmosis, dirofilariosis, and leishmaniasis) in routine laboratory work. The analysis was done by serological tests - ELISA for borreliosis, dirofilariosis, and leishmaniasis, modified Knott test for dirofilariosis, and blood smear for babesiosis, ehrlichiosis, and anaplasmosis. This number of samples represented 75% of total number of samples that were sent for analysis for different diseases in dogs. Annually, on average more then half of the samples
Vector statistics of LANDSAT imagery
NASA Technical Reports Server (NTRS)
Jayroe, R. R., Jr.; Underwood, D.
1977-01-01
A digitized multispectral image, such as LANDSAT data, is composed of numerous four dimensional vectors, which quantitatively describe the ground scene from which the data are acquired. The statistics of unique vectors that occur in LANDSAT imagery are studied to determine if that information can provide some guidance on reducing image processing costs. A second purpose of this report is to investigate how the vector statistics are changed by various types of image processing techniques and determine if that information can be useful in choosing one processing approach over another.
Baculovirus as a vaccine vector
Lu, Hsin-Yu; Chen, Yi-Hsuan; Liu, Hung-Jen
2012-01-01
Baculovirus is extensively utilized as an excellent tool for production of recombinant protein in insect cells. Baculovirus infects insects in nature and is non-pathogenic to humans. In addition to insect cells, baculovirus is capable of transducing a broad range of animal cells. Due to its biosafety, large cloning capacity, low cytotoxicity, and non-replication nature in the transduced cells as well as the ease of manipulation and production, baculovirus has been utilized as RNA interference mediators, gene delivery vectors, and vaccine vectors for a wide variety of applications. This article focuses on the utilization of baculoviruses as vaccine vectors to prepare antigen or subunit vaccines. PMID:22705893
Are Bred Vectors The Same As Lyapunov Vectors?
NASA Astrophysics Data System (ADS)
Kalnay, E.; Corazza, M.; Cai, M.
Regional loss of predictability is an indication of the instability of the underlying flow, where small errors in the initial conditions (or imperfections in the model) grow to large amplitudes in finite times. The stability properties of evolving flows have been studied using Lyapunov vectors (e.g., Alligood et al, 1996, Ott, 1993, Kalnay, 2002), singular vectors (e.g., Lorenz, 1965, Farrell, 1988, Molteni and Palmer, 1993), and, more recently, with bred vectors (e.g., Szunyogh et al, 1997, Cai et al, 2001). Bred vectors (BVs) are, by construction, closely related to Lyapunov vectors (LVs). In fact, after an infinitely long breeding time, and with the use of infinitesimal ampli- tudes, bred vectors are identical to leading Lyapunov vectors. In practical applications, however, bred vectors are different from Lyapunov vectors in two important ways: a) bred vectors are never globally orthogonalized and are intrinsically local in space and time, and b) they are finite-amplitude, finite-time vectors. These two differences are very significant in a dynamical system whose size is very large. For example, the at- mosphere is large enough to have "room" for several synoptic scale instabilities (e.g., storms) to develop independently in different regions (say, North America and Aus- tralia), and it is complex enough to have several different possible types of instabilities (such as barotropic, baroclinic, convective, and even Brownian motion). Bred vectors share some of their properties with leading LVs (Corazza et al, 2001a, 2001b, Toth and Kalnay, 1993, 1997, Cai et al, 2001). For example, 1) Bred vectors are independent of the norm used to define the size of the perturba- tion. Corazza et al. (2001) showed that bred vectors obtained using a potential enstro- phy norm were indistinguishable from bred vectors obtained using a streamfunction squared norm, in contrast with singular vectors. 2) Bred vectors are independent of the length of the rescaling period as long as the
If It's Resonance, What is Resonating?
ERIC Educational Resources Information Center
Kerber, Robert C.
2006-01-01
The phenomenon under the name "resonance," which, is based on the mathematical analogy between mechanical resonance and the behavior of wave functions in quantum mechanical exchange phenomena was described. The resonating system does not have a structure intermediate between those involved in the resonance, but instead a structure which is further…
Application of Gaussian moment method to a gene autoregulation model of rational vector field
NASA Astrophysics Data System (ADS)
Kang, Yan-Mei; Chen, Xi
2016-07-01
We take a lambda expression autoregulation model driven by multiplicative and additive noises as example to extend the Gaussian moment method from nonlinear stochastic systems of polynomial vector field to noisy biochemical systems of rational polynomial vector field. As a direct application of the extended method, we also disclose the phenomenon of stochastic resonance. It is found that the transcription rate can inhibit the stochastic resonant effect, but the degradation rate may enhance the phenomenon. These observations should be helpful in understanding the functional role of noise in gene autoregulation.
Formation of SiO by radiative association: the impact of resonances
NASA Astrophysics Data System (ADS)
Forrey, Robert C.; McLaughlin, Brendan M.; Babb, James F.; Stancil, Phillip C.
2016-05-01
Detailed quantum chemistry calculations within the MRCI+Q approximation are presented using an aug-cc-pV6Z (AV6Z) basis set, for the potential energy curves and transition dipole moments between low lying molecular states of singlet spin symmetry for the SiO molecule. The high quality molecular data are used to obtain radiative association cross sections and rate coefficients for collisions between ground state Si and O atoms. Quantal methods are used and compared with semiclassical results. We find that the resonance features present in the quantum mechanical cross sections play a significant role, enhancing the rate coefficients at low temperatures by several orders of magnitude. These new molecular formation rates will therefore have important implications for applications in astrophysics. Supported by NSF and NASA.
Search for solar axions produced by Primakoff conversion using resonant absorption by 169Tm nuclei
NASA Astrophysics Data System (ADS)
Derbin, A. V.; Bakhlanov, S. V.; Egorov, A. I.; Mitropol'Sky, I. A.; Muratova, V. N.; Semenov, D. A.; Unzhakov, E. V.
2009-07-01
The search for resonant absorption of the Primakoff solar axions by 169Tm nuclei have been performed. Such an absorption should lead to the excitation of low-lying nuclear energy level: A+Tm169→Tm∗169→Tm169+γ (8.41 keV). The Si(Li) detector and 169Tm target placed inside the low-background setup were used for that purpose. As a result, a new restriction on the axion-photon coupling and axion mass was obtained: g(GeV)ṡm(eV)⩽1.36×10 (90% c.l.). In model of hadronic axion this restriction corresponds to the upper limit on axion mass —m⩽191 eV for 90% c.l.
Nuclear magnetic resonance (NMR) imaging of Arnold-Chiari type I malformation with hydromyelia
DeLaPaz, R.L.; Brady, T.J.; Buonanno, F.S.; New, P.F.; Kistler, J.P.; McGinnis, B.D.; Pykett, I.L.; Taveras, J.M.
1983-02-01
Saturation recovery nuclear magnetic resonance (NMR) images and metrizamide computed tomography (CT) scans were obtained in an adult patient with a clinical history suggestive of syringomyelia. Both NMR and CT studies showed low lying cerebellar tonsils. The CT study demonstrated central cavitation of the spinal cord from the midthoracic to midcervical levels but could not exclude an intramedullary soft tissue mass at the cervico-medullary junction. The NMR images in transverse, coronal, and sagittal planes demonstrated extension of an enlarged central spinal cord cerebrospinal fluid space to the cervico-medullary junction. This was felt to be strong evidence for exclusion of an intramedullary soft tissue mass and in favor of a diagnosis of Arnold-Chiari Type I malformation with hydromyelia. The noninvasive nature of spinal cord and cervico-medullary junction evaluation with NMR is emphasized.
Solid rocket thrust vector control
NASA Technical Reports Server (NTRS)
1974-01-01
Thrust vector control systems that superimpose a side force on the motor thrust, steering being achieved by the side force causing a moment about the vehicle center of gravity are described. A brief review of thrust vector control systems is presented, and two systems, flexible joint and liquid injection, are treated in detail. Treatment of the flexible-joint thrust vector control system is limited to the design of the flexible joint and its insulation against hot motor gases. Treatment of the liquid injection thrust vector control system is limited to discussion of the injectant, valves, piping, storage tanks, and pressurization system; no evaluation is presented of the nozzle except for (1) the effect of the injectant and erosion at the injection port and (2) the effect of injection on pressure distribution within the nozzle.
Experiments With Magnetic Vector Potential
ERIC Educational Resources Information Center
Skinner, J. W.
1975-01-01
Describes the experimental apparatus and method for the study of magnetic vector potential (MVP). Includes a discussion of inherent errors in the calculations involved, precision of the results, and further applications of MVP. (GS)
Effective Masses of Vector Polarons
NASA Astrophysics Data System (ADS)
Foell, Charles; Clougherty, Dennis
2006-03-01
We consider the vector polarons of a one-dimensional model of an electron in a doubly (or nearly) degenerate band that couples to two elastic distortions, as described previously by Clougherty and Foell [1]. A variational approach is used to analytically and numerically calculate effective masses of the three types of vector polarons. [1] D. P. Clougherty and C. A. Foell, Phys. Rev. B 70, 052301 (2004).
Coulomb problem for vector bosons
Kuchiev, M.Yu.; Flambaum, V.V.
2006-05-01
The Coulomb problem for vector bosons W{sup {+-}} incorporates a well-known difficulty; the charge of the boson localized in a close vicinity of the attractive Coulomb center proves to be infinite. The paradox is shown to be resolved by the QED vacuum polarization, which brings in a strong effective repulsion that eradicates the infinite charge of the boson on the Coulomb center. This property allows one to define the Coulomb problem for vector bosons properly.
Molecular dynamics on vector computers
NASA Astrophysics Data System (ADS)
Sullivan, F.; Mountain, R. D.; Oconnell, J.
1985-10-01
An algorithm called the method of lights (MOL) has been developed for the computerized simulation of molecular dynamics. The MOL, implemented on the CYBER 205 computer, is based on sorting and reformulating the manner in which neighbor lists are compiled, and it uses data structures compatible with specialized vector statements that perform parallel computations. The MOL is found to reduce running time over standard methods in scalar form, and vectorization is shown to produce an order-of-magnitude reduction in execution time.
Axisymmetric Coanda-assisted vectoring
NASA Astrophysics Data System (ADS)
Allen, Dustin; Smith, Barton L.
2009-01-01
An experimental demonstration of a jet vectoring technique used in our novel spray method called Coanda-assisted Spray Manipulation (CSM) is presented. CSM makes use of the Coanda effect on axisymmetric geometries through the interaction of two jets: a primary jet and a control jet. The primary jet has larger volume flow rate but generally a smaller momentum flux than the control jet. The primary jet flows through the center of a rounded collar. The control jet is parallel to the primary and is adjacent to the convex collar. The Reynolds number range for the primary jet at the exit plane was between 20,000 and 80,000. The flow was in the incompressible Mach number range (Mach < 0.3). The control jet attaches to the convex wall and vectors according to known Coanda effect principles, entraining and vectoring the primary jet, resulting in controllable r - θ directional spraying. Several annular control slots and collar radii were tested over a range of momentum flux ratios to determine the effects of these variables on the vectored jet angle and spreading. Two and Three-component Particle Image Velocimetry systems were used to determine the vectoring angle and the profile of the combined jet in each experiment. The experiments show that the control slot and expansion radius, along with the momentum ratios of the two jets predominantly affected the vectoring angle and profile of the combined jets.
Vectoring of parallel synthetic jets
NASA Astrophysics Data System (ADS)
Berk, Tim; Ganapathisubramani, Bharathram; Gomit, Guillaume
2015-11-01
A pair of parallel synthetic jets can be vectored by applying a phase difference between the two driving signals. The resulting jet can be merged or bifurcated and either vectored towards the actuator leading in phase or the actuator lagging in phase. In the present study, the influence of phase difference and Strouhal number on the vectoring behaviour is examined experimentally. Phase-locked vorticity fields, measured using Particle Image Velocimetry (PIV), are used to track vortex pairs. The physical mechanisms that explain the diversity in vectoring behaviour are observed based on the vortex trajectories. For a fixed phase difference, the vectoring behaviour is shown to be primarily influenced by pinch-off time of vortex rings generated by the synthetic jets. Beyond a certain formation number, the pinch-off timescale becomes invariant. In this region, the vectoring behaviour is determined by the distance between subsequent vortex rings. We acknowledge the financial support from the European Research Council (ERC grant agreement no. 277472).
Convert Acoustic Resonances to Orbital Angular Momentum
NASA Astrophysics Data System (ADS)
Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-chun; Zhang, Likun
2016-07-01
We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM.
Convert Acoustic Resonances to Orbital Angular Momentum.
Jiang, Xue; Li, Yong; Liang, Bin; Cheng, Jian-Chun; Zhang, Likun
2016-07-15
We use acoustic resonances in a planar layer of half-wavelength thickness to twist wave vectors of an in-coming plane wave into a spiral phase dislocation of an outgoing vortex beam with orbital angular momentum (OAM). The mechanism is numerically and experimentally demonstrated by producing an airborne Bessel-like vortex beam. Our acoustic resonance-based OAM production differs from existing means for OAM production by enormous phased spiral sources or by elaborate spiral profiles. Our study can advance the capability of generating phase dislocated wave fields for further applications of acoustic OAM. PMID:27472113
New Insight into the Pygmy Dipole Resonance in Stable Nuclei
Neumann-Cosel, P. von
2008-11-11
Two examples of recent work on the structure of low-energy electric dipole modes are presented. The first part discusses the systematics of the pygmy dipole resonance (PDR) in stable tin isotopes deduced from high-resolution ({gamma},{gamma}') experiments. These help to distinguish between microscopic QRPA calculations based on either a relativistic or a nonrelativistic mean-field description, predicting significantly different properties of the PDR. The second part presents attempts to unravel the structure of dipoles modes at energies below the giant dipole resonance (GDR) in {sup 208}Pb with a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg.
Deciphering the spin of new resonances in Higgsless models
Alves, Alexandre; Eboli, O. J. P.; Gonzalez-Garcia, M. C.; Mizukoshi, J. K.
2009-02-01
We study the potential of the CERN large hadron collider to probe the spin of new massive vector boson resonances predicted by Higgsless models. We consider its production via weak boson fusion which relies only on the coupling between the new resonances and the weak gauge bosons. We show that the large hadron collider will be able to unravel the spin of the particles associated with the partial restoration of unitarity in vector boson scattering for integrated luminosities of 150-560 fb{sup -1}, depending on the new state mass and on the method used in the analyses.
Vectors for cancer gene therapy.
Zhang, J; Russell, S J
1996-09-01
Many viral and non-viral vector systems have now been developed for gene therapy applications. In this article, the pros and cons of these vector systems are discussed in relation to the different cancer gene therapy strategies. The protocols used in cancer gene therapy can be broadly divided into six categories including gene transfer to explanted cells for use as cell-based cancer vaccines; gene transfer to a small number of tumour cells in situ to achieve a vaccine effect; gene transfer to vascular endothelial cells (VECs) lining the blood vessels of the tumour to interfere with tumour angiogenesis; gene transfer to T lymphocytes to enhance their antitumour effector capability; gene transfer to haemopoietic stem cells (HSCs) to enhance their resistance to cytotoxic drugs and gene transfer to a large number of tumour cells in situ to achieve nonimmune tumour reduction with or without bystander effect. Each of the six strategies makes unique demands on the vector system and these are discussed with reference to currently available vectors. Aspects of vector biology that are in need of further development are discussed in some detail. The final section points to the potential use of replicating viruses as delivery vehicles for efficient in vivo gene transfer to disseminated cancers. PMID:9034598
A generalized nonlocal vector calculus
NASA Astrophysics Data System (ADS)
Alali, Bacim; Liu, Kuo; Gunzburger, Max
2015-10-01
A nonlocal vector calculus was introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) that has proved useful for the analysis of the peridynamics model of nonlocal mechanics and nonlocal diffusion models. A formulation is developed that provides a more general setting for the nonlocal vector calculus that is independent of particular nonlocal models. It is shown that general nonlocal calculus operators are integral operators with specific integral kernels. General nonlocal calculus properties are developed, including nonlocal integration by parts formula and Green's identities. The nonlocal vector calculus introduced in Du et al. (Math Model Meth Appl Sci 23:493-540, 2013) is shown to be recoverable from the general formulation as a special example. This special nonlocal vector calculus is used to reformulate the peridynamics equation of motion in terms of the nonlocal gradient operator and its adjoint. A new example of nonlocal vector calculus operators is introduced, which shows the potential use of the general formulation for general nonlocal models.
Vector Encoding in Biochemical Networks
NASA Astrophysics Data System (ADS)
Potter, Garrett; Sun, Bo
Encoding of environmental cues via biochemical signaling pathways is of vital importance in the transmission of information for cells in a network. The current literature assumes a single cell state is used to encode information, however, recent research suggests the optimal strategy utilizes a vector of cell states sampled at various time points. To elucidate the optimal sampling strategy for vector encoding, we take an information theoretic approach and determine the mutual information of the calcium signaling dynamics obtained from fibroblast cells perturbed with different concentrations of ATP. Specifically, we analyze the sampling strategies under the cases of fixed and non-fixed vector dimension as well as the efficiency of these strategies. Our results show that sampling with greater frequency is optimal in the case of non-fixed vector dimension but that, in general, a lower sampling frequency is best from both a fixed vector dimension and efficiency standpoint. Further, we find the use of a simple modified Ornstein-Uhlenbeck process as a model qualitatively captures many of our experimental results suggesting that sampling in biochemical networks is based on a few basic components.
Shriner, J.F. Jr.
1990-11-01
This report summarizes the progress on Grant No. FG05-87ER40353 during the period February 1, 1990 to November 30, 1990. The primary focus of the research during this period has been on fluctuations of nuclear levels and possible connections with fundamental symmetries. In this paper the analysis of low-lying nuclear levels for a large collection of nuclides is discussed, and the analysis of just the levels in {sup 116}Sn is presented. The current status experiments to study fluctuation properties in {sup 30}P is summarized, while the development of hardware and software for the next phase of these measurements in outlined. We discuss the early stages of a project to search for a particular type of detailed-balance violation.
Symbolic vector analysis in plasma physics
NASA Astrophysics Data System (ADS)
Qin, H.; Tang, W. M.; Rewoldt, G.
1999-01-01
Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the underlying coordinate systems. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. Besides the basic vector analysis functions, the package provides asymptotic capabilities, 2D vector analysis notation, and a simple interface for users to define their own coordinate systems. These features will benefit physicists and applied mathematicians in their research where complicated vector analysis in complicated coordinate systems is required. Several applications of this symbolic vector analysis package to plasma physics are also given.
Di-photon resonance and Dark Matter as heavy pions
NASA Astrophysics Data System (ADS)
Redi, Michele; Strumia, Alessandro; Tesi, Andrea; Vigiani, Elena
2016-05-01
We analyse confining gauge theories where the 750 GeV di-photon resonance is a composite techni-pion that undergoes anomalous decays into SM vectors. These scenarios naturally contain accidentally stable techni-pions Dark Matter candidates. The di-photon resonance can acquire a larger width by decaying into Dark Matter through the CP-violating θ-term of the new gauge theory reproducing the cosmological Dark Matter density as a thermal relic.
Extrapolation methods for vector sequences
NASA Technical Reports Server (NTRS)
Smith, David A.; Ford, William F.; Sidi, Avram
1987-01-01
This paper derives, describes, and compares five extrapolation methods for accelerating convergence of vector sequences or transforming divergent vector sequences to convergent ones. These methods are the scalar epsilon algorithm (SEA), vector epsilon algorithm (VEA), topological epsilon algorithm (TEA), minimal polynomial extrapolation (MPE), and reduced rank extrapolation (RRE). MPE and RRE are first derived and proven to give the exact solution for the right 'essential degree' k. Then, Brezinski's (1975) generalization of the Shanks-Schmidt transform is presented; the generalized form leads from systems of equations to TEA. The necessary connections are then made with SEA and VEA. The algorithms are extended to the nonlinear case by cycling, the error analysis for MPE and VEA is sketched, and the theoretical support for quadratic convergence is discussed. Strategies for practical implementation of the methods are considered.
Gauge Theories of Vector Particles
DOE R&D Accomplishments Database
Glashow, S. L.; Gell-Mann, M.
1961-04-24
The possibility of generalizing the Yang-Mills trick is examined. Thus we seek theories of vector bosons invariant under continuous groups of coordinate-dependent linear transformations. All such theories may be expressed as superpositions of certain "simple" theories; we show that each "simple theory is associated with a simple Lie algebra. We may introduce mass terms for the vector bosons at the price of destroying the gauge-invariance for coordinate-dependent gauge functions. The theories corresponding to three particular simple Lie algebras - those which admit precisely two commuting quantum numbers - are examined in some detail as examples. One of them might play a role in the physics of the strong interactions if there is an underlying super-symmetry, transcending charge independence, that is badly broken. The intermediate vector boson theory of weak interactions is discussed also. The so-called "schizon" model cannot be made to conform to the requirements of partial gauge-invariance.
Toward lattice fractional vector calculus
NASA Astrophysics Data System (ADS)
Tarasov, Vasily E.
2014-09-01
An analog of fractional vector calculus for physical lattice models is suggested. We use an approach based on the models of three-dimensional lattices with long-range inter-particle interactions. The lattice analogs of fractional partial derivatives are represented by kernels of lattice long-range interactions, where the Fourier series transformations of these kernels have a power-law form with respect to wave vector components. In the continuum limit, these lattice partial derivatives give derivatives of non-integer order with respect to coordinates. In the three-dimensional description of the non-local continuum, the fractional differential operators have the form of fractional partial derivatives of the Riesz type. As examples of the applications of the suggested lattice fractional vector calculus, we give lattice models with long-range interactions for the fractional Maxwell equations of non-local continuous media and for the fractional generalization of the Mindlin and Aifantis continuum models of gradient elasticity.
Boosting with Averaged Weight Vectors
NASA Technical Reports Server (NTRS)
Oza, Nikunj C.; Clancy, Daniel (Technical Monitor)
2002-01-01
AdaBoost is a well-known ensemble learning algorithm that constructs its constituent or base models in sequence. A key step in AdaBoost is constructing a distribution over the training examples to create each base model. This distribution, represented as a vector, is constructed to be orthogonal to the vector of mistakes made by the previous base model in the sequence. The idea is to make the next base model's errors uncorrelated with those of the previous model. Some researchers have pointed out the intuition that it is probably better to construct a distribution that is orthogonal to the mistake vectors of all the previous base models, but that this is not always possible. We present an algorithm that attempts to come as close as possible to this goal in an efficient manner. We present experimental results demonstrating significant improvement over AdaBoost and the Totally Corrective boosting algorithm, which also attempts to satisfy this goal.
Regenerative feedback resonant circuit
Jones, A. Mark; Kelly, James F.; McCloy, John S.; McMakin, Douglas L.
2014-09-02
A regenerative feedback resonant circuit for measuring a transient response in a loop is disclosed. The circuit includes an amplifier for generating a signal in the loop. The circuit further includes a resonator having a resonant cavity and a material located within the cavity. The signal sent into the resonator produces a resonant frequency. A variation of the resonant frequency due to perturbations in electromagnetic properties of the material is measured.
Bred vectors, singular vectors, and Lyapunov vectors in simple and complex models
NASA Astrophysics Data System (ADS)
Norwood, Adrienne
We compute and compare three types of vectors frequently used to explore the instability properties of dynamical models, Lyapunov vectors (LVs), singular vectors (SVs), and bred vectors (BVs). The first model is the Lorenz (1963) three-variable model. We find BVs align with the locally fastest growing LV, which is often the second fastest growing global LV. The growth rates of the three types of vectors reveal all predict regime changes and durations of new regimes, as shown for BVs by Evans et al. (2004). The second model is the toy 'atmosphere-ocean model' developed by Pena and Kalnay (2004) coupling three Lorenz (1963) models with different time scales to test the effects of fast and slow modes of growth on the dynamical vectors. A fast 'extratropical atmosphere' is weakly coupled to a fast 'tropical atmosphere' which is strongly coupled to a slow 'ocean' system, the latter coupling imitating the tropical El Nino--Southern Oscillation. BVs separate the fast and slow modes of growth through appropriate selection of the breeding parameters. LVs successfully separate the fast 'extratropics' but cannot completely decouple the 'tropics' from the 'ocean,' leading to 'coupled' LVs that are affected by both systems but mainly dominated by one. SVs identify the fast modes but cannot capture the slow modes until the fast 'extratropics' are replaced with faster 'convection.' The dissimilar behavior of the three types of vectors degrades the similarities of the subspaces they inhabit (Norwood et al. 2013). The third model is a quasi-geostrophic channel model (Rotunno and Bao 1996) that is a simplification of extratropical synoptic-scale motions with baroclinic instabilities only. We were unable to successfully compute LVs for it. However, randomly initialized BVs quickly converge to a single vector that is the leading LV. The last model is the SPEEDY model created by Molteni (2003). It is a simplified general atmospheric circulation model with several types of instabilities
Helper-Dependent Adenoviral Vectors
Rosewell, Amanda; Vetrini, Francesco; Ng, Philip
2012-01-01
Helper-dependent adenoviral vectors are devoid of all viral coding sequences, possess a large cloning capacity, and can efficiently transduce a wide variety of cell types from various species independent of the cell cycle to mediate long-term transgene expression without chronic toxicity. These non-integrating vectors hold tremendous potential for a variety of gene transfer and gene therapy applications. Here, we review the production technologies, applications, obstacles to clinical translation and their potential resolutions, and the future challenges and unanswered questions regarding this promising gene transfer technology. PMID:24533227
Vector Acoustics, Vector Sensors, and 3D Underwater Imaging
NASA Astrophysics Data System (ADS)
Lindwall, D.
2007-12-01
Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.
Optically Pumped Nuclear Magnetic Resonance in the Quantum Hall Regimes
NASA Astrophysics Data System (ADS)
Barrett, S. E.; Tycko, R.; Dabbagh, G.; Pfeiffer, L. N.; West, K. W.
1996-03-01
Optical pumping enables the direct detection of the nuclear magnetic resonance signal of ^71Ga nuclei located in an electron doped GaAs quantum well.footnote S. E. Barrett et al., Phys. Rev. Lett. 72, 1368 (1994) Using this technique, measurements of the Knight shiftfootnote S. E. Barrett et al., Phys. Rev. Lett. 74, 5112 (1995) and spin-lattice relaxation timefootnote R. Tycko et al., Science 268, 1460 (1995) have been carried out in the Quantum Hall regimes. It is clear from these measurements that probing the electronic spin degree of freedom can lead to new insights about the effect of interactions on the many-body ground state and low-lying excited states of these systems. For example, the Knight shift measurements provided the first experimental support for the recent theoretical predictionsfootnote S. L. Sondhi et al., Phys. Rev. B 47, 16419 (1993); H. A. Fertig et al., Phys. Rev. B 50, 11018 (1994) that the charged excitations of the ν = 1 ground state are novel spin textures called skyrmions. The current status of this picture will be discussed.
Vector plotting as an indication of the approach to flutter
NASA Technical Reports Server (NTRS)
Broadbent, E. G.
1975-01-01
A binary flexure-torsion analysis was made to check theoretically a method for predicting flutter which depends on plotting vectorially the amplitudes of response relative to the exciting force and extracting the relevant damping rate. The results of this calculation are given in graphs both of the vector plots themselves and of the estimated damping rate against forward speed. The estimated damping rates are compared with calculated values. The method has the advantage that in a flight flutter test damping can be estimated from continuous excitation records: the method is an extension of the Kennedy and Pancu technique used in ground resonance testing.
A diphoton resonance from bulk RS
NASA Astrophysics Data System (ADS)
Csáki, Csaba; Randall, Lisa
2016-07-01
Recent LHC data hinted at a 750 GeV mass resonance that decays into two photons. A significant feature of this resonance is that its decays to any other Standard Model particles would be too low to be detected so far. Such a state has a compelling explanation in terms of a scalar or a pseudoscalar that is strongly coupled to vector states charged under the Standard Model gauge groups. Such a scenario is readily accommodated in bulk RS with a scalar localized in the bulk away from but close to the Higgs. Turning this around, we argue that a good way to find the elusive bulk RS model might be the search for a resonance with prominent couplings to gauge bosons.
NASA Technical Reports Server (NTRS)
Powers, W. D.
1975-01-01
The feasibility of utilizing hydrogen as an energy vector is considered, with special attention given to means of hydrogen production. The state-of-the-art in thermochemical processes is reviewed, and criteria for the technical and economic feasibility of large-scale thermochemical water splitting processes are presented. The production of hydrogen from coal and from photolysis of water is discussed.
Portfolio Analysis for Vector Calculus
ERIC Educational Resources Information Center
Kaplan, Samuel R.
2015-01-01
Classic stock portfolio analysis provides an applied context for Lagrange multipliers that undergraduate students appreciate. Although modern methods of portfolio analysis are beyond the scope of vector calculus, classic methods reinforce the utility of this material. This paper discusses how to introduce classic stock portfolio analysis in a…
Biosafety Features of Lentiviral Vectors
Schambach, Axel; Zychlinski, Daniela; Ehrnstroem, Birgitta
2013-01-01
Abstract Over the past decades, lentiviral vectors have evolved as a benchmark tool for stable gene transfer into cells with a high replicative potential. Their relatively flexible genome and ability to transduce many forms of nondividing cells, combined with the potential for cell-specific pseudotyping, provides a rich resource for numerous applications in experimental platforms and therapeutic settings. Here, we give an overview of important biosafety features of lentiviral vectors, with detailed discussion of (i) the principles of the lentiviral split-genome design used for the construction of packaging cells; (ii) the relevance of modifications introduced into the lentiviral long terminal repeat (deletion of enhancer/promoter sequences and introduction of insulators); (iii) the basic features of mRNA processing, including the Rev/Rev-responsive element (RRE) interaction and the modifications of the 3′ untranslated region of lentiviral vectors with various post-transcriptional regulatory elements affecting transcriptional termination, polyadenylation, and differentiation-specific degradation of mRNA; and (iv) the characteristic integration pattern with the associated risk of transcriptional interference with cellular genes. We conclude with considerations regarding the importance of cell targeting via envelope modifications. Along this course, we address canonical biosafety issues encountered with any type of viral vector: the risks of shedding, mobilization, germline transmission, immunogenicity, and insertional mutagenesis. PMID:23311447
Primer vector theory and applications
NASA Technical Reports Server (NTRS)
Jezewski, D. J.
1975-01-01
A method developed to compute two-body, optimal, N-impulse trajectories was presented. The necessary conditions established define the gradient structure of the primer vector and its derivative for any set of boundary conditions and any number of impulses. Inequality constraints, a conjugate gradient iterator technique, and the use of a penalty function were also discussed.
Transcriptomics and disease vector control
2010-01-01
Next-generation sequencing can be used to compare transcriptomes under different conditions. A study in BMC Genomics applies this approach to investigating the effects of exposure to a range of xenobiotics on changes in gene expression in the larvae of Aedes aegypti, the mosquito vector of dengue fever. See research article http://www.biomedcentral.com/1471-2164/11/216 PMID:20525113
Vector ecology of equine piroplasmosis
Technology Transfer Automated Retrieval System (TEKTRAN)
Equine piroplasmosis (EP) is a disease of equidae including horses, donkeys, mules and zebras caused by either of two protozoan parasites, Theileria equi or Babesia caballi. These parasites are biologically transmitted between hosts via tick-vectors and although they have inherent differences, they ...
Beam quality measure for vector beams.
Ndagano, Bienvenu; Sroor, Hend; McLaren, Melanie; Rosales-Guzmán, Carmelo; Forbes, Andrew
2016-08-01
Vector beams have found a myriad of applications, from laser materials processing to microscopy, and are now easily produced in the laboratory. They are usually differentiated from scalar beams by qualitative measures, for example, visual inspection of beam profiles after a rotating polarizer. Here we introduce a quantitative beam quality measure for vector beams and demonstrate it on cylindrical vector vortex beams. We show how a single measure can be defined for the vector quality, from 0 (purely scalar) to 1 (purely vector). Our measure is derived from a quantum toolkit, which we show applies to classical vector beams. PMID:27472580
Scalar-vector quantization of medical images.
Mohsenian, N; Shahri, H; Nasrabadi, N M
1996-01-01
A new coding scheme based on the scalar-vector quantizer (SVQ) is developed for compression of medical images. The SVQ is a fixed rate encoder and its rate-distortion performance is close to that of optimal entropy-constrained scalar quantizers (ECSQs) for memoryless sources. The use of a fixed-rate quantizer is expected to eliminate some of the complexity of using variable-length scalar quantizers. When transmission of images over noisy channels is considered, our coding scheme does not suffer from error propagation that is typical of coding schemes using variable-length codes. For a set of magnetic resonance (MR) images, coding results obtained from SVQ and ECSQ at low bit rates are indistinguishable. Furthermore, our encoded images are perceptually indistinguishable from the original when displayed on a monitor. This makes our SVQ-based coder an attractive compression scheme for picture archiving and communication systems (PACS). PACS are currently under study for use in an all-digital radiology environment in hospitals, where reliable transmission, storage, and high fidelity reconstruction of images are desired. PMID:18285124
NASA Astrophysics Data System (ADS)
Roy, P.
2016-05-01
Baryon spectroscopy is an indispensable tool for investigating the nature of strong interaction within baryons. The study of vector-meson photoproduction is expected to improve our understanding of the properties of known baryon resonances and also immensely aid in discovering new higher-mass resonances. Polarization observables, in addition to unpolarized cross sections, are required to identify the contributing resonances to these reactions with minimal ambiguities. Preliminary results from the FROST experiment on beam-polarization observables in γ →p →→p ω as well as γ →p →→p π+π- using a linearly-polarized beam and a transversely-polarized FROzen Spin butanol Target will be presented. The latter reaction will provide important information on N* to (broad) ρ vector-meson decay modes, which is difficult to extract directly from the data.
Fragmentation and systematics of the pygmy dipole resonance in the stable N=82 isotones
Savran, D.; Loeher, B.; Elvers, M.; Endres, J.; Zilges, A.; Fritzsche, M.; Pietralla, N.; Ponomarev, V. Yu.; Romig, C.; Schnorrenberger, L.; Sonnabend, K.
2011-08-15
The low-lying electric dipole (E1) strength in the semimagic nucleus {sup 136}Xe has been measured, which finalizes the systematic survey to investigate the so-called pygmy dipole resonance (PDR) in all stable even N=82 isotones with the method of nuclear resonance fluorescence using real photons in the entrance channel. In all cases, a fragmented resonance-like structure of E1 strength is observed in the energy region 5-8 MeV. An analysis of the fragmentation of the strength reveals that the degree of fragmentation decreases toward the proton-deficient isotones, while the total integrated strength increases, indicating a dependence of the total strength on the neutron-to-proton ratio. The experimental results are compared to microscopic calculations within the quasiparticle phonon model. The calculation includes complex configurations of up to three phonons and is able to reproduce also the fragmentation of the E1 strength, which allows us to draw conclusions on the damping of the PDR. Calculations and experimental data are in good agreement on the degree of fragmentation and also on the integrated strength if the sensitivity limit of the experiments is taken into account.
NASA Astrophysics Data System (ADS)
Zimmermann, Klaus; Lugan, Pierre; Jörder, Felix; Heitz, Nicolai; Schmidt, Maximilian; Bouri, Celsus; Rodriguez, Alberto; Buchleitner, Andreas
2015-01-01
Partial autoionization rates of doubly excited one-dimensional helium in the collinear Zee and eZe configuration are obtained by means of the complex rotation method. The approach presented here relies on a projection of back-rotated resonance wave functions onto singly ionized H{{e}+} channel wave functions and the computation of the corresponding particle fluxes. In spite of the long-range nature of the Coulomb potential between the electrons and the nucleus, an asymptotic region where the fluxes are stationary is clearly observed. Low-lying doubly excited states are found to decay predomintantly into the nearest single-ionization continuum. This approach paves the way for a systematic analysis of the decay rates observed in higher-dimensional models, and of the role of electronic correlations and atomic structure in recent photoionization experiments.
Normal vector magnetocardiogram. I. Correlation with the normal vector ECG.
Nousiainen, J; Oja, S; Malmivuo, J
1994-07-01
The vector magnetocardiogram (VMCG) has been measured with the corrected unipositional VMCG lead system and analyzed statistically in 290 normal subjects. The morphologic study of the QRS waveforms showed that in the right-to-left (X) component, the triphasic qRs waveform appeared in 55% of the subjects. The superoinferior (Y) component was characterized by a prominent S wave in 96% of the subjects, and the anteroposterior (Z) component was also characterized by a prominent S wave in 95% . The VMGs were compared with the vector electrocardiograms (VECG) recorded in a subgroup of 200 subjects, in whom both the VMCG and VECG were available for computer analysis. The normal variability of the spatial vector magnitude measurements was significantly greater in the VMCG than in the VECG. Some similarities were observed in the waveforms of the time-averaged QRS complexes between the VMCG and VECG. Multiple linear regression analysis between the VMCG and VECG showed that maximally 27, 45, and 41% of the variation in the instantaneous QRS X, Y, and Z amplitudes of the VMCG, respectively, could be explained by the instantaneous X, Y, and Z amplitudes of the VECG. PMID:7930985
Deep exclusive charged pi electroproduction above the resonance region
Kaskulov, Murat M.; Mosel, Ulrich
2010-04-15
A description of exclusive charged-pion electroproduction (e,e{sup '}pi{sup +}-) off nucleons at high energies is proposed. The model combines a Regge pole approach with the residual effect of nucleon resonances. The exchanges of pi(140), vector rho(770), and axial-vector a{sub 1}(1260) and b{sub 1}(1235) Regge trajectories are considered. The contribution of nucleon resonances is described using a dual connection between the exclusive hadronic form factors and inclusive deep inelastic structure functions. The model describes the measured longitudinal, transverse, and interference cross sections at the Thomas Jefferson Lab National Accelerator Facility (JLAB) and the Deutsches Elektronen Synchrotron. The scaling behavior of the cross sections is in agreement with JLAB and deeply virtual HERMES data. The results for a polarized beam-spin azimuthal asymmetry in (e-vector,e{sup '}pi{sup +}-) are presented. Model predictions for JLAB at 12 GeV are given.
Webb, Andrew
2014-11-01
Cavity resonators are widely used in electron paramagnetic resonance, very high field magnetic resonance microimaging and also in high field human imaging. The basic principles and designs of different forms of cavity resonators including rectangular, cylindrical, re-entrant, cavity magnetrons, toroidal cavities and dielectric resonators are reviewed. Applications in EPR and MRI are summarized, and finally the topic of traveling wave MRI using the magnet bore as a waveguide is discussed. PMID:25456314
Lentiviral Vectors for Immune Cells Targeting
Froelich, Steven; Tai, April; Wang, Pin
2009-01-01
Lentiviral vectors are efficient gene delivery vehicles suitable for delivering long-term transgene expression in various cell types. Engineering lentiviral vectors to have the capacity to transduce specific cell types is of great interest to advance the translation of lentiviral vectors towards the clinic. Here we provide an overview of innovative approaches to target lentiviral vectors to cells of the immune system. In this overview we distinguish between two types of lentiviral vector targeting strategies: 1) targeting of the vectors to specific cells by lentiviral vector surface modifications, and 2) targeting at the level of transgene transcription by insertion of tissue-specific promoters to drive transgene expression. It is clear that each strategy is of enormous value but ultimately combining these approaches may help reduce the effects of off-target expression and improve the efficiency and saftey of lentiviral vectors for gene therapy. PMID:20085508
Symbolic Vector Analysis in Plasma Physics
Qin, H.; Rewoldt, G.; Tang, W.M.
1997-10-01
Many problems in plasma physics involve substantial amounts of analytical vector calculation. The complexity usually originates from both the vector operations themselves and the choice of underlying coordinate system. A computer algebra package for symbolic vector analysis in general coordinate systems, GeneralVectorAnalysis (GVA), is developed using Mathematica. The modern viewpoint for 3D vector calculus, differential forms on 3-manifolds, is adopted to unify and systematize the vector calculus operations in general coordinate systems. This package will benefit physicists and applied mathematicians in their research where complicated vector analysis is required. It will not only save a huge amount of human brain-power and dramatically improve accuracy, but this package will also be an intelligent tool to assist researchers in finding the right approaches to their problems. Several applications of this symbolic vector analysis package to plasma physics are also given.
Magnetic resonance of slotted circular cylinder resonators
NASA Astrophysics Data System (ADS)
Du, Junjie; Liu, Shiyang; Lin, Zhifang; Chui, S. T.
2008-07-01
By a rigorous full-wave approach, a systemic study is made on the magnetic resonance of slotted circular cylinder resonators (SCCRs) made of a perfect conductor for the lossless case. This is a two-dimensional analog of the split-ring resonator and may serve as an alternative type of essential constituent of electromagnetic metamaterials. It is found that the resonance frequency can be modulated by changing the geometrical parameters and the dielectrics filling in the cavity and the slot. An approximate empirical expression is presented for magnetic resonance frequency of SCCRs from the viewpoint of an L-C circuit system. Finally, it is demonstrated that the SCCR structure can be miniaturized to less than 1/150 resonant wavelength in size with the dielectrics available currently.
Vectorized Jiles-Atherton hysteresis model
NASA Astrophysics Data System (ADS)
Szymański, Grzegorz; Waszak, Michał
2004-01-01
This paper deals with vector hysteresis modeling. A vector model consisting of individual Jiles-Atherton components placed along principal axes is proposed. The cross-axis coupling ensures general vector model properties. Minor loops are obtained using scaling method. The model is intended for efficient finite element method computations defined in terms of magnetic vector potential. Numerical efficiency is ensured by differential susceptibility approach.
CRAY-1S integer vector utility library
Rogers, J.N.; Tooman, T.P.
1982-06-01
This report describes thirty-five integer or packed vector utility routines, and documents their testing. These routines perform various vector searches, linear algebra functions, memory resets, and vector boolean operations. They are written in CAL, the assembly language on the CRAY-1S computer. By utilizing the vector processing features of that machine, they are optimized in terms of run time. Each routine has been extensively tested.
NASA Astrophysics Data System (ADS)
Budinich, Marco
2014-03-01
We investigate the relations between spinors and null vectors in Clifford algebra of any dimension with particular emphasis on the conditions that a spinor must satisfy to be simple (also: pure). In particular, we prove: (i) a new property for null vectors: each of them bisects spinor space into two subspaces of equal size; (ii) that simple spinors form one-dimensional subspaces of spinor space; (iii) a necessary and sufficient condition for a spinor to be simple that generalizes a theorem of Cartan and Chevalley which becomes a corollary of this result. We also show how to write down easily the most general spinor with a given associated totally null plane. This paper is dedicated to the memory of my father Paolo Budinich who passed away in November 2013 not before transferring to me his enthusiasm for simple spinors.
Vector fields in holographic cosmology
NASA Astrophysics Data System (ADS)
B. Hartle, James; Hawking, S. W.; Hertog, Thomas
2013-11-01
We extend the holographic formulation of the semiclassical no-boundary wave function (NBWF) to models with Maxwell vector fields. It is shown that the familiar saddle points of the NBWF have a representation in which a regular, Euclidean asymptotic AdS geometry smoothly joins onto a Lorentzian asymptotically de Sitter universe through a complex transition region. The tree level probabilities of Lorentzian histories are fully specified by the action of the AdS region of the saddle points. The scalar and vector matter profiles in this region are complex from an AdS viewpoint, with universal asymptotic phases. The dual description of the semiclassical NBWF thus involves complex deformations of Euclidean CFTs.
Viral vectors for vaccine applications
Choi, Youngjoo
2013-01-01
Traditional approach of inactivated or live-attenuated vaccine immunization has resulted in impressive success in the reduction and control of infectious disease outbreaks. However, many pathogens remain less amenable to deal with the traditional vaccine strategies, and more appropriate vaccine strategy is in need. Recent discoveries that led to increased understanding of viral molecular biology and genetics has rendered the used of viruses as vaccine platforms and as potential anti-cancer agents. Due to their ability to effectively induce both humoral and cell-mediated immune responses, viral vectors are deemed as an attractive alternative to the traditional platforms to deliver vaccine antigens as well as to specifically target and kill tumor cells. With potential targets ranging from cancers to a vast number of infectious diseases, the benefits resulting from successful application of viral vectors to prevent and treat human diseases can be immense. PMID:23858400
Medium Modification of Vector Mesons
Chaden Djalali, Michael Paolone, Dennis Weygand, Michael H. Wood, Rakhsha Nasseripour
2011-03-01
The theory of the strong interaction, Quantum Chromodynamics (QCD), has been remarkably successful in describing high-energy and short-distance-scale experiments involving quarks and gluons. However, applying QCD to low energy and large-distance scale experiments has been a major challenge. Various QCD-inspired models predict a partial restoration of chiral symmetry in nuclear matter with modifications of the properties of hadrons from their free-space values. Measurable changes such as a shift in mass and/or a change of width are predicted at normal nuclear density. Photoproduction of vector mesons off nuclei have been performed at different laboratories. The properties of the ρ, ω and φ mesons are investigated either directly by measuring their mass spectra or indirectly through transparency ratios. The latest results regarding medium modifications of the vector mesons in the nuclear medium will be discussed.
Gene targeting with retroviral vectors
Ellis, J.; Bernstein, A. )
1989-04-01
The authors have designed and constructed integration-defective retroviral vectors to explore their potential for gene targeting in mammalian cells. Two nonoverlapping deletion mutants of the bacterial neomycin resistance (neo) gene were used to detect homologous recombination events between viral and chromosomal sequences. Stable neo gene correction events were selected at a frequency of approximately 1 G418/sup r/ cell per 3 x 10/sup 6/ infected cells. Analysis of the functional neo gene in independent targeted cell clones indicated that unintegrated retroviral linear DNA recombined with the target by gene conversion for variable distances into regions of nonhomology. In addition, transient neo gene correction events which were associated with the complete loss of the chromosomal target sequences were observed. These results demonstrated that retroviral vectors can recombine with homologous chromosomal sequences in rodent and human cells.
Vector computer memory bank contention
NASA Technical Reports Server (NTRS)
Bailey, David H.
1987-01-01
A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.
Vector computer memory bank contention
NASA Technical Reports Server (NTRS)
Bailey, D. H.
1985-01-01
A number of vector supercomputers feature very large memories. Unfortunately the large capacity memory chips that are used in these computers are much slower than the fast central processing unit (CPU) circuitry. As a result, memory bank reservation times (in CPU ticks) are much longer than on previous generations of computers. A consequence of these long reservation times is that memory bank contention is sharply increased, resulting in significantly lowered performance rates. The phenomenon of memory bank contention in vector computers is analyzed using both a Markov chain model and a Monte Carlo simulation program. The results of this analysis indicate that future generations of supercomputers must either employ much faster memory chips or else feature very large numbers of independent memory banks.
Lentiviral vectors in cancer immunotherapy.
Oldham, Robyn Aa; Berinstein, Elliot M; Medin, Jeffrey A
2015-01-01
Basic science advances in cancer immunotherapy have resulted in various treatments that have recently shown success in the clinic. Many of these therapies require the insertion of genes into cells to directly kill them or to redirect the host's cells to induce potent immune responses. Other analogous therapies work by modifying effector cells for improved targeting and enhanced killing of tumor cells. Initial studies done using γ-retroviruses were promising, but safety concerns centered on the potential for insertional mutagenesis have highlighted the desire to develop other options for gene delivery. Lentiviral vectors (LVs) have been identified as potentially more effective and safer alternative delivery vehicles. LVs are now in use in clinical trials for many different types of inherited and acquired disorders, including cancer. This review will discuss current knowledge of LVs and the applications of this viral vector-based delivery vehicle to cancer immunotherapy. PMID:25804479
GAPS IN SUPPORT VECTOR OPTIMIZATION
STEINWART, INGO; HUSH, DON; SCOVEL, CLINT; LIST, NICOLAS
2007-01-29
We show that the stopping criteria used in many support vector machine (SVM) algorithms working on the dual can be interpreted as primal optimality bounds which in turn are known to be important for the statistical analysis of SVMs. To this end we revisit the duality theory underlying the derivation of the dual and show that in many interesting cases primal optimality bounds are the same as known dual optimality bounds.
Biological rhythms and vector insects
Marques, Mirian David
2013-01-01
The adjustment of all species, animals and plants, to the Earth’s cyclic environments is ensured by their temporal organisation. The relationships between parasites, vectors and hosts rely greatly upon the synchronisation of their biological rhythms, especially circadian rhythms. In this short note, parasitic infections by Protozoa and by microfilariae have been chosen as examples of the dependence of successful transmission mechanisms on temporal components. PMID:24473803
Systolic architectures for vector quantization
NASA Technical Reports Server (NTRS)
Davidson, Grant A.; Cappello, Peter R.; Gersho, Allen
1988-01-01
A family of architectural techniques are proposed which offer efficient computation of weighted Euclidean distance measures for nearest-neighbor codebook searching. The general approach uses a single metric comparator chip in conjunction with a linear array of inner product processor chips. Very high vector-quantization (VQ) throughput can be achieved for many speech and image-processing applications. Several alternative configurations allow reasonable tradeoffs between speed and VLSI chip area required.
Visualizing vector field topology in fluid flows
NASA Technical Reports Server (NTRS)
Helman, James L.; Hesselink, Lambertus
1991-01-01
Methods of automating the analysis and display of vector field topology in general and flow topology in particular are discussed. Two-dimensional vector field topology is reviewed as the basis for the examination of topology in three-dimensional separated flows. The use of tangent surfaces and clipping in visualizing vector field topology in fluid flows is addressed.
Problems with the Method of Correlated Vectors
ERIC Educational Resources Information Center
Ashton, M.C.; Lee, K.
2005-01-01
The method of correlated vectors has been used widely to identify variables that are associated with general intelligence (g). Briefly, this method involves finding the correlation between the vector of intelligence subtests' g-loadings and the vector of those subtests' correlations with the variable in question. We describe two major problems…
MISR Level 3 Cloud Motion Vector
Atmospheric Science Data Center
2013-07-10
MISR Level 3 Cloud Motion Vector Level 3 Wednesday, November 7, 2012 ... A new version, F02_0002, of the MISR L3 CMV (Cloud Motion Vector) data product is now available. This new release provides finer ... coverage. These enhancements are the result of reorganizing motion vector information present in the recent Level 2 Cloud product as ...
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motionmore » of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.« less
Resonance in cylindrical-rectangular and wraparound microstrip structures
NASA Technical Reports Server (NTRS)
Ali, Sami M.; Kong, Jin AU; Habashy, Tarek M.; Kiang, Jean-Fu
1989-01-01
A rigorous analysis of the resonance frequency problem of both the cylindrical-rectangular and the wraparound microstrip structure is presented. The problem is formulated in terms of a set of vector integral equations. Using Galerkin's method to solve the integral equations, the complex resonance frequencies are studied with sinusoidal basis functions which incorporate the edge singularity. The complex resonance frequencies are computed using a perturbation approach. Modes suitable for resonator or antenna applications are investigated. The edge singularity of the patch current is shown to have no significant effect on the accuracy of the results. It is shown that the HE10 modes of the cylindrical-rectangular and wraparound patches are more appropriate for resonator applications. The HE01 and TE01 modes of the cylindrical-rectangular and wraparound patches, respectively, are efficient radiating modes.
Resonance of relativistic electrons with electromagnetic ion cyclotron waves
Denton, R. E.; Jordanova, V. K.; Bortnik, J.
2015-06-29
Relativistic electrons have been thought to more easily resonate with electromagnetic ion cyclotron EMIC waves if the total density is large. We show that, for a particular EMIC mode, this dependence is weak due to the dependence of the wave frequency and wave vector on the density. A significant increase in relativistic electron minimum resonant energy might occur for the H band EMIC mode only for small density, but no changes in parameters significantly decrease the minimum resonant energy from a nominal value. The minimum resonant energy depends most strongly on the thermal velocity associated with the field line motion of the hot ring current protons that drive the instability. High density due to a plasmasphere or plasmaspheric plume could possibly lead to lower minimum resonance energy by causing the He band EMIC mode to be dominant. We demonstrate these points using parameters from a ring current simulation.
Gaussian statistics for palaeomagnetic vectors
Love, J.J.; Constable, C.G.
2003-01-01
With the aim of treating the statistics of palaeomagnetic directions and intensities jointly and consistently, we represent the mean and the variance of palaeomagnetic vectors, at a particular site and of a particular polarity, by a probability density function in a Cartesian three-space of orthogonal magnetic-field components consisting of a single (unimoda) non-zero mean, spherically-symmetrical (isotropic) Gaussian function. For palaeomagnetic data of mixed polarities, we consider a bimodal distribution consisting of a pair of such symmetrical Gaussian functions, with equal, but opposite, means and equal variances. For both the Gaussian and bi-Gaussian distributions, and in the spherical three-space of intensity, inclination, and declination, we obtain analytical expressions for the marginal density functions, the cumulative distributions, and the expected values and variances for each spherical coordinate (including the angle with respect to the axis of symmetry of the distributions). The mathematical expressions for the intensity and off-axis angle are closed-form and especially manageable, with the intensity distribution being Rayleigh-Rician. In the limit of small relative vectorial dispersion, the Gaussian (bi-Gaussian) directional distribution approaches a Fisher (Bingham) distribution and the intensity distribution approaches a normal distribution. In the opposite limit of large relative vectorial dispersion, the directional distributions approach a spherically-uniform distribution and the intensity distribution approaches a Maxwell distribution. We quantify biases in estimating the properties of the vector field resulting from the use of simple arithmetic averages, such as estimates of the intensity or the inclination of the mean vector, or the variances of these quantities. With the statistical framework developed here and using the maximum-likelihood method, which gives unbiased estimates in the limit of large data numbers, we demonstrate how to
Mechanisms of deactivation of the low-lying electronic states of 2,2 prime -bipyridine
Castellucci, E.; Angeloni, L. ); Marconi, G.; Venuti, E. ); Baraldi, I. )
1990-03-08
The photophysical properties of 2,2{prime}-bipyridine have been investigated in different solvents by means of lifetime measurements on the picosecond scale, quantum yield temperature dependence, and CS-INDO CI calculations. Both experimental and theoretical results indicate that in inert solvents the very low fluorescence quantum yield of this molecule is due to a very effective intersystem crossing to a local triplet state. The picture emerging from these data helps to gain insight into the elusive photophysical behavior of this compound.
Some aspects of the stalling of modern low-lying monoplanes
NASA Technical Reports Server (NTRS)
Soule, Hartley A; GOUGH MELVIN N
1938-01-01
The factors affecting the stalling characteristics of modern airplanes are briefly discussed. The effect of present-day design trends is shown and means for improving the stalling characteristics of future airplanes are indicated.
MRCI calculations of the low-lying electronic states of CuC
NASA Astrophysics Data System (ADS)
Liu, C.; Zhang, S. D.
2015-06-01
The four electronic states (2Σ-, 2Π, 4Σ-, and 4Π) of CuC corresponding to the lowest dissociation limits Cu(2 S g ) + C(3 P g ) are calculated by using multi-reference configuration interaction method with Davidson correction (MRCI + Q) approach in combination with the effective core potentials (ECPs) basis sets LANLTZ for the Cu atom and 6-311+g( d) basis sets for the C atom. The calculation covers the internuclear distance ranging from 0.04 to 0.54 nm, and the equilibrium bond length R e and the vertical excited energy T e are determined directly. The potential energy curves (PECs) show that the lowest two states are the 4Σ- and 2Π, and 4Σ- is the ground state where the 2Π state is higher than 4Σ- about 0.28 eV. With the potentials, all of the vibrational levels and rotational constants are predicted by numerically solving the radial Schröbinger equation of nuclear motion. Then the spectroscopic data of ωe, ωe x e, B e, and αe are obtained after data fitting which are compared with theoretical results currently available.
Probing ground and low-lying excited states for HIO2 isomers
NASA Astrophysics Data System (ADS)
de Souza, Gabriel L. C.; Brown, Alex
2014-12-01
We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10-3).
Probing ground and low-lying excited states for HIO2 isomers.
de Souza, Gabriel L C; Brown, Alex
2014-12-21
We present a computational study on HIO2 molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10(-3)). PMID:25527931
Structure of low-lying states in 140Sm studied by Coulomb excitation
NASA Astrophysics Data System (ADS)
Klintefjord, M.; Hadyńska-KlÈ©k, K.; Görgen, A.; Bauer, C.; Bello Garrote, F. L.; Bönig, S.; Bounthong, B.; Damyanova, A.; Delaroche, J.-P.; Fedosseev, V.; Fink, D. A.; Giacoppo, F.; Girod, M.; Hoff, P.; Imai, N.; Korten, W.; Larsen, A.-C.; Libert, J.; Lutter, R.; Marsh, B. A.; Molkanov, P. L.; Naïdja, H.; Napiorkowski, P.; Nowacki, F.; Pakarinen, J.; Rapisarda, E.; Reiter, P.; Renstrøm, T.; Rothe, S.; Seliverstov, M. D.; Siebeck, B.; Siem, S.; Srebrny, J.; Stora, T.; Thöle, P.; Tornyi, T. G.; Tveten, G. M.; Van Duppen, P.; Vermeulen, M. J.; Voulot, D.; Warr, N.; Wenander, F.; De Witte, H.; Zielińska, M.
2016-05-01
The electromagnetic structure of 140Sm was studied in a low-energy Coulomb excitation experiment with a radioactive ion beam from the REX-ISOLDE facility at CERN. The 2+ and 4+ states of the ground-state band and a second 2+ state were populated by multistep excitation. The analysis of the differential Coulomb excitation cross sections yielded reduced transition probabilities between all observed states and the spectroscopic quadrupole moment for the 21+ state. The experimental results are compared to large-scale shell model calculations and beyond-mean-field calculations based on the Gogny D1S interaction with a five-dimensional collective Hamiltonian formalism. Simpler geometric and algebraic models are also employed to interpret the experimental data. The results indicate that 140Sm shows considerable γ softness, but in contrast to earlier speculation no signs of shape coexistence at low excitation energy. This work sheds more light on the onset of deformation and collectivity in this mass region.
Static Dipole Polarizabilities for Low-Lying Rovibrational States of HD+
NASA Astrophysics Data System (ADS)
Tian, Quan-Long; Tang, Li-Yan; Yan, Zong-Chao; Shi, Ting-Yun
2015-08-01
Not Available Supported by the National Natural Science Foundation of China under Grant Nos 11474319 and 11274348, the National Basic Research Program of China under Grant No 2012CB821305, the Natural Sciences and Engineering Research Council of Canada, and the CAS/SAFEA International Partnership Program for Creative Research Teams.
Low lying electric dipole excitations in nuclei of the rare earth region
von Brentano, P.; Zilges, A.; Herzberg, R.D. . Inst. fuer Kernphysik); Zamfir, N.V. ); Kneissl, U.; Heil, R.D.; Pitz, H.H. . Inst. fuer Strahlenphysik); Wesselborg, C. . Inst. fuer Kernphysik)
1992-01-01
From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J[sup [pi
Low lying electric dipole excitations in nuclei of the rare earth region
von Brentano, P.; Zilges, A.; Herzberg, R.D.; Zamfir, N.V.; Kneissl, U.; Heil, R.D.; Pitz, H.H.; Wesselborg, C.
1992-10-01
From many experiments with low energy photon scattering on deformed rare earth nuclei we have obtained detailed information about the distribution of electric dipole strength below 4 MeV. Apart from some weaker transitions between 2 and 4 MeV we observed one, and sometimes two, very strong El-groundstate transitions around 1.5 MeV in all examined nuclei. They arise from the de-excitation of the bandheads of the (J{sup {pi}},K)=(l{sup {minus}},0) and (J{sup {pi}},K)=(l{sup {minus}},1) octupole vibrational bands. It is shown that the decay branching ratios and the absolute transition strengths of these states can be reproduced rather well with an improved T(El)-operator in the sdf-Interacting Boson Model. Another class of octupole states has been investigated in the region of the semimagic nucleus {sup 142}Nd. Here a quintuplet of collective excitations around 3.5 MeV is expected due to the coupling of the 3{minus}-octupole vibration with the 2+-quadrupole vibration. We performed photon scattering experiments on the odd A neighboring nucleus {sup 141}Pr and found first evidence for the existence of 3{sup {minus}}{circle_times}2+{circle_times}particle-states.
NASA Astrophysics Data System (ADS)
Venu Prakash, M. Pavan; Mathew, S. P.; Kaul, S. N.
2013-06-01
We demonstrate that the thermal demagnetization at temperatures T ≤ 350 K in pulse electrodeposited nanocrystalline (nc-) Ni samples with average grain size d = 10 nm and d = 20 nm is due to spin waves, spin-wave modes soften as d reduces, the interfacial/grain boundary magnetocrystalline anisotropy plays a crucial role in causing magnetic irreversibility at fields H ≤ 2 kOe and in governing the approach-to-saturation of magnetization in nc-Ni.
Low-lying excited states in the neutron-deficient isotopes 163Os and 165Os
NASA Astrophysics Data System (ADS)
Drummond, M. C.; Joss, D. T.; Page, R. D.; Simpson, J.; O'Donnell, D.; Andgren, K.; Bianco, L.; Cederwall, B.; Darby, I. G.; Eeckhaudt, S.; Gomez-Hornillos, M. B.; Grahn, T.; Greenlees, P. T.; Hadinia, B.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leppänen, A.-P.; Leino, M.; Nyman, M.; Pakarinen, J.; Rahkila, P.; Sandzelius, M.; Sapple, P. J.; Sarén, J.; Saygi, B.; Scholey, C.; Sorri, J.; Thomson, J.; Uusitalo, J.; Venhart, M.
2013-05-01
Excited states in the neutron-deficient isotopes 163Os and 165Os were identified using the JUROGAM and GREAT spectrometers in conjunction with the RITU gas-filled separator. The 163Os and 165Os nuclei were populated via the 106Cd(60Ni,3n) and 92Mo(78Kr,2p3n) reactions at bombarding energies of 270 MeV and 357 MeV, respectively. Gamma-ray emissions from these nuclei have been established unambiguously using the recoil-decay tagging technique and a coincidence analysis has allowed level schemes to be established. These results suggest that the yrast states are based upon negative-parity configurations originating from the νf7/2 and νh9/2 orbitals.
Intra-arc sedimentation in a low-lying marginal arc, Eocene Clarno Formation, central Oregon
White, J.D.L.; Robinson, P.T. . Centre for Marine Geology)
1993-04-01
The largely Eocene Clarno Formation consists of andesitic volcaniclastic rocks interstratified with clayey paludal sediments and lava flows, and cut locally by irregular hypabyssal stocks, dikes and sills. Lateral lithofacies variations are pronounced, and intrusive and extrusive volcanic rocks appear haphazardly emplaced throughout the formation. A range of sedimentary environments is represented, including near-vent flow and breccia accumulations, bouldery high-gradient braided streams, and relatively low-gradient sandy-tuff braidplains associated with paludal deposits. The authors infer that the coarse-grained volcaniclastic rocks of the Clarno Formation accumulated largely in volcanic flank and apron settings. The stratigraphy of the formation indicates that it was formed in sedimentary lowlands into which many small volcanoes erupted; only a few, scattered remnants of large central vent volcanoes are known. The absence of systematic variation across the unit's large outcrop belt argues against the derivation of the succession from a line of volcanoes beyond the reaches of the present outcrop. The authors infer that the arc was composed of small to medium-sized volcanoes arranged non-systematically over a broad area. The sedimentary succession most probably accumulated in a series of shallow intra-arc depressions formed by crustal stretching and diffuse block rotation driven by oblique subduction during the Eocene.
Collectivity of low-lying states under random two-body interactions
Zhao, Y. M.; Ping, J. L.; Arima, A.
2007-11-15
In this article we study the behavior of collectivity under random two-body interactions in the framework of the fermion dynamical symmetry model (FDSM). We found that a Hamiltonian with the SO(8) symmetry of the FDSM does not give vibrational and rotational modes under random interactions while a Hamiltonian with the SP(6) symmetry does. It is suggested that collective motions such as vibration and rotation are closely related not only to the quadruple-quadruple correlation in the Hamiltonian but also to the dynamical symmetries of the Hamiltonian.
Spectroscopic and theoretical studies of the low-lying states of BaO{sup +}
Bartlett, Joshua H.; VanGundy, Robert A.; Heaven, Michael C.
2015-07-28
The BaO{sup +} cation is of interest from the perspectives of electronic structure and the potential for cooling to ultra-cold temperatures. Spectroscopic data for the ion have been obtained using a two-color photoionization technique. The ionization energy for BaO was found to be 6.8123(3) eV. The ground state of BaO{sup +} was identified as X{sup 2}Σ{sup +}, and both vibrational and rotational constants were determined. Vibrationally resolved spectra were recorded for A{sup 2}Π, the first electronically excited state. These data yielded the term energy, vibrational frequency, and the spin-orbit interaction constant. Relativistic electronic structure calculations were carried out using multi-reference configuration interaction (MRCI), coupled cluster and density functional theory methods. Transition moments for the pure vibrational and A{sup 2}Π-X{sup 2}Σ{sup +} transitions were predicted using the MRCI method.
Electron-impact excitation of the low-lying electronic states of formaldehyde
NASA Technical Reports Server (NTRS)
Chutjian, A.
1974-01-01
Electron-impact excitation has been observed at incident electron energies of 10.1 and 20.1 eV to the first five excited electronic states of formaldehyde lying at and below the 1B2 state at 7.10 eV. These excitations include two new transitions in the energy-loss range 5.6-6.2 eV and 6.7-7.0 eV which have been detected for the first time, either through electron-impact excitation or photon absorption. The differential cross sections of these new excitations are given at scattering angles between 15 and 135 deg. These cross-section ratios peak at large scattering angles - a characteristic of triplet - singlet excitations. The design and performance of the electron-impact spectrometer used in the above observations is outlined and discussed.
Relativistic MR-MP energy levels: Low-lying states in the Mg isoelectronic sequence
NASA Astrophysics Data System (ADS)
Santana, Juan A.
2016-09-01
The relativistic Multi-Reference Møller-Plesset (MR-MP) many-body perturbation theory was applied to calculate the energies of all excited states within the 3s3p, 3p2, 3s3d, 3p3d and 3d2 configurations for every ion of the Mg isoelectronic sequence (Z = 12 - 100). The results are compared with previous calculations and available experimental data. The MR-MP excitation energies agree with experiment typically within 100 ppm over a wide range of Z, particularly for mid- and high-range Z. Experimental data for highly charged ions in this isoelectronic sequence are limited and the complete and accurate dataset presented here is expected to ease the identification process upon measurements.
On the low lying spectrum of the magnetic Schrödinger operator with kagome periodicity
NASA Astrophysics Data System (ADS)
Kerdelhué, Philippe; Royo-Letelier, Jimena
2014-12-01
In a semi-classical regime, we study a periodic magnetic Schrödinger operator in ℝ2. This is inspired by recent experiments on artificial magnetism with ultra cold atoms in optical lattices, and by the new interest for the operator on the hexagonal lattice describing the behavior of an electron in a graphene sheet. We first review some results for the square (Harper), triangular and hexagonal lattices. Then, we study the case when the periodicity is given by the kagome lattice considered by Hou. Following the techniques introduced by Helffer-Sjöstrand and Carlsson, we reduce this problem to the study of a discrete operator on ℓ2(ℤ2;ℂ3) and a pseudo-differential operator on L2(ℝ;ℂ3), which keep the symmetries of the kagome lattice. We estimate the coefficients of these operators in the case of a weak constant magnetic field. Plotting the spectrum for rational values of the magnetic flux divided by 2πh where h is the semi-classical parameter, we obtain a picture similar to Hofstadter's butterfly. We study the properties of this picture and prove the symmetries of the spectrum and the existence of flat bands, which do not occur in the case of the three previous models.
Gulf of Mexico Region - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of the area surrounding the Gulf of Mexico. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s data) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of 10-meter contour-derived DEM data or higher-resolution LIDAR data. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2005.
Extensive theoretical studies on the low-lying electronic states of BBr+
NASA Astrophysics Data System (ADS)
Niu, Xianghong; Shu, Huabing; Zhu, Zunlue; Chen, Qian
2016-04-01
The potential energy curves (PECs) of two lowest dissociation channels of BBr+ have been thoroughly investigated using the internally contracted multireference configuration interaction method with Davidson correction and relativistic correction. All PECs are extrapolated to complete basis set limit. Several quasibound excited states caused by avoided crossings are found. Based on the PECs, the spectroscopic parameters of bound and quasibound states are obtained. The transition dipole moments and radiative lifetimes are predicted for all possible transitions. Finally, the spin-orbit coupling matrix elements are computed using the states interaction approach with the full Breit-Pauli Hamiltonian to analyze the interactions in PECs crossing regions. We propose that the 22Σ+-X2Σ+ and 22Π-X2Σ+ transitions which cannot be observed in experiments are attributed to the intricate couplings among 12Π, 22Π, 22Σ+, 14Σ+, 14Δ, 14Σ-, 12Δ and 12Σ- states.
Structure of 10He low-lying states uncovered by correlations.
Sidorchuk, S I; Bezbakh, A A; Chudoba, V; Egorova, I A; Fomichev, A S; Golovkov, M S; Gorshkov, A V; Gorshkov, V A; Grigorenko, L V; Jalůvková, P; Kaminski, G; Krupko, S A; Kuzmin, E A; Nikolskii, E Yu; Oganessian, Yu Ts; Parfenova, Yu L; Sharov, P G; Slepnev, R S; Stepantsov, S V; Ter-Akopian, G M; Wolski, R; Yukhimchuk, A A; Filchagin, S V; Kirdyashkin, A A; Maksimkin, I P; Vikhlyantsev, O P
2012-05-18
The 0+ ground state of the 10He nucleus produced in the 3H(8He,p)10He reaction was found at about 2.1±0.2 MeV (Γ∼2 MeV) above the three-body ^{8}He+n+n breakup threshold. Angular correlations observed for ^{10}He decay products show prominent interference patterns allowing us to draw conclusions about the structure of low-energy excited states. We interpret the observed correlations as a coherent superposition of a broad 1- state having a maximum at energy 4-6 MeV and a 2+ state above 6 MeV, setting both on top of the 0+ state "tail." This anomalous level ordering indicates that the breakdown of the N=8 shell known in 12Be thus extends also to the ^{10}He system. PMID:23003144
Spectroscopic calculations of the low-lying structure in exotic Os and W isotopes
Nomura, K.; Otsuka, T.; Rodriguez-Guzman, R.; Sarriguren, P.; Robledo, L. M.; Regan, P. H.; Stevenson, P. D.; Podolyak, Zs.
2011-05-15
Structural evolution in neutron-rich Os and W isotopes is investigated in terms of the interacting boson model (IBM) Hamiltonian determined by (constrained) Hartree-Fock-Bogoliubov calculations with the Gogny-D1S energy density functional (EDF). The interaction strengths of the IBM Hamiltonian are produced by mapping the potential energy surface (PES) of the Gogny-EDF with quadrupole degrees of freedom onto the corresponding PES of the IBM system. We examine the prolate-to-oblate shape/phase transition which is predicted to take place in this region as a function of neutron number N within the considered Os and W isotopic chains. The onset of this transition is found to be more rapid compared to the neighboring Pt isotopes. The calculations also allow the prediction of spectroscopic variables (excited state energies and reduced transition probabilities) which are presented for the neutron-rich {sup 192,194,196}W nuclei, for which there is only very limited experimental data available to date.
ERIC Educational Resources Information Center
Ream, Todd C.; Ream, Tyler W.
2005-01-01
This article explores the significance that environments play in terms of the learning process. In the United States, the legacy of John Dewey's intellectual efforts left a theoretical understanding that views the architectural composition of learning environments as instrumental mediums which house the educational process. This understanding of…
The Low-Lying States of AlCu and AlAg
NASA Technical Reports Server (NTRS)
Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Partridge, Harry
1994-01-01
The singlet and triplet states of AlCu and AlAg below about 32 000/cm are studied using the internally contracted multireference configuration-interaction method. A more elaborate study of the X(sup 1)Sum(sup +) ground state of AlCu is undertaken using extended Gaussian basis sets, including the effect of inner-shell correlation and including a perturbational estimate of relativistic effects. Our best estimate of the spectroscopic constants (r(sub 0), DeltaG(sub 1/2), and D(sub 0)) for the X(sup 1)Sum(sup+) state with the experimental values in parentheses are: 4.416(4.420) a(sub 0), 295 (294) /cm, and 2.318 (2.315) eV. The calculations definitively assign the upper state in the observed transition at 14 892/cm to the lowest (sup 1)Prod state. The calculated spectroscopic constants and radiative lifetime for the (sup 1)Prod state are in good agreement with experiment. The calculations support the tentative assignments of Behm et al. for three band systems observed in the visible region between 25 000 and 28 000 / cm. However, the computed spectroscopic constants are in very poor agreement with those deduced from an analysis of the spectra. Analogous theoretical results for AlAg suggest that the (2)(sup 3)Prod, (3)(sup 3)Prod, and (3)(sup 1)Sum(sup +) states account for the bands observed, but not assigned, by Duncan and co-workers.
Microflaring in Low-Lying Core Fields and Extended Coronal Heating in the Quiet Sun
NASA Technical Reports Server (NTRS)
Porter, Jason G.; Falconer, D. A.; Moore, Ronald L.
1999-01-01
We have previously reported analyses of Yohkoh SXT data examining the relationship between the heating of extended coronal loops (both within and stemming from active regions) and microflaring in core fields lying along neutral lines near their footpoints (J. G. Porter, D. A. Falconer, and R. L. Moore 1998, in Solar Jets and Coronal Plumes, ed. T. Guyenne, ESA SP-421, and references therein). We found a surprisingly poor correlation of intensity variations in the extended loops with individual microflares in the compact heated areas at their feet, despite considerable circumstancial evidence linking the heating processes in these regions. Now, a study of Fe XII image sequences from SOHO EIT show that similar associations of core field structures with the footpoints of very extended coronal features can be found in the quiet Sun. The morphology is consistent with the finding of Wang et al. (1997, ApJ 484, L75) that polar plumes are rooted at sites of mixed polarity in the magnetic network. We find that the upstairs/downstairs intensity variations often follow the trend, identified in the active region observations, of a weak correspondence. Apparently much of the coronal heating in the extended loops is driven by a type of core field magnetic activity that is "cooler" than the events having the coronal signature of microflares, i.e., activity that results in little heating within the core fields themselves. This work was funded by the Solar Physics Branch of NASA's Office of Space Science through the SR&T Program and the SEC Guest Investigator Program.
Repetitive ERTS-1 observations of surface water variability along rivers and low-lying areas
NASA Technical Reports Server (NTRS)
Rango, A.; Salomonson, V. V.
1973-01-01
The Earth Resources Technology Satellite, ERTS-1, provides an 18 day repetitive coverage capability and observations in the 0.8-1.1 micron spectral region where the contrast between water and adjacent surfaces is relatively large. Using these capabilities, observations in Virginia, Iowa, Missouri, and California have been acquired showing distinct patterns of flooding. Repetitive views of these areas before and after flooding have been examined, and flood mapping was performed. Sloughs in California can be seen to expand in terms of the area covered by standing water as time extends from summer to autumn. The results indicate that ERTS-1 imagery can be a valuable adjunct to conventional and aircraft survey methods for ascertaining the amount of area covered by water or affected by flooding.
The low-lying 2-sigma-minus states of OH
NASA Technical Reports Server (NTRS)
Van Dishoeck, E. F.; Langhoff, S. R.; Dalgarno, A.
1983-01-01
The configuration-interaction method is used to determine the electronic wave functions of the two lowest 2-sigma-minus states of OH using four different atomic orbital basis sets. Potential energy curves, transition moments, oscillator strengths, and photodissociation cross sections are obtained. Electronic transition dipole moments connecting the excited 1 2-sigma-minus and 2(D)2-sigma-minus states with each other and with the ground chi-2-pi state are presented as functions of internuclear distance. The theoretical absorption oscillator strengths for the D-2-sigma-minus(v prime = 0) from chi-2-pi(v double prime = 0) transition are in good agreement with the empirical value derived from astronomical measurement. The photodissociation cross sections for absorption from the v prime = 0, 1, and 2 levels of the ground state into the continuum of the 1 2-sigma-minus state are calculated, and the interstellar and cometary photodissociation rates are derived.
Electron impact excitation and assignment of the low-lying electronic states of CO2
NASA Technical Reports Server (NTRS)
Hall, R. I.; Trajmar, S.
1973-01-01
Electron scattering spectra of CO2 are reported in the 7 to 10 eV energy-loss range, at energies of 0.2, 0.35, 0.6, 0.7, and 7.0 eV above threshold, and at a scattering angle of 90 deg. Several new distinct overlapping continua with weak, diffuse bands superimposed are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of recent ab initio configuration-interaction calculations of the vertical transition energies of CO2. The experimental spectra are shown to be consistent with the excitation states of CO2.
Theoretical study of the low-lying bound states of O2
NASA Technical Reports Server (NTRS)
Partridge, Harry; Bauschlicher, Charles W., Jr.; Langhoff, Stephen R.; Taylor, Peter R.
1991-01-01
It is demonstrated that a complete-active-space self-consistent-field (CASSCF) (2p)/MRCI + Q (multireference configuration interaction with a Davidson correction) description in a (13s8p6d 4f2g)/((5s4p3d 2f1g) atomic natural orbits (ANO) basis set supplemented with diffuse functions provides a quantitative description of the six lowest states of O2. The calculated potentials are within 0.05 eV (1.2 kilocal/mol) of accurate experimental results. The importance of substantially expanding the primitive basis set has been investigated, and it is demonstrated that such expansions yield insignificant improvement in the spectroscopic constants. Potential energy curves have also been reported for the weakly bound states of O2. The 5Pi(g) state is estimated to have a D(e) of 0.16 +/- 0.03 eV. The upper bound of D(e) is found to be sufficiently large that the importance of this state as a precursor for the formation of O2 (b 1Sigma(t)(+)) and O(1S) should be reconsidered.
Electron impact excitation and assignment of the low-lying electronic states of N2O
NASA Technical Reports Server (NTRS)
Hall, R. I.; Chutjian, A.; Trajmar, S.
1973-01-01
Electron scattering spectra of nitrous oxide are reported in the 5- to 10-eV energy-loss range at scattering angles of 20, 30, 90, and 130 deg at a residual energy of 7.0 eV; and at residual energies of 10.0, 2.0, 1.0, 0.6, and 0.2 eV at a scattering angle of 90 deg. Several new distinct and overlapping continua are observed to lie in this energy-loss range. The experimental spectra are discussed in the light of semiempirical INDO calculations of Chutjian and Segal (1972) of the vertical transition energies of N2O. An assignment of the symmetries of the observed excitations consistent with the experimental and theoretical data is suggested.
State of Texas - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation of Texas and a grayscale relief of the surrounding areas. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. The NED source data for this map consists of a mixture of 30-meter- and 10-meter-resolution DEMs. State and county boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2002. Shaded relief over Mexico was obtained from the USGS National Atlas.
State of Louisiana - Highlighting Low-Lying Areas Derived from USGS Digital Elevation Data
Kosovich, John J.
2008-01-01
In support of U.S. Geological Survey (USGS) disaster preparedness efforts, this map depicts a color shaded relief representation highlighting the State of Louisiana and depicts the surrounding areas using muted elevation colors. The first 30 feet of relief above mean sea level are displayed as brightly colored 5-foot elevation bands, which highlight low-elevation areas at a coarse spatial resolution. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. Standard USGS National Elevation Dataset (NED) 1 arc-second (nominally 30-meter) digital elevation model (DEM) data are the basis for the map, which is designed to be used at a broad scale and for informational purposes only. The NED data are a mixture of data and were derived from the original 1:24,000-scale USGS topographic map bare-earth contours, which were converted into gridded quadrangle-based DEM tiles at a constant post spacing (grid cell size) of either 30 meters (data before the mid-1990s) or 10 meters (mid-1990s and later data). These individual-quadrangle DEMs were then converted to spherical coordinates (latitude/longitude decimal degrees) and edge-matched to ensure seamlessness. Approximately one-half of the area shown on this map has DEM source data at a 30-meter resolution, with the remaining half consisting of mostly 10-meter contour-derived DEM data and some small areas of higher-resolution LIght Detection And Ranging (LIDAR) data along parts of the coastline. Areas below sea level typically are surrounded by levees or some other type of flood-control structures. State and parish boundary, hydrography, city, and road layers were modified from USGS National Atlas data downloaded in 2003. The NED data were downloaded in 2007.
A study of the low-lying states of CaAr + and CaKr +
NASA Astrophysics Data System (ADS)
Heinemann, Christoph; Koch, Wolfram; Partridge, Harry
1998-04-01
The spectroscopic constants of the ground 2Σ + states of CaAr + and CaKr + are determined using high quality ab initio methods. The computed binding energies are 789 and 1252 cm -1, respectively, in good agreement with the experimental determination of Pullins, Scurlock, Reddic and Duncan (J. Chem. Phys. 104 (1996) 7518). The much smaller CaKr + binding energy determined by Buthelezi, Bellert, Lewis and Brucat (Chem. Phys. Lett. 246 (1995) 145) is shown to be due to deficiencies in the method used to approximate the binding energy of the excited state.
NASA Astrophysics Data System (ADS)
Lei, Y.
2016-02-01
In random-interaction ensembles, three proportional correlations between quadrupole moments of the first two Iπ=2+ states robustly emerge, including Q (21+) =±Q (22+) correlations previously remarked by a realistic nuclear survey, and the Q (22+) =-3/7 Q (21+) correlation, which is only observed in the s d -boson space. These correlations can be microscopically characterized by the rotational SU(3) symmetry and quadrupole vibrational U(5) limit, respectively, according to the Elliott model and the s d -boson mean-field theory. The anharmonic vibration may be another phenomenological interpretation for the Q (21+) =-Q (22+) correlation, whose spectral evidence, however, is insufficient.
Probing ground and low-lying excited states for HIO{sub 2} isomers
Souza, Gabriel L. C. de; Brown, Alex
2014-12-21
We present a computational study on HIO{sub 2} molecules. Ground state properties such as equilibrium structures, relative energetics, vibrational frequencies, and infrared intensities were obtained for all the isomers at the coupled-cluster with single and double excitations as well as perturbative inclusion of triples (CCSD(T)) level of theory with the aug-cc-pVTZ-PP basis set and ECP-28-PP effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. The HOIO structure is confirmed as the lowest energy isomer. The relative energies are shown to be HOIO < HOOI < HI(O)O. The HO(O)I isomer is only stable at the density functional theory (DFT) level of theory. The transition states determined show interconversion of the isomers is possible. In order to facilitate future experimental identification, vibrational frequencies are also determined for all corresponding deuterated species. Vertical excitation energies for the three lowest-lying singlet and triplet excited states were determined using the configuration interaction singles, time-dependent density functional theory (TD-DFT)/B3LYP, TD-DFT/G96PW91, and equation of motion-CCSD approaches with the LANL2DZ basis set plus effective core potential for iodine and the aug-cc-pVTZ basis set for hydrogen and oxygen atoms. It is shown that HOIO and HOOI isomers have excited states accessible at solar wavelengths (<4.0 eV) but these states have very small oscillator strengths (<2 × 10{sup −3})
NASA Technical Reports Server (NTRS)
Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Wiberg, Dean V. (Inventor); Yee, Karl Y. (Inventor)
2008-01-01
The present invention discloses an inertial sensor having an integral resonator. A typical sensor comprises a planar mechanical resonator for sensing motion of the inertial sensor and a case for housing the resonator. The resonator and a wall of the case are defined through an etching process. A typical method of producing the resonator includes etching a baseplate, bonding a wafer to the etched baseplate, through etching the wafer to form a planar mechanical resonator and the wall of the case and bonding an end cap wafer to the wall to complete the case.
Electromechanical actuation for thrust vector control applications
NASA Technical Reports Server (NTRS)
Roth, Mary Ellen
1990-01-01
At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type
Electromechanical actuation for thrust vector control applications
NASA Astrophysics Data System (ADS)
Roth, Mary Ellen
At present, actuation systems for the Thrust Vector Control (TVC) for launch vehicles are hydraulic systems. The Advanced Launch System (ALS), a joint initiative between NASA and the Air Force, is a launch vehicle that is designed to be cost effective, highly reliable and operationally efficient with a goal of reducing the cost per pound to orbit. As part of this initiative, an electromechanical actuation system is being developed as an attractive alternative to the hydraulic systems used today. NASA-Lewis is developing and demonstrating an Induction Motor Controller Actuation System with a 40 hp peak rating. The controller will integrate 20 kHz resonant link Power Management and Distribution (PMAD) technology and Pulse Population Modulation (PPM) techniques to implement Field Oriented Vector Control (FOVC) of a new advanced induction motor. Through PPM, multiphase variable frequency, variable voltage waveforms can be synthesized from the 20 kHz source. FOVC shows that varying both the voltage and frequency and their ratio (V/F), permits independent control of both torque and speed while operating at maximum efficiency at any point on the torque-speed curve. The driver and the FOVC will be microprocessor controlled. For increased system reliability, a Built-in Test (BITE) capability will be included. This involves introducing testability into the design of a system such that testing is calibrated and exercised during the design, manufacturing, maintenance and prelaunch activities. An actuator will be integrated with the motor controller for performance testing of the EMA TVC system. The design and fabrication of the motor controller is being done by General Dynamics Space Systems Division. The University of Wisconsin-Madison will assist in the design of the advanced induction motor and in the implementation of the FOVC theory. A 75 hp electronically controlled dynamometer will be used to test the motor controller in all four quadrants of operation using flight type
Analysis and calibration techniques for superconducting resonators.
Cataldo, Giuseppe; Wollack, Edward J; Barrentine, Emily M; Brown, Ari D; Moseley, S Harvey; U-Yen, Kongpop
2015-01-01
A method is proposed and experimentally explored for in-situ calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response is analyzed in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microstrip and coplanar-waveguide resonator devices were investigated and a recovery within 1% of the observed complex transmission amplitude was achieved with both analysis approaches. The experimental configuration used in microwave characterization of the devices and self-consistent constraints for the electromagnetic constitutive relations for parameter extraction are also presented. PMID:25638068
Analysis and calibration techniques for superconducting resonators
NASA Astrophysics Data System (ADS)
Cataldo, Giuseppe; Wollack, Edward J.; Barrentine, Emily M.; Brown, Ari D.; Moseley, S. Harvey; U-Yen, Kongpop
2015-01-01
A method is proposed and experimentally explored for in-situ calibration of complex transmission data for superconducting microwave resonators. This cryogenic calibration method accounts for the instrumental transmission response between the vector network analyzer reference plane and the device calibration plane. Once calibrated, the observed resonator response is analyzed in detail by two approaches. The first, a phenomenological model based on physically realizable rational functions, enables the extraction of multiple resonance frequencies and widths for coupled resonators without explicit specification of the circuit network. In the second, an ABCD-matrix representation for the distributed transmission line circuit is used to model the observed response from the characteristic impedance and propagation constant. When used in conjunction with electromagnetic simulations, the kinetic inductance fraction can be determined with this method with an accuracy of 2%. Datasets for superconducting microstrip and coplanar-waveguide resonator devices were investigated and a recovery within 1% of the observed complex transmission amplitude was achieved with both analysis approaches. The experimental configuration used in microwave characterization of the devices and self-consistent constraints for the electromagnetic constitutive relations for parameter extraction are also presented.
Rates, Polarizations, and Asymmetries in Charmless Vector-Vector B Decays
Aubert, B; Barate, R; Boutigny, D; Gaillard, J-M; Hicheur, A; Karyotakis, Y; Lees, J P; Robbe, P; Tisserand, V; Zghiche, A; Palano, A; Pompili, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Borgland, A W; Breon, A B; Brown, D N; Button-Schaffer, J; Cahn, R N; Charles, E; Day, C T; Gill, M S; Gritsan, A V; Groysman, Y; Jacobsen, R G; Kadel, R W; Kadyk, J; Kerth, L T; Kolomensky, Yu. G; Kral, J F; Kukartsev, G; LeClerc, C; Levi, M E; Lynch, G; Mir, L M; Oddone, P J; Orimoto, T J; Pripstein, M; Roe, N A; Romosan, A; Ronan, M T; Shelkov, V G; Telnov, A V; Wenzel, W A; Harrison, T J; Hawkes, C M; Knowles, D J; Penny, R C; Watson, A T; Watson, N K; Deppermann, T; Goetzen, K; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schmuecker, H; Barlow, N R; Bhimji, W; Boyd, J T; Chevalier, N; Cottingham, W N; Mackay, C; Wilson, F F; Hearty, C; Mattison, T S; McKenna, J A; Thiessen, D; Kyberd, P; McKemey, A K; Blinov, V E; Bukin, A D; Golubev, V B; Ivanchenko, V N; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Yushkov, A N; Best, D; Chao, M; Kirkby, D; Lankford, A J; Mandelkern, M; McMahon, S; Mommsen, R K; Roethel, W; Stoker, D P; Buchanan, C; Hadavand, H K; Wright, Doug
2003-03-11
With a sample of approximately 89 million B{bar B} pairs collected with the BABAR detector, they measure branching fractions, determine the degree of longitudinal polarization, and search for direct CP violation in the decays B{sup 0} {yields} {phi}K*{sup 0} and B{sup +} {yields} {phi}K*{sup +}. They perform a search for other charmless vector-vector B decays involving {rho} and K*(892) resonances and observe the decays B{sup +} {yields} {rho}{sup 0} K*{sup +} and B{sup +} {yields} {rho}{sup 0}{rho}{sup +}. The branching fractions are measured to be {Beta}({phi}K*{sup 0}) = (11.1{sub -1.2}{sup +1.3} {+-} 1.1) x 10{sup -6}, {Beta}({phi}K*{sup +}) = (12.1{sub -1.9}{sup +2.1} {+-} 1.5) x 10{sup -6}, {Beta}({rho}{sup 0} K*{sup +}) = (7.7{sub -2.0}{sup +2.1} {+-} 1.4) x 10{sup -6}, and {Beta}({rho}{sup 0}{rho}{sup +}) = (9.9{sub -2.5}{sup +2.6} {+-} 2.5) x 10{sup -6}. The longitudinal polarization fractions are measured to be {Lambda}{sub L}/{Lambda}({phi}K*{sup 0}) = 0.65 {+-} 0.07 {+-} 0.04 and {Lambda}{sub L}/{Lambda}({phi}K*{sup +}) = 0.46 {+-} 0.12 {+-} 0.05. They measure the charge asymmetries: {Alpha}{sub CP}({phi}K*{sup 0}) = +0.04 {+-} 0.12 {+-} 0.02 and {Alpha}{sub CP}({phi}K*{sup +}) = +0.16 {+-} 0.17 {+-} 0.04.
Vaccine Design: Replication-Defective Adenovirus Vectors.
Zhou, Xiangyang; Xiang, Zhiquan; Ertl, Hildegund C J
2016-01-01
Replication-defective adenovirus (Ad) vectors were initially developed for gene transfer for correction of genetic diseases. Although Ad vectors achieved high levels of transgene product expression in a variety of target cells, expression of therapeutic proteins was found to be transient as vigorous T cell responses directed to components of the vector as well as the transgene product rapidly eliminate Ad vector-transduced cells. This opened the use of Ad vectors as vaccine carriers and by now a multitude of preclinical as well as clinical studies has shown that Ad vectors induce very potent and sustained transgene product-specific T and B cell responses. This chapter provides guidance on developing E1-deleted Ad vectors based on available viral molecular clones. Specifically, it describes methods for cloning, viral rescue and purification as well as quality control studies. PMID:27076309
Multiscale vector fields for image pattern recognition
NASA Technical Reports Server (NTRS)
Low, Kah-Chan; Coggins, James M.
1990-01-01
A uniform processing framework for low-level vision computing in which a bank of spatial filters maps the image intensity structure at each pixel into an abstract feature space is proposed. Some properties of the filters and the feature space are described. Local orientation is measured by a vector sum in the feature space as follows: each filter's preferred orientation along with the strength of the filter's output determine the orientation and the length of a vector in the feature space; the vectors for all filters are summed to yield a resultant vector for a particular pixel and scale. The orientation of the resultant vector indicates the local orientation, and the magnitude of the vector indicates the strength of the local orientation preference. Limitations of the vector sum method are discussed. Investigations show that the processing framework provides a useful, redundant representation of image structure across orientation and scale.
Comparative investigation of multiplane thrust vectoring nozzles
NASA Technical Reports Server (NTRS)
Capone, F.; Smereczniak, P.; Spetnagel, D.; Thayer, E.
1992-01-01
The inflight aerodynamic performance of multiplane vectoring nozzles is critical to development of advanced aircraft and flight control systems utilizing thrust vectoring. To investigate vectoring nozzle performance, subscale models of two second-generation thrust vectoring nozzle concepts currently under development for advanced fighters were integrated into an axisymmetric test pod. Installed drag and vectoring performance characteristics of both concepts were experimentally determined in wind tunnel testing. CFD analyses were conducted to understand the impact of internal flow turning on thrust vectoring characteristics. Both nozzles exhibited drag comparable with current nonvectoring axisymmetric nozzles. During vectored-thrust operations, forces produced by external flow effects amounted to about 25 percent of the total force measured.
Chrien, R.E.
1986-10-01
The principles of resonance averaging as applied to neutron capture reactions are described. Several illustrations of resonance averaging to problems of nuclear structure and the distribution of radiative strength in nuclei are provided. 30 refs., 12 figs.
Nanomechanical resonance detector
Grossman, Jeffrey C; Zettl, Alexander K
2013-10-29
An embodiment of a nanomechanical frequency detector includes a support structure and a plurality of elongated nanostructures coupled to the support structure. Each of the elongated nanostructures has a particular resonant frequency. The plurality of elongated nanostructures has a range of resonant frequencies. An embodiment of a method of identifying an object includes introducing the object to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the object. An embodiment of a method of identifying a molecular species of the present invention includes introducing the molecular species to the nanomechanical resonance detector. A resonant response by at least one of the elongated nanostructures of the nanomechanical resonance detector indicates a vibrational mode of the molecular species.
Scalar mesons in a linear sigma model with (axial-)vector mesons
Parganlija, D.; Kovacs, P.; Wolf, Gy.; Giacosa, F.; Rischke, D. H.
2013-03-25
The structure of the scalar mesons has been a subject of debate for many decades. In this work we look for qq states among the physical resonances using an extended Linear Sigma Model that contains scalar, pseudoscalar, vector, and axial-vector mesons both in the non-strange and strange sectors. We perform global fits of meson masses, decay widths and amplitudes in order to ascertain whether the scalar qq states are below or above 1 GeV. We find the scalar states above 1 GeV to be preferred as qq states.
NASA Astrophysics Data System (ADS)
Zhang, Xiao-Fei; Hu, Xing-Hua; Liu, Xun-Xu; Liu, W. M.
2009-03-01
We present a family of exact vector-soliton solutions for the coupled nonlinear Schrödinger equations with tunable interactions and harmonic potential, and then apply the model to investigate the dynamics of solitons and collisions between two orthogonal solitons in the case with equal interaction parameters. Our results show that the exact vector-soliton solutions can be obtained with arbitrary tunable interactions as long as a proper harmonic potential is applied. The dynamics of solitons can be controlled by the Feshbach resonance and the collisions are essentially elastic and do not depend on the initial conditions.
The Magsat precision vector magnetometer
NASA Technical Reports Server (NTRS)
Acuna, M. H.
1980-01-01
This paper examines the Magsat precision vector magnetometer which is designed to measure projections of the ambient field in three orthogonal directions. The system contains a highly stable and linear triaxial fluxgate magnetometer with a dynamic range of + or - 2000 nT (1 nT = 10 to the -9 weber per sq m). The magnetometer electronics, analog-to-digital converter, and digitally controlled current sources are implemented with redundant designs to avoid a loss of data in case of failures. Measurements are carried out with an accuracy of + or - 1 part in 64,000 in magnitude and 5 arcsec in orientation (1 arcsec = 0.00028 deg).