Science.gov

Sample records for low-mass extrasolar planets

  1. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2012-03-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  2. Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Deeg, Hans; Belmonte, Juan Antonio; Aparicio, Antonio

    2007-10-01

    Participants; Preface; Acknowledgements; 1. Extrasolar planet detection methods Laurance R. Doyle; 2. Statistical properties of exoplanets Stéphane Udry; 3. Characterizing extrasolar planets Timothy M. Brown; 4. From clouds to planet systems: formation and evolution of stars and planets Günther Wuchterl; 5. Abundances in stars with extrasolar planetary systems Garik Israelian; 6. Brown dwarfs: the bridge between stars and planets Rafael Rebolo; 7. The perspective: a panorama of the Solar System Agustín Sánchez-Lavega; 8. Habitable planets around the Sun and other stars James F. Kasting; 9. Biomarkers of extrasolar planets and their observability Franck Selsis, Jimmy Paillet and France Allard; Index.

  3. Extrasolar planets

    PubMed Central

    Lissauer, Jack J.; Marcy, Geoffrey W.; Ida, Shigeru

    2000-01-01

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems. PMID:11035782

  4. Extrasolar planets.

    PubMed

    Lissauer, J J; Marcy, G W; Ida, S

    2000-11-07

    The first known extrasolar planet in orbit around a Sun-like star was discovered in 1995. This object, as well as over two dozen subsequently detected extrasolar planets, were all identified by observing periodic variations of the Doppler shift of light emitted by the stars to which they are bound. All of these extrasolar planets are more massive than Saturn is, and most are more massive than Jupiter. All orbit closer to their stars than do the giant planets in our Solar System, and most of those that do not orbit closer to their star than Mercury is to the Sun travel on highly elliptical paths. Prevailing theories of star and planet formation, which are based on observations of the Solar System and of young stars and their environments, predict that planets should form in orbit about most single stars. However, these models require some modifications to explain the properties of the observed extrasolar planetary systems.

  5. Detecting Extrasolar Planets Directly

    NASA Astrophysics Data System (ADS)

    Guenther, E. W.; Neuhäuser, R.; Huélamo, N.; Ott, T.; Brandner, W.; Alves, J.; Comerón, F.; Eckart, A.; Hatzes, A.

    Up to now, all extrasolar planets have been found by means of indirect methods. Direct detection of planets orbiting even the nearest stars seems at first glance to be impossible with present day equipment, because of the enormous difference in brightness between the star and the planet, and the small angular separation between them. However, young planets which are still in the contraction phase of evolution are comparatively bright in the infrared, and since many of the extrasolar planets detected have excentric orbits, where they are most of the time at a relatively large distance from the stars, the prospect of detecting young planets directly is much better. In fact, it is principle be possible to detect an extrasolar giant planet, if the planet is younger than 100 millon years, and if the distance is less than 100 pc. Three years ago we thus have embarked on a survey to observe more than one-hundred young, nearby stars in the near infrared. In this talk, we will review the status of the survey. In order to find out whether these stars have additionally a planet at a small distance from the star, we also carried out sensitive radial velocity observation of a subsample using an iodine-cell and the Echelle spectrograph of the Alfred-Jensch Telescope in Tautenburg.

  6. The Atmospheres of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Richardson, L. J.; Seager, S.

    2007-01-01

    In this chapter we examine what can be learned about extrasolar planet atmospheres by concentrating on a class of planets that transit their parent stars. As discussed in the previous chapter, one way of detecting an extrasolar planet is by observing the drop in stellar intensity as the planet passes in front of the star. A transit represents a special case in which the geometry of the planetary system is such that the planet s orbit is nearly edge-on as seen from Earth. As we will explore, the transiting planets provide opportunities for detailed follow-up observations that allow physical characterization of extrasolar planets, probing their bulk compositions and atmospheres.

  7. Extrasolar Planets in the Classroom

    ERIC Educational Resources Information Center

    George, Samuel J.

    2011-01-01

    The field of extrasolar planets is still, in comparison with other astrophysical topics, in its infancy. There have been about 300 or so extrasolar planets detected and their detection has been accomplished by various different techniques. Here we present a simple laboratory experiment to show how planets are detected using the transit technique.…

  8. Mass-Radius Relationships for Low-Mass Planets: From Iron Planets to Water Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2007-01-01

    Transit observations, and radial velocity measurements, have begun to populate the mass radius diagram for extrasolar planets; fubture astrometric measurements and direct images promise more mass and radius information. Clearly, the bulk density of a planet indicates something about a planet s composition--but what? I will attempt to answer this question in general for low-mass planets (low-mass planets obey a kind of universal mass-radius relationship: an expansion whose first term is M approx. R(sup 3).

  9. Transit of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Doyle, Laurance R.

    1998-01-01

    During the past five years we have pursued the detection of extrasolar planets by the photometric transit method, i.e. the detection of a planet by watching for a drop in the brightness of the light as it crosses in front of a star. The planetary orbit must cross the line-of-sight and so most systems will not be lined up for such a transit to ever occur. However, we have looked at eclipsing binary systems which are already edge-on. Such systems must be very small in size as this makes the differential light change due to a transit much greater for a given planet size (the brightness difference will be proportional to the area of the transiting planet to the disc area of the star). Also, the planet forming region should be closer to the star as small stars are generally less luminous (that is, if the same thermal regime for planet formation applies as in the solar system). This led to studies of the habitable zone around other stars, as well. Finally, we discovered that our data could be used to detect giant planets without transits as we had been carefully timing the eclipses of the stars (using a GPS antenna for time) and this will drift by being offset by any giant planets orbiting around the system, as well. The best summary of our work may be to just summarize the 21 refereed papers produced during the time of this grant. This will be done is chronological order and in each section separately.

  10. Taxonomy of the extrasolar planet.

    PubMed

    Plávalová, Eva

    2012-04-01

    When a star is described as a spectral class G2V, we know that the star is similar to our Sun. We know its approximate mass, temperature, age, and size. When working with an extrasolar planet database, it is very useful to have a taxonomy scale (classification) such as, for example, the Harvard classification for stars. The taxonomy has to be easily interpreted and present the most relevant information about extrasolar planets. I propose an extrasolar planet taxonomy scale with four parameters. The first parameter concerns the mass of an extrasolar planet in the form of units of the mass of other known planets, where M represents the mass of Mercury, E that of Earth, N Neptune, and J Jupiter. The second parameter is the planet's distance from its parent star (semimajor axis) described in a logarithm with base 10. The third parameter is the mean Dyson temperature of the extrasolar planet, for which I established four main temperature classes: F represents the Freezing class, W the Water class, G the Gaseous class, and R the Roasters class. I devised one additional class, however: P, the Pulsar class, which concerns extrasolar planets orbiting pulsar stars. The fourth parameter is eccentricity. If the attributes of the surface of the extrasolar planet are known, we are able to establish this additional parameter where t represents a terrestrial planet, g a gaseous planet, and i an ice planet. According to this taxonomy scale, for example, Earth is 1E0W0t, Neptune is 1N1.5F0i, and extrasolar planet 55 Cnc e is 9E-1.8R1.

  11. Extrasolar planet detection

    NASA Technical Reports Server (NTRS)

    Korechoff, R. P.; Diner, D. J.; Tubbs, E. F.; Gaiser, S. L.

    1994-01-01

    This paper discusses the concept of extrasolar planet detection using a large-aperture infared imaging telescope. Coronagraphic stellar apodization techniques are less efficient at infrared wavelengths compared to the visible, as a result of practical limitations on aperture dimensions, thus necessitating additional starlight suppression to make planet detection feasible in this spectral domain. We have been investigating the use of rotational shearing interferometry to provide up to three orders of magnitude of starlight suppression over broad spectral bandwidths. We present a theoretical analysis of the system performance requirements needed to make this a viable instrument for planet detection, including specifications on the interferometer design and telescope aperture characteristics. The concept of using rotational shearing interferometry as a wavefront error detector, thus providing a signal that can be used to adaptively correct the wavefront, will be discussed. We also present the status of laboratory studies of on-axis source suppression using a recently constructed rotational shearing interferometer that currently operates in the visible.

  12. Extrasolar planets: constraints for planet formation models.

    PubMed

    Santos, Nuno C; Benz, Willy; Mayor, Michel

    2005-10-14

    Since 1995, more than 150 extrasolar planets have been discovered, most of them in orbits quite different from those of the giant planets in our own solar system. The number of discovered extrasolar planets demonstrates that planetary systems are common but also that they may possess a large variety of properties. As the number of detections grows, statistical studies of the properties of exoplanets and their host stars can be conducted to unravel some of the key physical and chemical processes leading to the formation of planetary systems.

  13. Atmospheres of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark

    2006-01-01

    The next decade will almost certainly see the direct imaging of extrasolar giant planets around nearby stars. Unlike purely radial velocity detections, direct imaging will open the door to characterizing the atmosphere and interiors of extrasola planets and ultimately provide clues on their formation and evolution through time. This process has already begun for the transiting planets, placing new constraints on their atmospheric structure, composition, and evolution. Indeed the key to understanding giant planet detectability, interpreting spectra, and constraining effective temperature and hence evolution-is the atmosphere. I will review the universe of extrasolar giant planet models, focusing on what we have already learned from modeling and what we will likely be able to learn from the first generation of direct detection data. In addition to these theoretical considerations, I will review the observations and interpretation of the - transiting hot Jupiters. These objects provide a test of our ability to model exotic atmospheres and challenge our current understanding of giant planet evolution.

  14. Radio Search For Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Zarka, P.

    Theoretical justification and ongoing observational efforts in view of detecting radio emissions from extrasolar planets will be presented. On the "prediction" side, a heuris- tic scaling law has been established relating the radio output of any magnetized flow- obstacle system to the incident magnetic energy flux on the obstacle. Its confirmation by the observation of radio emission from extrasolar planets would help to understand the energy budget of such a system. On the "detection" side, specific procedures have been developed for interference mitigation and weak burst detection.

  15. Chemical kinetics on extrasolar planets.

    PubMed

    Moses, Julianne I

    2014-04-28

    Chemical kinetics plays an important role in controlling the atmospheric composition of all planetary atmospheres, including those of extrasolar planets. For the hottest exoplanets, the composition can closely follow thermochemical-equilibrium predictions, at least in the visible and infrared photosphere at dayside (eclipse) conditions. However, for atmospheric temperatures approximately <2000K, and in the uppermost atmosphere at any temperature, chemical kinetics matters. The two key mechanisms by which kinetic processes drive an exoplanet atmosphere out of equilibrium are photochemistry and transport-induced quenching. I review these disequilibrium processes in detail, discuss observational consequences and examine some of the current evidence for kinetic processes on extrasolar planets.

  16. Atmospheres of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Fortney, J.; Seager, S.; Barman, T.

    The key to understanding an extrasolar giant planet's spectrum - and hence its detectability and evolution - lies with its atmosphere. Now that direct observations of thermal emission from extrasolar giant planets (EGPs) are in hand, atmosphere models can be used to constrain atmospheric composition, thermal structure, and ultimately the formation and evolution of detected planets. We review the important physical processes that influence the atmospheric structure and evolution of EGPs and consider what has already been learned from the first generation of observations and modeling. We pay particular attention to the roles of cloud structure, metallicity, and atmospheric chemistry in affecting detectable properties through Spitzer Space Telescope observations of the transiting giant planets. Our review stresses the uncertainties that ultimately limit our ability to interpret EGP observations. Finally we will conclude with a look to the future as characterization of multiple individual planets in a single stellar system leads to the study of comparative planetary architectures.

  17. Observed properties of extrasolar planets.

    PubMed

    Howard, Andrew W

    2013-05-03

    Observational surveys for extrasolar planets probe the diverse outcomes of planet formation and evolution. These surveys measure the frequency of planets with different masses, sizes, orbital characteristics, and host star properties. Small planets between the sizes of Earth and Neptune substantially outnumber Jupiter-sized planets. The survey measurements support the core accretion model, in which planets form by the accumulation of solids and then gas in protoplanetary disks. The diversity of exoplanetary characteristics demonstrates that most of the gross features of the solar system are one outcome in a continuum of possibilities. The most common class of planetary system detectable today consists of one or more planets approximately one to three times Earth's size orbiting within a fraction of the Earth-Sun distance.

  18. Imaging Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.

    2016-10-01

    High-contrast adaptive optics (AO) imaging is a powerful technique to probe the architectures of planetary systems from the outside-in and survey the atmospheres of self-luminous giant planets. Direct imaging has rapidly matured over the past decade and especially the last few years with the advent of high-order AO systems, dedicated planet-finding instruments with specialized coronagraphs, and innovative observing and post-processing strategies to suppress speckle noise. This review summarizes recent progress in high-contrast imaging with particular emphasis on observational results, discoveries near and below the deuterium-burning limit, and a practical overview of large-scale surveys and dedicated instruments. I conclude with a statistical meta-analysis of deep imaging surveys in the literature. Based on observations of 384 unique and single young (≈5-300 Myr) stars spanning stellar masses between 0.1 and 3.0 M ⊙, the overall occurrence rate of 5-13 M Jup companions at orbital distances of 30-300 au is {0.6}-0.5+0.7 % assuming hot-start evolutionary models. The most massive giant planets regularly accessible to direct imaging are about as rare as hot Jupiters are around Sun-like stars. Dividing this sample into individual stellar mass bins does not reveal any statistically significant trend in planet frequency with host mass: giant planets are found around {2.8}-2.3+3.7 % of BA stars, <4.1% of FGK stars, and <3.9% of M dwarfs. Looking forward, extreme AO systems and the next generation of ground- and space-based telescopes with smaller inner working angles and deeper detection limits will increase the pace of discovery to ultimately map the demographics, composition, evolution, and origin of planets spanning a broad range of masses and ages.

  19. Extrasolar Planets and Prospects for Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Marcy, Geoffrey W.; Butler, R. Paul; Vogt, Steven S.; Fischer, Debra A.

    2004-06-01

    Examination of ˜2000 sun--like stars has revealed 97 planets (as of 2002 Nov), all residing within our Milky Way Galaxy and within ˜200 light years of our Solar System. They have masses between 0.1 and 10 times that of Jupiter, and orbital sizes of 0.05--5 AU. Thus planets occupy the entire detectable domain of mass and orbits. News &summaries about extrasolar planets are provided at: http://exoplanets.org. These planets were all discovered by the wobble of the host stars, induced gravitationally by the planets, causing a periodicity in the measured Doppler effect of the starlight. Earth--mass planets remain undetectable, but space--based missions such as Kepler, COROT and SIM may provide detections of terrestrial planets within the next decade. The number of planets increases with decreasing planet mass, indicating that nature makes more small planets than jupiter--mass planets. Extrapolation, though speculative, bodes well for an even larger number of earth--mass planets. These observations and the theory of planet formation suggests that single sun--like stars commonly harbor earth--sized rocky planets, as yet undetectable. The number of planets increases with increasing orbital distance from the host star, and most known planets reside in non--circular orbits. Many known planets reside in the habitable zone (albeit being gas giants) and most newly discovered planets orbit beyond 1 AU from their star. A population of Jupiter--like planets may reside at 5--10 AU from stars, not easily detectable at present. The sun--like star 55 Cancri harbors a planet of 4--10 Jupiter masses orbiting at 5.5 AU in a low eccentricity orbit, the first analog of our Jupiter, albeit with two large planets orbiting inward. To date, 10 multiple--planet systems have been discovered, with four revealing gravitational interactions between the planets in the form of resonances. GJ 876 has two planets with periods of 1 and 2 months. Other planetary systems are ``hierarchical'', consisting

  20. Topics in Extrasolar Planet Characterization

    NASA Astrophysics Data System (ADS)

    Howe, Alex Ryan

    I present four papers exploring different topics in the area of characterizing the atmospheric and bulk properties of extrasolar planets. In these papers, I present two new codes, in various forms, for modeling these objects. A code to generate theoretical models of transit spectra of exoplanets is featured in the first paper and is refined and expanded into the APOLLO code for spectral modeling and parameter retrieval in the fourth paper. Another code to model the internal structure and evolution of planets is featured in the second and third papers. The first paper presents transit spectra models of GJ 1214b and other super-Earth and mini-Neptune type planets--planets with a "solid", terrestrial composition and relatively small planets with a thick hydrogen-helium atmosphere, respectively--and fit them to observational data to estimate the atmospheric compositions and cloud properties of these planets. The second paper presents structural models of super-Earth and mini-Neptune type planets and estimates their bulk compositions from mass and radius estimates. The third paper refines these models with evolutionary calculations of thermal contraction and ultraviolet-driven mass loss. Here, we estimate the boundaries of the parameter space in which planets lose their initial hydrogen-helium atmospheres completely, and we also present formation and evolution scenarios for the planets in the Kepler-11 system. The fourth paper uses more refined transit spectra models, this time for hot jupiter type planets, to explore the methods to design optimal observing programs for the James Webb Space Telescope to quantitatively measure the atmospheric compositions and other properties of these planets.

  1. Extra-solar planet detection

    NASA Technical Reports Server (NTRS)

    Shao, Michael

    1991-01-01

    Extra-solar planet detection has been a goal of astronomers for many decades. This paper describes current efforts in planet detection using interferometric techniques. At present, the Mark III long baseline interferometer has been operational for a number of years. The Mark III has achieved significant improvement in astrometric accuracy in two areas, wide angle astrometry and double star astrometry. Two new interferometers are being developed. The first is a direct combination IR interferometer, an upgrade of the UCB IR heterodyne interferometer. The second is the Keck Interferometer Array. This instrument, to be operational at the end of the decade will be a major interferometric facility, with the capability to combine coherently the light from the two 10-meter Keck telescopes as well as four 1.5-meter movable outrigger telescopes. The last project directed at planet detection is OSI, a space-based long-baseline interferometer with a planned astrometric accuracy of 1-10 microarcsec.

  2. Extrasolar planet imaging

    NASA Astrophysics Data System (ADS)

    Labeyrie, Antoine; Le Coroller, Herve

    2004-10-01

    The coronagraphic techniques serving to reject most light from a star, when trying to image a nearby planet, can be pushed with an adaptive holographic element. Located after the coronagraph, it can in principle remove most of the residual star light by adding a phase-shifted holographic reconstruction of it . The scheme is also usable within each sub-aperture of a diluted hypertelescope array, sufficiently large to resolve details of an exo-Earth. A possible panoramic version of the previously mentioned Exo-Earth Imager is shaped as a virtual bubble of 400 km diameter , consisting of thousands of 3-meter mirrors, free-flying and arranged co-spherically. The half-size focal sphere is explored by beam combiners, one for each exo-Earth observed within tens of parsecs. Each beam-combiner includes a kilometer-sized corrector of spherical aberration at F/2, which is also diluted and consisting of small free-flyers. The instrument is expected to provide direct coronagraphic images of exo-Earths, resolved in 50×50 resels, with enough dynamic range obtained in 30mn exposures to search colored features and their seasonal variations, indicative of photosynthetic life .

  3. The Realm of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Ferlet, Roger

    2010-10-01

    In November 1995, an article published in Nature [1] put planetary sciences not only as a new hot field in both observational and theoretical astrophysics but also as a topic with a large impact toward the layman. This article was reporting the first discovery of a planet orbiting a star beyond our Sun, namely the solar-type star 51 Pegasi. Nearly four centuries after Giordano Bruno was burnt in public in Roma partly for having intuitively claimed the plurality of worlds, we were entering the extraordinary epoch in which one of the oldest inquiries of mankind-are we alone in the Universe?-can be tackled with the scientific method, leaving aside centuries of endless speculations. To date (July 2010), almost 500 extrasolar planets are known. We shall briefly review the main detection methods, together with the big surprises which arose during these last exciting fifteen years, without being exhaustive.

  4. Electrodynamics on extrasolar giant planets

    SciTech Connect

    Koskinen, T. T.; Yelle, R. V.; Lavvas, P.; Cho, J. Y-K.

    2014-11-20

    Strong ionization on close-in extrasolar giant planets (EGPs) suggests that their atmospheres may be affected by ion drag and resistive heating arising from wind-driven electrodynamics. Recent models of ion drag on these planets, however, are based on thermal ionization only and do not include the upper atmosphere above the 1 mbar level. These models are also based on simplified equations of resistive magnetohydrodynamics that are not always valid in extrasolar planet atmospheres. We show that photoionization dominates over thermal ionization over much of the dayside atmosphere above the 100 mbar level, creating an upper ionosphere dominated by ionization of H and He and a lower ionosphere dominated by ionization of metals such as Na, K, and Mg. The resulting dayside electron densities on close-in exoplanets are higher than those encountered in any planetary ionosphere of the solar system, and the conductivities are comparable to the chromosphere of the Sun. Based on these results and assumed magnetic fields, we constrain the conductivity regimes on close-in EGPs and use a generalized Ohm's law to study the basic effects of electrodynamics in their atmospheres. We find that ion drag is important above the 10 mbar level where it can also significantly alter the energy balance through resistive heating. Due to frequent collisions of the electrons and ions with the neutral atmosphere, however, ion drag is largely negligible in the lower atmosphere below the 10 mbar level for a reasonable range of planetary magnetic moments. We find that the atmospheric conductivity decreases by several orders of magnitude in the night side of tidally locked planets, leading to a potentially interesting large-scale dichotomy in electrodynamics between the day and night sides. A combined approach that relies on UV observations of the upper atmosphere, phase curve and Doppler measurements of global dynamics, and visual transit observations to probe the alkali metals can potentially be

  5. Demographic studies of extrasolar planets

    NASA Astrophysics Data System (ADS)

    Morton, Timothy

    Uncovering the demographics of extrasolar planets is crucial to understanding the processes of their formation and evolution. In this thesis, we present four studies that contribute to this end, three of which relate to NASA's Kepler mission, which has revolutionized the field of exoplanets in the last few years. In the pre-Kepler study, we investigate a sample of exoplanet spin-orbit measurements---measurements of the inclination of a planet's orbit relative to the spin axis of its host star---to determine whether a dominant planet migration channel can be identified, and at what confidence. Applying methods of Bayesian model comparison to distinguish between the predictions of several different migration models, we find that the data strongly favor a two-mode migration scenario combining planet-planet scattering and disk migration over a single-mode Kozai migration scenario. While we test only the predictions of particular Kozai and scattering migration models in this work, these methods may be used to test the predictions of any other spin-orbit misaligning mechanism. We then present two studies addressing astrophysical false positives in Kepler data. The Kepler mission has identified thousands of transiting planet candidates, and only relatively few have yet been dynamically confirmed as bona fide planets, with only a handful more even conceivably amenable to future dynamical confirmation. As a result, the ability to draw detailed conclusions about the diversity of exoplanet systems from Kepler detections relies critically on understanding the probability that any individual candidate might be a false positive. We show that a typical a priori false positive probability for a well-vetted Kepler candidate is only about 5-10%, enabling confidence in demographic studies that treat candidates as true planets. We also present a detailed procedure that can be used to securely and efficiently validate any individual transit candidate using detailed information of the

  6. DETECTING VOLCANISM ON EXTRASOLAR PLANETS

    SciTech Connect

    Kaltenegger, L.; Sasselov, D. D.; Henning, W. G.

    2010-11-15

    The search for extrasolar rocky planets has already found the first transiting rocky super-Earth, Corot 7b, with a surface temperature that allows for magma oceans. Here, we investigate whether we could distinguish rocky planets with recent major volcanism by remote observation. We develop a model for volcanic eruptions on an Earth-like exoplanet based on the present-day Earth and derive the observable features in emergent and transmission spectra for multiple scenarios of gas distribution and cloud cover. We calculate the observation time needed to detect explosive volcanism on exoplanets in primary as well as secondary eclipse and discuss the likelihood of observing volcanism on transiting Earth-sized to super-Earth-sized exoplanets. We find that sulfur dioxide from large explosive eruptions does present a spectral signal that is remotely detectable especially for secondary eclipse measurements around the closest stars and ground-based telescopes, and report the frequency and magnitude of the expected signatures. The transit probability of a planet in the habitable zone decreases with distance from the host star, making small, nearby host stars the best targets.

  7. Progress in extra-solar planet detection

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1991-01-01

    Progress in extra-solar planet detection is reviewed. The following subject areas are covered: (1) the definition of a planet; (2) the weakness of planet signals; (3) direct techniques - imaging and spectral detection; and (4) indirect techniques - reflex motion and occultations.

  8. A Decade of Extrasolar Planets around Normal Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Sahu, Kailash; Valenti, Jeff

    2008-06-01

    1. Extrasolar planets: past, present, and future A. P. Boss; 2. The quest for very low-mass planets M. Mayor, F. Pepe, C. Lovis, D. Queloz and S. Udry; 3. Extrasolar planets: a galactic perspective I. N. Reid; 4. The Kepler Mission: Design, expected science results, opportunities to participate W. J. Borucki, D. Koch, G. Basri, T. Brown, D. Caldwell, E. Devore, E. Dunham, T. Gautier, J. Geary, R. Gilliland, A. Gould, S. Howell, J. Jenkins and D. Latham; 5. Observations of the atmospheres of extrasolar planets T. M. Brown, R. Alonso, M. Knölker, H. Rauer and W. Schmidt; 6. Planetary migration P. J. Armitage and W. K. M. Rice; 7. Observational constraints on dust disk lifetimes: implications for planet formation L. A. Hillenbrand; 8. The evolution of gas in disks J. Najita; 9. Planet formation J.J. Lissauer; 10. Core accretion-gas capture model for gas giant planet formation O. Hubickyj; 11. Gravitational instabilities in protoplanetary disks R. H. Durisen; 12. Conference summary: the quest for new worlds J. E. Pringle.

  9. A Decade of Extrasolar Planets around Normal Stars

    NASA Astrophysics Data System (ADS)

    Livio, Mario; Sahu, Kailash; Valenti, Jeff

    2011-04-01

    1. Extrasolar planets: past, present, and future A. P. Boss; 2. The quest for very low-mass planets M. Mayor, F. Pepe, C. Lovis, D. Queloz and S. Udry; 3. Extrasolar planets: a galactic perspective I. N. Reid; 4. The Kepler Mission: Design, expected science results, opportunities to participate W. J. Borucki, D. Koch, G. Basri, T. Brown, D. Caldwell, E. Devore, E. Dunham, T. Gautier, J. Geary, R. Gilliland, A. Gould, S. Howell, J. Jenkins and D. Latham; 5. Observations of the atmospheres of extrasolar planets T. M. Brown, R. Alonso, M. Knölker, H. Rauer and W. Schmidt; 6. Planetary migration P. J. Armitage and W. K. M. Rice; 7. Observational constraints on dust disk lifetimes: implications for planet formation L. A. Hillenbrand; 8. The evolution of gas in disks J. Najita; 9. Planet formation J.J. Lissauer; 10. Core accretion-gas capture model for gas giant planet formation O. Hubickyj; 11. Gravitational instabilities in protoplanetary disks R. H. Durisen; 12. Conference summary: the quest for new worlds J. E. Pringle.

  10. Homes for extraterrestrial life: extrasolar planets.

    PubMed

    Latham, D W

    2001-12-01

    Astronomers are now discovering giant planets orbiting other stars like the sun by the dozens. But none of these appears to be a small rocky planet like the earth, and thus these planets are unlikely to be capable of supporting life as we know it. The recent discovery of a system of three planets is especially significant because it supports the speculation that planetary systems, as opposed to single orbiting planets, may be common. Our ability to detect extrasolar planets will continue to improve, and space missions now in development should be able to detect earth-like planets.

  11. PHOTOMETRIC ORBITS OF EXTRASOLAR PLANETS

    SciTech Connect

    Brown, Robert A.

    2009-09-10

    We define and analyze the photometric orbit (PhO) of an extrasolar planet observed in reflected light. In our definition, the PhO is a Keplerian entity with six parameters: semimajor axis, eccentricity, mean anomaly at some particular time, argument of periastron, inclination angle, and effective radius, which is the square root of the geometric albedo times the planetary radius. Preliminarily, we assume a Lambertian phase function. We study in detail the case of short-period giant planets (SPGPs) and observational parameters relevant to the Kepler mission: 20 ppm photometry with normal errors, 6.5 hr cadence, and three-year duration. We define a relevant 'planetary population of interest' in terms of probability distributions of the PhO parameters. We perform Monte Carlo experiments to estimate the ability to detect planets and to recover PhO parameters from light curves. We calibrate the completeness of a periodogram search technique, and find structure caused by degeneracy. We recover full orbital solutions from synthetic Kepler data sets and estimate the median errors in recovered PhO parameters. We treat in depth a case of a Jupiter body-double. For the stated assumptions, we find that Kepler should obtain orbital solutions for many of the 100-760 SPGP that Jenkins and Doyle estimate Kepler will discover. Because most or all of these discoveries will be followed up by ground-based radial velocity observations, the estimates of inclination angle from the PhO may enable the calculation of true companion masses: Kepler photometry may break the 'msin i' degeneracy. PhO observations may be difficult. There is uncertainty about how low the albedos of SPGPs actually are, about their phase functions, and about a possible noise floor due to systematic errors from instrumental and stellar sources. Nevertheless, simple detection of SPGPs in reflected light should be robust in the regime of Kepler photometry, and estimates of all six orbital parameters may be feasible in

  12. HSTEP - Homogeneous Studies of Transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2014-04-01

    This paper presents a summary of the HSTEP project: an effort to calculate the physical properties of the known transiting extrasolar planets using a homogeneous approach. I discuss the motivation for the project, list the 83 planets which have already been studied, run through some important aspects of the methodology, and finish with a synopsis of the results.

  13. Characterization of Extrasolar Planets Using SOFIA

    NASA Technical Reports Server (NTRS)

    Deming, Drake

    2010-01-01

    Topics include: the landscape of extrasolar planets, why focus on transiting planets, some history and Spitzer results, problems in atmospheric structure or hot Jupiters and hot super Earths, what observations are needed to make progress, and what SOFIA can currently do and comments on optimized instruments.

  14. Atmospheric dynamics of tidally synchronized extrasolar planets.

    PubMed

    Cho, James Y-K

    2008-12-13

    Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.

  15. Spectra and Biomarkers of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Traub, Wesley A.

    2005-01-01

    During this period, and focussing on ow work at SAO only, we have produced significant results in five areas: coronagraphs, color, Earthshine, near infrared, and meetings. We developed the theory of a new type of coronograph for detecting and characterizing extrasolar planets. We wrote two papers, the first laying out the one-dimensional theory, and the second developing the two-dimensional theory, plus additional results. We gained new insights into the role that simple color measurements can play in characterizing extrasolar planets.

  16. [Extrasolar terrestrial planets and possibility of extraterrestrial life].

    PubMed

    Ida, Shigeru

    2003-12-01

    Recent development of research on extrasolar planets are reviewed. About 120 extrasolar Jupiter-mass planets have been discovered through the observation of Doppler shift in the light of their host stars that is caused by acceleration due to planet orbital motions. Although the extrasolar planets so far observed may be limited to gas giant planets and their orbits differ from those of giant planets in our Solar system (Jupiter and Saturn), the theoretically predicted probability of existence of extrasolar terrestrial planets that can have liquid water ocean on their surface is comparable to that of detectable gas giant planets. Based on the number of extrasolar gas giants detected so far, about 100 life-sustainable planets may exist within a range of 200 light years. Indirect observation of extrasolar terrestrial planets would be done with space telescopes within several years and direct one may be done within 20 years. The latter can detect biomarkers on these planets as well.

  17. A spectrum of an extrasolar planet.

    PubMed

    Richardson, L Jeremy; Deming, Drake; Horning, Karen; Seager, Sara; Harrington, Joseph

    2007-02-22

    Of the over 200 known extrasolar planets, 14 exhibit transits in front of their parent stars as seen from Earth. Spectroscopic observations of the transiting planets can probe the physical conditions of their atmospheres. One such technique can be used to derive the planetary spectrum by subtracting the stellar spectrum measured during eclipse (planet hidden behind star) from the combined-light spectrum measured outside eclipse (star + planet). Although several attempts have been made from Earth-based observatories, no spectrum has yet been measured for any of the established extrasolar planets. Here we report a measurement of the infrared spectrum (7.5-13.2 microm) of the transiting extrasolar planet HD 209458b. Our observations reveal a hot thermal continuum for the planetary spectrum, with an approximately constant ratio to the stellar flux over this wavelength range. Superposed on this continuum is a broad emission peak centred near 9.65 microm that we attribute to emission by silicate clouds. We also find a narrow, unidentified emission feature at 7.78 microm. Models of these 'hot Jupiter' planets predict a flux peak near 10 microm, where thermal emission from the deep atmosphere emerges relatively unimpeded by water absorption, but models dominated by water fit the observed spectrum poorly.

  18. FAME's Search for Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Johnston, K.

    FAME is a five year survey mission to observe the positions, proper motions, and parallaxes of 40,000,000 stars down to 15th magnitude with accuracies of 50 microarcseconds at 9th magnitude. In addition to producing an astrometric and photometric catalog unparalleled for its accuracy and size, the survey will provide significant astrophysics results and search for extrasolar planet candidates.

  19. Extrasolar planets around intermediate mass stars

    NASA Astrophysics Data System (ADS)

    Hatzes, A. P.

    2008-08-01

    One of the earliest hints for extrasolar planets came with the discovery almost 15 years ago of low amplitude, long period radial velocity (RV) variations in several K giant stars, β Gem, α Tau (Aldebaran) and α Boo. Since then it has been confirmed that for β Gem (stellar mass =1.7 Modot) these RV variations are due to a planetary companion. Aldebaran is another K giant star showing long-lived (>26 years) and coherent RV variations. These are most likely due to a planetary companion having a mass of 9 MJup using an estimated mass of 2.5 Modot for the star. Giant stars like α Tau and β Gem offer us the possibility of studying the process of planet formation around stars more massive than the sun. The main sequence stars with masses >1.2 Modot are ill-suited for RV surveys as there are few spectral lines for measuring the RV and these are often broadened by high rates of stellar rotation. Currently over 20 intermediate mass giant stars are known to host extrasolar planets. This sample is sufficiently large that we can begin to look at the overall properties of planets around intermediate mass stars. These suggest that more massive stars may have more massive planets that the orbital eccentricities for their extrasolar planets show the wide range of eccentricities seen for main sequence, solar mass stars, and that unlike for main sequence stars there seems to be no preference for metal rich intermediate mass stars to host extrasolar planets.

  20. Extrasolar planets detections and statistics through gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Cassan, A.

    2014-10-01

    Gravitational microlensing was proposed thirty years ago as a promising method to probe the existence and properties of compact objects in the Galaxy and its surroundings. The particularity and strength of the technique is based on the fact that the detection does not rely on the detection of the photon emission of the object itself, but on the way its mass affects the path of light of a background, almost aligned source. Detections thus include not only bright, but also dark objects. Today, the many successes of gravitational microlensing have largely exceeded the original promises. Microlensing contributed important results and breakthroughs in several astrophysical fields as it was used as a powerful tool to probe the Galactic structure (proper motions, extinction maps), to search for dark and compact massive objects in the halo and disk of the Milky Way, to probe the atmospheres of bulge red giant stars, to search for low-mass stars and brown dwarfs and to hunt for extrasolar planets. As an extrasolar planet detection method, microlensing nowadays stands in the top five of the successful observational techniques. Compared to other (complementary) detection methods, microlensing provides unique information on the population of exoplanets, because it allows the detection of very low-mass planets (down to the mass of the Earth) at large orbital distances from their star (0.5 to 10 AU). It is also the only technique that allows the discovery of planets at distances from Earth greater than a few kiloparsecs, up to the bulge of the Galaxy. Microlensing discoveries include the first ever detection of a cool super-Earth around an M-dwarf star, the detection of several cool Neptunes, Jupiters and super-Jupiters, as well as multi-planetary systems and brown dwarfs. So far, the least massive planet detected by microlensing has only three times the mass of the Earth and orbits a very low mass star at the edge of the brown dwarf regime. Several free-floating planetary

  1. Planet Formation and the Characteristics of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    An overview of current theories of planetary growth, emphasizing the formation of extrasolar planets, is presented. Models of planet formation are based upon observations of the Solar System, extrasolar planets, and young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed.

  2. The Radiometric Bode’s law and Extrasolar Planets

    DTIC Science & Technology

    2004-09-01

    THE RADIOMETRIC BODE’S LAW AND EXTRASOLAR PLANETS T. Joseph, W. Lazio Naval Research Laboratory, Code 7213, Washington, DC 20375-5351; joseph.lazio...the magnetic polar regions. We find that most of the known extrasolar planets should emit in the frequency range 10–1000 MHz and, under favorable...detect the known extrasolar planets or place austere limits on their radio emission. Planets with masses much lower than those in the current census

  3. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS. II. PREDICTIONS FOR OUTER EXTRASOLAR PLANETARY SYSTEMS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2010-03-10

    We develop an idealized dynamical model to predict the typical properties of outer extrasolar planetary systems, at radii comparable to the Jupiter-to-Neptune region of the solar system. The model is based upon the hypothesis that dynamical evolution in outer planetary systems is controlled by a combination of planet-planet scattering and planetary interactions with an exterior disk of small bodies ('planetesimals'). Our results are based on 5000 long duration N-body simulations that follow the evolution of three planets from a few to 10 AU, together with a planetesimal disk containing 50 M{sub +} from 10 to 20 AU. For large planet masses (M {approx}> M{sub Sat}), the model recovers the observed eccentricity distribution of extrasolar planets. For lower-mass planets, the range of outcomes in models with disks is far greater than that which is seen in isolated planet-planet scattering. Common outcomes include strong scattering among massive planets, sudden jumps in eccentricity due to resonance crossings driven by divergent migration, and re-circularization of scattered low-mass planets in the outer disk. We present the distributions of the eccentricity and inclination that result, and discuss how they vary with planet mass and initial system architecture. In agreement with other studies, we find that the currently observed eccentricity distribution (derived primarily from planets at a {approx}< 3 AU) is consistent with isolated planet-planet scattering. We explain the observed mass dependence-which is in the opposite sense from that predicted by the simplest scattering models-as a consequence of strong correlations between planet masses in the same system. At somewhat larger radii, initial planetary mass correlations and disk effects can yield similar modest changes to the eccentricity distribution. Nonetheless, strong damping of eccentricity for low-mass planets at large radii appears to be a secure signature of the dynamical influence of disks. Radial velocity

  4. Direct imaging of extra-solar planets

    SciTech Connect

    Olivier, S.S.; Max, V.E.; Brase, J.M.; Caffano, C.J.; Gavel, D.T.; Macintosh, B.A.

    1997-03-01

    Direct imaging of extra-solar planets may be possible with the new generation of large ground-based telescopes equipped with state- of- the-art adaptive optics (AO) systems to compensate for the blurring effect of the Earth`s atmosphere. The first of these systems is scheduled to begin operation in 1998 on the 10 in Keck II telescope. In this paper, general formulas for high-contrast imaging with AO systems are presented and used to calculate the sensitivity of the Keck AO system. The results of these calculations show that the Keck AO system should achieve the sensitivity necessary to detect giant planets around several nearby bright stars.

  5. Thermal escape from extrasolar giant planets

    PubMed Central

    Koskinen, Tommi T.; Lavvas, Panayotis; Harris, Matthew J.; Yelle, Roger V.

    2014-01-01

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres. PMID:24664923

  6. Infrared Spectroscopy of Extra-solar Planets

    NASA Astrophysics Data System (ADS)

    Wiedemann, G.

    Giant extra-solar planets with short orbital periods may be detected directly via the infrared line spectra emitted by their heated atmospheres. Ground-based measurements of the planetary lines at ~10-4 of the stellar flux are possible if one exploits the large-amplitude Doppler modulation caused by the orbital velocity, whereby the period and phase are known for stars with established reflex motions. A measured radial velocity amplitude of the planet yields directly the star/planet mass ratio and the inclination angle of the orbital plane. A search for methane in the IR 3.3 μm spectrum of τ Boo has been carried out at the NASA IRTF. The Southern Saturn-type planet of HD 75289 has been observed over a six week period by the VLT (2.3 μm CO) and future CO and CH4 observations are scheduled.

  7. Thermal escape from extrasolar giant planets.

    PubMed

    Koskinen, Tommi T; Lavvas, Panayotis; Harris, Matthew J; Yelle, Roger V

    2014-04-28

    The detection of hot atomic hydrogen and heavy atoms and ions at high altitudes around close-in extrasolar giant planets (EGPs) such as HD209458b implies that these planets have hot and rapidly escaping atmospheres that extend to several planetary radii. These characteristics, however, cannot be generalized to all close-in EGPs. The thermal escape mechanism and mass loss rate from EGPs depend on a complex interplay between photochemistry and radiative transfer driven by the stellar UV radiation. In this study, we explore how these processes change under different levels of irradiation on giant planets with different characteristics. We confirm that there are two distinct regimes of thermal escape from EGPs, and that the transition between these regimes is relatively sharp. Our results have implications for thermal mass loss rates from different EGPs that we discuss in the context of currently known planets and the detectability of their upper atmospheres.

  8. Optical Spectra of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Hubeny, Ivan; Sudarsky, David; Burrows, Adam

    2004-01-01

    The flux distribution of a planet relative to its host star is a critical quantity for planning space observatories to detect and characterize extrasolar giant planets (EGP's). In this paper, we present optical planet-star contrasts of Jupiter-mass planets as a function of stellar type, orbital distance, and planetary cloud characteristics. As originally shown by Sudarsky et al. (2000, 2003), the phaseaveraged brightness of an EGP does not necessarily decrease monotonically with greater orbital distance because of changes in its albedo and absorption spectrum at lower temperatures. We apply our results to Eclipse, a 1.8-m optical telescope + coronograph to be proposed as a NASA Discovery mission later this year.

  9. The Evryscope and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Fors, Octavi; Law, Nicholas Michael; Ratzloff, Jeffrey; del Ser, Daniel; Wulfken, Philip J.; Kavanaugh, Dustin

    2015-08-01

    The Evryscope (Law et al. 2015) is a 24-camera hemispherical all-sky gigapixel telescope (8,000 sq.deg. FoV) with rapid cadence (2mins exposure, 4sec readout) installed at CTIO. Ground-based single-station transiting surveys typically suffer from light curve sparsity and suboptimal efficiency because of their limited field of view (FoV), resulting in incomplete and biased detections. In contrast, the Evryscope offers 97% survey efficiency and one of the single-station most continuous and simultaneous monitoring of millions of stars (only limited by the day-night window).This unique facility is capable of addressing new and more extensive planetary populations, including: 1) for the first time, continuously monitor every 2mins a set of ~1000 bright white dwarfs (WDs). This will allow us to put constraints on the habitable planet fraction of Ceres-size planetesimals at the level of 30%, only in a survey timescales of a few weeks, as well as first-time testing planetary evolution models beyond the AGB phase. 2) search for rocky planets in the habitable zone around ~5,000 bright, nearby M-dwarfs. 3) synergies between Evryscope and upcoming exoplanets missions (e.g. TESS, PLATO) are also promising for target pre-imaging characterization, and increasing the giant planet yield by recovering multiple transits from planets seen as single transit events from space. 4) all-sky 2-min cadence of rare microlensing events of nearby stars. 5) all-sky continuous survey of microlensing events of nearby stars at 2mins cadence. 6) increase the census of giant planets around ~70,000 nearby, bright (g<10) solar-type stars, whose atmospheres can be characterized by follow-up observations. We are developing new data analysis algorithms to address the above scientific goals: from detecting the extremely short and faint transits around WDs, to disentangle planetary signals from very bright stars, and to combine space-based light curves with the Evryscope's ones. We will present the first

  10. Infrared radiation from an extrasolar planet.

    PubMed

    Deming, Drake; Seager, Sara; Richardson, L Jeremy; Harrington, Joseph

    2005-04-07

    A class of extrasolar giant planets--the so-called 'hot Jupiters' (ref. 1)--orbit within 0.05 au of their primary stars (1 au is the Sun-Earth distance). These planets should be hot and so emit detectable infrared radiation. The planet HD 209458b (refs 3, 4) is an ideal candidate for the detection and characterization of this infrared light because it is eclipsed by the star. This planet has an anomalously large radius (1.35 times that of Jupiter), which may be the result of ongoing tidal dissipation, but this explanation requires a non-zero orbital eccentricity (approximately 0.03; refs 6, 7), maintained by interaction with a hypothetical second planet. Here we report detection of infrared (24 microm) radiation from HD 209458b, by observing the decrement in flux during secondary eclipse, when the planet passes behind the star. The planet's 24-microm flux is 55 +/- 10 microJy (1sigma), with a brightness temperature of 1,130 +/- 150 K, confirming the predicted heating by stellar irradiation. The secondary eclipse occurs at the midpoint between transits of the planet in front of the star (to within +/- 7 min, 1sigma), which means that a dynamically significant orbital eccentricity is unlikely.

  11. IONIZATION OF EXTRASOLAR GIANT PLANET ATMOSPHERES

    SciTech Connect

    Koskinen, Tommi T.; Cho, James Y-K.; Achilleos, Nicholas; Aylward, Alan D.

    2010-10-10

    Many extrasolar planets orbit close in and are subject to intense ionizing radiation from their host stars. Therefore, we expect them to have strong, and extended, ionospheres. Ionospheres are important because they modulate escape in the upper atmosphere and can modify circulation, as well as leave their signatures, in the lower atmosphere. In this paper, we evaluate the vertical location Z{sub I} and extent D{sub I} of the EUV ionization peak layer. We find that Z{sub I{approx}}1-10 nbar-for a wide range of orbital distances (a = 0.047-1 AU) from the host star-and D{sub I}/H{sub p{approx}}>15, where H{sub p} is the pressure scale height. At Z{sub I}, the plasma frequency is {approx}80-450 MHz, depending on a. We also study global ion transport, and its dependence on a, using a three-dimensional thermosphere-ionosphere model. On tidally synchronized planets with weak intrinsic magnetic fields, our model shows only a small, but discernible, difference in electron density from the dayside to the nightside ({approx}9 x 10{sup 13} m{sup -3} to {approx}2 x 10{sup 12} m{sup -3}, respectively) at Z{sub I}. On asynchronous planets, the distribution is essentially uniform. These results have consequences for hydrodynamic modeling of the atmospheres of close-in extrasolar giant planets.

  12. Microlensing detection of extrasolar planets.

    PubMed

    Giannini, Emanuela; Lunine, Jonathan I

    2013-05-01

    We review the method of exoplanetary microlensing with a focus on two-body planetary lensing systems. The physical properties of planetary systems can be successfully measured by means of a deep analysis of lightcurves and high-resolution imaging of planetary systems, countering the concern that microlensing cannot determine planetary masses and orbital radii. Ground-based observers have had success in diagnosing properties of multi-planet systems from a few events, but space-based observations will be much more powerful and statistically more complete. Since microlensing is most sensitive to exoplanets beyond the snow line, whose statistics, in turn, allow for testing current planetary formation and evolution theories, we investigate the retrieval of semi-major axis density by a microlensing space-based survey with realistic parameters. Making use of a published statistical method for projected exoplanets quantities (Brown 2011), we find that one year of such a survey might distinguish between simple power-law semi-major axis densities. We conclude by briefly reviewing ground-based results hinting at a high abundance of free-floating planets and describing the potential contribution of space-based missions to understanding the frequency and mass distribution of these intriguing objects, which could help unveil the formation processes of planetary systems.

  13. Direct Imaging of Warm Extrasolar Planets

    SciTech Connect

    Macintosh, B

    2005-04-11

    One of the most exciting scientific discoveries in the last decade of the twentieth century was the first detection of planets orbiting a star other than our own. By now more than 130 extrasolar planets have been discovered indirectly, by observing the gravitational effects of the planet on the radial velocity of its parent star. This technique has fundamental limitations: it is most sensitive to planets close to their star, and it determines only a planet's orbital period and a lower limit on the planet's mass. As a result, all the planetary systems found so far are very different from our own--they have giant Jupiter-sized planets orbiting close to their star, where the terrestrial planets are found in our solar system. Such systems have overturned the conventional paradigm of planet formation, but have no room in them for habitable Earth-like planets. A powerful complement to radial velocity detections of extrasolar planets will be direct imaging--seeing photons from the planet itself. Such a detection would allow photometric measurements to determine the temperature and radius of a planet. Also, direct detection is most sensitive to planets in wide orbits, and hence more capable of seeing solar systems resembling our own, since a giant planet in a wide orbit does not preclude the presence of an Earth-like planet closer to the star. Direct detection, however, is extremely challenging. Jupiter is roughly a billion times fainter than our sun. Two techniques allowed us to overcome this formidable contrast and attempt to see giant planets directly. The first is adaptive optics (AO) which allows giant earth-based telescopes, such as the 10 meter W.M. Keck telescope, to partially overcome the blurring effects of atmospheric turbulence. The second is looking for young planets: by searching in the infrared for companions to young stars, we can see thermal emission from planets that are still warm with the heat of their formation. Together with a UCLA team that leads the

  14. Formation and composition of planets around very low mass stars

    NASA Astrophysics Data System (ADS)

    Alibert, Y.; Benz, W.

    2017-01-01

    Context. The recent detection of planets around very low mass stars raises the question of the formation, composition, and potential habitability of these objects. Aims: We use planetary system formation models to infer the properties, in particular their radius distribution and water content, of planets that may form around stars ten times less massive than the Sun. Methods: Our planetary system formation and composition models take into account the structure and evolution of the protoplanetary disk, the planetary mass growth by accretion of solids and gas, as well as planet-planet, planet-star, and planet-disk interactions. Results: We show that planets can form at small orbital period in orbit about low-mass stars. We show that the radius of the planets is peaked at about 1 R⊕ and that they are, in general, volatile rich especially if proto-planetary disks orbiting this type of stars are long lived. Conclusions: Close-in planets orbiting low-mass stars similar in terms of mass and radius to those recently detected can be formed within the framework of the core-accretion paradigm as modeled here. The properties of protoplanetary disks, and their correlation with the stellar type, are key to understand their composition.

  15. Detection of Extrasolar Planets by Transit Photometry

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Webster, Larry; Dunham, Edward; Witteborn, Fred; Jenkins, Jon; Caldwell, Douglas; Showen, Robert; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A knowledge of other planetary systems that includes information on the number, size, mass, and spacing of the planets around a variety of star types is needed to deepen our understanding of planetary system formation and processes that give rise to their final configurations. Recent discoveries show that many planetary systems are quite different from the solar system in that they often possess giant planets in short period orbits. The inferred evolution of these planets and their orbital characteristics imply the absence of Earth-like planets near the habitable zone. Information on the properties of the giant-inner planets is now being obtained by both the Doppler velocity and the transit photometry techniques. The combination of the two techniques provides the mass, size, and density of the planets. For the planet orbiting star HD209458, transit photometry provided the first independent confirmation and measurement of the diameter of an extrasolar planet. The observations indicate a planet 1.27 the diameter of Jupiter with 0.63 of its mass (Charbonneau et al. 1999). The results are in excellent agreement with the theory of planetary atmospheres for a planet of the indicated mass and distance from a solar-like star. The observation of the November 23, 1999 transit of that planet made by the Ames Vulcan photometer at Lick Observatory is presented. In the future, the combination of the two techniques will greatly increase the number of discoveries and the richness of the science yield. Small rocky planets at orbital distances from 0.9 to 1.2 AU are more likely to harbor life than the gas giant planets that are now being discovered. However, new technology is needed to find smaller, Earth-like planets, which are about three hundred times less massive than Jupiter-like planets. The Kepler project is a space craft mission designed to discover hundreds of Earth-size planets in and near the habitable zone around a wide variety of stars. To demonstrate that the

  16. An extrasolar planetary system with three Neptune-mass planets.

    PubMed

    Lovis, Christophe; Mayor, Michel; Pepe, Francesco; Alibert, Yann; Benz, Willy; Bouchy, François; Correia, Alexandre C M; Laskar, Jacques; Mordasini, Christoph; Queloz, Didier; Santos, Nuno C; Udry, Stéphane; Bertaux, Jean-Loup; Sivan, Jean-Pierre

    2006-05-18

    Over the past two years, the search for low-mass extrasolar planets has led to the detection of seven so-called 'hot Neptunes' or 'super-Earths' around Sun-like stars. These planets have masses 5-20 times larger than the Earth and are mainly found on close-in orbits with periods of 2-15 days. Here we report a system of three Neptune-mass planets with periods of 8.67, 31.6 and 197 days, orbiting the nearby star HD 69830. This star was already known to show an infrared excess possibly caused by an asteroid belt within 1 au (the Sun-Earth distance). Simulations show that the system is in a dynamically stable configuration. Theoretical calculations favour a mainly rocky composition for both inner planets, while the outer planet probably has a significant gaseous envelope surrounding its rocky/icy core; the outer planet orbits within the habitable zone of this star.

  17. Chemical Characterization of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Madhusudhan, Nikku

    2016-07-01

    Exoplanetary discoveries in the past two decades have unveiled an astonishing diversity in the physical characteristics of exoplanetary systems, including their orbital properties, masses, radii, equilibrium temperatures, and stellar hosts. Exoplanets known today range from gas-giants to nearly Earth-size planets, and some even in the habitable zones of their host stars. Recent advances in exoplanet observations and theoretical methods are now leading to unprecedented constraints on the physicochemical properties of exoplanetary atmospheres, interiors, and their formation conditions. I will discuss the latest developments and future prospects of this new era of exoplanetary characterization. In particular, I will present some of the latest constraints on atmospheric chemical compositions of exoplanets, made possible by state-of-the-art high-precision observations from space and ground, and their implications for atmospheric processes and formation conditions of exoplanets. The emerging framework for using atmospheric elemental abundance ratios for constraining the origins and migration pathways of giant exoplanets, e.g. hot Jupiters, will also be discussed. A survey of theoretical and observational directions in the field will be presented along with several open questions on the horizon.

  18. On the Eccentricities of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Marzari, F.; Weidenschilling, S. J.

    1999-09-01

    Extrasolar planets (ESPs) seem to be divided into two groups: circular orbits very close to their stars, or eccentric orbits at larger distances. The latter may be the result of gravitational scattering of planets that formed in unstable orbits (Weidenschilling and Marzari 1996, Nature 384, 619). For systems of three Jupiter-mass planets, the most common outcome is ejection of one planet, leaving the others in stable orbits with significant eccentricities and mutual inclinations. We have compiled statistics for orbital elements of the survivors. At the time of ejection, the eccentricity of the inner one has a broad distribution with modal value 0.5, ranging from about 0.1 to 0.9; smaller and larger values are rare. In contrast, among observed eccentric ESPs only 2 of 11 have e > 0.5, and none have e > 0.7, although there is no observational bias against detection of planets on eccentric orbits. One possible explanation is a large cross-section for young gas giant planets still in their contraction phase, so that non-collisional encounters yield smaller velocity changes. However, even if the effective radius is twice Jupiter's present value, the eccentricity distribution does not change significantly. The "snapshot" distribution at the time one planet is ejected may be misleading. The orbits of the remaining planets are subject to mutual perturbations. The inner planet's eccentricity may oscillate with large amplitude on timescales of 10(7) - 10(8) y. Peak values bring some periastrons low enough for tides to circularize orbits. For planets with large initial eccentricities, the time-averaged e is lower, yielding better agreement with the observed distribution. Still, some orbits with eccentricities up to 0.9, should be detected in a large enough sample of ESPs. If none are found, their absence would argue against gravitational scattering as a general phenomenon in planetary systems.

  19. Systematic aspects of direct extrasolar planet detection

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.

    1988-01-01

    Using the first optical observatory in space, the Hubble Space Telescope, images of possible extrasolar planets will have poor contrast against the background of diffracted and scattered starlight. The very long exposure time required to achieve an adequate signal-to-noise ratio will make their detection infeasible. For a future telescope, a 16-fold increase in either the smoothness of the collecting area of the optics would reduce the exposure time to a tolerable value, but the contrast would remain low and the required photometric precision high. In this situation, the feasibility of detection would be contingent on the careful identification and control of systematic errors.

  20. A Photometric Search for Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Howell, S. B.; Everett, M.; Davis, D. R.; Weidenschilling, S. J.; McGruder, C. H., III; Gelderman, R.

    2000-10-01

    We describe a new program for the photometric detection of extrasolar planets using the 1.3 m telescope on Kitt Peak, which will be operated by a consortium of universities headed by Western Kentucky Univ. and including South Carolina State Univ., Planetary Science Institute, Boston Univ., and UC-Berkeley (SSL). This approach will complement the existing, highly successful, spectroscopic searches. The theory of photometric transit detection has been discussed by a number of authors (e.g. Borucki & Summers 1984; Howell & Merline 1995; Howell et al. 1996) and shown to be well within the capabilities of both photomultiplier and CCD observations. The first photometric transit detection was recently accomplished for the spectroscopically discovered planet orbiting HD209458 (Henry et al. 2000). The detection of extrasolar planet transits requires high photometric precision rather than accuracy. The necessary photometric precision to detect Jupiter-, Neptune-, and Earth-sized planets in orbit around F-M dwarfs is 1%, 0.1% and 0.00001%, respectively. The required precision to observe transits by Jupiter-sized extrasolar planets is easily obtained with modern CCD detectors and the differential ensemble photometric techniques pioneered by Howell et al. (1988). The use of such a technique for ultra-high precision photometry has been described in numerous papers (Charbonneau et al. 2000, Howell 2000, plus many others). Everett and Howell recently used the Kitt Peak NOAO 0.9 m telescope with the wide-field MOSAIC camera to search for extrasolar planet transits. During this run, they achieved a photometric precision of 0.024% for this dataset. With the 1.3 m telescope, we expect to reach a photometric precision of ~ 0.01% (10-4 mag). Our consortium has recently begun to refurbish and automate the 1.3 m telescope, which will be known as the Remote-Controlled Telescope (RCT). The primary instrument will be a CCD camera with a SITe 2048 x 2048 CCD having pixel well depths of 363

  1. Division F Commission 53: Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lecavelier Des Etangs, Alain; Minniti, Dante; Boss, Alan; Mayor, Michel; Bodenheimer, Peter; Collier-Cameron, Andrew; Jayawardhana, Ray; Kokubo, Eiichiro; Mardling, Rosemary; Queloz, Didier; Rauer, Heike; Zhao, Gang

    2016-04-01

    The IAU Working Group on Extrasolar Planets (WGESP) was created by the Executive Council as a Working Group of Division III. This decision took place in June 1999, that is only 7 years after the discovery of planets around the pulsar PSR B1257+12 and 4 years after the discovery of 51 Peg b. This working group was renewed for 3 years at the General Assembly in 2003 in Sydney, Australia. It was chaired by Alan Boss from Carnegie Institution of Washington. The WGESP members were Paul Butler, William Hubbard, Philip Ianna, Martin Kürster, Jack Lissauer, Michel Mayor, Karen Meech, Francois Mignard, Alan Penny, Andreas Quirrenbach, Jill Tarter, and Alfred Vidal-Madjar.

  2. Atmospheric circulation of eccentric extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Lewis, Nikole Kae

    This dissertation explores the three-dimensional coupling between radiative and dynamical processes in the atmospheres of eccentric extrasolar giant planets GJ436b, HAT-P-2b, and HD80606b. Extrasolar planets on eccentric orbits are subject to time-variable heating and probable non-synchronous rotation, which results in significant variations in global circulation and thermal patterns as a function of orbital phase. Atmospheric simulations for the low eccentricity (e=0.15) Neptune sized planet GJ436b reveal that when Neptune-like atmospheric compositions are assumed day/night temperature contrasts and equatorial jet speeds are significantly increased relative to models that assume a solar-like composition. Comparisons between our theoretical light curves and recent observations support a high metallicity atmosphere with disequilibrium carbon chemistry for GJ436b. The analysis of full-orbit light curve observations at 3.6 and 4.5 microns of the HAT-P-2 system reveal swings in the planet's temperature of more than 900 K during its significantly eccentric ( e=0.5) orbit with a four to six hour offset between periapse passage and the peak of the planet's observed flux. Comparisons between our atmospheric model of HAT-P-2b and the observed light curves indicate an increased carbon to oxygen ratio in HAT-P-2b's atmosphere compared to solar values. Atmospheric simulations of the highly eccentric (e=0.9) HD80606b show that flash-heating events completely alter planetary thermal and jet structures and that assumptions about the rotation period of this planet could affect the shape of light curve observations near periapse. Our simulations of HD80606b also show the development an atmospheric shock on the nightside of the planet that is associated with an observable thermal signature in our theoretical light curves. The simulations and observations presented in this dissertation mark an important step in the exploration of atmospheric circulation on the more than 300

  3. MASS-RADIUS RELATIONSHIPS FOR VERY LOW MASS GASEOUS PLANETS

    SciTech Connect

    Batygin, Konstantin; Stevenson, David J.

    2013-05-20

    Recently, the Kepler spacecraft has detected a sizable aggregate of objects, characterized by giant-planet-like radii and modest levels of stellar irradiation. With the exception of a handful of objects, the physical nature, and specifically the average densities, of these bodies remain unknown. Here, we propose that the detected giant planet radii may partially belong to planets somewhat less massive than Uranus and Neptune. Accordingly, in this work, we seek to identify a physically sound upper limit to planetary radii at low masses and moderate equilibrium temperatures. As a guiding example, we analyze the interior structure of the Neptune-mass planet Kepler-30d and show that it is acutely deficient in heavy elements, especially compared with its solar system counterparts. Subsequently, we perform numerical simulations of planetary thermal evolution and in agreement with previous studies, show that generally, 10-20 M{sub Circled-Plus }, multi-billion year old planets, composed of high density cores and extended H/He envelopes can have radii that firmly reside in the giant planet range. We subject our results to stability criteria based on extreme ultraviolet radiation, as well as Roche-lobe overflow driven mass-loss and construct mass-radius relationships for the considered objects. We conclude by discussing observational avenues that may be used to confirm or repudiate the existence of putative low mass, gas-dominated planets.

  4. Dynamical corotation torques on low-mass planets

    NASA Astrophysics Data System (ADS)

    Paardekooper, S.-J.

    2014-11-01

    We study torques on migrating low-mass planets in locally isothermal discs. Previous work on low-mass planets generally kept the planet on a fixed orbit, after which the torque on the planet was measured. In addition to these static torques, when the planet is allowed to migrate it experiences dynamical torques, which are proportional to the migration rate and whose sign depends on the background vortensity gradient. We show that in discs a few times more massive than the minimum-mass solar nebula, these dynamical torques can have a profound impact on planet migration. Inward migration can be slowed down significantly, and if static torques lead to outward migration, dynamical torques can take over, taking the planet beyond zero-torque lines set by saturation of the corotation torque in a runaway fashion. This means that the region in non-isothermal discs, where outward migration is possible, can be larger than what would be concluded from static torques alone.

  5. Chandra Pilot Survey of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Tsuboi, Yohko

    2012-09-01

    We propose to detect planetary-mass companion around young nearby stars by X-ray direct imaging observations with Chandra. Our goals are to determine I. if the X-ray band can be a new probe to the exo-planet search, and II. if a planet emit detectable X-rays with a magnetic origin at a young age. This should be a challenging observation but a brand-new discovery space unique to Chandra. The abundant population of YSOs in the same field of view will enable us to obtain complete X-ray catalogues of YSOs with all categories of masses. We will also execute simultaneous deep NIR observations with IRSF/SIRIUS and Nishiharima 2m telescope to search for the other X-ray-emitting very low-mass objects near our aiming planet candidates.

  6. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2012-12-01

    Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  7. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2011-12-01

    Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  8. Microlensing for extrasolar planets : improving the photometry

    NASA Astrophysics Data System (ADS)

    Bajek, David J.

    2013-08-01

    Gravitational Microlensing, as a technique for detecting Extrasolar Planets, is recognised for its potential in discovering small-mass planets similar to Earth, at a distance of a few Astronomical Units from their host stars. However, analysing the data from microlensing events (which statistically rarely reveal planets) is complex and requires continued and intensive use of various networks of telescopes working together in order to observe the phenomenon. As such the techniques are constantly being developed and refined; this project outlines some steps of the careful analysis required to model an event and ensure the best quality data is used in the fitting. A quantitative investigation into increasing the quality of the original photometric data available from any microlensing event demonstrates that 'lucky imaging' can lead to a marked improvement in the signal to noise ratio of images over standard imaging techniques, which could result in more accurate models and thus the calculation of more accurate planetary parameters. In addition, a simulation illustrating the effects of atmospheric turbulence on exposures was created, and expanded upon to give an approximation of the lucky imaging technique. This further demonstrated the advantages of lucky images which are shown to potentially approach the quality of those expected from diffraction limited photometry. The simulation may be further developed for potential future use as a 'theoretical lucky imager' in our research group, capable of producing and analysing synthetic exposures through customisable conditions.

  9. Extrasolar Planet Inferometric Survey (EPIcS)

    NASA Technical Reports Server (NTRS)

    Shao, Michael; Baliunas, Sallie; Boden, Andrew; Kulkarni, Shrinivas; Lin, Douglas N. C.; Loredo, Tom; Queloz, Didier; Shaklan, Stuart; Tremaine, Scott; Wolszczan, Alexander

    2004-01-01

    The discovery of the nature of the solar system was a crowning achievement of Renaissance science. The quest to evaluate the properties of extrasolar planetary systems is central to both the intellectual understanding of our origins and the cultural understanding of humanity's place in the Universe; thus it is appropriate that the goals and objectives of NASA's breakthrough Origins program emphasize the study of planetary systems, with a focus on the search for habitable planets. We propose an ambitious research program that will use SIM - the first major mission of the Origins program - to explore planetary systems in our Galactic neighborhood. Our program is a novel two-tiered SIM survey of nearby stars that exploits the capabilities of SIM to achieve two scientific objectives: (i) to identify Earth-like planets in habitable regions around nearby Sunlike stars: and (ii) to explore the nature and evolution of planetary systems in their full variety. The first of these objectives was recently recommended by the Astronomy and Astrophysics Survey Committee (the McKee-Taylor Committee) as a prerequisite for the development of the Terrestrial Planet Finder mission later in the decade. Our program combines this two-part survey with preparatory and contemporaneous research designed to maximize the scientific return from the limited and thus precious observing resources of SIM.

  10. Atmospheric circulations of terrestrial planets orbiting low mass stars

    NASA Astrophysics Data System (ADS)

    Edson, Adam Robert

    Atmospheres of planets orbiting low mass stars have properties unlike those typically studied by climatologists. One of the most glaring differences is that the rotation is "trapped" for planets orbiting within the habitable zone of the star. This lack of a typical "day" changes these planets' dynamics. Previous work includes that of Gareth Williams and Manoj Joshi. Joshi discussed planets with 10-day orbits only. Williams focused on planets with differing rotation rates, but still rotating relative to their star. Here, tidally locked planets with a variety of orbital periods ranging from 1 to 100 days are discussed. The GENESIS model is used to simulate these planets, and the data are analyzed for waves, energy fluxes, and habitability. The major components of the energy fluxes are the mean meridional circulation (i.e., the Hadley cell) and stationary eddies in the form of a wave number 1 stationary Rossby wave. A transition point in the atmospheric circulation is identified for orbital periods between 100 hours and 101 hours for dry planets. For the wet planets, the transition occurs near 96-hour rotation period. This transition occurs when the Rossby radius of deformation approaches the planet's radius and is associated with the increasing importance of the wave number two stationary eddy as the Rossby radius approaches the planetary radius. The most habitable dry planet is found to be the 2400-hour orbiter. For the wet planets, the 24-hour rotator is most habitable. The most habitable wet planet is the 24-hour rotator, with the least habitable wet planet being the 2400-hour rotator. The difference in the rotation period of the most habitable planets between the dry planets and the wet planets is caused by the availability of water vapor as a greenhouse gas, the added heat transport through sea ice movement, and the larger heat capacity for the wet planets. When realistic planets are modeled, the habitable surface area and average surface temperature is

  11. Possibilities for the Detection of Microbial Life on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Knacke, Roger F.

    2003-11-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  12. Possibilities for the detection of microbial life on extrasolar planets.

    PubMed

    Knacke, Roger F

    2003-01-01

    We consider possibilities for the remote detection of microbial life on extrasolar planets. The Darwin/Terrestrial Planet Finder (TPF) telescope concepts for observations of terrestrial planets focus on indirect searches for life through the detection of atmospheric gases related to life processes. Direct detection of extraterrestrial life may also be possible through well-designed searches for microbial life forms. Satellites in Earth orbit routinely monitor colonies of terrestrial algae in oceans and lakes by analysis of reflected ocean light in the visible region of the spectrum. These remote sensing techniques suggest strategies for extrasolar searches for signatures of chlorophylls and related photosynthetic compounds associated with life. However, identification of such life-related compounds on extrasolar planets would require observations through strong, interfering absorptions and scattering radiances from the remote atmospheres and landmasses. Techniques for removal of interfering radiances have been extensively developed for remote sensing from Earth orbit. Comparable techniques would have to be developed for extrasolar planet observations also, but doing so would be challenging for a remote planet. Darwin/TPF coronagraph concepts operating in the visible seem to be best suited for searches for extrasolar microbial life forms with instruments that can be projected for the 2010-2020 decades, although resolution and signal-to-noise ratio constraints severely limit detection possibilities on terrestrial-type planets. The generation of telescopes with large apertures and extremely high spatial resolutions that will follow Darwin/TPF could offer striking possibilities for the direct detection of extrasolar microbial life.

  13. Fast migration of low-mass planets in radiative discs

    NASA Astrophysics Data System (ADS)

    Pierens, A.

    2015-12-01

    Low-mass planets are known to undergo Type I migration and this process must have played a key role during the evolution of planetary systems. Analytical formulae for the disc torque have been derived assuming that the planet evolves on a fixed circular orbit. However, recent work has shown that in isothermal discs, a migrating protoplanet may also experience dynamical corotation torques that scale with the planet drift rate. The aim of this study is to examine whether dynamical corotation torques can also affect the migration of low-mass planets in non-isothermal discs. We performed 2D radiative hydrodynamical simulations to examine the orbital evolution outcome of migrating protoplanets as a function of disc mass. We find that a protoplanet can enter a fast migration regime when it migrates in the direction set by the entropy-related horseshoe drag and when the Toomre stability parameter is less than a threshold value below which the horseshoe region contracts into a tadpole-like region. In that case, an underdense trapped region appears near the planet, with an entropy excess compared to the ambient disc. If the viscosity and thermal diffusivity are small enough so that the entropy excess is conserved during migration, the planet then experiences strong corotation torques arising from the material flowing across the planet orbit. During fast migration, we observe that a protoplanet can pass through the zero-torque line predicted by static torques. We also find that fast migration may help in disrupting the mean-motion resonances that are formed by convergent migration of embryos.

  14. Extrasolar Planets: A Review of Current Observations and Theory

    NASA Astrophysics Data System (ADS)

    Nelson, Richard P.

    Since the discovery of a planet orbiting the star 51 Peg, there has been a tremendous increase in both theoretical and observational work aimed at examining the occurrence and nature of extrasolar planetary systems. In addition to the radial velocity searches that have led to the discovery of close to 50 extrasolar planets to date, we are now beginning to witness the first results from alternative searching methods such as microlensing and transit observations. Recent observations of a planet transiting the star HD 209458 have yielded detailed information on the nature of extrasolar planets. Proposed future ground and space based observing programmes promise to provide us with a detailed view of planetary systems in the Galaxy, including terrestrial as well as giant planets, on a time scale of a decade.At the current juncture, the major challenge facing planet formation theorists is to provide an explanation of the current data on extrasolar planets. At present there is no unified picture that provides a tidy explanation for the diversity of systems observed, but progress in our understanding of planet formation is continuing to develop.In this article we will review the current state of the observations of extrasolar planets, as well as the current theoretical models of their formation and structure. Future directions for both observational and theoretical work will also be indicated.

  15. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. II. MIGRATION SIMULATIONS

    SciTech Connect

    Carter-Bond, Jade C.; O'Brien, David P.; Raymond, Sean N.

    2012-11-20

    Prior work has found that a variety of terrestrial planetary compositions are expected to occur within known extrasolar planetary systems. However, such studies ignored the effects of giant planet migration, which is thought to be very common in extrasolar systems. Here we present calculations of the compositions of terrestrial planets that formed in dynamical simulations incorporating varying degrees of giant planet migration. We used chemical equilibrium models of the solid material present in the disks of five known planetary host stars: the Sun, GJ 777, HD4203, HD19994, and HD213240. Giant planet migration has a strong effect on the compositions of simulated terrestrial planets as the migration results in large-scale mixing between terrestrial planet building blocks that condensed at a range of temperatures. This mixing acts to (1) increase the typical abundance of Mg-rich silicates in the terrestrial planets' feeding zones and thus increase the frequency of planets with Earth-like compositions compared with simulations with static giant planet orbits, and (2) drastically increase the efficiency of the delivery of hydrous phases (water and serpentine) to terrestrial planets and thus produce waterworlds and/or wet Earths. Our results demonstrate that although a wide variety of terrestrial planet compositions can still be produced, planets with Earth-like compositions should be common within extrasolar planetary systems.

  16. Darwin--a mission to detect and search for life on extrasolar planets.

    PubMed

    Cockell, C S; Léger, A; Fridlund, M; Herbst, T M; Kaltenegger, L; Absil, O; Beichman, C; Benz, W; Blanc, M; Brack, A; Chelli, A; Colangeli, L; Cottin, H; Coudé du Foresto, F; Danchi, W C; Defrère, D; den Herder, J-W; Eiroa, C; Greaves, J; Henning, T; Johnston, K J; Jones, H; Labadie, L; Lammer, H; Launhardt, R; Lawson, P; Lay, O P; LeDuigou, J-M; Liseau, R; Malbet, F; Martin, S R; Mawet, D; Mourard, D; Moutou, C; Mugnier, L M; Ollivier, M; Paresce, F; Quirrenbach, A; Rabbia, Y D; Raven, J A; Rottgering, H J A; Rouan, D; Santos, N C; Selsis, F; Serabyn, E; Shibai, H; Tamura, M; Thiébaut, E; Westall, F; White, G J

    2009-01-01

    The discovery of extrasolar planets is one of the greatest achievements of modern astronomy. The detection of planets that vary widely in mass demonstrates that extrasolar planets of low mass exist. In this paper, we describe a mission, called Darwin, whose primary goal is the search for, and characterization of, terrestrial extrasolar planets and the search for life. Accomplishing the mission objectives will require collaborative science across disciplines, including astrophysics, planetary sciences, chemistry, and microbiology. Darwin is designed to detect rocky planets similar to Earth and perform spectroscopic analysis at mid-infrared wavelengths (6-20 mum), where an advantageous contrast ratio between star and planet occurs. The baseline mission is projected to last 5 years and consists of approximately 200 individual target stars. Among these, 25-50 planetary systems can be studied spectroscopically, which will include the search for gases such as CO(2), H(2)O, CH(4), and O(3). Many of the key technologies required for the construction of Darwin have already been demonstrated, and the remainder are estimated to be mature in the near future. Darwin is a mission that will ignite intense interest in both the research community and the wider public.

  17. Terrestrial planets and water delivery around low-mass stars

    NASA Astrophysics Data System (ADS)

    Dugaro, A.; de Elía, G. C.; Brunini, A.; Guilera, O. M.

    2016-11-01

    Context. Theoretical and observational studies suggest that protoplanetary disks with a wide range of masses could be found around low-mass stars. Aims: We analyze planetary formation processes in systems without gas giants around M3- and M0-type stars of 0.29 M⊙ and 0.5 M⊙, respectively. In particular, we assume disks with masses of 5% and 10% of the mass of the star. Our study focuses on the formation of terrestrial-like planets and water delivery in the habitable zone (HZ). Methods: First, we use a semi-analytical model to describe the evolution of embryos and planetesimals during the gaseous phase. Then, a N-body code is used to analyze the last giant impact phase after the gas dissipation. Results: For M3-type stars, five planets with different properties are formed in the HZ. These planets have masses of 0.072 M⊕, 0.13 M⊕ (two of them), and 1.03 M⊕, and have water contents of 5.9%, 16.7%, 28.6%, and 60.6% by mass, respectively. Then, the fifth planet formed in the HZ is a dry world with 0.138 M⊕. For M0-type stars, four planets are produced in the HZ with masses of 0.28 M⊕, 0.51 M⊕, 0.72 M⊕, and 1.42 M⊕, and they have water contents of 26.7%, 45.8%, 68%, and 50.5% by mass, respectively. Conclusions: M3- and M0-type stars represent targets of interest for the search of exoplanets in the HZ. In fact, the Mars-mass planets formed around M3-type stars could maintain habitable conditions in their early histories. Thus, the search for candidates around young M3-type stars could lead to the detection of planets analogous to early Mars. Moreover, Earth-mass planets should also be discovered around M3-type stars and, sub- and super-Earths should be detected around M0-type stars. Such planets are very interesting since they could maintain habitable conditions for very long.

  18. Exploring Extrasolar Planetary Systems: New Observations of Extrasolar Planets Enabled by the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Clampin, Mark

    2012-01-01

    The search for extrasolar planets has been increasingly success over the last few years. In excess of 700 systems are now known, and Kepler has approx.2500 additional candidate systems, yet to be confirmed. Recently, progress has also been made in directly imaging extrasolar planets, both from the ground and in space. In this presentation will discuss the techniques employed to discover planetary systems, and highlight the capabilities, enabled by the James Webb Space Telescope (JWST). JWST is a large 6.5 meter aperture infrared telescope that is scheduled for launch in 2018, and will allow us to transition to characterizing the properties of these extrasolar planets and the planetary systems in which they reside.

  19. First Light from Extrasolar Planets and Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Seager, Sara; Harrington, Joseph; Deming, Drake

    2005-01-01

    The first light from an extrasolar planet was recently detected. These results, obtained for two transiting extrasolar planets at different infrared wavelengths, open a new era in the field of extrasolar planet detection and characterization because for the first time we can now detect planets beyond the solar system directly. Using the Spitzer Space Telescope at 24 microns, we observed the modulation of combined light (star plus planet) from the HD 209458 system as the planet disappeared behind the star during secondary eclipse and later re-emerged, thereby isolating the light from the planet. We obtained a planet-to-star ratio of 0.26% at 24 microns, corresponding to a brightness temperature of 1130 + / - 150 K. We will describe this result in detail, explain what it can tell us about the atmosphere of HD 209458 b, and discuss implications for the field of astrobiology. These results represent a significant step on the path to detecting terrestrial planets around other stars and in understanding their atmospheres in terms of composition and temperature.

  20. Exozodiacal Dust and Direct Imaging of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2008-01-01

    Direct imaging of extrasolar planets means contending with dust from extrasolar asteroids and comets. This 'exozodiacal dust' creates a structured background light that can easily outshine the light from an exoEarth and confuse a planet-search mission like TPF or TOPS. But exozodiacal dust can be both friend and foe: planets can stir dust clouds into patterns that reveal the presence of the planet and constrain its mass and orbit. I'll describe some recent research on this topic: 3-D dynamical models of dust clouds with planets and searches for exozodiacal dust with the Keck Interferometer. The author also offers a prediction for the typical zodiacal dust background found around solar analogs, based on seafloor sediment data.

  1. Detecting Extrasolar Planets With Millimeter-Wave Observatories

    NASA Astrophysics Data System (ADS)

    1996-01-01

    both U.S. and foreign sources. The MMA will be capable of imaging planetary systems in the earliest stages of their formation. The MMA will be able to detect many more young, low-mass stellar systems and to examine them to determine if they have the disks from which planetary systems are formed. In addition, the MMA could be used to examine the properties of these disks in detail. The properties that could be examined include size, temperature, dust density and chemistry. A number of enhancements have been proposed to the MMA, including longer baselines for greater resolution, the ability to observe at higher frequencies, and greater signal bandwidth. This enhanced MMA would have the sensitivity to directly detect very young giant planets in the nearest star-forming regions, the resolving power to distinguish them from their central stars, and the ability to detect giant planets by measuring their gravitational effect upon their parent stars and thus determine their masses. The VLA, dedicated in 1980, also could contribute to the search for extrasolar planets if proposed upgrades are implemented. Though originally designed to operate at a highest frequency of 24 GHz, the VLA recently has been equipped with receivers for 40-50 GHz. Funding for receivers in this range, at a wavelength of 7 millimeters, was provided in 1993 by the government of Mexico. The VLA now has 13 of its 27 antennas equipped with these 40-50 GHz receivers. Plans for upgrading the VLA include equipping all remaining antennas with such receivers, improving its electronics, and improving its resolution by adding antennas at extended distances. The upgraded VLA will be able to study the inner parts of the dust disks surrounding young stars -- disks that are believed to be the precursors to planetary systems. The inner parts of such disks are obscured at shorter wavelengths. The enhanced VLA will be able to reveal processes occurring in these disks at scales comparable to the size of our own Solar

  2. ENHANCED INTERFEROMETRIC IDENTIFICATION OF SPECTRA IN HABITABLE EXTRASOLAR PLANETS

    SciTech Connect

    Schwartz, Eyal; Lipson, Stephen G.; Ribak, Erez N.

    2012-09-15

    An Earth-like extrasolar planet emits light that is many orders of magnitude fainter than that of the parent star. We propose a method of identifying bio-signature spectral lines in light of known extrasolar planets based on Fourier spectroscopy in the infrared, using an off-center part of a Fourier interferogram only. This results in superior sensitivity to narrower molecular-type spectral bands, which are expected in the planet spectrum but are absent in the parent star. We support this idea by numerical simulations that include photon and thermal noise, and show it to be feasible at a luminosity ratio of 10{sup -6} for a Sun-like parent star in the infrared. We also carried out a laboratory experiment to illustrate the method. The results suggest that this method should be applicable to real planet searches.

  3. Extrasolar Planets & The Power of the Dark Side

    SciTech Connect

    Charbonneau, David

    2009-04-24

    It is only in the last decade that we have direct evidence for planets orbiting nearby Sun-like stars. If such planets happen to pass in front of their stars, we are presented with a golden opportunity to learn about the nature of these objects. Measurements of the dimming of starlight and gravitational wobble allow us to derive the planetary radius and mass, and, by inference, its composition. Recently, we used the Hubble Telescope to detect and study the atmosphere of an extrasolar planet for the first time. I will describe what we have learned about these planets 

  4. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  5. New planetary systems from the Calan-Hertfordshire Extrasolar Planet Search

    NASA Astrophysics Data System (ADS)

    Jenkins, J. S.; Jones, H. R. A.; Tuomi, M.; Díaz, M.; Cordero, J. P.; Aguayo, A.; Pantoja, B.; Arriagada, P.; Mahu, R.; Brahm, R.; Rojo, P.; Soto, M. G.; Ivanyuk, O.; Becerra Yoma, N.; Day-Jones, A. C.; Ruiz, M. T.; Pavlenko, Y. V.; Barnes, J. R.; Murgas, F.; Pinfield, D. J.; Jones, M. I.; López-Morales, M.; Shectman, S.; Butler, R. P.; Minniti, D.

    2017-04-01

    We report the discovery of eight new giant planets, and updated orbits for four known planets, orbiting dwarf and subgiant stars using the CORALIE, HARPS, and MIKE instruments as part of the Calan-Hertfordshire Extrasolar Planet Search. The planets have masses in the range 1.1-5.4 MJ's, orbital periods from 40 to 2900 d, and eccentricities from 0.0 to 0.6. They include a double-planet system orbiting the most massive star in our sample (HD147873), two eccentric giant planets (HD128356b and HD154672b), and a rare 14 Herculis analogue (HD224538b). We highlight some population correlations from the sample of radial velocity detected planets orbiting nearby stars, including the mass function exponential distribution, confirmation of the growing body of evidence that low-mass planets tend to be found orbiting more metal-poor stars than giant planets, and a possible period-metallicity correlation for planets with masses >0.1 MJ, based on a metallicity difference of 0.16 dex between the population of planets with orbital periods less than 100 d and those with orbital periods greater than 100 d.

  6. Detection of the Magnetospheric Emissions from Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Lazio, J.

    2014-12-01

    Planetary-scale magnetic fields are a window to a planet's interior and provide shielding of the planet's atmosphere. The Earth, Mercury, Ganymede, and the giant planets of the solar system all contain internal dynamo currents that generate planetary-scale magnetic fields. These internal dynamo currents arise from differential rotation, convection, compositional dynamics, or a combination of these. If coupled to an energy source, such as the incident kinetic or magnetic energy from the solar wind, a planet's magnetic field can produce electron cyclotron masers in its magnetic polar regions. The most well known example of this process is the Jovian decametric emission, but all of the giant planets and the Earth contain similar electron cyclotron masers within their magnetospheres. Extrapolated to extrasolar planets, the remote detection of the magnetic field of an extrasolar planet would provide a means of obtaining constraints on the thermal state, composition, and dynamics of its interior as well as improved understanding of the basic planetary dynamo process. The magnetospheric emissions from solar system planets and the discovery of extrasolar planets have motivated both theoretical and observational work on magnetospheric emissions from extrasolar planets. Stimulated by these advances, the W.M. Keck Institute for Space Studies hosted a workshop entitled "Planetary Magnetic Fields: Planetary Interiors and Habitability." I summarize the current observational status of searches for magnetospheric emissions from extrasolar planets, based on observations from a number of ground-based radio telescopes, and future prospects for ground-based studies. Using the solar system planetary magnetic fields as a guide, future space-based missions will be required to study planets with magnetic field strengths lower than that of Jupiter. I summarize mission concepts identified in the KISS workshop, with a focus on the detection of planetary electron cyclotron maser emission. The

  7. TRANSIT LIGHTCURVES OF EXTRASOLAR PLANETS ORBITING RAPIDLY ROTATING STARS

    SciTech Connect

    Barnes, Jason W.

    2009-11-01

    Main-sequence stars earlier than spectral-type approxF6 or so are expected to rotate rapidly due to their radiative exteriors. This rapid rotation leads to an oblate stellar figure. It also induces the photosphere to be hotter (by up to several thousand kelvin) at the pole than at the equator as a result of a process called gravity darkening that was first predicted by von Zeipel. Transits of extrasolar planets across such a non-uniform, oblate disk yield unusual and distinctive lightcurves that can be used to determine the relative alignment of the stellar rotation pole and the planet orbit normal. This spin-orbit alignment can be used to constrain models of planet formation and evolution. Orderly planet formation and migration within a disk that is coplanar with the stellar equator will result in spin-orbit alignment. More violent planet-planet scattering events should yield spin-orbit misaligned planets. Rossiter-McLaughlin measurements of transits of lower-mass stars show that some planets are spin-orbit aligned, and some are not. Since Rossiter-McLaughlin measurements are difficult around rapid rotators, lightcurve photometry may be the best way to determine the spin-orbit alignment of planets around massive stars. The Kepler mission will monitor approx10{sup 4} of these stars within its sample. The lightcurves of any detected planets will allow us to probe the planet formation process around high-mass stars for the first time.

  8. Occurrence rate of low-mass planets around nearby M dwarfs

    NASA Astrophysics Data System (ADS)

    Jones, Hugh

    2015-08-01

    We re-analyse archival radial velocities of nearby M dwarfs to constrain low-amplitude Keplerian signals. We apply a variety of signal detection criteria and photometric monitoring to assess the number of planet candidates in the sample. We use the estimated detection probability function to calculate the occurrence rate of low-mass planets around nearby M dwarfs. Our results indicate that M dwarfs are hosts to an abundance of low-mass planets and the occurrence rate of planets less massive than 10 Earth masses is of the order of one planet per star and that planets are common in the stellar habitable zones of M dwarfs.

  9. EVIDENCE FOR AN ANHYDROUS CARBONACEOUS EXTRASOLAR MINOR PLANET

    SciTech Connect

    Jura, M.; Xu, S.; Zuckerman, B.; Klein, B.; Dufour, P.; Young, E. D.; Melis, C. E-mail: kleinb@astro.ucla.edu E-mail: dufourpa@astro.umontreal.ca E-mail: eyoung@ess.ucla.edu

    2015-01-20

    Using Keck/HIRES, we report abundances of 11 different elements heavier than helium in the spectrum of Ton 345, a white dwarf that has accreted one of its own minor planets. This particular extrasolar planetesimal, which was at least 60% as massive as Vesta, appears to have been carbon-rich and water-poor; we suggest it was compositionally similar to those Kuiper Belt Objects with relatively little ice.

  10. Characterizing Low-Mass Planets in Kepler's Multi-Planet Systems with Transit Timing

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Lissauer, Jack; Rowe, Jason; Fabrycky, Daniel

    2014-11-01

    The Kepler mission has revealed an abundance of planets in a regime of mass and size that is absent from the Solar System. This includes systems of high multiplicity within 1 AU, where low-mass volatile-rich planets have been observed in compact orbital configurations. Smaller, rocky planets have also been observed in such systems. The existing sample of characterized planets on the mass-radius diagram shows no abrupt transition from rocky planets to those that must be volatile-rich, but characteristic trends are beginning to emerge. More precise characterizations of planets by mass, radius, and incident flux will aid in revealing fundamental properties of a common class of exoplanets. There is a small sample of exoplanets with known masses and radii, mostly hot jupiters whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can be used to measure planetary masses and orbital parameters. Such modelling with Kepler data probes planetary masses over orbital periods ranging from ~5-100 days, complementing the sample of RV detections. Furthermore, in select cases, dynamical fits to observed TTVs can tightly constrain the orbital eccentricity vectors, which can, alongside the transit light curve, tightly constrain the density and radius of the host star, and hence reduce the uncertainty on planetary radius. TTV studies have revealed a class of low-mass low-density objects with a substantial mass fraction in the form of a voluminous H-rich atmosphere. To these we add precise mass measurements of the outer planets of Kepler-33, a compact system with five known transiting planets, three of which show detectable transit timing variations. These results will be placed

  11. Obliquity Variations of Extrasolar Terrestrial Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Chambers, John E.

    2004-01-01

    A planet's obliquity, which is the angle between its orbital angular momentum and its rotational angular momentum, is an important factor in determining its climate and habitability. For small obliquities, as well as obliquities close to 180 degrees, the planet receives more radiant energy from its star at equatorial latitudes than near its poles, whereas the poles are heated the most for obliquities near 90 degrees. Jacques Laskar has analyzed possible obliquity variations of the planets in our Solar System. His study also considers the same planets with different rotational periods, and the Earth without the Moon. He finds, using frequency map analysis, that the obliquity of the Earth is stabilized by the Moon, and can vary by at most a few degrees. In contrast, the obliquity of Mars can range from 0 to 60 degrees, and a hypothetical moonless Earth's axial tilt could be close to 0 degrees or as large as 85 degrees. Numerical integrations by Laskar and others have shown that Mars' obliquity indeed varies over most of its permitted range on time scales of tens of millions of years. In contrast, our analysis shows that the obliquity of a moonless Earth appears to be confined to the range of approximately 12 - 38 degrees over time scales of 100 million years. Results of ongoing longer integrations will be presented, and their implications discussed.

  12. Detecting tree-like multicellular life on extrasolar planets.

    PubMed

    Doughty, Christopher E; Wolf, Adam

    2010-11-01

    Over the next two decades, NASA and ESA are planning a series of space-based observatories to find Earth-like planets and determine whether life exists on these planets. Previous studies have assessed the likelihood of detecting life through signs of biogenic gases in the atmosphere or a red edge. Biogenic gases and the red edge could be signs of either single-celled or multicellular life. In this study, we propose a technique with which to determine whether tree-like multicellular life exists on extrasolar planets. For multicellular photosynthetic organisms on Earth, competition for light and the need to transport water and nutrients has led to a tree-like body plan characterized by hierarchical branching networks. This design results in a distinct bidirectional reflectance distribution function (BRDF) that causes differing reflectance at different sun/view geometries. BRDF arises from the changing visibility of the shadows cast by objects, and the presence of tree-like structures is clearly distinguishable from flat ground with the same reflectance spectrum. We examined whether the BRDF could detect the existence of tree-like structures on an extrasolar planet by using changes in planetary albedo as a planet orbits its star. We used a semi-empirical BRDF model to simulate vegetation reflectance at different planetary phase angles and both simulated and real cloud cover to calculate disk and rotation-averaged planetary albedo for a vegetated and non-vegetated planet with abundant liquid water. We found that even if the entire planetary albedo were rendered to a single pixel, the rate of increase of albedo as a planet approaches full illumination would be comparatively greater on a vegetated planet than on a non-vegetated planet. Depending on how accurately planetary cloud cover can be resolved and the capabilities of the coronagraph to resolve exoplanets, this technique could theoretically detect tree-like multicellular life on exoplanets in 50 stellar systems.

  13. Views from EPOXI. Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Meadows, V.; Lisse, C. M.

    2010-01-01

    With extrasolar planet detection becoming more common place, the frontiers of extrasolar planet science have moved beyond detection to the observations required to determine planetary properties. Once the existing observational challenges have been overcome, the first visible-light studies of extrasolar Earth-sized planets will likely employ filter photometry or low-resolution. spectroscopy to observe disk-integrated radiation from the unresolved planet. While spectroscopy of these targets is highly desirable, and provides the most robust form of characterization. S/N considerations presently limit spectroscopic measurements of extrasolar worlds. Broadband filter photometry will thus serve as a first line of characterization. In this paper we use Extrasolar Observation and Characterization (EPOCh) filter photometry of the Earth. Moon and Mars model spectra. and previous photometric and spectroscopic observations of a range the solar system planets. Titan, and Moon to explore the limitations of using color as a baseline for understanding extrasolar planets

  14. Characterization of extrasolar terrestrial planets from diurnal photometric variability.

    PubMed

    Ford, E B; Seager, S; Turner, E L

    2001-08-30

    The detection of massive planets orbiting nearby stars has become almost routine, but current techniques are as yet unable to detect terrestrial planets with masses comparable to the Earth's. Future space-based observatories to detect Earth-like planets are being planned. Terrestrial planets orbiting in the habitable zones of stars-where planetary surface conditions are compatible with the presence of liquid water-are of enormous interest because they might have global environments similar to Earth's and even harbour life. The light scattered by such a planet will vary in intensity and colour as the planet rotates; the resulting light curve will contain information about the planet's surface and atmospheric properties. Here we report a model that predicts features that should be discernible in the light curve obtained by low-precision photometry. For extrasolar planets similar to Earth, we expect daily flux variations of up to hundreds of per cent, depending sensitively on ice and cloud cover as well as seasonal variations. This suggests that the meteorological variability, composition of the surface (for example, ocean versus land fraction) and rotation period of an Earth-like planet could be derived from photometric observations. Even signatures of Earth-like plant life could be constrained or possibly, with further study, even uniquely determined.

  15. Water Vapour In The Atmosphere Of An Extrasolar Planet

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Liang, M.; Beaulieu, J.; Yung, Y. L.; Carey, S.; Ribas, I.; Tennyson, J.; Barber, B.; Allard, N.; Ballester, G.; Sing, D.; Selsis, F.

    2007-10-01

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (`hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6, 5.8 and 8 microns. The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes.

  16. Model Atmospheres and Spectra of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M. S.; Guillot, T.; Saumon, D.; Freedman, R. S.

    1996-09-01

    Of the known extrasolar giant planets, five have estimated effective temperatures below ~ 800K. We report on the application of a radiative-convective equilibrium model, originally developed to study the atmospheres of the solar jovian planets, to these objects (70 Vir b, 47 UMa b, Gl 411 b, 55 Cnc c, and HD 114762 b). The deposition of incident radiation from the various primaries and the estimated internal heat fluxes are included in the models. Condensible species are removed and clouds inserted where appropriate. To span the likely range of planet masses, a variety of surface gravities are considered for each object. Preliminary results suggest that water clouds are present in all these atmospheres except for 70 Vir b and HD 114762 b. Water marginally condenses in the atmosphere of the former while that of the latter should be essentially cloud free. Condensation of trace species (e.g. NH_4Cl and NH_4H_2PO_4) may produce thin hazes in these two cases. Thermochemical equilibrium favors NH_3 and CH_4 in all these atmospheres while N_2 and CO are favored in the atmospheres of the close-orbit, hot companions like 51 Peg b and upsilon And b. The reflected visible and thermal infrared spectra of these objects are dominated by water, methane, and ammonia absorption. We find that the 4 to 5 microns window in CH_4 and H_2O opacity is open for all of these objects. Consequently, as in the case of Jupiter and the brown dwarf Gliese 229 B, the emitted flux in this region is significantly greater than the blackbody flux for the planetary effective temperature. Thus this spectral region is favorable for the detection of extrasolar giant planets and brown dwarfs. Comparison of model spectra with observations would constrain the vertical temperature and cloud structure of these new atmospheres. Burrows et al. (this meeting) use these and other models to examine the evolution of extrasolar giant planets.

  17. Habitable moons around extrasolar giant planets

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.; Wade, R. A.

    1997-01-01

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  18. Habitable moons around extrasolar giant planets.

    PubMed

    Williams, D M; Kasting, J F; Wade, R A

    1997-01-16

    Possible planetary objects have now been discovered orbiting nine different main-sequence stars. These companion objects (some of which might actually be brown dwarfs) all have a mass at least half that of Jupiter, and are therefore unlikely to be hospitable to Earth-like life: jovian planets and brown dwarfs support neither a solid nor a liquid surface near which organisms might dwell. Here we argue that rocky moons orbiting these companions could be habitable if the planet-moon system orbits the parent star within the so-called 'habitable zone', where life-supporting liquid water could be present. The companions to the stars 16 Cygni B and 47 Ursae Majoris might satisfy this criterion. Such a moon would, however, need to be large enough (>0.12 Earth masses) to retain a substantial and long-lived atmosphere, and would also need to possess a strong magnetic field in order to prevent its atmosphere from being sputtered away by the constant bombardment of energetic ions from the planet's magnetosphere.

  19. Convection and plate tectonics on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Sotin, C.; Grasset, O.; Schubert, G.

    2012-04-01

    The number of potential Earth-like exoplanets is still very limited compared to the overall number of detected exoplanets. But the different methods keep improving, giving hope for this number to increase significantly in the coming years. Based on the relationship between mass and radius, two of the easiest parameters that can be known for exoplanets, four categories of planets have been identified: (i) the gas giants including hot Jupiters, (ii) the icy giants that can be like their solar system cousins Uranus and Neptune or that can have lost their H2-He atmosphere and have become the so-called ocean planets, (iii) the Earth-like planets with a fraction of silicates and iron similar to that of the Earth, and (iv) the Mercury like planet that have a much larger fraction of iron. The hunt for exoplanets is very much focused on Earth-like planets because of the desire to find alien forms of life and the science goal to understand how life started and developed on Earth. One science question is whether heat transfer by subsolidus convection can lead to plate tectonics, a process that allows material to be recycled in the interior on timescales of hundreds of millions of years. Earth-like exoplanets may have conditions quite different from Earth. For example, COROT-7b is so close to its star that it is likely locked in synchronous orbit with one very hot hemisphere and one very cold hemisphere. It is also worth noting that among the three Earth-like planets of the solar system (Earth, Venus and Mars), only Earth is subject to plate tectonics at present time. Venus may have experienced plate tectonics before the resurfacing event that erased any clue that such a process existed. This study investigates some of the parameters that can influence the transition from stagnant-lid convection to mobile-lid convection. Numerical simulations of convective heat transfer have been performed in 3D spherical geometry in order to determine the stress field generated by convection

  20. Rapid heating of the atmosphere of an extrasolar planet.

    PubMed

    Laughlin, Gregory; Deming, Drake; Langton, Jonathan; Kasen, Daniel; Vogt, Steve; Butler, Paul; Rivera, Eugenio; Meschiari, Stefano

    2009-01-29

    Near-infrared observations of more than a dozen 'hot-Jupiter' extrasolar planets have now been reported. These planets display a wide diversity of properties, yet all are believed to have had their spin periods tidally spin-synchronized with their orbital periods, resulting in permanent star-facing hemispheres and surface flow patterns that are most likely in equilibrium. Planets in significantly eccentric orbits can enable direct measurements of global heating that are largely independent of the details of the hydrodynamic flow. Here we report 8-microm photometric observations of the planet HD 80606b during a 30-hour interval bracketing the periastron passage of its extremely eccentric 111.4-day orbit. As the planet received its strongest irradiation (828 times larger than the flux received at apastron) its maximum 8-microm brightness temperature increased from approximately 800 K to approximately 1,500 K over a six-hour period. We also detected a secondary eclipse for the planet, which implies an orbital inclination of i approximately 90 degrees , fixes the planetary mass at four times the mass of Jupiter, and constrains the planet's tidal luminosity. Our measurement of the global heating rate indicates that the radiative time constant at the planet's 8-microm photosphere is approximately 4.5 h, in comparison with 3-5 days in Earth's stratosphere.

  1. EXTRASOLAR BINARY PLANETS. II. DETECTABILITY BY TRANSIT OBSERVATIONS

    SciTech Connect

    Lewis, K. M.; Ida, S.; Ochiai, H.; Nagasawa, M.

    2015-05-20

    We discuss the detectability of gravitationally bound pairs of gas-giant planets (which we call “binary planets”) in extrasolar planetary systems that are formed through orbital instability followed by planet–planet dynamical tides during their close encounters, based on the results of N-body simulations by Ochiai et al. (Paper I). Paper I showed that the formation probability of a binary is as much as ∼10% for three giant planet systems that undergo orbital instability, and after post-capture long-term tidal evolution, the typical binary separation is three to five times the sum of the physical radii of the planets. The binary planets are stable during the main-sequence lifetime of solar-type stars, if the stellarcentric semimajor axis of the binary is larger than 0.3 AU. We show that detecting modulations of transit light curves is the most promising observational method to detect binary planets. Since the likely binary separations are comparable to the stellar diameter, the shape of the transit light curve is different from transit to transit, depending on the phase of the binary’s orbit. The transit durations and depth for binary planet transits are generally longer and deeper than those for the single planet case. We point out that binary planets could exist among the known inflated gas-giant planets or objects classified as false positive detections at orbital radii ≳0.3 AU, propose a binary planet explanation for the CoRoT candidate SRc01 E2 1066, and show that binary planets are likely to be present in, and could be detected using, Kepler-quality data.

  2. THE HEAVY-ELEMENT MASSES OF EXTRASOLAR GIANT PLANETS, REVEALED

    SciTech Connect

    Miller, Neil; Fortney, Jonathan J.

    2011-08-01

    We investigate a population of transiting planets that receive relatively modest stellar insolation, indicating equilibrium temperatures <1000 K, and for which the heating mechanism that inflates hot Jupiters does not appear to be significantly active. We use structural evolution models to infer the amount of heavy elements within each of these planets. There is a correlation between the stellar metallicity and the mass of heavy elements in its transiting planet(s). It appears that all giant planets possess a minimum of {approx}10-15 Earth masses of heavy elements, with planets around metal-rich stars having larger heavy-element masses. There is also an inverse relationship between the mass of the planet and the metal enrichment (Z{sub pl}/Z{sub star}), which appears to have little dependency on the metallicity of the star. Saturn- and Jupiter-like enrichments above solar composition are a hallmark of all the gas giants in the sample, even planets of several Jupiter masses. These relationships provide an important constraint on planet formation and suggest large amounts of heavy elements within planetary H/He envelopes. We suggest that the observed correlation can soon also be applied to inflated planets, such that the interior heavy-element abundance of these planets could be estimated, yielding better constraints on their interior energy sources. We point to future directions for planetary population synthesis models and suggest future correlations. This appears to be the first evidence that extrasolar giant planets, as a class, are enhanced in heavy elements.

  3. An adaptive optics search for young extrasolar planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Becklin, E. E.; Kaisler, D.; Lowrance, P.; Max, C. E.; Olivier, S.

    2000-10-01

    In the past five years, many extrasolar planets have been detected indirectly, through radial velocity variations induced in their parent stars. Advances in technology now open up the possibility of directly detecting extrasolar planets through the photons they emit. Direct detection would allow determination of the temperature, radius, and composition of a planet, particularly one in a wide orbit - an important complement to radial velocity techniques. Seeing a planet against the halo of scattered light from its parent star is extremely challenging, but adaptive optics (AO) on 8-10 m telescopes can make this possible. The first such large-telescope AO system is now operational on the 10-m W.M. Keck II telescope. Its current performance is sufficient to detect objects at contrast ratios of 105 at separations of 1" and 106 at 2". This is insufficient to detect the reflected light from a mature Jupiter-like planet, but we can easily detect the near-infrared thermal emission from young (<10-50 MYr) planets, or older brown dwarfs. We are carrying out a search for such planetary companions to young nearby stars, including the TW Hydrae association. We present preliminary results from this survey, including sensitivity limits and follow-up of candidate companions originally detected by NICMOS. We have also imaged the Epsilon Eridani system, and present upper limits on the brightness of the planet detected via radial velocity variations by Cochran et al. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive Optics under the STC Program of the National Science Foundation under Agreement No. AST-9876783

  4. Predicting the Atmospheric Composition of Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Sharp, A. G.; Moses, J. I.; Friedson, A. J.; Fegley, B., Jr.; Marley, M. S.; Lodders, K.

    2004-01-01

    To date, approximately 120 planet-sized objects have been discovered around other stars, mostly through the radial-velocity technique. This technique can provide information about a planet s minimum mass and its orbital period and distance; however, few other planetary data can be obtained at this point in time unless we are fortunate enough to find an extrasolar giant planet that transits its parent star (i.e., the orbit is edge-on as seen from Earth). In that situation, many physical properties of the planet and its parent star can be determined, including some compositional information. Our prospects of directly obtaining spectra from extrasolar planets may improve in the near future, through missions like NASA's Terrestrial Planet Finder. Most of the extrasolar giant planets (EGPs) discovered so far have masses equal to or greater than Jupiter's mass, and roughly 16% have orbital radii less than 0.1 AU - extremely close to the parent star by our own Solar-System standards (note that Mercury is located at a mean distance of 0.39 AU and Jupiter at 5.2 AU from the Sun). Although all EGPs are expected to have hydrogen-dominated atmospheres similar to Jupiter, the orbital distance can strongly affect the planet's temperature, physical, chemical, and spectral properties, and the abundance of minor, detectable atmospheric constituents. Thermochemical equilibrium models can provide good zero-order predictions for the atmospheric composition of EGPs. However, both the composition and spectral properties will depend in large part on disequilibrium processes like photochemistry, chemical kinetics, atmospheric transport, and haze formation. We have developed a photochemical kinetics, radiative transfer, and 1-D vertical transport model to study the atmospheric composition of EGPs. The chemical reaction list contains H-, C-, O-, and N-bearing species and is designed to be valid for atmospheric temperatures ranging from 100-3000 K and pressures up to 50 bar. Here we examine

  5. ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON

    SciTech Connect

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce E-mail: lodders@wustl.ed

    2010-06-20

    We use thermochemical equilibrium calculations to model iron, magnesium, and silicon chemistry in the atmospheres of giant planets, brown dwarfs, extrasolar giant planets (EGPs), and low-mass stars. The behavior of individual Fe-, Mg-, and Si-bearing gases and condensates is determined as a function of temperature, pressure, and metallicity. Our equilibrium results are thus independent of any particular model atmosphere. The condensation of Fe metal strongly affects iron chemistry by efficiently removing Fe-bearing species from the gas phase. Monatomic Fe is the most abundant Fe-bearing gas throughout the atmospheres of EGPs and L dwarfs, and in the deep atmospheres of giant planets and T dwarfs. Mg- and Si-bearing gases are effectively removed from the atmosphere by forsterite (Mg{sub 2}SiO{sub 4}) and enstatite (MgSiO{sub 3}) cloud formation. Monatomic Mg is the dominant magnesium gas throughout the atmospheres of EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs. Silicon monoxide (SiO) is the most abundant Si-bearing gas in the deep atmospheres of brown dwarfs and EGPs, whereas SiH{sub 4} is dominant in the deep atmosphere of Jupiter and other gas giant planets. Several other Fe-, Mg-, and Si-bearing gases become increasingly important with decreasing effective temperature. In principle, a number of Fe, Mg, and Si gases are potential tracers of weather or diagnostic of temperature in substellar atmospheres.

  6. The Antarctic Planet Interferometer and the potential for interferometric observations of extrasolar planets from Dome C Antarctica

    NASA Technical Reports Server (NTRS)

    Swain, M. R.; Foresto, V. Coude du; Vakili, F.

    2003-01-01

    We present a concept for the Antarctic Planet Interferometer (API) and discuss the improvements in interferometric detection and characterization of extrasolar planets by exploiting the unique potential of the best accessbile site on Earth for thermal infrared interferometry.

  7. The Problem of Extraterrestrial Civilizations and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Mickaelian, A. M.

    2015-07-01

    The problem of extraterrestrial intelligence is the best example of multidisciplinary science. Here philosophy and religion, astronomy, radiophysics, spectrography, space flights and astronautics, geology and planetology, astroecology, chemistry and biology, history and archaeology, psychology, sociology, linguistics, diplomacy, UFOs and peculiar phenomena are involved. Among these many-sided studies, astronomers have probably displayed the most progress by discovering thousands of extrasolar planets. At present, a number of search programs are being accomplished, including those with space telescopes, and planets in so-called "habitable zone" are considered as most important ones, for which various orbital and physical parameters are being calculated. As the discovery of extraterrestrial life is the final goal, a special attention is given to Earth-like planets, for the discovery of which most sensitive technical means are necessary.

  8. Extrasolar planet observatory on the far side of the moon

    NASA Astrophysics Data System (ADS)

    Strojnik, Marija; Scholl, Michelle K.

    2014-01-01

    We define the simplest signal-to-noise ratio (SNR) to determine the optimal wavelength interval for extrasolar planet detection. We expand the width of the spectral region from infrared up to submillimeter range. For a nearby solar system similar to our own, we find that the SNR increases by about 100 in comparison to that considered previously. We propose the planet detection in a spectral interval around 0.3 mm (900 GHz), in which we evaluate the SNR to be 10. We perform trade-off analysis for alternative sites for the planet observatory, concluding that the far side of the moon offers a most favorable, atmosphere-free environment and a stable base.

  9. ON THE FUNDAMENTAL MASS-PERIOD FUNCTIONS OF EXTRASOLAR PLANETS

    SciTech Connect

    Jiang, I.-G.; Yeh, L.-C.; Chang, Y.-C.; Hung, W.-L.

    2010-01-01

    Employing a catalog of 175 extrasolar planets (exoplanets) detected by the Doppler-shift method, we constructed the independent and coupled mass-period functions. It is the first time in this field that the selection effect is considered in the coupled mass-period functions. Our results are consistent with those of Tabachnik and Tremaine in 2002, with the major difference that we obtain a flatter mass function but a steeper period function. Moreover, our coupled mass-period functions show that about 2.5% of stars would have a planet with mass between Earth Mass and Neptune Mass, and about 3% of stars would have a planet with mass between Neptune Mass and Jupiter Mass.

  10. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS. II

    SciTech Connect

    Hansen, Brad M. S.

    2012-09-20

    We present a new empirical calibration of equilibrium tidal theory for extrasolar planet systems, extending a prior study by incorporating detailed physical models for the internal structure of planets and host stars. The resulting strength of the stellar tide produces a coupling that is strong enough to reorient the spins of some host stars without causing catastrophic orbital evolution, thereby potentially explaining the observed trend in alignment between stellar spin and planetary orbital angular momentum. By isolating the sample whose spins should not have been altered in this model, we also show evidence for two different processes that contribute to the population of planets with short orbital periods. We apply our results to estimate the remaining lifetimes for short-period planets, examine the survival of planets around evolving stars, and determine the limits for circularization of planets with highly eccentric orbits. Our analysis suggests that the survival of circularized planets is strongly affected by the amount of heat dissipated, which is often large enough to lead to runaway orbital inflation and Roche lobe overflow.

  11. The Discovery of Extrasolar Planets by Backyard Astronomers

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Laughlin, Greg; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The discovery since 1995 of more than 80 planets around nearby solar-like stars and the photometric measurement of a transit of the jovian mass planet orbiting the solar-like star HD 209458 (producing a more than 1% drop in brightness that lasts 3 hours) has heralded a new era in astronomy. It has now been demonstrated that small telescopes equipped with sensitive and stable electronic detectors can produce fundamental scientific discoveries regarding the frequency and nature of planets outside the solar system. The modest equipment requirements for the discovery of extrasolar planetary transits of jovian mass planets in short period orbits around solar-like stars are fulfilled by commercial small aperture telescopes and CCD (charge coupled device) imagers common among amateur astronomers. With equipment already in hand and armed with target lists, observing techniques and software procedures developed by scientists at NASA's Ames Research Center and the University of California at Santa Cruz, non-professional astronomers can contribute significantly to the discovery and study of planets around others stars. In this way, we may resume (after a two century interruption!) the tradition of planet discoveries by amateur astronomers begun with William Herschel's 1787 discovery of the 'solar' planet Uranus.

  12. Antarctica Search for Transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Fressin, F.; Guillot, T.; Bouchy, F.; Erikson, A.; Gay, J.; Léger, A.; Pont, F.; Rauer, H.; Rivet, J.-P.; Valbousquet, F.

    We present “A STEP”, a project dedicated to the search for planetary transits from Antartica. The project consists of a fully automatic 40 cm telescope equipped with an 11-million-pixel CCD installed at Dome C. The site offers crucial assets for a ground-based exoplanet transit search: uninterrupted phase coverage and excellent seeing. This system would be able to detect hot Jupiters transiting in front of stars as faint as magnitude sixteen and could also detect smaller planets in close-in period around brighter stars. Our estimations, based on results of previous surveys are an average of 6 detections per 60 days survey. Compared to existing surveys, this excellent yield is due to the nearly-continuous phase coverage and excellent seiing. This short term project is meant to be a photometric qualifyer for the site and the first stage of a massive detection campaign. A mid-term objective of 1000 detections for 2012 could be achieved either with many small telescopes or with a large Schmidt telescope with a large field of view. The project is relatively simple and cost-effective, and has the double purpose of qualifying the site and obtaining first-class scientific results. Our team is already familiar with transit detection with an automated telescope (BEST) and cold temperature qualification.

  13. CALIBRATION OF EQUILIBRIUM TIDE THEORY FOR EXTRASOLAR PLANET SYSTEMS

    SciTech Connect

    Hansen, Brad M. S.

    2010-11-01

    We provide an 'effective theory' of tidal dissipation in extrasolar planet systems by empirically calibrating a model for the equilibrium tide. The model is valid to high order in eccentricity and parameterized by two constants of bulk dissipation-one for dissipation in the planet and one for dissipation in the host star. We are able to consistently describe the distribution of extrasolar planetary systems in terms of period, eccentricity, and mass (with a lower limit of a Saturn mass) with this simple model. Our model is consistent with the survival of short-period exoplanet systems, but not with the circularization period of equal mass stellar binaries, suggesting that the latter systems experience a higher level of dissipation than exoplanet host stars. Our model is also not consistent with the explanation of inflated planetary radii as resulting from tidal dissipation. The paucity of short-period planets around evolved A stars is explained as the result of enhanced tidal inspiral resulting from the increase in stellar radius with evolution.

  14. Fabrication experiments on supersmooth optics for extrasolar planet detection

    NASA Technical Reports Server (NTRS)

    Ftaclas, C.; Krim, M. H.; Terrile, R. J.

    1989-01-01

    The direct detection of extrasolar planets by imaging will require reductions in scattered and diffracted light by factors in excess of 1000 within one arcsecond of a bright source. While diffraction can be reduced by a number of approaches, small angle scatter can only be reduced by controlling midspatial frequency figure errors. The surface requirements are reviewed and their meaning when compared to the data base of existing mirrors is considered. Experiments are discribed that were successful in reducing midspatial frequency figure so that the scatter level was 500 times less than diffraction for a 25-cm spherical mirror.

  15. Fast spin of the young extrasolar planet β Pictoris b

    NASA Astrophysics Data System (ADS)

    Snellen, Ignas A. G.; Brandl, Bernhard R.; de Kok, Remco J.; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  16. A rocky planet transiting a nearby low-mass star.

    PubMed

    Berta-Thompson, Zachory K; Irwin, Jonathan; Charbonneau, David; Newton, Elisabeth R; Dittmann, Jason A; Astudillo-Defru, Nicola; Bonfils, Xavier; Gillon, Michaël; Jehin, Emmanuël; Stark, Antony A; Stalder, Brian; Bouchy, Francois; Delfosse, Xavier; Forveille, Thierry; Lovis, Christophe; Mayor, Michel; Neves, Vasco; Pepe, Francesco; Santos, Nuno C; Udry, Stéphane; Wünsche, Anaël

    2015-11-12

    M-dwarf stars--hydrogen-burning stars that are smaller than 60 per cent of the size of the Sun--are the most common class of star in our Galaxy and outnumber Sun-like stars by a ratio of 12:1. Recent results have shown that M dwarfs host Earth-sized planets in great numbers: the average number of M-dwarf planets that are between 0.5 to 1.5 times the size of Earth is at least 1.4 per star. The nearest such planets known to transit their star are 39 parsecs away, too distant for detailed follow-up observations to measure the planetary masses or to study their atmospheres. Here we report observations of GJ 1132b, a planet with a size of 1.2 Earth radii that is transiting a small star 12 parsecs away. Our Doppler mass measurement of GJ 1132b yields a density consistent with an Earth-like bulk composition, similar to the compositions of the six known exoplanets with masses less than six times that of the Earth and precisely measured densities. Receiving 19 times more stellar radiation than the Earth, the planet is too hot to be habitable but is cool enough to support a substantial atmosphere, one that has probably been considerably depleted of hydrogen. Because the host star is nearby and only 21 per cent the radius of the Sun, existing and upcoming telescopes will be able to observe the composition and dynamics of the planetary atmosphere.

  17. Extrasolar planets and star formation: science opportunities for future ELTs

    NASA Astrophysics Data System (ADS)

    Stapelfeldt, Karl R.

    Future extremely large telescopes will be the engines of major progress in the fields of star and planet formation, brown dwarfs, and extrasolar planets. Their throughput will enable spectroscopic studies of the structure of brown dwarf atmospheres; reveal the composition and kinematics of protoplanetary disks; extend radial velocity searches for extrasolar planets to fainter stars and lower masses; and characterize the surfaces of the most distant Kuiper Belt objects. Their resolution will allow us to resolve and track the orbits of close binary young stars and brown dwarfs, establishing their dynamical masses and calibrating their evolutionary tracks; probe the inner region of young stellar object disks, resolving the jet collimation region in accreting systems and disk inner holes in more evolved ones; and move the horizon for stellar companion searches inward to 40 mas, enabling the direct detection of hot young planets orbiting 10 AU from young T Tauri stars. The high contrast imaging capability of future ELTs is uncertain, and depends on future developments in extreme adaptive optics. Wavefront control considerations suggest a fundamental atmospheric contrast limit of 10^{-8} for companion searches to nearby solar-type stars, below which detections are unlikely to be possible. To reach this performance level, continuing investments will be needed in extreme adaptive optics work, in addition to careful attention to the specialized requirements of ultra-high contrast imaging in ELT design. Above the 10^{-8} contrast limit, a 30m telescope has the potential to directly image about a dozen of the currently known radial velocity planets.

  18. Water vapour in the atmosphere of a transiting extrasolar planet

    NASA Astrophysics Data System (ADS)

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J.; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E.; Sing, David K.; Selsis, Franck

    2007-07-01

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets (`hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6μm, 5.8μm (both ref. 7) and 8μm (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  19. On the potential of extrasolar planet transit surveys

    NASA Astrophysics Data System (ADS)

    Gillon, M.; Courbin, F.; Magain, P.; Borguet, B.

    2005-11-01

    We analyse the respective benefits and drawbacks of ground-based and space-based transit surveys for extrasolar planets. Based on simple but realistic assumptions about the fraction of lower main sequence stars harboring telluric and giant planets within the outer limit of the habitable zone, we predict the harvests of fictitious surveys with three existing wide field optical and near-IR cameras: the CFHT-Megacam, SUBARU-Suprime and VISTA-IR. An additional promising instrument is considered, VISTA-Vis, currently under development. The results are compared with the harvests predicted under exactly the same assumptions, for the space missions COROT and KEPLER. We show that ground-based wide field surveys may discover more giant planets than space missions. However, space surveys seem to constitute the best strategy to search for telluric planets. In this respect, the KEPLER mission appears 50 times more efficient than any of the ground-based surveys considered here. KEPLER might even discover telluric planets in the habitable zone of their host star.

  20. Water vapour in the atmosphere of a transiting extrasolar planet.

    PubMed

    Tinetti, Giovanna; Vidal-Madjar, Alfred; Liang, Mao-Chang; Beaulieu, Jean-Philippe; Yung, Yuk; Carey, Sean; Barber, Robert J; Tennyson, Jonathan; Ribas, Ignasi; Allard, Nicole; Ballester, Gilda E; Sing, David K; Selsis, Franck

    2007-07-12

    Water is predicted to be among the most abundant (if not the most abundant) molecular species after hydrogen in the atmospheres of close-in extrasolar giant planets ('hot Jupiters'). Several attempts have been made to detect water on such planets, but have either failed to find compelling evidence for it or led to claims that should be taken with caution. Here we report an analysis of recent observations of the hot Jupiter HD 189733b (ref. 6) taken during the transit, when the planet passed in front of its parent star. We find that absorption by water vapour is the most likely cause of the wavelength-dependent variations in the effective radius of the planet at the infrared wavelengths 3.6 mum, 5.8 mum (both ref. 7) and 8 mum (ref. 8). The larger effective radius observed at visible wavelengths may arise from either stellar variability or the presence of clouds/hazes. We explain the report of a non-detection of water on HD 189733b (ref. 4) as being a consequence of the nearly isothermal vertical profile of the planet's atmosphere.

  1. 2008 HI STAR Projects: Comets, Asteroids and Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Kadooka, Mary Ann; Garland, C.; Nassir, M.; Moskovitz, N.; Johnson, J.; Pittichova, J.; Meech, K. J.

    2008-09-01

    The Hawaii Student/Teacher Astronomy Research (HI STAR) residential summer program strives to equip middle and high school students with the necessary research skills and background to conduct original research projects. Students are recruited through the mini-workshops conducted on the islands of Molokai, Maui, Kauai and Oahu. For one week in June, the students with a few teachers thrive on morning physics/astronomy lectures and afternoon image processing and photometry/light curve activities. They work in groups with astronomer mentors on comet, asteroid, galaxy, nebulae, variable star and extrasolar planet projects using image data sets. They also learn to do remote observing with 2 meter Faulkes Telescope on Haleakala Maui and 16 inch DeKalb Observatory Telescope in Auburn, Indiana. The asteroid, comet and extrasolar planet projects will be highlighted with slides taken from the students’ presentations on what they had accomplished. We will also discuss how these projects are being expanded upon for fall, 2008, to be ready for 2009 Science Fair entry. This network of roles and responsibilities of our astronomer mentors, teacher advisers and student participants has been developing to ensure exemplary astronomy research projects. Funding and support for this program has come from NASA IDEAS grant, NASA Astrobiology Institute, Las Cumbres Observatory Global Telescope, DeKalb Observatory, and a private donor.

  2. THE SURVIVAL OF WATER WITHIN EXTRASOLAR MINOR PLANETS

    SciTech Connect

    Jura, M.; Xu, S. E-mail: xsynju@gmail.co

    2010-11-15

    We compute that extrasolar minor planets can retain much of their internal H{sub 2}O during their host star's red giant evolution. The eventual accretion of a water-rich body or bodies onto a helium white dwarf might supply an observable amount of atmospheric hydrogen, as seems likely for GD 362. More generally, if hydrogen pollution in helium white dwarfs typically results from accretion of large parent bodies rather than interstellar gas as previously supposed, then H{sub 2}O probably constitutes at least 10% of the aggregate mass of extrasolar minor planets. One observational test of this possibility is to examine the atmospheres of externally polluted white dwarfs for oxygen in excess of that likely contributed by oxides such as SiO{sub 2}. The relatively high oxygen abundance previously reported in GD 378 can be explained plausibly but not uniquely by accretion of an H{sub 2}O-rich parent body or bodies. Future ultraviolet observations of white dwarf pollutions can serve to investigate the hypothesis that environments with liquid water that are suitable habitats for extremophiles are widespread in the Milky Way.

  3. Planet Hunters, Undergraduate Research, and Detection of Extrasolar Planet Kepler-818 b

    NASA Astrophysics Data System (ADS)

    Baker, David; Crannell, Graham; Duncan, James; Hays, Aryn; Hendrix, Landon

    2017-01-01

    Detection of extrasolar planets provides an excellent research opportunity for undergraduate students. In Spring 2012, we searched for transiting extrasolar planets using Kepler spacecraft data in our Research Experience in Physics course at Austin College. Offered during the regular academic year, these Research Experience courses engage students in the scientific process, including proposal writing, paper submission, peer review, and oral presentations. Since 2004, over 190 undergraduate students have conducted authentic scientific research through Research Experience courses at Austin College.Zooniverse’s citizen science Planet Hunters web site offered an efficient method for rapid analysis of Kepler data. Light curves from over 5000 stars were analyzed, of which 2.3% showed planetary candidates already tagged by the Kepler team. Another 1.5% of the light curves suggested eclipsing binary stars, and 1.6% of the light curves had simulated planets for training purposes.One of the stars with possible planetary transits had not yet been listed as a planetary candidate. We reported possible transits for Kepler ID 4282872, which later was promoted to planetary candidate KOI-1325 in 2012 and confirmed to host extrasolar planet Kepler-818 b in 2016 (Morton et al. 2016). Kepler-818 b is a “hot Neptune” with period 10.04 days, flux decrease during transit ~0.4%, planetary radius 4.69 Earth radii, and semi-major axis 0.089 au.

  4. The photometric method of extrasolar planet detection revisited

    NASA Technical Reports Server (NTRS)

    Hale, Alan; Doyle, Laurance R.

    1994-01-01

    We investigate the geometry concerning the photometric method of extrasolar planet detection, i.e., the detection of dimunition of a parent star's brightness during a planetary transit. Under the assumption that planetary orbital inclinations can be defined by a Gaussian with a sigma of 10 deg centered on the parent star's equatorial plane, Monte Carlo simulations suggest that for a given star observed at an inclination of exactly 90 deg, the probability of at least one Earth-sized or larger planet being suitably placed for transits is approximately 4%. This probability drops to 3% for a star observed at an inclination of 80 deg, and is still approximately 0.5% for a star observed at an inclination of 60 deg. If one can select 100 stars with a pre-determined inclination equal or greater than 80 deg, the probability of at least one planet being suitably configured for transits is 95%. The majority of transit events are due to planets in small-a orbits similar to the Earth and Venus; thus, the photometric method in principle is the method best suited for the detection of Earthlike planets. The photometric method also allows for testing whether or not planets can exist within binary systems. This can ge done by selecting binary systems observed at high orbital inclinations, both eclipsing binaries and wider visual binaries. For a 'real-world' example, we look at the alpha Centauri system (i = 79.2 deg). If we assume that the equatorial planes of both components coincide with the system's orbital plane, Monte Carlo simulations suggest that the probability of at least one planet (of either component) being suitably configured for transits is approximately 8%. In conclusion, we present a non-exhaustive list of solar-type stars, both single and within binary systems, which exhibit a high equatorial inclination. These objects may be considered as preliminary candidates for planetary searches via the photometric method.

  5. DETECTING OCEANS ON EXTRASOLAR PLANETS USING THE GLINT EFFECT

    SciTech Connect

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David

    2010-09-20

    Glint, the specular reflection of sunlight off Earth's oceans, may reveal the presence of oceans on an extrasolar planet. As an Earth-like planet nears crescent phases, the size of the ocean glint spot increases relative to the fraction of the illuminated disk, while the reflectivity of this spot increases. Both effects change the planet's visible reflectivity as a function of phase. However, strong forward scattering of radiation by clouds can also produce increases in a planet's reflectivity as it approaches crescent phases, and surface glint can be obscured by Rayleigh scattering and atmospheric absorption. Here, we explore the detectability of glint in the presence of an atmosphere and realistic phase-dependent scattering from oceans and clouds. We use the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model to simulate Earth's broadband visible brightness and reflectivity over an orbit. Our validated simulations successfully reproduce phase-dependent Earthshine observations. We find that the glinting Earth can be as much as 100% brighter at crescent phases than simulations that do not include glint, and that the effect is dependent on both orbital inclination and wavelength, where the latter dependence is caused by Rayleigh scattering limiting sensitivity to the surface. We show that this phenomenon may be observable using the James Webb Space Telescope paired with an external occulter.

  6. Exploring extrasolar worlds: from gas giants to terrestrial habitable planets.

    PubMed

    Tinetti, Giovanna; Griffith, Caitlin A; Swain, Mark R; Deroo, Pieter; Beaulieu, Jean Philippe; Vasisht, Gautam; Kipping, David; Waldmann, Ingo; Tennyson, Jonathan; Barber, Robert J; Bouwman, Jeroen; Allard, Nicole; Brown, Linda R

    2010-01-01

    Almost 500 extrasolar planets have been found since the discovery of 51 Peg b by Mayor and Queloz in 1995. The traditional field of planetology has thus expanded its frontiers to include planetary environments not represented in our Solar System. We expect that in the next five years space missions (Corot, Kepler and GAIA) or ground-based detection techniques will both increase exponentially the number of new planets discovered and lower the present limit of a approximately 1.9 Earth-mass object [e.g. Mayor et al., Astron. Astrophys., 2009, 507, 487]. While the search for an Earth-twin orbiting a Sun-twin has been one of the major goals pursued by the exoplanet community in the past years, the possibility of sounding the atmospheric composition and structure of an increasing sample of exoplanets with current telescopes has opened new opportunities, unthinkable just a few years ago. As a result, it is possible now not only to determine the orbital characteristics of the new bodies, but moreover to study the exotic environments that lie tens of parsecs away from us. The analysis of the starlight not intercepted by the thin atmospheric limb of its planetary companion (transit spectroscopy), or of the light emitted/reflected by the exoplanet itself, will guide our understanding of the atmospheres and the surfaces of these extrasolar worlds in the next few years. Preliminary results obtained by interpreting current atmospheric observations of transiting gas giants and Neptunes are presented. While the full characterisation of an Earth-twin might requires a technological leap, our understanding of large terrestrial planets (so called super-Earths) orbiting bright, later-type stars is within reach by current space and ground telescopes.

  7. THE COMPOSITIONAL DIVERSITY OF EXTRASOLAR TERRESTRIAL PLANETS. I. IN SITU SIMULATIONS

    SciTech Connect

    Bond, Jade C.; Lauretta, Dante S.; O'Brien, David P.

    2010-06-01

    Extrasolar planet host stars have been found to be enriched in key planet-building elements. These enrichments have the potential to drastically alter the composition of material available for terrestrial planet formation. Here, we report on the combination of dynamical models of late-stage terrestrial planet formation within known extrasolar planetary systems with chemical equilibrium models of the composition of solid material within the disk. This allows us to determine the bulk elemental composition of simulated extrasolar terrestrial planets. A wide variety of resulting planetary compositions are found, ranging from those that are essentially 'Earth like', containing metallic Fe and Mg silicates, to those that are dominated by graphite and SiC. This shows that a diverse range of terrestrial planets may exist within extrasolar planetary systems.

  8. Securing the Extremely Low-Densities of Low-Mass Planets Characterized by Transit Timing Variations

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2015-12-01

    Transit timing variations (TTVs) provide an excellent tool to characterize the masses and orbits of dozens of small planets, including many at orbital periods beyond the reach of both Doppler surveys and photoevaporation-induced atmospheric loss. Dynamical modeling of these systems has identified low-mass planets with surprisingly large radii and low densities (e.g., Kepler-79d, Jontof-Hutter et al. 2014; Kepler-51, Masuda 2014; Kepler-87c, Ofir et al. 2014). Additional low-density, low-mass planets will likely become public before ESS III (Jontof-Hutter et al. in prep). Collectively, these results suggest that very low density planets with masses of 2-6 MEarth are not uncommon in compact multiple planet systems. Some astronomers have questioned whether there could be an alternative interpretation of the TTV observations. Indeed, extraordinary claims require extraordinary evidence. While the physics of TTVs is rock solid, the statistical analysis of Kepler observations can be challenging, due to the complex interactions between model parameters and high-dimensional parameter spaces that must be explored. We summarize recent advances in computational statistics that enable robust characterization of planetary systems using TTVs. We present updated analyses of a few particularly interesting systems and discuss the implications for the robustness of extremely low densities for low-mass planets. Such planets pose an interesting challenge for planet formation theory and are motivating detailed theoretical studies (e.g., Lee & Chiang 2015 and associated ESS III abstracts).

  9. Direct Imaging Search for Extrasolar Planets in the Pleiades

    NASA Technical Reports Server (NTRS)

    Yamamoto, Kodai; Matsuo, Taro; Shibai, Hiroshi; Itoh, Yoichi; Konishi, Mihokko; Sudo, Jun; Tanii, Ryoko; Fukagawa, Misato; Sumi, Takahiro; Kudo, Tomoyuki; Hashimoto, Jun; Kusakabe, Nobuhiko; Abe, Lyn; Brandner, Wolfgang; Brandt, Timothy D.; Carson, Joseph; Currie, Thayne; Egner, Sebastian E,; Feldt, Markus; Goto, Miwa; Grady, Carol; Guyon, Olivier; Hayano, Yutaka; McElwain, Mike; Serabyn, Eugene

    2013-01-01

    We carried out an imaging survey for extrasolar planets around stars in the Pleiades (125 Myr, 135 pc) in the H and K(sub S) bands using HiCIAO combined with adaptive optics, AO188, on the Subaru telescope. We found 13 companion candidates fainter than 14.5 mag in the H band around 9 stars. Five of these 13 were confirmed to be background stars by measurement of their proper motion. One was not found in the second epoch observation, and thus was not a background or companion object. One had multi-epoch images, but the precision of its proper motion was not sufficient to conclude whether it was a background object. Four other candidates are waiting for second-epoch observations to determine their proper motion. Finally, the remaining two were confirmed to be 60 M(sub J) brown dwarf companions orbiting around HD 23514 (G0) and HII 1348 (K5), respectively, as had been reported in previous studies. In our observations, the average detection limit for a point source was 20.3 mag in the H band beyond 1.'' 5 from the central star. On the basis of this detection limit, we calculated the detection efficiency to be 90% for a planet with 6 to 12 Jovian masses and a semi-major axis of 50–1000 AU. For this reason we extrapolated the distribution of the planet mass and the semi-major axis derived from radial velocity observations, and adopted the planet evolution model Baraffe et al. (2003, A&A, 402, 701). Since there was no detection of a planet, we estimated the frequency of such planets to be less than 17.9% (2 sigma) around one star of the Pleiades cluster.

  10. Direct detection of extrasolar planets with the eXtreme Adaptive Optics Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, B. A.; Graham, J. R.; Duchene, G.; Jones, S.; Kalas, P.; Lloyd, J.; Makidon, R. B.; Olivier, S.; Palmer, D.; Perrin, M.; Poyneer, L.; Sheinis, A.; Sivaramakrishnan, A.; Severson, S.; Sommargren, G.; Troy, M.; Wallace, J. K.

    2003-05-01

    Current radial-velocity searches for extrasolar planets, though powerful, are fundamentally constrained in the range of orbits they can access by the need for a near-complete orbital period: the largest detectable semi-major axis only grows with time to the 2/3 power. In the next several decades, radial velocity detection will barely reach planets with orbits comparable to Saturn. However, planets in our solar system exist at wider separations and dusty disks frequently exceed 100 AU, some with evidence for perturbing planets in wide orbits. To probe the 5-100 AU range different techniques are needed. Direct detection of photons emitted by extrasolar planets is one such technique, but requires contrast levels of 107-109 at near-infrared wavelengths. We have designed an adaptive optics (AO) system capable of reaching these contrasts. XAOPI, the eXtreme Adaptive Optics Planet Imager, is a proposed 4096-actuator adaptive optics system for an 8-10m telescope. It will achieve Strehl ratios >0.9, and is optimized to remove scattered light from 0.2-1 arcseconds, even light scattered by errors in a segmented primary mirror. Simulations predict that it will achieve contrast ratios of 107 -108 for target stars with R<7. Monte Carlo analysis of target samples shows that this allows detection of near-IR emission from warm extrasolar planets younger and/or more massive than Jupiter around a significant sample of target stars. We will examine the scientific rationale for, and capabilities of, this proposed instrument. This work has been supported by the National Science Foundation Science and Technology Center for Adaptive Optics, managed by the University of California at Santa Cruz under cooperative agreement No. AST - 987 Portions of this work were also performed under the auspices of the U.S. Department of Energy, National Nuclear Security Administration by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  11. An Adaptive Optics Search for Young Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Macintosh, B.; Zuckerman, B.; Kaisler, D.; Becklin, E. E.; Lowrance, P.; Webb, R.; Olivier, S.; Max, C. E.

    2000-12-01

    Several dozen extrasolar planets are now known, all detected through radial velocity variations induced in their parent stars. Though powerful, the radial velocity technique is most sensitive to objects in close orbits and measures only the mass and orbit of the planet, not its other properties. Other indirect techniques such as astrometry will have similar limitations. The direct detection of photons emitted by extrasolar planets, particularly those in wide orbits, is potentially a powerful complement to indirect techniques. The halo of scattered light that surrounds a bright star makes this extremely challenging, but adaptive optics (AO) on 8-10 m telescopes brings this possibility into reach. The first such large-telescope AO system has been operating on the 10-m W.M. Keck II telescope since 1999. Keck AO is now capable of detecting objects at contrast ratios as high as 106 at separations of 1-2 arcseconds. A mature Jupiter-like planet is approximately 109 times dimmer than its parent star, undetectable at the current time. However, a young (10 MYr) Jupiter-mass planet retains enough heat to radiate brightly in the near- infrared, making it only 105 times dimmer than a star. We are carrying out a search for such planetary companions to young nearby stars, including members of the TW Hydrae association. Initially we have been following up candidate companions discovered by NICMOS, including the brown dwarf TWA5B. Our observations of TWA5B confirm its companionship and therefore its brown dwarf nature. In addition, TWA5A is resolved as an 0.06 arcsecond double, opening up the possibility of precise mass determinations for this young system. I will discuss followup observations of other candidates and the current sensitivity limits and limitations of our search. This research was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract W-7405-ENG-48, and also supported in part by the Center for Adaptive

  12. Extrasolar planet searches at the TUG: Test observations and capabilities

    NASA Astrophysics Data System (ADS)

    Yılmaz, M.; Selam, S. O.; Sato, B.; Izumiura, H.; Bikmaev, I.; Ando, H.; Kambe, E.; Keskin, V.

    2013-04-01

    A small group of collaborators was established at the end of 2007 with the objective of starting an extrasolar planet search at the TÜBİTAK National Observatory of Turkey. High resolution spectra of some radial velocity standards and planet-harbouring stars have since been obtained using an iodine (I2) absorption cell placed in front of the entrance slit of the Coude Echelle Spectrograph (CES) in the 1.5-m Russian-Turkish Telescope (RTT150). To determine precise radial velocity measurements for these stars, a new computer code was developed by one of the collaborators (MY) using an IDL (Interactive Data Language) programing platform specific to the RTT150's CES + I2-cell data. This paper summarises the technical setup, the new code, the test observation results and the precision achieved in the radial velocity measurements. The results from radial velocity standards and planet-harbouring stars show that a precision of approximately 10 m s-1 was achieved with the CES on the RTT150 during the three years of test observations. In addition, the instrumental profile (IP) characteristics of the CES on the RTT150 in this study were derived by modelling the observed B-star + I2 spectra. The observed instrumental profiles were a typical Gaussian shape and exhibited small variations that depended on the position on the CCD and also varied between exposures, which affected the precision of the radial velocity measurements.

  13. On the Anomalous Radii of the Transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Laughlin, Gregory; Crismani, Matteo; Adams, Fred C.

    2011-03-01

    We present a systematic evaluation of the agreement between the observed radii of 90 well-characterized transiting extrasolar giant planets and their corresponding model radii. Our model radii are drawn from previously published calculations of coreless giant planets that have attained their asymptotic radii, and which have been tabulated for a range of planet masses and equilibrium temperatures. (We report a two-dimensional polynomial fitting function that accurately represents the models.) As expected, the model radii provide a statistically significant improvement over a null hypothesis that the sizes of giant planets are completely independent of mass and effective temperature. As is well known, however, fiducial models provide an insufficient explanation; the planetary radius anomalies, R ≡ R_obs-R_pred, are strongly correlated with planetary equilibrium temperature. We find that the radius anomalies have a best-fit dependence, R∝ T_eff^{α}, with α = 1.4 ± 0.6. Incorporating this relation into the model radii leads to substantially less scatter in the radius correlation. The extra temperature dependence represents an important constraint on theoretical models for hot Jupiters. Using simple scaling arguments, we find support for the hypothesis of Batygin & Stevenson that this correlation can be attributed to a planetary heating mechanism that is mediated by magnetohydrodynamic coupling between the planetary magnetic field and near-surface flow that is accompanied by ohmic dissipation at adiabatic depth. Additionally, we find that the temperature dependence is likely too strong to admit kinetic heating as the primary source of anomalous energy generation within the majority of the observed transiting planets.

  14. ON THE ANOMALOUS RADII OF THE TRANSITING EXTRASOLAR PLANETS

    SciTech Connect

    Laughlin, Gregory; Crismani, Matteo

    2011-03-01

    We present a systematic evaluation of the agreement between the observed radii of 90 well-characterized transiting extrasolar giant planets and their corresponding model radii. Our model radii are drawn from previously published calculations of coreless giant planets that have attained their asymptotic radii, and which have been tabulated for a range of planet masses and equilibrium temperatures. (We report a two-dimensional polynomial fitting function that accurately represents the models.) As expected, the model radii provide a statistically significant improvement over a null hypothesis that the sizes of giant planets are completely independent of mass and effective temperature. As is well known, however, fiducial models provide an insufficient explanation; the planetary radius anomalies, R{identical_to}R{sub obs}-R{sub pred}, are strongly correlated with planetary equilibrium temperature. We find that the radius anomalies have a best-fit dependence, R{proportional_to}T{sub eff}{sup {alpha}}, with {alpha} = 1.4 {+-} 0.6. Incorporating this relation into the model radii leads to substantially less scatter in the radius correlation. The extra temperature dependence represents an important constraint on theoretical models for hot Jupiters. Using simple scaling arguments, we find support for the hypothesis of Batygin and Stevenson that this correlation can be attributed to a planetary heating mechanism that is mediated by magnetohydrodynamic coupling between the planetary magnetic field and near-surface flow that is accompanied by ohmic dissipation at adiabatic depth. Additionally, we find that the temperature dependence is likely too strong to admit kinetic heating as the primary source of anomalous energy generation within the majority of the observed transiting planets.

  15. A closely packed system of low-mass, low-density planets transiting Kepler-11.

    PubMed

    Lissauer, Jack J; Fabrycky, Daniel C; Ford, Eric B; Borucki, William J; Fressin, Francois; Marcy, Geoffrey W; Orosz, Jerome A; Rowe, Jason F; Torres, Guillermo; Welsh, William F; Batalha, Natalie M; Bryson, Stephen T; Buchhave, Lars A; Caldwell, Douglas A; Carter, Joshua A; Charbonneau, David; Christiansen, Jessie L; Cochran, William D; Desert, Jean-Michel; Dunham, Edward W; Fanelli, Michael N; Fortney, Jonathan J; Gautier, Thomas N; Geary, John C; Gilliland, Ronald L; Haas, Michael R; Hall, Jennifer R; Holman, Matthew J; Koch, David G; Latham, David W; Lopez, Eric; McCauliff, Sean; Miller, Neil; Morehead, Robert C; Quintana, Elisa V; Ragozzine, Darin; Sasselov, Dimitar; Short, Donald R; Steffen, Jason H

    2011-02-03

    When an extrasolar planet passes in front of (transits) its star, its radius can be measured from the decrease in starlight and its orbital period from the time between transits. Multiple planets transiting the same star reveal much more: period ratios determine stability and dynamics, mutual gravitational interactions reflect planet masses and orbital shapes, and the fraction of transiting planets observed as multiples has implications for the planarity of planetary systems. But few stars have more than one known transiting planet, and none has more than three. Here we report Kepler spacecraft observations of a single Sun-like star, which we call Kepler-11, that reveal six transiting planets, five with orbital periods between 10 and 47 days and a sixth planet with a longer period. The five inner planets are among the smallest for which mass and size have both been measured, and these measurements imply substantial envelopes of light gases. The degree of coplanarity and proximity of the planetary orbits imply energy dissipation near the end of planet formation.

  16. A Research on Tidal Evolution of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Dong, Y.

    2014-05-01

    show that the role of Q^'_1 in the eccentricity may solely affect the damping timescale rather than the final semi-major axis. Furthermore, considering the density comparable to terrestrial planets in the solar system and the previous models, we provide a possible constraint on the mass of Kepler-10c with 7 M_oplus≤ m_2 ≤t 20 M_oplus (M_oplus is the mass of the earth) from the simulations. Finally, we make a discussion about the stellar tide after the planetary tidal evolution ends up for each system, which is associated with the remaining lifetime of each planet to predict its future. As well-known, the tidal evolution may change the orbit of a planet, as a result, and transit timing variations for a transit planet possibly can be detected by observation. We then introduce the research progress on the transit timing variations in extrasolar planets, and we present a preliminary result.

  17. ''High-Speed, Photon-Counting Camera for the Detection of Extrasolar Planets''

    SciTech Connect

    Ullom, J; Cunningham, M; Macintosh, B; Miyazaki, T; Labov, S

    2003-02-07

    The search for extrasolar planets--planets orbiting stars outside out solar system-- is motivated by the desire to discover small planets similar to Earth. Since small planets are difficult to detect, the first step is finding giant planets with large orbits, like Jupiter. Solar systems containing these planets may have smaller, Earth-like planets travelling closer to the parent star. However, current methods detect extrasolar planets indirectly by observing a planet's gravitational influence on its parent star. These methods are primarily sensitive to giant planets with small orbits. A new method is needed to directly observe planets with large orbits. Direct observation can also provide additional information about a planet's composition and/or orbit. Directly observing an extrasolar planet from Earth is challenging because of the relative proximity of the planet to its parent star. Although a large, terrestrial telescope can provide the angular resolution necessary to visually separate the planet from the star, atmospheric turbulence limits the telescope's performance. In addition, the parent star appears much brighter than the planet. Adaptive optics (AO) can increase a planet's brightness, but they have little effect on residual star glare.

  18. UMBRAS: a matched occulter and telescope for imaging extrasolar planets

    NASA Astrophysics Data System (ADS)

    Schultz, Alfred B.; Jordan, Ian J.; Kochte, Mark; Fraquelli, Dorothy A.; Bruhweiler, Fred; Hollis, Jan M.; Carpenter, Kenneth G.; Lyon, Richard G.; DiSanti, Mike A.; Miskey, Cherie L.; Leitner, Jesse; Burns, Richard D.; Starin, Scott R.; Rodrigue, Melodi; Fadali, M. S.; Skelton, Dennis L.; Hart, Helen M.; Hamilton, Forrest C.; Cheng, Kwang-Ping

    2003-02-01

    We describe a 1-meter space telescope plus free-flying occulter craft mission that would provide direct imaging and spectroscopic observations of Jovian and Uranus-sized planets about nearby stars not detectable by Doppler techniques. The Doppler technique is most sensitive for the detection of massive, close-in extrasolar planets while the use of a free-flying occulter would make it possible to image and study stellar systems with planets comparable to our own Solar System. Such a mission with a larger telescope has the potential to detect earth-like planets. Previous studies of free-flying occulters reported advantages in having the occulting spot outside the telescope compared to a classical coronagraph onboard a space telescope. Using an external occulter means light scatter within the telescope is reduced due to fewer internal obstructions and less light entering the telescope and the polishing tolerances of the primary mirror and the supporting optics can be less stringent, thereby providing higher contrast and fainter detection limits. In this concept, the occulting spot is positioned over the star by translating the occulter craft, at distances of 1,000 to 15,000 kms from the telescope, on the sky instead of by moving the telescope. Any source within the telescope field-of-view can be occulted without moving the telescope. In this paper, we present our current concept for a 1-m space telescope matched to a free-flying occulter, the Umbral Missions Blocking Radiating Astronomical Sources (UMBRAS) space mission. An UMBRAS space mission consists of a Solar Powered Ion Driven Eclipsing Rover (SPIDER) occulter craft and a matched (apodized) telescope. The occulter spacecraft would be semi-autonomous, with its own propulsion systems, internal power (solar cells), communications, and navigation capability. Spacecraft rendezvous and formation flying would be achieved with the aid of telescope imaging, RF or laser ranging, celestial navigation inputs, and formation

  19. ORBITAL MIGRATION OF LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE MODELS: AVOIDING CATASTROPHIC INFALL

    SciTech Connect

    Lyra, Wladimir; Mac Low, Mordecai-Mark; Paardekooper, Sijme-Jan E-mail: mordecai@amnh.or

    2010-06-01

    Outward migration of low-mass planets has recently been shown to be a possibility in non-barotropic disks. We examine the consequences of this result in evolutionary models of protoplanetary disks. Planet migration occurs toward equilibrium radii with zero torque. These radii themselves migrate inwards because of viscous accretion and photoevaporation. We show that as the surface density and temperature fall the planet orbital migration and disk depletion timescales eventually become comparable, with the precise timing depending on the mass of the planet. When this occurs, the planet decouples from the equilibrium radius. At this time, however, the gas surface density is already too low to drive substantial further migration. A higher mass planet, of 10 M {sub +}, can open a gap during the late evolution of the disk, and stops migrating. Low-mass planets, with 1 or 0.1 M {sub +}, released beyond 1 AU in our models avoid migrating into the star. Our results provide support for the reduced migration rates adopted in recent planet population synthesis models.

  20. Characterizing extrasolar planets with multi-color photometry

    NASA Astrophysics Data System (ADS)

    Colon, Knicole Dawn

    Over the past twenty years, nearly 800 planets have been discovered orbiting stars other than the Sun. The discovery of these extrasolar planets (or simply, exoplanets) has led to a renewed interest in planet formation and evolution, as many exoplanets have properties that are nothing like those of the planets found in the Solar System. A subset of exoplanets are known to transit, or pass in front of, their host star, which provides a unique opportunity to measure how their radius changes with wavelength. Such measurements can be used to study the atmospheres of exoplanets, since changes in the measured radius can indicate absorption of stellar photons by the exoplanet atmosphere. Finding a significant change in the radius with wavelength can also indicate that a planet candidate is not a planet at all, but is instead an eclipsing binary star composed of two stars with different temperatures and therefore colors. With over 200 confirmed transiting exoplanets and NASA's Kepler mission's recent discovery of over 2000 transiting exoplanet candidates, detailed investigations into the properties of exoplanetary atmospheres and false positive rates for planet search surveys can now be conducted. To aid these investigations, I developed a novel technique of using the Optical System for Imaging and low Resolution Integrated Spectroscopy (OSIRIS) installed on the 10.4 meter Gran Telescopio Canarias (GTC) to acquire near-simultaneous, multi-color, narrow-band photometry of exoplanet transits. I first used this technique to observe the transits of the hot-Jupiters TrES-2b and TrES-3b, from which I reached some of the best photometric precisions (0.343-0.470 mmag) achieved to date using a ground-based telescope. I subsequently used this technique to measure a ˜ 4.2% change in the apparent planetary radius of the giant exoplanet HD 80606b during transit between wavelengths that probe potassium. I hypothesize that the excess absorption is due to potassium in a high-speed wind

  1. Searching for Extrasolar Planets with the RAPTOR Sky Monitoring System

    NASA Astrophysics Data System (ADS)

    Vestrand, W. T.; Borozdin, K.; Casperson, D.; Galassi, M.; McGowan, K.; Starr, D.; White, R. R.; Wozniak, P.; Wren, J.

    2002-12-01

    The RAPTOR (Rapid Telescopes for Optical Response) experiment is an ensemble of autonomous robotic telescopes that monitor the optical sky in real time for variations as fast as 30 seconds. To search for fast optical transients, the core of the system is a stereoscopic imager that is composed of a wide-field array that monitors 1500 square-degrees to a depth of 12th magnitude every 30 seconds, and a narrow-field array that monitors 16 square-degrees to a depth of 16th magnitude in 30 seconds. This stereoscopic system is supplemented by a single patrol array that simultaneously images 50 square-degrees of sky to a depth of 16th magnitude in 30 seconds. While it was originally designed to search the sky for fast optical transients, the wide field and fast cadence of the imaging make the system well suited for detecting the transits of hot Jupiter-type planets across their parent stars. We present the first results of our search for extra-solar planets with RAPTOR. The RAPTOR project is supported at LANL by Internal Laboratory Directed Research and Development funding under DoE Contract W-7405-ENG-36.

  2. Extrasolar Giant Planet in Earth-like Orbit

    NASA Astrophysics Data System (ADS)

    1999-07-01

    Discovery from a Long-term Project at La Silla A new extrasolar planet has been found at the ESO La Silla Observatory as a companion to iota Horologii (iota Hor) . This 5.4-mag solar-type star is located at a distance of 56 light-years and is just visible to the unaided eye in the southern constellation Horologium (The Pendulum Clock). The discovery is the result of a long-term survey of forty solar-type stars that was begun in November 1992. It is based on highly accurate measurements of stellar radial velocities, i.e. the speed with which a star moves along the line of sight. The presence of a planet in orbit around a star is inferred from observed, regular changes of this velocity, as the host star and its planet revolve around a common center of gravity. Since in all cases the star is much heavier than the planet, the resulting velocity variations of the star are always quite small. The team that found the new planet, now designated iota Hor b , consists of Martin Kürster , Michael Endl and Sebastian Els (ESO-Chile), Artie P. Hatzes and William D. Cochran (University of Texas, Austin, USA), and Stefan Döbereiner and Konrad Dennerl (Max-Planck-Institut für extraterrestrische Physik, Garching, Germany). Iodine cell provides very accurate velocity measurements iota Hor b represents the first discovery of an extrasolar planet with an ESO instrument [1]. The finding is based on data obtained with ESO's highest-resolution spectrograph, the Coudé Echelle Spectrometer (CES) at the 1.4-m Coudé Auxiliary Telescope (CAT). While this telescope has recently been decommissioned, the CES instrument is now coupled via an optical fiber link to the larger ESO 3.6-m telescope, thus permitting the continuation of this survey. The high precision radial velocity measurements that are necessary for a study of this type were achieved by means of a special calibration technique. It incorporates an iodine gas absorption cell and sophisticated data modelling. The cell is used like

  3. Long-term evolution of tidal heating and surface temperature on extrasolar planets

    NASA Astrophysics Data System (ADS)

    Kanova, Michaela; Behounkova, Marie

    2015-04-01

    Increasing number of detected extrasolar planets provides a unique statistical set that may help us to improve our knowledge about planetary evolution. Indirect detection methods employed in search for exoplanets are most sensitive to objects orbiting close to their host star and this criterion gets particularly important in the case of low-mass terrestrial planets. Here, we focus on long-term orbital and thermal evolution of a single planet subjected to stellar tides. Our approach combines evaluation of surface temperature as well as numerical computation of tidal effects on planetary orbit and internal heating. By calculating the tidal evolution of the orbit [1], we analyze the effect of initial orbital parameters (eccentricity, semi-major axis and rotational frequency) on secular changes in surface temperature and tidal dissipation. The maximum surface temperature and temperature gradient is computed during the process and it evolves together with the semi-major axis, the eccentricity and the ratio of spin and orbital frequency. Significant increase in the surface temperature is observed when the planet encounters a spin-orbit resonance. We solve the heat diffusion equation numerically for both 1D and 3D geometry in a thin spherical shell corresponding to a subsurface layer (see e.g. [2]), where the upper boundary condition is given by energy equilibrium and is strongly non-linear in temperature due to Stefan-Boltzmann law. Additionally, we solve the viscoelastic response to the tidal loading during orbital evolution. Following the method of [3,4], the tidal heating is evaluated for Maxwell or Andrade rheology in the time domain. We study disturbing potential caused by the body's deformation, the time dependence of phase lag and time lag during one orbit and compare our results with traditionally used constant tidal lag models (e.g. [1,5]). The effect of a 3D internal structure on the disturbing potential is investigated as well. This study is our first step

  4. Super Smooth Optics for Extra-Solar Planet Detection

    NASA Technical Reports Server (NTRS)

    Terrile, Richard J.; Ftaclas, Christ

    1989-01-01

    The goal of imaging planets around the nearby stars has important scientific significance but requires the use of advanced methods of controlling diffracted and scattered light. Over the last three years we have undertaken a study of coronagraphic methods of controlling diffracted light and of figuring hyper-contrast optics. Progress in these two general areas have led to a proposed space-based, 1.9 meter diameter coronagraphic telescope designed specifically for very high performance in the imaging of faint objects near bright sources. This instrument, called the Circumstellar Imaging Telescope (CIT), relies on a new high efficiency coronagraph design and the careful control of scattered light by extremely smooth optics. The high efficiency coronagraph uses focal plane apodization in order to concentrate diffracted light more efficiently in the pupil. This allows convenient removal of the diffracted light by masking off parts of the telescope pupil while not sacrificing the center of the field. Reductions of diffracted light by factors exceeding 1000 are not only possible but are required in order to detect extra-solar planets. Laboratory experiments with this new design have confirmed the theoretical diffraction reductions to the limits of the optics used (factors of about 300) . The extremely high efficiency of this coronagraph puts strong constraints on the narrow angle scattered light due to figure errors in the telescope mirror. Since planets orbiting nearby stars are expected at angular distances of about 1 arcsecond, it is in this small angular range in which scattering must be controlled. The figure errors responsible for scattering in this range come from mid-spatial frequencies corresponding to correlation lengths of about 10 cm on the primary mirror. A primary mirror about 15 times smoother than the Hubble Space Telescope mirror is required for the CIT. Laboratory experiments indicate that small test mirrors can be fabricated with existing technology

  5. Terrestrial Planet Formation around Low-Mass Stars: Effect of the Mass of Central Stars

    NASA Astrophysics Data System (ADS)

    Oshino, Shoichi; Matsumoto, Yuji; Kokubo, Eiichiro

    2015-12-01

    The Kepler space telescope has detected several thousand planets and candidates.Their central stars are mainly FGK-type stars.It is difficult to observe M-stars by using visible light since M-stars have their peak radiation in the infrared region.However, recently there are several survey projects for planets around M-stars such as the InfraRed Doppler (IRD) survey of the Subaru telescope.Therefore it is expected that the number of planets around M-stars will increase in the near future.The habitable zone of M-stars is closer to the stars than that of G-stars.For this reason, the possibility of finding habitable planets is expected to be higher.Here we study the formation of close-in terrestrial planets by giant impacts of protoplanets around low-mass stars by using N-body simulations.An important parameter that controls formation processes is the ratio between the physical radius of a planet and its Hill radius, which decreases with the stellar mass.We systematically change the mass of the central stars and investigate its effects on terrestrial planet formation.We find that the mass of the maximum planet decreases with the mass of central stars, while the number of planets in the system increases.We also find that the orbital separation of adjacent planets normalized by their Hill radius increases with the stellar mass.

  6. The ELODIE survey for northern extra-solar planets. I. Six new extra-solar planet candidates

    NASA Astrophysics Data System (ADS)

    Perrier, C.; Sivan, J.-P.; Naef, D.; Beuzit, J. L.; Mayor, M.; Queloz, D.; Udry, S.

    2003-11-01

    Precise radial-velocity observations at Haute-Provence Observatory (OHP, France) with the ELODIE echelle spectrograph have been undertaken since 1994. In addition to several discoveries described elsewhere, including and following that of 51 Peg b, they reveal new sub-stellar companions with essentially moderate to long periods. We report here about such companions orbiting five solar-type stars (HD 8574, HD 23596, HD 33636, HD 50554, HD 106252) and one sub-giant star (HD 190228). The companion of HD 8574 has an intermediate period of 227.55 days and a semi-major axis of 0.77 AU. All other companions have long periods, exceeding 3 years, and consequently their semi-major axes are around or above 2 AU. The detected companions have minimum masses m2 sin i ranging from slightly more than 2 MJup to 10.6 MJup. These additional objects reinforce the conclusion that most planetary companions have masses lower than 5 MJup but with a tail of the mass distribution going up above 15 MJup. The orbits are all eccentric and 4 out of 6 have an eccentricity of the order of 0.5. Four stars exhibit solar metallicity, one is metal-rich and one metal-poor. With 6 new extra-solar planet candidates discovered, increasing their total known to-date number to 115, the ELODIE Planet Search Survey yield is currently 18. We emphasize that 3 out of the 6 companions could in principle be resolved by diffraction-limited imaging on 8 m-class telescopes depending on the achievable contrast, and therefore be primary targets for first attempts of extra-solar planet direct imaging. Based on observations made at the Haute-Provence Observatory (operated by French CNRS), the 1.2-m Euler swiss telescope at ESO-La Silla Observatory (Chile) and the 1.52-m ESO telescope also at La Silla Observatory. The ELODIE measurements discussed in this paper are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/410

  7. Extrasolar Planet in Double Star System Discovered from La Silla

    NASA Astrophysics Data System (ADS)

    1998-11-01

    Early Success With New Swiss Telescope During the past three years, about fifteen planetary companions have been discovered in orbits around dwarf stars. They have revealed to astrophysicists a broad diversity of planetary systems at other stars. Giant planets with masses ranging from half to several times the mass of Jupiter, the largest planet in our own solar system, have been detected with various telescopes. The orbital periods range from 3.1 to 1650 days; while some of the orbits are of circular shape, others are very elongated. The observed diversity naturally raises questions about how these exoplanets are formed. Now, following only a few months of observations, a Swiss team of astronomers [1], working with a new Swiss astronomical facility at the ESO La Silla Observatory mainly dedicated to the search for exoplanets, has made its first planetary detection. It is a massive planet moving in an almost circular orbit around a nearby star that is itself the primary component of a double star system. The Geneva southern extrasolar planet search programme ESO PR Photo 45a/98 ESO PR Photo 45a/98 [Preview - JPEG: 800 x 640 pix - 456k] [High-Res - JPEG: 3000 x 2400 pix - 2.7Mb] ESO PR Photo 45b/98 ESO PR Photo 45b/98 [Preview - JPEG: 800 x 953 pix - 296k] [High-Res - JPEG: 3000 x 3572 pix - 2.3Mb] PR Photo 45a/98 (left) is a view of the dome with the 1.2-m Swiss Leonard Euler Telescope at the ESO La Silla Observatory. The telescope itself is shown in Photo 45b/98 (right). In June 1998, the CORALIE echelle spectrograph was mounted at the 1.2-m Swiss telescope at La Silla and the commissioning phase was begun, during which the telescope and the spectrograph would be trimmed to perfection. This facility is specifically designed for high-precision radial-velocity measurements and it will mostly be used for an ambitious search for large extrasolar planets around stars in the southern celestial hemisphere. Over 1000 stars will be investigated. Such a vast observational

  8. Astrobiology And Extrasolar Planets- A New Lecture Course At Potsdam University

    NASA Astrophysics Data System (ADS)

    Franck, S. A.; von Bloh, W.; Bounama, Ch.

    2006-08-01

    Astrobiology studies the origin, evolution, distribution, and future of life on Earth and in the Universe. This addresses a very wide range of questions that have been asked by mankind from the beginning. On the other hand, the discovery of the first extrasolar planet orbiting a Sun-like star by Mayor and Queloz in 1995 opened a new area for astrobiological research. Although most of the newly discovered extrasolar planets are giants with no underlying solid surfaces or oceans that could support a biosphere, the distribution of masses lets scientists suppose that there must be a multitude of planets with lower masses, including Earth-mass planets. The lecture course contains the following topics: Survey about Extrasolar Planets, Detection Methods, Simple Earth System Models, Dynamical Earth System Models, Habitable Zones, Dynamical Habitability, Rare Earth Hypothesis, Drake Formula, Panspermia, Origin of Life, Cambrian Explosion, Impacts and Climate, Long-Term Future Scenarios, Future Space Missions.

  9. GAP OPENING BY EXTREMELY LOW-MASS PLANETS IN A VISCOUS DISK

    SciTech Connect

    Duffell, Paul C.; MacFadyen, Andrew I. E-mail: macfadyen@nyu.edu

    2013-05-20

    By numerically integrating the compressible Navier-Stokes equations in two dimensions, we calculate the criterion for gap formation by a very low mass (q {approx} 10{sup -4}) protoplanet on a fixed orbit in a thin viscous disk. In contrast with some previously proposed gap-opening criteria, we find that a planet can open a gap even if the Hill radius is smaller than the disk scale height. Moreover, in the low-viscosity limit, we find no minimum mass necessary to open a gap for a planet held on a fixed orbit. In particular, a Neptune-mass planet will open a gap in a minimum mass solar nebula with suitably low viscosity ({alpha} {approx}< 10{sup -4}). We find that the mass threshold scales as the square root of viscosity in the low mass regime. This is because the gap width for critical planet masses in this regime is a fixed multiple of the scale height, not of the Hill radius of the planet.

  10. Pathways towards Neptune-mass Planets around Very Low-mass Stars

    NASA Astrophysics Data System (ADS)

    Dreizler, S.; Bean, J.; Seifahrt, A.; Hartman, H.; Nilsson, H.; Wiedemann, G.; Reiners, A.; Henry, T. J.

    2010-10-01

    Radial velocities measured from near-infrared spectra are a potentially powerful tool to search for planets around low-mass stars. The radial velocity precision routinely obtained in the visible can, however, not be achieved in the NIR with existing techniques. In this paper, we describe a method for measuring high-precision radial velocities of a sample of the lowest-mass M dwarfs using CRIRES on the VLT. Our project makes use of a gas cell filled with ammonia to calibrate the instrument response similar to the iodine cell technique that has been used so successfully in the visible. Tests of the method based on the analysis of hundreds of spectra obtained for late M dwarfs over six months demonstrate that precisions of ˜5 m s-1 are obtainable over long timescales, and precisions better than 3 m s-1 can be obtained over timescales up to a week. This allows to search for low-mass planets, i.e., Neptune-mass or even Super-Earth planets around very low-mass stars or sub-stellar objects.

  11. Adaptive optics for direct detection of extrasolar planets: the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Palmer, David; Doyon, Rene; Gavel, Don; Larkin, James; Oppenheimer, Ben; Saddlemyer, Leslie; Wallace, J. Kent; Bauman, Brian; Erikson, Darren; Poyneer, Lisa; Sivaramakrishnan, Anand; Soummer, Rémi; Veran, Jean-Pierre

    2007-04-01

    The direct detection of photons emitted or reflected by extrasolar planets, spatially resolved from their parent star, is a major frontier in the study of other solar systems. Direct detection will provide statistical information on planets in 5 50 AU orbits, inaccessible to current Doppler searches, and allow spectral characterization of radius, temperature, surface gravity, and perhaps composition. Achieving this will require new, dedicated, high-contrast instruments. One such system under construction is the Gemini Planet Imager (GPI). This combines a high-order/high-speed adaptive optics system to control wavefront errors from the Earth's atmosphere, an advanced coronagraph to block diffraction, ultrasmooth optics, a precision infrared interferometer to measure and correct systematic errors, and a integral field spectrograph/polarimeter to image and characterize target planetary systems. We predict that GPI will be able to detect planets with brightness less than 10-7 of their parent star, sufficient to observe warm self-luminous planets around a large population of targets. To cite this article: B. Macintosh et al., C. R. Physique 8 (2007).

  12. Adaptive Optics for Direct Detection of Extrasolar Planets: The Gemini Planet Imager

    SciTech Connect

    Macintosh, B; Graham, J; Palmer, D; Doyon, R; Gavel, D; Larkin, J; Oppenheimer, B; Saddlemyer, L; Wallace, J K; Bauman, B; Erikson, D; Poyneer, L; Sivaramakrishnan, A; Soummer, R; Veran, J

    2007-04-24

    The direct detection of photons emitted or reflected by extrasolar planets, spatially resolved from their parent star, is a major frontier in the study of other solar systems. Direct detection will provide statistical information on planets in 5-50 AU orbits, inaccessible to current Doppler searches, and allow spectral characterization of radius, temperature, surface gravity, and perhaps composition. Achieving this will require new dedicated high-contrast instruments. One such system under construction is the Gemini Planet Imager (GPI.) This combines a high-order/high-speed adaptive optics system to control wavefront errors from the Earth's atmosphere, an advanced coronagraph to block diffraction, ultrasmooth optics, a precision infrared interferometer to measure and correct systematic errors, and a integral field spectrograph/polarimeter to image and characterize target planetary systems. We predict that GPI will be able to detect planets with brightness less than 10{sup -7} of their parent star, sufficient to observe warm self-luminous planets around a large population of targets.

  13. Binary Star Systems and Extrasolar Planets: The PHASES Search for Planets in Binaries

    NASA Astrophysics Data System (ADS)

    Muterspaugh, M. W.; PTI: Palomar Testbed Interferometer Collaboration; PHASES Team

    2005-12-01

    A new observing method has been developed to perform very high precision differential astrometry on bright binary stars with separations in the range of 0.1-1.0 arcseconds. Typical measurement precisions over an hour of integration are on the order of 10 micro-arcseconds, enabling one to look for perturbations to the Keplerian orbit that would indicate the presence of additional components to the system. This is used as the basis for a new program to find extrasolar planets. The Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES) is a search for giant planets orbiting either star in 50 binary systems. The goal of this search is to detect or rule out planets in the systems observed and thus place limits on any enhancements of planet formation in binaries. It is also used to measure fundamental properties of the stars comprising the binary, such as masses and distances, useful for constraining stellar models at the 10-3 level. This work is funded in part by a Michelson Graduate Fellowship, the California Institute of Technology Astronomy Department, and the National Aeronautics and Space Administration under Grant No. NNG05GJ58G issued through the Terrestrial Planet Finder Foundation Science Program.

  14. Extrasolar planets and planets of the solar system: looking for life beyond the earth

    NASA Astrophysics Data System (ADS)

    Ksanfomality, Leonid V.

    2003-01-01

    Looking for a habitable planet one should keep in mind that the Earth has a unique combination of physical properties needed for the evolution of the life based on amino acids and a RNA/DNA and its transition, first into multicellular and then vertebrate organisms. Other planets played an important role in the process. There are even revivals of the "anthropic principal," stating that the onset of terrestrial life is obligated to Jupiter. The question of life beyond the Earth has exercised human imagination since the ancient Greeks. The discovery of Earth type extrasolar planets may be awaited in a nearest future. What could be the impact of their discovery on human philosophy? With no exaggeration one may consider it as a milestone for the whole science. The main factors of the planet, that is critical for the existence of life, form a peculiar labyrinth with many impasses. A planet feasible for the advent of life and its evolution towards multicellular organisms should be searched for only in planetary systems of stars of spectral types, from late F to early subtypes of K and should possess the features listed in this paper.

  15. Kepler’s Low-Mass, Low Density Planets Characterized via Transit Timing

    NASA Astrophysics Data System (ADS)

    Jontof-Hutter, Daniel; Ford, Eric B.; Lissauer, Jack; Rowe, Jason; Fabrycky, Daniel

    2015-08-01

    The Kepler mission has revealed an abundance of planets in a regime of mass and size that is absent from the Solar System. This includes systems of high multiplicity within 1 AU, where low-mass volatile-rich planets have been observed in compact orbital configurations, as have smaller, rocky planets. The existing sample of characterized planets on the mass-radius diagram shows no abrupt transition from rocky planets to those that must be volatile-rich, but characteristic trends are beginning to emerge. More precise characterizations of planets by mass, radius, and incident flux are revealing fundamental properties of a common class of exoplanets.There is a small sample of low mass exoplanets with known masses and radii, whose radii are known from transit depths, and whose masses are determined from radial velocity spectroscopy (RV). In the super-Earth mass range, detectability limits this sample to planets that have short orbital periods, and high incident fluxes.In the absence of mass determinations via RV observations, transit timing variations (TTVs) offer a chance to probe perturbations between planets that pass close to one another or are near resonance, and hence dynamical fits to observed transit times can be used to measure planetary masses and orbital parameters. Such modeling with Kepler data probes planetary masses over orbital periods ranging from ~5-200 days, complementing the sample of RV detections, but also with some overlap.In addition, dynamical fits to observed TTVs can tightly constrain the orbital eccentricity vectors in select cases, which can, alongside the transit light curve, tightly constrain the density and radius of the host star, and hence reduce the uncertainty on planetary radius.TTV studies have revealed a class of low-mass, low-density objects with a substantial mass fraction in the form of a voluminous H-rich atmosphere. We will present new precise planetary mass characterizations from TTVs. We find that super-Earth mass planets

  16. Direct imaging search for planets around low-mass stars and spectroscopic characterization of young exoplanets

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan Peter

    Low--mass stars between 0.1--0.6 M⊙ are the most abundant members our galaxy and may be the most common sites of planet formation, but little is known about the outer architecture of their planetary systems. We have carried out a high-contrast adaptive imaging search for gas giant planets between 1--13 MJup around 122 newly identified young M dwarfs in the solar neighborhood ( ≲ 35 pc). Half of our targets are younger than 145 Myr, and 90% are younger than 580 Myr. After removing 39 resolved stellar binaries, our homogeneous sample of 83 single young M dwarfs makes it the largest imaging search for planets around low--mass stars to date. Our H- and K- band coronagraphic observations with Subaru/HiCIAO and Keck/NIRC2 achieve typical contrasts of 9--13 mag and 12--14 mag at 100, respectively, which corresponds to limiting masses of ˜1--10 M Jup at 10--30 AU for most of our sample. We discovered four brown dwarfs with masses between 25--60 MJup at projected separations of 4--190 AU. Over 100 candidate planets were discovered, nearly all of which were found to be background stars from follow-up second epoch imaging. Our null detection of planets nevertheless provides strong statistical constraints on the occurrence rate of giant planets around M dwarfs. Assuming circular orbits and a logarithmically-flat power law distribution in planet mass and semi--major axis of the form d 2N=(dloga dlogm) infinity m0 a0, we measure an upper limit (at the 95% confidence level) of 8.8% and 12.6% for 1--13 MJup companions between 10--100 AU for hot start and cold start evolutionary models, respectively. For massive gas giant planets in the 5--13 M Jup range like those orbiting HR 8799, GJ 504, and beta Pictoris, we find that fewer than 5.3% (7.8%) of M dwarfs harbor these planets between 10--100 AU for a hot start (cold start) formation scenario. Our best constraints are for brown dwarf companions; the frequency of 13--75 MJup companions between (de--projected) physical

  17. Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    NASA Technical Reports Server (NTRS)

    Sada, Pedro V.; Jennings, Donald E.; Deming, Drake; Jennings, Donald E.; Jackson, Brian; Hamilton, Catrina M.; Fraine, Jonathan; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; Lunsford, Allen; O'Gorman, Eamon

    2012-01-01

    We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z0-band and B-band photometry (plus two H(alpha) filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO's 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being RpRJ0:0017 0:979RpRvis. (2) We observe starspot crossings during the transit of WASP-11HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems.

  18. Extrasolar Planet Transits Observed at Kitt Peak National Observatory

    NASA Astrophysics Data System (ADS)

    Sada, Pedro V.; Deming, Drake; Jennings, Donald E.; Jackson, Brian k.; Hamilton, Catrina M.; Fraine, Jonathan; Peterson, Steven W.; Haase, Flynn; Bays, Kevin; Lunsford, Allen; O’Gorman, Eamon

    2012-03-01

    We obtained J-, H-, and JH-band photometry of known extrasolar planet transiting systems at the 2.1 m Kitt Peak National Observatory Telescope using the FLAMINGOS infrared camera between 2008 October and 2011 October. From the derived light curves we have extracted the midtransit times, transit depths and transit durations for these events. The precise midtransit times obtained help improve the orbital periods and also constrain transit-time variations of the systems. For most cases the published system parameters successfully accounted for our observed light curves, but in some instances we derive improved planetary radii and orbital periods. We complemented our 2.1 m infrared observations using CCD z‧-band and B-band photometry (plus two Hα filter observations) obtained with the Kitt Peak Visitor Center Telescope, and with four H-band transits observed in 2007 October with the NSO’s 1.6 m McMath-Pierce Solar Telescope. The principal highlights of our results are (1) Our ensemble of J-band planetary radii agree with optical radii, with the best-fit relation being (Rp/R∗)J = 0.0017 + 0.979(Rp/R∗)vis. (2) We observe starspot crossings during the transit of WASP-11/HAT-P-10. (3) We detect starspot crossings by HAT-P-11b (Kepler-3b), thus confirming that the magnetic evolution of the stellar active regions can be monitored even after the Kepler mission has ended. (4) We confirm a grazing transit for HAT-P-27/WASP-40. In total, we present 57 individual transits of 32 known exoplanet systems.

  19. Extrasolar binary planets. I. Formation by tidal capture during planet-planet scattering

    SciTech Connect

    Ochiai, H.; Nagasawa, M.; Ida, S.

    2014-08-01

    We have investigated (1) the formation of gravitationally bounded pairs of gas-giant planets (which we call 'binary planets') from capturing each other through planet-planet dynamical tide during their close encounters and (2) the subsequent long-term orbital evolution due to planet-planet and planet-star quasi-static tides. For the initial evolution in phase 1, we carried out N-body simulations of the systems consisting of three Jupiter-mass planets taking into account the dynamical tide. The formation rate of the binary planets is as much as 10% of the systems that undergo orbital crossing, and this fraction is almost independent of the initial stellarcentric semimajor axes of the planets, while ejection and merging rates sensitively depend on the semimajor axes. As a result of circularization by the planet-planet dynamical tide, typical binary separations are a few times the sum of the physical radii of the planets. After the orbital circularization, the evolution of the binary system is governed by long-term quasi-static tide. We analytically calculated the quasi-static tidal evolution in phase 2. The binary planets first enter the spin-orbit synchronous state by the planet-planet tide. The planet-star tide removes angular momentum of the binary motion, eventually resulting in a collision between the planets. However, we found that the binary planets survive the tidal decay for the main-sequence lifetime of solar-type stars (∼10 Gyr), if the binary planets are beyond ∼0.3 AU from the central stars. These results suggest that the binary planets can be detected by transit observations at ≳ 0.3 AU.

  20. Views from EPOXI: Colors in Our Solar System as an Analog for Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Crow, Carolyn A.; McFadden, L. A.; Robinson, T.; Meadows, V. S.; Livengood, T. A.; Hewagama, T.; Barry, R. K.; Deming, L. D.; Lisse, C. M.; Wellnitz, Dennis

    2011-01-01

    The first visible-light studies of Earth-sized extrasolar planets will employ photometry or low-resolution spectroscopy. This work uses EPOCh medium-hand filter photometry between 150 and 950 nm obtained with the Deep Impact (DI) High Resolution Instrument (HRI) of Earth, the Moon, and Mars in addition to previous full-disk observations of the other six solar system planets and Titan to analyze the limitations of using photometric colors to characterize extrasolar planets. We determined that the HRI 350, 550, and 850 nm filters are optimal for distinguishing Earth from the other planets and separating planets to first order based on their atmospheric and surface properties. Detailed conclusions that can be drawn about exoplanet atmospheres simply from a color-color plot are limited due to potentially competing physical processes in the atmosphere. The presence of a Rayleigh scattering atmosphere can be detected by an increase in the 350-550 nm brightness ratio, but the absence of Rayleigh scattering cannot be confirmed due to the existence of atmospheric and surface absorbing species in the UV. Methane and ammonia are the only species responsible for strong absorption in the 850 nm filter in our solar system. The combination of physical processes present on extrasolar planets may differ from those we see locally. Nevertheless, a generation of telescopes capable of collecting such photometric observations can serve a critical role in first-order characterization and constraining the population of Earth-like extrasolar planets.

  1. Diversity of extrasolar planets and diversity of molecular cloud cores. I. Semimajor axes

    SciTech Connect

    Jin, Liping; Li, Min E-mail: minli09@mails.jlu.edu.cn

    2014-03-01

    We show that the diversity of extrasolar planetary systems may be related to the diversity of molecular cloud cores. In previous studies of planet formation, artificial initial conditions of protoplanetary disks or steady state disks, such as the minimum mass nebula model, have often been used so that the influence of cloud core properties on planet formation is not realized. To specifically and quantitatively demonstrate our point, we calculate the dependence of disk properties on cloud core properties and show that the boundary of the giant planet formation region in a disk is a function of cloud core properties with the conventional core accretion model of giant planet formation. The gravitational stability of a disk depends on the properties of its progenitor cloud core. We also compare our calculations with observations of extrasolar planets. From the observational data of cloud cores, our model could infer the range and most frequent values of observed semimajor axes of extrasolar planets. Our calculations suggest that planet formation at the snowline alone could not completely explain the semimajor axis distribution. If the current observations are not biased, our calculations indicate that the planet formation at the snowline is inefficient. We suggest that there will be more observed planets with semimajor axis <9 AU than >9 AU, even with a longer duration of observations, if the planet formation at the snowline is inefficient.

  2. Habitability in The Solar System and on Extrasolar Planets and Moons

    NASA Astrophysics Data System (ADS)

    McKay, C. P.

    2015-12-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitable environments in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  3. Habitability in the Solar System and on Extrasolar Planets and Moons

    NASA Technical Reports Server (NTRS)

    McKay, Christopher P.

    2015-01-01

    The criteria for a habitable world initially was based on Earth and centered around liquid water on the surface, warmed by a Sun-like star. The moons of the outer Solar System, principally Europa and Enceladus, have demonstrated that liquid water can exist below the surface warmed by tidal forces from a giant planet. Titan demonstrates that surface liquids other than water - liquid methane/ethane - may be common on other worlds. Considering the numerous extrasolar planets so far discovered and the prospect of discovering extrasolar moons it is timely to reconsider the possibilities for habitability in the Solar System and on extrasolar planets and moons and enumerate the attributes and search methods for detecting habitable worlds and evidence of life.

  4. The use of transit timing to detect terrestrial-mass extrasolar planets.

    PubMed

    Holman, Matthew J; Murray, Norman W

    2005-02-25

    Future surveys for transiting extrasolar planets are expected to detect hundreds of jovian-mass planets and tens of terrestrial-mass planets. For many of these newly discovered planets, the intervals between successive transits will be measured with an accuracy of 0.1 to 100 minutes. We show that these timing measurements will allow for the detection of additional planets in the system (not necessarily transiting) by their gravitational interaction with the transiting planet. The transit-time variations depend on the mass of the additional planet, and in some cases terrestrial-mass planets will produce a measurable effect. In systems where two planets are seen to transit, the density of both planets can be determined without radial-velocity observations.

  5. The High-Energy Radiation Environment of Planets around Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Shkolnik, Evgenya; Miles, Brittany; Barman, Travis; Peacock, Sarah

    2015-12-01

    Low-mass stars are the dominant planet hosts averaging about one planet per star. Many of these planets orbit in the canonical habitable zone (HZ) of the star where, if other conditions allowed, liquid water may exist on the surface.A planet’s habitability, including atmospheric retention, is strongly dependent on the star’s ultraviolet (UV) emission, which chemically modifies, ionizes, and even erodes the atmosphere over time including the photodissociation of important diagnostic molecules, e.g. H2O, CH4, and CO2. The UV spectral slope of a low-mass star can enhance atmospheric lifetimes, and increase the detectability of biologically generated gases. But, a different slope may lead to the formation of abiotic oxygen and ozone producing a false-positive biosignature for oxygenic photosynthesis. Realistic constraints on the incident UV flux over a planet’s lifetime are necessary to explore the cumulative effects on the evolution, composition, and fate of a HZ planetary atmosphere.NASA’s Galaxy Evolution Explorer (GALEX) provides a unique data set with which to study the broadband UV emission from many hundreds of M dwarfs. The GALEX satellite has imaged nearly 3/4 of the sky simultaneously in two UV bands: near-UV (NUV; 175-275 nm) and far-UV (FUV; 135-175 nm). With these data these, we are able to calculate the mean UV emission and its level of variability at these wavelengths over critical planet formation and evolution time scales to better understand the probable conditions in HZ planetary atmospheres.In the near future, dedicated CubeSats (miniaturized satellites for space research) to monitor M dwarf hosts of transiting exoplanets will provide the best opportunity to measure their UV variability, constrain the probabilities of detecting habitable (and inhabited) planets, and provide the correct context within which to interpret IR transmission and emission spectroscopy of transiting exoplanets.

  6. WARM SATURNS: ON THE NATURE OF RINGS AROUND EXTRASOLAR PLANETS THAT RESIDE INSIDE THE ICE LINE

    SciTech Connect

    Schlichting, Hilke E.; Chang, Philip E-mail: pchang@cita.utoronto.ca

    2011-06-20

    We discuss the nature of rings that may exist around extrasolar planets. Taking the general properties of rings around the gas giants in the solar system, we infer the likely properties of rings around exoplanets that reside inside the ice line. Due to their proximity to their host star, rings around such exoplanets must primarily consist of rocky materials. However, we find that despite the higher densities of rock compared to ice, most of the observed extrasolar planets with reliable radius measurements have sufficiently large Roche radii to support rings. For the currently known transiting extrasolar planets, Poynting-Robertson drag is not effective in significantly altering the dynamics of individual ring particles over a time span of 10{sup 8} yr provided that they exceed about 1 m in size. In addition, we show that significantly smaller ring particles can exist in optically thick rings, for which we find typical ring lifetimes ranging from a few times 10{sup 6} to a few times 10{sup 9} yr. Most interestingly, we find that many of the rings could have nontrivial Laplacian planes due to the increased effects of the orbital quadrupole caused by the exoplanets' proximity to their host star, allowing a constraint on the J{sub 2} of extrasolar planets from ring observations. This is particularly exciting, since a planet's J{sub 2} reveals information about its interior structure. Furthermore, measurements of an exoplanet's J{sub 2} from warped rings and of its oblateness would together place limits on its spin period. Based on the constraints that we have derived for extrasolar rings, we anticipate that the best candidates for ring detections will come from transit observations by the Kepler spacecraft of extrasolar planets with semimajor axes {approx}0.1 AU and larger.

  7. OGLE-2015-BLG-0051/KMT-2015-BLG-0048Lb: A Giant Planet Orbiting a Low-mass Bulge Star Discovered by High-cadence Microlensing Surveys

    NASA Astrophysics Data System (ADS)

    Han, C.; Udalski, A.; Gould, A.; Bozza, V.; Jung, Y. K.; Albrow, M. D.; Kim, S.-L.; Lee, C.-U.; Cha, S.-M.; Kim, D.-J.; Lee, Y.; Park, B.-G.; Shin, I.-G.; KMTNet Collaboration; Szymański, M. K.; Soszyński, I.; Skowron, J.; Mróz, P.; Poleski, R.; Pietrukowicz, P.; Kozłowski, S.; Ulaczyk, K.; Wyrzykowski, Ł.; Pawlak, M.; OGLE Collaboration

    2016-10-01

    We report the discovery of an extrasolar planet detected from the combined data of a microlensing event OGLE-2015-BLG-0051/KMT-2015-BLG-0048 acquired by two microlensing surveys. Despite the fact that the short planetary signal occurred in the very early Bulge season during which the lensing event could be seen for just about an hour, the signal was continuously and densely covered. From the Bayesian analysis using models of the mass function, and matter and velocity distributions, combined with information on the angular Einstein radius, it is found that the host of the planet is located in the Galactic bulge. The planet has a mass {0.72}-0.07+0.65 {M}{{J}} and it is orbiting a low-mass M-dwarf host with a projected separation {d}\\perp =0.73+/- 0.08 {{au}}. The discovery of the planet demonstrates the capability of the current high-cadence microlensing lensing surveys in detecting and characterizing planets.

  8. MASSIVE: A Bayesian analysis of giant planet populations around low-mass stars

    NASA Astrophysics Data System (ADS)

    Lannier, J.; Delorme, P.; Lagrange, A. M.; Borgniet, S.; Rameau, J.; Schlieder, J. E.; Gagné, J.; Bonavita, M. A.; Malo, L.; Chauvin, G.; Bonnefoy, M.; Girard, J. H.

    2016-12-01

    Context. Direct imaging has led to the discovery of several giant planet and brown dwarf companions. These imaged companions populate a mass, separation and age domain (mass >1 MJup, orbits > 5 AU, age < 1 Gyr) quite distinct from the one occupied by exoplanets discovered by the radial velocity or transit methods. This distinction could indicate that different formation mechanisms are at play. Aims: We aim at investigating correlations between the host star's mass and the presence of wide-orbit giant planets, and at providing new observational constraints on planetary formation models. Methods: We observed 58 young and nearby M-type dwarfs in L'-band with the VLT/NaCo instrument and used angular differential imaging algorithms to optimize the sensitivity to planetary-mass companions and to derive the best detection limits. We estimate the probability of detecting a planet as a function of its mass and physical separation around each target. We conduct a Bayesian analysis to determine the frequency of substellar companions orbiting low-mass stars, using a homogenous sub-sample of 54 stars. Results: We derive a frequency of for companions with masses in the range of 2-80 MJup, and % for planetary mass companions (2-14 MJup), at physical separations of 8 to 400 AU for both cases. Comparing our results with a previous survey targeting more massive stars, we find evidence that substellar companions more massive than 1 MJup with a low mass ratio Q with respect to their host star (Q < 1%), are less frequent around low-mass stars. This may represent observational evidence that the frequency of imaged wide-orbit substellar companions is correlated with stellar mass, corroborating theoretical expectations. Contrarily, we show statistical evidence that intermediate-mass ratio (1% < Q < 5%) companion with masses >2 MJup might be independent from the mass of the host star.

  9. The Blue Dot Workshop: Spectroscopic Search for Life on Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J. (Editor)

    1997-01-01

    This workshop explored the key questions and challenges associated with detecting life on an extrasolar planet. The final product will be a NASA Conference Publication which includes the abstracts from 21 talks, summaries of key findings, and recommendations for future research. The workshop included sessions on three related topics: the biogeochemistry of biogenic gases in the atmosphere, the chemistry and spectroscopy of planetary atmospheres, and the remote sensing of planetary atmospheres and surfaces. With the observation that planetary formation is probably a common phenomenon, together with the advent of the technical capability to locate and describe extrasolar planets, this research area indeed has an exciting future.

  10. Aeronomical constraints to the minimum mass and maximum radius of hot low-mass planets

    NASA Astrophysics Data System (ADS)

    Fossati, L.; Erkaev, N. V.; Lammer, H.; Cubillos, P. E.; Odert, P.; Juvan, I.; Kislyakova, K. G.; Lendl, M.; Kubyshkina, D.; Bauer, S. J.

    2017-02-01

    Stimulated by the discovery of a number of close-in low-density planets, we generalise the Jeans escape parameter taking hydrodynamic and Roche lobe effects into account. We furthermore define Λ as the value of the Jeans escape parameter calculated at the observed planetary radius and mass for the planet's equilibrium temperature and considering atomic hydrogen, independently of the atmospheric temperature profile. We consider 5 and 10 M⊕ planets with an equilibrium temperature of 500 and 1000 K, orbiting early G-, K-, and M-type stars. Assuming a clear atmosphere and by comparing escape rates obtained from the energy-limited formula, which only accounts for the heating induced by the absorption of the high-energy stellar radiation, and from a hydrodynamic atmosphere code, which also accounts for the bolometric heating, we find that planets whose Λ is smaller than 15-35 lie in the "boil-off" regime, where the escape is driven by the atmospheric thermal energy and low planetary gravity. We find that the atmosphere of hot (i.e. Teq ⪆ 1000 K) low-mass (Mpl ⪅ 5 M⊕) planets with Λ< 15-35 shrinks to smaller radii so that their Λ evolves to values higher than 15-35, hence out of the boil-off regime, in less than ≈500 Myr. Because of their small Roche lobe radius, we find the same result also for hot (i.e. Teq⪆ 1000 K) higher mass (Mpl ⪅ 10 M⊕) planets with Λ< 15-35, when they orbit M-dwarfs. For old, hydrogen-dominated planets in this range of parameters, Λ should therefore be ≥15-35, which provides a strong constraint on the planetary minimum mass and maximum radius and can be used to predict the presence of aerosols and/or constrain planetary masses, for example.

  11. Obtaining the Mass and Radius of Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Castellano, Tim; Mead, Susan (Technical Monitor)

    1998-01-01

    The scientific utility and feasibility of detecting transits of the 9 known extrasolar planets is explored. A transit of a solar-like star by a Jupiter mass planet produces a 1% decrease in the amount of light received from the star. Transit observation will remove the ambiguity in the measurement of the planetary mass inherent in the radial velocity method and confirm the planet's existence. The 9 known planets have a 33% chance of producing at least one observable transit. Additional extrasolar planet detections from the radial velocity surveys will increase this probability to greater than 90%. The radius of the planet can be determined by the fractional decrease in light received during transit. The mass and radius may distinguish rocky or gas giant planets from brown dwarfs. The probability of detection, the transit signal size and duration, and predictions of the transit times (including errors) are calculated for circular and elliptical orbits. Observational limits are investigated and it is shown that small telescopes and existing detectors are adequate enough to achieve the 0.1% photometry necessary to detect transits of the known extrasolar planets.

  12. TIDAL EVOLUTION OF CLOSE-IN EXTRASOLAR PLANETS: HIGH STELLAR Q FROM NEW THEORETICAL MODELS

    SciTech Connect

    Penev, Kaloyan; Sasselov, Dimitar

    2011-04-10

    In recent years it has been shown that the tidal coupling between extrasolar planets and their stars could be an important mechanism leading to orbital evolution. Both the tides the planet raises on the star and vice versa are important and dissipation efficiencies ranging over four orders of magnitude are being used. In addition, the discovery of extrasolar planets extremely close to their stars has made it clear that the estimates of the tidal quality factor, Q, of the stars based on Jupiter and its satellite system and on main-sequence binary star observations are too low, resulting in lifetimes for the closest planets orders of magnitude smaller than their age. We argue that those estimates of the tidal dissipation efficiency are not applicable for stars with spin periods much longer than the extrasolar planets' orbital period. We address the problem by applying our own values for the dissipation efficiency of tides, based on our numerical simulations of externally perturbed volumes of stellar-like convection. The range of dissipation we find for main-sequence stars corresponds to stellar Q{sub *} of 10{sup 8} to 3 x 10{sup 9}. The derived orbit lifetimes are comparable to or much longer than the ages of the observed extrasolar planetary systems. The predicted orbital decay transit timing variations due to the tidal coupling are below the rate of ms yr{sup -1} for currently known systems, but within reach of an extended Kepler mission provided such objects are found in its field.

  13. The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Butler, R. Paul; Marcy, Geoffrey W.; Vogt, Steven S.; Wright, Jason T.; Fischer, Debra A.

    2008-05-01

    We analyze 8 years of precise radial velocity measurements from the Keck Planet Search, characterizing the detection threshold, selection effects, and completeness of the survey. We first carry out a systematic search for planets, by assessing the false-alarm probability associated with Keplerian orbit fits to the data. This allows us to understand the detection threshold for each star in terms of the number and time baseline of the observations, and the underlying “noise” from measurement errors, intrinsic stellar jitter, or additional low-mass planets. We show that all planets with orbital periods P < 2000 days, velocity amplitudes K > 20 m s-1, and eccentricities e ≲ 0.6 have been announced, and we summarize the candidates at lower amplitudes and longer orbital periods. For the remaining stars, we calculate upper limits on the velocity amplitude of a companion. For orbital periods less than the duration of the observations, these are typically 10 m s-1 and increase ∝ P2 for longer periods. We then use the nondetections to derive completeness corrections at low amplitudes and long orbital periods and discuss the resulting distribution of minimum mass and orbital period. We give the fraction of stars with a planet as a function of minimum mass and orbital period and extrapolate to long-period orbits and low planet masses. A power-law fit for planet masses >0.3 MJ and periods < 2000 days gives a mass-period distribution dN = CMα Pβ d ln Md ln P with α = -0.31 ± 0.2, β = 0.26 ± 0.1, and the normalization constant C such that 10.5% of solar type stars have a planet with mass in the range 0.3–10 MJ and orbital period 2–2000 days. The orbital period distribution shows an increase in the planet fraction by a factor of ≈5 for orbital periods ≳300 days. Extrapolation gives 17%–20% of stars having gas giant planets within 20 AU. Finally, we constrain the occurrence rate of planets orbiting M dwarfs compared to FGK dwarfs, taking into account

  14. Characterizing transiting extrasolar giant planets: On companions, rings, and love handles

    NASA Astrophysics Data System (ADS)

    Barnes, Jason Wayne

    2004-10-01

    For my Ph.D. research I investigated the prospects for characterizing transiting extrasolar giant planets from their transit lightcurves. Hubble Space Telescope photometry of transiting planet HD209458b revealed that the planet has no moons. Here, I show that tidal orbital evolution of moons limits their lifetimes, and hence that no moons larger than Amalthea in size should survive around HD209458b, consistent with observations. I then calculate the detectability and scientific potential of planetary rings and oblateness. Oblateness will prove difficult to reliably detect, even with the Hubble Space Telescope. However, large Saturn-like ring systems should be easy to find around transiting extrasolar giant planets if such rings exist.

  15. A Program To Detect and Characterize Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)

    2001-01-01

    This grant report highlights activity in the following areas: (1) Improvement in Precise Radial Velocity (PRV) analysis code; (2) Reanalysis of previous data; (3) Improvements to the AFOE (Advanced Fiber Optic Echelle) spectrograph; (4) Development of PRV capabilities for the Hectochelle; (5) Extra-solar planet studies; (6) Longer-term plans for the AFOE; (7) Completion and publication of the analysis of the transiting gas-giant planet HD 209458b.

  16. Cosmic ray impact on extrasolar earth-like planets in close-in habitable zones.

    PubMed

    Griessmeier, J-M; Stadelmann, A; Motschmann, U; Belisheva, N K; Lammer, H; Biernat, H K

    2005-10-01

    Because of their different origins, cosmic rays can be subdivided into galactic cosmic rays and solar/stellar cosmic rays. The flux of cosmic rays to planetary surfaces is mainly determined by two planetary parameters: the atmospheric density and the strength of the internal magnetic moment. If a planet exhibits an extended magnetosphere, its surface will be protected from high-energy cosmic ray particles. We show that close-in extrasolar planets in the habitable zone of M stars are synchronously rotating with their host star because of the tidal interaction. For gravitationally locked planets the rotation period is equal to the orbital period, which is much longer than the rotation period expected for planets not subject to tidal locking. This results in a relatively small magnetic moment. We found that an Earth-like extrasolar planet, tidally locked in an orbit of 0.2 AU around an M star of 0.5 solar masses, has a rotation rate of 2% of that of the Earth. This results in a magnetic moment of less than 15% of the Earth's current magnetic moment. Therefore, close-in extrasolar planets seem not to be protected by extended Earth-like magnetospheres, and cosmic rays can reach almost the whole surface area of the upper atmosphere. Primary cosmic ray particles that interact with the atmosphere generate secondary energetic particles, a so-called cosmic ray shower. Some of the secondary particles can reach the surface of terrestrial planets when the surface pressure of the atmosphere is on the order of 1 bar or less. We propose that, depending on atmospheric pressure, biological systems on the surface of Earth-like extrasolar planets at close-in orbital distances can be strongly influenced by secondary cosmic rays.

  17. Albedo and Reflection Spectra of Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Sudarsky, David; Burrows, Adam; Pinto, Philip

    2000-08-01

    We generate theoretical albedo and reflection spectra for a full range of extrasolar giant planet (EGP) models, from Jovian to 51 Pegasi class objects. Our albedo modeling utilizes the latest atomic and molecular cross sections, Mie theory treatment of scattering and absorption by condensates, a variety of particle size distributions, and an extension of the Feautrier technique, which allows for a general treatment of the scattering phase function. We find that, because of qualitative similarities in the compositions and spectra of objects within each of five broad effective temperature ranges, it is natural to establish five representative EGP albedo classes. At low effective temperatures (Teff<~150 K) is a class of ``Jovian'' objects (class I) with tropospheric ammonia clouds. Somewhat warmer class II, or ``water cloud,'' EGPs are primarily affected by condensed H2O. Gaseous methane absorption features are prevalent in both classes. In the absence of nonequilibrium condensates in the upper atmosphere, and with sufficient H2O condensation, class II objects are expected to have the highest visible albedos of any class. When the upper atmosphere of an EGP is too hot for H2O to condense, radiation generally penetrates more deeply. In these objects, designated class III or ``clear'' because of a lack of condensation in the upper atmosphere, absorption lines of the alkali metals, sodium and potassium, lower the albedo significantly throughout the visible. Furthermore, the near-infrared albedo is negligible, primarily because of strong CH4 and H2O molecular absorption and collision-induced absorption (CIA) by H2 molecules. In those EGPs with exceedingly small orbital distance (``roasters'') and 900 K<~Teff<~1500 K (class IV), a tropospheric silicate layer is expected to exist. In all but the hottest (Teff>~1500 K) or lowest gravity roasters, the effect of this silicate layer is likely to be insignificant because of the very strong absorption by sodium and potassium

  18. A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS

    SciTech Connect

    Fortney, Jonathan J.; Nettelmann, Nadine; Mordasini, Christoph; Kempton, Eliza M.-R.; Greene, Thomas P.; Zahnle, Kevin

    2013-09-20

    We perform modeling investigations to aid in understanding the atmospheres and composition of small planets of ∼2-4 Earth radii, which are now known to be common in our Galaxy. GJ 1214b is a well-studied example whose atmospheric transmission spectrum has been observed by many investigators. Here we take a step back from GJ 1214b to investigate the role that planetary mass, composition, and temperature play in impacting the transmission spectra of these low-mass low-density (LMLD) planets. Under the assumption that these planets accrete modest hydrogen-dominated atmospheres and planetesimals, we use population synthesis models to show that predicted metal enrichments of the H/He envelope are high, with metal mass fraction Z{sub env} values commonly 0.6-0.9, or ∼100-400+ times solar. The high mean molecular weight of such atmospheres (μ ≈ 5-12) would naturally help to flatten the transmission spectrum of most LMLD planets. The high metal abundance would also provide significant condensible material for cloud formation. It is known that the H/He abundance in Uranus and Neptune decreases with depth, and we show that atmospheric evaporation of LMLD planets could expose atmospheric layers with gradually higher Z{sub env}. However, values of Z{sub env} close to solar composition can also arise, so diversity should be expected. Photochemically produced hazes, potentially due to methane photolysis, are another possibility for obscuring transmission spectra. Such hazes may not form above T{sub eq} of ∼800-1100 K, which is testable if such warm, otherwise low mean molecular weight atmospheres are stable against atmospheric evaporation. We find that available transmission data are consistent with relatively high mean molecular weight atmospheres for GJ 1214b and 'warm Neptune' GJ 436b. We examine future prospects for characterizing GJ 1214b with Hubble and the James Webb Space Telescope.

  19. Planetary Formation: From The Earth And Moon To Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of planetary growth, emphasizing the formation of habitable planets, is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost - to orbital decay within the protoplanetary disk. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but if they become massive enough before the protoplanetary disk dissipates, then they are able to accumulate substantial amounts of gas. Specific issues to be discussed include: (1) how do giant planets influence the formation and habitability of terrestrial planets? (2) could a giant impact leading to lunar formation have occurred - 100 million years after the condensation of the oldest meteorites?

  20. Possible planet formation in the young, low-mass, multiple stellar system GG Tau A.

    PubMed

    Dutrey, Anne; Di Folco, Emmanuel; Guilloteau, Stéphane; Boehler, Yann; Bary, Jeff; Beck, Tracy; Beust, Hervé; Chapillon, Edwige; Gueth, Fredéric; Huré, Jean-Marc; Pierens, Arnaud; Piétu, Vincent; Simon, Michal; Tang, Ya-Wen

    2014-10-30

    The formation of planets around binary stars may be more difficult than around single stars. In a close binary star (with a separation of less than a hundred astronomical units), theory predicts the presence of circumstellar disks around each star, and an outer circumbinary disk surrounding a gravitationally cleared inner cavity around the stars. Given that the inner disks are depleted by accretion onto the stars on timescales of a few thousand years, any replenishing material must be transferred from the outer reservoir to fuel planet formation (which occurs on timescales of about one million years). Gas flowing through disk cavities has been detected in single star systems. A circumbinary disk was discovered around the young low-mass binary system GG Tau A (ref. 7), which has recently been shown to be a hierarchical triple system. It has one large inner disk around the single star, GG Tau Aa, and shows small amounts of shocked hydrogen gas residing within the central cavity, but other than a single weak detection, the distribution of cold gas in this cavity or in any other binary or multiple star system has not hitherto been determined. Here we report imaging of gas fragments emitting radiation characteristic of carbon monoxide within the GG Tau A cavity. From the kinematics we conclude that the flow appears capable of sustaining the inner disk (around GG Tau Aa) beyond the accretion lifetime, leaving time for planet formation to occur there. These results show the complexity of planet formation around multiple stars and confirm the general picture predicted by numerical simulations.

  1. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  2. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions to single

  3. DETECTING PLANETS AROUND VERY LOW MASS STARS WITH THE RADIAL VELOCITY METHOD

    SciTech Connect

    Reiners, A.; Bean, J. L.; Dreizler, S.; Seifahrt, A.; Huber, K. F.; Czesla, S.

    2010-02-10

    The detection of planets around very low-mass stars with the radial velocity (RV) method is hampered by the fact that these stars are very faint at optical wavelengths where the most high-precision spectrometers operate. We investigate the precision that can be achieved in RV measurements of low mass stars in the near-infrared (NIR) Y-, J-, and H-bands, and we compare it to the precision achievable in the optical assuming comparable telescope and instrument efficiencies. For early-M stars, RV measurements in the NIR offer no or only marginal advantage in comparison with optical measurements. Although they emit more flux in the NIR, the richness of spectral features in the optical outweighs the flux difference. We find that NIR measurement can be as precise as optical measurements in stars of spectral type {approx}M4, and from there the NIR gains in precision toward cooler objects. We studied potential calibration strategies in the NIR finding that a stable spectrograph with a ThAr calibration can offer enough wavelength stability for m s{sup -1} precision. Furthermore, we simulate the wavelength-dependent influence of activity (cool spots) on RV measurements from optical to NIR wavelengths. Our spot simulations reveal that the RV jitter does not decrease as dramatically toward longer wavelengths as often thought. The jitter strongly depends on the details of the spots, i.e., on spot temperature and the spectral appearance of the spot. At low temperature contrast ({approx}200 K), the jitter shows a decrease toward the NIR up to a factor of 10, but it decreases substantially less for larger temperature contrasts. Forthcoming NIR spectrographs will allow the search for planets with a particular advantage in mid- and late-M stars. Activity will remain an issue, but simultaneous observations at optical and NIR wavelengths can provide strong constraints on spot properties in active stars.

  4. GRAVITY WAVES ON HOT EXTRASOLAR PLANETS. I. PROPAGATION AND INTERACTION WITH THE BACKGROUND

    SciTech Connect

    Watkins, Chris; Cho, J. Y-K. E-mail: J.Cho@qmul.ac.u

    2010-05-01

    We study the effects of gravity waves, or g-modes, on hot extrasolar planets. These planets are expected to possess stably stratified atmospheres, which support gravity waves. In this paper, we review the derivation of the equation that governs the linear dynamics of gravity waves and describe its application to a hot extrasolar planet, using HD 209458 b as a generic example. We find that gravity waves can exhibit a wide range of behaviors, even for a single atmospheric profile. The waves can significantly accelerate or decelerate the background mean flow, depending on the difference between the wave phase and mean flow speeds. In addition, the waves can provide significant heating ({approx}10{sup 2} to {approx}10{sup 3} K per planetary rotation), especially to the region of the atmosphere above about 10 scale heights from the excitation region. Furthermore, by propagating horizontally, gravity waves provide a mechanism for transporting momentum and heat from the dayside of a tidally locked planet to its nightside. We discuss work that needs to be undertaken to incorporate these effects in current atmosphere models of extrasolar planets.

  5. Limits of photosynthesis in extrasolar planetary systems for earth-like planets.

    PubMed

    Franck, S; von Bloh, W; Bounama, C; Steffen, M; Schonberner, D; Schellnhuber, H J

    2001-01-01

    We present a general modeling scheme for investigating the possibility of photosynthesis-based life on extrasolar planets. The scheme focuses on the identification of the habitable zone in main-sequence-star planetary systems with planets of Earth mass and size. Our definition of habitability is based on the long-term possibility of photosynthetic biomass production as a function of mean planetary surface temperature and atmospheric CO2-content. All the astrophysical, climatological, biogeochemical, and geodynamic key processes involved in the generation of photosynthesis-driven life conditions are taken into account. Implicitly, a co-genetic origin of the central star and the orbiting planet is assumed. The numerical solution of an advanced geodynamic model yields realistic look-up diagrams for determining the limits of photosynthesis in extrasolar planetary systems, assuming minimum CO2 levels set by the demand of C4 photosynthesis.

  6. Optical techniques for the detection of extrasolar planets - A critical review

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.; Fennelly, A. J.

    1976-01-01

    Proposed optical techniques of extrasolar planet detection are discussed and compared. These include terrestrial, orbital, and moon-based systems. Terrestrial systems include ground-level searches for random eclipses of primaries and 'light' echoes of stellar flares from companion planets as well as balloon-mounted telescopes operating in the stratosphere used in conjunction with orbital occulters. Space telescopes considered are multimirror systems simulating huge mirror diameters and single-mirror telescopes, such as the 3-meter Large Space Telescope, used in conjunction with occulters. Although very modest systems are capable of detecting extrasolar planets, the amount of information we can gather regarding these worlds is a function of system complexity and program duration.

  7. Use of the moon and the large space telescope as an extrasolar planet detection system

    NASA Technical Reports Server (NTRS)

    Matloff, G. L.; Fennelly, A. J.

    1974-01-01

    Roman (1959), Spitzer (1962), and Huang (1973) have discussed photometric detection of extrasolar planets using a 3-m space telescope such as the Large Space Telescope (LST). A space telescope could be an extrasolar planet detection system if used in conjunction with an occulter placed 10,000 km in front of the telescope. The occulter would reduce the amount of light received from the star under observation. For a semi-infinite plane occulter 10,000 km in front of the telescope, Spitzer and Huang's results indicate that a Jupiter-like planet would be observed with a signal/noise of 1.00, for observations at 0.4 micron using a 3-m telescope like the LST.

  8. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. I. THE ROLE OF ELECTRON AVALANCHE

    SciTech Connect

    Helling, Ch.; Jardine, M.; Witte, S.; Diver, D. A.

    2011-01-20

    Brown dwarf and extrasolar planet atmospheres form clouds which strongly influence the local chemistry and physics. These clouds are globally neutral obeying dust-gas charge equilibrium which is, on short timescales, inconsistent with the observation of stochastic ionization events of the solar system planets. We argue that a significant volume of the clouds in brown dwarfs and extrasolar planets is susceptible to local discharge events. These are electron avalanches triggered by charged dust grains. Such intra-cloud discharges occur on timescales shorter than the time needed to neutralize the dust grains by collisional processes. An ensemble of discharges is likely to produce enough free charges to suggest a partial and stochastic coupling of the atmosphere to a large-scale magnetic field.

  9. Planets around Low-mass Stars. III. A Young Dusty L Dwarf Companion at the Deuterium-burning Limit

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 (≈52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R ≈ 3800) 1.5-2.4 μm spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ~120 Myr AB Dor young moving group based on the photometric distance to the primary (36 ± 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I λ6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ~10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where "hot-start" evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, κ And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is ≈12-13 M Jup or ≈22-27 M Jup if it is an AB Dor member, or possibly as low as 11 M Jup if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition (≈1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being retained to cooler temperatures at low surface gravities, as seen in the spectra of young (8-30 Myr) planetary

  10. PLANETS AROUND LOW-MASS STARS. III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT ,

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 ( Almost-Equal-To 52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R Almost-Equal-To 3800) 1.5-2.4 {mu}m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the {approx}120 Myr AB Dor young moving group based on the photometric distance to the primary (36 {+-} 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I {lambda}6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of {approx}10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where ''hot-start'' evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, {kappa} And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is Almost-Equal-To 12-13 M{sub Jup} or Almost-Equal-To 22-27 M{sub Jup} if it is an AB Dor member, or possibly as low as 11 M{sub Jup} if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition ( Almost-Equal-To 1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being

  11. Extrasolar Planets: Towards Comparative Planetology beyond the Solar System

    NASA Astrophysics Data System (ADS)

    Khan, A. H.

    2012-09-01

    Today Scenario planet logy is a very important concept because now days the scientific research finding new and new planets and our work's range becoming too long. In the previous study shows about 10-12 years the research of planet logy now has changed . Few years ago we was talking about Sun planet, Earth planet , Moon ,Mars Jupiter & Venus etc. included but now the time has totally changed the recent studies showed that mono lakes California find the arsenic food use by micro organism that show that our study is very tiny as compare to planet long areas .We have very well known that arsenic is the toxic agent's and the toxic agent's present in the lakes and micro organism developing and life going on it's a unbelievable point for us but nature always play a magical games. In few years ago Aliens was the story no one believe the Aliens origin but now the aliens showed catch by our space craft and shuttle and every one believe that Aliens origin but at the moment's I would like to mention one point's that we have too more work required because our planet logy has a vast field. Most of the time our scientific mission shows that this planet found liquid oxygen ,this planet found hydrogen .I would like to clear that point's that all planet logy depend in to the chemical and these chemical gave the indication of the life but we are not abele to developed the adaptation according to the micro organism . Planet logy compare before study shows that Sun it's a combination of the various gases combination surrounded in a round form and now the central Sun Planets ,moons ,comets and asteroids In other word we can say that Or Sun has a wide range of the physical and Chemical properties in the after the development we can say that all chemical and physical property engaged with a certain environment and form a various contains like asteroids, moon, Comets etc. Few studies shows that other planet life affected to the out living planet .We can assure with the example the life

  12. The SOPHIE search for northern extrasolar planets. IV. Massive companions in the planet-brown dwarf boundary

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Santerne, A.; Sahlmann, J.; Hébrard, G.; Eggenberger, A.; Santos, N. C.; Moutou, C.; Arnold, L.; Boisse, I.; Bonfils, X.; Bouchy, F.; Delfosse, X.; Desort, M.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Queloz, D.; Ségransan, D.; Udry, S.; Vidal-Madjar, A.

    2012-02-01

    Context. The mass domain where massive extrasolar planets and brown dwarfs lie is still poorly understood. Indeed, not even a clear dividing line between massive planets and brown dwarfs has been established yet. This is partly because these objects are very scarce in close orbits around solar-type stars, the so-called brown dwarf desert. Owing to this, it has proven difficult to set up a strong observational base with which to compare models and theories of formation and evolution. Aims: We search to increase the current sample of massive sub-stellar objects with precise orbital parameters, and to constrain the true mass of detected sub-stellar candidates. Methods: The initial identification of sub-stellar candidates was made using precise radial velocity measurements obtained with the SOPHIE spectrograph at the 1.93-m telescope of the Haute-Provence Observatory. Subsequent characterisation of these candidates, with the principal aim of identifying stellar companions in low-inclination orbits, was made by means of different spectroscopic diagnostics such as the measurement of the bisector velocity span and the study of the correlation mask effect. With this objective, we also employed astrometric data from the Hipparcos mission, and a novel method of simulating stellar cross-correlation functions. Results: Seven new objects with minimum masses between ~10 MJup and ~90 MJup are detected. Out of these, two are identified as low-mass stars in low-inclination orbits, and two others have masses below the theoretical deuterium-burning limit, and are therefore planetary candidates. The remaining three are brown dwarf candidates; the current upper limits for their the masses do not allow us to conclude on their nature. Additionally, we have improved the parameters of an already-known brown dwarf (HD 137510b), confirmed by astrometry. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by

  13. Homogeneous studies of transiting extrasolar planets - V. New results for 38 planets

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2012-10-01

    I measure the physical properties of 38 transiting extrasolar planetary systems, bringing the total number studied within the Homogeneous Studies project to 82. Transit light curves are modelled using the JKTEBOP code, with careful attention paid to limb darkening, orbital eccentricity and contaminating light. The physical properties of each system are obtained from the photometric parameters, published spectroscopic measurements and five sets of theoretical stellar model predictions. Statistical errors are assessed using Monte Carlo and residual permutation algorithms and propagated via a perturbation algorithm. Systematic errors are estimated from the interagreement between results calculated using five theoretical stellar models. The headline result is a major upward revision of the radius of the planet in the OGLE-TR-56 system, from 1.23-1.38 to 1.734 ± 0.051 ± 0.029 RJup (statistical and systematic errors, respectively). Its density is three times lower than previously thought. This change comes from the first complete analysis of published high-quality photometry. Significantly larger planetary radii are also found for Kepler-15, KOI-428, WASP-13, WASP-14 and WASP-21 compared to previous work. I present the first results based on Kepler short-cadence data for Kepler-14, Kepler-15 and KOI-135. More extensive long-cadence data from the Kepler satellite are used to improve the measured properties of KOI-196, KOI-204, KOI-254, KOI-423 and KOI-428. The stellar component in the KOI-428 system is the largest known to host a transiting planet, at 2.48 ± 0.17 ± 0.20 R⊙. Detailed analyses are given for HAT-P-3, HAT-P-6, HAT-P-9, HAT-P-14 and WASP-12, based on more extensive data sets than considered in previous studies. Detailed analyses are also presented for the CoRoT systems 17, 18, 19, 20 and 23; Kepler-7, -12 and -17; KOI-254; OGLE-TR-111, -113, -132 and L9 and TrES-4. I revisit the correlations between orbital period and surface gravity, and orbital period

  14. On the feasibility of detecting extrasolar planets by reflected starlight using the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Brown, Robert A.; Burrows, Christopher J.

    1990-01-01

    The best metrology data extant are presently used to estimate the center and wing point-spread function of the HST, in order to ascertain the implications of an observational criterion according to which a faint source's discovery can occur only when the signal recorded near its image's location is sufficiently larger than would be expected in its absence. After defining the maximum star-planet flux ratio, a figure of merit Q, defined as the contrast ratio between a 'best case' planet and the scattered starlight background, is introduced and shown in the HST's case to be unfavorable for extrasolar planet detection.

  15. Drag-o-llision Models of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2009-01-01

    An extrasolar planet sculpts the famous debris disk around Fomalhaut; probably many other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks---difficult processes to model simultaneously. The author describes new 3-D models of debris disk dynamics, Drag-o-llision models, that incorporate both collisions and resonant trapping of dust for the first time. The author also discusses the implications of these models for coronagraphic imaging with Gemini and other telescopes.

  16. ON THE HORSESHOE DRAG OF A LOW-MASS PLANET. II. MIGRATION IN ADIABATIC DISKS

    SciTech Connect

    Masset, F. S.; Casoli, J. E-mail: jules.casoli@cea.f

    2009-09-20

    We evaluate the horseshoe drag exerted on a low-mass planet embedded in a gaseous disk, assuming the disk's flow in the co-orbital region to be adiabatic. We restrict this analysis to the case of a planet on a circular orbit, and we assume a steady flow in the corotating frame. We also assume that the corotational flow upstream of the U-turns is unperturbed, so that we discard saturation effects. In addition to the classical expression for the horseshoe drag in barotropic disks, which features the vortensity gradient across corotation, we find an additional term which scales with the entropy gradient, and whose amplitude depends on the perturbed pressure at the stagnation point of the horseshoe separatrices. This additional torque is exerted by evanescent waves launched at the horseshoe separatrices, as a consequence of an asymmetry of the horseshoe region. It has a steep dependence on the potential's softening length, suggesting that the effect can be extremely strong in the three-dimensional case. We describe the main properties of the co-orbital region (the production of vortensity during the U-turns, the appearance of vorticity sheets at the downstream separatrices, and the pressure response), and we give torque expressions suitable to this regime of migration. Side results include a weak, negative feedback on migration, due to the dependence of the location of the stagnation point on the migration rate, and a mild enhancement of the vortensity-related torque at a large entropy gradient.

  17. All in the Family: What Brown Dwarfs Teach Us About Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Marley, M.

    2003-05-01

    As we await the first direct image of an extrasolar giant planet, we can turn to theory and the experience gained in the campaign to detect and understand brown dwarfs for guidance on what to expect. As with any new arrival to a family, there should be a strong family resemblance (one hopes) along with notable unique features and interesting peculiarities. The 300 or so known L and T dwarfs, combined with our own giant planets, already span much of the effective temperature range within which extrasolar planets will be found. Only objects with thick, easily detectable, water clouds have yet to be seen. Thus we already know much of the family. I will describe what we have learned from studying these objects, focusing on the important roles clouds and atmospheric chemistry play in affecting their atmospheres and emergent spectra. Relying on these findings and theoretical models, I'll sketch out what we can expect from extrasolar giant planets, focusing on easily detectable features. Some wild cards, of course, are to be expected. Photochemical hazes, in particular, may obscure the family traits on the faces of Jupiter's distant cousins and may make one wonder, at least momentarily, about the milkman.

  18. All in the Family: What Brown Dwarfs Teach Us About Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, M.

    2003-01-01

    As we await the first direct image of an extrasolar giant planet, we can turn to theory and the experience gained in the campaign to detect and understand brown dwarfs for guidance on what to expect. As with any new arrival to a family, there should be a strong family resemblance (one hopes) along with notable unique features and interesting peculiarities. The 300 or so known L and T dwarfs, combined with our own giant planets, already span much of the effective temperature range within which extrasolar planets will be found. Only objects with thick, easily detectable, water clouds have yet to be seen. Thus we already know much of the family. I will describe what we have learned from studying these objects, focusing on the important roles clouds and atmospheric chemistry play in affecting their atmospheres and emergent spectra. Relying on these findings and theoretical models, I'll sketch out what we can expect from extrasolar giant planets, focusing on easily detectable features. Some wild cards, of course, are to be expected. Photochemical hazes, in particular, may obscure the family traits on the faces of Jupiter's distant cousins and may make one wonder, at least momentarily, about the milkman.

  19. Kepler Mission Discovers Trove of Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-02-01

    NASA's Kepler discovery mission is collecting more than just pennies from heaven. Results from the first 4 months of science operations of the Kepler space telescope, announced on 2 February, include the discovery of 1235 candidate planets orbiting 997 stars in a small portion of the Milky Way galaxy examined by the telescope. Follow-up observations likely could confirm about 80% of the candidates as actual planets rather than false positives, according to researchers. This new trove of possible exoplanets could greatly expand the number of known planets outside of our solar system.

  20. High-Contrast Imaging using Adaptive Optics for Extrasolar Planet Detection

    SciTech Connect

    Evans, Julia Wilhelmsen

    2006-01-01

    Direct imaging of extrasolar planets is an important, but challenging, next step in planetary science. Most planets identified to date have been detected indirectly--not by emitted or reflected light but through the effect of the planet on the parent star. For example, radial velocity techniques measure the doppler shift in the spectrum of the star produced by the presence of a planet. Indirect techniques only probe about 15% of the orbital parameter space of our solar system. Direct methods would probe new parameter space, and the detected light can be analyzed spectroscopically, providing new information about detected planets. High contrast adaptive optics systems, also known as Extreme Adaptive Optics (ExAO), will require contrasts of between 10-6 and 10-7 at angles of 4-24 λ/D on an 8-m class telescope to image young Jupiter-like planets still warm with the heat of formation. Contrast is defined as the intensity ratio of the dark wings of the image, where a planet might be, to the bright core of the star. Such instruments will be technically challenging, requiring high order adaptive optics with > 2000 actuators and improved diffraction suppression. Contrast is ultimately limited by residual static wavefront errors, so an extrasolar planet imager will require wavefront control with an accuracy of better than 1 nm rms within the low- to mid-spatial frequency range. Laboratory demonstrations are critical to instrument development. The ExAO testbed at the Laboratory for Adaptive Optics was designed with low wavefront error and precision optical metrology, which is used to explore contrast limits and develop the technology needed for an extrasolar planet imager. A state-of-the-art, 1024-actuator micro-electrical-mechanical-systems (MEMS) deformable mirror was installed and characterized to provide active wavefront control and test this novel technology. I present 6.5 x 10-8 contrast measurements with a prolate shaped pupil and

  1. Direct observation of extrasolar planets and the development of the gemini planet imager integral field spectrograph

    NASA Astrophysics Data System (ADS)

    Chilcote, Jeffrey Kaplan

    .9+/-0.4 degrees, making the planet misaligned by 2.9+/-0.5 degrees from the main disk, consistent with other observations that beta Pic b is misaligned with the main disk, and part of the misaligned inner disk. In 2009 & 2012 we find a projected orbital separation of 312.8 +/- 18.3 and 466.35 +/- 8.4 milliarcseconds consistent with an orbital period of ˜ 20 years, and a semi-major axis of ˜ 9 AU as found by Macintosh et al. (2014). During the first commissioning observations with the Gemini Planet Imager (GPI), my collaborators and I took the first H-band spectrum of the planetary companion to the nearby young star beta Pictoris. The spectrum has a resolving power of ˜ 45 and demonstrates the distinctive triangular shape of a cool substellar object with low surface gravity. Using atmospheric models, we find an effective temperature of 1650 +/- 50K and a surface gravity of log(g) = 4.0 +/- 0.25 (cgs units). These values agree well with predictions from planetary evolution models for a gas giant with mass between 10 and 12 MJup and age between 10 and 20 Myrs. The spectrum is very similar to a known low mass field brown dwarf but has more flux at the long wavelength end of the filters compared to models. Given the very high signal-to-noise of our spectrum this likely indicates additional physics such as patchy clouds that need to be included in the model.

  2. Delivery of Volatiles to Habitable Planets in Extrasolar Planetary Systems

    NASA Technical Reports Server (NTRS)

    Chambers, John E.; Kress, Monika E.; Bell, K. Robbins; Cash, Michele; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    The Earth can support life because: (1) its orbit lies in the Sun's habitable zone', and (2) it contains enough volatile material (e.g. water and organics) for life to flourish. However, it seems likely that the Earth was drier when it formed because it accreted in a part of the Sun's protoplanetary nebula that was too hot for volatiles to condense. If this is correct, water and organics must have been delivered to the habitable zone, after dissipation of the solar nebula, from a 'wet zone' in the asteroid belt or the outer solar system, where the nebula was cool enough for volatiles to condense. Material from the wet zone would have been delivered to the Earth by Jupiter and Saturn. Gravitational perturbations from these giant planets made much of the wet zone unstable, scattering volatile-rich planetesimals and protoplanets across the Solar System. Some of these objects ultimately collided with the inner Planets which themselves lie in a stable part of the Solar System. Giant planets are now being discovered orbiting other sunlike stars. To date, these planets have orbits and masses very different from Jupiter and Saturn, such that few if any of these systems is likely to have terrestrial planets in the star's habitable zone. However, new discoveries are anticipated due to improved detector sensitivity and the increase in the timespan of observations. Here we present numerical experiments examining the range of giant-planet characteristics that: (1) allow stable terrestrial Planets to exist in a star's habitable zone, and (2) make a large part of the star's wet zone weakly unstable, thus delivering volatiles to the terrestrial planets over an extended period of time after the dissipation of the solar nebula.

  3. Detection of extrasolar planets by the large deployable reflector

    NASA Technical Reports Server (NTRS)

    Hollenbach, D. J.; Takahashi, T.

    1984-01-01

    The best wavelength for observing Jupiter-size planetary companions to stars other than the Sun is one at which a planet's thermal emission is strongest; typically this would occur in the far-infrared region. It is assumed that the orbiting infrared telescope used is diffraction-limited so that the resolution of the planet from the central star is accomplished in the wings of the star's Airy pattern. Proxima Centauri, Barnard's Star, Wolf 359, and Epsilon Eridani are just a few of the many nearest main-sequence stars that could be studied with the large deployable relfector (LDR). The detectability of a planet improves for warmer planets and less luminous stars; therefore, planets around white dwarfs and those young planets which have sufficient internal gravitational energy release so as to cause a significant increase in their temperatures are considered. If white dwarfs are as old as they are usually assumed to be (5-10 billion yr), then only the nearest white dwarf (Sirius B) is within the range of LDR. The Ursa Major cluster and Perseu cluster are within LDR's detection range mainly because of their proximity and young age, respectively.

  4. Short-Term Dynamical Interactions Among Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Chambers, John E.; DiVincenzi, Donald (Technical Monitor)

    2001-01-01

    We show that short-term perturbations among massive planets in multiple planet systems can result in radial velocity variations of the central star which differ substantially from velocity variations derived assuming the planets are executing independent Keplerian motions. We discuss two alternate fitting methods which can lead to an improved dynamical description of multiple planet systems. In the first method, the osculating orbital elements are determined via a Levenberg-Marquardt minimization scheme driving an N-body integrator. The second method is an improved analytic model in which orbital elements such as the periods and longitudes of periastron are allowed to vary according to a simple model for resonant interactions between the planets. Both of these methods can potentially determine the true masses for the planets by eliminating the sin(i) degeneracy inherent in fits that assume independent Keplerian motions. As more radial velocity data is accumulated from stars such as GJ876, these methods should allow for unambiguous determination of the planetary masses and relative inclinations.

  5. DETECTING THE WIND-DRIVEN SHAPES OF EXTRASOLAR GIANT PLANETS FROM TRANSIT PHOTOMETRY

    SciTech Connect

    Barnes, Jason W.; Cooper, Curtis S.; Showman, Adam P.; Hubbard, William B.

    2009-11-20

    Several processes can cause the shape of an extrasolar giant planet's shadow, as viewed in transit, to depart from circular. In addition to rotational effects, cloud formation, non-homogenous haze production and movement, and dynamical effects (winds) could also be important. When such a planet transits its host star as seen from the Earth, the asphericity will introduce a deviation in the transit light curve relative to the transit of a perfectly spherical (or perfectly oblate) planet. We develop a theoretical framework to interpret planetary shapes. We then generate predictions for transiting planet shapes based on a published theoretical dynamical model of HD189733b. Using these shape models we show that planet shapes are unlikely to introduce detectable light-curve deviations (those >1 x 10{sup -5} of the host star), but that the shapes may lead to astrophysical sources of systematic error when measuring planetary oblateness, transit time, and impact parameter.

  6. Planetfinder: An Online Interactive Module for Learning How Astronomers Detect Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    McCray, Richard

    Planetfinder is a Web-based module designed to enable undergraduates to learn how astronomers detect extrasolar planets through observations of the Doppler shifts of a star's spectral lines. The module guides students through the process of measuring the masses and orbital parameters of actual extrasolar planets by fitting model Doppler curves to the data. The main goal of the exercise is to give students an understanding of the process of scientific measurement and model fitting. The exercise can be done at various levels of difficulty, ranging from measuring the properties of planetary systems having nearly circular orbits without using algebra, to exploring properties of systems having eccentric orbits and the associated equations of motion. The module is self-checking. Student work is stored in a database that is easily accessible by the instructor. The module has been tested at several institutions and is available for public use.

  7. On Stellar Activity Enhancement Due to Interactions with Extrasolar Giant Planets.

    PubMed

    Cuntz; Saar; Musielak

    2000-04-20

    We present a first attempt to identify and quantify possible interactions between recently discovered extrasolar giant planets (and brown dwarfs) and their host stars, resulting in activity enhancement in the stellar outer atmospheres. Many extrasolar planets have masses comparable to or larger than Jupiter and are within a distance of 0.5 AU, suggesting the possibility of their significant influence on stellar winds, coronae, and even chromospheres. Beyond the well-known rotational synchronization, the interactions include tidal effects (in which enhanced flows and turbulence in the tidal bulge lead to increased magnetoacoustic heating and dynamo action) and direct magnetic interaction between the stellar and planetary magnetic fields. We discuss relevant parameters for selected systems and give preliminary estimates of the relative interaction strengths.

  8. Evidence for water in the rocky debris of a disrupted extrasolar minor planet.

    PubMed

    Farihi, J; Gänsicke, B T; Koester, D

    2013-10-11

    The existence of water in extrasolar planetary systems is of great interest because it constrains the potential for habitable planets and life. We have identified a circumstellar disk that resulted from the destruction of a water-rich and rocky extrasolar minor planet. The parent body formed and evolved around a star somewhat more massive than the Sun, and the debris now closely orbits the white dwarf remnant of the star. The stellar atmosphere is polluted with metals accreted from the disk, including oxygen in excess of that expected for oxide minerals, indicating that the parent body was originally composed of 26% water by mass. This finding demonstrates that water-bearing planetesimals exist around A- and F-type stars that end their lives as white dwarfs.

  9. The changing phases of extrasolar planet CoRoT-1b.

    PubMed

    Snellen, Ignas A G; de Mooij, Ernst J W; Albrecht, Simon

    2009-05-28

    Hot Jupiters are a class of extrasolar planet that orbit their parent stars at very short distances. They are expected to be tidally locked, which can lead to a large temperature difference between their daysides and nightsides. Infrared observations of eclipsing systems have yielded dayside temperatures for a number of transiting planets. The day-night contrast of the transiting extrasolar planet HD 189733b was 'mapped' using infrared observations. It is expected that the contrast between the daysides and nightsides of hot Jupiters is much higher at visual wavelengths, shorter than that of the peak emission, and could be further enhanced by reflected stellar light. Here we report the analysis of optical photometric data obtained over 36 planetary orbits of the transiting hot Jupiter CoRoT-1b. The data are consistent with the nightside hemisphere of the planet being entirely black, with the dayside flux dominating the optical phase curve. This means that at optical wavelengths the planet's phase variation is just as we see it for the interior planets in the Solar System. The data allow for only a small fraction of reflected light, corresponding to a geometric albedo of <0.20.

  10. Practical high-order adaptive optics systems for extrasolar planet searches

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce A.; Olivier, Scot S.; Bauman, Brian J.; Brase, James M.; Carr, Emily; Carrano, Carmen J.; Gavel, Donald T.; Max, Claire E.; Patience, Jennifer

    2002-02-01

    Direct detection of photons emitted or reflected by an extrasolar planet is an extremely difficult but extremely exciting application of adaptive optics. Typical contrast levels for an extrasolar planet would be 109 - Jupiter is a billion times fainter than the sun. Current adaptive optics systems can only achieve contrast levels of 106, but so-called extreme adaptive optics systems with 104 -105 degrees of freedom could potentially detect extrasolar planets. We explore the scaling laws defining the performance of these systems, first set out by Angel (1994), and derive a different definition of an optimal system. Our sensitivity predictions are somewhat more pessimistic than the original paper, due largely to slow decorrelation timescales for some noise sources, though choosing to site an ExAO system at a location with exceptional r0 (e.g. Mauna Kea) can offset this. We also explore the effects of segment aberrations in a Keck-like telescope on ExAO; although the effects are significant, they can be mitigated through Lyot coronagraphy.

  11. Practical High-Order Adaptive Optics Systems For Extrasolar Planet Searches

    SciTech Connect

    Macintosh, B A; Olivier, S; Bauman, B; Brase, J; Carr, E; Carrano, C J; Gavel, D; Max, C E; Patience, J

    2001-08-29

    Direct detection of photons emitted or reflected by an extrasolar planet is an extremely difficult but extremely exciting application of adaptive optics. Typical contrast levels for an extrasolar planet would be 10{sup 9}-Jupiter is a billion times fainter than the sun. Current adaptive optics systems can only achieve contrast levels of 10{sup 6}, but so-called ''extreme'' adaptive optics systems with 10{sup 4}-10{sup 5} degrees of freedom could potentially detect extrasolar planets. We explore the scaling laws defining the performance of these systems, first set out by Angel (1994), and derive a different definition of an optimal system. Our sensitivity predictions are somewhat more pessimistic than the original paper, due largely to slow decorrelation timescales for some noise sources, though choosing to site an ExAO system at a location with exceptional r{sub 0} (e.g. Mauna Kea) can offset this. We also explore the effects of segment aberrations in a Keck-like telescope on ExAO; although the effects are significant, they can be mitigated through Lyot coronagraphy.

  12. Model Atmospheres and Spectra for Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Freedman, Richard S.; Beebe, Reta (Technical Monitor)

    2000-01-01

    In the past few years much new observational data has become available for brown dwarfs and extra solar planets. Not only are new objects being discovered but the availability of higher resolution spectra is improving. This allows a better comparison between the models and the available data, and places new constraints on the models which now have to be made more physically realistic in order to better interpret the observations. Under this grant, an array of new opacities were calculated and successfully applied to a variety of physical situations that were used as input to model available observations of brown dwarfs and extra solar giant planets.

  13. Finding Atmospheres of Extra-Solar Planets in High-Dispersion Near-Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Käufl, Hans Ulrich

    In the wavelength regime of 950-5500nm CRIRES, ESO's Cryogenic Infrared Echelle Spectrograph will offer a spectral resolution λ/Δλ ≈ 10^5 in combination with a spatial resolution of 0.2^''. This makes it well suited to search for spectral signatures of atmospheres of extra-solar planets. Sensitivity estimates for the detection of the non-thermal OH glow in oxygen-bearing atmospheres are given. With the VLT such a search is still sensitivity limited, but a dedicated spectrograph at the projected ESO 100m OWL telescope could detect Earth-like planets at a distance of ≈ 5 parsec.

  14. Characterizing extrasolar terrestrial planets with reflected, emitted and transmitted spectra.

    PubMed

    Tinetti, Giovanna

    2006-12-01

    NASA and ESA are planning missions to directly detect and characterize terrestrial planets outside our solar system (nominally NASA-Terrestrial Planet Finder and ESA-DARWIN missions). These missions will provide our first opportunity to spectroscopically study the global characteristics of those planets, and search for signs of habitability and life. We have used spatially and spectrally-resolved models to explore the observational sensitivity to changes in atmospheric and surface properties, and the detectability of surface biosignatures, in the globally averaged spectra and light-curves of the Earth. Atmospheric signatures of Earth-size exoplanets might be detected, in a near future, by stellar occultation as well. Detectability depends on planet's size, atmospheric composition, cloud cover and stellar type. According to our simulations, Earth's land vegetation signature (red-edge) is potentially visible in the disk-averaged spectra, even with cloud cover, and when the signal is averaged over the daily time scale. Marine vegetation is far more difficult to detect. We explored also the detectability of an exo-vegetation responsible for producing a signature that is red-shifted with respect to the Earth vegetation's one.

  15. Signatures of hot hydrogen in the atmosphere of the extrasolar planet HD209458b

    NASA Astrophysics Data System (ADS)

    Sing, David; Ballester, G.

    2007-05-01

    Of the extrasolar planets detected so far, about 10% consist of giant planets which orbit very close to their parent stars. The atmospheres of these ``hot-Jupiters'' are largely heated by the immense stellar irradiation. In the case of the planet HD209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizable expansion and escape of neutral hydrogen gas. Here we report the first detection of absorption by hot (n=2) hydrogen in the optical and near-ultraviolet Balmer jump and continuum in any planet. The hot H I signature appears as a short-wavelength absorption 0.030+\\-0.006 below the value of 0.9855 calculated from the latest values for the radius of the planet. So far, the lower atmosphere and the full extended upper atmosphere of HD209458b have been observed. This work probes a layer where the escaping gas forms in HD209458b's upper atmosphere, providing a new way to study the atmospheric structure and complex escape processes of extrasolar hot-Jupiters.

  16. DETECTION OF A GIANT EXTRASOLAR PLANET ORBITING THE ECLIPSING POLAR DP LEO

    SciTech Connect

    Qian, S.-B.; Liao, W.-P.; Zhu, L.-Y.; Dai, Z.-B.

    2010-01-01

    DP Leo is the first discovered eclipsing polar with a short period of 1.4967 hours. The period variation of the eclipsing binary was analyzed by using five new determined eclipse times together with those compiled from the literature. It is discovered that the O - C curve of DP Leo shows a cyclic variation with a period of 23.8 years and a semiamplitude of 31.5 s. The small-amplitude periodic change can be plausibly explained as the light-travel time effect due to the presence of a tertiary companion. The mass of the tertiary component is determined to be M {sub 3}sin i' = 0.00600({+-}0.00055) M {sub sun} = 6.28({+-}0.58) M {sub Jupiter} when a total mass of 0.69 M {sub sun} is adopted. If the tertiary companion is coplanar to the eclipsing binary (i.e., i' = 79.{sup 0}5), it should be a giant extrasolar planet with a mass of 6.39 M {sub Jupiter} at a distance of 8.6 astronomical units to the central binary. One of the most interesting things that we have learned about extrasolar planets over the last 17 years is that they can exist almost anywhere. The detection of a giant planet orbiting a polar would provide insight into the formation and evolution of circumbinary planets (planets orbiting both components of short-period binaries) as well as the late evolution of binary stars.

  17. Imaging Extra-Solar Planets with an Ultra-Large Space Telescope

    NASA Technical Reports Server (NTRS)

    Taylor, Charles R.

    1998-01-01

    NASA's Origins Program is directed toward two main goals: Imaging of galactic evolution in the early universe, and searching for planets orbiting nearby stars. The Next-Generation Space Telescope (NGST), operating at low temperature with an 8-m aperture, is well designed to meet the first goal. The goal of imaging planets orbiting nearby stars is more problematic. One line of investigation has been the ULTIMA concept (Ultra-Large Telescope, Integrated Missions in Astronomy). In this report, I will lay out the resolution requirements for telescopes to achieve the imaging of extrasolar planets, and describe a modeling tool created to investigate the requirements for imaging a planet when it is very near a much brighter star.

  18. Habitability of extrasolar planets and tidal spin evolution.

    PubMed

    Heller, René; Barnes, Rory; Leconte, Jérémy

    2011-12-01

    Stellar radiation has conservatively been used as the key constraint to planetary habitability. We review here the effects of tides, exerted by the host star on the planet, on the evolution of the planetary spin. Tides initially drive the rotation period and the orientation of the rotation axis into an equilibrium state but do not necessarily lead to synchronous rotation. As tides also circularize the orbit, eventually the rotation period does equal the orbital period and one hemisphere will be permanently irradiated by the star. Furthermore, the rotational axis will become perpendicular to the orbit, i.e. the planetary surface will not experience seasonal variations of the insolation. We illustrate here how tides alter the spins of planets in the traditional habitable zone. As an example, we show that, neglecting perturbations due to other companions, the Super-Earth Gl581d performs two rotations per orbit and that any primordial obliquity has been eroded.

  19. Search for Radio Emissions From Extrasolar Planets at 150 MHz

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Majid, W. A.; Kuiper, T. B.; Chandra, I.; Lazio, J.; Gupta, Y.; Naudet, C. J.; Zarka, P.; Bryden, G.; Gonzalez, W.

    2005-12-01

    Using the new 150 MHz receivers of the Giant Metrewave Radiotelescope (GMRT) in India, we have searched for radio emissions from a sub-set of known "hot Jupiters": UpsAnd, Tauboo, 70 Vir, HD162020, and HD179949. We have selected these targets based on the expected flux density and the level of background noise. Calibrations with GMRT at 150 MHz have confirmed the noise floor to be a few mJy over a 5 MHz bandwidth. The noise floor is well below the expected flux levels from the targets. No observation of these targets has been attempted previously at these frequencies with the sensitivity and aperture offered by GMRT. Radio maps of the targets were produced using the AIPS CLEANing and image making software, and will be presented. Dynamic spectra from the target regions will also be presented. In addition to the targets above, we have just (August 2005) completed new and deeper (longer integration times) radio observations of UpsAnd, HD179949 (evidence of star-planet magenic connection), HD188753Ab (newly discovered in tripple star system), HD209458b (transiting planet), and Gliese876 (red dwarf system containg "rocky" planet). Time permitting for analyses, we will present very preliminary, first-look, results.

  20. Search for Radio Emissions from Extrasolar Planets at 150 MHz

    NASA Astrophysics Data System (ADS)

    Winterhalter, D.; Majid, WA; Kuiper, TBH; Naudet, CJ; Bryden, G.; Chandra, I.; Gupta, Y.; Lazio, J.; Zarka, P.; Gonzalez, W.

    2005-12-01

    Using the new 150 MHz receivers of the Giant Metrewave Radiotelescope (GMRT) in India, we have searched for radio emissions from a sub-set of known "hot Jupiters": UpsAnd, Tauboo, 70 Vir, HD162020, and HD179949. We have selected these targets based on the expected flux density and the level of background noise. Calibrations with GMRT at 150 MHz have confirmed the noise floor to be a few mJy over a 5 MHz bandwidth. The noise floor is well below the expected flux levels from the targets. No observation of these targets has been attempted previously at these frequencies with the sensitivity and aperture offered by GMRT. Radio maps of the targets were produced using the AIPS CLEANing and image making software, and will be presented. Dynamic spectra from the target regions will also be presented. In addition to the targets above, we have just (August 2005) completed new and deeper (longer integration times) radio observations of UpsAnd, HD179949 (evidence of star-planet magenic connection), HD188753Ab (newly discovered in tripple star system), HD209458b (transiting planet), and Gliese876 (red dwarf system containg "rocky" planet). Time permitting for analyses, we will present very preliminary, first-look, results.

  1. The Arecibo Reconnaissance of Radio Emission from Nearby Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Route, Matthew; Wolszczan, Alex

    2014-11-01

    For several decades, it has been known that the Earth and Jupiter naturally generate radio emission from their magnetospheres, and that this radio emission serves as a probe of the magnetic field properties and plasma environments of these objects. In particular, the terrestrial auroral kilometric radiation, Jovian radio emission from decimetric through kilometric frequencies, and the Saturn kilometric radiation have been well studied through both remote sensing and in situ methods. At the more massive end of the continuum of substellar objects, brown dwarfs of spectral type as late as L3.5 have been shown to emit radio waves through the same mechanism that causes most of the radio emission from the magnetized Solar System planets.During the course of our recent searches for radio emission from ultracool dwarfs, we investigated brown dwarfs of spectral types as late as T6.5 and pushed even farther down the intrinsic luminosity scale through the observation of the system of four planets around a young, A-type star, HR 8799. Our investigation was conducted with the 305-m Arecibo radio telescope, its 5 GHz receiver, and the fast-sampled, broadband Mock spectrometer. Although no radio emission was detected from the young, hot HR 8799 planets, we provide useful upper limits on their radio luminosities and magnetic field strengths. However, our surveys have detected radio emission from two cool brown dwarfs, which have temperatures comparable to those young planets: one of type T6 1050 K) and one of type T6.5 900 K; Route & Wolszczan 2012). These results imply that, for young, massive exoplanet systems, which, like the one around HR 8799, consist of planets at type-T brown dwarf luminosity-levels and temperatures, the detection of radio emission with instrumentation such as that currently available at Arecibo is entirely plausible. This strategy appears more promising than low frequency searches for radio emission from the old, low magnetic field exoplanets, which

  2. Utilizing Astrometric Orbits to Obtain Coronagraphic Images of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Davidson, John M.

    2011-08-01

    We present an approach for utilizing astrometric orbit information to improve the yield of planetary images and spectra from a follow-on direct-detection mission. This approach is based on the notion—strictly hypothetical—that if a particular star could be observed continuously, the instrument would in time observe all portions of the habitable zone so that no planet residing therein could be missed. This strategy could not be implemented in any realistic mission scenario. But if an exoplanet’s orbit is known from astrometric observation, then it may be possible to plan and schedule a sequence of imaging observations that is the equivalent of continuous observation. A series of images—optimally spaced in time—could be recorded to examine contiguous segments of the orbit. In time, all segments would be examined, leading to the inevitable detection of the planet. In this article, we show how astrometric orbit information can be used to construct such a sequence. We apply this methodology to seven stars taken from the target lists of proposed astrometric and direct-detection missions. In addition, we construct this sequence for the Sun-Earth system as it would appear from a distance of 10 pc. In constructing these sequences, we have assumed that the imaging instrument has an inner working angle (IWA) of 75 mas and that the planets are visible whenever they are separated from their host stars by ≥IWA and are in quarter-phase or greater. In addition, we have assumed that the planets orbit at a distance of 1 AU scaled to luminosity and that the inclination of the orbit plane is 60°. For the individual stars in this target pool, we find that the number of observations in this sequence ranges from two to seven, representing the maximum number of observations required to find the planet. The probable number of observations ranges from 1.5 to 3.1. These results suggest that a direct-detection mission using astrometric orbits would find all eight exoplanets in

  3. Urey Prize Lecture: Orbital Dynamics of Extrasolar Planets, Large and Small

    NASA Astrophysics Data System (ADS)

    Ford, Eric B.

    2012-10-01

    For centuries, planet formation theories were fine tuned to explain the details of solar system. Since 1999, the Doppler technique has discovered dozens of multiple planet systems. The diversity of architectures of systems with giant planets challenged previous theories and led to insights into planet formation, orbital migration and the excitation of orbital eccentricities and inclinations. Recently, NASA's Kepler mission has identified over 300 systems with multiple transiting planet candidates, including many potentially rocky planets. Precise measurements of the orbital period and phase constrain the significance of mutual gravitational interactions and potential orbital resonances. For systems that are tightly-packed or near an orbital resonance, measurements of transit timing variations provide a new means for confirming transiting planets and detecting non-transiting planets in multiple planet systems, even around faint target stars. Over the course of the extended mission, Kepler is poised to measure the gravitational effects of mutual planetary perturbations for 200 planets, providing precise (but complex) constraints on planetary masses, densities and orbits. I will survey the systems with multiple transiting planet candidates identified by Kepler and discuss early efforts to translate these observations into new constraints on the formation and orbital evolution of planetary systems with low-mass planets.

  4. The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b

    NASA Astrophysics Data System (ADS)

    Ballester, Gilda E.; Sing, David K.; Herbert, Floyd

    2007-02-01

    About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these `hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.

  5. The signature of hot hydrogen in the atmosphere of the extrasolar planet HD 209458b.

    PubMed

    Ballester, Gilda E; Sing, David K; Herbert, Floyd

    2007-02-01

    About ten per cent of the known extrasolar planets are gas giants that orbit very close to their parent stars. The atmospheres of these 'hot Jupiters' are heated by the immense stellar irradiation. In the case of the planet HD 209458b, this energy deposition results in a hydrodynamic state in the upper atmosphere, allowing for sizeable expansion and escape of neutral hydrogen gas. HD 209458b was the first extrasolar planet discovered that transits in front of its parent star. The size of the planet can be measured using the total optical obscuration of the stellar disk during an observed transit, and the structure and composition of the planetary atmosphere can be studied using additional planetary absorption signatures in the stellar spectrum. Here we report the detection of absorption by hot hydrogen in the atmosphere of HD 209458b. Previously, the lower atmosphere and the full extended upper atmosphere of HD 209458b have been observed, whereas here we probe a layer where the escaping gas forms in the upper atmosphere of HD 209458b.

  6. The XO Project: Searching for Transiting Extrasolar Planet Candidates

    NASA Astrophysics Data System (ADS)

    McCullough, P. R.; Stys, J. E.; Valenti, J. A.; Fleming, S. W.; Janes, K. A.; Heasley, J. N.

    2005-08-01

    The XO project's first objective is to find hot Jupiters transiting bright stars (i.e., V<12) by precision differential photometry. Two XO cameras have been operating since 2003 September on the 10,000 foot Haleakala summit on Maui. Each XO camera consists of a 200 mm f/1.8 lens coupled to a 1024×1024 pixel, thinned CCD operated by drift-scanning. In its first year of routine operation, XO has observed 6.6% of the sky within six 7° wide strips scanned from 0° to +63° of declination and centered at R.A. = 0, 4, 8, 12, 16, and 20 hr. Autonomously operating, XO records 1 billion pixels per clear night, calibrates them photometrically and astrometrically, performs aperture photometry, archives the pixel data, and transmits the photometric data to the Space Telescope Science Institute for further analysis. From the first year of operation, the resulting database consists of photometry of ~100,000 stars at more than 1000 epochs per star, with differential photometric precision better than 1% per epoch. Analysis of the light curves of those stars produces transiting-planet candidates requiring detailed follow-up, described elsewhere, culminating in spectroscopy to measure radial velocity variation in order to differentiate genuine planets from the more numerous impostors, primarily eclipsing binary and multiple stars.

  7. A stability limit for the atmospheres of giant extrasolar planets.

    PubMed

    Koskinen, Tommi T; Aylward, Alan D; Miller, Steve

    2007-12-06

    Recent observations of the planet HD209458b indicate that it is surrounded by an expanded atmosphere of atomic hydrogen that is escaping hydrodynamically. Theoretically, it has been shown that such escape is possible at least inside an orbit of 0.1 au (refs 4 and 5), and also that H3+ ions play a crucial role in cooling the upper atmosphere. Jupiter's atmosphere is stable, so somewhere between 5 and 0.1 au there must be a crossover between stability and instability. Here we show that there is a sharp breakdown in atmospheric stability between 0.14 and 0.16 au for a Jupiter-like planet orbiting a solar-type star. These results are in contrast to earlier modelling that implied much higher thermospheric temperatures and more significant evaporation farther from the star. (We use a three-dimensional, time-dependent coupled thermosphere-ionosphere model and properly include cooling by H3+ ions, allowing us to model globally the redistribution of heat and changes in molecular composition.) Between 0.2 and 0.16 au cooling by H3+ ions balances heating by the star, but inside 0.16 au molecular hydrogen dissociates thermally, suppressing the formation of H3+ and effectively shutting down that mode of cooling.

  8. Transfer of Meteorites from Earth to the Interesting Objects within the Solar System and the Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Hara, T.; Takagi, T.; Kajiura, D.

    2010-10-01

    The probability is investigated that meteorites of Earth origin are transferred to the interesting objects which are supposed to have seas under the icy surface such as Enceladus, Europa, Ceres and dwarf planet Eris and the extrasolar planets. We take the ejection process in collision, such as the Chicxulub crater event, from Earth. If we assume the appropriate size of meteorites as 1cm in diameter, the number of meteorites reaching the interesting objects and the extrasolar planet system could be much greater than one. So we should consider the panspermia theories more seriously as organisms disperse.

  9. Remote Sensing of Planetary Properties and Biosignatures on Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Des Marais, David J.; Harwit, Martin O.; Jucks, Kenneth W.; Kasting, James F.; Lin, Douglas N. C.; Lunine, Jonathan I.; Schneider, Jean; Seager, Sara; Traub, Wesley A.; Woolf, Neville J.

    2002-06-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 μm in the mid-IR and 0.5 to ~1.1 μm in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  10. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets

    NASA Technical Reports Server (NTRS)

    Des Marais, David J.; Harwit, Martin O.; Jucks, Kenneth W.; Kasting, James F.; Lin, Douglas N C.; Lunine, Jonathan I.; Schneider, Jean; Seager, Sara; Traub, Wesley A.; Woolf, Neville J.

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  11. Remote sensing of planetary properties and biosignatures on extrasolar terrestrial planets.

    PubMed

    Des Marais, David J; Harwit, Martin O; Jucks, Kenneth W; Kasting, James F; Lin, Douglas N C; Lunine, Jonathan I; Schneider, Jean; Seager, Sara; Traub, Wesley A; Woolf, Neville J

    2002-01-01

    The major goals of NASA's Terrestrial Planet Finder (TPF) and the European Space Agency's Darwin missions are to detect terrestrial-sized extrasolar planets directly and to seek spectroscopic evidence of habitable conditions and life. Here we recommend wavelength ranges and spectral features for these missions. We assess known spectroscopic molecular band features of Earth, Venus, and Mars in the context of putative extrasolar analogs. The preferred wavelength ranges are 7-25 microns in the mid-IR and 0.5 to approximately 1.1 microns in the visible to near-IR. Detection of O2 or its photolytic product O3 merits highest priority. Liquid H2O is not a bioindicator, but it is considered essential to life. Substantial CO2 indicates an atmosphere and oxidation state typical of a terrestrial planet. Abundant CH4 might require a biological source, yet abundant CH4 also can arise from a crust and upper mantle more reduced than that of Earth. The range of characteristics of extrasolar rocky planets might far exceed that of the Solar System. Planetary size and mass are very important indicators of habitability and can be estimated in the mid-IR and potentially also in the visible to near-IR. Additional spectroscopic features merit study, for example, features created by other biosignature compounds in the atmosphere or on the surface and features due to Rayleigh scattering. In summary, we find that both the mid-IR and the visible to near-IR wavelength ranges offer valuable information regarding biosignatures and planetary properties; therefore both merit serious scientific consideration for TPF and Darwin.

  12. Extrasolar Planets and the Search for Habitable Worlds

    NASA Astrophysics Data System (ADS)

    Seager, Sara

    For thousands of years people have wondered, "Are we alone?" With over 250 exoplanets known to orbit nearby stars, this question has moved from science fiction to mainstream study. Now that the existence of exoplanets is firmly established, a new era of "exoplanet characterization" has begun. A subset of exoplanets—called transiting planets—pass in front of their stars as seen from Earth. Transiting planets have opened a whole new opportunity for exoplanets, because their physical properties, including average density and basic atmospheric properties, can now be routinely measured. The race to find habitable exoplanets has accelerated with the realization that big Earths orbiting small stars can be both discovered and characterized with current technology. These ideas will lead us down a path to the ultimate goal of space-based discovery and characterization of Earth analogs.

  13. The Formation of Life-sustaining Planets in Extrasolar Systems

    NASA Technical Reports Server (NTRS)

    Chambers, J. E.

    2003-01-01

    The spatial exploration is providing us a large quantity of information about the composition of the planets and satellites crusts. However, most of the experiences that are proposed in the guides of activities in Planetary Geology are based exclusively on the images utilization: photographs, maps, models or artistic reconstructions [1,2]. That things help us to recognize shapes and to deduce geological processes, but they says us little about the materials that they are implicated. In order to avoid this dicotomy between shapes and materials, we have designed an experience in the one which, employing of rocks and landscapes of our geological environment more next, the pupils be able to do an exercise of compared planetology analyzing shapes, processes and material of several planetary bodies of the Solar System.

  14. Extrasolar Planets Observed with JWST and the ELTs

    NASA Technical Reports Server (NTRS)

    Deming, L. Drake

    2010-01-01

    The advent of cryogenic space-borne infrared observatories such as the Spitzer Space Telescope has lead to a revolution in the study of planets and planetary systems orbiting sun-like stars. Already Spitzer has characterized the emergent infrared spectra of close-in giant exoplanets using transit and eclipse techniques. The James Webb Space Telescope (JWST) will be able to extend these studies to superEarth exoplanets orbiting in the habitable zones of M-dwarf stars in the near solar neighborhood. The forthcoming ground-based Extremely Large Telescopes (ELTs) will playa key role in these studies, being especially valuable for spectroscopy at higher spectral resolving powers where large photon fluxes are needed. The culmination of this work within the next two decades will be the detection and spectral characterization of the major molecular constituents in the atmosphere of a habitable superEarth orbiting a nearby lower main sequence star.

  15. Atmosphere Models for the Brown Dwarf Gliese 229 B and the Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Marley, Mark S.

    1996-01-01

    Brown dwarfs inhabit a realm intermediate between the more massive stars and the less massive planets. Their thermal infrared emission is powered by the release of gravitational potential energy as regulated by their atmospheres. Long known only as theoretical constructs. the discovery of the first unimpeachable brown dwarf. Gliese 229 has opened up a new field: the study of brown dwarf atmospheres. The subsequent discoverv of numerous extrasolar giant planets circling nearby stars, further demonstrated the need for a comprehensive modeling effort to understand this new class of jovian atmospheres. Although no spectra are yet available of the new planets, the next generation of groundbased and spacebased telescopes will return such data. Here author report on the effort with Ames collaborator Dr. Christopher McKay to better understand these new atmospheres.

  16. VizieR Online Data Catalog: Spectropolarimetric signatures of Earth--like extrasolar planets.

    NASA Astrophysics Data System (ADS)

    Stam, D. M.

    Numerically calculated scattering matrix elements a1 and b1 of 11 different types of Earth-like extrasolar planets are presented. Matrix element a1 is proportional to the total flux that is reflected by the exoplanet, matrix element b1 is proportional to the linearly polarized flux. Also given is the ratio -b1/a1, which is the degree of linear polarization of the light that is reflected by the exoplanet. Each directory contains 91 ASCII files: one file for each planetary phase angle. The phase angles range from 0 degrees ("a full planet") to 180 degrees ("a new planet"), in steps of 2 degrees. Files are labelled DDDAAN.txt, where DDD is the phase angle and AAN the model code (000fo0.txt for 0 degrees in forest0 model, 000oc0.txt for 0 degrees in ocean_0 model, 000000.txt for 0 degrees in lambert000 model). (11 data files).

  17. Three regimes of extrasolar planet radius inferred from host star metallicities

    NASA Astrophysics Data System (ADS)

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.

    2014-05-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  18. Three regimes of extrasolar planet radius inferred from host star metallicities

    PubMed Central

    Buchhave, Lars A.; Bizzarro, Martin; Latham, David W.; Sasselov, Dimitar; Cochran, William D.; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W.

    2014-01-01

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods1. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (~4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates2,3, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems. PMID:24870544

  19. Three regimes of extrasolar planet radius inferred from host star metallicities.

    PubMed

    Buchhave, Lars A; Bizzarro, Martin; Latham, David W; Sasselov, Dimitar; Cochran, William D; Endl, Michael; Isaacson, Howard; Juncher, Diana; Marcy, Geoffrey W

    2014-05-29

    Approximately half of the extrasolar planets (exoplanets) with radii less than four Earth radii are in orbits with short periods. Despite their sheer abundance, the compositions of such planets are largely unknown. The available evidence suggests that they range in composition from small, high-density rocky planets to low-density planets consisting of rocky cores surrounded by thick hydrogen and helium gas envelopes. Here we report the metallicities (that is, the abundances of elements heavier than hydrogen and helium) of more than 400 stars hosting 600 exoplanet candidates, and find that the exoplanets can be categorized into three populations defined by statistically distinct (∼4.5σ) metallicity regions. We interpret these regions as reflecting the formation regimes of terrestrial-like planets (radii less than 1.7 Earth radii), gas dwarf planets with rocky cores and hydrogen-helium envelopes (radii between 1.7 and 3.9 Earth radii) and ice or gas giant planets (radii greater than 3.9 Earth radii). These transitions correspond well with those inferred from dynamical mass estimates, implying that host star metallicity, which is a proxy for the initial solids inventory of the protoplanetary disk, is a key ingredient regulating the structure of planetary systems.

  20. Measuring the Physical Properties of the first two WASP transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Haswell, Carole

    2006-07-01

    We have recently discovered the first two transiting extrasolar planets from the Wide Angle Search for Planets {WASP} project and confirmed both as planets using SOPHIE radial velocity measurements. Both WASP-1b and WASP-2b orbit about stars brighter than V=12, and are thus ideal targets for HST followup. WASP-1b is probably inflated in a manner similar to HD209458b but is in a closer orbit about the parent, which itself is the earliest-type parent star yet announced for a transiting extrasolar planet. At 0.03 AU from the parent star, WASP-2b is close to the minimum separation at which planets of this mass range are thought to survive. We request DD observations of WASP-1b and WASP-2b, to constrain the masses and radii of both objects to a precision of a few tenths of a percent. Both parent stars have very similar brightnesses to the TrES-1 parent star, thus we will achieve equivalent photometric precision to previous successful observations of TrES-1b. As all further physical investigations {such as interior heating} depend on precise mass- and radius-determinations, this investigation is the essential next step in uncovering the physical characteristics of these planets and their parent stars. We have requested 12 orbits, though 9 orbits would provide the minimum acceptable coverage for our program.The consortium will formally announce the discoveries of WASP-1b and WASP-2b on Tuesday 26th September 2006. We ask that all material in this proposal be kept confidential until that date. We can supply the discovery paper on request after this date.

  1. A Spitzer Infrared Radius for the Transiting Extrasolar Planet HD 209458 b

    NASA Technical Reports Server (NTRS)

    Richardson, L. Jeremy; Harrington, Joseph; Seager, Sara; Deming, Drake

    2007-01-01

    We have measured the infrared transit of the extrasolar planet HD 209458 b using the Spitzer Space Telescope. We observed two primary eclipse events (one partial and one complete transit) using the 24 micrometer array of the Multiband Imaging Photometer for Spitzer (MIPS). We analyzed a total of 2392 individual images (10-second integrations) of the planetary system, recorded before, during, and after transit. We perform optimal photometry on the images and use the local zodiacal light as a short-term flux reference. At this long wavelength, the transit curve has a simple box-like shape, allowing robust solutions for the stellar and planetary radii independent of stellar limb darkening, which is negligible at 24 micrometers. We derive a stellar radius of R(sub *) = 1.06 plus or minus 0.07 solar radius, a planetary radius of R(sub p) = 1.26 plus or minus 0.08 R(sub J), and a stellar mass of 1.17 solar mass. Within the errors, our results agree with the measurements at visible wavelengths. The 24 micrometer radius of the planet therefore does not differ significantly compared to the visible result. We point out the potential for deriving extrasolar transiting planet radii to high accuracy using transit photometry at slightly shorter IR wavelengths where greater photometric precision is possible.

  2. The SOPHIE search for northern extrasolar planets. VI. Three new hot Jupiters in multi-planet extrasolar systems

    NASA Astrophysics Data System (ADS)

    Moutou, C.; Hébrard, G.; Bouchy, F.; Arnold, L.; Santos, N. C.; Astudillo-Defru, N.; Boisse, I.; Bonfils, X.; Borgniet, S.; Delfosse, X.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gregorio, J.; Labrevoir, O.; Lagrange, A.-M.; Montagnier, G.; Montalto, M.; Pepe, F.; Sahlmann, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.

    2014-03-01

    We present high-precision radial-velocity measurements of three solar-type stars: HD 13908, HD 159243, and HIP 91258. The observations were made with the SOPHIE spectrograph at the 1.93 m telescope of the Observatoire de Haute-Provence (France). They show that these three bright stars host exoplanetary systems composed of at least two companions. HD 13908 b is a planet with a minimum mass of 0.865 ± 0.035MJup on a circular orbit with a period of 19.382 ± 0.006 days. There is an outer massive companion in the system with a period of 931 ± 17 days, e = 0.12 ± 0.02, and a minimum mass of 5.13 ± 0.25MJup . The star HD 159243 also has two detected companions with respective masses, periods, and eccentricities of Mp= 1.13 ± 0.05 and 1.9 ± 0.13MJup , P = 12.620 ± 0.004 and 248.4 ± 4.9 days, and e = 0.02 ± 0.02 and 0.075 ± 0.05. Finally, the star HIP 91258 has a planetary companion with a minimum mass of 1.068 ± 0.038MJup , an orbital period of 5.0505 ± 0.0015 days, and a quadratic trend indicating an outer planetary or stellar companion that is as yet uncharacterized. The planet-hosting stars HD 13908, HD 159243, and HIP 91258 are main-sequence stars of spectral types F8V, G0V, and G5V, respectively, with moderate activity levels. HIP 91258 is slightly over-metallic, while the other two stars have solar-like metallicity. The three systems are discussed in the frame of formation and dynamical evolution models of systems composed of several giant planets. Tables 5-8 are available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/563/A22Tables 5-7 are also available in electronic form at http://www.aanda.orgBased on observations collected with the SOPHIE spectrograph on the 1.93 m telescope at the Observatoire de Haute-Provence (CNRS), France, by the SOPHIE RPE Consortium (program PNP.CONS).

  3. Molecular Line and Continuum Opacities for Modeling of Extrasolar Giant Planet and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, P. F.; Schweitzer, A.; Stancil, P. C.; Hauschildt, P. H.; Kirby, K.; Yamaguchi, Y.; Allen, W. D.

    2002-01-01

    The molecular line and continuum opacities are investigated in the atmospheres of cool stars and Extrasolar Giant Planets (EGPs). Using a combination of ab inito and experimentally derived potential curves and dipole transition moments, accurate data have been calculated for rovibrationally-resolved oscillator strengths and photodissociation cross sections in the B' (sup 2)Sigma+ (left arrow) X (sup 2)Sigma+ and A (sup 2)Pi (left arrow) X (sup 2)Sigma+ band systems in MgH. We also report our progress on the study of the electronic structure of LiCl and FeH.

  4. Metal Hydride and Alkali Halide Opacities in Extrasolar Giant Planets and Cool Stellar Atmospheres

    NASA Technical Reports Server (NTRS)

    Weck, Philippe F.; Stancil, Phillip C.; Kirby, Kate; Schweitzer, Andreas; Hauschildt, Peter H.

    2006-01-01

    The lack of accurate and complete molecular line and continuum opacity data has been a serious limitation to developing atmospheric models of cool stars and Extrasolar Giant Planets (EGPs). We report our recent calculations of molecular opacities resulting from the presence of metal hydrides and alkali halides. The resulting data have been included in the PHOENIX stellar atmosphere code (Hauschildt & Baron 1999). The new models, calculated using spherical geometry for all gravities considered, also incorporate our latest database of nearly 670 million molecular lines, and updated equations of state.

  5. Detection and Characterization of Extrasolar Planets through Mean-Motion Resonances: Simulations of Hypothetical Debris Disks

    NASA Astrophysics Data System (ADS)

    Tabeshian, Maryam; Wiegert, Paul A.

    2015-11-01

    A planet orbiting interior or exterior to a debris disk may produce signatures in the disk that reveal the planet's presence even if it remains undetected. These features appear near mean-motion resonances and provide a powerful tool to not only detect unseen planets in extra-solar systems, but also help constrain their mass and orbital parameters. I will present results from simulations of hypothetical debris disks both for interior and exterior resonances, showing that gaps can be opened in cold debris disks away from the orbit of the planet, and thus that not all disk gaps need contain a planetary body. The results allow us to constrain planet masses, semi-major axes and eccentricities based on the locations and widths of the gaps. Moreover, distinct features likely arising from Lindblad resonances are seen when the planet perturbing the disk has non-zero orbital eccentricity. Finally, I will present expressions that relate the planetary mass to the widths and locations of the observed gaps.

  6. MIGRATION OF EXTRASOLAR PLANETS: EFFECTS FROM X-WIND ACCRETION DISKS

    SciTech Connect

    Adams, Fred C.; Cai, Mike J.; Lizano, Susana

    2009-09-10

    Magnetic fields are dragged in from the interstellar medium during the gravitational collapse that forms star/disk systems. Consideration of mean field magnetohydrodynamics in these disks shows that magnetic effects produce sub-Keplerian rotation curves and truncate the inner disk. This Letter explores the ramifications of these predicted disk properties for the migration of extrasolar planets. Sub-Keplerian flow in gaseous disks drives a new migration mechanism for embedded planets and modifies the gap-opening processes for larger planets. This sub-Keplerian migration mechanism dominates over Type I migration for sufficiently small planets (m{sub P} {approx}< 1 M {sub +}) and/or close orbits (r {approx}< 1 AU). Although the inclusion of sub-Keplerian torques shortens the total migration time by only a moderate amount, the mass accreted by migrating planetary cores is significantly reduced. Truncation of the inner disk edge (for typical system parameters) naturally explains final planetary orbits with periods P {approx} 4 days. Planets with shorter periods, P {approx} 2 days, can be explained by migration during FU-Orionis outbursts, when the mass accretion rate is high and the disk edge moves inward. Finally, the midplane density is greatly increased at the inner truncation point of the disk (the X-point); this enhancement, in conjunction with continuing flow of gas and solids through the region, supports the in situ formation of giant planets.

  7. A map of the day-night contrast of the extrasolar planet HD 189733b.

    PubMed

    Knutson, Heather A; Charbonneau, David; Allen, Lori E; Fortney, Jonathan J; Agol, Eric; Cowan, Nicolas B; Showman, Adam P; Cooper, Curtis S; Megeath, S Thomas

    2007-05-10

    'Hot Jupiter' extrasolar planets are expected to be tidally locked because they are close (<0.05 astronomical units, where 1 au is the average Sun-Earth distance) to their parent stars, resulting in permanent daysides and nightsides. By observing systems where the planet and star periodically eclipse each other, several groups have been able to estimate the temperatures of the daysides of these planets. A key question is whether the atmosphere is able to transport the energy incident upon the dayside to the nightside, which will determine the temperature at different points on the planet's surface. Here we report observations of HD 189733, the closest of these eclipsing planetary systems, over half an orbital period, from which we can construct a 'map' of the distribution of temperatures. We detected the increase in brightness as the dayside of the planet rotated into view. We estimate a minimum brightness temperature of 973 +/- 33 K and a maximum brightness temperature of 1,212 +/- 11 K at a wavelength of 8 mum, indicating that energy from the irradiated dayside is efficiently redistributed throughout the atmosphere, in contrast to a recent claim for another hot Jupiter. Our data indicate that the peak hemisphere-integrated brightness occurs 16 +/- 6 degrees before opposition, corresponding to a hotspot shifted east of the substellar point. The secondary eclipse (when the planet moves behind the star) occurs 120 +/- 24 s later than predicted, which may indicate a slightly eccentric orbit.

  8. Study by MOA of extrasolar planets in gravitational microlensing events of high magnification

    NASA Astrophysics Data System (ADS)

    Bond, I. A.; Rattenbury, N. J.; Skuljan, J.; Abe, F.; Dodd, R. J.; Hearnshaw, J. B.; Honda, M.; Jugaku, J.; Kilmartin, P. M.; Marles, A.; Masuda, K.; Matsubara, Y.; Muraki, Y.; Nakamura, T.; Nankivell, G.; Noda, S.; Noguchi, C.; Ohnishi, K.; Reid, M.; Saito, To.; Sato, H.; Sekiguchi, M.; Sullivan, D. J.; Sumi, T.; Takeuti, M.; Watase, Y.; Wilkinson, S.; Yamada, R.; Yanagisawa, T.; Yock, P. C. M.

    2002-06-01

    A search for extrasolar planets was carried out in three gravitational microlensing events of high magnification, MACHO 98-BLG-35, MACHO 99-LMC-2 and OGLE 00-BUL-12. Photometry was derived from observational images by the MOA and OGLE groups using an image subtraction technique. For MACHO 98-BLG-35, additional photometry derived from the MPS and PLANET groups was included. Planetary modelling of the three events was carried out in a supercluster computing environment. The estimated probability for explaining the data on MACHO 98-BLG-35 without a planet is <1 per cent. The best planetary model has a planet of mass ~(0.4-1.5)×MEarth at a projected radius of either ~1.5 or ~2.3au. We show how multiplanet models can be applied to the data. We calculate exclusion regions for the three events and find that Jupiter-mass planets can be excluded with projected radii from as wide as about 30au to as close as around 0.5au for MACHO 98-BLG-35 and OGLE 00-BUL-12. For MACHO 99-LMC-2, the exclusion region extends out to around 10au and constitutes the first limit placed on a planetary companion to an extragalactic star. We derive a particularly high peak magnification of ~160 for OGLE 00-BUL-12. We discuss the detectability of planets with masses as low as Mercury in this and similar events.

  9. DETECTABILITY AND ERROR ESTIMATION IN ORBITAL FITS OF RESONANT EXTRASOLAR PLANETS

    SciTech Connect

    Giuppone, C. A.; Beauge, C.; Tadeu dos Santos, M.; Ferraz-Mello, S.; Michtchenko, T. A.

    2009-07-10

    We estimate the conditions for detectability of two planets in a 2/1 mean-motion resonance from radial velocity data, as a function of their masses, number of observations and the signal-to-noise ratio. Even for a data set of the order of 100 observations and standard deviations of the order of a few meters per second, we find that Jovian-size resonant planets are difficult to detect if the masses of the planets differ by a factor larger than {approx}4. This is consistent with the present population of real exosystems in the 2/1 commensurability, most of which have resonant pairs with similar minimum masses, and could indicate that many other resonant systems exist, but are currently beyond the detectability limit. Furthermore, we analyze the error distribution in masses and orbital elements of orbital fits from synthetic data sets for resonant planets in the 2/1 commensurability. For various mass ratios and number of data points we find that the eccentricity of the outer planet is systematically overestimated, although the inner planet's eccentricity suffers a much smaller effect. If the initial conditions correspond to small-amplitude oscillations around stable apsidal corotation resonances, the amplitudes estimated from the orbital fits are biased toward larger amplitudes, in accordance to results found in real resonant extrasolar systems.

  10. Fast spin of the young extrasolar planet β Pictoris b.

    PubMed

    Snellen, Ignas A G; Brandl, Bernhard R; de Kok, Remco J; Brogi, Matteo; Birkby, Jayne; Schwarz, Henriette

    2014-05-01

    The spin of a planet arises from the accretion of angular momentum during its formation, but the details of this process are still unclear. In the Solar System, the equatorial rotation velocities and, consequently, spin angular momenta of most of the planets increase with planetary mass; the exceptions to this trend are Mercury and Venus, which, since formation, have significantly spun down because of tidal interactions. Here we report near-infrared spectroscopic observations, at a resolving power of 100,000, of the young extrasolar gas giant planet β Pictoris b (refs 7, 8). The absorption signal from carbon monoxide in the planet's thermal spectrum is found to be blueshifted with respect to that from the parent star by approximately 15 kilometres per second, consistent with a circular orbit. The combined line profile exhibits a rotational broadening of about 25 kilometres per second, meaning that β Pictoris b spins significantly faster than any planet in the Solar System, in line with the extrapolation of the known trend in spin velocity with planet mass.

  11. Using graphical and pictorial representations to teach introductory astronomy students about the detection of extrasolar planets via gravitational microlensing

    NASA Astrophysics Data System (ADS)

    Wallace, Colin S.; Chambers, Timothy G.; Prather, Edward E.; Brissenden, Gina

    2016-05-01

    The detection and study of extrasolar planets is an exciting and thriving field in modern astrophysics and an increasingly popular topic in introductory astronomy courses. One detection method relies on searching for stars whose light has been gravitationally microlensed by an extrasolar planet. In order to facilitate instructors' abilities to bring this interesting mix of general relativity and extrasolar planet detection into the introductory astronomy classroom, we have developed a new Lecture-Tutorial called "Detecting Exoplanets with Gravitational Microlensing." In this paper, we describe how this new Lecture-Tutorial's representations of astrophysical phenomena, which we selected and created based on theoretically motivated considerations of their pedagogical affordances, are used to help introductory astronomy students develop more expert-like reasoning abilities.

  12. Extrasolar planet population synthesis . IV. Correlations with disk metallicity, mass, and lifetime

    NASA Astrophysics Data System (ADS)

    Mordasini, C.; Alibert, Y.; Benz, W.; Klahr, H.; Henning, T.

    2012-05-01

    semimajor axis distribution of giant planets exists because in low-metallicity disks, planets start farther out, but migrate more, while the contrary applies to high metallicities. The final semimajor axis distribution contains an imprint of the ice line. Close-in low mass planets have a lower mean metallicity than hot Jupiters. The frequency of giant planets varies approximately as Mdisk1.2 and τdisk2. Conclusions: The properties of protoplanetary disks - the initial and boundary conditions for planet formation - are decisive for the properties of planets, and leave many imprints on the population.

  13. THE EFFECT OF MASS LOSS ON THE TIDAL EVOLUTION OF EXTRASOLAR PLANET

    SciTech Connect

    Guo, J. H.

    2010-04-01

    By combining mass loss and tidal evolution of close-in planets, we present a qualitative study on their tidal migrations. We incorporate mass loss in tidal evolution for planets with different masses and find that mass loss could interfere with tidal evolution. In an upper limit case (beta = 3), a significant portion of mass may be evaporated in a long evolution timescale. Evidence of greater modification of the planets with an initial separation of about 0.1 AU than those with a = 0.15 AU can be found in this model. With the assumption of a large initial eccentricity, the planets with initial mass <=1 M{sub J} and initial distance of about 0.1 AU could not survive. With the supposition of beta = 1.1, we find that the loss process has an effect on the planets with low mass at a {approx} 0.05 AU. In both cases, the effect of evaporation on massive planets can be neglected. Also, heating efficiency and initial eccentricity have significant influence on tidal evolution. We find that even low heating efficiency and initial eccentricity have a significant effect on tidal evolution. Our analysis shows that evaporation on planets with different initial masses can accelerate (decelerate) the tidal evolution due to the increase (decrease) in tide of the planet (star). Consequently, the effect of evaporation cannot be neglected in evolutionary calculations of close-in planets. The physical parameters of HD 209458b can be fitted by our model.

  14. Earth, Jupiter and Saturn as guides for extrasolar planets and brown dwarfs: a lightning climatology study

    NASA Astrophysics Data System (ADS)

    Hodosán, Gabriella; Asensio Torres, Rubén; Helling, Christiane; Vorgul, Irena

    2015-04-01

    Large-scale electrostatic discharges (i.e. lightning) have been observed in the Solar System. Apart from Earth there are direct detections from Jupiter and Saturn and indirect (only radio) detection from Uranus and Neptune. Recent observations made by the Venus Explorer revealed radio signals that may be related to lightning. Observations indicate that clouds form on extrasolar planets and brown dwarfs. The conditions in these clouds may be good for lightning to occur, which can be a main ionization process in these atmospheres (lightning in mineral clouds e.g.: Bailey et al. 2014, ApJ, 784, 43; Helling at al. 2013, ApJ, 767, 136; Helling et al. 2013, P&SS, 77, 152). In this study our aim is to compare lightning climatology from Earth, Jupiter and Saturn and use these statistics as a guide to study potential lightning on extrasolar planetary objects. Earth is a fair analogy for rocky or ocean planets while Jupiter and Saturn resemble giant planets and brown dwarfs. To give an estimate on the total lightning energy (or power) that can reach us from a particular extrasolar body, we need to know how much lightning can occur on the object globally. We will show the possibilities in the number and quality of the giant planet data sets, which may give a fine comparison of future observations of extrasolar giant gas planets and even brown dwarfs. Data were obtained from Lightning Imaging Sensor (LIS)/Optical Transient Detector (OTD) (e.g.: Cecil et al. 2014, Atmospheric Research, 135, 404), Sferics Timing and Ranging Network (STARNET) (e.g.: Morales Rodrigues et al. 2011, 2014, XIV and XV International Conference on Atmospheric Electricity) and World Wide Lightning Location Network (WWLLN) (e.g.: Hutchins et al. 2012, Radio Science, 47, RS6005), four major lightning detecting networks, which monitor lightning occurrence in the optical or radio range on Earth. We compare flash/stroke rates in space and time and use the data to refer to Earth as a transiting exoplanet. We

  15. A Search for Thermal Emission from Non-transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Crossfield, Ian; Hansen, B.; Barman, T.

    2009-01-01

    We describe our ongoing search for the Doppler-shifted thermal emission spectra of two hot extrasolar planets. Using NIRSPEC at the Keck Observatory we obtained 100 high-resolution spectra of the tau Boo and 55 Cnc systems. Our methods are unique in several respects. First, we use well-characterized telluric lines (>8; per order) to calibrate the wavelength scale in every frame. In addition to standard techniques such as Principal Component Analysis, we use a set of telluric transmission models to remove the temporal variability of terrestrial atmospheric features. Finally, we intend to directly disentangle the faint planetary and bright stellar spectra using direct tomographic techniques, eliminating a dependence on models of these heretofore uncharacterized planets.

  16. The presence of methane in the atmosphere of an extrasolar planet

    NASA Astrophysics Data System (ADS)

    Swain, Mark R.; Vasisht, Gautam; Tinetti, Giovanna

    2008-03-01

    Molecules present in the atmospheres of extrasolar planets are expected to influence strongly the balance of atmospheric radiation, to trace dynamical and chemical processes, and to indicate the presence of disequilibrium effects. As molecules have the potential to reveal atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jupiter planets. As these bands can overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report a near-infrared transmission spectrum of the planet HD 189733b that shows the presence of methane. Additionally, a resolved water vapour band at 1.9μm confirms the recent claim of water in this object. On thermochemical grounds, carbon monoxide is expected to be abundant in the upper atmosphere of hot-Jupiter planets, but is not identifiable here; therefore the detection of methane rather than carbon monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanism that leads to an enhancement of methane.

  17. Production of Star-Grazing and Star-Impacting Planetestimals via Orbital Migration of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Quillen, A. C.; Holman, M.

    2000-01-01

    During the orbital migration of a giant extrasolar planet via ejection of planetesimals (as studied by Murray et al. in 1998), inner mean-motion resonances can be strong enough to cause planetesimals to graze or impact the star. We integrate numerically the motions of particles which pass through the 3:1 or 4:1 mean-motion resonances of a migrating Jupiter-mass planet. We find that many particles can be trapped in the 3:1 or 4:1 resonances and pumped to high enough eccentricities that they impact the star. This implies that for a planet migrating a substantial fraction of its semimajor axis, a fraction of its mass in planetesimals could impact the star. This process may be capable of enriching the metallicity of the star at a time when the star is no longer fully convective. Upon close approaches to the star, the surfaces of these planetesimals will be sublimated. Orbital migration should cause continuing production of evaporating bodies, suggesting that this process should be detectable with searches for transient absorption lines in young stars. The remainder of the particles will not impact the star but can be ejected subsequently by the planet as it migrates further inward. This allows the planet to migrate a substantial fraction of its initial semimajor axis by ejecting planetesimals.

  18. Homogeneous Studies of Transiting Extrasolar Planets: Current Status and Future Plans

    NASA Astrophysics Data System (ADS)

    Taylor, John

    2011-09-01

    We now know of over 500 planets orbiting stars other than our Sun. The jewels in the crown are the transiting planets, for these are the only ones whose masses and radii are measurable. They are fundamental for our understanding of the formation, evolution, structure and atmospheric properties of extrasolar planets. However, their characterization is not straightforward, requiring extremely high-precision photometry and spectroscopy as well as input from theoretical stellar models. I summarize the motivation and current status of a project to measure the physical properties of all known transiting planetary systems using homogeneous techniques (Southworth 2008, 2009, 2010, 2011 in preparation). Careful attention is paid to the treatment of limb darkening, contaminating light, correlated noise, numerical integration, orbital eccentricity and orientation, systematic errors from theoretical stellar models, and empirical constraints. Complete error budgets are calculated for each system and can be used to determine which type of observation would be most useful for improving the parameter measurements. Known correlations between the orbital periods, masses, surface gravities, and equilibrium temperatures of transiting planets can be explored more safely due to the homogeneity of the properties. I give a sneak preview of Homogeneous Studies Paper 4, which includes the properties of thirty transiting planetary systems observed by the CoRoT, Kepler and Deep Impact space missions. Future opportunities are discussed, plus remaining problems with our understanding of transiting planets. I acknowledge funding from the UK STFC in the form of an Advanced Fellowship.

  19. Toward the Infrared Spectrum of the Extrasolar Planet HD209458b

    NASA Astrophysics Data System (ADS)

    Deming, D.; Richardson, L. J.; Goukenleuque, C.; Harrington, J.; Wiedemann, G.

    2002-12-01

    We have conducted ground-based infrared spectroscopic observations during two secondary eclipses of the only known transiting extrasolar planet, HD209458b. We are using the technique of "occultation spectroscopy" (Richardson et al. 2003, Ap.J., in press) to separate the 2 to 4 micron spectrum of the planet from the combined light of the system. Frequent observations of a close comparison star (HD210483) allow us to remove the effects of the terrestrial atmosphere and minimize other errors in excess of the photon noise. Due to excellent observing conditions, we were able to acquire approximately 2500 spectra, equally divided between HD209458 and HD210483, using the SpeX spectrometer at the NASA IRTF on Mauna Kea in September 2001. We exploit the secondary eclipse - when the planet passes behind the star - to isolate the spectrum of the planet. Models of the exoplanet spectrum predict a maximum planet-to-star contrast in the L band near 3.9 microns, with peak contrast values in the approximate range from 3000 to 800 parts-per-million (ppm). Our 1-sigma error level is currently about 500 ppm - already sufficient to rule out the most optimistic contrast values. We are working to decorrelate the remaining noise sources from our data, and refine our analysis toward a measurement of the infrared spectrum of HD209458b.

  20. The presence of methane in the atmosphere of an extrasolar planet.

    PubMed

    Swain, Mark R; Vasisht, Gautam; Tinetti, Giovanna

    2008-03-20

    Molecules present in the atmospheres of extrasolar planets are expected to influence strongly the balance of atmospheric radiation, to trace dynamical and chemical processes, and to indicate the presence of disequilibrium effects. As molecules have the potential to reveal atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jupiter planets. As these bands can overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report a near-infrared transmission spectrum of the planet HD 189733b that shows the presence of methane. Additionally, a resolved water vapour band at 1.9 mum confirms the recent claim of water in this object. On thermochemical grounds, carbon monoxide is expected to be abundant in the upper atmosphere of hot-Jupiter planets, but is not identifiable here; therefore the detection of methane rather than carbon monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanism that leads to an enhancement of methane.

  1. ANALYSIS OF THE MOTION OF AN EXTRASOLAR PLANET IN A BINARY SYSTEM

    SciTech Connect

    Plávalová, Eva; Solovaya, Nina A. E-mail: solov@sai.msu.ru

    2013-11-01

    More than 10% of extra-solar planets (EPs) orbit in a binary or multiple stellar system. We investigated the motion of planets revolving in binary systems in the case of the three-body problem. We carried out an analysis of the motion of an EP revolving in a binary system with the following conditions: (1) a planet in a binary system revolves around one of the components (parent star); (2) the distance between the star's components is greater than that between the parent star and the orbiting planet (ratio of the semi-major axes is a small parameter); and (3) the mass of the planet is smaller than the mass of the stars, but is not negligible. The Hamiltonian of the system without short periodic terms was used. We expanded the Hamiltonian in terms of the Legendre polynomial and truncated after the second-order term, depending on only one angular variable. In this case, the solution of the system was obtained and the qualitative analysis of the motion was produced. We have applied this theory to real EPs and compared to the numerical integration. Analyses of the possible regions of motion are presented. It is shown that stable and unstable motions of EPs are possible. We applied our calculations to two binary systems hosting an EP and calculated the possible values for their unknown orbital elements.

  2. The Presence of Methane in the Atmosphere of an Extrasolar Planet

    NASA Technical Reports Server (NTRS)

    Swain, Mark R.; Vasisht, Gautam; Tinetti, Giovanna

    2008-01-01

    Molecules present in the atmospheres of extrasolar planets are expected to influence strongly the balance of atmospheric radiation, to trace dynamical and chemical processes, and to indicate the presence of disequilibrium effects. As molecules have the potential to reveal atmospheric conditions and chemistry, searching for them is a high priority. The rotational-vibrational transition bands of water, carbon monoxide and methane are anticipated to be the primary sources of non-continuum opacity in hot-Jupiter planets. As these bands can overlap in wavelength, and the corresponding signatures from them are weak, decisive identification requires precision infrared spectroscopy. Here we report a near-infrared transmission spectrum of the planet HD 189733b that shows the presence of methane. Additionally, a resolved water vapour band at 1.9 (micro)m confirms the recent claim4 of water in this object. On thermochemical grounds, carbon monoxide is expected to be abundant in the upper atmosphere of hot-Jupiter planets, but is not identifiable here; therefore the detection of methane rather than carbon monoxide in such a hot planet could signal the presence of a horizontal chemical gradient away from the permanent dayside, or it may imply an ill-understood photochemical mechanism that leads to an enhancement of methane.

  3. XUV-driven mass loss from extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Unruh, Y. C.; Koskinen, T. T.; Sanz-Forcada, J.

    2015-04-01

    Upper atmospheres of Hot Jupiters are subject to extreme radiation conditions that can result in rapid atmospheric escape. The composition and structure of the upper atmospheres of these planets are affected by the high-energy spectrum of the host star. This emission depends on stellar type and age, which are thus important factors in understanding the behaviour of exoplanetary atmospheres. In this study, we focus on Extrasolar Giant Planets (EPGs) orbiting K and M dwarf stars. XUV spectra for three different stars - ɛ Eridani, AD Leonis and AU Microscopii - are constructed using a coronal model. Neutral density and temperature profiles in the upper atmosphere of hypothetical EGPs orbiting these stars are then obtained from a fluid model, incorporating atmospheric chemistry and taking atmospheric escape into account. We find that a simple scaling based solely on the host star's X-ray emission gives large errors in mass loss rates from planetary atmospheres and so we have derived a new method to scale the EUV regions of the solar spectrum based upon stellar X-ray emission. This new method produces an outcome in terms of the planet's neutral upper atmosphere very similar to that obtained using a detailed coronal model of the host star. Our results indicate that in planets subjected to radiation from active stars, the transition from Jeans escape to a regime of hydrodynamic escape at the top of the atmosphere occurs at larger orbital distances than for planets around low activity stars (such as the Sun).

  4. THE PROJECT: an Observatory / Transport Spaceship for Discovering and Populating Habitable Extrasolar Terrestrial Planets

    NASA Astrophysics Data System (ADS)

    Kilston, S.

    1998-12-01

    Recent extrasolar planet discoveries and related progress in astrophysics have refined our knowledge of the implications of the Drake equation. The Space Interferometry Mission and the planned Terrestrial Planet Finder will deepen this understanding, and begin pointing the way to places we need to explore at closer range. If the correct resolution of the Fermi paradox regarding intelligent extraterrestrials (``where are they?") is found to lie in the actual scarcity of such beings, it may turn out that we are more advanced than most other life-forms in our galaxy. In this case, a main purpose in finding planets may be to find places for us to go: astronomy will once again play a major role in human navigation and migration. We describe a strawman design concept for an astronomical observatory ship designed for launch beyond our solar system within several hundred years. This ship design would employ plausible physics, biology, technology, sociology, and economics to carry one million passengers in a one-G environment shielded from space radiation. A cruising speed under 0.01 c, slower than in many science-fiction concepts, minimizes power requirements and the danger from collisional impacts. The ship would contain all subsystems needed to sustain multi-generational life on a voyage of thousands of years, as well as the observatories to identify for human settlement a habitable extrasolar planet. Even the modestly advanced technology described here could spread intelligent life throughout our galaxy within 40 million years, a very small fraction of the galaxy's age. Motivation for such an ambitious project is three-fold: expanding our knowledge of the universe, enlisting the efforts and enthusiasms of humankind toward a very grand goal which will stimulate progress in all aspects of our cultures and technologies, and participating in the process of spreading life so its survivability and fruition are enhanced.

  5. Search for 150 MHz radio emission from extrasolar planets in the TIFR GMRT Sky Survey

    NASA Astrophysics Data System (ADS)

    Sirothia, S. K.; Lecavelier des Etangs, A.; Gopal-Krishna; Kantharia, N. G.; Ishwar-Chandra, C. H.

    2014-02-01

    The ongoing radio continuum TIFR GMRT Sky Survey (TGSS) using the Giant Metrewave Radio Telescope (GMRT) at 150 MHz offers an unprecedented opportunity to undertake a fairly deep search for low-frequency radio emission from nearby extrasolar planets. Currently TGSS images are available for a little over a steradian, encompassing 175 confirmed exoplanetary systems. We have searched for their radio counterparts in the TGSS (150 MHz), supplemented with a search in the NRAO VLA Sky Survey (NVSS) and the VLA FIRST survey at 1.4 GHz. For 171 planetary systems, we find no evidence of radio emission in the TGSS maps, placing a 3σ upper limit between 8.7 mJy and 136 mJy (median ~24.8 mJy) at 150 MHz. These non-detections include the 55 Cnc system for which we place a 3σ upper limit of 28 mJy at 150 MHz. Nonetheless, for four of the extrasolar planetary systems, we find TGSS radio sources coinciding with or located very close to their coordinates. One of these is 61 Vir: for this system a large radio flux density was predicted in the scenario involving magnetosphere-ionosphere coupling and rotation-induced radio emission. We also found 150 MHz emissions toward HD 86226 and HD 164509, where strong radio emission can be produced by the presence of a massive satellite orbiting a rapidly rotating planet. We also detected 150 MHz emission within a synthesized beam from 1RXS1609 b, a pre-main-sequence star harboring a ~14 Jupiter mass planet (or a brown dwarf). With a bright X-ray-UV star and a high mass, the planet 1RXS1609 b presents the best characteristics for rotation-induced emissions with high radio power. Deeper high-resolution observations toward these planetary systems are needed to discriminate between the possibilities of background radio-source and radio-loud planets. At 1.4 GHz, radio emission toward the planet-harboring pulsar PSR B1620-26 is detected in the NVSS. Emissions at 1.4 GHz are also detected toward the very-hot-Jupiter WASP-77A b (in the FIRST survey

  6. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce, Jr.

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. The results are independent of particular model atmospheres, and in principle, the equilibrium composition along the pressure-temperature profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant S-bearing gas throughout substellar atmospheres and approximately represents the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer of weather in substellar atmospheres. Disequilibrium abundances of phosphine (PH3) approximately representative of the total atmospheric phosphorus inventory are expected to be mixed upward into the observable atmospheres of giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g., P2, PH3, PH 2, PH, and HCP) become increasingly important at high temperatures.

  7. ORBITAL MIGRATION OF INTERACTING LOW-MASS PLANETS IN EVOLUTIONARY RADIATIVE TURBULENT MODELS

    SciTech Connect

    Horn, Brandon; Mac Low, Mordecai-Mark; Lyra, Wladimir; Sandor, Zsolt E-mail: wlyra@amnh.org E-mail: zsolt.sandor@uibk.ac.at

    2012-05-01

    The torques exerted by a locally isothermal disk on an embedded planet lead to rapid inward migration. Recent work has shown that modeling the thermodynamics without the assumption of local isothermality reveals regions where the net torque on an embedded planet is positive, leading to outward migration of the planet. When a region with negative torque lies directly exterior to this, planets in the inner region migrate outward and planets in the outer region migrate inward, converging where the torque is zero. We incorporate the torques from an evolving non-isothermal disk into an N-body simulation to examine the behavior of planets or planetary embryos interacting in the convergence zone. We find that mutual interactions do not eject objects from the convergence zone. Small numbers of objects in a laminar disk settle into near resonant orbits that remain stable over the 10 Myr periods that we examine. However, either or both increasing the number of planets or including a correlated, stochastic force to represent turbulence drives orbit crossings and mergers in the convergence zone. These processes can build gas giant cores with masses of order 10 Earth masses from sub-Earth mass embryos in 2-3 Myr.

  8. The Astronomical Detection of Biosignatures on Extrasolar Terrestrial Planets: The Virtual Planetary Laboratory

    NASA Astrophysics Data System (ADS)

    Crisp, D.; Meadows, V. S.; Parkinson, C. D.; Allen, M. A.; Velusami, T.; Tinetti, G.; Rye, R.; Krelove, K.

    2003-05-01

    NASA and ESA are designing space-based observatories to detect and characterize extrasolar terrestrial planets. Because these systems will initially resolve planets only as point sources, we must learn to distinguish habitable worlds and to discriminate between planets with and without life based entirely on the interpretation of remote sensing observations of disk-averaged spectra. The Virtual Planetary Laboratory (VPL) is being developed to assess the information content of such observations and to optimize the designs and search strategies for future missions. The VPL is a suite of computer models that simulates environmental processes that contribute to a planet's spectrum. Its core consists of coupled radiative transfer, climate, and atmospheric chemistry models that have been validated in studies of the Earth and our neighboring planets. Geologic, biospheric, and exogenic modules are being added to simulate a broad range of environments on planets in orbit around stars with different luminosities and stellar types. A self consistent description of these physical, chemical, and biological processes is essential for assessing the detectability of spectral biosignatures because these processes can conspire to exaggerate or mask discriminating spectral features. Given initial conditions (stellar type, orbit characteristics, mass, radius, rotation rate, surface and atmospheric bulk composition, surface type, volatile inventory, etc.), the VPL marches forward in time to generate an equilibrium environment. It then produces a disk-averaged spectrum for a specified viewing geometry, processes this spectrum with an instrument simulator model, and analyzes it to assess the detectability of biosignatures with instruments like those being considered for NASA's Terrestrial Planet Finder and ESA's Darwin missions. Here, we review the objectives, scope, and architecture of the VPL, and summarize some preliminary results. This work was performed by the Jet Propulsion

  9. MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars

    NASA Astrophysics Data System (ADS)

    Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley

    2017-01-01

    Results from Kepler and ground-based exoplanet surveys suggest that M-dwarfs host numerous small sized planets. Additionally, the discovery of the Earth-sized exoplanets orbiting Proxima Centauri and Trappist 1 demonstrate that these stars can host terrestrial planets in their habitable zones. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining 1 m/s Doppler resolution to detect their planetary companions remains a challenge for instruments designed for sun-like stars. We describe a novel, high-cadence approach aimed at detecting and characterizing planets orbiting the closest low-mass stars to the Sun. MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm, where M-dwarfs are brightest. The spectrograph will be temperature controlled at 20C +/- 10mk and in a vacuum chamber which maintains a pressure below 0.01 mbar while using a Fabry-Perot etalon and U/Ne lamp for wavelength calibration. The spectrometer will operate with a robotic, 0.7-meter telescope at Mt. Hopkins, Arizona. We expect first light in 2017.

  10. Detecting Close-In Extrasolar Giant Planets with the Kepler Photometer via Scattered Light

    NASA Astrophysics Data System (ADS)

    Jenkins, J. M.; Doyle, L. R.; Kepler Discovery Mission Team

    2003-05-01

    NASA's Kepler Mission will be launched in 2007 primarily to search for transiting Earth-sized planets in the habitable zones of solar-like stars. In addition, it will be poised to detect the reflected light component from close-in extrasolar giant planets (CEGPs) similar to 51 Peg b. Here we use the DIARAD/SOHO time series along with models for the reflected light signatures of CEGPs to evaluate Kepler's ability to detect such planets. We examine the detectability as a function of stellar brightness, stellar rotation period, planetary orbital inclination angle, and planetary orbital period, and then estimate the total number of CEGPs that Kepler will detect over its four year mission. The analysis shows that intrinsic stellar variability of solar-like stars is a major obstacle to detecting the reflected light from CEGPs. Monte Carlo trials are used to estimate the detection threshold required to limit the total number of expected false alarms to no more than one for a survey of 100,000 stellar light curves. Kepler will likely detect 100-760 51 Peg b-like planets by reflected light with orbital periods up to 7 days. LRD was supported by the Carl Sagan Chair at the Center for the Study of Life in the Universe, a division of the SETI Institute. JMJ received support from the Kepler Mission Photometer and Science Office at NASA Ames Research Center.

  11. Characterization of Low-mass K2 planet hosts using Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodríguez-Martínez, Romy; Ballard, Sarah

    2017-01-01

    The raw number of discovered exoplanets now exceeds several thousand, but we must understand the stars if we aim to understand their planets in detail. Of particular interest are M dwarf stars, which are often favored for exoplanet study because (1) they host small planets in greatest abundance, (2) they make up about 70% of stars in our galaxy, and (3) the planets that orbit them that are comparatively easier to find and study than planets around larger stars. Our work aims to characterize the infrared spectra of 50 M dwarfs with new and unstudied transiting planets discovered by NASA’s K2 Mission. We employ empirical relations from the literature with magnesium, aluminum and sodium absorption lines in H and K band to determine the temperatures, radii and luminosities. In addition, we measure the deformation of the spectra in K band by water (another empirical metric for M dwarfs) which, in tandem with absorption features, is linked to [Fe/H] metallicity. We have found from a preliminary sample of 36 stars, that the temperatures range from 2,900 to 4,100 K, with radii between 0.2 R⊙ to 0.6R⊙ and log(L/L⊙) values from -3.4 to -0.5. The determination of all these properties improves our understanding of the planet’s properties, such as its size, mass, and surface temperature, and provides clues about the formation of the star and its planets.

  12. A lower radius and mass for the transiting extrasolar planet HAT-P-8 b

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Southworth, J.; Ciceri, S.; Fortney, J. J.; Morley, C. V.; Dittmann, J. A.; Tregloan-Reed, J.; Bruni, I.; Barbieri, M.; Evans, D. F.; D'Ago, G.; Nikolov, N.; Henning, Th.

    2013-03-01

    Context. The extrasolar planet HAT-P-8 b was thought to be one of the more inflated transiting hot Jupiters. Aims: By using new and existing photometric data, we computed precise estimates of the physical properties of the system. Methods: We present photometric observations comprising eleven light curves covering six transit events, obtained using five medium-class telescopes and telescope-defocussing technique. One transit was simultaneously obtained through four optical filters, and two transits were followed contemporaneously from two observatories. We modelled these and seven published datasets using the jktebop code. The physical parameters of the system were obtained from these results and from published spectroscopic measurements. In addition, we investigated the theoretically-predicted variation of the apparent planetary radius as a function of wavelength, covering the range 330-960 nm. Results: We find that HAT-P-8 b has a significantly lower radius (1.321 ± 0.037 RJup) and mass (1.275 ± 0.053 MJup) compared to previous estimates (1.50-0.06+0.08 R_{Jup} and 1.52-0.16+0.18 M_{Jup} respectively). We also detect a radius variation in the optical bands that, when compared with synthetic spectra of the planet, may indicate the presence of a strong optical absorber, perhaps TiO and VO gases, near the terminator of HAT-P-8 b. Conclusions: These new results imply that HAT-P-8 b is not significantly inflated, and that its position in the planetary mass-radius diagram is congruent with those of many other transiting extrasolar planets. Full Table 2 is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A11

  13. How the presence of a gas giant affects the formation of mean-motion resonances between two low-mass planets in a locally isothermal gaseous disc

    NASA Astrophysics Data System (ADS)

    Podlewska-Gaca, E.; Szuszkiewicz, E.

    2014-03-01

    In this paper we investigate the possibility of a migration-induced resonance locking in systems containing three planets, namely an Earth analogue (1 M⊕), a super-Earth (4 M⊕) and a gas giant (one Jupiter mass). The planets have been listed in order of increasing orbital periods. All three bodies are embedded in a locally isothermal gaseous disc and orbit around a solar mass star. We are interested in answering the following questions: will the low-mass planets form the same resonant structures with each other in the vicinity of the gas giant as in the case when the gas giant is absent? More in general, how will the presence of the gas giant affect the evolution of the two low-mass planets? When there is no gas giant in the system, it has been already shown that if the two low-mass planets undergo a convergent differential migration, they will capture each other in a mean-motion resonance. For the choices of disc parameters and planet masses made in this paper, the formation of the 5:4 resonance in the absence of the Jupiter has been observed in a previous investigation and confirmed here. In this work we add a gas giant on the most external orbit of the system in such a way that its differential migration is convergent with the low-mass planets. We show that the result of this set-up is the speeding up of the migration of the super-Earth and, after that, all three planets become locked in a triple mean-motion resonance. However, this resonance is not maintained due to the low-mass planet eccentricity excitation, a fact that leads to close encounters between planets and eventually to the ejection from the internal orbits of one or both low-mass planets. We have observed that the ejected low-mass planets can leave the system, fall into a star or become the external planet relative to the gas giant. In our simulations the latter situation has been observed for the super-Earth. It follows from the results presented here that the presence of a Jupiter-like planet

  14. The detectability of extrasolar terrestrial and giant planets during their luminous final accretion

    NASA Technical Reports Server (NTRS)

    Stern, S. Alan

    1994-01-01

    One of the outstanding scientific questions in astronomy is the frequency at which solar systems form. Answering this question is an observational challenge because extrasolar planets are intrinsically difficult to directly detect. The direct detectability of planets is examined during the short but unique epoch of giant impacts that is a hallmark of the standard theory of planetary formation. Sufficiently large impacts during this era are capable of creating a luminous, 1500-2500 K photosphere, which can persist for timescales exceeding 103 years in some cases. The detectability of such events and the number of young stars one would need to examine to expect to find a luminous terrestrial class planet after a giant impact are examined. With emerging IR interferometric technology, thermally-luminous earth-sized objects can be detected in nearby star forming regions in 1-2 nights observing time. Unfortunately, predictions indicate that approximately 250 young stars would have to be searched to expect to find one hot, terrestrial-sized planet. By comparison, the detection of Saturn and Uranus/Neptune-sized planets after a giant impact requires only 1-2 hours of observing time. A single Keck-class telescope should be able to determine whether such planets are common in the nearest star forming regions by examining about less than 100 young stars over a few tens of nights. The results obtained herein suggest a new strategy for the detection of solar systems with the potential for the observational confirmation of the standard theory of late-stage planetary accretion.

  15. ABUNDANCES OF REFRACTORY ELEMENTS FOR G-TYPE STARS WITH EXTRASOLAR PLANETS

    SciTech Connect

    Kang, Wonseok; Lee, Sang-Gak; Kim, Kang-Min

    2011-08-01

    We confirm the difference in chemical abundance between stars with and without exoplanets and present the relation between chemical abundances and physical properties of exoplanets, such as planetary mass and the semimajor axis of planetary orbit. We obtained the spectra of 52 G-type stars from the Bohyunsan Optical Astronomy Observatory (BOAO) Echelle Spectrograph and carried out abundance analyses for 12 elements: Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Co, and Ni. We first found that the [Mn/Fe] ratios of planet-host stars are higher than those of comparison stars over the entire metallicity range, and we then found that in metal-poor stars of [Fe/H] < -0.4 the abundance difference was larger than in metal-rich samples, especially for the elements of Mg, Al, Sc, Ti, V, and Co. After examining the relation between planet properties and metallicities of planet-host stars, we observed that planet-host stars with low metallicities tend to have several low-mass planets (planet.

  16. Cassini VIMS Spectra of the Earth from Saturn Orbit: an Extrasolar Planet Analog

    NASA Astrophysics Data System (ADS)

    Clark, Roger Nelson; Hedman, Matthew M.; Brown, Robert H.; Filacchione, Gianrico; Nicholson, Philip D.; Barnes, Jason W.

    2015-11-01

    Cassini VIMS has obtained spectra of the Earth while in Saturn orbit making observations of the Saturn system when the sun was behind Saturn. The observations, made in September 15, 2006 and July 19, 2013 are visible-near-infrared spectra (0.35 - 5.1 microns) of the Earth obtained at the furthest distance from the sun to date. The Earth was sub-pixel, 0.0088 milliradian in 2013 and 0.0085 milliradian in 2006, and the signal-to-noise ratio is low. A VIMS pixel IFOV is 0.25 x 0.5milliradian. As such, these data are likely representative of the first spectra that might be obtained of extrasolar terrestrial-like planets. What information can be derived from such remote observations? The observation made in 2013 had a phase angle of 97 degrees with multipleimage cubes providing a higher S/N average. The 2006 observation was made at a phase angle of 33 degrees but is a single cube, 1 pixel. The 2006 observation has Africa dominant on the disk, while the 2013 observation is mostly ocean with part of South America in sunlight. The 2013 visible data show clear signatures of Rayleigh scattering but this blue coloring can be from both the atmosphere and/or ocean. The 2006 data show a flatter spectrum, a signature of land. Both observations include the Moon in the field of view. The 0.35-2.5 micron spectral range shows significant absorption due to H2O liquid + gas. The thermal signature is very strong with the highest S/N of the entire spectrum. The best fit preliminary temperatures are 280 K with a small 380 K component (from the Moon), putting at least some of the planet in the goldilocks zone. There is strong absorption by CO2 at 4.25 microns in both 2013 and 2006 data. There is possible detection of chlorophyll and oxygen emission but higher S/N would be required for a positive detection. The spectral profile of the thermal emission could be used to constrain the diameter of the planet. If such spectra were obtained of an extrasolar planet, we could conclude that the

  17. Thermal-orbital coupled tidal heating and habitability of Martian-sized extrasolar planets around M stars

    SciTech Connect

    Shoji, D.; Kurita, K.

    2014-07-01

    M-type stars are good targets in the search for habitable extrasolar planets. Due to their low effective temperatures, the habitable zone of M stars is very close to the stars themselves. For planets that are close to their stars, tidal heating plays an important role in thermal and orbital evolutions, especially when the planet's orbit has a relatively large eccentricity. Although tidal heating interacts with the thermal state and the orbit of the planet, such coupled calculations for extrasolar planets around M stars have not been conducted. We perform coupled calculations using simple structural and orbital models and analyze the thermal state and habitability of a terrestrial planet. Considering this planet to be Martian-sized, the tide heats up and partially melts the mantle, maintaining an equilibrium state if the mass of the star is less than 0.2 times the mass of the Sun and the initial eccentricity of the orbit is more than 0.2. The reduction of heat dissipation due to the melted mantle allows the planet to stay in the habitable zone for more than 10 Gyr even though the orbital distance is small. The surface heat flux at the equilibrium state is between that of Mars and Io. The thermal state of the planet mainly depends on the initial value of the eccentricity and the mass of the star.

  18. DETECTION AND CHARACTERIZATION OF EXTRASOLAR PLANETS THROUGH MEAN-MOTION RESONANCES. I. SIMULATIONS OF HYPOTHETICAL DEBRIS DISKS

    SciTech Connect

    Tabeshian, Maryam; Wiegert, Paul A.

    2016-02-20

    The gravitational influence of a planet on a nearby disk provides a powerful tool for detecting and studying extrasolar planetary systems. Here we demonstrate that gaps can be opened in dynamically cold debris disks at the mean-motion resonances of an orbiting planet. The gaps are opened away from the orbit of the planet itself, revealing that not all disk gaps need contain a planetary body. These gaps are large and deep enough to be detectable in resolved disk images for a wide range of reasonable disk-planet parameters, though we are not aware of any such gaps detected to date. The gap shape and size are diagnostic of the planet location, eccentricity and mass, and allow one to infer the existence of unseen planets, as well as many important parameters of both seen and unseen planets in these systems. We present expressions to allow the planetary mass and semimajor axis to be calculated from observed gap width and location.

  19. Volatile Delivery to Planets from Water-rich Planetesimals around Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ciesla, Fred J.; Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-05-01

    Most models of volatile delivery to accreting terrestrial planets assume that the carriers for water are similar in water content to the carbonaceous chondrites in our solar system. Here we consider how the water content of planetesimals may be higher in many planetary systems, as they could lack the short-lived radionuclides that drove water loss in carbonaceous chondrites in our solar system. Using N-body simulations, we explore how planetary accretion would be different if bodies beyond the water line contained a water-mass fraction consistent with chemical equilibrium calculations, and more similar to comets, as opposed to the more traditional water-depleted values. We apply this model to consider planet formation around stars of different masses and identify trends in the properties of habitable zone planets and planetary system architecture that could be tested by ongoing exoplanet census data collection. Comparison of such data with the model-predicted trends will serve to evaluate how well the N-body simulations and the initial conditions used in studies of planetary accretion can be used to understand this stage of planet formation.

  20. VOLATILE DELIVERY TO PLANETS FROM WATER-RICH PLANETESIMALS AROUND LOW-MASS STARS

    SciTech Connect

    Ciesla, Fred J.; Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-05-01

    Most models of volatile delivery to accreting terrestrial planets assume that the carriers for water are similar in water content to the carbonaceous chondrites in our solar system. Here we consider how the water content of planetesimals may be higher in many planetary systems, as they could lack the short-lived radionuclides that drove water loss in carbonaceous chondrites in our solar system. Using N-body simulations, we explore how planetary accretion would be different if bodies beyond the water line contained a water-mass fraction consistent with chemical equilibrium calculations, and more similar to comets, as opposed to the more traditional water-depleted values. We apply this model to consider planet formation around stars of different masses and identify trends in the properties of habitable zone planets and planetary system architecture that could be tested by ongoing exoplanet census data collection. Comparison of such data with the model-predicted trends will serve to evaluate how well the N-body simulations and the initial conditions used in studies of planetary accretion can be used to understand this stage of planet formation.

  1. Constraints on planetary formation from the discovery & study of transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Triaud, A. H. M. J.

    2011-08-01

    After centuries of wondering about the presence of other worlds outside our Solar System, the first extrasolar planets were discovered about fifteen years ago. Since the quest continued. The greatest discovery of our new line of research, exoplanetology, has probably been the large diversity that those new worlds have brought forward; a diversity in mass, in size, in orbital periods, as well as in the architecture of the systems we discover. Planets very different from those composing our system have been detected. As such, we found hot Jupiters, gas giants which orbital period is only of a few days, mini-Neptunes, bodies five to ten time the mass of the Earth but covered by a thick gas layer, super-Earths of similar masses but rocky, lava worlds, and more recently, maybe the first ocean planet. Many more surprises probably await us. This thesis has for subject this very particular planet class: the hot Jupiters. Those astonishing worlds are still badly understood. Yet, thanks to the evolution of observational techniques and of the treatment of their signals, we probably have gathered as much knowledge from these worlds, than what was known of our own gas giants prior to their visit by probes. They are laboratories for a series of intense physical phenomena caused by their proximity to their star. Notably, these planets are found in average much larger than expected. In addition to these curiosities, their presence so close to their star is abnormal, the necessary conditions for the formation of such massive bodies, this close, not being plausible. Thus it is more reasonable to explain their current orbits by a formation far from their star, followed by an orbital migration. It is on this last subject that this thesis is on: the origin of hot Jupiters. The laws of physics are universal. Therefore, using the same physical phenomena, we need to explain the existence of hot Jupiters, while explaining why the Jupiter within our Solar System is found five times the

  2. TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

    NASA Astrophysics Data System (ADS)

    Hollis, M. D. J.; Tessenyi, M.; Tinetti, G.

    2013-10-01

    The TAU code is a 1D line-by-line radiative transfer code, which is generally applicable for modelling transmission spectra of close-in extrasolar planets. The inputs are the assumed pressure-temperature profile of the planetary atmosphere, the continuum absorption coefficients and the absorption cross-sections for the trace molecular absorbers present in the model, as well as the fundamental system parameters taken from the published literature. The program then calculates the optical path through the planetary atmosphere of the radiation from the host star, and quantifies the absorption due to the modelled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++, parallelised using OpenMP, and is available for public download and use from http://www.ucl.ac.uk/exoplanets/. Running time: From 0:5 to 500 s, depending on run parameters

  3. TAU: A 1D radiative transfer code for transmission spectroscopy of extrasolar planet atmospheres

    NASA Astrophysics Data System (ADS)

    Hollis, M. D. J.; Tessenyi, M.; Tinetti, G.

    2014-02-01

    The TAU code is a 1D line-by-line radiative transfer code, which is generally applicable for modeling transmission spectra of close-in extrasolar planets. The inputs are the assumed temperature-pressure profile of the planetary atmosphere, the continuum absorption coefficients and the absorption cross-sections for the trace molecular absorbers present in the model, as well as the fundamental system parameters taken from the published literature. The program then calculates the optical path through the planetary atmosphere of the radiation from the host star, and quantifies the absorption due to the modeled composition in a transmission spectrum of transit depth as a function of wavelength. The code is written in C++, parallelized using OpenMP, and is available for public download and use from http://www.ucl.ac.uk/exoplanets/.

  4. Optical and Near-UV Observations of the Transiting Extrasolar Planet TrES-4b

    NASA Astrophysics Data System (ADS)

    Smith, Carter-Thaxton; Turner, J.; Carleton, T.; Crawford, B.; Guvenen, B.; Hardegree-Ullman, K.; Small, L.; Towner, A. P.; Walker-LaFollette, A.; Henz, T.

    2013-01-01

    Using the Steward Observatory 61” Kuiper Telescope, The University of Arizona Astronomy Club conducted photometric observations of the transiting extrasolar planet TrES-4b as part of the Exoplanet Observation Project. Observations were made in the Bessell U, Harris B, and Harris R filters. Initial observations were made in 2009, with follow up observations in 2011. Basic data reduction and photometry was done using IRAF and determination of transit parameters was done using Transit Analysis Package (TAP) and JKTEBOP transit modeling code. We present an updated planetary mass, radius, density, surface gravity, Safronov number, equilibrium temperature, orbital distance, and orbital inclination for TrES-4b. In addition, we also searched for asymmetries between the near-UV and optical light curves. This project, started in spring 2009, has introduced many undergraduate students to research and given them valuable experience with data reduction and observation techniques.

  5. The SOPHIE search for northern extrasolar planets. III. A Jupiter-mass companion around HD 109246

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Eggenberger, A.; Santos, N. C.; Lovis, C.; Bouchy, F.; Hébrard, G.; Arnold, L.; Bonfils, X.; Delfosse, X.; Desort, M.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Gallenne, A.; Lagrange, A. M.; Moutou, C.; Udry, S.; Pepe, F.; Perrier, C.; Perruchot, S.; Pont, F.; Queloz, D.; Santerne, A.; Ségransan, D.; Vidal-Madjar, A.

    2010-11-01

    We report the detection of a Jupiter-mass planet discovered with the SOPHIE spectrograph mounted on the 1.93-m telescope at the Haute-Provence Observatory. The new planet orbits HD 109246, a G0V star slightly more metallic than the Sun. HD 109246b has a minimum mass of 0.77 MJup, an orbital period of 68 days, and an eccentricity of 0.12. It is placed in a sparsely populated region of the period distribution of extrasolar planets. We also present a correction method for the so-called seeing effect that affects the SOPHIE radial velocities. We complement this discovery announcement with a description of some calibrations that are implemented in the SOPHIE automatic reduction pipeline. These calibrations allow the derivation of the photon-noise radial velocity uncertainty and some useful stellar properties (v sin i, [Fe/H], log R’HK) directly from the SOPHIE data. Based on observations made with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS).RV tables (Tables C.1 and C.2) are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/523/A88

  6. The Very Low Albedo of an Extrasolar Planet: MOST Space-based Photometry of HD 209458

    NASA Astrophysics Data System (ADS)

    Rowe, Jason F.; Matthews, Jaymie M.; Seager, Sara; Miller-Ricci, Eliza; Sasselov, Dimitar; Kuschnig, Rainer; Guenther, David B.; Moffat, Anthony F. J.; Rucinski, Slavek M.; Walker, Gordon A. H.; Weiss, Werner W.

    2008-12-01

    Measuring the albedo of an extrasolar planet provides insight into its atmospheric composition and its global thermal properties, including heat dissipation and weather patterns. Such a measurement requires very precise photometry of a transiting system, fully sampling many phases of the secondary eclipse. Space-based optical photometry of the transiting system HD 209458 from the MOST (Microvariablity and Oscillations of Stars) satellite, spanning 14 and 44 days in 2004 and 2005, respectively, allows us to set a sensitive limit on the optical eclipse of the hot exosolar giant planet in this system. Our best fit to the observations yields a flux ratio of the planet and star of 7 +/- 9 ppm (parts per million), which corresponds to a geometric albedo through the MOST bandpass (400-700 nm) of Ag = 0.038 +/- 0.045. This gives a 1 σ upper limit of 0.08 for the geometric albedo and a 3 σ upper limit of 0.17. HD 209458b is significantly less reflective than Jupiter (for which Ag would be about 0.5). This low geometric albedo rules out the presence of bright reflective clouds in this exoplanet's atmosphere. We determine refined parameters for the star and exoplanet in the HD 209458 system based on a model fit to the MOST light curve. MOST is a Canadian Space Agency mission, operated jointly by Dynacon, Inc., and the Universities of Toronto and British Columbia, with assistance from the University of Vienna.

  7. The SOPHIE search for northern extrasolar planets. X. Detection and characterization of giant planets by the dozen

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Arnold, L.; Forveille, T.; Correia, A. C. M.; Laskar, J.; Bonfils, X.; Boisse, I.; Díaz, R. F.; Hagelberg, J.; Sahlmann, J.; Santos, N. C.; Astudillo-Defru, N.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Delfosse, X.; Deleuil, M.; Demangeon, O.; Ehrenreich, D.; Gregorio, J.; Jovanovic, N.; Labrevoir, O.; Lagrange, A.-M.; Lovis, C.; Lozi, J.; Moutou, C.; Montagnier, G.; Pepe, F.; Rey, J.; Santerne, A.; Ségransan, D.; Udry, S.; Vanhuysse, M.; Vigan, A.; Wilson, P. A.

    2016-04-01

    We present new radial velocity measurements of eight stars that were secured with the spectrograph SOPHIE at the 193 cm telescope of the Haute-Provence Observatory. The measurements allow detecting and characterizing new giant extrasolar planets. The host stars are dwarfs of spectral types between F5 and K0 and magnitudes of between 6.7 and 9.6; the planets have minimum masses Mp sin i of between 0.4 to 3.8 MJup and orbitalperiods of several days to several months. The data allow only single planets to be discovered around the first six stars (HD 143105, HIP 109600, HD 35759, HIP 109384, HD 220842, and HD 12484), but one of them shows the signature of an additional substellar companion in the system. The seventh star, HIP 65407, allows the discovery of two giant planets that orbit just outside the 12:5 resonance in weak mutual interaction. The last star, HD 141399, was already known to host a four-planet system; our additional data and analyses allow new constraints to be set on it. We present Keplerian orbits of all systems, together with dynamical analyses of the two multi-planet systems. HD 143105 is one of the brightest stars known to host a hot Jupiter, which could allow numerous follow-up studies to be conducted even though this is not a transiting system. The giant planets HIP 109600b, HIP 109384b, and HD 141399c are located in the habitable zone of their host star. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (programs 07A.PNP.CONS to 15A.PNP.CONS).Full version of the SOPHIE measurements (Table 1) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/588/A145

  8. The SOPHIE search for northern extrasolar planets. II. A multiple planet system around HD 9446

    NASA Astrophysics Data System (ADS)

    Hébrard, G.; Bonfils, X.; Ségransan, D.; Moutou, C.; Delfosse, X.; Bouchy, F.; Boisse, I.; Arnold, L.; Desort, M.; Díaz, R. F.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Lovis, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Udry, S.; Vidal-Madjar, A.

    2010-04-01

    We report the discovery of a planetary system around HD 9446, performed from radial velocity measurements secured with the spectrograph SOPHIE at the 193-cm telescope of the Haute-Provence Observatory for more than two years. At least two planets orbit this G5V, active star: HD 9446b has a minimum mass of 0.7 MJup and a slightly eccentric orbit with a period of 30 days, whereas HD 9446c has a minimum mass of 1.8 MJup and a circular orbit with a period of 193 days. As for most of the known multiple planet systems, the HD 9446-system presents a hierarchical disposition with a massive outer planet and a lighter inner planet. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE Consortium (program 07A.PNP.CONS). The full version of Table 1 (SOPHIE measurements of HD 9446) is only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/513/A69

  9. On-sky Doppler performance of TOU optical very high-resolution spectrograph for detecting low-mass planets

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Sithajan, Sirinrat; Singer, Michael A.; Powell, Scott; Varosi, Frank; Zhao, Bo; Schofield, Sidney; Liu, Jian; Grieves, Nolan; Cassette, Anthony; Avner, Louis; Jakeman, Hali; Muterspaugh, Matthew; Williamson, Michael; Barnes, Rory

    2016-08-01

    The TOU robotic, compact very high resolution optical spectrograph (R=100,000, 0.38-0.9 microns) has been fully characterized at the 2 meter Automatic Spectroscopy Telescope (AST) at Fairborn Observatory in Arizona during its pilot survey of 12 bright FGK dwarfs in 2015. This instrument has delivered sub m/s Doppler precision for bright reference stars (e.g., 0.7 m/s for Tau Ceti over 60 days) with 5-30 min exposures and 0.7 m/s long-term instrument stability, which is the best performance among all of the known Doppler spectrographs to our knowledge. This performance was achieved by maintaining the instrument in a very high vacuum of 1 micron torr and about 0.5 mK (RMS) long-term temperature stability through an innovative close-loop instrument bench temperature control. It has discovered a 21 Earth-mass planet (P=43days) around a bright K dwarf and confirmed three super-Earth planetary systems, HD 1461, 190360 and HD 219314. This instrument will be used to conduct the Dharma Planet Survey (DPS) in 2016-2019 to monitor 100 nearby very bright FGK dwarfs (most of them brighter than V=8) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. With very high RV precision and high cadence ( 100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The survey also provides the largest single homogenous high precision RV sample of nearby stars for studying low mass planet populations and constraining various planet formation models. Instrument on-sky performance is summarized.

  10. The Dharma Planet Survey of Low-mass and Habitable Rocky Planets around Nearby Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Ge, Jian; Ma, Bo; Jeram, Sarik; Sithajan, Sirinrat; Singer, Michael; Muterspaugh, Matthew W.; Varosi, Frank; Schofield, Sidney; Liu, Jian; Kimock, Benjamin; Powell, Scott; Williamson, Michael W.; Herczeg, Aleczander; Grantham, Jim; Stafford, Greg; Hille, Bruce; Rosenbaum, Gary; Savage, David; Bland, Steve; Hoscheidt, Joseph; Swindle, Scott; Waidanz, Melanie; Petersen, Robert; Grieves, Nolan; Zhao, Bo; Cassette, Anthony; Chun, Andrew; Avner, Louis; Barnes, Rory; Tan, Jonathan C.; Lopez, Eric; Dai, Ruijia

    2017-01-01

    The Dharma Planet Survey (DPS) aims to monitor ~150 nearby very bright FGK dwarfs (most of them brighter than V=7) during 2016-2019 using the TOU optical very high resolution spectrograph (R~100,000, 380-900nm) at the dedicated 50-inch Robotic Telescope on Mt. Lemmon. Operated in high vacuum (<0.01mTorr) with precisely controlled temperature (~1 mK), TOU has delivered ~ 0.5 m/s (RMS) long-term instrument stability, which is a factor of two times more stable than any of existing Doppler instruments to our best knowledge. DPS aims at reaching better than 0.5 m/s (a goal of 0.2 m/s) Doppler measurement precision for bright survey targets. With very high RV precision and high cadence (~100 observations per target randomly spread over 450 days), a large number of rocky planets, including possible habitable ones, are expected to be detected. The discovery of a Neptune mass planet and early survey results will be announced.

  11. Study of Extra-Solar Planets with the Advanced Fiber Optic Echelle

    NASA Technical Reports Server (NTRS)

    Noyes, Robert W.; Boyce, Joseph M. (Technical Monitor)

    2002-01-01

    This is the final report of NASA Grant NAG5-7505, for 'Study of Extra-solar Planets with the Advanced Fiber Optic Echelle'. This program was funded in response to our proposal submitted under NASA NRA 97-OSS-06, with a total period of performance from June 1, 1998 through Feb 28 2002. Principal Investigator is Robert W. Noyes; co-Investigators are Sylvain G. Korzennik (SAO), Peter Niserison (SAO), and Timothy M. Brown (High Altitude Observatory). Since the start of this program we have carried out more than 30 observing runs, typically of 5 to 7 days duration. We obtained a total of around 2000 usable observations of about 150 stars, where a typical observation consists of 3 exposures of 10 minutes each. Using this data base we detected thc two additional planetary companions to the star Upsilon Andromedae. This detection was made independently of, and essentially simultaneously with, a similar detection by the Berkeley group (Marcy et al): the fact that two data sets were completely independent and gave essentially the same orbital parameters for this three-planet system gave a strong confirmation of this important result. We also extended our previous detection of the planet orbiting Rho Coronae Borealis to get a better determination of its orbital eccentricity: e=0.13 +/- 0.05. We detected a new planet in orbit around the star HD 89744, with orbital period 256 days, semi-major axis 0.88 AU, eccentricity 0.70, and minimum mass m sini = 7.2 m(sub Jup). This discovery is significant because of the very high orbital eccentricity, arid also because HD 89744 has both high metallicity [Fe/H] and at the same time a low [C/Fe] abundance ratio.

  12. A CORRELATION BETWEEN HOST STAR ACTIVITY AND PLANET MASS FOR CLOSE-IN EXTRASOLAR PLANETS?

    SciTech Connect

    Poppenhaeger, K.; Schmitt, J. H. M. M.

    2011-07-01

    The activity levels of stars are influenced by several stellar properties, such as stellar rotation, spectral type, and the presence of stellar companions. Analogous to binaries, planetary companions are also thought to be able to cause higher activity levels in their host stars, although at lower levels. Especially in X-rays, such influences are hard to detect because coronae of cool stars exhibit a considerable amount of intrinsic variability. Recently, a correlation between the mass of close-in exoplanets and their host star's X-ray luminosity has been detected, based on archival X-ray data from the ROSAT All-Sky Survey. This finding has been interpreted as evidence for star-planet interactions. We show in our analysis that this correlation is caused by selection effects due to the flux limit of the X-ray data used and due to the intrinsic planet detectability of the radial velocity method, and thus does not trace possible planet-induced effects. We also show that the correlation is not present in a corresponding complete sample derived from combined XMM-Newton and ROSAT data.

  13. Search for Radio Emissions from Extrasolar Planets: Recording and Software Correlation

    NASA Astrophysics Data System (ADS)

    Kuiper, T.; Farrell, W.; Lazio, J.; Majid, W.; Naudet, C.; Treumann, R.; Winterhalter, D.; Zarka, P.

    2005-05-01

    Theory and observations of solar planets show that extra-solar planets probably emit electron-cyclotron (EC) maser emission and that it may in some cases be orders of magnitude stronger than that from Jupiter. Nevertheless, at the Earth, such signals will be barely detectable. It will not be possible to observe them with university-class telescopes such as are used to study Jupiter. It will require the largest meter wavelength telescopes and antenna time will have to be used efficiently. EC emission is highly dynamic in time with time scales of milliseconds to hours and in frequency on scales of less than one to many tens of MHz. With a hardware signal processor configured to record data with a particular resolution and number of frequency bins, data with other time and frequency characters are not resolved or lost. Currently, the GMRT is the most sensitive radio telescope for extrasolar planet studies. With the availability of the Mark5 VLBI recorder, it is now possible to record both polarizations from all 30 antennas over a 12 hr observing run, with the full 4 bits per sample, on ten disk packs. Of course, various trade-offs can be made to reduce the number of disk packs but it is clear that it is possible to record the raw digited data for later processing. The only serious issue is how much of what kind of RFI is tolerable with only four bit samples. JPL has a software correlator (SoftC) now used routinely in the Deep Space Network. It runs on a Beowulf cluster. Also, JPL operates a much larger cluster for research on which SoftC can run. Besides being able to re-examine the data with different time and frequency resolutions, the baselines can also be phased or weighted to null out confusion caused by intense radio sources. We have obtained data from GMRT in this mode and the results of preliminary analysis is described in another paper at this meeting.

  14. Gas-Assisted Capture of Earth-sized Moons around Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Williams, D. W.; Sands, B. L.

    2001-11-01

    Today nearly 20 Jupiter-sized planets are known to orbit within or near the habitable zones of their parent stars [see Williams D.W. and Pollard, D. 2001. submitted Inter. J. Astrobiology]. Some of these planets might support life on their moons if their moons are able to form and hold onto sizeable atmospheres. Moons larger than 0.2 Mearth should have little trouble holding their atmospheres for billions of years [Williams D.W., Kasting, J.F., & Wade R.A. 1997. Nature 385,234]. But forming moons of this size through pair-wise accretion of small bodies in low-mass circum-planetary nebulas may be difficult; Ganymede (0.03 Mearth) was the largest moon to form out of a circum-planetary nebula in the Solar System. A more plausible scenario is for giant moons to be captured through collision of an earth-sized planetary body with a gaseous proto-planetary disk around a giant planet, as is thought to have occurred to form Triton around Neptune [McKinnon, W.B., & Leith, A.C. 1995. Icarus 118,392]. Such collisions can remove enormous amounts of energy from the impacting body and often result in a bound satellite on a near-circular orbit. Here we demonstrate that for a reasonable set of nebula parameters such captured moons can avoid spiraling into their planets on timescales comparable to or greater than the lifetime of a circum-planetary nebula.

  15. Characterizing Extrasolar Planets from Transit Light Curves obtained at the Universidad de Monterrey Observatory

    NASA Astrophysics Data System (ADS)

    Sada, Pedro V.; Ramón-Fox, Felipe G.

    2014-11-01

    At the Universidad de Monterrey Observatory (MPC 720) we have been recording extrasolar planet transit light curves with telescopes of modest size and standard photometric filters since 2005. In our archives we have over 300 transits of over 70 known systems. Our goal is to combine individual transit light curves of the same system to increase the S/N of the data. We then analyze it together with the radial velocity information from the literature in order to confirm, improve or revise the main parameters that characterize the transiting system. It is important to continue observing these systems not only to improve and refine our understanding of them, but also to record any possible transient phenomenon (e.g. star spots) and monitor for possible period changes, as reflected in the mid-transit times, due to the gravitational influence of additional planets in the system. In this presentation we report our first results from this project. We have successfully combined light curves for HAT-P-12 (5), HAT-P-13 (7), HAT-P-16 (4), HAT-P-23 (6), and WASP-10 (8) and have derived planet sizes (Rp/R*), orbital distances (a/R*) and orbital inclinations (i) for these systems. In most cases we confirm the parameters reported in the literature with similar uncertainties, validating our methodology. However, for HAT-P-12 we have decreased the uncertainties and derived a smaller inclination for the orbit (87.9o ± 0.3o vs 89.0o ± 0.4o). Also, for HAT-P-23, the only planet in our sample with a distinct non-circular orbit, we improved the uncertainties for the eccentricity ( e ) and the argument of periastron (ω) while deriving a ~4% ± 1% smaller planet size. From our mid-transit times and those of the literature we do not find any statistically significant deviations from a fixed orbital period for these systems, although it is known that HAT-P-13 has at least a second planet.

  16. From Stars to Super-Planets: The Low-Mass IMF in the Young Cluster IC348

    NASA Technical Reports Server (NTRS)

    Najita, Joan R.; Tiede, Glenn P.; Carr, John S.

    2000-01-01

    We investigate the low-mass population of the young cluster IC348 down to the deuterium-burning limit, a fiducial boundary between brown dwarf and planetary mass objects, using a new and innovative method for the spectral classification of late-type objects. Using photometric indices, constructed from HST/NICMOS narrow-band imaging, that measure the strength of the 1.9 micron water band, we determine the spectral type and reddening for every M-type star in the field, thereby separating cluster members from the interloper population. Due to the efficiency of our spectral classification technique, our study is complete from approximately 0.7 solar mass to 0.015 solar mass. The mass function derived for the cluster in this interval, dN/d log M alpha M(sup 0.5), is similar to that obtained for the Pleiades, but appears significantly more abundant in brown dwarfs than the mass function for companions to nearby sun-like stars. This provides compelling observational evidence for different formation and evolutionary histories for substellar objects formed in isolation vs. as companions. Because our determination of the IMF is complete to very low masses, we can place interesting constraints on the role of physical processes such as fragmentation in the star and planet formation process and the fraction of dark matter in the Galactic halo that resides in substellar objects.

  17. MINERVA-Red: A Census of Planets Orbiting the Nearest Low-mass Stars to the Sun

    NASA Astrophysics Data System (ADS)

    Blake, Cullen; Johnson, John; Plavchan, Peter; Sliski, David; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart

    2015-01-01

    Recent results from Kepler and ground-based exoplanet surveys suggest that low-mass stars host numerous small planets. Since low-mass stars are intrinsically faint at optical wavelengths, obtaining the Doppler precision necessary to detect these companions remains a challenge for existing instruments. We describe MINERVA-Red, a project to use a dedicated, robotic, near-infrared optimized 0.7 meter telescope and a specialized Doppler spectrometer to carry out an intensive, multi-year campaign designed to reveal the planetary systems orbiting some of the closest stars to the Sun. The MINERVA-Red cross-dispersed echelle spectrograph is optimized for the 'deep red', between 800 nm and 900 nm, where these stars are relatively bright. The instrument is very compact and designed for the ultimate in Doppler precision by using single-mode fiber input. We describe the spectrometer and the status of the MINERVA-Red project, which is expected to begin routine operations at Whipple Observatory on Mt Hopkins, Arizona, in 2015.

  18. Characterizing Extrasolar Planets from Transit Light Curves obtained at the Universidad de Monterrey Observatory - Part 2

    NASA Astrophysics Data System (ADS)

    Valdés Sada, Pedro

    2017-01-01

    At the Universidad de Monterrey Observatory (MPC 720) we have maintained a program for observing extrasolar planet transit light curves with telescopes of modest size and standard photometric filters since 2005. In our archives we have over 325 transits of over 70 known systems. Our goal is to combine individual transit light curves of the same system to increase the S/N of the data. We then analyze it together with the radial velocity information from the literature in order to confirm, improve or revise the main parameters that characterize the transiting system. It is important to continue observing these systems not only to improve and refine our understanding of them, but also to record any possible transient phenomenon and monitor for possible period changes, as reflected in the mid-transit times, due to the gravitational influence of additional planets in the system.In this second presentation we report our observations of 42 individual exoplanet transit light curves and the results from successfully combining six light curves for HAT-P-3 (Ic), twenty-one for TrES-3 (6 in V, 5 in Rc, 6 in Ic and 4 in z’), seven for XO-2 (Ic), four for XO-3 (Ic), and four for XO-4 (Ic). From these we then derive planet sizes (Rp/R*), orbital distances (a/R*) and orbital inclinations (i) for these systems. In most cases we confirm the parameters reported in the literature with similar uncertainties, validating our methodology. From our mid-transit times and those of the literature we do not find any statistically significant deviations from a fixed orbital period for these systems.

  19. Earth as an extrasolar planet: Earth model validation using EPOXI earth observations.

    PubMed

    Robinson, Tyler D; Meadows, Victoria S; Crisp, David; Deming, Drake; A'hearn, Michael F; Charbonneau, David; Livengood, Timothy A; Seager, Sara; Barry, Richard K; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M; McFadden, Lucy A; Wellnitz, Dennis D

    2011-06-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward model can be

  20. The HARPS search for Earth-like planets in the habitable zone. I. Very low-mass planets around HD 20794, HD 85512, and HD 192310

    NASA Astrophysics Data System (ADS)

    Pepe, F.; Lovis, C.; Ségransan, D.; Benz, W.; Bouchy, F.; Dumusque, X.; Mayor, M.; Queloz, D.; Santos, N. C.; Udry, S.

    2011-10-01

    Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims: The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods: Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year. For each star we recorded 50 data points spread over the observing season. The data points consist of three nightly observations with a total integration time of 10 min each and are separated by two hours. This is an observational strategy adopted to minimize stellar pulsation and granulation noise. Results: We present the first results of this ambitious program. The radial-velocity data and the orbital parameters of five new and one confirmed low-mass planets around the stars HD 20794, HD 85512, and HD 192310 are reported and discussed, among which is a system of three super-Earths and one that harbors a 3.6 M⊕-planet at the inner edge of the habitable zone. Conclusions: This result already confirms previous indications that low-mass planets seem to be very frequent around solar-type stars and that this may occur with a frequency higher than 30%. Based on observations made with the HARPS instrument on ESO's 3.6 m telescope at the La Silla Observatory in the frame of the HARPS-Upgrade GTO program ID 086.C-0230.Tables 7-9 (RV data) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/534/A58

  1. EUV-driven ionospheres and electron transport on extrasolar giant planets orbiting active stars

    NASA Astrophysics Data System (ADS)

    Chadney, J. M.; Galand, M.; Koskinen, T. T.; Miller, S.; Sanz-Forcada, J.; Unruh, Y. C.; Yelle, R. V.

    2016-03-01

    The composition and structure of the upper atmospheres of extrasolar giant planets (EGPs) are affected by the high-energy spectrum of their host stars from soft X-rays to the extreme ultraviolet (EUV). This emission depends on the activity level of the star, which is primarily determined by its age. In this study, we focus upon EGPs orbiting K- and M-dwarf stars of different ages - ɛ Eridani, AD Leonis, AU Microscopii - and the Sun. X-ray and EUV (XUV) spectra for these stars are constructed using a coronal model. These spectra are used to drive both a thermospheric model and an ionospheric model, providing densities of neutral and ion species. Ionisation - as a result of stellar radiation deposition - is included through photo-ionisation and electron-impact processes. The former is calculated by solving the Lambert-Beer law, while the latter is calculated from a supra-thermal electron transport model. We find that EGP ionospheres at all orbital distances considered (0.1-1 AU) and around all stars selected are dominated by the long-lived H+ ion. In addition, planets with upper atmospheres where H2 is not substantially dissociated (at large orbital distances) have a layer in which H3+ is the major ion at the base of the ionosphere. For fast-rotating planets, densities of short-lived H3+ undergo significant diurnal variations, with the maximum value being driven by the stellar X-ray flux. In contrast, densities of longer-lived H+ show very little day/night variability and the magnitude is driven by the level of stellar EUV flux. The H3+ peak in EGPs with upper atmospheres where H2 is dissociated (orbiting close to their star) under strong stellar illumination is pushed to altitudes below the homopause, where this ion is likely to be destroyed through reactions with heavy species (e.g. hydrocarbons, water). The inclusion of secondary ionisation processes produces significantly enhanced ion and electron densities at altitudes below the main EUV ionisation peak, as

  2. Hydrogen Fluoride: an unexpected calalyst in the search for extra-solar planets

    NASA Astrophysics Data System (ADS)

    Walker, Gordon A.

    2014-01-01

    In the 1970s we developed low light level digital TV systems at UBC for the DAO 1.2-m telescope coudé spectrograph. John Glaspey eliminated reading-beam jitter using telluric water vapor lines as fiducials. Later, when we switched to solid state diode arrays, I suggested to Bruce Campbell that we could look for extra-solar planets using telluric lines to eliminate RV errors induced by irregular slit illumination. He went a step further by introducing a deployable absorption cell of hot HF gas. In December 1978 he and I demonstrated that an RV precision ~10 m/s was possible from observations of the Sun! Sufficient precision to detect the reflex acceleration of a solar-type star accompanied by a Jupiter. Bruce moved to CFHT in 1979 where the coudé spectrograph was a replica of that at DAO. He built an HF cell and gas handling system and we were granted some 6 to 8 nights per year. Modeling the line spread function proved critical in the reductions while, at the telescope, isolation of the telescope exit pupil and estimation of the epoch of the weighted mean exposure time were key. The program lasted some 12 years with, initially, little to show by way of results other than demonstrating the technique worked and so it attracted little interest but ample skepticism.

  3. Ionisation and discharge in cloud-forming atmospheres of brown dwarfs and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Helling, Ch; Rimmer, P. B.; Rodriguez-Barrera, I. M.; Wood, Kenneth; Robertson, G. B.; Stark, C. R.

    2016-07-01

    Brown dwarfs and giant gas extrasolar planets have cold atmospheres with rich chemical compositions from which mineral cloud particles form. Their properties, like particle sizes and material composition, vary with height, and the mineral cloud particles are charged due to triboelectric processes in such dynamic atmospheres. The dynamics of the atmospheric gas is driven by the irradiating host star and/or by the rotation of the objects that changes during its lifetime. Thermal gas ionisation in these ultra-cool but dense atmospheres allows electrostatic interactions and magnetic coupling of a substantial atmosphere volume. Combined with a strong magnetic field \\gg {{B}\\text{Earth}} , a chromosphere and aurorae might form as suggested by radio and x-ray observations of brown dwarfs. Non-equilibrium processes like cosmic ray ionisation and discharge processes in clouds will increase the local pool of free electrons in the gas. Cosmic rays and lighting discharges also alter the composition of the local atmospheric gas such that tracer molecules might be identified. Cosmic rays affect the atmosphere through air showers in a certain volume which was modelled with a 3D Monte Carlo radiative transfer code to be able to visualise their spacial extent. Given a certain degree of thermal ionisation of the atmospheric gas, we suggest that electron attachment to charge mineral cloud particles is too inefficient to cause an electrostatic disruption of the cloud particles. Cloud particles will therefore not be destroyed by Coulomb explosion for the local temperature in the collisional dominated brown dwarf and giant gas planet atmospheres. However, the cloud particles are destroyed electrostatically in regions with strong gas ionisation. The potential size of such cloud holes would, however, be too small and might occur too far inside the cloud to mimic the effect of, e.g. magnetic field induced star spots.

  4. Gas-assisted Capture of Earth-sized Moons around Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Sands, B. L.; Williams, D. M.

    2002-03-01

    Today nearly 20 Jupiter-sized planets are known to orbit within or near the habitable zones of their parent stars [see Williams D.W. and Pollard, D. 2001. submitted Inter. J. Astrobiology]. Some of these planets might support life on their moons if their moons are able to form and hold onto sizeable atmospheres. Moons larger than 0.2 Mearth should have little trouble holding their atmospheres for billions of years [Williams D.W., Kasting, J.F., & Wade R.A. 1997. Nature 385,234]. But forming moons of this size through pair-wise accretion of small bodies in low-mass circum-planetary nebulas may be difficult; Ganymede (0.03 Mearth) was the largest moon to form out of a circum-planetary nebula in the Solar System. A more plausible scenario is for giant moons to be captured through collision of an earth-sized planetary body with a gaseous proto-planetary disk around a giant planet, as is thought to have occurred to form Triton around Neptune [McKinnon, W.B., & Leith, A.C. 1995. Icarus 118,392]. Such collisions can remove enormous amounts of energy from the impacting body and often result in a bound satellite on a near-circular orbit. Here we demonstrate that for a reasonable set of nebula parameters, permanent capture of large moons can occur. The effects of initial moon mass, and planet mass are considered as well as various impact parameters and local nebula conditions.

  5. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. V. ALFVÉN IONIZATION

    SciTech Connect

    Stark, C. R.; Helling, Ch.; Rimmer, P. B.; Diver, D. A.

    2013-10-10

    Observations of continuous radio and sporadic X-ray emission from low-mass objects suggest they harbor localized plasmas in their atmospheric environments. For low-mass objects, the degree of thermal ionization is insufficient to qualify the ionized component as a plasma, posing the question: what ionization processes can efficiently produce the required plasma that is the source of the radiation? We propose Alfvén ionization as a mechanism for producing localized pockets of ionized gas in the atmosphere, having sufficient degrees of ionization (≥10{sup –7}) that they constitute plasmas. We outline the criteria required for Alfvén ionization and demonstrate its applicability in the atmospheres of low-mass objects such as giant gas planets, brown dwarfs, and M dwarfs with both solar and sub-solar metallicities. We find that Alfvén ionization is most efficient at mid to low atmospheric pressures where a seed plasma is easier to magnetize and the pressure gradients needed to drive the required neutral flows are the smallest. For the model atmospheres considered, our results show that degrees of ionization of 10{sup –6}-1 can be obtained as a result of Alfvén ionization. Observable consequences include continuum bremsstrahlung emission, superimposed with spectral lines from the plasma ion species (e.g., He, Mg, H{sub 2}, or CO lines). Forbidden lines are also expected from the metastable population. The presence of an atmospheric plasma opens the door to a multitude of plasma and chemical processes not yet considered in current atmospheric models. The occurrence of Alfvén ionization may also be applicable to other astrophysical environments such as protoplanetary disks.

  6. Integral Field Spectroscopy of the Low-mass Companion HD 984 B with the Gemini Planet Imager

    NASA Astrophysics Data System (ADS)

    Johnson-Groh, Mara; Marois, Christian; De Rosa, Robert J.; Nielsen, Eric L.; Rameau, Julien; Blunt, Sarah; Vargas, Jeffrey; Ammons, S. Mark; Bailey, Vanessa P.; Barman, Travis S.; Bulger, Joanna; Chilcote, Jeffrey K.; Cotten, Tara; Doyon, René; Duchêne, Gaspard; Fitzgerald, Michael P.; Follette, Kate B.; Goodsell, Stephen; Graham, James R.; Greenbaum, Alexandra Z.; Hibon, Pascale; Hung, Li-Wei; Ingraham, Patrick; Kalas, Paul; Konopacky, Quinn M.; Larkin, James E.; Macintosh, Bruce; Maire, Jérôme; Marchis, Franck; Marley, Mark S.; Metchev, Stanimir; Millar-Blanchaer, Maxwell A.; Oppenheimer, Rebecca; Palmer, David W.; Patience, Jenny; Perrin, Marshall; Poyneer, Lisa A.; Pueyo, Laurent; Rajan, Abhijith; Rantakyrö, Fredrik T.; Savransky, Dmitry; Schneider, Adam C.; Sivaramakrishnan, Anand; Song, Inseok; Soummer, Remi; Thomas, Sandrine; Vega, David; Wallace, J. Kent; Wang, Jason J.; Ward-Duong, Kimberly; Wiktorowicz, Sloane J.; Wolff, Schuyler G.

    2017-04-01

    We present new observations of the low-mass companion to HD 984 taken with the Gemini Planet Imager (GPI) as a part of the GPI Exoplanet Survey campaign. Images of HD 984 B were obtained in the J (1.12–1.3 μm) and H (1.50–1.80 μm) bands. Combined with archival epochs from 2012 and 2014, we fit the first orbit to the companion to find an 18 au (70-year) orbit with a 68% confidence interval between 14 and 28 au, an eccentricity of 0.18 with a 68% confidence interval between 0.05 and 0.47, and an inclination of 119° with a 68% confidence interval between 114° and 125°. To address the considerable spectral covariance in both spectra, we present a method of splitting the spectra into low and high frequencies to analyze the spectral structure at different spatial frequencies with the proper spectral noise correlation. Using the split spectra, we compare them to known spectral types using field brown dwarf and low-mass star spectra and find a best-fit match of a field gravity M6.5 ± 1.5 spectral type with a corresponding temperature of {2730}-180+120 K. Photometry of the companion yields a luminosity of {log}({L}{bol}/{L}ȯ )=-2.88+/- 0.07 dex with DUSTY models. Mass estimates, again from DUSTY models, find an age-dependent mass of 34 ± 1 to 95 ± 4 M Jup. These results are consistent with previous measurements of the object.

  7. A Statistical Analysis of SEEDS and Other High-contrast Exoplanet Surveys: Massive Planets or Low-mass Brown Dwarfs?

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; McElwain, Michael W.; Turner, Edwin L.; Mede, Kyle; Spiegel, David S.; Kuzuhara, Masayuki; Schlieder, Joshua E.; Wisniewski, John P.; Abe, L.; Biller, B.; Brandner, W.; Carson, J.; Currie, T.; Egner, S.; Feldt, M.; Golota, T.; Goto, M.; Grady, C. A.; Guyon, O.; Hashimoto, J.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K. W.; Inutsuka, S.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G. R.; Kudo, T.; Kusakabe, N.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J.-I.; Moro-Martín, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suto, H.; Suzuki, R.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Tomono, D.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.

    2014-10-01

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ~60 M J brown dwarf companions in the Pleiades, PZ Tel B, and CD-35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ~30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ~5 M J, with a single power-law distribution. We find that p(M, a)vpropM -0.65 ± 0.60 a -0.85 ± 0.39 (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M J companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  8. A statistical analysis of seeds and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs?

    SciTech Connect

    Brandt, Timothy D.; Spiegel, David S.; McElwain, Michael W.; Grady, C. A.; Turner, Edwin L.; Mede, Kyle; Kuzuhara, Masayuki; Schlieder, Joshua E.; Brandner, W.; Feldt, M.; Wisniewski, John P.; Abe, L.; Biller, B.; Carson, J.; Currie, T.; Egner, S.; Golota, T.; Guyon, O.; Goto, M.; Hashimoto, J.; and others

    2014-10-20

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ∼60 M {sub J} brown dwarf companions in the Pleiades, PZ Tel B, and CD–35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ∼30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ∼5 M {sub J}, with a single power-law distribution. We find that p(M, a)∝M {sup –0.65} {sup ±} {sup 0.60} a {sup –0.85} {sup ±} {sup 0.39} (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M {sub J} companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.

  9. The SOPHIE search for northern extrasolar planets. VII. A warm Neptune orbiting HD 164595

    NASA Astrophysics Data System (ADS)

    Courcol, B.; Bouchy, F.; Pepe, F.; Santerne, A.; Delfosse, X.; Arnold, L.; Astudillo-Defru, N.; Boisse, I.; Bonfils, X.; Borgniet, S.; Bourrier, V.; Cabrera, N.; Deleuil, M.; Demangeon, O.; Díaz, R. F.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A. M.; Montagnier, G.; Moutou, C.; Rey, J.; Santos, N. C.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2015-09-01

    High-precision radial velocity surveys explore the population of low-mass exoplanets orbiting bright stars. This allows accurately deriving their orbital parameters such as their occurrence rate and the statistical distribution of their properties. Based on this, models of planetary formation and evolution can be constrained. The SOPHIE spectrograph has been continuously improved in past years, and thanks to an appropriate correction of systematic instrumental drift, it is now reaching 2 m s-1precision in radial velocity measurements on all timescales. As part of a dedicated radial velocity survey devoted to search for low-mass planets around a sample of 190 bright solar-type stars in the northern hemisphere, we report the detection of a warm Neptune with a minimum mass of 16.1 ± 2.7M⊕ orbiting the solar analog HD 164595 in 40 ± 0.24 days. We also revised the parameters of the multiplanetary system around HD 190360. We discuss this new detection in the context of the upcoming space mission CHEOPS, which is devoted to a transit search of bright stars harboring known exoplanets. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OSU Pythéas), France (program 07A.PNP.CONS).Appendix A is available in electronic form at http://www.aanda.org

  10. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    PubMed Central

    Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D.

    2011-01-01

    Abstract The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole-disk Earth model simulations used to better understand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute's Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model. This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of ∼100 pixels on the visible disk, and four categories of water clouds, which were defined by using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to Earth's lightcurve, absolute brightness, and spectral data, with a root-mean-square (RMS) error of typically less than 3% for the multiwavelength lightcurves and residuals of ∼10% for the absolute brightness throughout the visible and NIR spectral range. We have extended our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of ∼7% and brightness temperature errors of less than 1 K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated forward

  11. Practicality of Using Oxygen Atom Emissions to Evaluate the Habitability of Extra-Solar Planets

    NASA Astrophysics Data System (ADS)

    Slanger, T. G.

    2005-12-01

    It has previously been proposed [Akasofu, 1999] that observation of the O(1S - 1D) green line from the atmospheres of extra-solar planets might be a marker for habitability. Guidance on this question is available within our own solar system. The green line is a dominant feature in the visible terrestrial nightglow, and the ultimate origin of its mesospheric emission is the three-body recombination of oxygen atoms. Until recently, it was believed that the green line was not a feature of the nightglows of the CO2 planets, Venus and Mars. It is now known that Venus at times shows green line emission with an intensity equal to terrestrial values [Slanger et al., 2001]. Furthermore, the intensity is quite variable, as is true for the much stronger O2( a-X) 1.27 μ emission. Recent observations of the Mars nightglow [Bertaux et al., 2005] give ambiguous results in the region of the O(1S-3P) line at 297.2 nm, but the same line in the dayglow is very strong, as evidenced in earlier Mariner results [Barth et al., 1971], and from the recent Mars Express data [F. Leblanc, private communication]. The O(1D-3P) 630 nm red line is a feature associated with Io, where dissociation of SO2 is a presumed source [Scherb et al., 1998]. Thus, observation of the oxygen green/red lines in the atmospheres of extrasolar planets provides insufficient information to reach conclusions about a habitable environment. Such detection would only indicate that there are oxygen-containing molecules present. Determination of an O2 column depth, by Fraunhofer A-band absorption, would be much more conclusive. Akasofu, S.-I., EOS, Transactions of the American Geophysical Union, 80, 397, 1999. Barth, C.A., C.W. Hord, J.B. Pearce, K.K. Kelly, G.P. Anderson, and A.I. Stewart, Mariner 6 and 7 Ultraviolet Spectrometer Experiment: Upper Atmosphere Data, Journal of Geophysical Research, 76, 2213-2227, 1971. Bertaux, J.-L., F. Leblanc, S. Perrier, E. Quemerais, O. Korablev, E. Dimarellis, A. Reberac, F. Forget, P

  12. Dynamics and Origin of Extra-solar Planetary Systems and Microlensing Detection of Extra-solar Planets

    NASA Technical Reports Server (NTRS)

    Peale, S. J.

    2003-01-01

    We compare a space-based microlensing search for planets, with a ground based microlensing search originally proposed by D. Tytler (Beichman, et al. 1996). Perturbations of microlensing light curves when the lens star has a planetary companion are sought by one wide angle survey telescope and an array of three or four followup narrow angle telescopes distributed in longitude that follow events with high precision, high time resolution photometry. Alternative ground based programs are considered briefly. With the four 2 meter telescopes distributed in longitude in the southern hemisphere in the Tytler proposal, observational constraints on a ground-based search for planets during microlensing events toward the center of the galaxy are severe. Probably less than 100 events could be monitored per year with high precision, high time resolution photometry with only about 42% coverage on the average regardless of how many events were discovered by the survey telescope. Statistics for the occurrence and properties for Jupiter-mass planets would be meaningful but relatively meager four years after the program was started, and meaningful statistics for Earth-mass planets would be non existent. In contrast, the 14,500 events in a proposed 4 year space based program (GEST = Galactic Exoplanet Survey Telescope) would yield very sound statistics on the occurrence, masses and separations of Jupiter-mass planets, and significant constraints on similar properties for Earth-mass planets. The significance of the Jupiter statistics would be to establish the frequency of planetary systems like our own, where terrestrial planets could exist inside the orbits of the giants.

  13. A Program to Detect and Characterize Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lindstrom, David (Technical Monitor); Noyes, Robert W.

    2003-01-01

    We initiated a significant hardware upgrade to the AFOE, to increase its efficiency for precise radial velocity studies to the level where we can continue to contribute usefully to extrasolar planet research on relatively bright stars. The AFOE, at a 1.5-m telescope, will of course not have the sensitivity of radial velocity instruments at larger telescopes, such as the HIRES on Keck or the Hectochelle on the MMT telescope (about to come on line). However, it has been possible to increase its efficiency for precise radial velocity studies by a factor of 4 to 5, which-combined with the large amount of telescope time available at the 1.5-m telescope-will permit us to do intensive follow-up observations of stars brighter than about 8 magnitude. The AFOE was originally designed primarily for asteroseismology using a ThAr reference. This provided useful wavelength stability over tens of minutes as required for asteroseismology, but we were unable to get a long-term (month-to-month) velocity precision better than about 15 m/s with that setup. Hence, we implemented an iodine cell as a wavelength reference for extrasolar planet studies. However, the optical design of the original AFOE did not completely span the wavelength range covered by the iodine absorption spectrum, and furthermore the optics suffered significant light loss through optical obscuration in the camera secondary. To remedy this, we replaced the AFOE grating with a new one that covered the entire iodine spectral range at somewhat lower spectral resolution, and replaced the camera with a transmitting lens. (The use of a lens was made possible by restricting the spectral range covered by the upgraded AFOE to only the iodine region.) These upgrades were successfully completed, and the instrument was tested for three nights in fall of 2002. The expected improvement in sensitivity by a factor of 4 to 5 was observed: that is, the same velocity precision as previously attained (of order 5 to 7 m/s) was now

  14. High-order adaptive optics requirements for direct detection of extrasolar planets: Application to the SPHERE instrument.

    PubMed

    Fusco, T; Rousset, G; Sauvage, J-F; Petit, C; Beuzit, J-L; Dohlen, K; Mouillet, D; Charton, J; Nicolle, M; Kasper, M; Baudoz, P; Puget, P

    2006-08-21

    The detection of extrasolar planets implies an extremely high-contrast, long-exposure imaging capability at near infrared and probably visible wavelengths. We present here the core of any Planet Finder instrument, that is, the extreme adaptive optics (XAO) subsystem. The level of AO correction directly impacts the exposure time required for planet detection. In addition, the capacity of the AO system to calibrate all the instrument static defects ultimately limits detectivity. Hence, the extreme AO system has to adjust for the perturbations induced by the atmospheric turbulence, as well as for the internal aberrations of the instrument itself. We propose a feasibility study for an extreme AO system in the frame of the SPHERE (Spectro-Polarimetry High-contrast Exoplanet Research) instrument, which is currently under design and should equip one of the four VLT 8-m telescopes in 2010.

  15. The Sodium Hydride Line Opacity for Brown Dwarf and Extra-solar Giant Planet Atmospheres

    NASA Astrophysics Data System (ADS)

    Horvath, A.; Stancil, P. C.; Taylor, B. K.; Leininger, T.; Gadéa, F. X.

    2003-12-01

    Atomic sodium is an important opacity in the spectra of brown dwarfs and is the only atmospheric constituent to date that has been detected in an extrasolar giant planet (EGP). For temperatures between ˜1000 and 2000 K, NaH and NaCl are the next most abundant sodium species (Lodders, 1999, ApJ, 519, 793). Due to the lack of opacity data for these molecules, they have not been considered in brown dwarf and EGP synthetic spectra models. In this work, we consider NaH and present comprehensive theoretical molecular line lists for rovibrational transitions in the ground X state and for the electronic transition between the A and X states. The list contains the transition energies and oscillator strengths for all allowed rotational and vibrational transitions. The calculations use hybrid potential curves based on experimental data, the theoretical X state potential and dipole moment function of Taylor & Newman (2003, J. Chem. Phys., 118, 8770), and the theoretical A state potential and X-A transition moment function of Leininger et al. (2000, J. Phys. B, 33, 1805). Using the Numerov-Cooley method, we find that there are 860 and 1824 rovibrational levels in the X and A states, respectively, which give rise to a large number of rotational transitions. Pure rotational, rovibrational, and A<-X electronic LTE spectra are presented for temperatures typical of brown dwarfs and EGPs. The bandheads occur at 8.8 μ and 3990 Å for the fundamental vibrational and A<-X electronic transitions, respectively. This work was supported in part by the NSF REU Program at UGA and NASA grant NAG5-10551.

  16. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-02-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called “dust” or “clouds,” in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  17. Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations

    NASA Technical Reports Server (NTRS)

    Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy; Wellnitz, Dennis D.

    2011-01-01

    The EPOXI Discovery Mission of Opportunity reused the Deep Impact flyby spacecraft to obtain spatially and temporally resolved visible photometric and moderate resolution near-infrared (NIR) spectroscopic observations of Earth. These remote observations provide a rigorous validation of whole disk Earth model simulations used to better under- stand remotely detectable extrasolar planet characteristics. We have used these data to upgrade, correct, and validate the NASA Astrobiology Institute s Virtual Planetary Laboratory three-dimensional line-by-line, multiple-scattering spectral Earth model (Tinetti et al., 2006a,b). This comprehensive model now includes specular reflectance from the ocean and explicitly includes atmospheric effects such as Rayleigh scattering, gas absorption, and temperature structure. We have used this model to generate spatially and temporally resolved synthetic spectra and images of Earth for the dates of EPOXI observation. Model parameters were varied to yield an optimum fit to the data. We found that a minimum spatial resolution of approx.100 pixels on the visible disk, and four categories of water clouds, which were defined using observed cloud positions and optical thicknesses, were needed to yield acceptable fits. The validated model provides a simultaneous fit to the Earth s lightcurve, absolute brightness, and spectral data, with a root-mean-square error of typically less than 3% for the multiwavelength lightcurves, and residuals of approx.10% for the absolute brightness throughout the visible and NIR spectral range. We extend our validation into the mid-infrared by comparing the model to high spectral resolution observations of Earth from the Atmospheric Infrared Sounder, obtaining a fit with residuals of approx.7%, and temperature errors of less than 1K in the atmospheric window. For the purpose of understanding the observable characteristics of the distant Earth at arbitrary viewing geometry and observing cadence, our validated

  18. Cloudless Atmospheres for L/T Dwarfs and Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Tremblin, P.; Amundsen, D. S.; Chabrier, G.; Baraffe, I.; Drummond, B.; Hinkley, S.; Mourier, P.; Venot, O.

    2016-01-01

    The admitted, conventional scenario to explain the complex spectral evolution of brown dwarfs (BDs) since their first detection 20 years ago has always been the key role played by micron-size condensates, called "dust" or "clouds," in their atmosphere. This scenario, however, faces major problems, in particular the J-band brightening and the resurgence of FeH absorption at the L to T transition, and a physical first-principle understanding of this transition is lacking. In this Letter, we propose a new, completely different explanation for BD and extrasolar giant planet (EGP) spectral evolution, without the need to invoke clouds. We show that, due to the slowness of the CO/ CH4 and N2/NH3 chemical reactions, brown dwarf (L and T, respectively) and EGP atmospheres are subject to a thermo-chemical instability similar in nature to the fingering or chemical convective instability present in Earth oceans and at the Earth core/mantle boundary. The induced small-scale turbulent energy transport reduces the temperature gradient in the atmosphere, explaining the observed increase in near-infrared J-H and J-K colors of L dwarfs and hot EGPs, while a warming up of the deep atmosphere along the L to T transition, as the CO/CH4 instability vanishes, naturally solves the two aforementioned puzzles, and provides a physical explanation of the L to T transition. This new picture leads to a drastic revision of our understanding of BD and EGP atmospheres and their evolution.

  19. HATS-2b: A transiting extrasolar planet orbiting a K-type star showing starspot activity

    NASA Astrophysics Data System (ADS)

    Mohler-Fischer, M.; Mancini, L.; Hartman, J. D.; Bakos, G. Á.; Penev, K.; Bayliss, D.; Jordán, A.; Csubry, Z.; Zhou, G.; Rabus, M.; Nikolov, N.; Brahm, R.; Espinoza, N.; Buchhave, L. A.; Béky, B.; Suc, V.; Csák, B.; Henning, T.; Wright, D. J.; Tinney, C. G.; Addison, B. C.; Schmidt, B.; Noyes, R. W.; Papp, I.; Lázár, J.; Sári, P.; Conroy, P.

    2013-10-01

    We report the discovery of HATS-2b, the second transiting extrasolar planet detected by the HATSouth survey. HATS-2b is moving on a circular orbit around a V = 13.6 mag, K-type dwarf star (GSC 6665-00236), at a separation of 0.0230 ± 0.0003 AU and with a period of 1.3541 days. The planetary parameters have been robustly determined using a simultaneous fit of the HATSouth, MPG/ESO 2.2 m/GROND, Faulkes Telescope South/Spectral transit photometry, and MPG/ESO 2.2 m/FEROS, Euler 1.2 m/CORALIE, AAT 3.9 m/CYCLOPS radial-velocity measurements. HATS-2b has a mass of 1.37 ± 0.16 MJ, a radius of 1.14 ± 0.03 RJ, and an equilibrium temperature of 1567 ± 30 K. The host star has a mass of 0.88 ± 0.04 M⊙ and a radius of 0.89 ± 0.02 R⊙, and it shows starspot activity. We characterized the stellar activity by analyzing two photometric follow-up transit light curves taken with the GROND instrument, both obtained simultaneously in four optical bands (covering the wavelength range of 3860-9520 Å). The two light curves contain anomalies compatible with starspots on the photosphere of the host star along the same transit chord. Tables of the individual photometric measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/558/A55

  20. Atmospheric Circulation of Brown Dwarfs and Directly Imaged Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Tan, X.; Showman, A. P.

    2015-12-01

    Growing observations of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs), such as brightness variability and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of BDs include modeling of convection from the interior and its interactions with stably stratified atmospheres. These models show that such interactions can drive an atmospheric circulation, forming zonal jets and/or vortices. However, these models are dry, not including condensation of various chemical species. Condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various chemical species are believed to be an important source in driving the atmospheric circulation of BDs and directly imaged EGPs. Here we present results from three-dimensional simulations for the stably stratified atmospheres of BDs and EGPs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly. We examine the circulation patterns caused by large-scale latent heating which results from condensation of silicate vapor in hot dwarfs and water vapor in the cold dwarfs. By varying the abundance of condensable vapor and the radiative timescale, we conclude that under normal conditions of BDs (near 1x solar abundance and relatively short radiative timescale), latent heating alone by silicate vapors is unable to drive a global circulation, leaving a quiescent atmosphere, because of the suppression to moist instability by downward transport of dry air. Models with high abundance of condensates (~5x solar) and relatively long radiative timescale, which may be the case of directly imaged EGPs, tend to maintain an active hydrological cycle and develop zonal

  1. Comprehensive time series analysis of the transiting extrasolar planet WASP-33b

    NASA Astrophysics Data System (ADS)

    Kovács, G.; Kovács, T.; Hartman, J. D.; Bakos, G. Á.; Bieryla, A.; Latham, D.; Noyes, R. W.; Regály, Zs.; Esquerdo, G. A.

    2013-05-01

    Context. HD 15082 (WASP-33) is the hottest and fastest rotating star known to harbor a transiting extrasolar planet (WASP-33b). The lack of high precision radial velocity (RV) data stresses the need for precise light curve analysis and gathering further RV data. Aims: By using available photometric and RV data, we perform a blend analysis, compute more accurate system parameters, confine the planetary mass, and, attempt to cast light on the observed transit anomalies. Methods: We combined the original HATNet observations and various followup data to jointly analyze the signal content and extract the transit component and used our RV data to aid the global parameter determination. Results: The blend analysis of the combination of multicolor light curves yields the first independent confirmation of the planetary nature of WASP-33b. We clearly identify three frequency components in the 15-21 d-1 regime with amplitudes 7-5 mmag. These frequencies correspond to the δ Scuti-type pulsation of the host star. None of these pulsation frequencies or their low-order linear combinations are in close resonance with the orbital frequency. We show that these pulsation components explain some but not all of the observed transit anomalies. The grand-averaged transit light curve shows that there is a ~1.5 mmag brightening shortly after the planet passes the mid-transit phase. Although the duration and amplitude of this brightening varies, it is visible even through the direct inspections of the individual transit events (some 40-60% of the followup light curves show this phenomenon). We suggest that the most likely explanation of this feature is the presence of a well-populated spot belt which is highly inclined to the orbital plane. This geometry is consistent with the inference from the spectroscopic anomalies. Finally, we constrain the planetary mass to Mp = 3.27 ± 0.73 MJ by using our RV data collected by the TRES spectrograph. Appendix A is available in electronic form at http

  2. Homogeneous studies of transiting extrasolar planets - IV. Thirty systems with space-based light curves

    NASA Astrophysics Data System (ADS)

    Southworth, John

    2011-11-01

    I calculate the physical properties of 32 transiting extrasolar planet and brown-dwarf systems from existing photometric observations and measured spectroscopic parameters. The systems studied include 15 observed by the CoRoT satellite, 10 by Kepler and five by the Deep Impact spacecraft. Inclusion of the objects studied in previous papers leads to a sample of 58 transiting systems with homogeneously measured properties. The Kepler data include observations from Quarter 2, and my analyses of several of the systems are the first to be based on short-cadence data from this satellite. The light curves are modelled using the JKTEBOP code, with attention paid to the treatment of limb darkening, contaminating light, orbital eccentricity, correlated noise and numerical integration over long exposure times. The physical properties are derived from the light-curve parameters, spectroscopic characteristics of the host star and constraints from five sets of theoretical stellar model predictions. An alternative approach using a calibration from eclipsing binary star systems is explored and found to give comparable results whilst imposing a much smaller computational burden. My results are in good agreement with published properties for most of the transiting systems, but discrepancies are identified for CoRoT-5, CoRoT-8, CoRoT-13, Kepler-5 and Kepler-7. Many of the error bars quoted in the literature are underestimated. Refined orbital ephemerides are given for CoRoT-8 and for the Kepler planets. Asteroseismic constraints on the density of the host stars are in good agreement with the photometric equivalents for HD 17156 and TrES-2, but not for HAT-P-7 and HAT-P-11. Complete error budgets are generated for each transiting system, allowing identification of the observations best-suited to improve measurements of their physical properties. Whilst most systems would benefit from further photometry and spectroscopy, HD 17156, HD 80606, HAT-P-7 and TrES-2 are now extremely well

  3. The Solar Twin Planet Search. V. Close-in, low-mass planet candidates and evidence of planet accretion in the solar twin HIP 68468

    NASA Astrophysics Data System (ADS)

    Meléndez, Jorge; Bedell, Megan; Bean, Jacob L.; Ramírez, Iván; Asplund, Martin; Dreizler, Stefan; Yan, Hong-Liang; Shi, Jian-Rong; Lind, Karin; Ferraz-Mello, Sylvio; Galarza, Jhon Yana; dos Santos, Leonardo; Spina, Lorenzo; Maia, Marcelo Tucci; Alves-Brito, Alan; Monroe, TalaWanda; Casagrande, Luca

    2017-01-01

    Context. More than two thousand exoplanets have been discovered to date. Of these, only a small fraction have been detected around solar twins, which are key stars because we can obtain accurate elemental abundances especially for them, which is crucial for studying the planet-star chemical connection with the highest precision. Aims: We aim to use solar twins to characterise the relationship between planet architecture and stellar chemical composition. Methods: We obtained high-precision (1 m s-1) radial velocities with the HARPS spectrograph on the ESO 3.6 m telescope at La Silla Observatory and determined precise stellar elemental abundances ( 0.01 dex) using spectra obtained with the MIKE spectrograph on the Magellan 6.5 m telescope. Results: Our data indicate the presence of a planet with a minimum mass of 26 ± 4 Earth masses around the solar twin HIP 68468. The planet is more massive than Neptune (17 Earth masses), but unlike the distant Neptune in our solar system (30 AU), HIP 68468c is close-in, with a semi-major axis of 0.66 AU, similar to that of Venus. The data also suggest the presence of a super-Earth with a minimum mass of 2.9 ± 0.8 Earth masses at 0.03 AU; if the planet is confirmed, it will be the fifth least massive radial velocity planet candidate discovery to date and the first super-Earth around a solar twin. Both isochrones (5.9 ± 0.4 Gyr) and the abundance ratio [Y/Mg] (6.4 ± 0.8 Gyr) indicate an age of about 6 billion years. The star is enhanced in refractory elements when compared to the Sun, and the refractory enrichment is even stronger after corrections for Galactic chemical evolution. We determined a nonlocal thermodynamic equilibrium Li abundance of 1.52 ± 0.03 dex, which is four times higher than what would be expected for the age of HIP 68468. The older age is also supported by the low log () (-5.05) and low jitter (<1 m s-1). Engulfment of a rocky planet of 6 Earth masses can explain the enhancement in both lithium and the

  4. HAT-P-15b: A 10.9 DAY EXTRASOLAR PLANET TRANSITING A SOLAR-TYPE STAR

    SciTech Connect

    Kovacs, G.; Bakos, G. A.; Hartman, J. D.; Torres, G.; Noyes, R. W.; Latham, D. W.; Sasselov, D. D.; Stefanik, R. P.; Esquerdo, G. A.; Fernandez, J. M.; Howard, A. W.; Marcy, G. W.; Isaacson, H.; Fischer, D. A.; Johnson, J. A.; Lazar, B. Beky J.; Papp, I.; Sari, P.

    2010-12-01

    We report the discovery of HAT-P-15b, a transiting extrasolar planet in the 'period valley', a relatively sparsely populated period regime of the known extrasolar planets. The host star, GSC 2883-01687, is a G5 dwarf with V= 12.16. It has a mass of 1.01 {+-} 0.04 M{sub sun}, radius of 1.08 {+-} 0.04 R{sub sun}, effective temperature 5568 {+-} 90 K, and metallicity [Fe/H] = +0.22 {+-} 0.08. The planetary companion orbits the star with a period P = 10.863502 {+-} 0.000027 days, transit epoch T{sub c} = 2454638.56019 {+-} 0.00048 (BJD), and transit duration 0.2285 {+-} 0.0015 days. It has a mass of 1.946 {+-} 0.066 M{sub J} and radius of 1.072 {+-} 0.043 R{sub J} yielding a mean density of 1.96 {+-} 0.22 g cm{sup -3}. At an age of 6.8{sup +2.5}{sub -1.6} Gyr, the planet is H/He-dominated and theoretical models require about 2% (10 M{sub +}) worth of heavy elements to reproduce its measured radius. With an estimated equilibrium temperature of {approx}820 K during transit, and {approx}1000 K at occultation, HAT-P-15b is a potential candidate to study moderately cool planetary atmospheres by transmission and occultation spectroscopy.

  5. Planets Around Low-mass Stars (PALMS). V. Age-dating Low-mass Companions to Members and Interlopers of Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Shkolnik, Evgenya L.; Liu, Michael C.; Schlieder, Joshua E.; Mann, Andrew W.; Dupuy, Trent J.; Hinkley, Sasha; Crepp, Justin R.; Johnson, John Asher; Howard, Andrew W.; Flagg, Laura; Weinberger, Alycia J.; Aller, Kimberly M.; Allers, Katelyn N.; Best, William M. J.; Kotson, Michael C.; Montet, Benjamin T.; Herczeg, Gregory J.; Baranec, Christoph; Riddle, Reed; Law, Nicholas M.; Nielsen, Eric L.; Wahhaj, Zahed; Biller, Beth A.; Hayward, Thomas L.

    2015-06-01

    We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7-M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8-120 Myr) in the literature. Three of these are new companions identified in our AO imaging survey, and two others are confirmed to be comoving with their host stars for the first time. The inferred masses of the companions (˜10-100 MJup) are highly sensitive to the ages of the primary stars; therefore we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. The new M7 substellar companion 2MASS J02155892-0929121 C (40-60 MJup) shows clear spectroscopic signs of low gravity and, hence, youth. The primary, possibly a member of the ˜40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (≲100 AU) configuration. In addition, Li i λ6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (≲200 Myr) and resides below the hydrogen-burning limit. Three new close-separation (<1″) companions (2MASS J06475229-2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (≳1 Gyr) tidally locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the dustiest-known member of the

  6. PLANETS AROUND LOW-MASS STARS (PALMS). V. AGE-DATING LOW-MASS COMPANIONS TO MEMBERS AND INTERLOPERS OF YOUNG MOVING GROUPS

    SciTech Connect

    Bowler, Brendan P.; Montet, Benjamin T.; Riddle, Reed; Shkolnik, Evgenya L.; Flagg, Laura; Liu, Michael C.; Howard, Andrew W.; Aller, Kimberly M.; Best, William M. J.; Kotson, Michael C.; Baranec, Christoph; Schlieder, Joshua E.; Mann, Andrew W.; Dupuy, Trent J.; Hinkley, Sasha; Crepp, Justin R.; Johnson, John Asher; Weinberger, Alycia J.; Allers, Katelyn N.; Herczeg, Gregory J.; and others

    2015-06-10

    We present optical and near-infrared adaptive optics (AO) imaging and spectroscopy of 13 ultracool (>M6) companions to late-type stars (K7–M4.5), most of which have recently been identified as candidate members of nearby young moving groups (YMGs; 8–120 Myr) in the literature. Three of these are new companions identified in our AO imaging survey, and two others are confirmed to be comoving with their host stars for the first time. The inferred masses of the companions (∼10–100 M{sub Jup}) are highly sensitive to the ages of the primary stars; therefore we critically examine the kinematic and spectroscopic properties of each system to distinguish bona fide YMG members from old field interlopers. The new M7 substellar companion 2MASS J02155892–0929121 C (40–60 M{sub Jup}) shows clear spectroscopic signs of low gravity and, hence, youth. The primary, possibly a member of the ∼40 Myr Tuc-Hor moving group, is visually resolved into three components, making it a young low-mass quadruple system in a compact (≲100 AU) configuration. In addition, Li i λ6708 absorption in the intermediate-gravity M7.5 companion 2MASS J15594729+4403595 B provides unambiguous evidence that it is young (≲200 Myr) and resides below the hydrogen-burning limit. Three new close-separation (<1″) companions (2MASS J06475229–2523304 B, PYC J11519+0731 B, and GJ 4378 Ab) orbit stars previously reported as candidate YMG members, but instead are likely old (≳1 Gyr) tidally locked spectroscopic binaries without convincing kinematic associations with any known moving group. The high rate of false positives in the form of old active stars with YMG-like kinematics underscores the importance of radial velocity and parallax measurements to validate candidate young stars identified via proper motion and activity selection alone. Finally, we spectroscopically confirm the cool temperature and substellar nature of HD 23514 B, a recently discovered M8 benchmark brown dwarf orbiting the

  7. The HARPS search for southern extra-solar planets. XL. Searching for Neptunes around metal-poor stars

    NASA Astrophysics Data System (ADS)

    Faria, J. P.; Santos, N. C.; Figueira, P.; Mortier, A.; Dumusque, X.; Boisse, I.; Lo Curto, G.; Lovis, C.; Mayor, M.; Melo, C.; Pepe, F.; Queloz, D.; Santerne, A.; Ségransan, D.; Sousa, S. G.; Sozzetti, A.; Udry, S.

    2016-05-01

    Context. As a probe of the metallicity of proto-planetary disks, stellar metallicity is an important ingredient for giant planet formation, most likely through its effect on the timescales in which rocky or icy planet cores can form. Giant planets have been found to be more frequent around metal-rich stars, in agreement with predictions based on the core-accretion theory. In the metal-poor regime, however, the frequency of planets, especially low-mass planets, and the way it depends on metallicity are still largely unknown. Aims: As part of a planet search programme focused on metal-poor stars, we study the targets from this survey that were observed with HARPS on more than 75 nights. The main goals are to assess the presence of low-mass planets and provide a first estimate of the frequency of Neptunes and super-Earths around metal-poor stars. Methods: We performed a systematic search for planetary companions, both by analysing the periodograms of the radial-velocities and by comparing, in a statistically meaningful way, models with an increasing number of Keplerians. Results: A first constraint on the frequency of planets in our metal-poor sample is calculated considering the previous detection (in our sample) of a Neptune-sized planet around HD 175607 and one candidate planet (with an orbital period of 68.42 d and minimum mass Mpsini = 11.14 ± 2.47 M⊕) for HD 87838, announced in the present study. This frequency is determined to be close to 13% and is compared with results for solar-metallicity stars. Based on observations collected at ESO facilities under programs 082.C-0212, 085.C-0063, 086.C-0284, and 190.C-0027 (with the HARPS spectrograph at the ESO 3.6-m telescope, La Silla-Paranal Observatory).

  8. A Large Sparse Aperture Densified Pupil Hypertelescope Concept for Ground Based Detection of Extra-Solar Earth-Like Planets

    NASA Technical Reports Server (NTRS)

    Gezari, D.; Lyon, R.; Woodruff, R.; Labeyrie, A.; Oegerle, William (Technical Monitor)

    2002-01-01

    A concept is presented for a large (10 - 30 meter) sparse aperture hyper telescope to image extrasolar earth-like planets from the ground in the presence of atmospheric seeing. The telescope achieves high dynamic range very close to bright stellar sources with good image quality using pupil densification techniques. Active correction of the perturbed wavefront is simplified by using 36 small flat mirrors arranged in a parabolic steerable array structure, eliminating the need for large delat lines and operating at near-infrared (1 - 3 Micron) wavelengths with flats comparable in size to the seeing cells.

  9. A relook on using the Earth Similarity Index for searching habitable zones around solar and extrasolar planets

    NASA Astrophysics Data System (ADS)

    Biswas, S.; Shome, A.; Raha, B.; Bhattacharya, A. B.

    2017-01-01

    To study the distribution of Earth-like planets and to locate the habitable zone around extrasolar planets and their known satellites, we have emphasized in this paper the consideration of Earth similarity index (ESI) as a multi parameter quick assessment of Earth-likeness with a value between zero and one. Weight exponent values for four planetary properties have been taken into account to determine the ESI. A plot of surface ESI against the interior ESI exhibits some interesting results which provide further information when confirmed planets are examined. From the analysis of the available catalog and existing theory, none of the solar planets achieves an ESI value greater than 0.8. Though the planet Mercury has a value of 0.6, Mars exhibits a value between 0.6 and 0.8 and the planet Venus shows a value near 0.5. Finally, the locations of the habitable zone around different type of stars are critically examined and discussed.

  10. A UNIFORM ANALYSIS OF 118 STARS WITH HIGH-CONTRAST IMAGING: LONG-PERIOD EXTRASOLAR GIANT PLANETS ARE RARE AROUND SUN-LIKE STARS

    SciTech Connect

    Nielsen, Eric L.; Close, Laird M.

    2010-07-10

    We expand on the results of Nielsen et al., using the null result for giant extrasolar planets around the 118 target stars from the Very Large Telescope (VLT) NACO H- and Ks-band planet search (conducted by Masciadri and collaborators in 2003 and 2004), the VLT and MMT Simultaneous Differential Imager survey, and the Gemini Deep Planet Survey to set constraints on the population of giant extrasolar planets. Our analysis is extended to include the planet luminosity models of Fortney et al., as well as the correlation between stellar mass and frequency of giant planets found by Johnson et al. Doubling the sample size of FGKM stars strengthens our conclusions: a model for extrasolar giant planets with power laws for mass and semimajor axis as given by Cumming et al. cannot, with 95% confidence, have planets beyond 65 AU, compared to the value of 94 AU reported by Nielsen et al., using the models of Baraffe et al. When the Johnson et al. correction for stellar mass (which gives fewer Jupiter-mass companions to M stars with respect to solar-type stars) is applied, however, this limit moves out to 82 AU. For the relatively new Fortney et al. models, which predict fainter planets across most of parameter space, these upper limits, with and without a correction for stellar mass, are 182 and 234 AU, respectively.

  11. Ground-based detectability of terrestrial and Jovian extrasolar planets: Observations of CM Draconis at Lick Observatory

    NASA Astrophysics Data System (ADS)

    Doyle, Laurance R.; Dunham, Edward T.; Deeg, Hans-Jörg; Blue, J. Ellen; Jenkins, Jon M.

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case for specially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes >=1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define ``terrestrial planets'' herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a ``spin-off'' of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  12. Ground-based detectability of terrestrial and Jovian extrasolar planets: observations of CM Draconis at Lick Observatory.

    PubMed

    Doyle, L R; Dunham, E T; Deeg, H J; Blue, J E; Jenkins, J M

    1996-06-25

    The detection of terrestrial-sized extrasolar planets from the ground has been thought to be virtually impossible due to atmospheric scintillation limits. However, we show that this is not the case especially selected (but nevertheless main sequence) stars, namely small eclipsing binaries. For the smallest of these systems, CM Draconis, several months to a few years of photometric observations with 1-m-class telescopes will be sufficient to detect the transits of any short-period planets of sizes > or = 1.5 Earth radii (RE), using cross-correlation analysis with moderately good photometry. Somewhat larger telescopes will be needed to extend this detectability to terrestrial planets in larger eclipsing binary systems. (We arbitrarily define "terrestrial planets" herein as those whose disc areas are closer to that of Earth's than Neptune's i.e., less than about 2.78 RE.) As a "spin-off" of such observations, we will also be able to detect the presence of Jovian-mass planets without transits using the timing of the eclipse minima. Eclipse minima will drift in time as the binary system is offset by a sufficiently massive planet (i.e., one Jupiter mass) about the binary/giant-planet barycenter, causing a periodic variation in the light travel time to the observer. We present here an outline of present observations taking place at the University of California Lick Observatory using the Crossley 0.9-m telescope in collaboration with other observatories (in South Korea, Crete, France, Canary Islands, and New York) to detect or constrain the existence of terrestrial planets around main sequence eclipsing binary star systems, starting with CM Draconis. We demonstrate the applicability of photometric data to the general detection of gas giant planets via eclipse minima timings in many other small-mass eclipsing binary systems as well.

  13. Planet Hunters. VII. Discovery of a New Low-mass, Low-density Planet (PH3 C) Orbiting Kepler-289 with Mass Measurements of Two Additional Planets (PH3 B and D)

    NASA Astrophysics Data System (ADS)

    Schmitt, Joseph R.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Fischer, Debra A.; Wang, Ji; Holman, Matthew J.; Jek, Kian J.; Margossian, Charles; Omohundro, Mark R.; Winarski, Troy; Brewer, John M.; Giguere, Matthew J.; Lintott, Chris; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; Simpson, Robert; Smith, Arfon M.

    2014-11-01

    We report the discovery of one newly confirmed planet (P = 66.06 days, R P = 2.68 ± 0.17 R ⊕) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R P = 2.15 ± 0.10 R ⊕) and Kepler-289-c (P = 125.85 days, R P = 11.59 ± 0.10 R ⊕), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (~1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (~1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M * = 1.08 ± 0.02 M ⊙, R * = 1.00 ± 0.02 R ⊙, and T eff = 5990 ± 38 K. The middle planet's large TTV amplitude (~5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M ⊕, 4.0 ± 0.9M ⊕, and M = 132 ± 17 M ⊕, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm-3 for a planet of its mass, requiring a substantial H/He atmosphere of 2.1+0.8-0.3% by mass, and joins a growing population of low-mass, low-density planets. .

  14. Atmospheric circulation of brown dwarfs and directly imaged extrasolar giant planets with active clouds

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam

    2016-10-01

    Observational evidence have suggested active meteorology in the atmospheres of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs). In particular, a number of surveys for brown dwarfs showed that near-IR brightness variability is common for L and T dwarfs. Directly imaged EGPs share similar observations, and can be viewed as low-gravity versions of BDs. Clouds are believed to play the major role in shaping the thermal structure, dynamics and near-IR flux of these atmospheres. So far, only a few studies have been devoted to atmospheric circulation and the implications for observations of BDs and directly EGPs, and yet no global model includes a self-consistent active cloud formation. Here we present preliminary results from the first global circulation model applied to BDs and directly imaged EGPs that can properly treat absorption and scattering of radiation by cloud particles. Our results suggest that horizontal temperature differences on isobars can reach up to a few hundred Kelvins, with typical horizontal length scale of the temperature and cloud patterns much smaller than the radius of the object. The combination of temperature anomaly and cloud pattern can result in moderate disk-integrated near-IR flux variability. Wind speeds can reach several hundred meters per second in cloud forming layers. Unlike Jupiter and Saturn, we do not observe stable zonal jet/banded patterns in our simulations. Instead, our simulated atmospheres are typically turbulent and dominated by transient vortices. The circulation is sensitive to the parameterized cloud microphysics. Under some parameter combinations, global-scale atmospheric waves can be triggered and maintained. These waves induce global-scale temperature anomalies and cloud patterns, causing large (up to several percent) disk-integrated near-IR flux variability. Our results demonstrate that the commonly observed near-IR brightness variability for BDs and directly imaged EGPs can be explained by the

  15. Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Ida, S.; Lin, D. N. C.

    2004-03-01

    In an attempt to develop a deterministic theory for planet formation, we examine the accretion of cores of giant planets from planetesimals, gas accretion onto the cores, and their orbital migration. We adopt a working model for nascent protostellar disks with a wide variety of surface density distributions in order to explore the range of diversity among extrasolar planetary systems. We evaluate the cores' mass growth rate Mc through runaway planetesimal accretion and oligarchic growth. The accretion rate of cores is estimated with a two-body approximation. In the inner regions of disks, the cores' eccentricity is effectively damped by their tidal interaction with the ambient disk gas and their early growth is stalled by ``isolation.'' In the outer regions, the cores' growth rate is much smaller. If some cores can acquire more mass than a critical value of several Earth masses during the persistence of the disk gas, they would be able to rapidly accrete gas and evolve into gas giant planets. The gas accretion process is initially regulated by the Kelvin-Helmholtz contraction of the planets' gas envelope. Based on the assumption that the exponential decay of the disk gas mass occurs on the timescales ~106-107 yr and that the disk mass distribution is comparable to those inferred from the observations of circumstellar disks of T Tauri stars, we carry out simulations to predict the distributions of masses and semimajor axes of extrasolar planets. In disks as massive as the minimum-mass disk for the solar system, gas giants can form only slightly outside the ``ice boundary'' at a few AU. However, cores can rapidly grow above the critical mass inside the ice boundary in protostellar disks with 5 times more heavy elements than those of the minimum-mass disk. Thereafter, these massive cores accrete gas prior to its depletion and evolve into gas giants. The limited persistence of the disk gas and the decline in the stellar gravity prevent the formation of cores capable of

  16. WASP-44b, WASP-45b and WASP-46b: three short-period, transiting extrasolar planets

    NASA Astrophysics Data System (ADS)

    Anderson, D. R.; Collier Cameron, A.; Gillon, M.; Hellier, C.; Jehin, E.; Lendl, M.; Maxted, P. F. L.; Queloz, D.; Smalley, B.; Smith, A. M. S.; Triaud, A. H. M. J.; West, R. G.; Pepe, F.; Pollacco, D.; Ségransan, D.; Todd, I.; Udry, S.

    2012-05-01

    We report the discovery of three extrasolar planets that transit their moderately bright (mV= 12-13) host stars. WASP-44b is a 0.89-MJup planet in a 2.42-day orbit around a G8V star. WASP-45b is a 1.03-MJup planet which passes in front of the limb of its K2V host star every 3.13 days. Weak Ca II H&K emission seen in the spectra of WASP-45 suggests that the star is chromospherically active. WASP-46b is a 2.10-MJup planet in a 1.43-day orbit around a G6V star. Rotational modulation of the light curves of WASP-46 and weak Ca II H&K emission in its spectra show the star to be photospherically and chromospherically active. We imposed circular orbits in our analyses as the radial-velocity data are consistent with (near-)circular orbits, as could be expected from both empirical and tidal-theory perspectives for such short-period, ˜Jupiter-mass planets. We discuss the impact of fitting for eccentric orbits for such planets when not supported by the data. The derived planetary and stellar radii depend on the fitted eccentricity and these parameters inform intense theoretical efforts concerning tidal circularization and heating, bulk planetary composition and the observed systematic errors in planetary and stellar radii. As such, we recommend exercising caution in fitting the orbits of short-period, ˜Jupiter-mass planets with an eccentric model when there is no evidence of non-circularity.

  17. IBIS: An Interferometer-Based Imaging System for Detecting Extrasolar Planets with a Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Diner, David J.

    1989-01-01

    The direct detection of extrasolar planetary systems is a challenging observational objective. The observing system must be able to detect faint planetary signals against the background of diffracted and scattered starlight, zodiacal light, and in the IR, mirror thermal radiation. As part of a JPL study, we concluded that the best long-term approach is a 10-20 m filled-aperture telescope operating in the thermal IR (10-15 microns). At these wavelengths, the star/planet flux ratio is on the order of 10(exp 6)-10(exp 8). Our study supports the work of Angel et al., who proposed a cooled 16-m IR telescope and a special apodization mask to suppress the stellar light within a limited angular region around the star. Our scheme differs in that it is capable of stellar suppression over a much broader field-of- view, enabling more efficient planet searches. To do this, certain key optical signal-processing components are needed, including a coronagraph to apodize the stellar diffraction pattern, an infrared interferometer to provide further starlight suppression, a complementary visible-wavelength interferometer to sense figure errors in the telescope optics, and a deformable mirror to adaptively compensate for these errors. Because of the central role of interferometry we have designated this concept the Interferometer-Based Imaging System (IBIS). IBIS incorporates techniques originally suggested by Ken Knight for extrasolar planet detection at visible wavelengths. The type of telescope discussed at this workshop is well suited to implementation of the IBIS concept.

  18. Near-infrared Spectroscopy of the Extrasolar Planet HR 8799 b

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Dupuy, Trent J.; Cushing, Michael C.

    2010-11-01

    We present 2.12-2.23 μm high contrast integral field spectroscopy of the extrasolar planet HR 8799 b. Our observations were obtained with OSIRIS on the Keck II telescope and sample the 2.2 μm CH4 feature, which is useful for spectral classification and as a temperature diagnostic for ultracool objects. The spectrum of HR 8799 b is relatively featureless, with little or no methane absorption, and does not exhibit the strong CH4 seen in T dwarfs of similar absolute magnitudes. The spectrum is consistent with field objects from early-L to T4 (3σ confidence level), with a best-fitting type of T2. A similar analysis of the published 1-4 μm photometry shows the infrared spectral energy distribution (SED) matches L5-L8 field dwarfs, especially the reddest known objects which are believed to be young and/or very dusty. Overall, we find that HR 8799 b has a spectral type consistent with L5-T2, although its SED is atypical compared to most field objects. We fit the 2.2 μm spectrum and the infrared SED using the Hubeny & Burrows, Burrows et al., and Ames-Dusty model atmosphere grids, which incorporate non-equilibrium chemistry, non-solar metallicities, and clear and cloudy variants. No models agree with all of the data, but those with intermediate clouds produce significantly better fits. The largest discrepancy occurs in the J band, which is highly suppressed in HR 8799 b. Models with high eddy diffusion coefficients and high metallicities are somewhat preferred over those with equilibrium chemistry and solar metallicity. The best-fitting effective temperatures range from 1300 to 1700 K with radii between ~0.3 and 0.5 R Jup. These values are inconsistent with evolutionary model-derived values of 800-900 K and 1.1-1.3 R Jup based on the luminosity of HR 8799 b and the age of HR 8799, a discrepancy that probably results from imperfect atmospheric models or the limited range of physical parameters covered by the models. The low temperature inferred from evolutionary models

  19. HAT-P-20b-HAT-P-23b: Four Massive Transiting Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Bakos, G. Á.; Hartman, J.; Torres, G.; Latham, D. W.; Kovács, Géza; Noyes, R. W.; Fischer, D. A.; Johnson, J. A.; Marcy, G. W.; Howard, A. W.; Kipping, D.; Esquerdo, G. A.; Shporer, A.; Béky, B.; Buchhave, L. A.; Perumpilly, G.; Everett, M.; Sasselov, D. D.; Stefanik, R. P.; Lázár, J.; Papp, I.; Sári, P.

    2011-12-01

    We report the discovery of four relatively massive (2-7 M J) transiting extrasolar planets. HAT-P-20b orbits the moderately bright V = 11.339 K3 dwarf star GSC 1910-00239 on a circular orbit, with a period P = 2.875317 ± 0.000004 days, transit epoch Tc = 2455080.92661 ± 0.00021 (BJDUTC), and transit duration 0.0770 ± 0.0008 days. The host star has a mass of 0.76 ± 0.03 M ⊙, radius of 0.69 ± 0.02 R ⊙, effective temperature 4595 ± 80 K, and metallicity [Fe/H] = +0.35 ± 0.08. The planetary companion has a mass of 7.246 ± 0.187 M J and a radius of 0.867 ± 0.033 R J yielding a mean density of 13.78 ± 1.50 g cm-3. HAT-P-21b orbits the V = 11.685 G3 dwarf star GSC 3013-01229 on an eccentric (e = 0.228 ± 0.016) orbit, with a period P = 4.124481 ± 0.000007 days, transit epoch Tc = 2454996.41312 ± 0.00069, and transit duration 0.1530 ± 0.0027 days. The host star has a mass of 0.95 ± 0.04 M ⊙, radius of 1.10 ± 0.08 R ⊙, effective temperature 5588 ± 80 K, and metallicity [Fe/H] = +0.01 ± 0.08. The planetary companion has a mass of 4.063 ± 0.161 M J and a radius of 1.024 ± 0.092 R J yielding a mean density of 4.68+1.59 - 0.99 g cm-3. HAT-P-21b is a borderline object between the pM and pL class planets, and the transits occur near apastron. HAT-P-22b orbits the bright V = 9.732 G5 dwarf star HD 233731 on a circular orbit, with a period P = 3.212220 ± 0.000009 days, transit epoch Tc = 2454930.22001 ± 0.00025, and transit duration 0.1196 ± 0.0014 days. The host star has a mass of 0.92 ± 0.03 M ⊙, radius of 1.04 ± 0.04 R ⊙, effective temperature 5302 ± 80 K, and metallicity [Fe/H] = +0.24 ± 0.08. The planet has a mass of 2.147 ± 0.061 M J and a compact radius of 1.080 ± 0.058 R J yielding a mean density of 2.11+0.40 - 0.29 g cm-3. The host star also harbors an M-dwarf companion at a wide separation. Finally, HAT-P-23b orbits the V = 12.432 G0 dwarf star GSC 1632-01396 on a close to circular orbit, with a period P = 1.212884 ± 0.000002 days

  20. Planet hunters. VII. Discovery of a new low-mass, low-density planet (PH3 C) orbiting Kepler-289 with mass measurements of two additional planets (PH3 B and D)

    SciTech Connect

    Schmitt, Joseph R.; Fischer, Debra A.; Wang, Ji; Margossian, Charles; Brewer, John M.; Giguere, Matthew J.; Agol, Eric; Deck, Katherine M.; Rogers, Leslie A.; Gazak, J. Zachary; Holman, Matthew J.; Jek, Kian J.; Omohundro, Mark R.; Winarski, Troy; Lintott, Chris; Simpson, Robert; Lynn, Stuart; Parrish, Michael; Schawinski, Kevin; Schwamb, Megan E.; and others

    2014-11-10

    We report the discovery of one newly confirmed planet (P = 66.06 days, R {sub P} = 2.68 ± 0.17 R {sub ⊕}) and mass determinations of two previously validated Kepler planets, Kepler-289 b (P = 34.55 days, R {sub P} = 2.15 ± 0.10 R {sub ⊕}) and Kepler-289-c (P = 125.85 days, R {sub P} = 11.59 ± 0.10 R {sub ⊕}), through their transit timing variations (TTVs). We also exclude the possibility that these three planets reside in a 1:2:4 Laplace resonance. The outer planet has very deep (∼1.3%), high signal-to-noise transits, which puts extremely tight constraints on its host star's stellar properties via Kepler's Third Law. The star PH3 is a young (∼1 Gyr as determined by isochrones and gyrochronology), Sun-like star with M {sub *} = 1.08 ± 0.02 M {sub ☉}, R {sub *} = 1.00 ± 0.02 R {sub ☉}, and T {sub eff} = 5990 ± 38 K. The middle planet's large TTV amplitude (∼5 hr) resulted either in non-detections or inaccurate detections in previous searches. A strong chopping signal, a shorter period sinusoid in the TTVs, allows us to break the mass-eccentricity degeneracy and uniquely determine the masses of the inner, middle, and outer planets to be M = 7.3 ± 6.8 M {sub ⊕}, 4.0 ± 0.9M {sub ⊕}, and M = 132 ± 17 M {sub ⊕}, which we designate PH3 b, c, and d, respectively. Furthermore, the middle planet, PH3 c, has a relatively low density, ρ = 1.2 ± 0.3 g cm{sup –3} for a planet of its mass, requiring a substantial H/He atmosphere of 2.1{sub −0.3}{sup +0.8}% by mass, and joins a growing population of low-mass, low-density planets.

  1. Orbital parameter estimation of extrasolar multi-planet systems by Transit Time Variation

    NASA Astrophysics Data System (ADS)

    Korth, J.; Grziwa, S.; Pätzold, M.

    2014-04-01

    Transit Time Variation (TTV) is the earlier or later occurrence of a planetary transit relative to the time of a reference transit. TTV may be dominantly caused by the gravitational perturbation of the orbit of the transiting planet by another still unknown planet(s) inside or outside of the orbit of the known transiting planet. Gravitational interactions perturb the velocity of the transiting planet in its orbit which manifests in the periodical perturbation of the revolution period. Measurements of the transit times and the identification of differences from a mean transit period may then indicate the presence of another unknown planet and is therefore proof for the existence of further planets. The estimation of the mass of the transiting planet and the orbital parameters of the undetected planet(s) are constrained by the amplitude of the periodical variation of the transit times. Simulations of known multi-planet systems which show TTV shall be presented. The resulting TTV amplitude is analyzed with regard to the main dependencies: mass of the perturbing planet and the orbit eccentricities.

  2. GMRT search for 150 MHz radio emission from the transiting extrasolar planets HD 189733 b and HD 209458 b

    NASA Astrophysics Data System (ADS)

    Lecavelier Des Etangs, A.; Sirothia, S. K.; Gopal-Krishna; Zarka, P.

    2011-09-01

    We report a sensitive search for meter-wavelength emission at 150 MHz from two prominent transiting extrasolar planets, HD 189733 b and HD 209458 b. To distinguish any planetary emission from possible stellar or background contributions, we monitored these systems just prior to, during, and after the planet's eclipse behind the host star. No emission was detected from HD 209458 b with a 3σ upper limit of 3.6 mJy. For HD 189733 b we obtain a 3σ upper limit of 2.1 mJy and a marginal 2.7σ detection of ~1900 ± 700 μJy from a direction just 13″ from the star's coordinates (i.e., within the beam), but its association with the planet remains unconfirmed. Thus, the present GMRT observations provide unprecedentedly tight upper limits for meter wavelength emissions from these nearest two transiting-type exoplanets. We point out possible explanations of the non-detections and briefly discuss the resulting constraints on these systems. Data for this observations can be retrieved electronically on the GMRT archive server http://ncra.tifr.res.in/~gmrtarchive and upon request to archive@gmrt.ncra.tifr.res.in.

  3. Parent stars of extrasolar planets - XIV. Strong evidence of Li abundance deficit

    NASA Astrophysics Data System (ADS)

    Gonzalez, G.

    2015-01-01

    We report the results of our analysis of new high-resolution spectra of 30 late-F to early-G dwarf field stars for the purpose of deriving their Li abundances. They were selected from the subsample of stars in the Valenti and Fischer compilation that are lacking detected planets. These new data serve to expand our comparison sample used to test whether stars with Doppler-detected giant planets display Li abundance anomalies. Our results continue to show that Li is deficient among stars with planets when compared to very similar stars that lack such planets. This conclusion is strengthened when we add literature data to ours in a consistent way. We present a table of stars with planets paired with very similar stars lacking planets, extending the recent similar results of Delgado Mena et al.

  4. Detection and Characterization of Extrasolar Planets through Mean-Motion Resonances

    NASA Astrophysics Data System (ADS)

    Tabeshian, Maryam; Wiegert, Paul

    2016-10-01

    Exoplanets are often detected indirectly through their influence on the light arriving from their host stars. We propose another indirect method to detect and characterize planets via their resonant interaction with debris disks. Using simulations, we show that the properties of gaps produced by mean-motion resonances with a single planet orbiting interior or exterior to the disk can help constrain the planet's mass and semimajor axis even if the planet itself remains as-yet undetected. Results published in the Astrophysical Journal (ApJ, 818, 159) will be discussed as well as a follow-up study that attempts to constrain the perturbing planet's orbital eccentricity based on its effect on the disk. Expressions that allow observers to determine the planet's mass and orbital parameters from the width, shape and location of the gaps will be presented.

  5. The Inner Edge of the Habitable Zone for Synchronously Rotating Planets around Low-mass Stars Using General Circulation Models

    NASA Astrophysics Data System (ADS)

    Kopparapu, Ravi kumar; Wolf, Eric T.; Haqq-Misra, Jacob; Yang, Jun; Kasting, James F.; Meadows, Victoria; Terrien, Ryan; Mahadevan, Suvrath

    2016-03-01

    Terrestrial planets at the inner edge of the habitable zone (HZ) of late-K and M-dwarf stars are expected to be in synchronous rotation, as a consequence of strong tidal interactions with their host stars. Previous global climate model (GCM) studies have shown that, for slowly rotating planets, strong convection at the substellar point can create optically thick water clouds, increasing the planetary albedo, and thus stabilizing the climate against a thermal runaway. However these studies did not use self-consistent orbital/rotational periods for synchronously rotating planets placed at different distances from the host star. Here we provide new estimates of the inner edge of the HZ for synchronously rotating terrestrial planets around late-K and M-dwarf stars using a 3D Earth-analog GCM with self-consistent relationships between stellar metallicity, stellar effective temperature, and the planetary orbital/rotational period. We find that both atmospheric dynamics and the efficacy of the substellar cloud deck are sensitive to the precise rotation rate of the planet. Around mid-to-late M-dwarf stars with low metallicity, planetary rotation rates at the inner edge of the HZ become faster, and the inner edge of the HZ is farther away from the host stars than in previous GCM studies. For an Earth-sized planet, the dynamical regime of the substellar clouds begins to transition as the rotation rate approaches ∼10 days. These faster rotation rates produce stronger zonal winds that encircle the planet and smear the substellar clouds around it, lowering the planetary albedo, and causing the onset of the water-vapor greenhouse climatic instability to occur at up to ∼25% lower incident stellar fluxes than found in previous GCM studies. For mid-to-late M-dwarf stars with high metallicity and for mid-K to early-M stars, we agree with previous studies.

  6. The phase-dependent infrared brightness of the extrasolar planet upsilon Andromedae b.

    PubMed

    Harrington, Joseph; Hansen, Brad M; Luszcz, Statia H; Seager, Sara; Deming, Drake; Menou, Kristen; Cho, James Y-K; Richardson, L Jeremy

    2006-10-27

    The star upsilon Andromedae is orbited by three known planets, the innermost of which has an orbital period of 4.617 days and a mass at least 0.69 that of Jupiter. This planet is close enough to its host star that the radiation it absorbs overwhelms its internal heat losses. Here, we present the 24-micrometer light curve of this system, obtained with the Spitzer Space Telescope. It shows a variation in phase with the orbital motion of the innermost planet, demonstrating that such planets possess distinct hot substellar (day) and cold antistellar (night) faces.

  7. Effects of Extreme Obliquity Change on the Habitability of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Armstrong, John C.; Barnes, R.; Domagal-Goldman, S.; Planetary Laboratory, Virtual

    2014-01-01

    We explore the impact of obliquity variations on planetary habitability in hypothetical systems with high mutual inclination and demonstrate that the system architecture can dramatically affect the limits of the habitable zone. We restrict our exploration to hypothetical systems consisting of a solar-mass star, an Earth-mass planet at 1 AU, and 1 or 2 giant planets. We verify that these systems are stable for 100 million years with N-body simulations, and calculate the obliquity variations induced by the orbital evolution of the Earth-mass planet. Next, we run a simplified energy balance model on the terrestrial planet to assess surface temperature and ice coverage on the planet's surface. Finally, we explore differences in the outer edge of the habitable zone for planets with rapid obliquity variations. We run climate simulations for a range of values for the semi-major axis, assuming that the obliquity variations of the nominal system (terrestrial planet at 1 AU) are typical for each orbital architecture. We find that planets undergoing extreme axial perturbations may be habitable at distances up to 93 % larger than our Earth standard model. Additionally, up to 100 % of this enhancement can be traced to the variability in the orbital properties. This extension arises because the obliquity variations suppress the build-up of ice sheets at the poles, reducing the effectiveness of the ice-albedo feedback.

  8. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases-such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approx. 100 million years after the condensation of the oldest meteorites?

  9. Planetary Formation: From the Earth and Moon to Extrasolar Giant Planets

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack; DeVincenzi, Donald (Technical Monitor)

    1999-01-01

    An overview of current theories of star and planet formation is presented. These models are based upon observations of the Solar System and of young stars and their environments. They predict that rocky planets should form around most single stars, although it is possible that in some cases such planets are lost to orbital decay within the protoplanetary disk. The frequency of formation of gas giant planets is more difficult to predict theoretically. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth like terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. Specific issues to be discussed include: (1) how large a solid core is needed to initiate rapid accumulation of gas? (2) can giant planets form very close to stars? (3) could a giant impact leading to lunar formation have occurred approximately 100 million years after the condensation of the oldest meteorites?

  10. Design and Verification of External Occulters for Direct Imaging of Extrasolar Planets

    NASA Technical Reports Server (NTRS)

    Cady, Eric

    2011-01-01

    An occulter is an optical element which is placed in front of the telescope to block most of the light from a star before it reaches the optics inside, without blocking the planet.In our case, we use two spacecraft ying in formation: First has its edge shaped to cancel the starlight Second is the telescope which images the star and planet

  11. Atmospheric circulation modeling of super Earths and terrestrial extrasolar planets using the SPARC/MITgcm

    NASA Astrophysics Data System (ADS)

    Kataria, T.; Showman, A. P.; Haberle, R. M.; Marley, M. S.; Fortney, J. J.; Freedman, R. S.

    2013-12-01

    The field of exoplanets continues to be a booming field of research in astronomy and planetary science, with numerous ground-based (e.g., SuperWASP, HARPS-N and S) and space-based surveys (e.g., Kepler) that detect and characterize planets ranging from hot Jupiters, Jovian-sized planets orbiting less than 0.1 AU from their star, to super Earths and terrestrial exoplanets, planets that have masses equal to or less than 10 times that of Earth with a range of orbital distances. Atmospheric circulation modeling plays an important role in the characterization of these planets, helping to constrain observations that probe their atmospheres. These models have proven successful in understanding observations of transiting exoplanets (when the planet passes in front of the star along our line of sight) particularly when the planet is passing through secondary eclipse (when the planet's dayside is visible). In modeling super Earths and terrestrial exoplanets, we must consider not only planets with thick fluid envelopes, but also traditional terrestrial planets with solid surfaces and thinner atmospheres. To that end, we present results from studies investigating the atmospheric circulation of these classes of planets using the SPARC/MITgcm, a state-of-the-art model which couples the MIT General Circulation Model with a plane-parallel, two-stream, non-gray radiative transfer model. We will present results from two studies, the first focusing on the circulation of GJ 1214b, a super-Earth detected by the MEarth ground-based survey, and a second study which explores the circulation of terrestrial exoplanets orbiting M-dwarfs.

  12. A matched filter method for ground-based sub-noise detection of terrestrial extrasolar planets in eclipsing binaries: application to CM Draconis.

    PubMed

    Jenkins, J M; Doyle, L R; Cullers, D K

    1996-02-01

    The photometric detection of extrasolar planets by transits in eclipsing binary systems can be significantly improved by cross-correlating the observational light curves with synthetic models of possible planetary transit features, essentially a matched filter approach. We demonstrate the utility and application of this transit detection algorithm for ground-based detections of terrestrial-sized (Earth-to-Neptune radii) extrasolar planets in the dwarf M-star eclipsing binary system CM Draconis. Preliminary photometric observational data of this system demonstrate that the observational noise is well characterized as white and Gaussian at the observational time steps required for precision photometric measurements. Depending on planet formation scenarios, terrestrial-sized planets may form quite close to this low-luminosity system. We demonstrate, for example, that planets as small as 1.4 Earth radii with periods on the order of a few months in the CM Draconis system could be detected at the 99.9% confidence level in less than a year using 1-m class telescopes from the ground. This result contradicts commonly held assumptions limiting present ground-based efforts to, at best, detections of gas giant planets after several years of observation. This method can be readily extended to a number of other larger star systems with the utilization of larger telescopes and longer observing times. Its extension to spacecraft observations should also allow the determination of the presence of terrestrial-sized planets in nearly 100 other known eclipsing binary systems.

  13. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    PubMed Central

    Meadows, Victoria S.; Bitz, Cecilia M.; Pierrehumbert, Raymond T.; Joshi, Manoj M.; Robinson, Tyler D.

    2013-01-01

    ice coverage. The surface ice-albedo feedback effect becomes less important at the outer edge of the habitable zone, where atmospheric CO2 could be expected to be high such that it maintains clement conditions for surface liquid water. We showed that ∼3–10 bar of CO2 will entirely mask the climatic effect of ice and snow, leaving the outer limits of the habitable zone unaffected by the spectral dependence of water ice and snow albedo. However, less CO2 is needed to maintain open water for a planet orbiting an M-dwarf star than would be the case for hotter main-sequence stars. Key Words: Extrasolar planets—M stars—Habitable zone—Snowball Earth. Astrobiology 13, 715–739. PMID:23855332

  14. Planets around Low-mass Stars (PALMS). VI. Discovery of a Remarkably Red Planetary-mass Companion to the AB Dor Moving Group Candidate 2MASS J22362452+4751425*

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Mawet, Dimitri; Ngo, Henry; Malo, Lison; Mace, Gregory N.; McLane, Jacob N.; Lu, Jessica R.; Tristan, Isaiah I.; Hinkley, Sasha; Hillenbrand, Lynne A.; Shkolnik, Evgenya L.; Benneke, Björn; Best, William M. J.

    2017-01-01

    We report the discovery of an extremely red planetary-mass companion to 2MASS J22362452+4751425, a ≈0.6 M⊙ late-K dwarf likely belonging to the ∼120 Myr AB Doradus moving group. 2M2236+4751 b was identified in multi-epoch NIRC2 adaptive optics imaging at Keck Observatory at a separation of 3\\buildrel{\\prime\\prime}\\over{.} 7, or 230 ± 20 AU in projection at the kinematic distance of 63 ± 5 pc to its host star. Assuming membership in the AB Dor group, as suggested from its kinematics, the inferred mass of 2M2236+4751 b is 11–14 MJup. Follow-up Keck/OSIRIS K-band spectroscopy of the companion reveals strong CO absorption similar to other faint red L dwarfs and lacks signs of methane absorption, despite having an effective temperature of ≈900–1200 K. With a (J–K)MKO color of 2.69 ± 0.12 mag, the near-infrared slope of 2M2236+4751 b is redder than all of the HR 8799 planets and instead resembles the ≈23 Myr isolated planetary-mass object PSO J318.5–22, implying that similarly thick photospheric clouds can persist in the atmospheres of giant planets at ages beyond 100 Myr. In near-infrared color–magnitude diagrams, 2M2236+4751 b is located at the tip of the red L dwarf sequence and appears to define the “elbow” of the AB Dor substellar isochrone separating low-gravity L dwarfs from the cooler young T dwarf track. 2M2236+4751 b is the reddest substellar companion to a star and will be a valuable benchmark to study the shared atmospheric properties of young low-mass brown dwarfs and extrasolar giant planets. Some of the data presented herein were obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation.

  15. A TWO-DIMENSIONAL INFRARED MAP OF THE EXTRASOLAR PLANET HD 189733b

    SciTech Connect

    Majeau, Carl; Agol, Eric; Cowan, Nicolas B.

    2012-03-10

    We derive the first secondary eclipse map of an exoplanet, HD 189733b, based on Spitzer IRAC 8 {mu}m data. We develop two complementary techniques for deriving the two-dimensional planet intensity: regularized slice mapping and spherical harmonic mapping. Both techniques give similar derived intensity maps for the infrared dayside flux of the planet, while the spherical harmonic method can be extended to include phase variation data which better constrain the map. The longitudinal offset of the dayside hot spot is consistent with that found in prior studies, strengthening the claim of super-rotating winds, and eliminating the possibility of phase variations being caused by stellar variability. The latitude of the hot spot is within 12.{sup 0}5 (68% confidence) of the planet's equator, confirming the predictions of general circulation models for hot Jupiters and indicative of a small planet obliquity.

  16. An extrasolar planet that transits the disk of its parent star.

    PubMed

    Konacki, Maciej; Torres, Guillermo; Jha, Saurabh; Sasselov, Dimitar D

    2003-01-30

    Planets orbiting other stars could in principle be found through the periodic dimming of starlight as a planet moves across--or 'transits'--the line of sight between the observer and the star. Depending on the size of the planet relative to the star, the dimming could reach a few per cent of the apparent brightness of the star. Despite many searches, no transiting planet has been discovered in this way; the one known transiting planet--HD209458b--was first discovered using precise measurements of the parent star's radial velocity and only subsequently detected photometrically. Here we report radial velocity measurements of the star OGLE-TR-56, which was previously found to exhibit a 1.2-day transit-like light curve in a survey looking for gravitational microlensing events. The velocity changes that we detect correlate with the light curve, from which we conclude that they are probably induced by an object of around 0.9 Jupiter masses in an orbit only 0.023 au from its star. We estimate the planetary radius to be around 1.3 Jupiter radii and its density to be about 0.5 g x cm(-3). This object is hotter than any known planet (approximately 1,900 K), but is still stable against long-term evaporation or tidal disruption.

  17. Clouds in the atmospheres of extrasolar planets. II. Thermal emission spectra of Earth-like planets influenced by low and high-level clouds

    NASA Astrophysics Data System (ADS)

    Kitzmann, D.; Patzer, A. B. C.; von Paris, P.; Godolt, M.; Rauer, H.

    2011-07-01

    Aims: We study the impact of multi-layered clouds (low-level water and high-level ice clouds) on the thermal emission spectra of Earth-like planets orbiting different types of stars. Clouds have an important influence on such planetary emission spectra due to their wavelength dependent absorption and scattering properties. We also investigate the influence of clouds on the ability to derive information about planetary surface temperatures from low-resolution spectra. Methods: We use a previously developed parametric cloud model based on observations in the Earth's atmosphere, coupled to a one-dimensional radiative-convective steady state climate model. This model is applied here to study the effect of clouds on the thermal emission spectra of Earth-like extrasolar planets in dependence of the type of central star. Results: The presence of clouds lead in general to a decrease of the planetary IR spectrum associated with the dampening of spectral absorption features such as the 9.6 μm absorption band of O3 for example. This dampening is not limited to absorption features originating below the cloud layers but was also found for features forming above the clouds. When only single cloud layers are considered, both cloud types exhibit basically the same effects on the spectrum but the underlying physical processes are clearly different. For model scenarios where multi-layered clouds have been considered with coverages which yield mean Earth surface temperatures, the low-level clouds have only a small influence on the thermal emission spectra. In these cases the major differences are caused by high-level ice clouds. The largest effect was found for a planet orbiting the F-type star, where no absorption features can be distinguished in the low-resolution emission spectrum for high cloud coverages. However, for most central stars, planetary atmospheric absorption bands are present even at high cloud coverages. Clouds also affect the derivation of surface temperatures from

  18. AN ANCIENT EXTRASOLAR SYSTEM WITH FIVE SUB-EARTH-SIZE PLANETS

    SciTech Connect

    Campante, T. L.; Davies, G. R.; Chaplin, W. J.; Handberg, R.; Barclay, T.; Huber, D.; Burke, C. J.; Quintana, E. V.; Swift, J. J.; Adibekyan, V. Zh.; Cochran, W.; Isaacson, H.; Silva Aguirre, V.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R.; Ragozzine, D.; Riddle, R.; Baranec, C.; Basu, S.; and others

    2015-02-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

  19. An Ancient Extrasolar System with Five Sub-Earth-size Planets

    NASA Astrophysics Data System (ADS)

    Campante, T. L.; Barclay, T.; Swift, J. J.; Huber, D.; Adibekyan, V. Zh.; Cochran, W.; Burke, C. J.; Isaacson, H.; Quintana, E. V.; Davies, G. R.; Silva Aguirre, V.; Ragozzine, D.; Riddle, R.; Baranec, C.; Basu, S.; Chaplin, W. J.; Christensen-Dalsgaard, J.; Metcalfe, T. S.; Bedding, T. R.; Handberg, R.; Stello, D.; Brewer, J. M.; Hekker, S.; Karoff, C.; Kolbl, R.; Law, N. M.; Lundkvist, M.; Miglio, A.; Rowe, J. F.; Santos, N. C.; Van Laerhoven, C.; Arentoft, T.; Elsworth, Y. P.; Fischer, D. A.; Kawaler, S. D.; Kjeldsen, H.; Lund, M. N.; Marcy, G. W.; Sousa, S. G.; Sozzetti, A.; White, T. R.

    2015-02-01

    The chemical composition of stars hosting small exoplanets (with radii less than four Earth radii) appears to be more diverse than that of gas-giant hosts, which tend to be metal-rich. This implies that small, including Earth-size, planets may have readily formed at earlier epochs in the universe's history when metals were more scarce. We report Kepler spacecraft observations of Kepler-444, a metal-poor Sun-like star from the old population of the Galactic thick disk and the host to a compact system of five transiting planets with sizes between those of Mercury and Venus. We validate this system as a true five-planet system orbiting the target star and provide a detailed characterization of its planetary and orbital parameters based on an analysis of the transit photometry. Kepler-444 is the densest star with detected solar-like oscillations. We use asteroseismology to directly measure a precise age of 11.2 ± 1.0 Gyr for the host star, indicating that Kepler-444 formed when the universe was less than 20% of its current age and making it the oldest known system of terrestrial-size planets. We thus show that Earth-size planets have formed throughout most of the universe's 13.8 billion year history, leaving open the possibility for the existence of ancient life in the Galaxy. The age of Kepler-444 not only suggests that thick-disk stars were among the hosts to the first Galactic planets, but may also help to pinpoint the beginning of the era of planet formation.

  20. Types of Information Expected from a Photometric Search for Extra-Solar Planets

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, David; Bell, James, III; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    The current theory postulates that planets are a consequence of the formation of stars from viscous accretion disks. Condensation from the hotter, inner portion of the accretion disk favors the formation of small rocky planets in the inner portion and the formation of gas giants in the cuter, cooler part. Consequently, terrestrial-type planets in inner orbits must be commonplace (Wetheril 1991). From the geometry of the situation (Borucki and Summers 1984), it can be shown that 1% of those planetary systems that resemble our solar system should show transits for Earth-sized (or larger) planets. Thus a photometric satellite that uses a wide field of view telescope and a large CCD array to simultaneously monitor 5000 target stars should detect 50 planetary systems. To verify that regularly recurring transits are occurring rather than statistical fluctuations of the stellar flux, demands observations that extend over several orbital periods so that the constancy of the orbital period, signal amplitude, and duration can be measured. Therefore, to examine the region from Mercury's orbit to that of the Earth requires a duration of three years whereas a search out to the orbit of mars requires about six years. The results of the observations should provide estimates of the distributions of planetary size and orbital radius, and the frequency of planetary systems that have Earth-sized planets in inner orbits. Because approximately one half of the star systems observed will be binary systems, the frequency of planetary systems orbit ' ing either one or both of the stars can also be determined. Furthermore, the complexity of the photometric signature of a planet transiting a pair of stars provides enough information to estimate the eccentricities of the planetary orbits. In summary, the statistical evidence from a photometric search of solar-like stars should be able to either confirm or deny the applicability of the current theory of planet formation and provide new

  1. Models of very-low-mass stars, brown dwarfs and exoplanets.

    PubMed

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  2. Models of very-low-mass stars, brown dwarfs and exoplanets

    PubMed Central

    Allard, F.; Homeier, D.; Freytag, B.

    2012-01-01

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets. PMID:22547243

  3. An extrasolar giant planet in a close triple-star system.

    PubMed

    Konacki, Maciej

    2005-07-14

    Hot Jupiters are gas-giant planets orbiting with periods of 3-9 days around Sun-like stars. They are believed to form in a disk of gas and condensed matter at or beyond approximately 2.7 astronomical units (au-the Sun-Earth distance) from their parent star. At such distances, there exists a sufficient amount of solid material to produce a core capable of capturing enough gas to form a giant planet. Subsequently, they migrate inward to their present close orbits. Here I report the detection of an unusual hot Jupiter orbiting the primary star of a triple stellar system, HD 188753. The planet has an orbital period of 3.35 days and a minimum mass of 1.14 times that of Jupiter. The primary star's mass is 1.06 times that of the Sun, 1.06 M(\\circ). The secondary star, itself a binary stellar system, orbits the primary at an average distance of 12.3 au with an eccentricity of 0.50. The mass of the secondary pair is 1.63 M(\\circ). Such a close and massive secondary would have truncated a disk around the primary to a radius of only approximately 1.3 AU (ref. 4) and might have heated it up to temperatures high enough to prohibit giant-planet formation, leaving the origin of this planet unclear.

  4. Structure of the Edgeworth-Kuiper Belt (EKB) Dust Disk and Implications for Extrasolar Planet(s) epsilon Eridani

    NASA Technical Reports Server (NTRS)

    Liou, J. -C.; Zook, H. A.; Greaves, J. S.; Holland, W. S.; Boehnhardt, H.; Hahn, J. M.

    2000-01-01

    Numerical simulations of the orbital evolution of dust particles from Edgeworth-Kuiper Belt (EKB) objects show that the three giant planets, Neptune, Jupiter, and Saturn impose distinct and dramatic signatures on the overall distribution of EKB dust particles. The features are very similar to those observed in the dust disk around the nearby star Eridani. Numerical simulations of dust particles in the epsilon Eridani system show that planetary perturbations may be responsible for the observed features

  5. The NASA-UC-UH Eta-Earth program. IV. A low-mass planet orbiting an M dwarf 3.6 PC from Earth

    SciTech Connect

    Howard, Andrew W.; Marcy, Geoffrey W.; Isaacson, Howard; Fischer, Debra A.; Boyajian, Tabetha S.; Muirhead, Philip S.; Becker, Juliette C.; Henry, Gregory W.; Von Braun, Kaspar; Wright, Jason T.; Johnson, John Asher

    2014-10-10

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M {sub ⊕}, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ∼0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H and K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = –0.22, [Fe/H] = –0.32). We measure a stellar radius of 0.3863 ± 0.0021 R {sub ☉} based on interferometry from CHARA.

  6. The NASA-UC-UH ETA-Earth Program. IV. A Low-mass Planet Orbiting an M Dwarf 3.6 PC from Earth

    NASA Astrophysics Data System (ADS)

    Howard, Andrew W.; Marcy, Geoffrey W.; Fischer, Debra A.; Isaacson, Howard; Muirhead, Philip S.; Henry, Gregory W.; Boyajian, Tabetha S.; von Braun, Kaspar; Becker, Juliette C.; Wright, Jason T.; Johnson, John Asher

    2014-10-01

    We report the discovery of a low-mass planet orbiting Gl 15 A based on radial velocities from the Eta-Earth Survey using HIRES at Keck Observatory. Gl 15 Ab is a planet with minimum mass Msin i = 5.35 ± 0.75 M ⊕, orbital period P = 11.4433 ± 0.0016 days, and an orbit that is consistent with circular. We characterize the host star using a variety of techniques. Photometric observations at Fairborn Observatory show no evidence for rotational modulation of spots at the orbital period to a limit of ~0.1 mmag, thus supporting the existence of the planet. We detect a second RV signal with a period of 44 days that we attribute to rotational modulation of stellar surface features, as confirmed by optical photometry and the Ca II H & K activity indicator. Using infrared spectroscopy from Palomar-TripleSpec, we measure an M2 V spectral type and a sub-solar metallicity ([M/H] = -0.22, [Fe/H] = -0.32). We measure a stellar radius of 0.3863 ± 0.0021 R ⊙ based on interferometry from CHARA. Based on observations obtained at the W. M. Keck Observatory, which is operated jointly by the University of California and the California Institute of Technology. Keck time was granted for this project by the University of Hawaii, the University of California, and NASA.

  7. Formation and Early Evolution of Solar and Extra-Solar Giant Planets

    NASA Technical Reports Server (NTRS)

    Bodenheimer, P. H.; Hubickyj, Olenka; Boyce, Joseph (Technical Monitor)

    2001-01-01

    This project investigates the origin of giant planets, both in the Solar System and around other stars. It is assumed that the planets form by the core accretion process: small solid particles in a disk surrounding a young star gradually coagulate into objects of a few kilometers in size, known as planetesimals, which then accumulate into solid protoplanetary cores. Once the cores have become large enough, they are able to attract gas from the surrounding disk to form the deep gaseous envelope of the giant planet. Our code simulates giant planet growth in a spherical approximation, and it has been quite successful in addressing a number of basic planetary properties. Further improvements to the code have been made to achieve a more realistic understanding of planetary formation. The computations of the models were based on an earlier version of our code and were stopped at the onset of runaway gas accretion. Now, improved boundary conditions have been incorporated into the code to allow for hydrodynamic inflow of gas and to handle the late stages of evolution when the planet evolves at constant mass. These changes were made to the version of the code that uses a constant accretion rate and to the version that uses a self-consistent method for calculating both the solid and gas accretion rates. The equation of state has been updated to incorporate the detailed tables of Saumon, Chabrier, and Van Horn. The opacities were updated to include the results of Alexander and Ferguson. The outer boundary conditions were modified. During the accretion phase when the planet's radius is between the accretion radius and the tidal radius, we set the outer boundary at a 'modified' accretion radius, which is the point where thermal energy is enough to bring gas to the edge of the Hill sphere.

  8. On the condensating species in terrestrial extrasolar planetary atmospheres

    NASA Astrophysics Data System (ADS)

    Patzer, A. B. C.; von Paris, P.; Kitzmann, D.; Rauer, H.; Grenfell, J. L.

    2008-09-01

    ABSTRACT The formation of liquid droplets and/or solid particles has a significant impact on the thermal, dynamic, and chemical structure of the planetary environments, in which they are formed. For example, the character and distribution of the atmospheric condensates determine the appearance of such objects. It is therefore important to know, which chemical species might condense under the atmospheric conditions of extrasolar planets and how the condensate, solid or maybe liquid, nucleate in detail to finally form cloudy structures in such planetary atmospheres. In this contribution the presence of particles of likely condensates under atmospheric conditions of extrasolar terrestrial planets is discussed. Consequences regarding the condensation of major gaseous constituents of the planetary atmospheres are considered in particular. Selected applications, especially in view of the recently discovered low mass planets - so called Super-Earths -, are presented and compared. Acknowledgement: This work has been partly supported by the Forschungsallianz Planetary Evolution and Life of the Helmholtz Gemeinschaft (HGF).

  9. Aspects on the Dynamics and Detection of Additional Circumbinary Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Hinse, Tobias C.; Haghighipour, Nader; Goździewski, Krzysztof

    2014-04-01

    The presence of additional bodies orbiting a binary star system can be detected by monitoring the binary's eclipse timing. These so-called circumbinary objects will reveal themselves by i) either introducing a reflex motion of the binary system about the total system's barycenter creating a geometric light-travel time effect (LITE), ii) by gravitational perturbations on the binary orbit, or iii) a combination of the two effects resulting in eclipse timing (ETV) and transit timing (TTV) variations. Motivated by the four recently detected circumbinary planets by the Kepler space telescope (Kepler-16b, Kepler-34b, Kepler-35b and Kepler-38b) we have begun to study their dynamics in the presence of an additional massive perturber. In particular we used Kepler-16b as a test bed case. We are aiming to study the detectability of non-transiting and inclined circumbinary planets using the ETV effect along with the fast indicator MEGNO to quantitatively map the chaotic/quasi-periodic regions of the orbital parameter-space and to determine where the orbit of a circumbinary planet will be stable. We have calculated the amplitudes of TTV and ETV signals for different values of the mass and orbital elements of the planet and binary.

  10. DEUTERIUM BURNING IN MASSIVE GIANT PLANETS AND LOW-MASS BROWN DWARFS FORMED BY CORE-NUCLEATED ACCRETION

    SciTech Connect

    Bodenheimer, Peter; Fortney, Jonathan J.; Saumon, Didier E-mail: gennaro.dangelo@nasa.gov E-mail: jfortney@ucolick.org

    2013-06-20

    Using detailed numerical simulations, we study the formation of bodies near the deuterium-burning limit according to the core-nucleated giant planet accretion scenario. The objects, with heavy-element cores in the range 5-30 M{sub Circled-Plus }, are assumed to accrete gas up to final masses of 10-15 Jupiter masses (M{sub Jup}). After the formation process, which lasts 1-5 Myr and which ends with a ''cold-start'', low-entropy configuration, the bodies evolve at constant mass up to an age of several Gyr. Deuterium burning via proton capture is included in the calculation, and we determined the mass, M{sub 50}, above which more than 50% of the initial deuterium is burned. This often-quoted borderline between giant planets and brown dwarfs is found to depend only slightly on parameters, such as core mass, stellar mass, formation location, solid surface density in the protoplanetary disk, disk viscosity, and dust opacity. The values for M{sub 50} fall in the range 11.6-13.6 M{sub Jup}, in agreement with previous determinations that do not take the formation process into account. For a given opacity law during the formation process, objects with higher core masses form more quickly. The result is higher entropy in the envelope at the completion of accretion, yielding lower values of M{sub 50}. For masses above M{sub 50}, during the deuterium-burning phase, objects expand and increase in luminosity by one to three orders of magnitude. Evolutionary tracks in the luminosity versus time diagram are compared with the observed position of the companion to Beta Pictoris.

  11. Implications of (Less) Accurate Mass-Radius-Measurements for the Habitability of Extrasolar Terrestrial Planets: Why Do We Need PLATO?

    NASA Astrophysics Data System (ADS)

    Noack, L.; Wagner, F. W.; Plesa, A.-C.; Höning, D.; Sohl, F.; Breuer, D.; Rauer, H.

    2012-04-01

    Several space missions (CoRoT, Kepler and others) already provided promising candidates for terrestrial exoplanets (i.e. with masses less than about 10 Earth masses) and thereby triggered an exciting new research branch of planetary modelling to investigate the possible habitability of such planets. Earth analogues (low-mass planets with an Earth-like structure and composition) are likely to be found in the near future with new missions such as the proposed M3 mission PLATO. Planets may be more diverse in the universe than they are in the solar system. Our neighbouring planets in the habitable zone are all terrestrial by the means of being differentiated into an iron core, a silicate mantle and a crust. To reliably determine the interior structure of an exoplanet, measurements of mass and radius have to be sufficiently accurate (around +/-2% error allowed for the radius and +/-5% for the mass). An Earth-size planet with an Earth-like mass but an expected error of ~15% in mass for example may have either a Mercury-like, an Earth-like or a Moon-like (i.e. small iron core) structure [1,2]. Even though the atmospheric escape is not strongly influenced by the interior structure, the outgassing of volatiles and the likeliness of plate tectonics and an ongoing carbon-cycle may be very different. Our investigations show, that a planet with a small silicate mantle is less likely to shift into the plate-tectonics regime, cools faster (which may lead to the loss of a magnetic field after a short time) and outgasses less volatiles than a planet with the same mass but a large silicate mantle and small iron core. To be able to address the habitability of exoplanets, space missions such as PLATO, which can lead up to 2% accuracy in radius [3], are extremely important. Moreover, information about the occurrence of different planetary types helps us to better understand the formation of planetary systems and to further constrain the Drake's equation, which gives an estimate of the

  12. H-alpha as a Probe of Very Low-mass Planets: The GAPplanetS Survey With the MagAO System

    NASA Astrophysics Data System (ADS)

    Close, L.; MagAO Team

    2014-03-01

    We utilized the new high-order 585 actuator Magellan Adaptive Optics system (MagAO) to obtain very high-resolution visible light images of young Transitional Disk with MagAO's VisAO science camera. In the median seeing conditions of the 6.5m Magellan telescope (0.5 - 0.7''), we find MagAO delivers 24-19% Strehl at Ha (0.656 mm). We detect a faint companion embedded in this young transitional disk system at just 86.3±1.9 mas (~12 AU) from the star. The companion is detected in both Ha and a continuum filter (Dmag=6.33±0.20 mag at Ha and 7.50±0.25 mag in the continuum filter). The Ha emission from the ~0.25 solar mass companion (EW=180 Angstroms) implies a mass accretion rate of ~5.9x10-10 Msun/yr, and a total accretion luminosity of 1.2% Lsun. Assuming a similar accretion rate, we estimate that a 1 Jupiter mass gas giant could have considerably better (50-1,000x) planet/star contrasts at Ha than at H band (COND models) for a range of optical extinctions (3.4-0 mag). We suggest that ~0.5-5 Mjup extrasolar planets in their gas accretion phase could be much more luminous at Ha than in the NIR. This is the motivation for our new MagAO GAPplanetS survey for directly imaging lowmass exoplanets in the gaps of transitional disks in the light of H-alpha with MagAO's unique SDI AO camera.

  13. SHORT-DURATION LENSING EVENTS. I. WIDE-ORBIT PLANETS? FREE-FLOATING LOW-MASS OBJECTS? OR HIGH-VELOCITY STARS?

    SciTech Connect

    Di Stefano, Rosanne

    2012-08-01

    Short-duration lensing events tend to be generated by low-mass lenses or by lenses with high transverse velocities. Furthermore, for any given lens mass and speed, events of short duration are preferentially caused by nearby lenses (mesolenses) that can be studied in detail, or else by lenses so close to the source star that finite-source-size effects may be detected, yielding information about both the Einstein ring radius and the surface of the lensed star. Planets causing short-duration events may be in orbits with any orientation, and may have semimajor axes smaller than 1 AU, or they may reach the outer limits of their planetary systems, in the region corresponding to the solar system's Oort Cloud. They can have masses larger than Jupiter's or smaller than Pluto's. Lensing therefore has a unique potential to expand our understanding of planetary systems. A particular advantage of lensing is that it can provide precision measurements of system parameters, including the masses of and projected separation between star and planet. We demonstrate how the parameters can be extracted and show that a great deal can be learned. For example, it is remarkable that the gravitational mass of nearby free-floating planet-mass lenses can be measured by complementing observations of a photometric event with deep images that detect the planet itself. A fraction of short events may be caused by high-velocity stars located within a kiloparsec. Many high-velocity lenses are likely to be neutron stars that received large natal kicks. Other high-speed stars may be members of the halo population. Still others may be hypervelocity stars that have been ejected from the Galactic center, or runaway stars escaped from close binaries, possibly including the progenitor binaries of Type Ia supernovae.

  14. Short-duration Lensing Events. I. Wide-orbit Planets? Free-floating Low-mass Objects? Or High-velocity Stars?

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne

    2012-08-01

    Short-duration lensing events tend to be generated by low-mass lenses or by lenses with high transverse velocities. Furthermore, for any given lens mass and speed, events of short duration are preferentially caused by nearby lenses (mesolenses) that can be studied in detail, or else by lenses so close to the source star that finite-source-size effects may be detected, yielding information about both the Einstein ring radius and the surface of the lensed star. Planets causing short-duration events may be in orbits with any orientation, and may have semimajor axes smaller than 1 AU, or they may reach the outer limits of their planetary systems, in the region corresponding to the solar system's Oort Cloud. They can have masses larger than Jupiter's or smaller than Pluto's. Lensing therefore has a unique potential to expand our understanding of planetary systems. A particular advantage of lensing is that it can provide precision measurements of system parameters, including the masses of and projected separation between star and planet. We demonstrate how the parameters can be extracted and show that a great deal can be learned. For example, it is remarkable that the gravitational mass of nearby free-floating planet-mass lenses can be measured by complementing observations of a photometric event with deep images that detect the planet itself. A fraction of short events may be caused by high-velocity stars located within a kiloparsec. Many high-velocity lenses are likely to be neutron stars that received large natal kicks. Other high-speed stars may be members of the halo population. Still others may be hypervelocity stars that have been ejected from the Galactic center, or runaway stars escaped from close binaries, possibly including the progenitor binaries of Type Ia supernovae.

  15. ADAPTIVE ANNEALED IMPORTANCE SAMPLING FOR MULTIMODAL POSTERIOR EXPLORATION AND MODEL SELECTION WITH APPLICATION TO EXTRASOLAR PLANET DETECTION

    SciTech Connect

    Liu, Bin

    2014-07-01

    We describe an algorithm that can adaptively provide mixture summaries of multimodal posterior distributions. The parameter space of the involved posteriors ranges in size from a few dimensions to dozens of dimensions. This work was motivated by an astrophysical problem called extrasolar planet (exoplanet) detection, wherein the computation of stochastic integrals that are required for Bayesian model comparison is challenging. The difficulty comes from the highly nonlinear models that lead to multimodal posterior distributions. We resort to importance sampling (IS) to estimate the integrals, and thus translate the problem to be how to find a parametric approximation of the posterior. To capture the multimodal structure in the posterior, we initialize a mixture proposal distribution and then tailor its parameters elaborately to make it resemble the posterior to the greatest extent possible. We use the effective sample size (ESS) calculated based on the IS draws to measure the degree of approximation. The bigger the ESS is, the better the proposal resembles the posterior. A difficulty within this tailoring operation lies in the adjustment of the number of mixing components in the mixture proposal. Brute force methods just preset it as a large constant, which leads to an increase in the required computational resources. We provide an iterative delete/merge/add process, which works in tandem with an expectation-maximization step to tailor such a number online. The efficiency of our proposed method is tested via both simulation studies and real exoplanet data analysis.

  16. THERMOCHEMICAL AND PHOTOCHEMICAL KINETICS IN COOLER HYDROGEN-DOMINATED EXTRASOLAR PLANETS: A METHANE-POOR GJ436b?

    SciTech Connect

    Line, Michael R.; Yung, Yuk L.; Vasisht, Gautam; Chen, Pin; Angerhausen, D. E-mail: gv@s383.jpl.nasa.gov

    2011-09-01

    We introduce a thermochemical kinetics and photochemical model. We use high-temperature bidirectional reaction rates for important H, C, O, and N reactions (most importantly for CH{sub 4} to CO interconversion), allowing us to attain thermochemical equilibrium, deep in an atmosphere, purely kinetically. This allows the chemical modeling of an entire atmosphere, from deep-atmosphere thermochemical equilibrium to the photochemically dominated regime. We use our model to explore the atmospheric chemistry of cooler (T{sub eff} < 10{sup 3} K) extrasolar giant planets. In particular, we choose to model the nearby hot-Neptune GJ436b, the only planet in this temperature regime for which spectroscopic measurements and estimates of chemical abundances now exist. Recent Spitzer measurements with retrieval have shown that methane is driven strongly out of equilibrium and is deeply depleted on the day side of GJ436b, whereas quenched carbon monoxide is abundant. This is surprising because GJ436b is cooler than many of the heavily irradiated hot Jovians and thermally favorable for CH{sub 4}, and thus requires an efficient mechanism for destroying it. We include realistic estimates of ultraviolet flux from the parent dM star GJ436, to bound the direct photolysis and photosensitized depletion of CH{sub 4}. While our models indicate fairly rich disequilibrium conditions are likely in cooler exoplanets over a range of planetary metallicities, we are unable to generate the conditions for substantial CH{sub 4} destruction. One possibility is an anomalous source of abundant H atoms between 0.01 and 1 bars (which attack CH{sub 4}), but we cannot as yet identify an efficient means to produce these hot atoms.

  17. Cool Customers in the Stellar Graveyard. I. Limits to Extrasolar Planets Around the White Dwarf G29-38

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Sigurdsson, Steinn; Woodgate, Bruce E.

    2005-11-01

    We present high-contrast images of the hydrogen white dwarf G29-38 taken in the near-infrared with the Hubble Space Telescope and the Gemini North Telescope as part of a high-contrast imaging search for substellar objects in orbit around nearby white dwarfs. We review the current limits on planetary companions for G29-38, the only nearby white dwarf with an infrared excess due to a dust disk. We add our recent observations to these limits to produce extremely tight constraints on the types of possible companions that could be present. No objects >6MJ are detected in our data at projected separations >12 AU, and no objects >16MJ are detected for separations from 3 to 12 AU, assuming a total system age of 1 Gyr. Limits for companions at separations <3 AU come from a combination of Two Micron All Sky Survey (2MASS) photometry and previous studies of G29-38's pulsations. Our imaging with Gemini cannot confirm a tentative claim for the presence of a low-mass brown dwarf. These observations demonstrate that a careful combination of several techniques can probe nearby white dwarfs for large planets and low-mass brown dwarfs.

  18. Photon-Weighted Midpoint Exposure Meter for Keck/HIRES Extrasolar Planet Research

    NASA Technical Reports Server (NTRS)

    1999-01-01

    NASA Grant was received for research involving the construction of a photon-weighting midpoint exposure meter for the Keck HIRES spectrometer, and for support of our NASA/Keck-based planet research with this instrumentation. The research funds were also to be used to make our iodine cell calibration system and exposure meter available to the NASA Keck observing community. Progress this past year, the second of the 3-year granting period, involved work in 4 areas: 1) Further construction of the midpoint exposure meter. 2) Assisting observers with use of the Iodine system. 3) Acquisition of precision radial velocity data on our program star sample with continued monitoring to proceed in subsequent years as available telescope time permits. 4) Reduction and analysis of incoming precision radial velocity data to reject problematic and uninteresting program stars, and to identify promising planet candidates.

  19. An extended upper atmosphere around the extrasolar planet HD209458b.

    PubMed

    Vidal-Madjar, A; Des Etangs, A Lecavelier; Désert, J-M; Ballester, G E; Ferlet, R; Hébrard, G; Mayor, M

    2003-03-13

    The planet in the system HD209458 is the first one for which repeated transits across the stellar disk have been observed. Together with radial velocity measurements, this has led to a determination of the planet's radius and mass, confirming it to be a gas giant. But despite numerous searches for an atmospheric signature, only the dense lower atmosphere of HD209458b has been observed, through the detection of neutral sodium absorption. Here we report the detection of atomic hydrogen absorption in the stellar Lyman alpha line during three transits of HD209458b. An absorption of 15 +/- 4% (1sigma) is observed. Comparison with models shows that this absorption should take place beyond the Roche limit and therefore can be understood in terms of escaping hydrogen atoms.

  20. Insights into Planet Formation from Debris Disks. II. Giant Impacts in Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Wyatt, Mark C.; Jackson, Alan P.

    2016-12-01

    Giant impacts refer to collisions between two objects each of which is massive enough to be considered at least a planetary embryo. The putative collision suffered by the proto-Earth that created the Moon is a prime example, though most Solar System bodies bear signatures of such collisions. Current planet formation models predict that an epoch of giant impacts may be inevitable, and observations of debris around other stars are providing mounting evidence that giant impacts feature in the evolution of many planetary systems. This chapter reviews giant impacts, focussing on what we can learn about planet formation by studying debris around other stars. Giant impact debris evolves through mutual collisions and dynamical interactions with planets. General aspects of this evolution are outlined, noting the importance of the collision-point geometry. The detectability of the debris is discussed using the example of the Moon-forming impact. Such debris could be detectable around another star up to 10 Myr post-impact, but model uncertainties could reduce detectability to a few 100 yr window. Nevertheless the 3 % of young stars with debris at levels expected during terrestrial planet formation provide valuable constraints on formation models; implications for super-Earth formation are also discussed. Variability recently observed in some bright disks promises to illuminate the evolution during the earliest phases when vapour condensates may be optically thick and acutely affected by the collision-point geometry. The outer reaches of planetary systems may also exhibit signatures of giant impacts, such as the clumpy debris structures seen around some stars.

  1. Transit Spectroscopy of Extrasolar Planet HD209458b: The Radiative Transfer Model

    NASA Astrophysics Data System (ADS)

    Rojo, P.; Harrington, J.; Dermody, J.; Zeehandelaar, D.; Deming, D.; Wiedemann, G.; Seager, S.; Iro, N.; Fortney, J. J.; Burrows, A.

    2004-11-01

    We have developed a new code that calculates the modulation of a star's spectrum as a planet transits. We are applying this model to data from the VLT, Palomar, Keck, and IRTF to search for water on HD209458b, the transiting planet with the brightest primary. Observations of HD209458b's stellar spectrum modulation have yielded the first detections of exoplanetary sodium (Charbonneau et al. 2001), hydrogen, oxygen and carbon (Vidal-Madjar et al. 2003, 2004). Molecules, however, have still avoided detection. Water is predicted to be abundant at all plausible temperatures, but the modulation for most of the observable features is <0.04%. By simultaneously fitting for many excited water features while avoiding telluric water lines, we can significantly increase our signal. Our model predicts the modulation given line data, system geometry, and thermal and abundance profiles for any transiting planet. We will use this code to compare the observed modulation for HD209458b with that predicted by different planetary theories, do calculations for specific instruments with different resolutions and wavelength ranges, and constrain the abundances of detected species. We find that integrating the extinction over altitude produces significantly better results than assuming that the planet is an opaque disk whose radius is the altitude of optical depth unity. The latter is a widely used simplification. Our work will allow us to establish or place strong limits on the water abundance in HD209458b's atmosphere. Even a non-detection will be important, as it will require significant modifications to existing theory and/or will justify the need for better space-based instruments. This work was supported by NASA grant NAG5-13154.

  2. The Snow Line in Viscous Disks around Low-mass Stars: Implications for Water Delivery to Terrestrial Planets in the Habitable Zone

    NASA Astrophysics Data System (ADS)

    Mulders, Gijs D.; Ciesla, Fred J.; Min, Michiel; Pascucci, Ilaria

    2015-07-01

    The water-ice or snow line is one of the key properties of protoplanetary disks that determines the water content of terrestrial planets in the habitable zone. Its location is determined by the properties of the star, the mass accretion rate through the disk, and the size distribution of dust suspended in the disk. We calculate the snow-line location from recent observations of mass accretion rates and as a function of stellar mass. By taking the observed dispersion in mass accretion rates as a measure of the dispersion in initial disk mass, we find that stars of a given mass will exhibit a range of snow-line locations. At a given age and stellar mass, the observed dispersion in mass accretion rates of 0.4 dex naturally leads to a dispersion in snow-line locations of ˜0.2 dex. For ISM-like dust sizes, the 1σ snow-line location among solar-mass stars of the same age ranges from ˜2 to ˜5 AU. For more realistic dust opacities that include larger grains, the snow line is located up to two times closer to the star. We use these locations and the outcome of N-body simulations to predict the amount of water delivered to terrestrial planets that formed in situ in the habitable zone. We find that the dispersion in snow-line locations leads to a large range in water content. For ISM-like dust sizes, a significant fraction of habitable-zone terrestrial planets around Sun-like stars remain dry, and no water is delivered to the habitable zones of low-mass M stars (\\lt 0.5 {M}⊙ ) as in previous works. The closer-in snow line in disks with larger grains enables water delivery to the habitable zone for a significant fraction of M stars and all FGK stars. Considering their larger numbers and higher planet occurrence, M stars may host most of the water-rich terrestrial planets in the galaxy if these planets are able to hold on to their water in their subsequent evolution.

  3. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. III. BREAKDOWN CONDITIONS FOR MINERAL CLOUDS

    SciTech Connect

    Helling, Ch.; Jardine, M.; Stark, C.; Diver, D.

    2013-04-20

    Electric discharges were detected directly in the cloudy atmospheres of Earth, Jupiter, and Saturn, are debatable for Venus, and indirectly inferred for Neptune and Uranus in our solar system. Sprites (and other types of transient luminous events) have been detected only on Earth, and are theoretically predicted for Jupiter, Saturn, and Venus. Cloud formation is a common phenomenon in ultra-cool atmospheres such as in brown dwarf and extrasolar planetary atmospheres. Cloud particles can be expected to carry considerable charges which may trigger discharge events via small-scale processes between individual cloud particles (intra-cloud discharges) or large-scale processes between clouds (inter-cloud discharges). We investigate electrostatic breakdown characteristics, like critical field strengths and critical charge densities per surface, to demonstrate under which conditions mineral clouds undergo electric discharge events which may trigger or be responsible for sporadic X-ray emission. We apply results from our kinetic dust cloud formation model that is part of the DRIFT-PHOENIX model atmosphere simulations. We present a first investigation of the dependence of the breakdown conditions in brown dwarf and giant gas exoplanets on the local gas-phase chemistry, the effective temperature, and primordial gas-phase metallicity. Our results suggest that different intra-cloud discharge processes dominate at different heights inside mineral clouds: local coronal (point discharges) and small-scale sparks at the bottom region of the cloud where the gas density is high, and flow discharges and large-scale sparks near, and maybe above, the cloud top. The comparison of the thermal degree of ionization and the number density of cloud particles allows us to suggest the efficiency with which discharges will occur in planetary atmospheres.

  4. Galactic cosmic rays on extrasolar Earth-like planets. II. Atmospheric implications

    NASA Astrophysics Data System (ADS)

    Grießmeier, J.-M.; Tabataba-Vakili, F.; Stadelmann, A.; Grenfell, J. L.; Atri, D.

    2016-03-01

    Context. Theoretical arguments indicate that close-in terrestial exoplanets may have weak magnetic fields. As described in the companion article (Paper I), a weak magnetic field results in a high flux of galactic cosmic rays to the top of the planetary atmosphere. Aims: We investigate effects that may result from a high flux of galactic cosmic rays both throughout the atmosphere and at the planetary surface. Methods: Using an air shower approach, we calculate how the atmospheric chemistry and temperature change under the influence of galactic cosmic rays for Earth-like (N2-O2 dominated) atmospheres. We evaluate the production and destruction rate of atmospheric biosignature molecules. We derive planetary emission and transmission spectra to study the influence of galactic cosmic rays on biosignature detectability. We then calculate the resulting surface UV flux, the surface particle flux, and the associated equivalent biological dose rates. Results: We find that up to 20% of stratospheric ozone is destroyed by cosmic-ray protons. The effect on the planetary spectra, however, is negligible. The reduction of the planetary ozone layer leads to an increase in the weighted surface UV flux by two orders of magnitude under stellar UV flare conditions. The resulting biological effective dose rate is, however, too low to strongly affect surface life. We also examine the surface particle flux: For a planet with a terrestrial atmosphere (with a surface pressure of 1033 hPa), a reduction of the magnetic shielding efficiency can increase the biological radiation dose rate by a factor of two, which is non-critical for biological systems. For a planet with a weaker atmosphere (with a surface pressure of 97.8 hPa), the planetary magnetic field has a much stronger influence on the biological radiation dose, changing it by up to two orders of magnitude. Conclusions: For a planet with an Earth-like atmospheric pressure, weak or absent magnetospheric shielding against galactic cosmic

  5. Clouds and Chemistry in the Atmosphere of Extrasolar Planet HR8799b

    SciTech Connect

    Barman, T S; Macintosh, B A; Konopacky, Q M; Marois, C

    2011-03-21

    Using the integral field spectrograph OSIRIS, on the Keck II telescope, broad near-infrared H and K-band spectra of the young exoplanet HR8799b have been obtained. In addition, six new narrow-band photometric measurements have been taken across the H and K bands. These data are combined with previously published photometry for an analysis of the planet's atmospheric properties. Thick photospheric dust cloud opacity is invoked to explain the planet's red near-IR colors and relatively smooth near-IR spectrum. Strong water absorption is detected, indicating a Hydrogen-rich atmosphere. Only weak CH{sub 4} absorption is detected at K band, indicating efficient vertical mixing and a disequilibrium CO/CH{sub 4} ratio at photospheric depths. The H-band spectrum has a distinct triangular shape consistent with low surface gravity. New giant planet atmosphere models are compared to these data with best fitting bulk parameters, T{sub eff} = 1100K {+-} 100 and log(g) = 3.5 {+-} 0.5 (for solar composition). Given the observed luminosity (log L{sub obs}/L{sub {circle_dot}} {approx} -5.1), these values correspond to a radius of 0.75 R{sub Jup{sub 0.12}{sup +0.17}} and mass {approx} 0.72 M{sub Jup{sub -0.6}{sup +2.6}} - strikingly inconsistent with interior/evolution models. Enhanced metallicity (up to {approx} 10 x that of the Sun) along with thick clouds and non-equilibrium chemistry are likely required to reproduce the complete ensemble of spectroscopic and photometric data and the low effective temperatures (< 1000K) required by the evolution models.

  6. A Bayesian re-analysis of HD 11964 extrasolar planet data

    NASA Astrophysics Data System (ADS)

    Gregory, Philip C.

    2007-05-01

    A Bayesian multi-planet Kepler periodogram has been developed for the analysis of precision radial velocity data (Gregory, ApJ, 631, 1198, 2005 and Astro-ph/0609229). The periodogram employs a parallel tempering Markov chain Monte Carlo algorithm. The HD 11964 data (Butler et al. ApJ, 646, 505, 2006) has been re-analyzed using 1, 2, 3 and 4 planet models. Each model incorporates an extra noise parameter which can allow for additional independent Gaussian noise beyond the known measurement uncertainties. The most probable model exhibits three periods of 38.02-0.05+0.06, 360-4+4 and 1924-43+44d, and eccentricities of 0.22-0.22+0.11, 0.63-0.17+0.34 and 0.05-0.05+0.03, respectively. Assuming the three signals (each one consistent with a Keplerian orbit) are caused by planets, the corresponding limits on planetary mass (M sin i) and semi-major axis are (0.090-0.14+0.15 MJ, 0.253-0.009+0.009 au), (0.21-0.02+0.05 MJ, 1.13-0.04+0.04 au), (0.77-0.08+0.08 MJ, 3.46-0.13+0.13 au), respectively. The small difference (1.3 sigma) between the 360 day period and one year suggests that it might be worth investigating the barycentric correction for the HD 11964 data. This research was supported in part by a grant from the Canadian Natural Sciences and Engineering Research Council of Canada at the University of British Columbia.

  7. The Runaway Greenhouse on Massive or Tide-Locked Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.

    2007-12-01

    The discovery of a "large Earth" in Gliese 581 has sparked considerable interest in the habitability of such planets, and the effect of various hypothetical atmospheres on habitability. A vast range of fundamental climate issues remain to be studied, particularly with regard to the long-term climate evolution and lifetime of biosphere. In this contribution I will discuss the implications of the large surface gravity and tide-locked rotation on the runaway greenhouse phenomenon which would pose a habitability crisis if the planet has a substantial water reservoir. In particular, I will show that high surface gravity increases the Kombayashi-Ingersoll limit and makes it harder for a runaway greenhouse to occur; moreover, the slope of the fundamental energy balance curve makes it easier for such a planet to remain habitable over a wide range of stellar luminosity, even in the absence of a CO2 weathering thermostat. The reasoning is elementary, and relies largely on the fact that the surface pressure of water vapor is determined by surface temperature via Clausius-Clapeyron, while the corresponding mass (which determines infrared opacity) is related to the surface pressure divided by surface gravity, in accord with hydrostatics. I will also make some remarks about the novel aspects of the operation of the greenhouse effect in cases like Gliese 581, resulting from the substantial infrared component of the stellar radiation. Finally, I will point out that the runaway greenhouse threshold is determined by the global energy balance, not the dayside energy balance, owing to the strong heat transports that would result from the pressure gradient implicit in a "dayside only" runaway. Prospects for a nightside glaciation with dayside torrid zone, separated by a habitable zone near the ice margin at the terminator, will be discussed. The relavant physics is demonstrated using a range of simplified climate models.

  8. Bayesian detection and characterization of extra-solar planets via photometric variations

    NASA Astrophysics Data System (ADS)

    Placek, Ben

    Exoplanets are known to be responsible for a variety of photometric effects, which collectively can be used for both exoplanet detection and characterization. A portion of the observed flux variation originates directly from the exoplanet itself as both a reflected light component and thermal emission. Additional effects originate from the influence of the exoplanet on its host star. These include Doppler boosting, or beaming, caused by the radial velocity variations due to the stellar wobble, as well as variations in flux caused by the ellipsoidal shape of the star, which is induced by the planetary tidal forces. The newly developed EXONEST algorithm uses Bayesian inference in order to estimate the values of the physical parameters on which these effects depend. In addition, EXONEST computes the Bayesian evidence, which can be used to test a variety of models, some of which may either allow for, or neglect, these effects. Presented here is a comprehensive study of model-generated synthetic data demonstrating EXONEST's ability to perform parameter estimation and model selection, two confirmed exoplanets KOI-13b and Kepler-2b further demonstrating EXONEST's ability to work with real data, another confirmed Earth-like planet Kepler-91b, where EXONEST is applied to determine if there is a trojan planet present, and finally KIC-5436161, which is most likely a hierarchical triple star system discovered using the EXONEST algorithm. By considering only the non-transiting portions of the light curve, we demonstrate that it is possible to estimate the photometrically-relevant model parameters of KOI-13b and Kepler-2b, and that the orbit of KOI-13b has a detectable eccentricity. Furthermore, Bayesian model selection shows that there is likely a trojan planet around Kepler-91b based on the photometric data alone.

  9. PASTIS: Bayesian extrasolar planet validation - II. Constraining exoplanet blend scenarios using spectroscopic diagnoses

    NASA Astrophysics Data System (ADS)

    Santerne, A.; Díaz, R. F.; Almenara, J.-M.; Bouchy, F.; Deleuil, M.; Figueira, P.; Hébrard, G.; Moutou, C.; Rodionov, S.; Santos, N. C.

    2015-08-01

    The statistical validation of transiting exoplanets proved to be an efficient technique to secure the nature of small exoplanet signals which cannot be established by purely spectroscopic means. However, the spectroscopic diagnoses are providing us with useful constraints on the presence of blended stellar contaminants. In this paper, we present how a contaminating star affects the measurements of the various spectroscopic diagnoses as a function of the parameters of the target and contaminating stars using the model implemented into the PASTIS planet-validation software. We find particular cases for which a blend might produce a large radial velocity signal but no bisector variation. It might also produce a bisector variation anticorrelated with the radial velocity one, as in the case of stellar spots. In those cases, the full width at half-maximum variation provides complementary constraints. These results can be used to constrain blend scenarios for transiting planet candidates or radial velocity planets. We review all the spectroscopic diagnoses reported in the literature so far, especially the ones to monitor the line asymmetry. We estimate their uncertainty and compare their sensitivity to blends. Based on that, we recommend the use of BiGauss which is the most sensitive diagnosis to monitor line-profile asymmetry. In this paper, we also investigate the sensitivity of the radial velocities to constrain blend scenarios and develop a formalism to estimate the level of dilution of a blended signal. Finally, we apply our blend model to re-analyse the spectroscopic diagnoses of HD 16702, an unresolved face-on binary which exhibits bisector variations.

  10. SPITZER IRAC SECONDARY ECLIPSE PHOTOMETRY OF THE TRANSITING EXTRASOLAR PLANET HAT-P-1b

    SciTech Connect

    Todorov, Kamen; Deming, Drake; Harrington, Jospeph; Stevenson, Kevin B.; Bowman, William C.; Nymeyer, Sarah; Fortney, Jonathan J.; Bakos, Gaspar A.

    2010-01-01

    We report Spitzer/IRAC photometry of the transiting giant exoplanet HAT-P-1b during its secondary eclipse. This planet lies near the postulated boundary between the pM and pL-class of hot Jupiters, and is important as a test of models for temperature inversions in hot Jupiter atmospheres. We derive eclipse depths for HAT-P-1b, in units of the stellar flux, that are: 0.080% +- 0.008% [3.6 mum], 0.135% +- 0.022% [4.5 mum], 0.203% +- 0.031% [5.8 mum], and 0.238% +- 0.040% [8.0 mum]. These values are best fit using an atmosphere with a modest temperature inversion, intermediate between the archetype inverted atmosphere (HD 209458b) and a model without an inversion. The observations also suggest that this planet is radiating a large fraction of the available stellar irradiance on its dayside, with little available for redistribution by circulation. This planet has sometimes been speculated to be inflated by tidal dissipation, based on its large radius in discovery observations, and on a non-zero orbital eccentricity allowed by the radial velocity data. The timing of the secondary eclipse is very sensitive to orbital eccentricity, and we find that the central phase of the eclipse is 0.4999 +- 0.0005. The difference between the expected and observed phase indicates that the orbit is close to circular, with a 3sigma limit of |e cos omega| < 0.002.

  11. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. IV. THE EFFECT OF COSMIC RAYS

    SciTech Connect

    Rimmer, P. B.; Helling, Ch.

    2013-09-10

    Cosmic rays provide an important source for free electrons in Earth's atmosphere and also in dense interstellar regions where they produce a prevailing background ionization. We utilize a Monte Carlo cosmic ray transport model for particle energies of 10{sup 6} eV planets (T{sub eff} = 1000 K, 1500 K). For the model brown dwarf atmosphere, the electron fraction is enhanced significantly by cosmic rays when the pressure p{sub gas} < 10{sup -2} bar. Our example giant gas planet atmosphere suggests that the cosmic ray enhancement extends to 10{sup -4}-10{sup -2} bar, depending on the effective temperature. For the model atmosphere of the example giant gas planet considered here (T{sub eff} = 1000 K), cosmic rays bring the degree of ionization to f{sub e} {approx}> 10{sup -8} when p{sub gas} < 10{sup -8} bar, suggesting that this part of the atmosphere may behave as a weakly ionized plasma. Although cosmic rays enhance the degree of ionization by over three orders of magnitude in the upper atmosphere, the effect is not likely to be significant enough for sustained coupling of the magnetic field to the gas.

  12. Abundance Analyses of 12 Parent Stars of Extrasolar Planets Observed with the SUBARU/HDS

    NASA Astrophysics Data System (ADS)

    Sadakane, Kozo; Ohkubo, Michiko; Takeda, Yoichi; Sato, Bun'ei; Kambe, Eiji; Aoki, Wako

    2002-12-01

    High S/N ratio (350-600) and high resolution (R ˜ 90000) spectral data covering the wavelength region between 4200-8800Å were obtained for 12 planet-harboring stars with the SUBARU/HDS. Detailed abundance analyses were carried out for these stars using the solar spectrum as a reference. Atmospheric parameters (Teff, logg, microturbulent velocity ξt, and [Fe/H]) were determined spectroscopically using selected Fe I and Fe II lines. The abundances of 25 other elements have been determined relative to the Sun in a strictly differential manner. Three out of 12 stars (HD82943, HD92788, and HD134987) are definitely metal rich, and two stars (HD114762 and HD190228) are metal deficient. The abundances in the remaining seven stars (HD106252, HD130322, HD141937, HD168746, HD187123, HD192263, HD209458) coincide with the Sun. We find that the abundances of both volatile and refractory e lements behave similarly in these stars, and do not confirm any significant dependence on the condensation temperature, Tc. Comparisons of the [X/Fe] vs [Fe/H] relations for 19 elements between planet-harboring stars and nearby field stars reveal no distinct anomaly, except for possible enhancements of V and Co in the former group. These results suggest that the observed over-abundances of metallic elements in planet-harboring stars relative to normal disk stars in the solar neighborhood are primordial, and can be interpreted as being a consequence of the galactic chemical evolution.

  13. Observations of extrasolar planet transits with the automated telescopes of the Pulkovo Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Sokov, E. N.; Vereshchagina, I. A.; Gnedin, Yu. N.; Devyatkin, A. V.; Gorshanov, D. L.; Slesarenko, V. Yu.; Ivanov, A. V.; Naumov, K. N.; Zinov'ev, S. V.; Bekhteva, A. S.; Romas, E. S.; Karashevich, S. V.; Kupriyanov, V. V.

    2012-03-01

    Exoplanet observations have been performed on the automated Pulkovo Observatory telescopes. We have obtained 33 transit light curves for 16 known exoplanets and six transit observations for three exoplanet candidates discovered by the Kepler telescope. Based on our observations, we have reliably confirmed the existence of an exoplanet with an extremely large radius, R pl = 1.83 ± 0.16 R Jup, in the system KOI 256 and detected a strong deviation of its orbital revolution from the theoretically predicted one. During the transit of the exoplanet WASP-12b across the stellar disk, we detected bursts that could be caused by the planet transit across spots on the star or by the presence of a satellite around this exoplanet. We detected possible periodic variations in the duration of the exoplanet transit across the stellar disk with time for HAT-P-12b that could be caused by variations in orbital inclination. The transit duration and depth, the central transit time, and the radius and orbital inclination of the planet have been estimated. The equilibrium temperature and albedo have been estimated for several exoplanets.

  14. A Laboratory Demonstration of the Capability to Image an Earth-like Extrasolar Planet

    NASA Technical Reports Server (NTRS)

    Trauger, John T.; Wesley, A. Traub

    2007-01-01

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 times 10-10 times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 times 10-10 times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 times 10-10. This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  15. ESA to test the smartest technique for detecting extrasolar planets from the ground

    NASA Astrophysics Data System (ADS)

    2002-03-01

    GENIE will use ESO's Very Large Telescopes Credits: European Southern Observatory This photo shows an aerial view of the observing platform on the top of Paranal mountain (from late 1999), with the four enclosu Three 1.8-m VLTI Auxiliary Telescopes (ATs) and paths of the light beams have been superposed on the photo. Also seen are some of the 30 'stations' where the ATs will be positioned for observations and from where the light beams from the telescopes can enter the Interferometric Tunnel below. The straight structures are supports for the rails on which the telescopes can move from one station to another. The Interferometric Laboratory (partly subterranean) is at the centre of the platform. How nulling interferometry works Credits: ESA 2002/Medialab How nulling interferometry works In nulling interferometry, light from a distant star (red beams) hits each telescope, labelled T1 and T2, simultaneously. Before the resultant light beams are combined, the beam from one telescope is delayed by half a wavelength. This means that when the rays are brought together, peaks from one telescope line up with troughs from the other and so are cancelled out (represented by the straight red line), leaving no starlight. Light from a planet (blue beams), orbiting the star, enters the telescopes at an angle. This introduces a delay in the light reaching the second telescope. So, even after the half wavelength change in one of the rays, when the beams are combined they are reinforced (represented by the large blue waves) rather than cancelled out. Illustration by Medialab. Nulling interferometry combines the signal from a number of different telescopes in such a way that the light from the central star is cancelled out, leaving the much fainter planet easier to see. This is possible because light is a wave with peaks and troughs. Usually when combining light from two or more telescopes, a technique called interferometry, the peaks are lined up with one another to boost the signal

  16. A laboratory demonstration of the capability to image an Earth-like extrasolar planet.

    PubMed

    Trauger, John T; Traub, Wesley A

    2007-04-12

    The detection and characterization of an Earth-like planet orbiting a nearby star requires a telescope with an extraordinarily large contrast at small angular separations. At visible wavelengths, an Earth-like planet would be 1 x 10(-10) times fainter than the star at angular separations of typically 0.1 arcsecond or less. There are several proposed space telescope systems that could, in principle, achieve this. Here we report a laboratory experiment that reaches these limits. We have suppressed the diffracted and scattered light near a star-like source to a level of 6 x 10(-10) times the peak intensity in individual coronagraph images. In a series of such images, together with simple image processing, we have effectively reduced this to a residual noise level of about 0.1 x 10(-10). This demonstrates that a coronagraphic telescope in space could detect and spectroscopically characterize nearby exoplanetary systems, with the sensitivity to image an 'Earth-twin' orbiting a nearby star.

  17. Removing Activity-Related Radial Velocity Noise to Improve Extrasolar Planet Searches

    NASA Technical Reports Server (NTRS)

    Saar, Steven; Lindstrom, David M. (Technical Monitor)

    2004-01-01

    We have made significant progress towards the proposal goals of understanding the causes and effects of magnetic activity-induced radial velocity (v_r) jitter and developing methods for correcting it. In the process, we have also made some significant discoveries in the fields of planet-induced stellar activity, planet detection methods, M dwarf convection, starspot properties, and magnetic dynamo cycles. We have obtained super high resolution (R approximately 200,000), high S / N (greater than 300) echelle study of joint line bisector and radial velocity variations using the McDonald 2-D coude. A long observing run in October 2002 in particular was quite successful (8 clear nights). We now have close to three years of data, which begins to sample a good fraction of the magnetic cycle timescales for some of our targets (e.g., kappa Ceti; P_cyc = 5.6 yrs). This will be very helpful in unraveling the complex relationships between plage and radial velocity (v-r) changes which we have uncovered. Preliminary analysis (Saar et al. 2003) of the data in hand, reveals correlations between median line bisector displacement and v_r. The correlation appears to be specific the the particular star being considered, probably since it is a function of both spectral type and rotation rate. Further analysis and interpretation will be in the context of evolving plage models and is in progress.

  18. Water vapor in the spectrum of the extrasolar planet HD 189733b. I. The transit

    SciTech Connect

    McCullough, P. R.; Crouzet, N.; Deming, D.; Madhusudhan, N.

    2014-08-10

    We report near-infrared spectroscopy of the gas giant planet HD 189733b in transit. We used the Hubble Space Telescope Wide Field Camera 3 (HST WFC3) with its G141 grism covering 1.1 μm to 1.7 μm and spatially scanned the image across the detector at 2'' s{sup –1}. When smoothed to 75 nm bins, the local maxima of the transit depths in the 1.15 μm and 1.4 μm water vapor features are, respectively, 83 ± 53 ppm and 200 ± 47 ppm greater than the local minimum at 1.3 μm. We compare the WFC3 spectrum with the composite transit spectrum of HD 189733b assembled by Pont et al., extending from 0.3 μm to 24 μm. Although the water vapor features in the WFC3 spectrum are compatible with the model of non-absorbing, Rayleigh-scattering dust in the planetary atmosphere, we also re-interpret the available data with a clear planetary atmosphere. In the latter interpretation, the slope of increasing transit depth with shorter wavelengths from the near infrared, through the visible, and into the ultraviolet is caused by unocculted star spots, with a smaller contribution of Rayleigh scattering by molecular hydrogen in the planet's atmosphere. At relevant pressures along the terminator, our model planetary atmosphere's temperature is ∼700 K, which is below the condensation temperatures of sodium- and potassium-bearing molecules, causing the broad wings of the spectral lines of Na I and K I at 0.589 μm and 0.769 μm to be weak.

  19. Water Vapor in the Spectrum of the Extrasolar Planet HD 189733b. I. The Transit

    NASA Astrophysics Data System (ADS)

    McCullough, P. R.; Crouzet, N.; Deming, D.; Madhusudhan, N.

    2014-08-01

    We report near-infrared spectroscopy of the gas giant planet HD 189733b in transit. We used the Hubble Space Telescope Wide Field Camera 3 (HST WFC3) with its G141 grism covering 1.1 μm to 1.7 μm and spatially scanned the image across the detector at 2'' s-1. When smoothed to 75 nm bins, the local maxima of the transit depths in the 1.15 μm and 1.4 μm water vapor features are, respectively, 83 ± 53 ppm and 200 ± 47 ppm greater than the local minimum at 1.3 μm. We compare the WFC3 spectrum with the composite transit spectrum of HD 189733b assembled by Pont et al., extending from 0.3 μm to 24 μm. Although the water vapor features in the WFC3 spectrum are compatible with the model of non-absorbing, Rayleigh-scattering dust in the planetary atmosphere, we also re-interpret the available data with a clear planetary atmosphere. In the latter interpretation, the slope of increasing transit depth with shorter wavelengths from the near infrared, through the visible, and into the ultraviolet is caused by unocculted star spots, with a smaller contribution of Rayleigh scattering by molecular hydrogen in the planet's atmosphere. At relevant pressures along the terminator, our model planetary atmosphere's temperature is ~700 K, which is below the condensation temperatures of sodium- and potassium-bearing molecules, causing the broad wings of the spectral lines of Na I and K I at 0.589 μm and 0.769 μm to be weak.

  20. IONIZATION IN ATMOSPHERES OF BROWN DWARFS AND EXTRASOLAR PLANETS. II. DUST-INDUCED COLLISIONAL IONIZATION

    SciTech Connect

    Helling, Ch.; Jardine, M.; Mokler, F.

    2011-08-10

    Observations have shown that continuous radio emission and also sporadic H{alpha} and X-ray emission are prominent in singular, low-mass objects later than spectral class M. These activity signatures are interpreted as being caused by coupling of an ionized atmosphere to the stellar magnetic field. What remains a puzzle, however, is the mechanism by which such a cool atmosphere can produce the necessary level of ionization. At these low temperatures, thermal gas processes are insufficient, but the formation of clouds sets in. Cloud particles can act as seeds for electron avalanches in streamers that ionize the ambient gas, and can lead to lightning and indirectly to magnetic field coupling, a combination of processes also expected for protoplanetary disks. However, the precondition is that the cloud particles are charged. We use results from DRIFT-PHOENIX model atmospheres to investigate collisional processes that can lead to the ionization of dust grains inside clouds. We show that ionization by turbulence-induced dust-dust collisions is the most efficient kinetic process. The efficiency is highest in the inner cloud where particles grow quickly and, hence, the dust-to-gas ratio is high. Dust-dust collisions alone are not sufficient to improve the magnetic coupling of the atmosphere inside the cloud layers, but the charges supplied either on grains or within the gas phase as separated electrons can trigger secondary nonlinear processes. Cosmic rays are likely to increase the global level of ionization, but their influence decreases if a strong, large-scale magnetic field is present as on brown dwarfs. We suggest that although thermal gas ionization declines in objects across the fully convective boundary, dust charging by collisional processes can play an important role in the lowest mass objects. The onset of atmospheric dust may therefore correlate with the anomalous X-ray and radio emission in atmospheres that are cool, but charged more than expected by pure

  1. A Diffraction-limited Survey for Direct Detection of Halpha Emitting/Accreting ExtraSolar Planets with the 6.5m Magellan Telescope and the MagAO Visible AO system

    NASA Astrophysics Data System (ADS)

    Close, Laird

    steady diet of hydrogen gas. Such planets should then be quite bright in Halpha accretion emission. The key point is that: instead of a steep drop off in the luminosity of the planet’s atmosphere, the accretion luminosity of these planets will just linearly decrease with decreasing mass. At an accretion rate=6e-10 Msun/yr we find low mass (~1 Mjup) accreting gap planets are much (50-1000x) brighter (for 0-3.4 mag of Halpha extinction) in Halpha than at H band. PROOF-OF_CONCEPT: A 3 hour MagAO observation at Halpha of a transitional disk in April 2013 was made. The resulting deep diffraction-limited images discovered (at 10.5 sigma) an Halpha source that was 295% above the continuum just 0.083” from the star (edge of the inner 10 AU disk gap). We also detected (at 5 sigma) an excellent (though much fainter) ~1 Mjup mass Halpha planet candidate located auspiciously at the outer edge (145 AU) of the gap. If confirmed by our “second epoch” follow-up as common proper motion then this would be the lowest mass (~1 Mjup) planet ever imaged. SURVEY: Scaling off of this exciting success we propose to deeply image (120 min) all 14 nearby (D<250pc), bright (R<11 mag) , not edge-on (i<80 deg) , young (~5 Myr) transitional disks with MagAO simultaneously at Halpha and L’. In addition, we will use BrGamma instead of Halpha for 8 additional fainter (11planets accreting at 6e-10 Msun/yr in 3.4 mag of extinction at Halpha at, or past, 0.2” separations. Therefore, based on the theoretical prediction that the inner and outer gap planets should be >1 Mjup in mass, we integrate across our target list and find that, in the worst case of minimal masses (1+/-0.5 Mjup), and 3.4 mag extinction, at least seven ~1 Mjup planets should be discovered by this survey --meeting all three of our science goals above.

  2. Ionization in atmospheres of brown dwarfs and extrasolar planets VI: Properties of large-scale discharge events

    SciTech Connect

    Bailey, R. L.; Helling, Ch.; Hodosán, G.; Bilger, C.; Stark, C. R.

    2014-03-20

    Mineral clouds in substellar atmospheres play a special role as a catalyst for a variety of charge processes. If clouds are charged, the surrounding environment becomes electrically activated, and ensembles of charged grains are electrically discharging (e.g., by lightning), which significantly influences the local chemistry creating conditions similar to those thought responsible for life in early planetary atmospheres. We note that such lightning discharges contribute also to the ionization state of the atmosphere. We apply scaling laws for electrical discharge processes from laboratory measurements and numerical experiments to DRIFT-PHOENIX model atmosphere results to model the discharge's propagation downward (as lightning) and upward (as sprites) through the atmospheric clouds. We evaluate the spatial extent and energetics of lightning discharges. The atmospheric volume affected (e.g., by increase of temperature or electron number) is larger in a brown dwarf atmosphere (10{sup 8}-10{sup 10} m{sup 3}) than in a giant gas planet (10{sup 4}-10{sup 6} m{sup 3}). Our results suggest that the total dissipated energy in one event is <10{sup 12} J for all models of initial solar metallicity. First attempts to show the influence of lightning on the local gas phase indicate an increase of small carbohydrate molecules like CH and CH{sub 2} at the expense of CO and CH{sub 4}. Dust-forming molecules are destroyed and the cloud particle properties are frozen in unless enough time is available for complete evaporation. We summarize instruments potentially suitable to observe lightning on extrasolar objects.

  3. Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Kirby, Kate; Babb, J.; Yoshino, K.

    2004-01-01

    In L-dwarfs and T-dwarfs the resonance lines of sodium and potassium are so profoundly pressure-broadened that their wings extend several hundred nanometers from line center. With accurate knowledge of the line profiles as a function of temperature and pressure: such lines can prove to be valuable diagnostics of the atmospheres of such objects. We have initiated a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Although potassium and sodium are the alkali species of most interest in the atmospheres of cool brown dwarfs and extrasolar giant planets, some of our theoretical focus this year has involved the calculation of pressure-broadening of lithium resonance lines by He, as a test of a newly developed suite of computer codes. In addition, theoretical calculations have been carried out to determine the leading long range van der Waals coefficients for the interactions of ground and excited alkali metal atoms with helium atoms, to within a probable error of 2%. Such data is important in determining the behavior of the resonance line profiles in the far wings. Important progress has been made on the experimental aspects of the program since the arrival of a postdoctoral fellow in September. A new absorption cell has been designed, which incorporates a number of technical improvements over the previous cell, including a larger cell diameter to enhance the signal, and fittings which allow for easier cleaning, thereby significantly reducing the instrument down-time.

  4. Does the Presence of Planets Affect the Frequency and Properties of Extrasolar Kuiper Belts? Results from the Herschel Debris and Dunes Surveys

    NASA Astrophysics Data System (ADS)

    Moro-Martín, A.; Marshall, J. P.; Kennedy, G.; Sibthorpe, B.; Matthews, B. C.; Eiroa, C.; Wyatt, M. C.; Lestrade, J.-F.; Maldonado, J.; Rodriguez, D.; Greaves, J. S.; Montesinos, B.; Mora, A.; Booth, M.; Duchêne, G.; Wilner, D.; Horner, J.

    2015-03-01

    The study of the planet-debris disk connection can shed light on the formation and evolution of planetary systems and may help “predict” the presence of planets around stars with certain disk characteristics. In preliminary analyses of subsamples of the Herschel DEBRIS and DUNES surveys, Wyatt et al. and Marshall et al. identified a tentative correlation between debris and the presence of low-mass planets. Here we use the cleanest possible sample out of these Herschel surveys to assess the presence of such a correlation, discarding stars without known ages, with ages \\lt 1 Gyr, and with binary companions \\lt 100 AU to rule out possible correlations due to effects other than planet presence. In our resulting subsample of 204 FGK stars, we do not find evidence that debris disks are more common or more dusty around stars harboring high-mass or low-mass planets compared to a control sample without identified planets. There is no evidence either that the characteristic dust temperature of the debris disks around planet-bearing stars is any different from that in debris disks without identified planets, nor that debris disks are more or less common (or more or less dusty) around stars harboring multiple planets compared to single-planet systems. Diverse dynamical histories may account for the lack of correlations. The data show a correlation between the presence of high-mass planets and stellar metallicity, but no correlation between the presence of low-mass planets or debris and stellar metallicity. Comparing the observed cumulative distribution of fractional luminosity to those expected from a Gaussian distribution in logarithmic scale, we find that a distribution centered on the solar system’s value fits the data well, while one centered at 10 times this value can be rejected. This is of interest in the context of future terrestrial planet detection and characterization because it indicates that there are good prospects for finding a large number of debris

  5. Posters: An H2O-Rich, Rocky Extrasolar Minor Planet

    NASA Astrophysics Data System (ADS)

    Wolf, Sebastian

    2015-07-01

    Motivated by the detection of planetary candidates around more than one thousand stars since 1995 and the beginning characterization of their major properties (orbit, mass, physical conditions and chemical composition of their atmosphere), the quest for understanding the origin and evolution of life from the broadest possible perspective comes into reach of scientific exploration. Due to the apparent lack of a better starting point, the search for life outside Earth is strongly influenced and guided by biological and biochemical studies of life on our planet so far. Furthermore, this search is built on the assumption that life - in the sense of animated matter - is qualitatively different from inanimate matter. However, the first constraint might unnecessarily limit our search, while the latter underlying assumption is not justified. In this study, a more general approach to search for life in the universe with astrophysical means is proposed, which is not based on the above constraint and assumption. More specifically, the property of living systems to possess a high degree of complexity in structure and its response to the environment is discussed in view of its potential to be used for remote sensing of extraterrestrial life.

  6. Telescope array for extrasolar planet detection from the far side of the Moon.

    PubMed

    Galan, Maximilian; Strojnik, Marija; Garcia-Torales, Guillermo; Kirk, Maureen S

    2016-12-01

    We propose that an array of 4×4 small-diameter telescopes, possibly 1 m in radius, be placed on the far side of the Moon for continuous monitoring of nearby stars for the existence of a planetary companion, similar to the Earth, and feasible for human colonization. The advantages of this location include long intervals of darkness, availability of a rigid platform in the form of a moon body, and most importantly, the absence of the atmosphere that allows the complete transmission of radiation in the spectral range from UV to millimeter waves. The task is facilitated in that the telescopes would act as light "buckets" to collect photons during long integration periods. All other technology has already been demonstrated, as humans in person delivered optical elements to the Moon's surface during the Apollo era. The disadvantages are primarily operational, in terms of requiring the establishment of a human habitat on the Moon. Likewise, all aspects of constructing a large 75 m by 75 m mirror array on the Moon's surface will be challenging. Simultaneously, the decreased gravity requires less effort and less energy to perform the construction tasks. The absence of atmosphere permits the search to extend from less than 10 to 300 μm to find Earth-like or even much colder planets.

  7. Extrasolar planets and brown dwarfs around AF-type stars. IX. The HARPS southern sample

    NASA Astrophysics Data System (ADS)

    Borgniet, S.; Lagrange, A.-M.; Meunier, N.; Galland, F.

    2017-03-01

    Context. Massive, main-sequence (MS) AF-type stars have so far remained unexplored in past radial velocities (RV) surveys due to their small number of spectral lines and high rotational velocities that prevent the classic RV computation method. Aims: Our aim is to search for giant planets (GPs) around AF MS stars, to get primary statistical information on their occurrence rate and to compare the results with evolved stars and lower-mass MS stars. Methods: We used the HARPS spectrograph located on the 3.6 m telescope at ESO La Silla Observatory to observe 108 AF MS stars with B-V in the range -0.04 to 0.58 and masses in the range 1.1 to 3.6 M⊙. We used our SAFIR software developed to compute the RV and other spectroscopic observables of these early-type stars. We characterized the detected companions as well as the intrinsic stellar variability. We computed the detection limits and used them as well as the detected companions to derive the first estimates of the close-in brown dwarf (BD) and GP frequencies around AF stars. Results: We report the detection of a mpsini = 4.51MJup planetary companion with an 826-day period to the F6V dwarf HD 111998. We also present new data on the two-planet system around the F6IV-V dwarf HD 60532. We also report the detections of 14 binaries with long-term RV trends and/or high-amplitude RV variations combined to a flat RV-bisector span diagram. We constrain the minimal masses and semi-major axes of these companions and check that these constraints are compatible with the stellar companions previously detected by direct imaging or astrometry for six of these targets. We get detection limits deep into the planetary domain with 70% of our targets showing detection limits between 0.1 and 10 MJup at all orbital periods in the 1- to 103-day range. We derive BD (13 ≤mpsini ≤ 80 MJup) occurrence rates in the 1- to 103-day period range of 2-2+5% and 2.6-2.6+6.7% for stars with M⋆ in the ranges 1.1 to 1.5 and 1.5 to 3 M

  8. Beryllium abundances in parent stars of extrasolar planets: 16 Cygni A & B and rho (1) CANCRI

    NASA Astrophysics Data System (ADS)

    Garcia Lopez, R. J.; Perez de Taoro, M. R.

    1998-06-01

    The (9) Be ii lambda 3131 Angstroms doublet has been observed in the solar-type stars 16 Cyg A & B and in the late G-type star rho (1) Cnc, to derive their beryllium abundances. 16 Cyg A & B show similar (solar) beryllium abundances while 16 Cyg B, which has been proposed to have a planetary companion of ~ 2 M_Jup, is known to be depleted in lithium by a factor larger than 6 with respect to 16 Cyg A. Differences in their rotational histories which could induce different rates of internal mixing of material, and the ingestion of a similar planet by 16 Cyg A are discussed as potential explanations. The existence of two other solar-type stars which are candidates to harbour planetary-mass companions and which show lithium and beryllium abundances close to those of 16 Cyg A, requires a more detailed inspection of the peculiarities of the 16 Cyg system. For rho (1) Cnc, which is the coolest known object candidate to harbour a planetary-mass companion (M > 0.85 M_Jup), we establish a precise upper limit for its beryllium abundance, showing a strong Be depletion which constrains the available mixing mechanisms. Observations of similar stars without companions are required to assess the potential effects of the planetary companion on the observed depletion. It has been recently claimed that rho (1) Cnc appears to be a subgiant. If this were the case, the observed strong Li and Be depletions could be explained by a dilution process taking place during its post-main sequence evolution. Based on observations made with the Nordic Optical and William Herschel Telescopes, which are operated on the island of La Palma by the NOT Scientific Association and the Isaac Newton Group, respectively, in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrof\\'\\i sica de Canarias.

  9. New diagnostic for X-ray diffraction measurements at extra-solar planets conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Coppari, F.; Smith, R.; Eggert, J.; Rygg, J. R.; Lazicki, A.; Hawreliak, J.; Wang, J.; Duffy, T. S.; Hicks, D. G.; Boehly, T.; Collins, G. W.

    2011-12-01

    A method for obtaining powder diffraction data on dynamically-compressed solids at multi-megabar pressures has been implemented at the OMEGA Laser Facility [1]. We use laser-driven ramp-compression to generate pressures well within the multi-megabar regime. The drive laser pulse shape is designed so to avoid generation of lots of heating (as in shock-compression) so that the material stays into the solid state. Quasi-monochromatic x-ray radiation is generated by illumination of a metallic foil by laser beams and the diffraction patterns are recorded in transmission geometry by image plates. Simultaneous velocimetry measurements using VISAR allow pressure estimation. This diagnostic has been used to study the structure and phase transitions of a variety of materials (low and high-Z), including Ta, Sn and Mo. We have also studied elements and compounds relevant to geophysics and planetary science at unprecedented high pressures, providing experimental constraints to the equations of states of matter at conditions previously accessible to theoretical simulations only. Performing experiments at the pressure and temperature conditions expected in the interiors of massive planets is of fundamental importance for constraining models describing their interior structure and evolution [2]. These models are currently based on extrapolation of lower pressure-temperature experiments and untested theoretical simulations, resulting in large uncertainties [3]. Here I will present results obtained on MgO, Fe and preliminary analysis of recent FeO data. MgO has been ramp-compressed up to 9 Mbar and diffraction measurements provided the first structural evidence for the occurrence of the B1-B2 phase transition at 6 Mbar [4]. Fe has been studied up to 5 Mbar and the stability of the ɛ phase (hcp-Fe) has been demonstrated by x-ray diffraction measurements. Ramp-compression of FeO in the 3 and 7 Mbar pressure regime significantly extended the knowledge of the phase diagram of this

  10. New diagnostic for X-ray diffraction measurements at extra-solar planets conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Coppari, F.; Smith, R.; Eggert, J.; Rygg, J. R.; Lazicki, A.; Hawreliak, J.; Wang, J.; Duffy, T. S.; Hicks, D. G.; Boehly, T.; Collins, G. W.

    2013-12-01

    A method for obtaining powder diffraction data on dynamically-compressed solids at multi-megabar pressures has been implemented at the OMEGA Laser Facility [1]. We use laser-driven ramp-compression to generate pressures well within the multi-megabar regime. The drive laser pulse shape is designed so to avoid generation of lots of heating (as in shock-compression) so that the material stays into the solid state. Quasi-monochromatic x-ray radiation is generated by illumination of a metallic foil by laser beams and the diffraction patterns are recorded in transmission geometry by image plates. Simultaneous velocimetry measurements using VISAR allow pressure estimation. This diagnostic has been used to study the structure and phase transitions of a variety of materials (low and high-Z), including Ta, Sn and Mo. We have also studied elements and compounds relevant to geophysics and planetary science at unprecedented high pressures, providing experimental constraints to the equations of states of matter at conditions previously accessible to theoretical simulations only. Performing experiments at the pressure and temperature conditions expected in the interiors of massive planets is of fundamental importance for constraining models describing their interior structure and evolution [2]. These models are currently based on extrapolation of lower pressure-temperature experiments and untested theoretical simulations, resulting in large uncertainties [3]. Here I will present results obtained on MgO, Fe and preliminary analysis of recent FeO data. MgO has been ramp-compressed up to 9 Mbar and diffraction measurements provided the first structural evidence for the occurrence of the B1-B2 phase transition at 6 Mbar [4]. Fe has been studied up to 5 Mbar and the stability of the ɛ phase (hcp-Fe) has been demonstrated by x-ray diffraction measurements. Ramp-compression of FeO in the 3 and 7 Mbar pressure regime significantly extended the knowledge of the phase diagram of this

  11. Astrometric Detection of Binary Companions and Planets: Acceleration of Proper Motion

    DTIC Science & Technology

    2003-07-14

    the ESO Symp. From Extrasolar Planets to Cosmology: The VLT Opening Symposium, Springer-Verlag, Berlin, p. 492 Appendix A: Simplified development of...Astron. Nachr./AN 324, No. 5, 419–424 (2003) / DOI 10.1002/asna.200310159 Astrometric detection of binary companions and planets : Acceleration of...period is at least several times the span of observations. We estimate orbit dimensions and distances at which low-mass companions and planets may be

  12. PLANETS AROUND LOW-MASS STARS (PALMS). I. A SUBSTELLAR COMPANION TO THE YOUNG M DWARF 1RXS J235133.3+312720

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Cieza, Lucas A.; Kraus, Adam L.; Shkolnik, Evgenya L.; Dupuy, Trent J.; Tamura, Motohide

    2012-07-10

    We report the discovery of a brown dwarf companion to the young M dwarf 1RXS J235133.3+312720 as part of a high contrast imaging search for planets around nearby young low-mass stars with Keck-II/NIRC2 and Subaru/HiCIAO. The 2.''4 ({approx}120 AU) pair is confirmed to be comoving from two epochs of high-resolution imaging. Follow-up low- and moderate-resolution near-infrared spectroscopy of 1RXS J2351+3127 B with IRTF/SpeX and Keck-II/OSIRIS reveals a spectral type of L0{sup +2}{sub -1}. The M2 primary star 1RXS J2351+3127 A exhibits X-ray and UV activity levels comparable to young moving group members with ages of {approx}10-100 Myr. UVW kinematics based the measured radial velocity of the primary and the system's photometric distance (50 {+-} 10 pc) indicate it is likely a member of the {approx}50-150 Myr AB Dor moving group. The near-infrared spectrum of 1RXS J2351+3127 B does not exhibit obvious signs of youth, but its H-band morphology shows subtle hints of intermediate surface gravity. The spectrum is also an excellent match to the {approx}200 Myr M9 brown dwarf LP 944-20. Assuming an age of 50-150 Myr, evolutionary models imply a mass of 32 {+-} 6 M{sub Jup} for the companion, making 1RXS J2351+3127 B the second lowest-mass member of the AB Dor moving group after the L4 companion CD-35 2722 B and one of the few benchmark brown dwarfs known at young ages.

  13. The Puzzling Atmospheres of Low-mass Stars, Brown Dwarfs and Exoplanets Revealed by the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Muirhead, Philip Steven; Croll, Bryce; Dalba, Paul A.; Veyette, Mark; Han, Eunkyu; Kesseli, Aurora; Healy, Brian

    2017-01-01

    The Large Monolithic Imager (LMI) on the Discovery Channel Telescope (DCT) enables high-precision photometry with a scriptable interface and rapid cycling between photometric bands, all while guiding off-axis. Using LMI, scientists at Boston University have undertaken a number of investigations into low-mass stars, brown dwarfs and extrasolar planets. We will report on recent results from these investigations, including (1) measurements of transiting asteroids orbiting a white dwarf, (2) refined ephemerides for long-period transiting exoplanets, (3) investigations revealing biases in space-based exoplanet light curves, (4) investigations of the nature of activity in low-mass stars and brown dwarfs and (5) investigations of low-mass eclipsing binary stars. We will also propose future studies of low-mass stars, brown dwarfs and exoplanets using current and future DCT instrumentation.

  14. Planets around Low-mass Stars (PALMS). I. A Substellar Companion to the Young M Dwarf 1RXS J235133.3+312720

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.; Cieza, Lucas A.; Kraus, Adam L.; Tamura, Motohide

    2012-07-01

    We report the discovery of a brown dwarf companion to the young M dwarf 1RXS J235133.3+312720 as part of a high contrast imaging search for planets around nearby young low-mass stars with Keck-II/NIRC2 and Subaru/HiCIAO. The 2farcs4 (~120 AU) pair is confirmed to be comoving from two epochs of high-resolution imaging. Follow-up low- and moderate-resolution near-infrared spectroscopy of 1RXS J2351+3127 B with IRTF/SpeX and Keck-II/OSIRIS reveals a spectral type of L0+2 -1. The M2 primary star 1RXS J2351+3127 A exhibits X-ray and UV activity levels comparable to young moving group members with ages of ~10-100 Myr. UVW kinematics based the measured radial velocity of the primary and the system's photometric distance (50 ± 10 pc) indicate it is likely a member of the ~50-150 Myr AB Dor moving group. The near-infrared spectrum of 1RXS J2351+3127 B does not exhibit obvious signs of youth, but its H-band morphology shows subtle hints of intermediate surface gravity. The spectrum is also an excellent match to the ~200 Myr M9 brown dwarf LP 944-20. Assuming an age of 50-150 Myr, evolutionary models imply a mass of 32 ± 6 M Jup for the companion, making 1RXS J2351+3127 B the second lowest-mass member of the AB Dor moving group after the L4 companion CD-35 2722 B and one of the few benchmark brown dwarfs known at young ages. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  15. Systems level feasibility study for the detection of extra-solar planets. Volume 1: Infrared interferometer (IRIS) known as the Stanford Concept

    NASA Technical Reports Server (NTRS)

    1979-01-01

    A sensor system for the direct detection of extrasolar planets from an Earth orbit is evaluated: a spinning, infrared interferometer (IRIS). It is shuttle deployed, free flying, requires no on-orbit assembly and no reservicing over a design life of five years. The sensor concept and the mission objectives are reviewed, and the performance characteristics of a baseline sensor for standard observation conditions are derived. A baseline sensor design is given and the enabling technology discussed. Cost and weight estimates are performed; and a schedule for an IRIS program including technology development and assessment of risk are given. Finally, the sensor is compared with the apodized visual telescope sensor (APOTS) proposed for the same mission. The major conclusions are: that with moderate to strong technology advances, particularly in the fields of long life cryogenics, dynamical control, mirror manufacturing, and optical alignment, the detection of a Jupiter like planet around a Sunlike star at a distance of 30 light years is feasible, with a 3 meter aperture and an observation time of 1 hour. By contrast, major and possibly unlikely breakthroughs in mirror technology are required for APOTS to match this performance.

  16. The Effect of Host Star Spectral Energy Distribution and Ice-Albedo Feedback on the Climate of Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Shields, Aomawa; Meadows, V.; Bitz, C. M.; Pierrehumbert, R. T.; Joshi, M. M.; Robinson, T. D.

    2013-01-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. A one dimensional (1-D), line-by-line, radiative-transfer model is used to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy-balance climate model. We simulated planets covered by ocean, land, and water ice of varying grain size, with incident radiation from stars of different spectral types. Our results show that terrestrial planets orbiting stars with higher near-UV radiation exhibit a stronger ice-albedo feedback. Using a general circulation model we demonstrate that an ocean-covered planet orbiting in the habitable zone of an M-dwarf star has a higher global mean surface temperature than a planet orbiting the Sun (a G-dwarf star) at an equivalent stellar flux distance. The effect is even more pronounced when the albedos of snow and ice are lowered, indicating the importance of the spectral dependence of surface ice and snow on climate for these planets. We find that the sensitivity of climate to changes in stellar insolation for M-dwarf planets is weaker than for planets orbiting stars with greater visible and near-UV radiation. While a planet orbiting the Sun becomes ice-covered with an 8% reduction in stellar insolation, a similar planet orbiting an M dwarf requires a 27% reduction to become ice-covered. A 2% reduction in stellar insolation is all that is required for global ice cover on a planet orbiting an F-dwarf star. Consequently the habitable zone for surface liquid water on planets with Earth-like greenhouse gas concentrations may be ~12% wider for M-dwarf stars than for G-dwarf stars, and ~3% narrower for F-dwarf stars. Higher obliquities expand the outer habitable zone boundary for surface liquid water. Raising atmospheric CO2 can reduce the ice-albedo effect on M-dwarf planets, but ~3-10 bars are required to entirely mask the climatic effect of ice and snow.

  17. The effect of host star spectral energy distribution and ice-albedo feedback on the climate of extrasolar planets.

    PubMed

    Shields, Aomawa L; Meadows, Victoria S; Bitz, Cecilia M; Pierrehumbert, Raymond T; Joshi, Manoj M; Robinson, Tyler D

    2013-08-01

    Planetary climate can be affected by the interaction of the host star spectral energy distribution with the wavelength-dependent reflectivity of ice and snow. In this study, we explored this effect with a one-dimensional (1-D), line-by-line, radiative transfer model to calculate broadband planetary albedos as input to a seasonally varying, 1-D energy balance climate model. A three-dimensional (3-D) general circulation model was also used to explore the atmosphere's response to changes in incoming stellar radiation, or instellation, and surface albedo. Using this hierarchy of models, we simulated planets covered by ocean, land, and water-ice of varying grain size, with incident radiation from stars of different spectral types. Terrestrial planets orbiting stars with higher near-UV radiation exhibited a stronger ice-albedo feedback. We found that ice extent was much greater on a planet orbiting an F-dwarf star than on a planet orbiting a G-dwarf star at an equivalent flux distance, and that ice-covered conditions occurred on an F-dwarf planet with only a 2% reduction in instellation relative to the present instellation on Earth, assuming fixed CO(2) (present atmospheric level on Earth). A similar planet orbiting the Sun at an equivalent flux distance required an 8% reduction in instellation, while a planet orbiting an M-dwarf star required an additional 19% reduction in instellation to become ice-covered, equivalent to 73% of the modern solar constant. The reduction in instellation must be larger for planets orbiting cooler stars due in large part to the stronger absorption of longer-wavelength radiation by icy surfaces on these planets in addition to stronger absorption by water vapor and CO(2) in their atmospheres, which provides increased downwelling longwave radiation. Lowering the IR and visible-band surface ice and snow albedos for an M-dwarf planet increased the planet's climate stability against changes in instellation and slowed the descent into global ice

  18. SYSTEMIC: A TESTBED FOR CHARACTERIZING THE DETECTION OF EXTRASOLAR PLANETS. II. NUMERICAL APPROACHES TO THE TRANSIT TIMING INVERSE PROBLEM

    SciTech Connect

    Meschiari, Stefano; Laughlin, Gregory P.

    2010-07-20

    Transit timing variations (TTVs)-deviations from strict periodicity between successive passages of a transiting planet-can be used to probe the structure and dynamics of multiple-planet systems. In this paper, we examine prospects for numerically solving the so-called inverse problem, the determination of the orbital elements of a perturbing body from the TTVs it induces. We assume that the planetary systems under examination have a limited number of Doppler velocity measurements and show that a more extensive radial velocity (RV) characterization with precision comparable to the semi-amplitude of the perturber may remove degeneracies in the solution. We examine several configurations of interest, including (1) a prototypical non-resonant system, modeled after HD 40307 b and c, which contains multiple super-Earth-mass planets, (2) a hypothetical system containing a transiting giant planet with a terrestrial-mass companion trapped in low-order mean motion resonance, and (3) the HAT-P-13 system, in which forced precession by an outer perturbing body that is well characterized by Doppler RV measurements can give insight into the interior structure of a perturbing planet, and for which the determination of mutual inclination between the transiting planet and its perturber is a key issue.

  19. CHARACTERIZING THE COOL KEPLER OBJECTS OF INTERESTS. NEW EFFECTIVE TEMPERATURES, METALLICITIES, MASSES, AND RADII OF LOW-MASS KEPLER PLANET-CANDIDATE HOST STARS

    SciTech Connect

    Muirhead, Philip S.; Hamren, Katherine; Schlawin, Everett; Lloyd, James P.; Rojas-Ayala, Barbara; Covey, Kevin R.

    2012-05-10

    We report stellar parameters for late-K and M-type planet-candidate host stars announced by the Kepler Mission. We obtained medium-resolution, K-band spectra of 84 cool (T{sub eff} {approx}< 4400 K) Kepler Objects of Interest (KOIs) from Borucki et al. We identified one object as a giant (KOI 977); for the remaining dwarfs, we measured effective temperatures (T{sub eff}) and metallicities [M/H] using the K-band spectral indices of Rojas-Ayala et al. We determine the masses (M{sub *}) and radii (R{sub *}) of the cool KOIs by interpolation onto the Dartmouth evolutionary isochrones. The resultant stellar radii are significantly less than the values reported in the Kepler Input Catalog and, by construction, correlate better with T{sub eff}. Applying the published KOI transit parameters to our stellar radius measurements, we report new physical radii for the planet candidates. Recalculating the equilibrium temperatures of the planet-candidates assuming Earth's albedo and re-radiation fraction, we find that three of the planet-candidates are terrestrial sized with orbital semimajor axes that lie within the habitable zones of their host stars (KOI 463.01, KOI 812.03, and KOI 854.01). The stellar parameters presented in this Letter serve as a resource for prioritization of future follow-up efforts to validate and characterize the cool KOI planet candidates.

  20. Impact of ηEarth on the Capabilities of Affordable Space Missions to Detect Biosignatures on Extrasolar Planets

    NASA Astrophysics Data System (ADS)

    Léger, Alain; Defrère, Denis; Malbet, Fabien; Labadie, Lucas; Absil, Olivier

    2015-08-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of ηEarth. When Kepler gives its final estimation for ηEarth, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, ηEarth = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.

  1. THE LICK-CARNEGIE EXOPLANET SURVEY: A URANUS-MASS FOURTH PLANET FOR GJ 876 IN AN EXTRASOLAR LAPLACE CONFIGURATION

    SciTech Connect

    Rivera, Eugenio J.; Laughlin, Gregory; Vogt, Steven S.; Meschiari, Stefano; Haghighipour, Nader

    2010-08-10

    Continued radial velocity (RV) monitoring of the nearby M4V red dwarf star GJ 876 with Keck/High Resolution Echelle Spectrograph has revealed the presence of a Uranus-mass fourth planetary companion in the system. The new planet has a mean period of P{sub e} = 126.6 days (over the 12.6-year baseline of the RV observations), and a minimum mass of m{sub e} sin i{sub e} = 12.9 {+-} 1.7 M {sub +}. The detection of the new planet has been enabled by significant improvements to our RV data set for GJ 876. The data have been augmented by 36 new high-precision measurements taken over the past five years. In addition, the precision of all of the Doppler measurements have been significantly improved by the incorporation of a high signal-to-noise template spectrum for GJ 876 into the analysis pipeline. Implementation of the new template spectrum improves the internal rms errors for the velocity measurements taken during 1998-2005 from 4.1 m s{sup -1} to 2.5 m s{sup -1}. Self-consistent, N-body fits to the RV data set show that the four-planet system has an invariable plane with an inclination relative to the plane of the sky of i = 59.{sup 0}5. The fit is not significantly improved by the introduction of a mutual inclination between the planets 'b' and 'c', but the new data do confirm a non-zero eccentricity, e{sub d} = 0.207 {+-} 0.055 for the innermost planet, 'd'. In our best-fit coplanar model, the mass of the new component is m{sub e} = 14.6 {+-} 1.7 M {sub +}. Our best-fitting model places the new planet in a three-body resonance with the previously known giant planets (which have mean periods of P{sub c} = 30.4 and P{sub b} = 61.1 days). The critical argument, {psi}{sub Laplace} = {lambda} {sub c} - 3{lambda} {sub b} + 2{lambda} {sub e}, for the Laplace resonance librates with an amplitude of {Delta}{psi}{sub Laplace} = 40{sup 0} {+-} 13{sup 0} about {psi}{sub Laplace} = 0{sup 0}. Numerical integration indicates that the four-planet system is stable for at least a

  2. IMPACT OF η{sub Earth} ON THE CAPABILITIES OF AFFORDABLE SPACE MISSIONS TO DETECT BIOSIGNATURES ON EXTRASOLAR PLANETS

    SciTech Connect

    Léger, Alain; Defrère, Denis; Malbet, Fabien; Absil, Olivier

    2015-08-01

    We present an analytic model to estimate the capabilities of space missions dedicated to the search for biosignatures in the atmosphere of rocky planets located in the habitable zone of nearby stars. Relations between performance and mission parameters, such as mirror diameter, distance to targets, and radius of planets, are obtained. Two types of instruments are considered: coronagraphs observing in the visible, and nulling interferometers in the thermal infrared. Missions considered are: single-pupil coronagraphs with a 2.4 m primary mirror, and formation-flying interferometers with 4 × 0.75 m collecting mirrors. The numbers of accessible planets are calculated as a function of η{sub Earth}. When Kepler gives its final estimation for η{sub Earth}, the model will permit a precise assessment of the potential of each instrument. Based on current estimations, η{sub Earth} = 10% around FGK stars and 50% around M stars, the coronagraph could study in spectroscopy only ∼1.5 relevant planets, and the interferometer ∼14.0. These numbers are obtained under the major hypothesis that the exozodiacal light around the target stars is low enough for each instrument. In both cases, a prior detection of planets is assumed and a target list established. For the long-term future, building both types of spectroscopic instruments, and using them on the same targets, will be the optimal solution because they provide complementary information. But as a first affordable space mission, the interferometer looks the more promising in terms of biosignature harvest.

  3. THE DISCOVERY OF THE MOST METAL-RICH WHITE DWARF: COMPOSITION OF A TIDALLY DISRUPTED EXTRASOLAR DWARF PLANET

    SciTech Connect

    Dufour, P.; Fontaine, G.; Bergeron, P.; Lachapelle, F.-R.; Kilic, M.; Kleinman, S. J.; Leggett, S. K.

    2010-08-10

    Cool white dwarf stars are usually found to have an outer atmosphere that is practically pure in hydrogen or helium. However, a small fraction have traces of heavy elements that must originate from the accretion of extrinsic material, most probably circumstellar matter. Upon examining thousands of Sloan Digital Sky Survey (SDSS) spectra, we discovered that the helium-atmosphere white dwarf SDSS J073842.56+183509.6 shows the most severe metal pollution ever seen in the outermost layers of such stars. We present here a quantitative analysis of this exciting star by combining high signal-to-noise ratio follow-up spectroscopic and photometric observations with model atmospheres and evolutionary models. We determine the global structural properties of our target star, as well as the abundances of the most significant pollutants in its atmosphere, i.e., H, O, Na, Mg, Si, Ca, and Fe. The relative abundances of these elements imply that the source of the accreted material has a composition similar to that of Bulk Earth. We also report the signature of a circumstellar disk revealed through a large infrared excess in JHK photometry. Combined with our inferred estimate of the mass of the accreted material, this strongly suggests that we are witnessing the remains of a tidally disrupted extrasolar body that was as large as Ceres.

  4. Atom Resonance Lines for Modeling Atmosphere: Studies of Pressure-Broadening of Alkali Atom Resonance Lines for Modeling Atmospheres of Extrasolar Giant Planets and Brown Dwarfs

    NASA Technical Reports Server (NTRS)

    Hasan, Hashima (Technical Monitor); Kirby, K.; Babb, J.; Yoshino, K.

    2005-01-01

    We report on progress made in a joint program of theoretical and experimental research to study the line-broadening of alkali atom resonance lines due to collisions with species such as helium and molecular hydrogen. Accurate knowledge of the line profiles of Na and K as a function of temperature and pressure will allow such lines to serve as valuable diagnostics of the atmospheres of brown dwarfs and extra-solar giant planets. A new experimental apparatus has been designed, built and tested over the past year, and we are poised to begin collecting data on the first system of interest, the potassium resonance lines perturbed by collisions with helium. On the theoretical front, calculations of line-broadening due to sodium collisions with helium are nearly complete, using accurate molecular potential energy curves and transition moments just recently computed for this system. In addition we have completed calculations of the three relevant potential energy curves and associated transition moments for K - He, using the MOLPRO quantum chemistry codes. Currently, calculations of the potential surfaces describing K-H2 are in progress.

  5. Direct imaging of extra-solar planets in star forming regions. Lessons learned from a false positive around IM Lupi

    NASA Astrophysics Data System (ADS)

    Mawet, D.; Absil, O.; Montagnier, G.; Riaud, P.; Surdej, J.; Ducourant, C.; Augereau, J.-C.; Röttinger, S.; Girard, J.; Krist, J.; Stapelfeldt, K.

    2012-08-01

    Context. Most exoplanet imagers consist of ground-based adaptive optics coronagraphic cameras which are currently limited in contrast, sensitivity and astrometric precision, but advantageously observe in the near-infrared window (1-5 μm). Because of these practical limitations, our current observational aim at detecting and characterizing planets puts heavy constraints on target selection, observing strategies, data reduction, and follow-up. Most surveys so far have thus targeted young systems (1-100 Myr) to catch the putative remnant thermal radiation of giant planets, which peaks in the near-infrared. They also favor systems in the solar neighborhood (d < 80 pc), which eases angular resolution requirements but also ensures a good knowledge of the distance and proper motion, which are critical to secure the planet status, and enable subsequent characterization. Aims: Because of their youth, it is very tempting to target the nearby star forming regions, which are typically twice as far as the bulk of objects usually combed for planets by direct imaging. Probing these interesting reservoirs sets additional constraints that we review in this paper by presenting the planet search that we initiated in 2008 around the disk-bearing T Tauri star IM Lup, which is part of the Lupus star forming region (140-190 pc). Methods: We show and discuss why age determination, the choice of evolutionary model for both the central star and the planet, precise knowledge of the host star proper motion, relative or absolute (between different instruments) astrometric accuracy (including plate scale calibration), and patience are the key ingredients for exoplanet searches around more distant young stars. Results: Unfortunately, most of the time, precision and perseverance are not paying off: we discovered a candidate companion around IM Lup in 2008, which we report here to be an unbound background object. We nevertheless review in details the lessons learned from our endeavor, and

  6. Effect of planet ingestion on low-mass stars evolution: the case of 2MASS J08095427-4721419 star in the Gamma Velorum cluster

    NASA Astrophysics Data System (ADS)

    Tognelli, E.; Prada Moroni, P. G.; Degl'Innocenti, S.

    2016-08-01

    We analysed the effects of planet ingestion on the characteristics of a pre-main-sequence star similar to the Gamma Velorum cluster member 2MASS J08095427-4721419 (#52). We discussed the effects of changing the age t0 at which the accretion episode occurs, the mass of the ingested planet and its chemical composition. We showed that the mass of the ingested planet required to explain the current [Fe/H]^{#52} increases by decreasing the age t0 and/or by decreasing the iron content of the accreted matter. We compared the predictions of a simplified accretion method - where only the variation of the surface chemical composition is considered - with that of a full accretion model that properly accounts for the modification of the stellar structure. We showed that the two approaches result in different convective envelope extension which can vary up to 10 per cent. We discussed the impact of the planet ingestion on a stellar model in the colour-magnitude diagram, showing that a maximum shift of about 0.06 dex in the colour and 0.07 dex in magnitude are expected and that such variations persist even much later the accretion episode. We also analysed the systematic bias in the stellar mass and age inferred by using a grid of standard non-accreting models to recover the characteristics of an accreting star. We found that standard non-accreting models can safely be adopted for mass estimate, as the bias is ≲ 6 per cent, while much more caution should be used for age estimate where the differences can reach about 60 per cent.

  7. Kepler-539: A young extrasolar system with two giant planets on wide orbits and in gravitational interaction

    NASA Astrophysics Data System (ADS)

    Mancini, L.; Lillo-Box, J.; Southworth, J.; Borsato, L.; Gandolfi, D.; Ciceri, S.; Barrado, D.; Brahm, R.; Henning, Th.

    2016-05-01

    We confirm the planetary nature of Kepler-539 b (aka Kepler object of interest K00372.01), a giant transiting exoplanet orbiting a solar-analogue G2 V star. The mass of Kepler-539 b was accurately derived thanks to a series of precise radial velocity measurements obtained with the CAFE spectrograph mounted on the CAHA 2.2-m telescope. A simultaneous fit of the radial-velocity data and Kepler photometry revealed that Kepler-539 b is a dense Jupiter-like planet with a mass of Mp = 0.97 ± 0.29 MJup and a radius of Rp = 0.747 ± 0.018 RJup, making a complete circular revolution around its parent star in 125.6 days. The semi-major axis of the orbit is roughly 0.5 au, implying that the planet is at ≈0.45 au from the habitable zone. By analysing the mid-transit times of the 12 transit events of Kepler-539 b recorded by the Kepler spacecraft, we found a clear modulated transit time variation (TTV), which is attributable to the presence of a planet c in a wider orbit. The few timings available do not allow us to precisely estimate the properties of Kepler-539 c and our analysis suggests that it has a mass between 1.2 and 3.6 MJup, revolving on a very eccentric orbit (0.4 planet c is the probable cause of the TTV modulation of planet b. The analysis of the CAFE spectra revealed a relatively high photospheric lithium content, A(Li) = 2.48 ± 0.12 dex, which, together with both a gyrochronological and isochronal analysis, suggests that the parent star is relatively young. RV/BVS measurements are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/590/A112

  8. A Search for Transiting Neptune-Mass Extrasolar Planets in High-Precision Photometry of Solar-Type Stars

    NASA Technical Reports Server (NTRS)

    Henry, Stephen M.; Gillman, Amelie r.; Henry, Gregory W.

    2005-01-01

    Tennessee State University operates several automatic photometric telescopes (APTs) at Fairborn Observatory in southern Arizona. Four 0.8 m APTs have been dedicated to measuring subtle luminosity variations that accompany magnetic cycles in solar-type stars. Over 1000 program and comparison stars have been observed every clear night in this program for up to 12 years with a precision of approximately 0.0015 mag for a single observation. We have developed a transit-search algorithm, based on fitting a computed transit template for each trial period, and have used it to search our photometric database for transits of unknown companions. Extensive simulations with the APT data have shown that we can reliably recover transits with periods under 10 days as long as the transits have a depth of at least 0.0024 mag, or about 1.6 times the scatter in the photometric observations. Thus, due to our high photometric precision, we are sensitive to transits of possible short-period Neptune-mass planets that likely would have escaped detection by current radial velocity techniques. Our search of the APT data sets for 1087 program and comparison stars revealed no new transiting planets. However, the detection of several unknown grazing eclipsing binaries from among our comparison stars, with eclipse depths of only a few millimags, illustrates the success of our technique. We have used this negative result to place limits on the frequency of Neptune-mass planets in close orbits around solar-type stars in the Sun's vicinity.

  9. High-dispersion spectroscopy of extrasolar planets: from CO in hot Jupiters to O2 in exo-Earths.

    PubMed

    Snellen, Ignas

    2014-04-28

    Ground-based high-dispersion spectroscopy could reveal molecular oxygen as a biomarker gas in the atmospheres of twin-Earths transiting red dwarf stars within the next 25 years. The required contrasts are only a factor of 3 lower than that already achieved for carbon monoxide in hot Jupiter atmospheres today but will need much larger telescopes because the target stars will be orders of magnitude fainter. If extraterrestrial life is very common and can therefore be found on planets around the most nearby red dwarf stars, it may be detectable via transmission spectroscopy with the next-generation extremely large telescopes. However, it is likely that significantly more collecting area is required for this. This can be achieved through the development of low-cost flux collector technology, which combines a large collecting area with a low but sufficient image quality for high-dispersion spectroscopy of bright stars.

  10. First Detection of a Dust Disk around Iota Horologii, a Southern Star Orbitted by an Extrasolar Giant Planet

    NASA Astrophysics Data System (ADS)

    Pantin, E.; Els, S.; Marchis, F.; Endl, M.; Kürster, M.; Sterzik, M.

    2000-12-01

    The link between the presence of debris dust disks (Vega phenomenon) and planetary formation is still unclear; are they: excluding children, siamese twins, or just casual neighbours? Recenly, Trilling et al. (1999), thanks to coronograph observations in the Northern hemisphere, showed that 3 out of 6 stars with known planetary companions harbour a tenuous dust disk, probably some precursors to the analogues of our Solar System Kuiper belt and zodiacal disk. We have started to conduct a similar program in the southern hemisphere at the ESO 3.6m telescope using the adaptive optics system ADONIS. H band images taken in coronographic mode during good observing conditions reveal the presence of a tenuous dust disk around the star Iota Horologii. This star is know to have a planetary companion of 2.26 M.sin i Jupiter masses on a 1 AU orbit, revealed by radial velocities analysis. The ADONIS images show that the disk has an inclination with a tilt angle of 40 degrees with respect to the edge-on configuration. This information allows to remove the degeneracy on the estimation of the mass of the planet due to the unknown inclination of the orbit. Taking this value into account, we find that the planet mass is 3.41 Jupiter masses. In our ADONIS observations, the disk extends 3.7 arcsec from the star, i.e. about 65 AU taking into account the distance of 17 parcsecs of this system. Modelling of light scattering by dust particles are shown and compared to the observations in order to deduce the disk density profile. This density profile is compared to previous results on disks around Beta Pic and HD 100546.

  11. The SOPHIE search for northern extrasolar planets . I. A companion around HD 16760 with mass close to the planet/brown-dwarf transition

    NASA Astrophysics Data System (ADS)

    Bouchy, F.; Hébrard, G.; Udry, S.; Delfosse, X.; Boisse, I.; Desort, M.; Bonfils, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Lagrange, A. M.; Le Coroller, H.; Lovis, C.; Moutou, C.; Pepe, F.; Perrier, C.; Pont, F.; Queloz, D.; Santos, N. C.; Ségransan, D.; Vidal-Madjar, A.

    2009-10-01

    We report on the discovery of a substellar companion or a massive Jupiter orbiting the G5V star HD 16760 using the spectrograph SOPHIE installed on the OHP 1.93-m telescope. Characteristics and performances of the spectrograph are presented, as well as the SOPHIE exoplanet consortium program. With a minimum mass of 14.3 {M}_Jup, an orbital period of 465 days and an eccentricity of 0.067, HD 16760b seems to be located just at the end of the mass distribution of giant planets, close to the planet/brown-dwarf transition. Its quite circular orbit supports a formation in a gaseous protoplanetary disk. Based on observations made with SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS/OAMP), France (program 07A.PNP.CONS). Table 2 is also available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/505/853

  12. 3.6 AND 4.5 {mu}m PHASE CURVES AND EVIDENCE FOR NON-EQUILIBRIUM CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HD 189733b

    SciTech Connect

    Knutson, Heather A.; Lewis, Nikole; Showman, Adam P.; Fortney, Jonathan J.; Laughlin, Gregory; Burrows, Adam; Cowan, Nicolas B.; Agol, Eric; Aigrain, Suzanne; Charbonneau, David; Desert, Jean-Michel; Deming, Drake; Henry, Gregory W.; Langton, Jonathan

    2012-07-20

    We present new, full-orbit observations of the infrared phase variations of the canonical hot Jupiter HD 189733b obtained in the 3.6 and 4.5 {mu}m bands using the Spitzer Space Telescope. When combined with previous phase curve observations at 8.0 and 24 {mu}m, these data allow us to characterize the exoplanet's emission spectrum as a function of planetary longitude and to search for local variations in its vertical thermal profile and atmospheric composition. We utilize an improved method for removing the effects of intrapixel sensitivity variations and robustly extracting phase curve signals from these data, and we calculate our best-fit parameters and uncertainties using a wavelet-based Markov Chain Monte Carlo analysis that accounts for the presence of time-correlated noise in our data. We measure a phase curve amplitude of 0.1242% {+-} 0.0061% in the 3.6 {mu}m band and 0.0982% {+-} 0.0089% in the 4.5 {mu}m band, corresponding to brightness temperature contrasts of 503 {+-} 21 K and 264 {+-} 24 K, respectively. We find that the times of minimum and maximum flux occur several hours earlier than predicted for an atmosphere in radiative equilibrium, consistent with the eastward advection of gas by an equatorial super-rotating jet. The locations of the flux minima in our new data differ from our previous observations at 8 {mu}m, and we present new evidence indicating that the flux minimum observed in the 8 {mu}m is likely caused by an overshooting effect in the 8 {mu}m array. We obtain improved estimates for HD 189733b's dayside planet-star flux ratio of 0.1466% {+-} 0.0040% in the 3.6 {mu}m band and 0.1787% {+-} 0.0038% in the 4.5 {mu}m band, corresponding to brightness temperatures of 1328 {+-} 11 K and 1192 {+-} 9 K, respectively; these are the most accurate secondary eclipse depths obtained to date for an extrasolar planet. We compare our new dayside and nightside spectra for HD 189733b to the predictions of one-dimensional radiative transfer models from

  13. The SOPHIE search for northern extrasolar planets. V. Follow-up of ELODIE candidates: Jupiter-analogs around Sun-like stars

    NASA Astrophysics Data System (ADS)

    Boisse, I.; Pepe, F.; Perrier, C.; Queloz, D.; Bonfils, X.; Bouchy, F.; Santos, N. C.; Arnold, L.; Beuzit, J.-L.; Díaz, R. F.; Delfosse, X.; Eggenberger, A.; Ehrenreich, D.; Forveille, T.; Hébrard, G.; Lagrange, A.-M.; Lovis, C.; Mayor, M.; Moutou, C.; Naef, D.; Santerne, A.; Ségransan, D.; Sivan, J.-P.; Udry, S.

    2012-09-01

    We present radial-velocity measurements obtained in one of a number of programs underway to search for extrasolar planets with the spectrograph SOPHIE at the 1.93-m telescope of the Haute-Provence Observatory. Targets were selected from catalogs observed with ELODIE, which had been mounted previously at the telescope, in order to detect long-period planets with an extended database close to 15 years. Two new Jupiter-analog candidates are reported to orbit the bright stars HD 150706 and HD 222155 in 16.1 yr and 10.9 yr at 6.7-1.4+4.0 AU and 5.1-0.7+0.6 AU, and to have minimum masses of 2.71-0.66+1.14 MJup and 1.90-0.53+0.67 MJup, respectively. Using the measurements from ELODIE and SOPHIE, we refine the parameters of the long-period planets HD 154345b and HD 89307b, and publish the first reliable orbit for HD 24040b. This last companion has a minimum mass of 4.01 ± 0.49 MJup orbiting its star in 10.0 yr at 4.92 ± 0.38 AU. Moreover, the data provide evidence of a third bound object in the HD 24040 system. With a surrounding dust debris disk, HD 150706 is an active G0 dwarf for which we partially corrected the effect of the stellar spot on the SOPHIE radial-velocities. In contrast, HD 222155 is an inactive G2V star. In the SOPHIE measurements, an instrumental effect could be characterized and partly corrected. On the basis of the previous findings of Lovis and collaborators and since no significant correlation between the radial-velocity variations and the activity index are found in the SOPHIE data, these variations are not expected to be only due to stellar magnetic cycles. Finally, we discuss the main properties of this new population of long-period Jupiter-mass planets, which for the moment consists of fewer than 20 candidates. These stars are preferential targets either for direct-imaging or astrometry follow-up surveys to constrain the system parameters and for higher-precision radial-velocity searches for lower mass planets, aiming to find a solar system twin

  14. MODELING THE INFRARED SPECTRUM OF THE EARTH-MOON SYSTEM: IMPLICATIONS FOR THE DETECTION AND CHARACTERIZATION OF EARTHLIKE EXTRASOLAR PLANETS AND THEIR MOONLIKE COMPANIONS

    SciTech Connect

    Robinson, Tyler D.

    2011-11-01

    The Moon maintains large surface temperatures on its illuminated hemisphere and can contribute significant amounts of flux to spatially unresolved thermal infrared (IR) observations of the Earth-Moon system, especially at wavelengths where Earth's atmosphere is absorbing. In this paper we investigate the effects of an unresolved companion on IR observations of Earthlike exoplanets. For an extrasolar twin Earth-Moon system observed at full phase at IR wavelengths, the Moon consistently comprises about 20% of the total signal, approaches 30% of the signal in the 9.6 {mu}m ozone band and the 15 {mu}m carbon dioxide band, makes up as much as 80% of the signal in the 6.3 {mu}m water band, and more than 90% of the signal in the 4.3 {mu}m carbon dioxide band. These excesses translate to inferred brightness temperatures for Earth that are too large by 20-40 K and demonstrate that the presence of undetected satellites can have significant impacts on the spectroscopic characterization of exoplanets. The thermal flux contribution from an airless companion depends strongly on phase, implying that observations of exoplanets should be taken when the star-planet-observer angle (i.e., phase angle) is as large as feasibly possible if contributions from companions are to be minimized. We show that, by differencing IR observations of an Earth twin with a companion taken at both gibbous and crescent phases, Moonlike satellites may be detectable by future exoplanet characterization missions for a wide range of system inclinations.

  15. The SOPHIE search for northern extrasolar planets. XI. Three new companions and an orbit update: Giant planets in the habitable zone

    NASA Astrophysics Data System (ADS)

    Díaz, R. F.; Rey, J.; Demangeon, O.; Hébrard, G.; Boisse, I.; Arnold, L.; Astudillo-Defru, N.; Beuzit, J.-L.; Bonfils, X.; Borgniet, S.; Bouchy, F.; Bourrier, V.; Courcol, B.; Deleuil, M.; Delfosse, X.; Ehrenreich, D.; Forveille, T.; Lagrange, A.-M.; Mayor, M.; Moutou, C.; Pepe, F.; Queloz, D.; Santerne, A.; Santos, N. C.; Sahlmann, J.; Ségransan, D.; Udry, S.; Wilson, P. A.

    2016-07-01

    We report the discovery of three new substellar companions to solar-type stars, HD 191806, HD 214823, and HD 221585, based on radial velocity measurements obtained at the Haute-Provence Observatory. Data from the SOPHIE spectrograph are combined with observations acquired with its predecessor, ELODIE, to detect and characterise the orbital parameters of three new gaseous giant and brown dwarf candidates. Additionally, we combine SOPHIE data with velocities obtained at the Lick Observatory to improve the parameters of an already known giant planet companion, HD 16175 b. Thanks to the use of different instruments, the data sets of all four targets span more than ten years. Zero-point offsets between instruments are dealt with using Bayesian priors to incorporate the information we possess on the SOPHIE/ELODIE offset based on previous studies. The reported companions have orbital periods between three and five years and minimum masses between 1.6 MJup and 19 MJup. Additionally, we find that the star HD 191806 is experiencing a secular acceleration of over 11 m s-1 per year, potentially due to an additional stellar or substellar companion. A search for the astrometric signature of these companions was carried out using Hipparcos data. No orbit was detected, but a significant upper limit to the companion mass can be set for HD 221585, whose companion must be substellar. With the exception of HD 191806 b, the companions are located within the habitable zone of their host star. Therefore, satellites orbiting these objects could be a propitious place for life to develop. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France by the SOPHIE Consortium (programme 07A.PNP.CONS to 15A.PNP.CONS).

  16. Barnard’s Star: Planets or Pretense

    NASA Astrophysics Data System (ADS)

    Bartlett, Jennifer L.; Ianna, P. A.

    2014-01-01

    Barnard’s Star remains popular with planet hunters because it is not only an extremely near, high proper motion star, but also the object of early planet-detection claims. In 1963, van de Kamp explained perturbations in its proper motion by the presence of a planet. In 1969, he produced another single-planet solution and a two-planet solution to the astrometric wobbles detected. At least 19 studies have failed to confirm his results using a range of techniques, including radial velocity, direct imaging, and speckle interferometry. However, most of them lacked the sensitivity to detect the planets he described, including astrometric studies at the McCormick and Naval Observatories. However, radial-velocity monitoring of Barnard’s Star at Lick and Keck Observatories from 1987 through 2012 appears to have ruled out such planets. Based upon observations made at the Sproul Observatory between 1916 and 1962, van de Kamp claimed that Barnard’s Star had a planet with about 1.6 times the mass of Jupiter and an orbital period of 24 years. After accounting for instrumentation effects that might have been partially responsible for his initial results, he continued to assert that this red dwarf had two planets. In his 1982 analysis of ~20,000 exposures collected between 1938 and 1981, he calculated that two planets with 0.7- and 0.5-Jupiter masses in 12- and 20-year orbits, respectively, orbited the second-closest stellar system to our own. Starting in 1995, the dramatic successes of radial velocity searches for extrasolar planets drove van de Kamp’s unsubstantiated claims from popular consciousness. Although many low-mass stellar companions were discovered through astrometry, the technique has been less successful for planets: “The Extrasolar Planets Encyclopaedia” identifies one such discovery out of the 997 planets listed on 2013 September 23. Although Barnard’s Star has lost its pretensions to hosting the first extrasolar planets known, its intrinsic

  17. HIGH-PRECISION DYNAMICAL MASSES OF VERY LOW MASS BINARIES

    SciTech Connect

    Konopacky, Q. M.; Ghez, A. M.; McLean, I. S.; Barman, T. S.; Rice, E. L.; Bailey, J. I.; White, R. J.; Duchene, G. E-mail: ghez@astro.ucla.ed E-mail: barman@lowell.ed E-mail: white@chara.gsu.ed

    2010-03-10

    We present the results of a three year monitoring program of a sample of very low mass (VLM) field binaries using both astrometric and spectroscopic data obtained in conjunction with the laser guide star adaptive optics system on the W. M. Keck II 10 m telescope. Among the 24 systems studied, 15 have undergone sufficient orbital motion, allowing us to derive their relative orbital parameters and hence their total system mass. These measurements more than double the number of mass measurements for VLM objects, and include the most precise mass measurement to date (<2%). Among the 11 systems with both astrometric and spectroscopic measurements, six have sufficient radial velocity variations to allow us to obtain individual component masses. This is the first derivation of the component masses for five of these systems. Altogether, the orbital solutions of these low mass systems show a correlation between eccentricity and orbital period, consistent with their higher mass counterparts. In our primary analysis, we find that there are systematic discrepancies between our dynamical mass measurements and the predictions of theoretical evolutionary models (TUCSON and LYON) with both models either underpredicting or overpredicting the most precisely determined dynamical masses. These discrepancies are a function of spectral type, with late-M through mid-L systems tending to have their masses underpredicted, while one T-type system has its mass overpredicted. These discrepancies imply that either the temperatures predicted by evolutionary and atmosphere models are inconsistent for an object of a given mass, or the mass-radius relationship or cooling timescales predicted by the evolutionary models are incorrect. If these spectral-type trends are correct and hold into the planetary mass regime, the implication is that the masses of directly imaged extrasolar planets are overpredicted by the evolutionary models.

  18. Extrasolar planetary systems.

    NASA Technical Reports Server (NTRS)

    Huang, S.-S.

    1973-01-01

    The terms 'planet' and 'planet-like objects' are defined. The observational search for extrasolar planetary systems is described, as performable by earthbound optical telescopes, by space probes, by long baseline radio interferometry, and finally by inference from the reception of signals sent by intelligent beings in other worlds. It is shown that any planetary system must be preceded by a rotating disk of gas and dust around a central mass. A brief review of the theories of the formation of the solar system is given, along with a proposed scheme for classification of these theories. The evidence for magnetic activity in the early stages of stellar evolution is presented. The magnetic braking theories of solar and stellar rotation are discussed, and an estimate is made for the frequency of occurrence of planetary systems in the universe.

  19. Magnetospheric Emission from Extrasolar Planets

    DTIC Science & Technology

    2010-01-01

    wind dependence is manifest in the fact that the Earth’s luminosity is larger than that of either Uranus or Neptune, even though their magnetic...Even though the magnetic field strength of Earth is less than that of Uranus or Neptune, it is more luminous because it is closer to the Sun and a...larger solar wind power is incident. These relations can be both descriptive and predictive, as the luminosity of Uranus and Neptune were both

  20. Energy flux determines magnetic field strength of planets and stars.

    PubMed

    Christensen, Ulrich R; Holzwarth, Volkmar; Reiners, Ansgar

    2009-01-08

    The magnetic fields of Earth and Jupiter, along with those of rapidly rotating, low-mass stars, are generated by convection-driven dynamos that may operate similarly (the slowly rotating Sun generates its field through a different dynamo mechanism). The field strengths of planets and stars vary over three orders of magnitude, but the critical factor causing that variation has hitherto been unclear. Here we report an extension of a scaling law derived from geodynamo models to rapidly rotating stars that have strong density stratification. The unifying principle in the scaling law is that the energy flux available for generating the magnetic field sets the field strength. Our scaling law fits the observed field strengths of Earth, Jupiter, young contracting stars and rapidly rotating low-mass stars, despite vast differences in the physical conditions of the objects. We predict that the field strengths of rapidly rotating brown dwarfs and massive extrasolar planets are high enough to make them observable.

  1. Constraining the volatile fraction of planets from transit observations

    NASA Astrophysics Data System (ADS)

    Alibert, Y.

    2016-06-01

    Context. The determination of the abundance of volatiles in extrasolar planets is very important as it can provide constraints on transport in protoplanetary disks and on the formation location of planets. However, constraining the internal structure of low-mass planets from transit measurements is known to be a degenerate problem. Aims: Using planetary structure and evolution models, we show how observations of transiting planets can be used to constrain their internal composition, in particular the amount of volatiles in the planetary interior, and consequently the amount of gas (defined in this paper to be only H and He) that the planet harbors. We first explore planets that are located close enough to their star to have lost their gas envelope. We then concentrate on planets at larger distances and show that the observation of transiting planets at different evolutionary ages can provide statistical information on their internal composition, in particular on their volatile fraction. Methods: We computed the evolution of low-mass planets (super-Earths to Neptune-like) for different fractions of volatiles and gas. We used a four-layer model (core, silicate mantle, icy mantle, and gas envelope) and computed the internal structure of planets for different luminosities. With this internal structure model, we computed the internal and gravitational energy of planets, which was then used to derive the time evolution of the planet. Since the total energy of a planet depends on its heat capacity and density distribution and therefore on its composition, planets with different ice fractions have different evolution tracks. Results: We show for low-mass gas-poor planets that are located close to their central star that assuming evaporation has efficiently removed the entire gas envelope, it is possible to constrain the volatile fraction of close-in transiting planets. We illustrate this method on the example of 55 Cnc e and show that under the assumption of the absence of

  2. Extrasolar Cosmochemistry

    NASA Astrophysics Data System (ADS)

    Xu, Siyi; Jura, Michael

    2015-07-01

    Most of the discovered exoplanets are "exotic" with regard to the Solar system, with characteristics that are very different from our own planets. Still, we can use the experience gained in the study of the solar system planets for trying to understand the physical nature of exoplanets. The properties of their atmospheres are, as in the case of the Solar system, constrained by a few parameters: their mass and radius, the stellar radiation flux (and thus the star's properties and its distance to the planet), the planet's ellipticity, its inclination, its rotation, the presence or absence of a magnetosphere... Under some simple hypotheses (thermochemical equilibrium and absence of migration), it is possible to make simple predictions about the nature of the exoplanet's atmospheric composition, on the basis of the planet's mass and its equilibrium temperature. The study of solar system planets also tells us which other mechanisms may lead to a departure from thermochemical equilibrium, in particular photochemistry and transport-induced quenching. The study of planetary spectra is a good starting point to try to understand the spectra of exoplanets that now become available through transit spectroscopy observations. From the spectral type of the hosting star and its distance to the exoplanet, one can estimate the spectral ranges where reflected/scattered stellar radiation and thermal emission dominate. In the thermal regime, the observation of a given molecule in different bands of different intensities may provide constraints on the vertical thermal profile and the vertical distribution of the molecule.

  3. Extrasolar Planetary Transits

    NASA Astrophysics Data System (ADS)

    Cameron, Andrew Collier

    An extrasolar planet will transit the visible hemisphere of its host star if its orbital plane lies sufficiently close to the observer's line of sight. The resulting periodic dips in stellar flux reveal key system parameters, including the density of the host star and, if radial-velocity observations are available, the surface gravitational acceleration of the planet. In this chapter I present the essential methodology for modelling the time-dependent flux variation during a transit, and its use in determining the posterior probability distribution for the physical parameters of the system. Large-scale searches for transiting systems are an efficient way of discovering planets whose bulk densities, and hence compositions, can be accessed if their masses can also be determined. I present algorithms for detrending large ensembles of light curves, for searching for transit-like signals among them. I also discuss methods for identifying diluted stellar eclipsing binaries mimicking planetary transit signals, and validation of transit candidates too faint for radial-velocity follow-up. I review the use of time-resolved spectrophotometry and high-resolution spectroscopy during transits to identify the molecular constituents of exoplanetary atmospheres.

  4. The Possible Belts for Extrasolar Planetary Systems

    NASA Astrophysics Data System (ADS)

    Jiang, I.-G.; Duncan, M.; Lin, D. N. C.

    2004-08-01

    More than 100 extrasolar planets have been discovered since the 1990s. Unlike those of the solar system, these planets' orbital eccentricities cover a huge range from 0 to 0.7. Incidentally, the first Kuiper belt object was discovered in 1992. Thus an interesting and important question will be whether extrasolar planetary systems could have structures like the Kuiper belt or asteroid belt. We investigate the stability of these planetary systems with different orbital eccentricities by similar procedures to Rabl & Dvorak (1988) and Holman & Wiegert (1999). We claim that most extrasolar planetary systems can have their own belts at the outer regions. However, we find that orbits with high eccentricity are very powerful in depletion of these populations.

  5. Statistics of Low-Mass Companions to Stars: Implications for Their Origin

    NASA Technical Reports Server (NTRS)

    Stepinski, T. F.; Black, D. C.

    2001-01-01

    One of the more significant results from observational astronomy over the past few years has been the detection, primarily via radial velocity studies, of low-mass companions (LMCs) to solar-like stars. The commonly held interpretation of these is that the majority are "extrasolar planets" whereas the rest are brown dwarfs, the distinction made on the basis of apparent discontinuity in the distribution of M sin i for LMCs as revealed by a histogram. We report here results from statistical analysis of M sin i, as well as of the orbital elements data for available LMCs, to rest the assertion that the LMCs population is heterogeneous. The outcome is mixed. Solely on the basis of the distribution of M sin i a heterogeneous model is preferable. Overall, we find that a definitive statement asserting that LMCs population is heterogeneous is, at present, unjustified. In addition we compare statistics of LMCs with a comparable sample of stellar binaries. We find a remarkable statistical similarity between these two populations. This similarity coupled with marked populational dissimilarity between LMCs and acknowledged planets motivates us to suggest a common origin hypothesis for LMCs and stellar binaries as an alternative to the prevailing interpretation. We discuss merits of such a hypothesis and indicate a possible scenario for the formation of LMCs.

  6. BENEFITS OF GROUND-BASED PHOTOMETRIC FOLLOW-UP FOR TRANSITING EXTRASOLAR PLANETS DISCOVERED WITH KEPLER AND CoRoT

    SciTech Connect

    Colon, Knicole D.; Ford, Eric B.

    2009-09-20

    Currently, over 40 transiting planets have been discovered by ground-based photometric surveys, and space-based missions such as Kepler and CoRoT are expected to detect hundreds more. Follow-up photometric observations from the ground will play an important role in constraining both orbital and physical parameters for newly discovered planets, especially those with small radii (R{sub p} {approx}< 4R{sub +}) and/or intermediate-to-long orbital periods (P{approx}> 30 days). Here, we simulate transit light curves (LCs) from Kepler-like photometry and ground-based observations in the near-infrared (NIR) to determine how jointly modeling space-based and ground-based LCs can improve measurements of the transit duration and planet-star radius ratio. We find that adding observations of at least one ground-based transit to space-based observations can significantly improve the accuracy for measuring the transit duration and planet-star radius ratio of small planets (R{sub p} {approx}< 4R{sub +}) in long-period ({approx}1 year) orbits, largely thanks to the reduced effect of limb darkening in the NIR. We also demonstrate that multiple ground-based observations are needed to gain a substantial improvement in the measurement accuracy for small planets with short orbital periods ({approx}3 days). Finally, we consider the role that higher ground-based precisions will play in constraining parameter measurements for typical Kepler targets. Our results can help inform the priorities of transit follow-up programs (including both primary and secondary transit of planets discovered with Kepler and CoRoT), leading to improved constraints for transit durations, planet sizes, and orbital eccentricities.

  7. The unstable CO2 feedback cycle on ocean planets

    NASA Astrophysics Data System (ADS)

    Kitzmann, Daniel; Alibert, Yann; Godolt, Mareike; Grenfell, John Lee; Heng, Kevin; Patzer, Beate; Rauer, Heike; Stracke, Barbara; von Paris, Philip

    2015-12-01

    Ocean planets are volatile rich planets, not present in our Solar System, which are dominated by deep, global oceans. Theoretical considerations and planet formation modeling studies suggest that extrasolar ocean planets should be a very common type of planet. One might therefore expect that low-mass ocean planets would be ideal candidates when searching for habitable exoplanets, since water is considered to be an essential requirement for life. However, a very large global ocean can also strongly influence the climate.The high pressure at the oceans bottom results in the formation of high-pressure water ice, separating the planetary crust from the liquid ocean and, thus, also from the atmosphere. In our study we, therefore, focus on the CO2 cycle between the atmosphere and the ocean which determines the atmospheric CO2 content. The atmospheric amount of CO2 is a fundamental quantity for assessing the potential habitability of the planet's surface because of its strong greenhouse effect, which determines the planetary surface temperature to a large degree.In contrast to the stabilising carbonate-silicate cycle regulating the long-term CO2 inventory of the Earth atmosphere, we find that the CO2 cycle on ocean planets is positive and has strong destabilising effects on the planetary climate. By using a chemistry model for oceanic CO2 dissolution and an atmospheric model for exoplanets, we show that the CO2 feedback cycle is severely limiting the potential habitability of ocean planets.

  8. Investigations on physics of planetary atmospheres and small bodies of the Solar system, extrasolar planets and disk structures around the stars

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Delets, O. S.; Dlugach, J. M.; Zakhozhay, O. V.; Kostogryz, N. M.; Krushevska, V. M.; Kuznyetsova, Y. G.; Morozhenko, O. V.; Nevodovskyi, P. V.; Ovsak, O. S.; Rozenbush, O. E.; Romanyuk, Ya. O.; Shavlovskiy, V. I.; Yanovitskij, E. G.

    2015-12-01

    The history and main becoming stages of Planetary system physics Department of the Main astronomical observatory of National academy of Sciences of Ukraine are considered. Fundamental subjects of department researches and science achievements of employees are presented. Fields of theoretical and experimental researches are Solar system planets and their satellites; vertical structures of planet atmospheres; radiative transfer in planet atmospheres; exoplanet systems of Milky Way; stars having disc structures; astronomical engineering. Employees of the department carry out spectral, photometrical and polarimetrical observations of Solar system planets, exoplanet systems and stars with disc structures. 1. From the history of department 2. The main directions of department research 3. Scientific instrumentation 4. Telescopes and observation stations 5. Theoretical studies 6. The results of observations of planets and small Solar system bodies and their interpretation 7. The study of exoplanets around the stars of our galaxy 8. Spectral energy distribution of fragmenting protostellar disks 9. Cooperation with the National Technical University of Ukraine (KPI) and National University of Ukraine "Lviv Polytechnic" to study the impact of stratospheric aerosol changes on weather and climate of the Earth 10. International relations. Scientific and organizational work. Scientific conferences, congresses, symposia 11. The main achievements of the department 12. Current researches 13. Anniversaries and awards

  9. The Microlensing Planet Finder: A Census Of Planetary Systems Like Our Own.

    NASA Astrophysics Data System (ADS)

    Bennett, David P.; Cheng, E.; Kimble, R.; Mather, J.; Gould, A.; Brown, M.; Anderson, J.; Beaulieu, J.; Bond, I.; Cook, K.; Friedman, S.; Gaudi, S.; Gilliland, R.; Griest, K.; Jenkins, J.; Lunine, J.; Minniti, D.; Paczynski, B.; Peale, S.; Rich, M.; Sahu, K.; Shao, M.; Tenerelli, D.; Udalski, A.; Yock, P.

    2006-09-01

    The Microlensing Planet Finder (MPF) will complete the first census of extrasolar planets with sensitivity to planets like those in our own Solar System. MPF uses a proven low-mass planet detection method to detect planets with masses of 0.1 Earth masses or more at all separations of 0.5 AU or larger from their host stars. MPF's planetary census provides critical data for understanding planet formation and habitability that cannot be obtained by other means. MPF's results complement those of the Kepler mission, which detects Earth-like planets at separations of 1 AU or less. MPF and Kepler overlap at a 1 AU, in the habitable zone for Solar type stars. MPF's employs a 1.1m telescope with a 0.65 square degree FOV that images in the near IR (600-1700nm). MPF's inclined geosynchronous orbit allows continuous data transmission to a dedicated ground station while maintaining continuous, high angular resolution observations of 2.5 square degrees of the central Galactic bulge. This is necessary to discovery terrestrial extrasolar planets at a wide range of orbital separations. If every planetary system has the same planet-star mass ratios and separations as our own Solar System, then MPF detects 150 terrestrial planets, 6000 gas giants, and 130 ice giants. MPF also detects 60 free-floating Earths if there is one such planet per Galactic star. During the 3 months per year when the Galactic bulge cannot be observed, addresses other science goals, such as the follow-up of Kepler planet candidates observations to exclude "false positive” Kepler planet detections. MPF also searches beyond the Kuiper Belt for objects like Sedna to test theories of the Solar System's formation and runs a General Observer program.

  10. Planet Formation

    NASA Technical Reports Server (NTRS)

    Lissauer, Jack J.; Fonda, Mark (Technical Monitor)

    2002-01-01

    Modern theories of star and planet formation and of the orbital stability of planetary systems are described and used to discuss possible characteristics of undiscovered planetary systems. The most detailed models of planetary growth are based upon observations of planets and smaller bodies within our own Solar System and of young stars and their environments. Terrestrial planets are believed to grow via pairwise accretion until the spacing of planetary orbits becomes large enough that the configuration is stable for the age of the system. Giant planets begin their growth as do terrestrial planets, but they become massive enough that they are able to accumulate substantial amounts of gas before the protoplanetary disk dissipates. These models predict that rocky planets should form in orbit about most single stars. It is uncertain whether or not gas giant planet formation is common, because most protoplanetary disks may dissipate before solid planetary cores can grow large enough to gravitationally trap substantial quantities of gas. A potential hazard to planetary systems is radial decay of planetary orbits resulting from interactions with material within the disk. Planets more massive than Earth have the potential to decay the fastest, and may be able to sweep up smaller planets in their path. The implications of the giant planets found in recent radial velocity searches for the abundances of habitable planets are discussed, and the methods that are being used and planned for detecting and characterizing extrasolar planets are reviewed.

  11. Just How Earth-like are Extrasolar Super-Earths? Constraints on H+He Envelope Fractions from Kepler's Planet Candidates

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Lopez, E.; Kepler Team; SAMSI Bayesian Characterization of Exoplanet Populations Working Group

    2013-10-01

    With 3500 planetary candidates discovered in its first 3 years of data, the Kepler Mission promises to answer one of the most fundamental questions posed in exoplanetary research: what kinds of planets occur most often in our Galaxy? As Kepler primarily yields planetary radii and orbital periods, it has enabled numerous studies of the occurrence rate of planets as a function of these variables. Unfortunately, the full mass distribution, and thus a direct measure of these planets' possible compositions, remains elusive due to the unsuitability of these faint targets for radial velocity follow-up and the relative rareness of transit timing variations. We show, however, that relatively straightforward models of planetary evolution in an irradiated environment can make some progress without this full mass distribution towards understanding bulk compositions of the abundant Super-Earth/Sub-Neptunes that Kepler has discovered. In particular, we constrain the distribution of envelope fractions, i.e. the fraction of a planet's mass that is in a gaseous hydrogen and helium envelope around its rocky core, for this exoplanet population that has no analogs in our Solar System.

  12. Just How Earth-like are Extrasolar Super-Earths? Constraints on H+He Envelope Fractions from Kepler's Planet Candidates

    NASA Astrophysics Data System (ADS)

    Wolfgang, Angie; Lopez, E.; Kepler Team; SAMSI Bayesian Characterization of Exoplanet Populations Working Group

    2014-01-01

    With 3500 planetary candidates discovered in its first 3 years of data, the Kepler Mission promises to answer one of the most fundamental questions posed in exoplanetary research: what kinds of planets occur most often in our Galaxy? As Kepler primarily yields planetary radii and orbital periods, it has enabled numerous studies of the occurrence rate of planets as a function of these variables. Unfortunately, the full mass distribution, and thus a direct measure of these planets' possible compositions, remains elusive due to the unsuitability of these faint targets for radial velocity follow-up and the relative rareness of transit timing variations. We show, however, that relatively straightforward models of planetary evolution in an irradiated environment can make some progress without this full mass distribution towards understanding bulk compositions of the abundant Super-Earth/Sub-Neptunes that Kepler has discovered. In particular, we constrain the distribution of envelope fractions, i.e. the fraction of a planet's mass that is in a gaseous hydrogen and helium envelope around its rocky core, for this exoplanet population that has no analogs in our Solar System. This research builds on collaborations between astronomers and statisticians forged during a three week workshop on "Modern Statistical and Computational Methods for Analysis of Kepler Data" at SAMSI in June 2013.

  13. Formation, Habitability, and Detection of Extrasolar Moons

    PubMed Central

    Williams, Darren; Kipping, David; Limbach, Mary Anne; Turner, Edwin; Greenberg, Richard; Sasaki, Takanori; Bolmont, Émeline; Grasset, Olivier; Lewis, Karen; Barnes, Rory; Zuluaga, Jorge I.

    2014-01-01

    Abstract The diversity and quantity of moons in the Solar System suggest a manifold population of natural satellites exist around extrasolar planets. Of peculiar interest from an astrobiological perspective, the number of sizable moons in the stellar habitable zones may outnumber planets in these circumstellar regions. With technological and theoretical methods now allowing for the detection of sub-Earth-sized extrasolar planets, the first detection of an extrasolar moon appears feasible. In this review, we summarize formation channels of massive exomoons that are potentially detectable with current or near-future instruments. We discuss the orbital effects that govern exomoon evolution, we present a framework to characterize an exomoon's stellar plus planetary illumination as well as its tidal heating, and we address the techniques that have been proposed to search for exomoons. Most notably, we show that natural satellites in the range of 0.1–0.5 Earth mass (i) are potentially habitable, (ii) can form within the circumplanetary debris and gas disk or via capture from a binary, and (iii) are detectable with current technology. Key Words: Astrobiology—Extrasolar planets—Habitability—Planetary science—Tides. Astrobiology 14, 798–835. PMID:25147963

  14. The HARPS search for southern extra-solar planets. XXX. Planetary systems around stars with solar-like magnetic cycles and short-term activity variation

    NASA Astrophysics Data System (ADS)

    Dumusque, X.; Lovis, C.; Ségransan, D.; Mayor, M.; Udry, S.; Benz, W.; Bouchy, F.; Lo Curto, G.; Mordasini, C.; Pepe, F.; Queloz, D.; Santos, N. C.; Naef, D.

    2011-11-01

    We present the discovery of four new long-period planets within the HARPS high-precision sample: HD 137388b (Msini = 0.22 MJ), HD 204941b (Msini = 0.27 MJ), HD 7199b (Msini = 0.29 MJ), HD 7449b (Msini = 1.04 MJ). A long-period companion, probably a second planet, is also found orbiting HD 7449. Planets around HD 137388, HD 204941, and HD 7199 have rather low eccentricities (less than 0.4) relative to the 0.82 eccentricity of HD 7449b. All these planets were discovered even though their hosting stars have clear signs of activity. Solar-like magnetic cycles, characterized by long-term activity variations, can be seen for HD 137388, HD 204941 and HD 7199, whereas the measurements of HD 7449 reveal a short-term activity variation, most probably induced by magnetic features on the stellar surface. We confirm that magnetic cycles induce a long-term radial velocity variation and propose a method to reduce considerably the associated noise. The procedure consists of fitting the activity index and applying the same solution to the radial velocities because a linear correlation between the activity index and the radial velocity is found. Tested on HD 137388, HD 204941, and HD 7199, this correction reduces considerably the stellar noise induced by magnetic cycles and allows us to derive precisely the orbital parameters of planetary companions. Based on observations made with the HARPS instrument on the ESO 3.6-m telescope at La Silla Observatory (Chile), under programme IDs 072.C-0488 and 183.C-0972.Radial velocities (Tables 4-7) are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/535/A55

  15. Dynamical Problems in Extrasolar Planetary Science

    NASA Astrophysics Data System (ADS)

    Morbidelli, Alessandro; Haghighipour, Nader

    2016-10-01

    The past few years have witnessed a large increase in the number of extrasolar planets. Thanks to successful surveys from the ground and from space, there are now over 1000 confirmed exoplanets and more then 3000 planetary candidates. More than 130 of these systems host multiple planets. Many of these systems demonstrate physical and orbital characteristics fundamentally different from those of our solar system. The challenges associated with the diversity of planetary systems have raised many interesting questions on planet formation and orbital dynamics.

  16. Reevaluating the feasibility of ground-based Earth-mass microlensing planet detections

    SciTech Connect

    Jung, Youn Kil; Park, Hyuk; Han, Cheongho; Hwang, Kyu-Ha; Shin, In-Gu; Choi, Joon-Young

    2014-05-10

    An important strength of the microlensing method to detect extrasolar planets is its high sensitivity to low-mass planets. However, many believe that microlensing detections of Earth-mass planets from ground-based observation would be difficult because of limits set by finite-source effects. This view comes from the previous estimation of planet detection probability based on the fractional deviation of planetary signals; however, a proper probability estimation is required when considering the source brightness, which is directly related to the photometric precision. In this paper, we reevaluate the feasibility of low-mass planet detections by considering photometric precision for different populations of source stars. From this, we find that the contribution of improved photometric precision to the planetary signal of a giant-source event is large enough to compensate for the decrease in magnification excess caused by finite-source effects. As a result, we conclude that giant-source events are suitable targets for Earth-mass planet detections with significantly higher detection probability than events involved with source stars of smaller radii, and we predict that Earth-mass planets could be detected by prospective high-cadence surveys.

  17. The Microlensing Planet Finder: A Census Of Planetary Systems Like Our Own and Objects Beyond the Kuiper Belt

    NASA Astrophysics Data System (ADS)

    Bennett, David P.; Cheng, E.; Kimble, R.; Mather, J.; Brown, M.; Gould, A.; Anderson, J.; Beaulieu, J.; Bond, I.; Cook, K.; Friedman, S.; Gaudi, S.; Gilliland, R.; Griest, K.; Jenkins, J.; Minniti, D.; Paczynski, B.; Peale, S.; Rich, M.; Sahu, K.; Shao, M.; Tenerelli, D.; Udalski, A.; Yock, P.

    2006-09-01

    The Microlensing Planet Finder (MPF) will complete the first census of extrasolar planets with sensitivity to planets like those in our own Solar System. MPF uses a proven low-mass planet detection method to detect planets with masses greater than 0.1 Earth masses at all separations greater than 0.5 AU from their host stars. MPF's planetary census provides critical data for understanding planet formation and habitability that cannot be obtained by other means. MPF's results complement those of the Kepler mission, which detects Earth-like planets at separations of 1 AU or less. MPF and Kepler overlap at a 1 AU, in the habitable zone for Solar type stars. MPF's employs a 1.1m telescope with a 0.65 square degree FOV that images in the near IR (600-1700nm). MPF's inclined geosynchronous orbit allows continuous data transmission to a dedicated ground station while maintaining continuous, high angular resolution observations of 2.5 square degrees of the central Galactic bulge. This is necessary to discovery terrestrial extrasolar planets at a wide range of orbital separations. If every planetary system has the same planet-star mass ratios and separations as our own Solar System, then MPF detects 150 terrestrial planets, 6000 gas giants, and 130 ice giants. MPF also detects 60 free-floating Earths if there is one such planet per Galactic star. During the 3 months per year when the Galactic bulge cannot be observed, addresses other science goals, such as the follow-up of Kepler planet candidates observations to exclude "false positive” Kepler planet detections. MPF also searches beyond the Kuiper Belt for objects like Sedna to test theories of the Solar System's formation and runs a General Observer program.

  18. PLANET-PLANET SCATTERING IN PLANETESIMAL DISKS

    SciTech Connect

    Raymond, Sean N.; Armitage, Philip J.; Gorelick, Noel

    2009-07-10

    We study the final architecture of planetary systems that evolve under the combined effects of planet-planet and planetesimal scattering. Using N-body simulations we investigate the dynamics of marginally unstable systems of gas and ice giants both in isolation and when the planets form interior to a planetesimal belt. The unstable isolated systems evolve under planet-planet scattering to yield an eccentricity distribution that matches that observed for extrasolar planets. When planetesimals are included the outcome depends upon the total mass of the planets. For M {sub tot} {approx}> 1 M{sub J} the final eccentricity distribution remains broad, whereas for M {sub tot} {approx}< 1 M{sub J} a combination of divergent orbital evolution and recircularization of scattered planets results in a preponderance of nearly circular final orbits. We also study the fate of marginally stable multiple planet systems in the presence of planetesimal disks, and find that for high planet masses the majority of such systems evolve into resonance. A significant fraction leads to resonant chains that are planetary analogs of Jupiter's Galilean satellites. We predict that a transition from eccentric to near-circular orbits will be observed once extrasolar planet surveys detect sub-Jovian mass planets at orbital radii of a {approx_equal} 5-10 AU.

  19. Evolution of Earth-like Extrasolar Planetary Atmospheres: Assessing the Atmospheres and Biospheres of Early Earth Analog Planets with a Coupled Atmosphere Biogeochemical Model.

    PubMed

    Gebauer, S; Grenfell, J L; Stock, J W; Lehmann, R; Godolt, M; von Paris, P; Rauer, H

    2017-01-01

    Understanding the evolution of Earth and potentially habitable Earth-like worlds is essential to fathom our origin in the Universe. The search for Earth-like planets in the habitable zone and investigation of their atmospheres with climate and photochemical models is a central focus in exoplanetary science. Taking the evolution of Earth as a reference for Earth-like planets, a central scientific goal is to understand what the interactions were between atmosphere, geology, and biology on early Earth. The Great Oxidation Event in Earth's history was certainly caused by their interplay, but the origin and controlling processes of this occurrence are not well understood, the study of which will require interdisciplinary, coupled models. In this work, we present results from our newly developed Coupled Atmosphere Biogeochemistry model in which atmospheric O2 concentrations are fixed to values inferred by geological evidence. Applying a unique tool (Pathway Analysis Program), ours is the first quantitative analysis of catalytic cycles that governed O2 in early Earth's atmosphere near the Great Oxidation Event. Complica