Science.gov

Sample records for low-mass white dwarf

  1. The origin of low-mass white dwarfs

    SciTech Connect

    Rebassa-Mansergas, A.; Schreiber, M. R.; Gaensicke, B. T.; Girven, J.; Gomez-Moran, A. Nebot

    2010-11-23

    We present white dwarf mass distributions of a large sample of post common-envelope binaries and wide white dwarf main sequence binaries and demonstrate that these distributions are statistically independent. While the former contains a much larger fraction of low-mass white dwarfs, the latter is similar to single white dwarf mass distributions. Taking into account observational biases we also show that the majority of low-mass white dwarfs are formed in close binaries.

  2. Very low mass stars and white dwarfs in NGC 6397

    NASA Technical Reports Server (NTRS)

    Paresce, Francesco; De Marchi, Guido; Romaniello, Martino

    1995-01-01

    Deep Wide Field/Planetary Camera 2 (WFPC2) images in wide bands centered at 606 and 802 nm were taken with the Hubble Space Telescope (HST) 4.6 min from the center of the galactic globular cluster NGC 6397. The images were used to accurately position approximately 2120 stars detected in the field on a color magnitude diagram down to a limiting magnitude m(sub 814) approximately = m(sub I) approximately = 26 determined reliably and solely by counting statistics. A white dwarf sequence and a rich, narrow cluster main sequence are detected for the first time, the latter stretching from m(sub 814) = 18.5 to m(sub 814) = 24.0 where it becomes indistinguishable from the field population. Two changes of slope of the main sequence at m(sub 814) approximately = 20 and m(sub 814) approximately = 22.5 are evident. The corresponding luminosity function increases slowly from M(sub 814) approximately = 6.5 to 8.5 are expected from ground-based observations but then drops sharply from there dwon to the measurement limit. The corresponding mass function obtained bu using the only presently available mass-luminosity function for the cluster's metallicity rises to a plateau between approximately 0.25 and approximately 0.15 solar mass, but drops toward the expected mass limit of the normal hydrogen burning main sequence at approximately 0.1 solar mass. This result is in clear contrast to that obtained from the ground and implies either a substantial modification of the cluster's initial mass function due to dynamical evolution in its lifetime, or that very low mass stars are not produced in any dynamically significant amount by clusters of this type. The white dwarf sequence is in reasonable agreement with a cooling sequence of models of mass 0.5 solar mass at the canonical distance of NGC 6397 with a scatter that is most likely due to photometric errors, but may also reflect real differences in mass or chemical composition. Contamination from unresolved galaxies, which cannot be

  3. Outbursts by low-mass white dwarfs in symbiotic variables

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Ready, Christian J.

    1992-01-01

    The high-resolution IUE spectra of the symbiotic variables BF Cygni and EG Andromedae are studied in order to describe the P Cygni-like features of these objects. The 10 high-dispersion IUE spectra are examined for orbital phase-dependent variations in the C IV resonance doublet in terms of velocity and/or structure. One image is found to have a strong He-II absorption feature that coincides in velocity with the C-IV absorption component in P Cygni. The absorbing material for both lines is related to outflow and P Cygni self-absorption near the hot component. The P Cygni profiles do not appear to be related to a red-giant wind nor an expanding circumbinary shell in the in both BF Cyg and EG And. Quasi-static evolutionary model calculations demonstrate an unexpected outburst behavior in response to the assumed accretion. These data are shown to be important for the study of symbiotic systems that contain low-mass white dwarfs.

  4. Radius constraints from high-speed photometry of 20 low-mass white dwarf binaries

    SciTech Connect

    Hermes, J. J.; Brown, Warren R.; Kilic, Mukremin; Gianninas, A.; Chote, Paul; Sullivan, D. J.; Winget, D. E.; Bell, Keaton J.; Falcon, R. E.; Winget, K. I.; Harrold, Samuel T.; Montgomery, M. H.; Mason, Paul A.

    2014-09-01

    We carry out high-speed photometry on 20 of the shortest-period, detached white dwarf binaries known and discover systems with eclipses, ellipsoidal variations (due to tidal deformations of the visible white dwarf), and Doppler beaming. All of the binaries contain low-mass white dwarfs with orbital periods of less than four hr. Our observations identify the first eight tidally distorted white dwarfs, four of which are reported for the first time here. We use these observations to place empirical constraints on the mass-radius relationship for extremely low-mass (≤0.30 M {sub ☉}) white dwarfs. We also detect Doppler beaming in several of these binaries, which confirms their high-amplitude radial-velocity variability. All of these systems are strong sources of gravitational radiation, and long-term monitoring of those that display ellipsoidal variations can be used to detect spin-up of the tidal bulge due to orbital decay.

  5. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. I. Adiabatic properties

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.

    2014-09-01

    Context. Many low-mass white dwarfs with masses M∗/M⊙ ≲ 0.45, including the so-called extremely low-mass white dwarfs (M∗/M⊙ ≲ 0.20 - 0.25), have recently been discovered in the field of our Galaxy through dedicated photometric surveys. The subsequent discovery of pulsations in some of them has opened the unprecedented opportunity of probing the internal structure of these ancient stars. Aims: We present a detailed adiabatic pulsational study of these stars based on full evolutionary sequences derived from binary star evolution computations. The main aim of this study is to provide a detailed theoretical basis of reference for interpreting present and future observations of variable low-mass white dwarfs. Methods: Our pulsational analysis is based on a new set of He-core white-dwarf models with masses ranging from 0.1554 to 0.4352 M⊙ derived by computing the non-conservative evolution of a binary system consisting of an initially 1 M⊙ ZAMS star and a 1.4 M⊙ neutron star. We computed adiabatic radial (ℓ = 0) and non-radial (ℓ = 1,2) p and g modes to assess the dependence of the pulsational properties of these objects on stellar parameters such as the stellar mass and the effective temperature, as well as the effects of element diffusion. Results: We found that for white dwarf models with masses below ~ 0.18 M⊙, g modes mainly probe the core regions and p modes the envelope, therefore pulsations offer the opportunity of constraining both the core and envelope chemical structure of these stars via asteroseismology. For models with M∗ ≳ 0.18 M⊙, on the other hand, g modes are very sensitive to the He/H compositional gradient and therefore can be used as a diagnostic tool for constraining the H envelope thickness. Because both types of objects have not only very distinct evolutionary histories (according to whether the progenitor stars have experienced CNO-flashes or not), but also have strongly different pulsation properties, we propose to

  6. The seismic properties of low-mass He-core white dwarf stars

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Romero, A. D.; Althaus, L. G.; Hermes, J. J.

    2012-11-01

    Context. In recent years, many low-mass (≲ 0.45 M⊙) white dwarf stars expected to harbor He cores have been detected in the field of the Milky Way and in several galactic globular and open clusters. Until recently, no objects of this kind showed pulsations. This situation has changed recently with the exciting discovery of SDSS J184037.78+642312.3, the first pulsating low-mass white dwarf star. Aims: Motivated by this extremely important finding, and in view of the very valuable asteroseismological potential of these objects, we present here a detailed pulsational study applied to low-mass He-core white dwarfs with masses ranging from 0.17 to 0.46 M⊙, based on full evolutionary models representative of these objects. This study is aimed to provide a theoretical basis from which to interpret future observations of variable low-mass white dwarfs. Methods: The background stellar models on which our pulsational analysis was carried out were derived by taking into account the complete evolutionary history of the progenitor stars, with special emphasis on the diffusion processes acting during the white dwarf cooling phase. We computed nonradial g-modes to assess the dependence of the pulsational properties of these objects with stellar parameters such as the stellar mass and the effective temperature, and also with element diffusion processes. We also performed a g- and p-mode pulsational stability analysis on our models and found well-defined blue edges of the instability domain, where these stars should start to exhibit pulsations. Results: We found substantial differences in the seismic properties of white dwarfs with M∗ ≳ 0.20 M⊙ and the extremely low-mass (ELM) white dwarfs (M∗ ≲ 0.20 M⊙). Specifically, g-mode pulsation modes in ELM white dwarfs mainly probe the core regions and are not dramatically affected by mode-trapping effects by the He/H interface, whereas the opposite is true for more massive He-core white dwarfs. We found that element

  7. LP 400-22, A Very Low Mass and High-Velocity White Dwarf

    NASA Technical Reports Server (NTRS)

    Kawka, Adela; Vennes, Stephane; Oswalt, Terry D.; Smith, J. Allyn; Silvestri, Nicole M.

    2006-01-01

    We report the identification of LP 400-22 (WD 2234+222) as a very low mass and high-velocity white dwarf. The ultraviolet GALEX and optical photometric colors and a spectral line analysis of LP 400-22 show this star to have an effective temperature of 11,080+/-140 K and a surface gravity of log g = 6.32 +/-0.08. Therefore, this is a helium-core white dwarf with a mass of 0.17 M,. The tangential velocity of this white dwarf is 414+/-43 km/s, making it one of the fastest moving white dwarfs known. We discuss probable evolutionary scenarios for this remarkable object.

  8. DISCOVERY OF A BRIGHT, EXTREMELY LOW MASS WHITE DWARF IN A CLOSE DOUBLE DEGENERATE SYSTEM

    SciTech Connect

    Vennes, S.; Kawka, A.; Nemeth, P.; Thorstensen, J. R.; Skinner, J. N.; Pigulski, A.; Steslicki, M.; Kolaczkowski, Z.; Srodka, P.

    2011-08-10

    We report the discovery of a bright (V {approx} 13.7), extremely low mass white dwarf in a close double degenerate system. We originally selected GALEX J171708.5+675712 for spectroscopic follow-up among a group of white dwarf candidates in an ultraviolet-optical reduced proper-motion diagram. The new white dwarf has a mass of 0.18 M{sub sun} and is the primary component of a close double degenerate system (P = 0.246137 days, K{sub 1} = 288 km s{sup -1}) comprising a fainter white dwarf secondary with M{sub 2} {approx} 0.9 M{sub sun}. Light curves phased with the orbital ephemeris show evidence of relativistic beaming and weaker ellipsoidal variations. The light curves also reveal secondary eclipses (depth {approx}8 mmag) while the primary eclipses appear partially compensated by the secondary gravitational deflection and are below detection limits. Photospheric abundance measurements show a nearly solar composition of Si, Ca, and Fe (0.1-1 sun), while the normal kinematics suggest a relatively recent formation history. Close binary evolutionary scenarios suggest that extremely low mass white dwarfs form via a common-envelope phase and possible Roche lobe overflow.

  9. Recent Advances in the Theoretical Modeling of Pulsating Low-mass He-core White Dwarfs

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Calcaferro, L. M.; Serenelli, A. M.; Kepler, S. O.; Jeffery, C. S.

    2017-03-01

    Many extremely low-mass (ELM) white-dwarf (WD) stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period nonradial g-mode pulsations, and constitute the class of ELMV pulsating WDs. In addition, several low-mass pre-WDs, which could be precursors of ELM WDs, have been observed to show short-period photometric variations likely due to nonradial p modes and radial modes. They could constitute a new class of pulsating low-mass pre-WD stars, the pre-ELMV stars. Here, we present the recent results of a thorough theoretical study of the nonadiabatic pulsation properties of low-mass He-core WDs and pre-WDs on the basis of fully evolutionary models representative of these stars.

  10. A SPITZER SEARCH FOR SUBSTELLAR COMPANIONS TO LOW-MASS WHITE DWARFS

    SciTech Connect

    Kilic, Mukremin; Brown, Warren R.; McLeod, B.

    2010-01-01

    The formation scenarios for single low-mass (M < 0.45 M{sub sun}) white dwarfs (WDs) include enhanced mass loss from a metal-rich progenitor star or a common envelope phase of a solar-like star with a close-in massive planet or a brown dwarf. Both scenarios suggest that low-mass WDs may have planets. Here, we present a Spitzer IRAC search for substellar and planetary mass companions to 14 low-mass WDs. One of our targets, HS 1653+7753, displays near- and mid-infrared flux excess. However, follow-up MMT observations show that this excess is due to a nearby resolved source, which is mostly likely a background object. Another target, PG 2257+162, shows flux excess compatible with a late-type stellar companion. We do not detect substellar companions to any of the remaining targets. In addition, eight of these stars do not show any radial velocity variations, ruling out stellar mass companions including other WDs. We conclude that a significant fraction of the low-mass WDs in our sample do not have stellar or massive brown dwarf companions.

  11. Pruning The ELM Survey: Characterizing Candidate Low-mass White Dwarfs through Photometric Variability

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Gianninas, A.; Hermes, J. J.; Winget, D. E.; Kilic, Mukremin; Montgomery, M. H.; Castanheira, B. G.; Vanderbosch, Z.; Winget, K. I.; Brown, Warren R.

    2017-02-01

    We assess the photometric variability of nine stars with spectroscopic Teff and log g values from the ELM Survey that locates them near the empirical extremely low-mass (ELM) white dwarf instability strip. We discover three new pulsating stars: SDSS J135512.34+195645.4, SDSS J173521.69+213440.6, and SDSS J213907.42+222708.9. However, these are among the few ELM Survey objects that do not show radial velocity (RV) variations that confirm the binary nature expected of helium-core white dwarfs. The dominant 4.31 hr pulsation in SDSS J135512.34+195645.4 far exceeds the theoretical cut-off for surface reflection in a white dwarf, and this target is likely a high-amplitude δ Scuti pulsator with an overestimated surface gravity. We estimate the probability to be less than 0.0008 that the lack of measured RV variations in four of eight other pulsating candidate ELM white dwarfs could be due to low orbital inclination. Two other targets exhibit variability as photometric binaries. Partial coverage of the 19.342 hr orbit of WD J030818.19+514011.5 reveals deep eclipses that imply a primary radius >0.4 R⊙—too large to be consistent with an ELM white dwarf. The only object for which our time series photometry adds support to ELM white dwarf classification is SDSS J105435.78‑212155.9, which has consistent signatures of Doppler beaming and ellipsoidal variations. We conclude that the ELM Survey contains multiple false positives from another stellar population at Teff ≲ 9000 K, possibly related to the sdA stars recently reported from SDSS spectra.

  12. Neutron star formation in theoretical supernovae. Low mass stars and white dwarfs

    SciTech Connect

    Nomoto, K.

    1986-01-01

    The presupernova evolution of stars that form semi-degenerate or strongly degenerate O + Ne + Mg cores is discussed. For the 10 to 13 Msub solar stars, behavior of off-center neon flashes is crucial. The 8 to 10 m/sub solar stars do not ignite neon and eventually collapse due to electron captures. Properties of supernova explosions and neutron stars expected from these low mass progenitors are compared with the Crab nebula. The conditions for which neutron stars form from accretion-induced collapse of white dwarfs in clsoe binary systems is also examined.

  13. VizieR Online Data Catalog: Low-mass helium white dwarfs evolutionary models (Istrate+, 2016)

    NASA Astrophysics Data System (ADS)

    Istrate, A.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-07-01

    Evolutionary models of low-mass helium white dwarfs including element diffusion and rotational mixing. The WDs are produced considering binary evolution through the LMXB channel, with final WDs masses between ~0.16-~0.44. The models are computed using MESA, for different metallicities: Z=0.02, 0.01, 0.001 and 0.0002. For each metallicity, the models are divided in three categories: (1) basic (no diffusion nor rotation are considered) (2) diffusion (element diffusion is considered) (3) rotation+diffusion (both element diffusion and rotational mixing are considered) (4 data files).

  14. Two new pulsating low-mass pre-white dwarfs or SX Phoenicis stars?

    NASA Astrophysics Data System (ADS)

    Corti, M. A.; Kanaan, A.; Córsico, A. H.; Kepler, S. O.; Althaus, L. G.; Koester, D.; Sánchez Arias, J. P.

    2016-03-01

    Context. The discovery of pulsations in low-mass stars opens an opportunity to probe their interiors and determine their evolution by employing the tools of asteroseismology. Aims: We aim to analyse high-speed photometry of SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25 and discover brightness variabilities. In order to locate these stars in the Teff - log g diagram, we fit optical spectra (SDSS) with synthetic non-magnetic spectra derived from model atmospheres. Methods: To carry out this study, we used the photometric data we obtained for these stars with the 2.15 m telescope at CASLEO, Argentina. We analysed their light curves and applied the discrete Fourier transform (FT) to determine the pulsation frequencies. Finally, we compare both stars in the Teff - log g diagram, with two known pre-white dwarfs and seven pulsating pre-ELM white dwarf stars, δ Scuti, and SX Phe stars Results: We report the discovery of pulsations in SDSS J145847.02+070754.46 and SDSS J173001.94+070600.25. We determine their effective temperature and surface gravity to be Teff = 7972 ± 200 K, log g = 4.25 ± 0.5 and Teff = 7925 ± 200 K, log g = 4.25 ± 0.5, respectively. With these parameters, these new pulsating low-mass stars can be identified with either ELM white dwarfs (with ~0.17 M⊙) or more massive SX Phe stars. We identified pulsation periods of 3278.7 and 1633.9 s for SDSS J145847.02+070754.46 and a pulsation period of 3367.1 s for SDSS J173001.94+070600.25. These two new objects, together with those of Maxted et al. (2013, 2014), indicate the possible existence of a new instability domain towards the late stages of evolution of low-mass white dwarf stars, although their identification with SX Phe stars cannot be discarded. Visiting Astronomer, Complejo Astronómico El Leoncito operated under agreement between the Consejo Nacional de Investigaciones Científicas y Técnicas de la República Argentina and the National Universities of La Plata, Córdoba, and San Juan.

  15. A RADIO SEARCH FOR PULSAR COMPANIONS TO SLOAN DIGITAL SKY SURVEY LOW-MASS WHITE DWARFS

    SciTech Connect

    Agueeros, Marcel A.; Camilo, Fernando; Silvestri, Nicole M.; Anderson, Scott F.; Kleinman, S. J.; Liebert, James W.

    2009-05-20

    We have conducted a search for pulsar companions to 15 low-mass white dwarfs (LMWDs; M <0.4 M {sub sun}) at 820 MHz with the NRAO Green Bank Telescope (GBT). These LMWDs were spectroscopically identified in the Sloan Digital Sky Survey (SDSS), and do not show the photometric excess or spectroscopic signature associated with a companion in their discovery data. However, LMWDs are believed to evolve in binary systems and to have either a more massive white dwarf (WD) or a neutron star (NS) as a companion. Indeed, evolutionary models of low-mass X-ray binaries, the precursors of millisecond pulsars (MSPs), produce significant numbers of LMWDs, suggesting that the SDSS LMWDs may have NS companions. No convincing pulsar signal is detected in our data. This is consistent with the findings of van Leeuwen et al., who conducted a GBT search for radio pulsations at 340 MHz from unseen companions to eight SDSS WDs (five are still considered LMWDs; the three others are now classified as 'ordinary' WDs). We discuss the constraints our nondetections place on the probability P {sub MSP} that the companion to a given LMWD is a radio pulsar in the context of the luminosity and acceleration limits of our search; we find that P {sub MSP} < 10{sup +4} {sub -2}%.

  16. Evolutionary and pulsational properties of low-mass white dwarf stars with oxygen cores resulting from close binary evolution

    NASA Astrophysics Data System (ADS)

    Althaus, L. G.; Córsico, A. H.; Gautschy, A.; Han, Z.; Serenelli, A. M.; Panei, J. A.

    2004-01-01

    The present work is designed to explore the evolutionary and pulsational properties of low-mass white dwarfs with carbon/oxygen cores. In particular, we follow the evolution of a 0.33-Msolar white dwarf remnant in a self-consistent way with the predictions of nuclear burning, element diffusion and the history of the white dwarf progenitor. Attention is focused on the occurrence of hydrogen shell flashes induced by diffusion processes during cooling phases. The evolutionary stages prior to the white dwarf formation are also fully accounted for by computing the conservative binary evolution of an initially 2.5-Msolar Population I star with a 1.25-Msolar companion, and with period Pi= 3 d. Evolution is followed down to the domain of the ZZ Ceti stars on the white dwarf cooling branch. We find that chemical diffusion induces the occurrence of an additional hydrogen thermonuclear flash, which leads to stellar models with thin hydrogen envelopes. As a result, a fast cooling is encountered at advanced stages of evolution. In addition, we explore the adiabatic pulsational properties of the resulting white dwarf models. As compared with their helium-core counterparts, low-mass oxygen-core white dwarfs are characterized by a pulsational spectrum much more featured, an aspect which could eventually be used for distinguishing both types of stars, if low-mass white dwarfs were in fact found to pulsate as ZZ Ceti-type variables. Finally, we perform a non-adiabatic pulsational analysis on the resulting carbon/oxygen low-mass white dwarf models.

  17. 3D MODEL ATMOSPHERES FOR EXTREMELY LOW-MASS WHITE DWARFS

    SciTech Connect

    Tremblay, P.-E.; Gianninas, A.; Kilic, M.; Ludwig, H.-G.; Steffen, M.; Freytag, B.; Hermes, J. J.

    2015-08-20

    We present an extended grid of mean three-dimensional (3D) spectra for low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD radiation-hydrodynamics 3D simulations covering T{sub eff} = 6000–11,500 K and log g = 5–6.5 (g in cm s{sup −2}) to derive analytical functions to convert spectroscopically determined 1D temperatures and surface gravities to 3D atmospheric parameters. Along with the previously published 3D models, the 1D to 3D corrections are now available for essentially all known convective DA WDs (i.e., log g = 5–9). For low-mass WDs, the correction in temperature is relatively small (a few percent at the most), but the surface gravities measured from the 3D models are lower by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the discrepancies seen in the radius and mass measurements for relatively cool ELM WDs in eclipsing double WD and WD + millisecond pulsar binary systems. We also use the 3D corrections to revise the boundaries of the ZZ Ceti instability strip, including the recently found ELM pulsators.

  18. The ELM Survey. VII. Orbital Properties of Low-Mass White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Gianninas, A.; Kilic, Mukremin; Kenyon, Scott J.; Allende Prieto, Carlos

    2016-02-01

    We present the discovery of 15 extremely low-mass (5\\lt {log}g\\lt 7) white dwarf (WD) candidates, 9 of which are in ultra-compact double-degenerate binaries. Our targeted extremely low-mass Survey sample now includes 76 binaries. The sample has a lognormal distribution of orbital periods with a median period of 5.4 hr. The velocity amplitudes imply that the binary companions have a normal distribution of mass with 0.76 M⊙ mean and 0.25 M⊙ dispersion. Thus extremely low-mass WDs are found in binaries with a typical mass ratio of 1:4. Statistically speaking, 95% of the WD binaries have a total mass below the Chandrasekhar mass, and thus are not type Ia supernova progenitors. Yet half of the observed binaries will merge in less than 6 Gyr due to gravitational wave radiation; probable outcomes include single massive WDs and stable mass transfer AM CVn binaries. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  19. SHORT-PERIOD g-MODE PULSATIONS IN LOW-MASS WHITE DWARFS TRIGGERED BY H-SHELL BURNING

    SciTech Connect

    Córsico, A. H.; Althaus, L. G.

    2014-09-20

    The detection of pulsations in white dwarfs with low mass offers the possibility of probing their internal structures through asteroseismology and placing constraints on the binary evolutionary processes involved in their formation. In this Letter, we assess the impact of stable H burning on the pulsational stability properties of low-mass He-core white dwarf models resulting from binary star evolutionary calculations. We found that besides a dense spectrum of unstable radial modes and nonradial g and p modes driven by the κ mechanism due to the partial ionization of H in the stellar envelope, some unstable g modes with short pulsation periods are also powered by H burning via the ε mechanism of mode driving. This is the first time that ε destabilized modes are found in models representative of cool white dwarf stars. The short periods recently detected in the pulsating low-mass white dwarf SDSS J111215.82+111745.0 could constitute the first evidence of the existence of stable H burning in these stars, in particular in the so-called extremely low-mass white dwarfs.

  20. The timescale of low-mass proto-helium white dwarf evolution

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Tauris, T. M.; Langer, N.; Antoniadis, J.

    2014-11-01

    Context. A large number of low-mass (≲0.20 M⊙) helium white dwarfs (He WDs) have recently been discovered. The majority of these are orbiting another WD or a millisecond pulsar (MSP) in a close binary system; a few examples are found to show pulsations or to have a main-sequence star companion. There appear to be discrepancies between the current theoretical modelling of such low-mass He WDs and a number of key observed cases, indicating that their formation scenario yet remains to be fully understood. Aims: Here we investigate the formation of detached proto-He WDs in close-orbit low-mass X-ray binaries (LMXBs). Our prime focus is to examine the thermal evolution and the contraction phase towards the WD cooling track and investigate how this evolution depends on the WD mass. Our calculations are then compared to the most recent observational data. Methods: Numerical calculations with a detailed stellar evolution code were used to trace the mass-transfer phase in a large number of close-orbit LMXBs with different initial values of donor star mass, neutron star mass, orbital period, and strength of magnetic braking. Subsequently, we followed the evolution of the detached low-mass proto-He WDs, including stages with residual shell hydrogen burning and vigorous flashes caused by unstable CNO burning. Results: We find that the time between Roche-lobe detachment until the low-mass proto-He WD reaches the WD cooling track is typically Δtproto = 0.5-2 Gyr, depending systematically on the WD mass and therefore on its luminosity. The lowest WD mass for developing shell flashes is ~0.21 M⊙ for progenitor stars of mass M2 ≤ 1.5 M⊙ (and ~0.18 M⊙ for M2 = 1.6 M⊙). Conclusions: The long timescale of low-mass proto-He WD evolution can explain a number of recent observations, including some MSP systems hosting He WD companions with very low surface gravities and high effective temperatures. We find no evidence for Δtproto to depend on the occurrence of flashes and

  1. Formation of millisecond pulsars with low-mass helium white dwarf companions in very compact binaries

    SciTech Connect

    Jia, Kun; Li, X.-D.

    2014-08-20

    Binary millisecond pulsars (BMSPs) are thought to have evolved from low-mass X-ray binaries (LMXBs). If the mass transfer in LMXBs is driven by nuclear evolution of the donor star, the final orbital period is predicted to be well correlated with the mass of the white dwarf (WD), which is the degenerate He core of the donor. Here we show that this relation can be extended to very small WD mass (∼0.14-0.17 M {sub ☉}) and narrow orbital period (about a few hours), depending mainly on the metallicities of the donor stars. There is also discontinuity in the relation, which is due to the temporary contraction of the donor when the H-burning shell crosses the hydrogen discontinuity. BMSPs with low-mass He WD companions in very compact binaries can be accounted for if the progenitor binary experienced very late Case A mass transfer. The WD companion of PSR J1738+0333 is likely to evolve from a Pop II star. For PSR J0348+0432, to explain its extreme compact orbit in the Roche-lobe-decoupling phase, even lower metallicity (Z = 0.0001) is required.

  2. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. III. The pre-ELM white dwarf instability strip

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Serenelli, A. M.; Kepler, S. O.; Jeffery, C. S.; Corti, M. A.

    2016-04-01

    Context. Many low-mass (M⋆/M⊙ ≲ 0.45) and extremely low-mass (ELM, M⋆/M⊙ ≲ 0.18-0.20) white-dwarf stars are currently being found in the field of the Milky Way. Some of these stars exhibit long-period gravity-mode (g-mode) pulsations, and constitute the class of pulsating white dwarfs called ELMV stars. In addition, two low-mass pre-white dwarfs, which could be precursors of ELM white dwarfs, have been observed to show multiperiodic photometric variations. They could constitute a new class of pulsating low-mass pre-white dwarf stars. Aims: Motivated by this finding, we present a detailed nonadiabatic pulsation study of such stars, employing full evolutionary sequences of low-mass He-core pre-white dwarf models. Methods: Our pulsation stability analysis is based on a set of low-mass He-core pre-white dwarf models with masses ranging from 0.1554 to 0.2724 M⊙, which were derived by computing the nonconservative evolution of a binary system consisting of an initially 1 M⊙ ZAMS star and a 1.4 M⊙ neutron star companion. We have considered models in which element diffusion is accounted for and also models in which it is neglected. Results: We confirm and explore in detail a new instability strip in the domain of low gravities and low effective temperatures of the Teff - log g diagram, where low-mass pre-white dwarfs are currently found. The destabilized modes are radial and nonradial p and g modes excited by the κ - γ mechanism acting mainly at the zone of the second partial ionization of He, with non-negligible contributions from the region of the first partial ionization of He and the partial ionization of H. The computations with element diffusion are unable to explain the pulsations observed in the two known pulsating pre-white dwarfs, suggesting that element diffusion might be inhibited at these stages of the pre-white dwarf evolution. Our nonadiabatic models without diffusion, on the other hand, naturally explain the existence and range of

  3. Pulsating low-mass white dwarfs in the frame of new evolutionary sequences. IV. The secular rate of period change

    NASA Astrophysics Data System (ADS)

    Calcaferro, Leila M.; Córsico, Alejandro H.; Althaus, Leandro G.

    2017-04-01

    Context. An increasing number of low-mass (M⋆/M⊙ ≲ 0.45) and extremely low-mass (ELM, M⋆/M⊙ ≲ 0.18-0.20) white-dwarf stars are being discovered in the field of the Milky Way. Some of these stars exhibit long-period g-mode pulsations, and are called ELMV variable stars. Also, some low-mass pre-white dwarf stars show short-period p-mode (and likely radial-mode) photometric variations, and are designated as pre-ELMV variable stars. The existence of these new classes of pulsating white dwarfs and pre-white dwarfs opens the prospect of exploring the binary formation channels of these low-mass white dwarfs through asteroseismology. Aims: We aim to present a theoretical assessment of the expected temporal rates of change of periods (\\dot{Π}) for such stars, based on fully evolutionary low-mass He-core white dwarf and pre-white dwarf models. Methods: Our analysis is based on a large set of adiabatic periods of radial and nonradial pulsation modes computed on a suite of low-mass He-core white dwarf and pre-white dwarf models with masses ranging from 0.1554 to 0.4352 M⊙, which were derived by computing the non-conservative evolution of a binary system consisting of an initially 1 M⊙ ZAMS star and a 1.4 M⊙ neutron star companion. Results: We computed the secular rates of period change of radial (ℓ = 0) and nonradial (ℓ = 1,2) g and p modes for stellar models representative of ELMV and pre-ELMV stars, as well as for stellar objects that are evolving just before the occurrence of CNO flashes at the early cooling branches. We find that the theoretically expected magnitude of \\dot{Π} of g modes for pre-ELMVs is by far larger than for ELMVs. In turn, \\dot{Π} of g modes for models evolving before the occurrence of CNO flashes are larger than the maximum values of the rates of period change predicted for pre-ELMV stars. Regarding p and radial modes, we find that the larger absolute values of \\dot{Π} correspond to pre-ELMV models. Conclusions: We

  4. sdA in SDSS DR12 are Overwhelmingly Not Extremely Low-Mass (ELM) White Dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Gänsicke, B. T.; Breedt, E.

    2017-03-01

    In a search for new white dwarfs in DR12 of the Sloan Digital Sky Survey, Kepler et al. 2016 found atmospheric parameters for thousands of objects with effective temperatures below 20,000 K and surface gravities between 5.5 < log g < 6.5. They classified these objects as cool subdwarfs – sdA – and speculated that many may be extremely low-mass (ELM) white dwarfs (helium-core white dwarfs with masses below 0.3 M⊙). We present evidence – using radial velocities, photometric colors, and reduced proper motions – that the vast majority (>99%) of these objects are unlikely to be ELM white dwarfs. Their true identity remains an interesting question.

  5. THE MASS DISTRIBUTION OF COMPANIONS TO LOW-MASS WHITE DWARFS

    SciTech Connect

    Andrews, Jeff J.; Price-Whelan, Adrian M.; Agüeros, Marcel A.

    2014-12-20

    Measuring the masses of companions to single-line spectroscopic binary stars is (in general) not possible because of the unknown orbital plane inclination. Even when the mass of the visible star can be measured, only a lower limit can be placed on the mass of the unseen companion. However, since these inclination angles should be isotropically distributed, for a large enough, unbiased sample, the companion mass distribution can be deconvolved from the distribution of observables. In this work, we construct a hierarchical probabilistic model to infer properties of unseen companion stars given observations of the orbital period and projected radial velocity of the primary star. We apply this model to three mock samples of low-mass white dwarfs (LMWDs; M ≲ 0.45 M {sub ☉}) and a sample of post-common-envelope binaries. We use a mixture of two Gaussians to model the WD and neutron star (NS) companion mass distributions. Our model successfully recovers the initial parameters of these test data sets. We then apply our model to 55 WDs in the extremely low-mass (ELM) WD Survey. Our maximum a posteriori model for the WD companion population has a mean mass μ{sub WD} = 0.74 M {sub ☉}, with a standard deviation σ{sub WD} = 0.24 M {sub ☉}. Our model constrains the NS companion fraction f {sub NS} to be <16% at 68% confidence. We make samples from the posterior distribution publicly available so that future observational efforts may compute the NS probability for newly discovered LMWDs.

  6. Discovery of Three Pulsating, Mixed-atmosphere, Extremely Low-mass White Dwarf Precursors

    NASA Astrophysics Data System (ADS)

    Gianninas, A.; Curd, Brandon; Fontaine, G.; Brown, Warren R.; Kilic, Mukremin

    2016-05-01

    We report the discovery of pulsations in three mixed-atmosphere, extremely low-mass white dwarf (ELM WD, M ≤slant 0.3 M ⊙) precursors. Following the recent discoveries of pulsations in both ELM and pre-ELM WDs, we targeted pre-ELM WDs with mixed H/He atmospheres with high-speed photometry. We find significant optical variability in all three observed targets with periods in the range 320-590 s, consistent in timescale with theoretical predictions of p-mode pulsations in mixed-atmosphere ≈0.18 M ⊙ He-core pre-ELM WDs. This represents the first empirical evidence that pulsations in pre-ELM WDs can only occur if a significant amount of He is present in the atmosphere. Future, more extensive, timeseries photometry of the brightest of the three new pulsators offers an excellent opportunity to constrain the thickness of the surface H layer, which regulates the cooling timescales for ELM WDs. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina), and Ministério da Ciência, Tecnologia e Inovação (Brazil).

  7. THE ELM SURVEY. III. A SUCCESSFUL TARGETED SURVEY FOR EXTREMELY LOW MASS WHITE DWARFS

    SciTech Connect

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Allende Prieto, Carlos E-mail: skenyon@cfa.harvard.edu E-mail: callende@iac.es

    2012-01-10

    Extremely low mass (ELM) white dwarfs (WDs) with masses < 0.25 M{sub Sun} are rare objects that result from compact binary evolution. Here, we present a targeted spectroscopic survey of ELM WD candidates selected by color. The survey is 71% complete and has uncovered 18 new ELM WDs. Of the seven ELM WDs with follow-up observations, six are short-period binaries and four have merger times less than 5 Gyr. The most intriguing object, J1741+6526, likely has either a pulsar companion or a massive WD companion making the system a possible supernova Type Ia or an Ia progenitor. The overall ELM survey has now identified 19 double degenerate binaries with <10 Gyr merger times. The significant absence of short orbital period ELM WDs at cool temperatures suggests that common envelope evolution creates ELM WDs directly in short period systems. At least one-third of the merging systems are halo objects, thus ELM WD binaries continue to form and merge in both the disk and the halo.

  8. THE ELM SURVEY. I. A COMPLETE SAMPLE OF EXTREMELY LOW-MASS WHITE DWARFS

    SciTech Connect

    Brown, Warren R.; Kilic, Mukremin; Kenyon, Scott J.; Prieto, Carlos Allende E-mail: mkilic@cfa.harvard.ed E-mail: callende@iac.e

    2010-11-10

    We analyze radial velocity observations of the 12 extremely low-mass (ELM), with {<=}0.25 M{sub sun}, white dwarfs (WDs) in the MMT Hypervelocity Star Survey. Eleven of the twelve WDs are binaries with orbital periods shorter than 14 hr; the one non-variable WD is possibly a pole-on system among our non-kinematically selected targets. Our sample is unique: it is complete in a well-defined range of apparent magnitude and color. The orbital mass functions imply that the unseen companions are most likely other WDs, although neutron star companions cannot be excluded. Six of the eleven systems with orbital solutions will merge within a Hubble time due to the loss of angular momentum through gravitational wave radiation. The quickest merger is J0923+3028, a g = 15.7 ELM WD binary with a 1.08 hr orbital period and a {<=}130 Myr merger time. The chance of a supernova Ia event among our ELM WDs is only 1%-7%, however. Three binary systems (J0755+4906, J1233+1602, and J2119-0018) have extreme mass ratios and will most likely form stable mass-transfer AM CVn systems. Two of these objects, SDSS J1233+1602 and J2119-0018, are the lowest surface gravity WDs ever found; both show Ca II absorption likely from accretion of circumbinary material. We predict that at least one of our WDs is an eclipsing detached double WD system, important for constraining helium core WD models.

  9. The ELM Survey. I. A Complete Sample of Extremely Low-mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Brown, Warren R.; Kilic, Mukremin; Allende Prieto, Carlos; Kenyon, Scott J.

    2010-11-01

    We analyze radial velocity observations of the 12 extremely low-mass (ELM), with <=0.25 M sun, white dwarfs (WDs) in the MMT Hypervelocity Star Survey. Eleven of the twelve WDs are binaries with orbital periods shorter than 14 hr; the one non-variable WD is possibly a pole-on system among our non-kinematically selected targets. Our sample is unique: it is complete in a well-defined range of apparent magnitude and color. The orbital mass functions imply that the unseen companions are most likely other WDs, although neutron star companions cannot be excluded. Six of the eleven systems with orbital solutions will merge within a Hubble time due to the loss of angular momentum through gravitational wave radiation. The quickest merger is J0923+3028, a g = 15.7 ELM WD binary with a 1.08 hr orbital period and a <=130 Myr merger time. The chance of a supernova Ia event among our ELM WDs is only 1%-7%, however. Three binary systems (J0755+4906, J1233+1602, and J2119-0018) have extreme mass ratios and will most likely form stable mass-transfer AM CVn systems. Two of these objects, SDSS J1233+1602 and J2119-0018, are the lowest surface gravity WDs ever found; both show Ca II absorption likely from accretion of circumbinary material. We predict that at least one of our WDs is an eclipsing detached double WD system, important for constraining helium core WD models. Based on observations obtained at the MMT Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  10. Comparing the asteroseismic properties of pulsating extremely low-mass pre-white dwarf stars and δ Scuti stars

    NASA Astrophysics Data System (ADS)

    Arias, J. P. Sánchez; Córsico, A. H.; Romero, A. D.; Althaus, L. G.

    2017-09-01

    We present the first results of a detailed comparison between the pulsation properties of pulsating Extremely Low-Mass pre-white dwarf stars (the pre-ELMV variable stars) and δ Scuti stars. The instability domains of these very different kinds of stars nearly overlap in the log Teff vs. log g diagram, leading to a degeneracy in the classification of the stars. Our aim is to provide asteroseismic tools for their correct classification.

  11. Discovery of four new low-mass white-dwarf companions in the Kepler data

    NASA Astrophysics Data System (ADS)

    Faigler, Simchon; Kull, Ilya; Mazeh, Tsevi; Kiefer, Flavien; Latham, David W.; Bloemen, Steven

    2015-12-01

    We report the discovery of four new short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white-dwarf (WD) secondary (dA+WD) - KIC 4169521, KOI-3818, KIC 2851474 and KIC 9285587. These add to the 6 Kepler, and 19 non-Kepler, previously known short-period eclipsing dA+WD binaries.The discoveries were made through searching the light curves of bright Kepler stars for BEaming, Ellipsoidal and Reflection (BEER) modulations that are consistent with a compact companion, using the BEER search algorithm. This was followed by inspection of the search top hits, looking for eclipsing systems with a secondary eclipse deeper than the primary one, as expected for a WD that is hotter than the primary star. Follow-up spectroscopic radial-velocity (RV) observations confirmed the binarity of the systems. We derive the systems' parameters through analyses of the light curves' eclipses and phase modulations, combined with RV orbital solutions and stellar evolution models.The four systems' orbital periods of 1.17-3.82 days and WD masses of 0.19-0.22 Msun are similar to those reported for the previously known systems. These values are consistent with evolution models of such systems, that undergo a stable mass transfer from the WD progenitor to the current A star.For KIC 4169521 we derive a bloated WD radius of 0.09 Rsun that is well within the WD radius range of 0.04-0.43 Rsun of the known systems. For the remaining three systems we report WD radii of 0.026-0.035 Rsun, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries.As suggested before, the previously known systems, together with KIC 4169521, all with hot and bloated WD secondaries, represent young systems probably at a proto-WD, or initial WD cooling track stage. The other three new systems - KOI-3818, KIC 2851474, and KIC 9285587, are probably positioned further along the WD cooling track, and extend the known population to older systems with cooler

  12. Low-mass White Dwarfs with Hydrogen Envelopes as a Missing Link in the Tidal Disruption Menu

    NASA Astrophysics Data System (ADS)

    Law-Smith, Jamie; MacLeod, Morgan; Guillochon, James; Macias, Phillip; Ramirez-Ruiz, Enrico

    2017-06-01

    We construct a menu of objects that can give rise to bright flares when disrupted by massive black holes (BHs), ranging from planets to evolved stars. Through their tidal disruption, main sequence and evolved stars can effectively probe the existence of otherwise quiescent supermassive BHs, and white dwarfs can probe intermediate mass BHs. Many low-mass white dwarfs possess extended hydrogen envelopes, which allow for the production of prompt flares in disruptive encounters with moderately massive BHs of 105-{10}7 {M}⊙ —masses that may constitute the majority of massive BHs by number. These objects are a missing link in two ways: (1) for probing moderately massive BHs and (2) for understanding the hydrodynamics of the disruption of objects with tenuous envelopes. A flare arising from the tidal disruption of a 0.17 {M}⊙ white dwarf by a {10}5 {M}⊙ {BH} reaches a maximum between 0.6 and 11 days, with a peak fallback rate that is usually super-Eddington and results in a flare that is likely brighter than a typical tidal disruption event. Encounters stripping only the envelope can provide hydrogen-only fallback, while encounters disrupting the core evolve from H- to He-rich fallback. While most tidal disruption candidates observed thus far are consistent with the disruptions of main sequence stars, the rapid timescales of nuclear transients such as Dougie and PTF10iya are naturally explained by the disruption of low-mass white dwarfs. As the number of observed flares continues to increase, the menu presented here will be essential for characterizing nuclear BHs and their environments through tidal disruptions.

  13. SOPHIE velocimetry of Kepler transit candidates. I. Detection of the low-mass white dwarf KOI 74b

    NASA Astrophysics Data System (ADS)

    Ehrenreich, D.; Lagrange, A.-M.; Bouchy, F.; Perrier, C.; Hébrard, G.; Boisse, I.; Bonfils, X.; Arnold, L.; Delfosse, X.; Desort, M.; Díaz, R. F.; Eggenberger, A.; Forveille, T.; Lovis, C.; Moutou, C.; Pepe, F.; Pont, F.; Santos, N. C.; Santerne, A.; Ségransan, D.; Udry, S.; Vidal-Madjar, A.

    2011-01-01

    The Kepler mission has detected transits and occultations of a hot compact object around an early-type star, the Kepler Object of Interest KOI 74. The mass of this transiting object was photometrically assessed in a previous study using the presence of the relativistic beaming effect (so-called “Doppler boosting”) in the light curve. Our aim was to provide a spectroscopic validation of this pioneering approach. We measured the radial velocity variations of the A1V star KOI 74 with the SOPHIE spectrograph at the 1.93-m telescope of the Observatoire de Haute-Provence (France). Radial velocity measurements of this star are challenging because of the high level of stellar pulsations and the few available spectral lines. Using a technique dedicated to early-type main-sequence stars, we measured radial velocity variations compatible with a companion of mass 0.252 ± 0.025 {M_⊙}, in good agreement with the value derived from the Kepler light curve. This work strengthens the scenario suggesting that KOI 74 is a blue straggler orbited by a stellar core despoiled of its envelope, the low-mass white dwarf KOI 74b. Based on observations collected with the SOPHIE spectrograph on the 1.93-m telescope at Observatoire de Haute-Provence (CNRS), France, by the SOPHIE consortium (program 10A.PNP.CONS).

  14. A Model of the Pulsating Extremely Low-mass White Dwarf Precursor WASP 0247–25B

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Fontaine, G.; Heuser, C.

    2017-10-01

    We present an analysis of the evolutionary and pulsation properties of the extremely low-mass white dwarf precursor (B) component of the double-lined eclipsing system WASP 0247‑25. Given that the fundamental parameters of that star have been obtained previously at a unique level of precision, WASP 0247‑25B represents the ideal case for testing evolutionary models of this newly found category of pulsators. Taking into account the known constraints on the mass, orbital period, effective temperature, surface gravity, and atmospheric composition, we present a model that is compatible with these constraints and show pulsation modes that have periods very close to the observed values. Importantly, these modes are predicted to be excited. Although the overall consistency remains perfectible, the observable properties of WASP 0247‑25B are closely reproduced. A key ingredient of our binary evolutionary models is represented by rotational mixing as the main competitor against gravitational settling. Depending on assumptions made about the values of the degree index ℓ for the observed pulsation modes, we found three possible seismic solutions. We discuss two tests, rotational splitting and multicolor photometry, that should readily identify the modes and discriminate between these solutions. However, this will require improved temporal resolution and higher S/N observations, which are currently unavailable.

  15. Gravitational waves, pulsations, and more : high-speed photometry of low-mass, He-core white dwarfs

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.

    2013-08-01

    This dissertation is an observational exploration of the exciting physics that can be enabled by high-speed photometric monitoring of extremely low-mass (< 0.25 Msun) white dwarf stars, which are found in some of the most compact binaries known. It includes the cleanest indirect detection of gravitational waves at visible wavelengths, the discovery of pulsations in He-core WDs, the strongest evidence for excited p-mode pulsations in a WD, the discovery of the first tidally distorted WDs and their use to constrain the low-end of the WD mass-radius relationship, and the strongest cases of Doppler beaming observed in a binary system. It is the result of the more than 220 nights spent at McDonald Observatory doing high-speed photometry with the Argos instrument on the 2.1 m Otto Struve telescope, which has led to a number of additional exciting results, including the discovery of an intermediate timescale in the evolution of cooling DA WDs and the discovery of the most massive pulsating WD, which should have an ONe-core and should be highly crystallized.

  16. HELIUM SHELL DETONATIONS ON LOW-MASS WHITE DWARFS AS A POSSIBLE EXPLANATION FOR SN 2005E

    SciTech Connect

    Waldman, Roni; Livne, Eli; Glasner, Ami; Sauer, Daniel; Perets, Hagai; Mazzali, Paolo; Truran, James W.; Gal-Yam, Avishay

    2011-09-01

    Recently, several Type Ib supernovae (SNe; with the prototypical SN 2005E) have been shown to have atypical properties. These SNe are faint (absolute peak magnitude of {approx} - 15) and fast SNe that show unique composition. They are inferred to have low ejecta mass (a few tenths of a solar mass) and to be highly enriched in calcium, but poor in silicon elements and nickel. These SNe were therefore suggested to belong to a new class of calcium-rich faint SNe explosions. Their properties were proposed to be the result of helium detonations that may occur on helium accreting white dwarfs. In this paper, we theoretically study the scenario of helium detonations and focus on the results of detonations in accreted helium layers on low-mass carbon-oxygen (CO) cores. We present new results from one-dimensional simulations of such explosions, including their light curves and spectra. We find that when the density of the helium layer is low enough the helium detonation produces large amounts of intermediate elements, such as calcium and titanium, together with a large amount of unburnt helium. Alternatively, enough carbon enrichment of the accreted helium as a result of convective undershoot at the early stages of the runaway can avoid the production of iron group elements as the alpha particles are consumed avoiding iron production. Our results suggest that the properties of calcium-rich faint SNe could indeed be consistent with the helium-detonation scenario on small CO cores. Above a certain density (larger CO cores) the detonation leaves mainly {sup 56}Ni and unburnt helium, and the predicted spectrum will unlikely fit the unique features of this class of SNe. Finally, none of our studied models reproduces the bright, fast-evolving light curves of another type of peculiar SNe suggested to originate in helium detonations (SNe 1885A, 1939B, and 2002bj).

  17. Pulsating white dwarfs

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Romero, Alejandra D.

    2017-09-01

    The Sloan Digital Sky Survey has allowed us to increase the number of known white dwarfs by a factor of five and consequently the number of known pulsating white dwarfs also by a factor of five. It has also led to the discovery of new types of variable white dwarfs, as the variable hot DQs, and the pulsating Extremely Low Mass white dwarfs. With the Kepler Mission, it has been possible to discover new phenomena, the outbursts present in a few pulsating white dwarfs.

  18. Models of low-mass helium white dwarfs including gravitational settling, thermal and chemical diffusion, and rotational mixing

    NASA Astrophysics Data System (ADS)

    Istrate, A. G.; Marchant, P.; Tauris, T. M.; Langer, N.; Stancliffe, R. J.; Grassitelli, L.

    2016-10-01

    A large number of extremely low-mass helium white dwarfs (ELM WDs) have been discovered in recent years. The majority of them are found in close binary systems suggesting they are formed either through a common-envelope phase or via stable mass transfer in a low-mass X-ray binary (LMXB) or a cataclysmic variable (CV) system. Here, we investigate the formation of these objects through the LMXB channel with emphasis on the proto-WD evolution in environments with different metallicities. We study for the first time the combined effects of rotational mixing and element diffusion (e.g. gravitational settling, thermal and chemical diffusion) on the evolution of proto-WDs and on the cooling properties of the resulting WDs. We present state-of-the-art binary stellar evolution models computed with MESA for metallicities of Z = 0.02, 0.01, 0.001 and 0.0002, producing WDs with masses between 0.16-0.45 M⊙. Our results confirm that element diffusion plays a significant role in the evolution of proto-WDs that experience hydrogen shell flashes. The occurrence of these flashes produces a clear dichotomy in the cooling timescales of ELM WDs, which has important consequences e.g. for the age determination of binary millisecond pulsars. In addition, we confirm that the threshold mass at which this dichotomy occurs depends on metallicity. Rotational mixing is found to counteract the effect of gravitational settling in the surface layers of young, bloated ELM proto-WDs and therefore plays a key role in determining their surface chemical abundances, i.e. the observed presence of metals in their atmospheres. We predict that these proto-WDs have helium-rich envelopes through a significant part of their lifetime. This is of great importance as helium is a crucial ingredient in the driving of the κ-mechanism suggested for the newly observed ELM proto-WD pulsators. However, we find that the number of hydrogen shell flashes and, as a result, the hydrogen envelope mass at the beginning of

  19. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  20. Evolutionary sequences of very hot, low-mass, accreting white dwarfs with application to symbiotic variables and ultrasoft/supersoft low-luminosity x-ray sources

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Starrfield, Sumner G.

    1994-01-01

    We present the first detailed model results of quasi-static evolutionary sequences of very hot low-mass white dwarfs accreting hydrogen-rich material at rates between 1 x 10(exp -7) and 1 x 10(exp -9) solar mass/yr. Most of the sequences were generated from starting models whose core thermal structures were not thermally relaxed in the thermal pulse cycle-averaged sense of an asymptotic giant branch stellar core. Hence, the evolution at constant accretion rate was not invariably characterized by series of identical shell flashes. Sequences exhibiting stable steady state nuclear burning at the accretion supply rate as well as sequences exhibiting recurrent thermonuclear shell flashes are presented and discussed. In some cases, the white dwarf accretors remain small (less than 10(exp 11) cm) and very hot even during the shell flash episode. They then experience continued but reduced hydrogen shell burning during the longer quiescent intervals while their surface temperatures increase both because of compressional heating and envelope structure readjustment in response to accretion over thousands of years. Both accretion and continued hydrogen burning power these models with luminosities of a few times 10(exp 37) ergs/s. We suggest that the physical properties of these model sequences are of considerable relevance to the observed outburst and quiescent behavior of those symbiotic variables and symbiotic novae containing low-mass white dwarfs. We also suggest that our models are relevant to the observational characteristics of the growing class of low-luminosity, supersoft/ultrasoft X-ray sources in globular clusters, and the Magellanic Clouds.

  1. Astrometric Binaries: White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Oliversen, Nancy A.

    We propose to observe a selection of astrometric or spectroscopicastrometric binaries nearer than about 20 pc with unseen low mass companions. Systems of this type are important for determining the luminosity function of low mass stars (white dwarfs and very late main sequence M stars), and their contribution to the total mass of the galaxy. Systems of this type are also important because the low mass, invisible companions are potential candidates in the search for planets. Our target list is selected primarily from the list of 31 astrometric binaries near the sun by Lippincott (1978, Space Sci. Rev., 22, 153), with additional candidates from recent observations by Kamper. The elimination of stars with previous IUE observations, red companions resolved by infrared speckle interferometry, or primaries later than M1 (because if white dwarf companions are present they should have been detected in the visible region) reduces the list to 5 targets which need further information. IUE SWP low dispersion observations of these targets will show clearly whether the remaining unseen companions are white dwarfs, thus eliminating very cool main sequence stars or planets. This is also important in providing complete statistical information about the nearest stars. The discovery of a white dwarf in such a nearby system would provide important additional information about the masses of white dwarfs. Recent results by Greenstein (1986, A. J., 92, 859) from binary systems containing white dwarfs imply that 80% of such systems are as yet undetected. The preference of binaries for companions of approximately equal mass makes the Lippincott-Kamper list of A through K primaries with unseen companions a good one to use to search for white dwarfs. The mass and light dominance of the current primary over the white dwarf in the visible makes ultraviolet observations essential to obtain an accurate census of white dwarf binaries.

  2. The Instability Strip of ZZ Ceti White Dwarfs and Its Extension to the Extremely Low Mass Pulsators

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Fontaine, G.; Brassard, P.; Dupret, M.-A.

    2013-12-01

    The determination of the location of the theoretical ZZ Ceti instability strip in the log g - Teff diagram has remained a challenge over the years, due to the lack of a suitable treatment for convection in these stars. We report here a detailed stability survey over the whole ZZ Ceti regime, including the very low masses where three pulsators have recently been found. With this in mind, we computed twenty-nine evolutionary sequences of DA models with various masses and chemical layering. These models are characterized by the so-called ML2/α = 1.0 convective efficiency and take into account the important feedback effect of convection on the atmospheric structure. We computed power spectra for these models with the Liège nonadiabatic pulsation code MAD, which is the only one to conveniently incorporate a full time-dependent convection treatment and, thus, provides the best available description of the blue edge of the instability strip. On the other hand, given the failure of all nonadiabatic codes to properly account for the red edge of the strip, including MAD, we tested the idea that the red edge is due to energy leakage through the atmosphere. Using this approach, we found that our theoretical ZZ Ceti instability strip accounts remarkably well for the boundaries of the empirical strip.

  3. Heavy metals in a light white dwarf: abundances of the metal-rich, extremely low-mass GALEX J1717+6757

    NASA Astrophysics Data System (ADS)

    Hermes, J. J.; Gänsicke, B. T.; Koester, D.; Bours, M. C. P.; Townsley, D. M.; Farihi, J.; Marsh, T. R.; Littlefair, Stuart; Dhillon, V. S.; Gianninas, A.; Breedt, E.; Raddi, R.

    2014-10-01

    Using the Hubble Space Telescope, we detail the first abundance analysis enabled by far-ultraviolet spectroscopy of a low-mass (≃0.19 M⊙) white dwarf (WD), GALEX J1717+6757, which is in a 5.9-h binary with a fainter, more-massive companion. We see absorption from nine metals, including roughly solar abundances of Ca, Fe, Ti, and P. We detect a significantly sub-solar abundance of C, and put upper limits on N and O that are also markedly sub-solar. Updated diffusion calculations indicate that all metals should settle out of the atmosphere of this 14 900 K, log g = 5.67 WD in the absence of radiative forces in less than 20 yr, orders of magnitude faster than the cooling age of hundreds of Myr. We demonstrate that ongoing accretion of rocky material that is often the cause of atmospheric metals in isolated, more massive WDs is unlikely to explain the observed abundances in GALEX J1717+6757. Using new radiative levitation calculations, we determine that radiative forces can counteract diffusion and support many but not all of the elements present in the atmosphere of this WD; radiative levitation cannot, on its own, explain all of the observed abundance patterns, and additional mechanisms such as rotational mixing may be required. Finally, we detect both primary and secondary eclipses using ULTRACAM high-speed photometry, which we use to constrain the low-mass WD radius and rotation rate as well as update the ephemeris from the discovery observations of this WD+WD binary.

  4. BEER Analysis of Kepler and CoRoT Light Curves. IV. Discovery of Four New Low-mass White-Dwarf Companions in the Kepler Data

    NASA Astrophysics Data System (ADS)

    Faigler, S.; Kull, I.; Mazeh, T.; Kiefer, F.; Latham, D. W.; Bloemen, S.

    2015-12-01

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17-3.82 days, and WD masses, of 0.19-0.22 M⊙, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R⊙, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ˜1.5 × 10-3. These features are probably the outcome of the mass-transfer process.

  5. BEER ANALYSIS OF KEPLER AND CoRoT LIGHT CURVES. IV. DISCOVERY OF FOUR NEW LOW-MASS WHITE DWARF COMPANIONS IN THE KEPLER DATA

    SciTech Connect

    Faigler, S.; Kull, I.; Mazeh, T.; Kiefer, F.; Latham, D. W.; Bloemen, S.

    2015-12-10

    We report the discovery of four short-period eclipsing systems in the Kepler light curves, consisting of an A-star primary and a low-mass white dwarf (WD) secondary (dA+WD)—KIC 4169521, KOI-3818, KIC 2851474, and KIC 9285587. The systems show BEaming, Ellipsoidal and Reflection (BEER) phase modulations together with primary and secondary eclipses. These add to the 6 Kepler and 18 WASP short-period eclipsing dA+WD binaries that were previously known. The light curves, together with follow-up spectroscopic observations, allow us to derive the masses, radii, and effective temperatures of the two components of the four systems. The orbital periods, of 1.17–3.82 days, and WD masses, of 0.19–0.22 M{sub ⊙}, are similar to those of the previously known systems. The WD radii of KOI-3818, KIC 2851474, and KIC 9285587 are 0.026, 0.035, and 0.026 R{sub ⊙}, respectively, the smallest WD radii derived so far for short-period eclipsing dA+WD binaries. These three binaries extend the previously known population to older systems with cooler and smaller WD secondaries. KOI-3818 displays evidence for a fast-rotating primary and a minute but significant eccentricity, ∼1.5 × 10{sup −3}. These features are probably the outcome of the mass-transfer process.

  6. SDSS J074511.56+194926.5: Discovery of a metal-rich and tidally distorted extremely low mass white dwarf

    SciTech Connect

    Gianninas, A.; Barber, Sara D.; Kilic, Mukremin; Hermes, J. J.; Harrold, Samuel T.; Brown, Warren R.; Kenyon, Scott J.; Dufour, P.

    2014-02-01

    We present the discovery of an unusual, tidally distorted extremely low mass white dwarf (WD) with nearly solar metallicity. Radial velocity measurements confirm that this is a compact binary with an orbital period of 2.6975 hr and a velocity semi-amplitude of K = 108.7 km s{sup –1}. Analysis of the hydrogen Balmer lines yields an effective temperature of T {sub eff} = 8380 K and a surface gravity of log g = 6.21 that in turn indicate a mass of M = 0.16 M {sub ☉} and a cooling age of 4.2 Gyr. In addition, a detailed analysis of the observed metal lines yields abundances of log (Mg/H) = –3.90, log (Ca/H) = –5.80, log (Ti/H) = –6.10, log (Cr/H) = –5.60, and log (Fe/H) = –4.50, similar to the sun. We see no evidence of a debris disk from which these metals would be accreted, though the possibility cannot entirely be ruled out. Other potential mechanisms to explain the presence of heavy elements are discussed. Finally, we expect this system to ultimately undergo unstable mass transfer and merge to form a ∼0.3-0.6 M {sub ☉} WD in a few Gyr.

  7. Astrophysics with white dwarfs

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot Singh

    2004-10-01

    White dwarfs are the end products of the entire stellar evolutionary process in all intermediate and low mass stars. Over 99% of all stars in our Galaxy will eventually end their lives as white dwarfs. Observationally, studying white dwarfs has proven to be very difficult, primarily due to the faintness of the objects. Bright white dwarfs with M V = 11 have a luminosity only 1/300th of the Sun's intrinsic brightness, while the faintest white dwarfs are 100,000 x fainter than the Sun. In this thesis, we describe three related projects aimed at better understanding white dwarfs themselves, as well as their role as inhabitants of our Galaxy. The data that we have acquired to study these faint stars are of unprecedented quality and depth, thereby making possible several scientific results that have eluded investigation in decades of previous effort. First, we provide new insight into one of the most important questions in astrophysics today, what is the nature of the dark matter? Specifically, we are able to marginally rule out the most likely candidates based on microlensing results, namely white dwarfs, as a strong contribution to the dark matter. This study represents the deepest ever look into the Galactic halo and uses Hubble Space Telescope (HST) data. Secondly, we present results from the continuing study of open star clusters in the Canada France Hawaii Telescope (CFHT) Open Star Cluster Survey. This work has improved the quality of the photometry of open star clusters by over an order of magnitude compared to what had been previously possible. We present our findings for two very young clusters, NGC 2168 (M35) and NGC 2323 (M50), including a study of their white dwarf populations. These two clusters, and the white dwarfs that we have found within them, will prove to be crucial in constraining one of the most fundamental relations in stellar evolution, the initial-final mass relationship. In the third project, we use the 8-metre Gemini North and 10- metre Keck

  8. Time evolution of high-energy emissions of low-mass stars. I. Age determination using stellar chronology with white dwarfs in wide binaries

    NASA Astrophysics Data System (ADS)

    Garcés, A.; Catalán, S.; Ribas, I.

    2011-07-01

    Context. Stellar ages are extremely difficult to determine and often subject to large uncertainties, especially for field low-mass stars. We plan to carry out a calibration of the decrease in high-energy emissions of low-mass GKM stars with time, and therefore precise age determination is a key ingredient. The overall goal of our research is to study the time evolution of these high-energy emissions as an essential input to studying exoplanetary atmospheres. Aims: We propose to determine stellar ages with a methodology based on wide binaries. We are interested in systems composed of a low-mass star and a white dwarf (WD), where the latter serves as a stellar chronometer for the system. We aim at obtaining reliable ages for a sample of late-type stars older than 1 Gyr. Methods: We selected a sample of wide binaries composed by a DA type WD and a GKM companion. High signal-to-noise, low-resolution spectroscopic observations were obtained for most of the WD members of the sample. Atmospheric parameters were determined by fitting the spectroscopic data to appropiate WD models. The total ages of the systems were derived by using cooling sequences, an initial-final mass relationship and evolutionary tracks, to account for the progenitor life. Results: The spectroscopic observations have allowed us to determine ages for the binary systems using WDs as cosmochronometers. We obtained reliable ages for 27 stars between 1 and 5 Gyr, which is a range where age determination becomes difficult for field objects. Roughly half of these systems have cooling ages that contribute at least 30% the total age. We select those for further study since their age estimate should be less prone to systematic errors coming from the initial-final mass relationship. Conclusions: We have determined robust ages for a sizeable sample of GKM stars that can be subsequently used to study the time evolution of their emissions associated to stellar magnetic activity. Based on observations collected at

  9. Very Low-Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Rebolo, Rafael; Rosa Zapatero-Osorio, Maria

    2001-02-01

    Part I. Searches in Clusters, Stellar Associations and the Field: 1. Open clusters after HIPPARCOS J. S. Mermilliod; 2. Proper motions of very low mass stars and brown dwarfs in open clusters N. C. Hambly; 3. Parallaxes for brown dwarfs in clusters C. G. Tinney; 4. Very low mass stars and brown dwarfs in the Belt of Orion S. J. Wolk and F. M. Walter; 5. Photometric surveys in open clusters M. R. Zapatero Osorio; 6. The mass function of the Pleiades R. F. Jameson et al.; 7. Brown dwarfs and the low-mass initial mass function in young clusters K. L. Luhman; 8. Very low mass stars in globular clusters I. R. King and G. Piotto; 9. The DENIS very low mass star and brown dwarf results X. Delfosse and T. Forveille; 10. Preliminary results from the 2MASS core project J. Liebert et al.; Part II. Spectroscopic Properties, Fundamental Parameters and Modelling: 11. Properties of M dwarfs in clusters and the field S. L. Hawley et al.; 12. Spectroscopy of very low mass stars and brown dwarfs in young clusters E. L. Martin; 13. High resolution spectra of L type stars and brown dwarfs G. Basri et al.; 14. Modelling very low mass stars and brown dwarf atmospheres F. Allard; 15. Dust in very cool dwarfs T. Tsuji; 16. On the interpretation of the optical spectra of very cool dwarfs Ya. V. Pavlenko; 17. Absolute dimensions for M type dwarfs A. Gimenez; 18. Theory of very low mass stars and brown dwarfs I. Baraffe; Part III. Convection, Rotation and Acitivity: 19. Convection in low mass stars F. D'Antona; 20. Rotation law and magnetic field in M dwarf models G. Rudiger and M. Kuker; 21. Doppler imaging of cool dwarf stars K. G. Strassmeier; 22. X-ray Emission from cool dwarfs in clusters S. Randich; 23. X-ray variability for dM stars G. Micela and A. Marino; 24. The coronae of AD Leo and EV Lac S. Sciortino et al.; 25. Prospects of vuture X-ray missions for low mass stars and cluster stars R. Pallavicini.

  10. White Dwarf Mass Distribution

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, D.; Romero, A. D.; Ourique, G.; Pelisoli, I.

    2017-03-01

    We present the mass distribution for all S/N ≥ 15 DA white dwarfs detected in the Sloan Digital Sky Survey up to Data Release 12 in 2015, fitted with Koester models for ML2/α=0.8 (Teff≥ 10000 K), and for DBs with S/N ≥ 10, fitted with ML2/α=1.25, for Teff >16 000 K. These mass distributions are for logg≥6.5 stars, i.e., excluding the Extremely Low Mass white dwarfs. We also present the mass distributions corrected by volume with the 1/Vmax approach, for stars brighter than g=19. Both distributions have a maximum at M=0.624 M ⊙ but very distinct shapes.

  11. Stellar Evolution in NGC 6791: Mass Loss on the Red Giant Branch and the Formation of Low-Mass White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot S.; Bergeron, P.; Hansen, Brad M. S.; Kelson, Daniel D.; Reitzel, David B.; Rich, R. Michael; Richer, Harvey B.

    2007-12-01

    We present the first detailed study of the properties (temperatures, gravities, and masses) of the NGC 6791 white dwarf population. This unique stellar system is both one of the oldest (8 Gyr) and most metal-rich ([Fe/H]~+0.4) open clusters in our Galaxy and has a color-magnitude diagram (CMD) that exhibits both a red giant clump and a much hotter extreme horizontal branch. Fitting the Balmer lines of the white dwarfs in the cluster using Keck/LRIS spectra suggests that most of these stars are undermassive, =0.43+/-0.06 Msolar, and therefore could not have formed from canonical stellar evolution involving the helium flash at the tip of the red giant branch. We show that at least 40% of NGC 6791's evolved stars must have lost enough mass on the red giant branch to avoid the flash and therefore did not convert helium into carbon-oxygen in their core. Such increased mass loss in the evolution of the progenitors of these stars is consistent with the presence of the extreme horizontal branch in the CMD. This unique stellar evolutionary channel also naturally explains the recent finding of a very young age (2.4 Gyr) for NGC 6791 from white dwarf cooling theory; helium-core white dwarfs in this cluster will cool ~3 times slower than carbon-oxygen-core stars, and therefore the corrected white dwarf cooling age is in fact >~7 Gyr, consistent with the well-measured main-sequence turnoff age. These results provide direct empirical evidence that mass loss is much more efficient in high-metallicity environments and therefore may be critical in interpreting the ultraviolet upturn in elliptical galaxies. Data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations obtained at the

  12. White Dwarfs in Astrometric Binaries?

    NASA Astrophysics Data System (ADS)

    Oliversen, N. A.; Evans, N. R.; Feibelman, W. A.; Kamper, K. W.

    1993-12-01

    Lippincott (1978, Space Sci Rev, 22, 153) compiled a list of astrometric binaries with unseen companions typically within 20 pc of the sun. Red companions have been observed in a number of these systems (e.g. McCarthy, D. W. 1983, IAU Coll. # 76, p. 107). Unseen, low mass companions could also be white dwarfs. We have obtained IUE observations of stars on the list which have primaries with spectral types M1 or earlier (white dwarf companions of cooler primaries could be detected from the ground), and are brighter than 10 mag, which do not have known red companions. Preliminary reductions (comparison with standard stars of appropriate spectral types) indicate that there are no white dwarfs in the sample. Further processing is being done to determine limits on possible white dwarf temperatures.

  13. PTF1 J082340.04+081936.5: A Hot Subdwarf B Star with a Low-mass White Dwarf Companion in an 87-minute Orbit

    NASA Astrophysics Data System (ADS)

    Kupfer, Thomas; van Roestel, Jan; Brooks, Jared; Geier, Stephan; Marsh, Tom R.; Groot, Paul J.; Bloemen, Steven; Prince, Thomas A.; Bellm, Eric; Heber, Ulrich; Bildsten, Lars; Miller, Adam A.; Dyer, Martin J.; Dhillon, Vik S.; Green, Matthew; Irawati, Puji; Laher, Russ; Littlefair, Stuart P.; Shupe, David L.; Steidel, Charles C.; Rattansoon, Somsawat; Pettini, Max

    2017-02-01

    We present the discovery of the hot subdwarf B star (sdB) binary PTF1 J082340.04+081936.5. The system has an orbital period of {P}{orb} = 87.49668(1) minutes (0.060761584(10) days), making it the second-most compact sdB binary known. The light curve shows ellipsoidal variations. Under the assumption that the sdB primary is synchronized with the orbit, we find a mass of {M}{sdB}={0.45}-0.07+0.09 {M}ȯ , a companion white dwarf mass of {M}{WD}={0.46}-0.09+0.12 {M}ȯ , and a mass ratio of q=\\tfrac{{M}{WD}}{{M}{sdB}}={1.03}-0.08+0.10. The future evolution was calculated using the MESA stellar evolution code. Adopting a canonical sdB mass of {M}{sdB}=0.47 {M}ȯ , we find that the sdB still burns helium at the time it will fill its Roche lobe if the orbital period was less than 106 minutes at the exit from the last common envelope (CE) phase. For longer CE exit periods, the sdB will have stopped burning helium and turned into a C/O white dwarf at the time of contact. Comparing the spectroscopically derived {log}g and {T}{eff} with our MESA models, we find that an sdB model with a hydrogen envelope mass of 5× {10}-4 {M}ȯ matches the measurements at a post-CE age of 94 Myr, corresponding to a post-CE orbital period of 109 minutes, which is close to the limit to start accretion while the sdB is still burning helium.

  14. Luminosity functions for very low mass stars and brown dwarfs

    NASA Technical Reports Server (NTRS)

    Laughlin, Gregory; Bodenheimer, Peter

    1993-01-01

    A theoretical investigation of the luminosity function for low-mass objects to constrain the stellar initial mass function at the low-mass end is reported. The ways in which luminosity functions for low-mass stars are affected by star formation histories, brown dwarf and premain-sequence cooling rates and main-sequence mass luminosity relations, and the IMF are examined. Cooling rates and the mass-luminosity relation are determined through a new series of evolutionary calculations for very low mass stars and brown dwarfs in the range 0.05-0.50 solar mass. Model luminosity functions are constructed for specific comparison with the results of four recent observational surveys. The likelihood that the stellar mass function in the solar neighborhood is increasing at masses near the bottom of the main sequence and perhaps at lower masses is confirmed. In the most optimistic case, brown dwarfs contribute half of the local missing disk mass. The actual contribution is likely to be considerably less.

  15. Discovery of an Ultracool White Dwarf Companion

    NASA Astrophysics Data System (ADS)

    Farihi, J.

    2004-08-01

    The discovery of a low-luminosity common proper-motion companion to the white dwarf GD 392 at a wide separation of 46" is reported. BVRI photometry suggests a low temperature (Teff~4000 K), while JHK data strongly indicate suppressed flux at all near-infrared wavelengths. Thus, GD 392B is one of the few white dwarfs to show significant collision-induced absorption due to the presence of photospheric H2 and the first ultracool white dwarf detected as a companion to another star. Models fail to explain GD 392B as a normal-mass white dwarf. If correct, the cool companion may be explained as a low-mass white dwarf or unresolved double degenerate. The similarities of GD 392B to known ultracool degenerates are discussed, including some possible implications for the faint end of the white dwarf luminosity function.

  16. New White Dwarf-Brown Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Geier, S.; Lodieu, N.

    2017-03-01

    We present follow-up spectroscopy to 12 candidate white dwarf-brown dwarf binaries. We have confirmed that 8 objects do indeed have a white dwarf primary (7 DA, 1 DB) and two are hot subdwarfs. We have determined the Teff and log g for the white dwarfs and subdwarfs, and when combining these values with a model spectrum and the photometry, we have 3 probable white dwarf-substellar binaries with spectral types between M6 and L6.

  17. Fundamental Properties of Low-Mass Stars and Brown Dwarfs

    SciTech Connect

    Liu, Michael C.; Dupuy, Trent J.; Stassun, Keivan G.; Allard, France; Blake, Cullen H.; Bonnefoy, M.; Cody, Ann Marie; Kraus, Adam; Day-Jones, A. C.; Lopez-Morales, Mercedes

    2009-02-16

    Precise measurements of the fundamental properties of low-mass stars and brown dwarfs are key to understanding the physics underlying their formation and evolution. While there has been great progress over the last decade in studying the bulk spectrophotometric properties of low-mass objects, direct determination of their masses, radii, and temperatures have been very sparse. Thus, theoretical predictions of low-mass evolution and ultracool atmospheres remain to be rigorously tested. The situation is alarming given that such models are widely used, from the determination of the low-mass end of the initial mass function to the characterization of exoplanets.An increasing number of mass, radius, and age determinations are placing critical constraints on the physics of low-mass objects. A wide variety of approaches are being pursued, including eclipsing binary studies, astrometric-spectroscopic orbital solutions, interferometry, and characterization of benchmark systems. In parallel, many more systems suitable for concerted study are now being found, thanks to new capabilities spanning both the very widest (all-sky surveys) and very narrowest (diffraction-limited adaptive optics) areas of the sky. This Cool Stars 15 splinter session highlighted the current successes and limitations of this rapidly growing area of precision astrophysics.

  18. The Puzzling Atmospheres of Low-mass Stars, Brown Dwarfs and Exoplanets Revealed by the Discovery Channel Telescope

    NASA Astrophysics Data System (ADS)

    Muirhead, Philip Steven; Croll, Bryce; Dalba, Paul A.; Veyette, Mark; Han, Eunkyu; Kesseli, Aurora; Healy, Brian

    2017-01-01

    The Large Monolithic Imager (LMI) on the Discovery Channel Telescope (DCT) enables high-precision photometry with a scriptable interface and rapid cycling between photometric bands, all while guiding off-axis. Using LMI, scientists at Boston University have undertaken a number of investigations into low-mass stars, brown dwarfs and extrasolar planets. We will report on recent results from these investigations, including (1) measurements of transiting asteroids orbiting a white dwarf, (2) refined ephemerides for long-period transiting exoplanets, (3) investigations revealing biases in space-based exoplanet light curves, (4) investigations of the nature of activity in low-mass stars and brown dwarfs and (5) investigations of low-mass eclipsing binary stars. We will also propose future studies of low-mass stars, brown dwarfs and exoplanets using current and future DCT instrumentation.

  19. Low-mass Visual Companions to Nearby G-dwarfs

    NASA Astrophysics Data System (ADS)

    Tokovinin, Andrei

    2011-02-01

    A complete census of wide visual companions to nearby G-dwarf stars can be achieved by selecting candidates from the Two Micron All Sky Survey (2MASS) Point-Source Catalog and checking their status by second-epoch imaging. Such data are obtained for 124 candidates with separations up to 20'', 47 of which are shown to be new physical low-mass stellar companions. A list of visual binaries with G-dwarf primaries is produced by combining newly found companions with historical data. Maximum likelihood analysis leads to a companion frequency of 0.13 ± 0.015 per decade of separation. The mass ratio is distributed almost uniformly, with a power-law index between -0.4 and 0. The remaining uncertainty in the index is related to modeling of the companion detection threshold in 2MASS. These findings are confirmed by an alternative analysis of wider companions in 2MASS, removing the contamination by background stars statistically. Extension of this work will lead to a complete detection of visual companions—a necessary step toward reaching unbiased multiplicity statistics over the full range of orbital periods and, eventually, understanding the origin of multiple systems.

  20. LOW-MASS VISUAL COMPANIONS TO NEARBY G-DWARFS

    SciTech Connect

    Tokovinin, Andrei

    2011-02-15

    A complete census of wide visual companions to nearby G-dwarf stars can be achieved by selecting candidates from the Two Micron All Sky Survey (2MASS) Point-Source Catalog and checking their status by second-epoch imaging. Such data are obtained for 124 candidates with separations up to 20'', 47 of which are shown to be new physical low-mass stellar companions. A list of visual binaries with G-dwarf primaries is produced by combining newly found companions with historical data. Maximum likelihood analysis leads to a companion frequency of 0.13 {+-} 0.015 per decade of separation. The mass ratio is distributed almost uniformly, with a power-law index between -0.4 and 0. The remaining uncertainty in the index is related to modeling of the companion detection threshold in 2MASS. These findings are confirmed by an alternative analysis of wider companions in 2MASS, removing the contamination by background stars statistically. Extension of this work will lead to a complete detection of visual companions-a necessary step toward reaching unbiased multiplicity statistics over the full range of orbital periods and, eventually, understanding the origin of multiple systems.

  1. Model Atmospheres From Very Low Mass Stars to Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Allard, F.; Homeier, D.; Freytag, B.

    2011-12-01

    Since the discovery of brown dwarfs in 1994, and the discovery of dust cloud formation in the latest Very Low Mass Stars (VLMs) and Brown Dwarfs (BDs) in 1996, the most important challenge in modeling their atmospheres as become the understanding of cloud formation and advective mixing. For this purpose, we have developed radiation hydrodynamic 2D model atmosphere simulations to study the formation of forsterite dust in presence of advection, condensation, and sedimentation across the M-L-T VLMs to BDs sequence (Teff = 2800 K to 900 K, Freytag et al. 2010). We discovered the formation of gravity waves as a driving mechanism for the formation of clouds in these atmospheres, and derived a rule for the velocity field versus atmospheric depth and Teff, which is relatively insensitive to gravity. This rule has been used in the construction of the new model atmosphere grid, BT-Settl, to determine the micro-turbulence velocity, the diffusion coefficient, and the advective mixing of molecules as a function of depth. This new model grid of atmospheres and synthetic spectra has been computed for 100,000 K > Teff > 400 K, 5.5 > logg > -0.5, and [M/H]= +0.5 to -1.5, and the reference solar abundances of Asplund et al. (2009). We found that the new solar abundances allow an improved (close to perfect) reproduction of the photometric and spectroscopic VLMs properties, and, for the first time, a smooth transition between stellar and substellar regimes -- unlike the transition between the NextGen models from Hauschildt et al. 1999a,b, and the AMES-Dusty models from Allard et al. 2001. In the BDs regime, the BT-Settl models propose an improved explanation for the M-L-T spectral transition. In this paper, we therefore present the new BT-Settl model atmosphere grid, which explains the entire transition from the stellar to planetary mass regimes.

  2. Multiplicity among Young Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Ahmic, Mirza; Jayawardhana, Ray; Brandeker, Alexis; Scholz, Alexander; van Kerkwijk, Marten H.; Delgado-Donate, Eduardo; Froebrich, Dirk

    2007-12-01

    We report on a near-infrared adaptive optics imaging survey of 31 young brown dwarfs and very low mass (VLM) stars, 28 of which are in the Chamaeleon I star-forming region, using the ESO Very Large Telescope. We resolve the suspected 0.16'' (~26 AU) binary Cha Hα 2 and present two new binaries, Hn 13 and CHXR 15, with separations of 0.13'' (~20 AU) and 0.30'' (~50 AU), respectively; the latter is one of the widest VLM systems known. We find a binary frequency of 11+9-6%, thus confirming the trend for a lower binary frequency with decreasing mass. By combining our work with previous surveys, we arrive at the largest sample of young VLM objects (72) with high angular resolution imaging to date. Its multiplicity fraction is in statistical agreement with that for VLM objects in the field. Furthermore, we note that many field stellar binaries with lower binding energies and/or wider cross sections have survived dynamical evolution and that statistical models suggest tidal disruption by passing stars is unlikely to affect the binary properties of our systems. Thus, we argue that there is no significant evolution of multiplicity with age among brown dwarfs and VLM stars in OB and T associations between a few megayears to several gigayears. Instead, the observations so far suggest that VLM objects are either less likely to be born in fragile multiple systems than solar-mass stars or such systems are disrupted very early. We dedicate this paper to the memory of our coauthor, Eduardo Delgado-Donate, who died in a hiking accident in Tenerife earlier this year.

  3. Asteroseismology of White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    Hansen, Carl J.

    1997-01-01

    The primary purpose of this investigation has been to study various aspects of multimode pulsations in variable white dwarfs. In particular, nonlinear interactions among pulsation modes in white dwarfs (and, to some extent, in other variable stars), analysis of recent observations where such interactions are important, and preliminary work on the effects of crystallization in cool white dwarfs are reported.

  4. Globular Clusters: Low Mass Stars, Still No Brown Dwarfs!

    NASA Astrophysics Data System (ADS)

    de Marchi, Guido

    2003-06-01

    In spite of all the attempts to find them, no one has yet detected any brown dwarf in a globular cluster. Although powerful instruments such as the VLT and Advanced Camera could further push the frontiers of this search, globular clusters will probably hold tight to their secrets for a while longer. Nonetheless, the search for very low mass stars in globular clusters has taught us a lot about their original mass distribution (IMF) and its evolution in time. I shall review the results of an investigation carried out over what is presently the largest, most homogeneous sample, and discuss the reasons suggesting that: 1. dynamical evolution (internal and external) has reshaped the cluster mass function over time, but the imprint of the IMF is still visible; 2. the IMF appears to vary very little from cluster to cluster; 3. the most likely functional form of the IMF is that of a power law that rises to a peak at ˜0.3 M⊙ and tapers off at smaller masses.

  5. White Dwarf Stars

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.

    2014-10-01

    White dwarfs are the evolutionary endpoint for nearly 95% of all stars born in our Galaxy, the final stages of evolution of all low- and intermediate mass stars, i.e., main sequence stars with masses below (8.5± 1.5) M_{odot}, depending on metallicity of the progenitor, mass loss and core overshoot. Massive white dwarfs are intrinsically rare objects, tand produce a gap in the determination of the initial vs. final mass relation at the high mass end (e.g. Weidemann 2000 A&A, 363, 647; Kalirai et al. 2008, ApJ, 676, 594; Williams, Bolte & Koester 2009, ApJ, 693, 355). Main sequences stars with higher masses will explode as SNII (Smartt S. 2009 ARA&A, 47, 63), but the limit does depend on the metallicity of the progenitor. Massive white dwarfs are probably SNIa progenitors through accretion or merger. They are rare, being the final product of massive stars (less common) and have smaller radius (less luminous). Kepler et al. 2007 (MNRAS, 375, 1315), Kleinman et al. 2013 (ApJS, 204, 5) estimate only 1-2% white dwarfs have masses above 1 M_{odot}. The final stages of evolution after helium burning are a race between core growth and loss of the H-rich envelope in a stellar wind. When the burning shell is exposed, the star rapidly cools and burning ceases, leaving a white dwarf. As they cool down, the magnetic field freezes in, ranging from a few kilogauss to a gigagauss. Peculiar type Ia SN 2006gz, SN 2007if, SN 2009dc, SN 2003fg suggest progenitors in the range 2.4-2.8 M_{odot}, and Das U. & Mukhopadhyay B. (2012, Phys. Rev. D, 86, 042001) estimate that the Chandrasekhar limit increases to 2.3-2.6 M_{odot} for extremely high magnetic field stars, but differential rotation induced by accretion could also increase it, according to Hachisu I. et al. 2012 (ApJ, 744, 69). García-Berro et al. 2012, ApJ, 749, 25, for example, proposes double degenerate mergers are the progenitors of high-field magnetic white dwarfs. We propose magnetic fields enhance the line broadening in

  6. A low-temperature companion to a white dwarf star

    NASA Technical Reports Server (NTRS)

    Becklin, E. E.; Zuckerman, B.

    1988-01-01

    An infrared object located about 120 AU from the white dwarf GD165 has been discovered. With the exception of the possible brown dwarf companion to Giclas 29-38 reported last year, the companion to GD165 is the coolest (2100 K) dwarf star ever reported and, according to some theoretical models, it should be a substellar brown dwarf with a mass between 0.06 and 0.08 solar mass. These results, together with newly discovered low-mass stellar companions to white dwarfs, change the investigation of very low-mass stars from the study of a few chance objects to that of a statistical distribution. In particular, it appears that very low-mass stars and perhaps even brown dwarfs could be quite common in the Galaxy.

  7. Collapsing white dwarfs

    NASA Technical Reports Server (NTRS)

    Baron, E.; Cooperstein, J.; Kahana, S.; Nomoto, K.

    1987-01-01

    The results of the hydrodynamic collapse of an accreting C + O white dwarf are presented. Collapse is induced by electron captures in the iron core behind a conductive deflagration front. The shock wave produced by the hydrodynamic bounce of the iron core stalls at about 115 km, and thus a neutron star formed in such a model would be formed as an optically quiet event.

  8. The white dwarf luminosity function

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Oswalt, Terry D.

    2016-06-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for ∼ 10 Gyr. Their observed properties provide information about the history of the Galaxy, its dark matter content and a host of other interesting astrophysical problems. Examples of these include an independent determination of the past history of the local star formation rate, identification of the objects responsible for the reported microlensing events, constraints on the rate of change of the gravitational constant, and upper limits to the mass of weakly interacting massive particles. To carry on these tasks the essential observational tools are the luminosity and mass functions of white dwarfs, whereas the theoretical tools are the evolutionary sequences of white dwarf progenitors, and the corresponding white dwarf cooling sequences. In particular, the observed white dwarf luminosity function is the key manifestation of the white dwarf cooling theory, although other relevant ingredients are needed to compare theory and observations. In this review we summarize the recent attempts to empirically determine the white dwarf luminosity function for the different Galactic populations. We also discuss the biases that may affect its interpretation. Finally, we elaborate on the theoretical ingredients needed to model the white dwarf luminosity function, paying special attention to the remaining uncertainties, and we comment on some applications of the white dwarf cooling theory. Astrophysical problems for which white dwarf stars may provide useful leverage in the near future are also discussed.

  9. Convection in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Shipman, H.; Dalessio, J.; M, M.

    2012-01-01

    Convection is one of the largest sources of theoretical uncertainty in our understanding of stellar physics. Current studies of convective energy transport are based on the mixing length theory. Originally intended to depict turbulent flows in engineering situations, MLT enjoys moderate success in describing stellar convection. However, problems arising from MLT's incompleteness are apparent in studies ranging from determinations of the ages of massive stars, to understanding the structure F and early A stars, to predicting the pulsation periods of solar stars, to understanding the atmosphere of Titan. As an example for white dwarfs, Bergeron et al. (1995) show that model parameters such as flux, line profiles, energy distribution, color indices, and equivalent widths are extremely sensitive to the assumed MLT parameterization. The authors find systematic uncertainties ranging from 25% for effective temperatures to 11% for mass and radius. The WET is engaged in a long term project to empirically determine the physical properties of convection in the atmospheres of pulsating white dwarfs. The technique, outlined by Montgomery et al. (2010), uses information from nonlinear (non-sinusoidal) pulse shapes of the target star to empirically probe the physical properties of its convection zone. Approximately two thirds of all white dwarfs show nonlinear characteristics in their light curves. We present current results from WET targets in 2008-2011.

  10. Hystereses in dwarf nova outbursts and low-mass X-ray binaries

    NASA Astrophysics Data System (ADS)

    Hameury, J.-M.; Lasota, J.-P.; Knigge, C.; Körding, E. G.

    2017-04-01

    Context. The disc instability model (DIM) successfully explains why many accreting compact binary systems exhibit outbursts during which their luminosity increases by orders of magnitude. The DIM correctly predicts which systems should be transient and works regardless of whether the accretor is a black hole, a neutron star, or a white dwarf. However, it has been known for some time that the outbursts of X-ray binaries, which contain neutron-star or black-hole accretors, exhibit hysteresis in the X-ray hardness-intensity diagram (HID). More recently, it has been shown that the outbursts of accreting white dwarfs also show hysteresis, but in a diagram combining optical, EUV, and X-ray fluxes. Aims: We examine the nature of the hysteresis observed in cataclysmic variables and low-mass X-ray binaries. Methods: We used our disc evolution code for modelling dwarf nova outbursts, and constructed the hardness intensity diagram as predicted by the disc instability model. Results: We show explicitly that the standard DIM, modified only to account for disc truncation, can explain the hysteresis observed in accreting white dwarfs, but cannot explain that observed in X-ray binaries. Conclusions: The spectral evidence for the existence of different accretion regimes or components (disc, corona, jets, etc.) should only be based on wavebands that are specific to the innermost parts of the discs, i.e. EUV and X-rays; this task is difficult because of interstellar absorption. The existing data, however, indicate that a hysteresis is in the EUV - X-ray domain is present in SS Cyg.

  11. Measuring the ages of low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Bochanski, J. J.; Hawley, S. L.; Covey, K. R.; Agüeros, M. A.; Baraffe, I.; Catalán, S.; Mohanty, S.; Rice, E. L.; West, A. A.

    2013-02-01

    Age is among the most elusive, yet important, fundamental properties of low-mass stars and brown dwarfs. M dwarfs have main-sequence lifetimes that are estimated to be trillions of years, with little change in luminosity. In contrast, brown dwarfs cool and dim with time, resulting in a significant degeneracy between mass, age, and luminosity. Despite these inherent challenges, there have been recent efforts on both observational and theoretical fronts that may yield precise ages for low-mass stars and brown dwarfs. We feature some current observational efforts focused on estimating ages of these objects as presented in our Cool Stars 17 splinter session.

  12. Occurrence rate of low-mass planets around nearby M dwarfs

    NASA Astrophysics Data System (ADS)

    Jones, Hugh

    2015-08-01

    We re-analyse archival radial velocities of nearby M dwarfs to constrain low-amplitude Keplerian signals. We apply a variety of signal detection criteria and photometric monitoring to assess the number of planet candidates in the sample. We use the estimated detection probability function to calculate the occurrence rate of low-mass planets around nearby M dwarfs. Our results indicate that M dwarfs are hosts to an abundance of low-mass planets and the occurrence rate of planets less massive than 10 Earth masses is of the order of one planet per star and that planets are common in the stellar habitable zones of M dwarfs.

  13. An unsuccessful search for brown dwarf companions to white dwarf stars

    NASA Technical Reports Server (NTRS)

    Shipman, Harry L.

    1986-01-01

    The results of a survey to detect excess infrared emission from white dwarf stars which would be attributable to a low mass companion are reviewed. Neither a simple comparison of spectroscopically identified white dwarf stars with the IRAS Point Source Catalog nor the coadding of IRAS survey data resulted in a detection of a brown dwarf. The seven nearest stars where the most stringent limits to the presence of a brown dwarf were obtained are listed, and an effort to detect brown dwarfs in the solar neighborhood is discussed.

  14. The Theory of the Formation of Brown Dwarfs and Low-Mass Stars

    NASA Astrophysics Data System (ADS)

    Stamatellos, Dimitris

    2017-06-01

    More than half of all stars (including brown dwarfs) have masses below 0.2 Msun. The formation mechanism of these objects is uncertain. I will review the four main theories for the formation of low-mass objects: turbulent fragmentation, ejection of protostellar embryos, disc fragmentation, and photo-erosion of prestellar cores. I will discuss the observational predictions of these models regarding the low-mass initial mass function, the brown dwarf desert, and the binary statistics of low-mass stars and brown dwarfs. I will further discuss whether observations may be used to distinguish between different formation mechanisms, and give a few examples of systems that strongly favour a specific formation scenario. Finally, I will argue that it is likely that all mechanisms may play a role in the formation of brown dwarfs and low-mass stars.

  15. White Dwarf Calibration

    NASA Astrophysics Data System (ADS)

    Colina, Luis

    1994-01-01

    As a result of last November calibration workshop, all parties agreed that the HST should be switched to the WD basis for absolute fluxes. This proposal implements that decision. A measurement of the absolute sensitivity of the FOS detectors will be performed using theoretical pure hydrogen model atmosphere calculations for three white dwarfs. The high resolution gratings will be used in the 1 arcsec aperture. A four stage peakup of the standard star provides centering in the aperture. Observations are requested for fall 94 with repeated observations about two months after.

  16. Solidification of carbon-oxygen white dwarfs

    NASA Technical Reports Server (NTRS)

    Schatzman, E.

    1982-01-01

    The internal structure of white dwarfs is discussed. Highly correlated plasmas are reviewed. Implications for phase separation in the core of cooling white dwarfs are considered. The consequences for evolution of white dwarfs are addressed.

  17. OGLE-2014-BLG-0257L: A Microlensing Brown Dwarf Orbiting a Low-mass M Dwarf

    NASA Astrophysics Data System (ADS)

    Han, C.; Jung, Y. K.; Udalski, A.; Gould, A.; Bozza, V.; Szymański, M. K.; Soszyński, I.; Poleski, R.; Kozłowski, S.; Pietrukowicz, P.; Skowron, J.; Ulaczyk, K.; Wyrzykowski, Ł.; OGLE Collaboration

    2016-05-01

    In this paper, we report the discovery of a binary composed of a brown dwarf (BD) and a low-mass M dwarf from observation of the microlensing event OGLE-2014-BLG-0257. The resolution of the very brief caustic crossing combined with the detection of subtle continuous deviation in the lensing light curve induced by the Earth’s orbital motion enable us to precisely measure both the Einstein radius {θ }{{E}} and the lens parallax {π }{{E}}, which are the two quantities needed to unambiguously determine the mass and distance to the lens. It is found that the companion is a substellar BD with a mass of 0.036+/- 0.005 {M}⊙ (37.7+/- 5.2 {M}{{J}}) and it is orbiting an M dwarf with a mass of 0.19+/- 0.02 {M}⊙ . The binary is located at a distance of 1.25 ± 0.13 kpc toward the Galactic bulge and the projected separation between the binary components is 0.61 ± 0.07 au. The separation scaled by the mass of the host is 3.2 {{au}}/{M}⊙ . Based on the assumption that separations scale with masses, the discovered BD is located in the BD desert. With the growing sample of BDs in various environments, microlensing will provide a powerful probe of BDs in the Galaxy.

  18. Kinematics of faint white dwarfs.

    PubMed

    Luyten, W J

    1978-10-01

    An analysis has been made for solar motion for 128 very faint white dwarfs of color class b or a. While about 40% of these stars may be high-velocity objects, it seems definitely indicated that the luminosity of all of them is considerably lower than that for the "normal" white dwarf of the same color.

  19. White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

    Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old.

    The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at

    http://oposite.stsci.edu/pubinfo/pr/2002/10/ or

    http://www.jpl.nasa.gov/images/wfpc .

    The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope.

    The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars.

    Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the

  20. White Dwarf Stars

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope has uncovered the oldest burned-out stars in our Milky Way Galaxy, giving astronomers a fresh reading on the age of the universe.

    Located in the globular cluster M4, these small, burned-out stars -- called white dwarfs -- are about 12 to 13 billion years old. By adding the one billion years it took the cluster to form after the Big Bang, astronomers found that the age of the white dwarfs agrees with previous estimates that the universe is 13 to 14 billion years old.

    The images, including some taken by Hubble's Wide Field and Planetary Camera 2, are available online at

    http://oposite.stsci.edu/pubinfo/pr/2002/10/ or

    http://www.jpl.nasa.gov/images/wfpc .

    The camera was designed and built by NASA's Jet Propulsion Laboratory, Pasadena, Calif.

    In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's .9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope.

    The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles indicate the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars.

    Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the

  1. DETECTION OF A WHITE DWARF COMPANION TO THE WHITE DWARF SDSSJ125733.63+542850.5

    SciTech Connect

    Marsh, T. R.; Gaensicke, B. T.; Steeghs, D.; Southworth, J.; Koester, D.; Harris, V.; Merry, L.

    2011-08-01

    SDSSJ125733.63+542850.5 (hereafter SDSSJ1257+5428) is a compact white dwarf binary from the Sloan Digital Sky Survey that exhibits high-amplitude radial velocity variations on a period of 4.56 hr. While an initial analysis suggested the presence of a neutron star or black hole binary companion, a follow-up study concluded that the spectrum was better understood as a combination of two white dwarfs. Here we present optical spectroscopy and ultraviolet fluxes which directly reveal the presence of the second white dwarf in the system. SDSSJ1257+5428's spectrum is a composite, dominated by the narrow-lined spectrum from a cool, low-gravity white dwarf (T{sub eff} {approx_equal} 6300 K, log g = 5-6.6) with broad wings from a hotter, high-mass white dwarf companion (11, 000-14, 000 K; {approx}1 M{sub sun}). The high-mass white dwarf has unusual line profiles which lack the narrow central core to H{alpha} that is usually seen in white dwarfs. This is consistent with rapid rotation with vsin i = 500-1750 km s{sup -1}, although other broadening mechanisms such as magnetic fields, pulsations, or a helium-rich atmosphere could also be contributory factors. The cool component is a puzzle since no evolutionary model matches its combination of low gravity and temperature. Within the constraints set by our data, SDSSJ1257+5428 could have a total mass greater than the Chandrasekhar limit and thus be a potential Type Ia supernova progenitor. However, SDSSJ1257+5428's unusually low-mass ratio q {approx} 0.2 suggests that it is more likely that it will evolve into an accreting double white dwarf (AM CVn star).

  2. Throwing Icebergs at White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-08-01

    Where do the metals come from that pollute the atmospheres of many white dwarfs? Close-in asteroids may not be the only culprits! A new study shows that distant planet-size and icy objects could share some of the blame.Pollution ProblemsArtists impression of rocky debris lying close around a white dwarf star. [NASA/ESA/STScI/G. Bacon]When a low- to intermediate-mass star reaches the end of its life, its outer layers are blown off, leaving behind its compact core. The strong gravity of this white dwarf causes elements heavier than hydrogen and helium to rapidly sink to its center in a process known as sedimentation, leaving an atmosphere that should be free of metallic elements.Therefore its perhaps surprising that roughly 2550% of all white dwarfs are observed to have atmospheric pollution by heavy elements. The short timescales for sedimentation suggest that these elements were added to the white dwarf recently but how did they get there?Bringing Ice InwardIn the generally accepted theory, pre-existing rocky bodies or an orbiting asteroid belt survive the stars evolution, later accreting onto the final white dwarf. But this scenario doesnt explain a few observations that suggest white dwarfs might be accreting larger planetary-size bodies and bodies with ices and volatile materials.Dynamical evolution of a Neptune-like planet (a) and a Kuiper belt analog object (b) in wide binary star systems. Both have large eccentricity excitations during the white dwarf phase. [Stephan et al. 2017]How might you get large or icy objects which would begin on very wide orbits close enough to a white dwarf to become disrupted and accrete? Led by Alexander Stephan, a team of scientists at UCLA now suggest that the key is for the white dwarf to be in a binary system.Influence of a CompanionIn the authors model, the white-dwarf progenitor is orbited by both a distant stellar companion (a common occurrence) and a number of large potential polluters, which could have masses between that

  3. Low-mass spectroscopic binaries in the Hyades: a candidate brown dwarf companion

    NASA Astrophysics Data System (ADS)

    Reid, I. Neill; Mahoney, S.

    2000-08-01

    We have used the HIRES echelle spectrograph on the Keck I telescope to obtain high-resolution spectroscopy of 51 late-type M dwarfs in the Hyades cluster. Cross-correlating the calibrated data against spectra of white dwarfs allows us to determine heliocentric velocities with an accuracy of +/-0.3kms-1. 27 stars were observed at two epochs in 1997; two stars, RHy 42 and RHy 403, are confirmed spectroscopic binaries. RHy 42 is a double-lined, equal-mass system; RHy 403 is a single-lined, short-period binary, P~1.275d. RHy 403A has an absolute magnitude of MI=10.85, consistent with a mass of 0.15Msolar. The systemic mass function has a value M2sin(i)]3/(M1+M2)2 =0.0085, which, combined with the non-detection of a secondary peak in the cross-correlation function, implies 0.095>M2>0.07Msolar, and the strong possibility that the companion is the first Hyades brown dwarf to be identified. Unfortunately, the maximum expected angular separation in the system is only ~0.25mas. Five other low-mass Hyads are identified as possible spectroscopic binaries, based either on repeat observations or on a comparison between the observed radial velocity and the value expected for Hyades cluster members. Combined with HST imaging data, we infer a binary fraction between 23 and 30per cent. All of the stars are chromospherically active. RHy 281 was caught in mid-flare and, based on that detection, we estimate a flaring frequency of ~2.5per cent for low-mass Hyades stars. Nine stars have rotational velocities, vsin(i), exceeding 20kms-1, and most of the sample have detectable rotation. We examine the H&alpha emission characteristics of low-mass cluster members, and show that there is no evidence for a correlation with rotation.

  4. Conditions for accretion-induced collapse of white dwarfs

    NASA Technical Reports Server (NTRS)

    Nomoto, Ken'ichi; Kondo, Yoji

    1991-01-01

    Recent discovery of an unexpectedly large number of low-mass binary pulsars (LMBPs) in globular clusters has instigated active discussions on the evolutionary origin of binary pulsars. Prompted by the possibility that at least some of LMBPs originate from accretion-induced collapse (AIC) of white dwarfs, a reexamination is conducted as to whether or not AIC occurs for the new models of O + Ne + Mg white dwarfs and solid C + O white dwarfs that can ignite explosive nuclear burning at significantly lower central densities than in the previous models. Even with low critical densities, AIC is still much more likely than explosion for both types of white dwarfs. Possible regions for AIC are presented in a diagram of mass accretion rate vs initial mass of the white dwarfs.

  5. Imaging planets around white dwarfs

    NASA Astrophysics Data System (ADS)

    Burleigh, Matt; Clarke, Fraser; Hodgkin, Simon

    White dwarfs should retain planetary systems in wide orbits (>≅5AU). Evolutionary models for Jovian planets show that infra-red imaging of suitable nearby white dwarfs should allow us to resolve and detect companions >≅5 Mtiny JUP. We have instigated programmes with both the 8m Gemini North (using NIRI), Gemini South (using Flamingos) and with the NAOMI Adaptive Optics system on the 4.2m William Herschel Telescope to search for such objects, which will share the large proper motions of their white dwarf hosts.

  6. Rapid Rotation of a Heavy White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-05-01

    New Kepler observations of a pulsating white dwarf have revealed clues about the rotation of intermediate-mass stars.Learning About ProgenitorsStars weighing in at under 8 solar masses generally end their lives as slowly cooling white dwarfs. By studying the rotation of white dwarfs, therefore, we are able to learn about the final stages of angular momentum evolution in these progenitor stars.Most isolated field white dwarfs cluster in mass around 0.62 solar masses, which corresponds to a progenitor mass of around 2.2 solar masses. This abundance means that weve already learned a good deal about the final rotation of low-mass (13 solar-mass) stars. Our knowledge about the angular momentum of intermediate-mass (38 solar-mass) stars, on the other hand, remains fairly limited.Fourier transform of the pulsations from SDSSJ0837+1856. The six frequencies of stellar variability, marked with red dots, reveal a rotation period of 1.13 hours. [Hermes et al. 2017]Record-Breaking FindA newly discovered white dwarf, SDSSJ0837+1856, is now helping to shed light on this mass range. SDSSJ0837+1856 appears to be unusually massive: its measured at 0.87 solar masses, which corresponds to a progenitor mass of roughly 4.0 solar masses. Determining the rotation of this white dwarf would therefore tell us about the final stages of angular momentum in an intermediate-mass star.In a new study led by J.J. Hermes (Hubble Fellow at University of North Carolina, Chapel Hill), a team of scientists presents a series of measurements of SDSSJ0837+1856 that suggest its the highest-mass and fastest-rotating isolated pulsating white dwarf known.Histogram of rotation rates determined from the asteroseismology of pulsating white dwarfs (marked in red). SDSSJ0837+1856 (indicated in black) is more massive and rotates faster than any other known pulsating white dwarf. [Hermes et al. 2017]Rotation from PulsationsWhy pulsating? In the absence of measurable spots and other surface features, the way we

  7. Rotation Velocities of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Karl, C.; Napiwotzki, R.; Heber, U.; Dreizler, S.; Koester, D.; Reid, I. N.

    White dwarfs are the compact remnants of low and intermediate mass stars (M < 8Msolar). Due to the conservation of angular momentum white dwarfs should be very fast rotators, if a significant fraction of the angular momentum of the progenitor stars were preserved. The existence of sharp NLTE cores of the hydrogen Hα line in high resolution spectra (obtained at the Keck observatory) of DA white dwarfs allowed us to determine (projected) rotational velocities v sin i for white dwarfs. Among those of our targets lying close to the ZZ Ceti instability many show evidence for extra broadening similar to rotation, whereas stars at higher temperatures (and therefore younger ones) rotate more slowly or not at all. Our result based on a large sample is in accordance with previous results presented by Koester et al. (1998). We discuss possible explanations for this astonishing result.

  8. Gaia photometry for white dwarfs

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Catalán, S.; Jordi, C.; Tremblay, P.-E.; Napiwotzki, R.; Luri, X.; Robin, A. C.; Kowalski, P. M.

    2014-05-01

    Context. White dwarfs can be used to study the structure and evolution of the Galaxy by analysing their luminosity function and initial mass function. Among them, the very cool white dwarfs provide the information for the early ages of each population. Because white dwarfs are intrinsically faint only the nearby (~ 20 pc) sample is reasonably complete. The Gaia space mission will drastically increase the sample of known white dwarfs through its 5-6 years survey of the whole sky up to magnitude V = 20-25. Aims: We provide a characterisation of Gaia photometry for white dwarfs to better prepare for the analysis of the scientific output of the mission. Transformations between some of the most common photometric systems and Gaia passbands are derived. We also give estimates of the number of white dwarfs of the different galactic populations that will be observed. Methods: Using synthetic spectral energy distributions and the most recent Gaia transmission curves, we computed colours of three different types of white dwarfs (pure hydrogen, pure helium, and mixed composition with H/He = 0.1). With these colours we derived transformations to other common photometric systems (Johnson-Cousins, Sloan Digital Sky Survey, and 2MASS). We also present numbers of white dwarfs predicted to be observed by Gaia. Results: We provide relationships and colour-colour diagrams among different photometric systems to allow the prediction and/or study of the Gaia white dwarf colours. We also include estimates of the number of sources expected in every galactic population and with a maximum parallax error. Gaia will increase the sample of known white dwarfs tenfold to about 200 000. Gaia will be able to observe thousands of very cool white dwarfs for the first time, which will greatly improve our understanding of these stars and early phases of star formation in our Galaxy. Tables 6 and 7 are available in electronic form at http://www.aanda.orgFull Tables 3-5 are available at the CDS via

  9. White dwarf kinematics versus mass

    NASA Astrophysics Data System (ADS)

    Wegg, Christopher; Phinney, E. Sterl

    2012-10-01

    We investigated the relationship between the kinematics and mass of young (<3 × 108 yr) white dwarfs using proper motions. Our sample is taken from the colour-selected catalogues of the Sloan Digital Sky Survey and the Palomar-Green Survey, both of which have spectroscopic temperature and gravity determinations. We find that the dispersion decreases with increasing white dwarf mass. This can be explained as a result of less scattering by objects in the Galactic disc during the shorter lifetime of their more massive progenitors. A direct result of this is that white dwarfs with high mass have a reduced scale height, and hence their local density is enhanced over their less massive counterparts. In addition, we have investigated whether the kinematics of the highest mass white dwarfs (>0.95 M⊙) are consistent with the expected relative contributions of single star evolution and mergers. We find that the kinematics are consistent with the majority of high-mass white dwarfs being formed through single star evolution.

  10. TiNy Titans: The Role of Dwarf-Dwarf Interactions in Low-mass Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Besla, G.; Patton, D.; Johnson, K.; Kallivayalil, N.; Putman, M.; Privon, G.; Ross, G.

    2015-05-01

    We introduce TiNy Titans (TNT), the first systematic study of star formation and the subsequent processing of the interstellar medium in interacting dwarf galaxies. Here we present the first results from a multiwavelength observational program based on a sample of 104 dwarf galaxy pairs selected from a range of environments within the spectroscopic portion of the Sloan Digital Sky Survey and caught in various stages of interaction. The TNT dwarf pairs span mass ratios of M*,1/M*,2 < 10, projected separations <50 kpc, and pair member masses of 7 < log({{M}*}/{{M}⊙ }) < 9.7. The dwarf-dwarf merger sequence, as defined by TNT at z = 0, demonstrates conclusively and for the first time that the star formation enhancement observed for massive galaxy pairs also extends to the dwarf mass range. Star formation is enhanced in paired dwarfs in otherwise isolated environments by a factor of 2.3 (±0.7) at pair separations <50 kpc relative to unpaired analogs. The enhancement decreases with increasing pair separation and extends out to pair separations as large as 100 kpc. Starbursts, defined by Hα EQW >100 Å, occur in 20% of the TNT dwarf pairs, regardless of environment, compared to only 6%-8% of the matched unpaired dwarfs. Starbursts can be triggered throughout the merger (i.e., out to large pair separations) and not just approaching coalescence. Despite their enhanced star formation and triggered starbursts, most TNT dwarf pairs have similar gas fractions relative to unpaired dwarfs of the same stellar mass. Thus, there may be significant reservoirs of diffuse, non-star-forming neutral gas surrounding the dwarf pairs, or the gas consumption timescales may be long in the starburst phase. The only TNT dwarf pairs with low gas fractions (fgas\\lt 0.4) and the only dwarfs, either paired or unpaired, with Hα EQW < 2 Å are found near massive galaxy hosts. We conclude that dwarf-dwarf interactions are significant drivers of galaxy evolution at the low-mass end, but

  11. Direct evidence of hierarchical assembly at low masses from isolated dwarf galaxy groups

    NASA Astrophysics Data System (ADS)

    Stierwalt, S.; Liss, S. E.; Johnson, K. E.; Patton, D. R.; Privon, G. C.; Besla, G.; Kallivayalil, N.; Putman, M.

    2017-01-01

    The demographics of dwarf galaxy populations have long been in tension with predictions from the Λ cold dark matter (ΛCDM) paradigm 1-4 . If primordial density fluctuations were scale-free as predicted, dwarf galaxies should themselves host dark-matter subhaloes 5 , the most massive of which may have undergone star formation resulting in dwarf galaxy groups. Ensembles of dwarf galaxies are observed as sate­llites of more massive galaxies 6-9 , and there is observational 10 and theoretical 11 evidence to suggest that these satellites at redshift z = 0 were captured by the massive host halo as a group. However, the evolution of dwarf galaxies is highly susceptible to environment 12-14 , making these satellite groups imperfect probes of ΛCDM in the low-mass regime. Here we report one of the clearest examples yet of hierarchical structure formation at low masses: using deep multi-wavelength data, we identify seven isolated, spectroscopically confirmed groups of only dwarf galaxies. Each group hosts three to five known members, has a baryonic mass of ~4.4 × 109 to 2 × 1010 solar masses (M ⊙), and requires a mass-to-light ratio of <100 to be gravitationally bound. Such groups are predicted to be rare theoretically and found to be rare observationally at the current epoch, and thus provide a unique window into the possible formation mechanism of more massive, isolated galaxies.

  12. Southern Very Low Mass Stars and Brown Dwarfs in Wide Binary and Multiple Systems

    NASA Astrophysics Data System (ADS)

    Caballero, José Antonio

    2007-09-01

    The results of the Königstuhl survey in the Southern Hemisphere are presented. I have searched for common proper motion companions to 173 field very low mass stars and brown dwarfs with spectral types >M5.0 V and magnitudes J<~14.5 mag. I have measured for the first time the common proper motion of two new wide systems containing very low mass components, Königstuhl 2 AB and 3 A-BC. Together with Königstuhl 1 AB and 2M 0126-50 AB, they are among the widest systems in their respective classes (r=450-11,900 AU). I have determined the minimum frequency of field wide multiples (r>100 AU) with late-type components at 5.0%+/-1.8% and the frequency of field wide late-type binaries with mass ratios q>0.5 at 1.2%+/-0.9%. These values represent a key diagnostic of evolution history and low-mass star and brown dwarf formation scenarios. In addition, the proper motions of 62 field very low mass dwarfs are measured here for the first time.

  13. Spitzer Spectroscopy of Low-Mass Dwarfs - Clouds and Chemistry at the Bottom of the IMF

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.

    2006-01-01

    Brown dwarfs and low-mass stars show evidence of complicated atmospheres, including a variety of molecular species and clouds. Infrared observations are one of the best probes of the physics of these objects, but up until recently these observations have been limited in studies from ground-based telescopes by atmospheric absorption and insufficient sensitivity. With the launch of the Spitzer Space Telescope with its Infrared Spectrograph (IRS) instrument we now have the capability to undertake a systematic study of the atmospheric structure and chemistry in these cool objects. The IRS Dim Suns team has compiled spectra from objects ranging from M1 dwarfs with effective temperatures 3,800K of down to T8 dwarfs with effective temperatures of 700. This talk will present these results and discuss their implications for our understanding of cool dwarf atmospheric physics and structure.

  14. The Dusty Accretion of Polluted White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bonsor, A.; Farihi, J.; Wyatt, M. C.; van Lieshout, R.

    2017-03-01

    Infrared observations of polluted white dwarfs provide key insights into the accretion processes in action. The standard model for the observed infrared excesses is a flat, opaque, dust disc. The infrared observations are inconsistent with the presence of such a disc around all polluted white dwarfs. We discuss potential explanations for the absence of an infrared excess for many polluted white dwarfs.

  15. The Physics of White Dwarfs.

    ERIC Educational Resources Information Center

    Van Horn, Hugh M.

    1979-01-01

    Describes the current understanding of the structure and evolution of the white dwarf stars that was gained as a result of the increasingly sensitive and detailed astronomical observations coupled with calculations of the properties of matter under extreme conditions. (Author/GA)

  16. The Physics of White Dwarfs.

    ERIC Educational Resources Information Center

    Van Horn, Hugh M.

    1979-01-01

    Describes the current understanding of the structure and evolution of the white dwarf stars that was gained as a result of the increasingly sensitive and detailed astronomical observations coupled with calculations of the properties of matter under extreme conditions. (Author/GA)

  17. Fundmental Parameters of Low-Mass Stars, Brown Dwarfs, and Planets

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin; Johnson, John A.; Bowler, Brendan; Shkolnik, Evgenya

    2016-01-01

    Despite advances in evolutionary models of low-mass stars and brown dwarfs, these models remain poorly constrained by observations. In order to test these predictions directly, masses of individual stars must be measured and combined with broadband photometry and medium-resolution spectroscopy to probe stellar atmospheres. I will present results from an astrometric and spectroscopic survey of low-mass pre-main sequence binary stars to measure individual dynamical masses and compare to model predictions. This is the first systematic test of a large number of stellar systems of intermediate age between young star-forming regions and old field stars. Stars in our sample are members of the Tuc-Hor, AB Doradus, and beta Pictoris moving groups, the last of which includes GJ 3305 AB, the wide binary companion to the imaged exoplanet host 51 Eri. I will also present results of Spitzer observations of secondary eclipses of LHS 6343 C, a T dwarf transiting one member of an M+M binary in the Kepler field. By combining these data with Kepler photometry and radial velocity observations, we can measure the luminosity, mass, and radius of the brown dwarf. This is the first non-inflated brown dwarf for which all three of these parameters have been measured, providing the first benchmark to test model predictions of the masses and radii of field T dwarfs. I will discuss these results in the context of K2 and TESS, which will find additional benchmark transiting brown dwarfs over the course of their missions, including a description of the first planet catalog developed from K2 data and a program to search for transiting planets around mid-M dwarfs.

  18. Investigating Low-Mass Binary Stars And Brown Dwarfs with Near-Infrared Spectroscopy

    NASA Astrophysics Data System (ADS)

    Mace, Gregory Nathan

    The mass of a star at formation determines its subsequent evolution and demise. Low-mass stars are the most common products of star formation and their long main-sequence lifetimes cause them to accumulate over time. Star formation also produces many substellar-mass objects known as brown dwarfs, which emerge from their natal molecular clouds and continually cool as they age, pervading the Milky Way. Low-mass stars and brown dwarfs exhibit a wide range of physical characteristics and their abundance make them ideal subjects for testing formation and evolution models. I have examined a pair of pre-main sequence spectroscopic binaries and used radial velocity variations to determine orbital solutions and mass ratios. Additionally, I have employed synthetic spectra to estimate their effective temperatures and place them on theoretical Hertzsprung-Russell diagrams. From this analysis I discuss the formation and evolution of young binary systems and place bounds on absolute masses and radii. I have also studied the late-type T dwarfs revealed by the Wide-field Infrared Survey Explorer (WISE). This includes the exemplar T8 subdwarf Wolf 1130C, which has the lowest inferred metallicity in the literature and spectroscopic traits consistent with old age. Comparison to synthetic spectra implies that the dispersion in near-infrared colors of late-type T dwarfs is a result of age and/or thin sulfide clouds. With the updated census of the L, T, and Y dwarfs we can now study specific brown dwarf subpopulations. Finally, I present a number of future studies that would develop our understanding of the physical qualities of T dwarf color outliers and disentangle the tracers of age and atmospheric properties.

  19. Project 1640 observations of the white dwarf HD 114174 B

    NASA Astrophysics Data System (ADS)

    Bacchus, E.; Parry, I. R.; Oppenheimer, R.; Aguilar, J.; Beichman, C.; Brenner, D.; Burruss, R.; Cady, E.; Luszcz-Cook, S.; Crepp, J.; Dekany, R.; Gianninas, A.; Hillenbrand, L.; Kilic, M.; King, D.; Lockhart, T. G.; Matthews, C. T.; Nilsson, R.; Pueyo, L.; Rice, E. L.; Roberts, L. C.; Sivaramakrishnan, A.; Soummer, R.; Vasisht, G.; Veicht, A.; Zhai, C.; Zimmerman, N. T.

    2017-08-01

    We present the first near infrared spectrum of the faint white dwarf companion HD 114174 B, obtained with Project 1640. Our spectrum, covering the Y, J and H bands, combined with previous TaRgetting bENchmark-objects with Doppler Spectroscopy (TRENDS) photometry measurements, allows us to place further constraints on this companion. We suggest two possible scenarios; either this object is an old, low-mass, cool H atmosphere white dwarf with Teff ˜ 3800 K or a high-mass white dwarf with Teff > 6000 K, potentially with an associated cool (Teff ˜ 700 K) brown dwarf or debris disc resulting in an infrared excess in the L΄ band. We also provide an additional astrometry point for 2014 June 12 and use the modelled companion mass combined with the radial velocity and direct imaging data to place constraints on the orbital parameters for this companion.

  20. A Pulsar and White Dwarf in an Unexpected Orbit

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    Astronomers have discovered a binary system consisting of a low-mass white dwarf and a millisecond pulsar but its eccentric orbit defies all expectations of how such binaries form.Observed orbital periods and binary eccentricities for binary millisecond pulsars. PSR J2234+0511 is the furthest right of the green stars that mark the five known eccentric systems. [Antoniadis et al. 2016]Unusual EccentricityIt would take a low-mass (0.4 solar masses) white dwarf over 100 billion years to form from the evolution of a single star. Since this is longer than the age of the universe, we believe that these lightweights are instead products of binary-star evolution and indeed, we observe many of these stars to still be in binary systems.But the binary evolution that can create a low-mass white dwarf includes a period of mass transfer, in which efficient tidal dissipation damps the systems orbital eccentricity. Because of this, we would expect all systems containing low-mass white dwarfs to have circular orbits.In the past, our observations of low-mass white dwarfmillisecond pulsar binaries have all been consistent with this expectation. But a new detection has thrown a wrench in the works: the unambiguous identification of a low-mass white dwarf thats in an eccentric (e=0.13) orbit with the millisecond pulsar PSR J2234+0511. How could this system have formed?Eliminating Formation ModelsLed by John Antoniadis (Dunlap Institute at University of Toronto), a team of scientists has used newly obtained optical photometry (from the Sloan Digital Sky Survey) and spectroscopy (from the Very Large Telescope in Chile) of the white dwarf to confirm the identification of this system.Antoniadis and collaborators then use measurements of the bodies masses (0.28 and 1.4 solar masses for the white dwarf and pulsar, respectively) and velocities, and constraints on the white dwarfs temperature, radius and surface gravity, to address three proposed models for the formation of this system.The 3D

  1. Empirical Mass Determination for Transiting Brown Dwarfs and Very Low Mass Stars

    NASA Astrophysics Data System (ADS)

    Hebb, Leslie; Aigrain, Suzanne; Hodgkin, Simon; Moraux, Estelle; Irwin, Jonothan; Irwin, Mike

    2005-08-01

    We are undertaking a large systematic time-resolved photometric study of a dozen nearby, young (pre-main sequence) and rich open clusters (the Monitor Project). We are using this study to search for young transiting planets and very low-mass eclipsing binary systems and browndwarfs. The goals are 1) to detect the first planets orbiting stars younger than 200 Myr, and measure their periods, mass (with RV follow-up observations) and number densities, and 2) to enable empirical mass determinations for very-low-mass pre-main sequence stars and brown dwarfs. We are targeting a large sample of young and rich open clusters of known age, distance and metallicity. In this proposal, we will use the CTIO-4m telescope with MosaicII to take high cadence photometry of the young open clusters M50 and NGC 2362. In these 2 clusters we will measure over 700 very low mass stars and brown dwarfs at the precisions needed to detect planetary and stellar/sub-stellar eclipses. We will take follow-up spectroscopy to confirm planet candidates and directly measure the component masses of the binaries. This will enable us to place constraints on planet formation and evolution scenarios for close- in planets, and to calibrate the mass-luminosity-radius relation at the bottom of the main sequence and into the brown dwarf regime.

  2. The atomic and molecular content of disks around very low-mass stars and brown dwarfs

    SciTech Connect

    Pascucci, I.; Herczeg, G.; Carr, J. S.; Bruderer, S.

    2013-12-20

    There is growing observational evidence that disk evolution is stellar-mass-dependent. Here, we show that these dependencies extend to the atomic and molecular content of disk atmospheres. We analyze a unique dataset of high-resolution Spitzer/IRS spectra from eight very low mass star and brown dwarf disks. We report the first detections of Ne{sup +}, H{sub 2}, CO{sub 2}, and tentative detections of H{sub 2}O toward these faint and low-mass disks. Two of our [Ne II] 12.81 μm emission lines likely trace the hot (≥5000 K) disk surface irradiated by X-ray photons from the central stellar/sub-stellar object. The H{sub 2} S(2) and S(1) fluxes are consistent with arising below the fully or partially ionized surface traced by the [Ne II] emission in gas at ∼600 K. We confirm the higher C{sub 2}H{sub 2}/HCN flux and column density ratio in brown dwarf disks previously noted from low-resolution IRS spectra. Our high-resolution spectra also show that the HCN/H{sub 2}O fluxes of brown dwarf disks are on average higher than those of T Tauri disks. Our LTE modeling hints that this difference extends to column density ratios if H{sub 2}O lines trace warm ≥600 K disk gas. These trends suggest that the inner regions of brown dwarf disks have a lower O/C ratio than those of T Tauri disks, which may result from a more efficient formation of non-migrating icy planetesimals. An O/C = 1, as inferred from our analysis, would have profound implications on the bulk composition of rocky planets that can form around very low mass stars and brown dwarfs.

  3. WHITE DWARF-RED DWARF SYSTEMS RESOLVED WITH THE HUBBLE SPACE TELESCOPE. II. FULL SNAPSHOT SURVEY RESULTS

    SciTech Connect

    Farihi, J.; Hoard, D. W.; Wachter, S.

    2010-10-15

    Results are presented for a Hubble Space Telescope Advanced Camera for Surveys high-resolution imaging campaign of 90 white dwarfs with known or suspected low-mass stellar and substellar companions. Of the 72 targets that remain candidate and confirmed white dwarfs with near-infrared excess, 43 are spatially resolved into two or more components, and a total of 12 systems are potentially triples. For 68 systems where a comparison is possible, 50% have significant photometric distance mismatches between their white dwarf and M dwarf components, suggesting that white dwarf parameters derived spectroscopically are often biased due to the cool companion. Interestingly, 9 of the 30 binaries known to have emission lines are found to be visual pairs and hence widely separated, indicating an intrinsically active cool star and not irradiation from the white dwarf. There is a possible, slight deficit of earlier spectral types (bluer colors) among the spatially unresolved companions, exactly the opposite of expectations if significant mass is transferred to the companion during the common envelope phase. Using the best available distance estimates, the low-mass companions to white dwarfs exhibit a bimodal distribution in projected separation. This result supports the hypothesis that during the giant phases of the white dwarf progenitor, any unevolved companions either migrate inward to short periods of hours to days, or outward to periods of hundreds to thousands of years. No intermediate projected separations of a few to several AU are found among these pairs. However, a few double M dwarfs (within triples) are spatially resolved in this range, empirically demonstrating that such separations were readily detectable among the binaries with white dwarfs. A straightforward and testable prediction emerges: all spatially unresolved, low-mass stellar and substellar companions to white dwarfs should be in short-period orbits. This result has implications for substellar companion and

  4. The ELM Survey: Finding the Shortest Period Binary White Dwarfs

    NASA Astrophysics Data System (ADS)

    Canton, Paul; Gianninas, Alexandros; Kilic, Mukremin; Brown, Warren; Kenyon, Scott

    2014-08-01

    A new discovery space for short period binary white dwarfs has opened up with the availability of 14,600 deg^2 of SDSS Data Release 9 photometry. The Extremely Low-Mass (ELM) Survey takes advantage of this photometry and SDSS spectroscopy to identify compact systems with 1 hour or shorter orbital periods. To significantly increase the number of merging white dwarf systems known, we have proposed to obtain follow- up spectroscopic observations of all candidates with g ≤ 19 mag and photometric colors consistent with extremely low-mass (≤ 0.3 M_⊙) white dwarfs. Most of our 2012A Hale and 2012B KP 4m observing runs were lost to weather, yet we managed to identify at least one new short period binary. Our 2013A run on the KP 4m was successful in identifying many new ELM white dwarfs, and in our 2013B follow-up run we observed two new 3 hour binaries while also obtaining further data on a number of other merging systems. Here we propose to continue our program by observing our fall targets on the KP 4m telescope to constrain their binary orbital periods. Our two major science goals are to discover detached gravitational wave sources for fundamental tests of general relativity, and to constrain the formation rate and space density of merging white dwarfs. The latter is important for constraining the contribution of double degenerates to Type Ia and underluminous supernovae.

  5. ATMOSPHERIC CHEMISTRY IN GIANT PLANETS, BROWN DWARFS, AND LOW-MASS DWARF STARS. III. IRON, MAGNESIUM, AND SILICON

    SciTech Connect

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce E-mail: lodders@wustl.ed

    2010-06-20

    We use thermochemical equilibrium calculations to model iron, magnesium, and silicon chemistry in the atmospheres of giant planets, brown dwarfs, extrasolar giant planets (EGPs), and low-mass stars. The behavior of individual Fe-, Mg-, and Si-bearing gases and condensates is determined as a function of temperature, pressure, and metallicity. Our equilibrium results are thus independent of any particular model atmosphere. The condensation of Fe metal strongly affects iron chemistry by efficiently removing Fe-bearing species from the gas phase. Monatomic Fe is the most abundant Fe-bearing gas throughout the atmospheres of EGPs and L dwarfs, and in the deep atmospheres of giant planets and T dwarfs. Mg- and Si-bearing gases are effectively removed from the atmosphere by forsterite (Mg{sub 2}SiO{sub 4}) and enstatite (MgSiO{sub 3}) cloud formation. Monatomic Mg is the dominant magnesium gas throughout the atmospheres of EGPs and L dwarfs and in the deep atmospheres of giant planets and T dwarfs. Silicon monoxide (SiO) is the most abundant Si-bearing gas in the deep atmospheres of brown dwarfs and EGPs, whereas SiH{sub 4} is dominant in the deep atmosphere of Jupiter and other gas giant planets. Several other Fe-, Mg-, and Si-bearing gases become increasingly important with decreasing effective temperature. In principle, a number of Fe, Mg, and Si gases are potential tracers of weather or diagnostic of temperature in substellar atmospheres.

  6. Abundance ratios of red giants in low-mass ultra-faint dwarf spheroidal galaxies

    NASA Astrophysics Data System (ADS)

    François, P.; Monaco, L.; Bonifacio, P.; Moni Bidin, C.; Geisler, D.; Sbordone, L.

    2016-04-01

    Context. Low-mass dwarf spheroidal galaxies are key objects for our understanding of the chemical evolution of the pristine Universe and the Local Group of galaxies. Abundance ratios in stars of these objects can be used to better understand their star formation and chemical evolution. Aims: We report on the analysis of a sample of 11 stars belonging to five different ultra-faint dwarf spheroidal galaxies (UfDSph) that is based on X-Shooter spectra obtained at the VLT. Methods: Medium-resolution spectra have been used to determine the detailed chemical composition of their atmosphere. We performed a standard 1D LTE analysis to compute the abundances. Results: Considering all the stars as representative of the same population of low-mass galaxies, we found that the [α/Fe] ratios vs.s [Fe/H] decreases as the metallicity of the star increases in a way similar to that which is found for the population of stars that belong to dwarf spheroidal galaxies. The main difference is that the solar [α/Fe] is reached at a much lower metallicity for the UfDSph than for the dwarf spheroidal galaxies. We report for the first time the abundance of strontium in CVn II. The star we analyzed in this galaxy has a very high [Sr/Fe] and a very low upper limit of barium which makes it a star with an exceptionally high [Sr/Ba] ratio.

  7. Evaporation and accretion of extrasolar comets following white dwarf kicks

    NASA Astrophysics Data System (ADS)

    Stone, Nicholas; Metzger, Brian D.; Loeb, Abraham

    2015-03-01

    Several lines of observational evidence suggest that white dwarfs receive small birth kicks due to anisotropic mass-loss. If other stars possess extrasolar analogues to the Solar Oort cloud, the orbits of comets in such clouds will be scrambled by white dwarf natal kicks. Although most comets will be unbound, some will be placed on low angular momentum orbits vulnerable to sublimation or tidal disruption. The dusty debris from these comets will manifest itself as an IR excess temporarily visible around newborn white dwarfs; examples of such discs may already have been seen in the Helix Nebula, and around several other young white dwarfs. Future observations with the James Webb Space Telescope may distinguish this hypothesis from alternatives such as a dynamically excited Kuiper Belt analogue. Although competing hypotheses exist, the observation that ≳15 per cent of young white dwarfs possess such discs, if interpreted as indeed being cometary in origin, provides indirect evidence that low-mass gas giants (thought necessary to produce an Oort cloud) are common in the outer regions of extrasolar planetary systems. Hydrogen abundances in the atmospheres of older white dwarfs can, if sufficiently low, also be used to place constraints on the joint parameter space of natal kicks and exo-Oort cloud models.

  8. The statistical challenge of constraining the low-mass IMF in Local Group dwarf galaxies

    NASA Astrophysics Data System (ADS)

    El-Badry, Kareem; Weisz, Daniel R.; Quataert, Eliot

    2017-06-01

    We use Monte Carlo simulations to explore the statistical challenges of constraining the characteristic mass (mc) and width (σ) of a lognormal sub-solar initial mass function (IMF) in Local Group dwarf galaxies using direct star counts. For a typical Milky Way (MW) satellite (MV = -8), jointly constraining mc and σ to a precision of ≲ 20 per cent requires that observations be complete to ≲ 0.2 M⊙, if the IMF is similar to the MW IMF. A similar statistical precision can be obtained if observations are only complete down to 0.4 M⊙, but this requires measurement of nearly 100× more stars, and thus, a significantly more massive satellite (MV ˜ -12). In the absence of sufficiently deep data to constrain the low-mass turnover, it is common practice to fit a single-sloped power law to the low-mass IMF, or to fit mc for a lognormal while holding σ fixed. We show that the former approximation leads to best-fitting power-law slopes that vary with the mass range observed and can largely explain existing claims of low-mass IMF variations in MW satellites, even if satellite galaxies have the same IMF as the MW. In addition, fixing σ during fitting leads to substantially underestimated uncertainties in the recovered value of mc (by a factor of ˜4 for typical observations). If the IMFs of nearby dwarf galaxies are lognormal and do vary, observations must reach down to ˜mc in order to robustly detect these variations. The high-sensitivity, near-infrared capabilities of the James Webb Space Telescope and Wide-Field Infrared Survey Telescope have the potential to dramatically improve constraints on the low-mass IMF. We present an efficient observational strategy for using these facilities to measure the IMFs of Local Group dwarf galaxies.

  9. The physics of white dwarfs

    NASA Astrophysics Data System (ADS)

    Isern, Jordi; García-Berro, Enrique; Hernanz, Margarida; Mochkovitch, Robert

    1998-12-01

    White dwarfs are the final remnants of low- and intermediate-mass stars. Their evolution is essentially a cooling process that lasts for 0953-8984/10/49/015/img6 and allows one to obtain information about the age of the Galaxy as well as about the past stellar formation rate in the solar neighbourhood. Therefore, it is important to identify all of the relevant sources of energy as well as the mechanisms that control its flow to the space. We show in this paper that the inclusion of a detailed treatment of phase transitions in Coulomb plasmas made up of a mixture of different chemical species is crucial, since their redistribution can keep the white dwarf warm for 0.5 to 9 Ga depending on the chemical composition and physical assumptions adopted.

  10. Oscillations of red dwarfs in evolved low-mass binaries with neutron stars

    NASA Technical Reports Server (NTRS)

    Sarna, Marek J.; Lee, Umin; Muslimov, Alexander G.

    1994-01-01

    We investigate a novel aspect of a problem related to the properties of low-mass binaries (LMBs) with millisecond pulsars: the pulsations of the red dwarf (donor) companion of the neutron star (NS). The illumination of the donor star by the pulsar's high-energy nonthermal radiation and relativistic wind may substantially affect its structure. We present a quantitative analysis of the oscillation spectrum of a red dwarf which has evolved in an LMB and has undergone the stage of evaporation. We calculate the p- and g-modes for red dwarfs with masses in the interval (0.2-0.6) stellar mass. For comparison, similar calculations are presented for zero age main-sequence (ZAMS) stars of the same masses. For less massive donor stars (approximately 0.2 stellar mass) the oscillation spectrum becomes quantitatively different from that of their ZAMS counterparts. The differnce is due to the fact that a ZAMS star of 0.2 stellar mass is fully convective, while the donor star in an LMB is expected to be far from thermal equilibrium and not fully convective. As a result, in contrast to a low-mass ZAMS star, a red dwarf of the same mass in an LMB allows the existence of g-modes. We also consider tidally forced g-modes, and perform a linear analysis of these oscillations for different degrees of nonsynchronism between the orbital and spin rotation of the red dwarf component. We demonstrate the existence of a series of reasonances for the low-order g-modes which may occur in LMBs at a late stage of their evolution. We discuss the possibility that these oscillations may trigger Roche lobe overflow and sudden mass loss by the donor star. Further implications of this effect for gamma- and X-ray burst phenomena are outlined.

  11. Rotational Periods of Very Young Brown Dwarfs and Very Low Mass Stars in Chamaeleon I

    NASA Astrophysics Data System (ADS)

    Joergens, V.; Fernández, M.; Carpenter, J. M.; Neuhäuser, R.

    2003-09-01

    We have studied the photometric variability of very young brown dwarfs and very low mass stars (masses well below 0.2 Msolar) in the Cha I star-forming region. We have determined photometric periods in the Gunn i and R bands for the three M6.5-M7 type brown dwarf candidates Cha Hα 2, Cha Hα 3, and Cha Hα 6 of 2.2-3.4 days. These are the longest photometric periods found for any brown dwarf so far. If interpreted as rotationally induced, they correspond to moderately fast rotational velocities, which is fully consistent with their vsini values and their relatively large radii. We have also determined periods for the two M5-M5.5 type very low mass stars B34 and CHXR 78C. In addition to the Gunn i- and R-band data, we have analyzed JHKS monitoring data of the targets, which have been taken a few weeks earlier and confirm the periods found in the optical data. Upper limits for the errors in the period determination are between 2 and 9 hr. The observed periodic variations of the brown dwarf candidates as well as of the T Tauri stars are interpreted as modulation of the flux at the rotation period by magnetically driven surface features, on the basis of a consistency with vsini values as well as R-i color variations typical for spots. Furthermore, the temperatures even for the brown dwarfs in the sample are relatively high (>2800 K) because the objects are very young. Therefore, the atmospheric gas should be sufficiently ionized for the formation of spots on one hand, and the temperatures are too high for significant dust condensation and hence variabilities due to clouds on the other hand. A comparison with rotational properties of older brown dwarfs shows that most of the acceleration of brown dwarfs takes place within the first 30 Myr or less. If magnetic braking plays a role, this suggests that the disk dissipation for brown dwarfs occurs between a few and 36 Myr. Based on observations obtained at the European Southern Observatory at La Silla in program 65.L-0629.

  12. Identification and characterization of low mass stars and brown dwarfs using Virtual Observatory tools

    NASA Astrophysics Data System (ADS)

    Aberasturi, Miriam

    2015-11-01

    Context: Two thirds of the stars in our galactic neighborhood (d < 10 pc) are M-dwarfs which also constitute the most common stellar objects in the Milky Way. This property, combined with their small stellar masses and radii, increases the likelihood of detecting terrestrial planets through radial velocity and transit techniques, making them very adequate targets for the exoplanet hunting projects. Nevertheless, M dwarfs have associated different observational difficulties. They are cool objects whose emission radiation peaks at infrared wavelengths and, thus, with a low surface brightness in the optical range. Also, the photometric variability as well as the significant chromospheric activity hinder the radial velocity and transit determinations. It is necessary, therefore, to carry out a detailed characterization of M-dwarfs before building a shortlist with the best possible candidates for exoplanet searches. Brown dwarfs (BDs) are self-gravitating objects that do not get enough mass to maintain a sufficiently high temperature in their core for stable hydrogen fusion. They represent the link between low-mass stars and giant planets. Due to their low temperatures, BDs emit significant flux at mid-infrared wavelength which makes this range very adequate to look for this type of objects. The Virtual Observatory (VO) is an international initiative designed to help the astronomical community in the exploitation of the multi-wavelength information that resides in data archives. In the last years the Spanish Virtual Observatory is conducting a number of projects focused on the study of substellar objects taking advantage of Virtual Observatory tools for an easy data access and analysis of large area surveys. This is the framework where this thesis has been carried out. This dissertation addresses three problems in the framework of low-mass stars and brown dwarfs, namely, the search for brown dwarf candidates crossmatching catalogues (Chapter 4), the search for nearby

  13. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1979-01-01

    The long term evolution of an accreting carbon white dwarf was studied from the onset of accretion to the ignition of helium. The variations in the details of the helium shell flash examined with respect to variations in mass accretion rate. For intermediate rates the helium flash is potentially explosive whereas for high rates the shell flash is relatively weak. The results are discussed in the context of the long term evolution of novae.

  14. The True Incidence of Magnetism Among Field White Dwarfs

    NASA Astrophysics Data System (ADS)

    Liebert, James; Bergeron, P.; Holberg, J. B.

    2003-01-01

    We study the incidence of magnetism in white dwarfs from three large and well-observed samples of hot, cool, and nearby white dwarfs in order to test whether the fraction of magnetic degenerates is biased and whether it varies with effective temperature, cooling age, or distance. The magnetic fraction is considerably higher for the cool sample of Bergeron, Ruiz, & Leggett and the Holberg, Oswalt, & Sion sample of local white dwarfs than it is for the generally hotter white dwarfs of the Palomar-Green survey. We show that the mean mass of magnetic white dwarfs in this survey is 0.93 Msolar or more, so there may be a strong bias against their selection in the magnitude-limited Palomar-Green survey. We argue that this bias is not as important in the samples of cool and nearby white dwarfs. However, this bias may not account for all of the difference in the magnetic fractions of these samples. It is not clear that the magnetic white dwarfs in the cool and local samples are drawn from the same population as the hotter PG stars. In particular, two or three of the cool sample are low-mass white dwarfs in unresolved binary systems. Moreover, there is a suggestion from the local sample that the fractional incidence may increase with decreasing temperature, luminosity, and/or cooling age. Overall, the true incidence of magnetism at the level of ~2 MG or greater is at least ~10%, and it could be higher. Limited studies capable of detecting lower field strengths down to ~10 kG suggest by implication that the total fraction may be substantially higher then 10%.

  15. Characterizing Accreting White Dwarf Pulsators

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum

    2014-02-01

    Understanding the population, mass distribution, and evolution of accreting white dwarfs impacts the entire realm of binary interaction, including the creation of Type Ia supernovae. We are concentrating on accreting white dwarf pulsators, as the pulsation properties allow us a view of how the accretion affects the interior of the star. Our ground- based photometry on 11 accreting pulsators with corresponding temperatures from HST UV spectra suggest a broad instability strip in the range of 10500 to 16000K. Additionally, tracking a post-outburst heated white dwarf as it cools and crosses the blue edge and resumes pulsation provides an independent method to locate the empirical instability strip. Determining a post-outburst cooling curve yields an estimate of the amount of heating and the accreted mass during the outburst. We request additional photometry of 2 objects that present unique properties: GW Lib which has not yet returned to its pre-outburst pulsation spectrum after 6 yrs, and EQ Lyn which returned to its pre- outburst pulsation after 3 yrs but is now turning on and off without ongoing outbursts. Following the pulsation spectrum changes over stretches of several nights in a row will provide specific knowledge of the stability of the observed modes.

  16. Optical Spectroscopy of Low-Mass Stars and Brown Dwarfs in Orion

    NASA Astrophysics Data System (ADS)

    Riddick, F. C.; Roche, P. F.; Lucas, P. W.

    2006-06-01

    Using multi-object optical spectroscopy from the AAT and Gemini-North, 35 low-mass stars and brown dwarfs in the Trapezium Cluster in Orion have been classified both by comparison with other previously classified young, low-mass sources in the Chamaeleon I star-forming region and by the use of spectral indices: narrowband indices which measure the strength of various highly temperature-sensitive molecular lines. The objects are all very likely cluster members, by analysis of the strength of the gravity-sensitive Na doublet, which is much weaker than in dwarfs for these very young objects. The spectral types obtained have been converted to effective temperatures using the temperature scale of Luhman et al. (2003b), which is intermediate between dwarf and giant scales and hence suitable for young pre-main sequence objects. In combination with the dereddened H band luminosities obtained from the photometry of Lucas & Roche (2000), the objects have been placed on an H-R diagram overlaid with the theoretical isochrones of Baraffe et al. (1998). The low-mass stars and the higher mass substellar objects are found to be clustered around the 1 Myr isochrone, while the lower mass substellar objects are located well above this isochrone, probably due to selection effects. The average age of 1 Myr for the majority of the objects is in agreement with other age estimates for the region, but the lack of any objects older than 5 Myr is in contrast to the results of Slesnick et al. (2004) which show in addition an older population at 10 Myr. Assuming coevality of the sources and an average age of 1 Myr, the masses of the objects have been estimated and 18 of the objects are found to have substellar masses.

  17. Models of very-low-mass stars, brown dwarfs and exoplanets.

    PubMed

    Allard, F; Homeier, D; Freytag, B

    2012-06-13

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets.

  18. Red Optical Planet Survey: A radial velocity search for low mass M dwarf planets

    NASA Astrophysics Data System (ADS)

    Barnes, J. R.; Jenkins, J. S.; Jones, H. R. A.; Rojo, P.; Arriagada, P.; Jordán, A.; Minniti, D.; Tuomi, M.; Jeffers, S. V.; Pinfield, D.

    2013-04-01

    We present radial velocity results from our Red Optical Planet Survey (ROPS), aimed at detecting low-mass planets orbiting mid-late M dwarfs. The ˜10 ms-1 precision achieved over 2 consecutive nights with the MIKE spectrograph at Magellan Clay is also found on week long timescales with UVES at VLT. Since we find that UVES is expected to attain photon limited precision of order 2 ms-1 using our novel deconvolution technique, we are limited only by the (≤10 ms-1) stability of atmospheric lines. Rocky planet frequencies of η⊕ = 0.3-0.7 lead us to expect high planet yields, enabling determination of η⊕ for the uncharted mid-late M dwarfs with modest surveys.

  19. Models of very-low-mass stars, brown dwarfs and exoplanets

    PubMed Central

    Allard, F.; Homeier, D.; Freytag, B.

    2012-01-01

    Within the next few years, GAIA and several instruments aiming to image extrasolar planets will be ready. In parallel, low-mass planets are being sought around red dwarfs, which offer more favourable conditions, for both radial velocity detection and transit studies, than solar-type stars. In this paper, the authors of a model atmosphere code that has allowed the detection of water vapour in the atmosphere of hot Jupiters review recent advances in modelling the stellar to substellar transition. The revised solar oxygen abundances and cloud model allow the photometric and spectroscopic properties of this transition to be reproduced for the first time. Also presented are highlight results of a model atmosphere grid for stars, brown dwarfs and extrasolar planets. PMID:22547243

  20. Are All Magnetic White Dwarf Stars Massive?

    NASA Astrophysics Data System (ADS)

    Nitta, A.; Kepler, S. O.; Kulebi, B.; Koester, D.; Kleinman, S. J.; Winget, D. E.; Castanheira, B. G.; Corsico, A. H.

    2017-03-01

    We obtained follow-up spectra on 25 white dwarf stars identified in our white dwarf catalog of Sloan Digital Sky Survey (SDSS) as massive or magnetic. We identified over 300 magnetic white dwarf stars from SDSS with some uncertainties due to the low S/N of the spectra. With much higher S/N Gemini data, our sample should be able to help us confirm accuracy of our determinations. We present here our results so far from the follow up observations.

  1. Tuning Into Brown Dwarfs: Long-Term Radio Monitoring of Two Very Low Mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Van Linge, Russell; Burgasser, Adam J.; Melis, Carl; Williams, Peter K. G.

    2017-01-01

    The very lowest-mass (VLM) stars and brown dwarfs, with effective temperatures T < 3000 K, exhibit mixed magnetic activity trends, with H-alpha and X-ray emission that declines rapidly beyond type M7/M8, but persistent radio emission in roughly 10-20% of sources. The dozen or so VLM radio emitters known show a broad range of emission characteristics and time-dependent behavior, including steady persistent emission, periodic oscillations, periodic polarized bursts, and aperiodic flares. Understanding the evolution of these variability patterns, and in particular whether they undergo solar-like cycles, requires long-term monitoring. We report the results of a long-term JVLA monitoring program of two magnetically-active VLM dwarf binaries, the young M7 2MASS 1314+1320AB and older L5 2MASS 1315-2649AB. On the bi-weekly cadence, 2MASS 1314 continues to show variability by revealing regular flaring while 2MASS 1315 continues to be a quiescent emitter. On the daily time scale, both sources show a mean flux density that can vary significantly just over a few days. These results suggest long-term radio behavior in radio-emitting VLM dwarfs is just as diverse and complex as short-term behavior.

  2. Dynamical Masses of Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Pala, A. F.; Gänsckie, B. T.

    2017-03-01

    The mass retention efficiency is a key question in both the theoretical and observational study of accreting white dwarfs in interacting binaries, with important implications for their potential as progenitors for type Ia supernovae (SNe Ia). Canonical wisdom is that classical nova eruptions erode the white dwarf mass, and consequently, cataclysmic variables (CVs) have been excluded from the SN Ia progenitor discussion. However the average mass of white dwarfs in CVs is substantially higher (≃ 0.83 M⊙) than that of single white dwarfs (≃ 0.64 M ⊙), in stark contrast to expectations based on current classical nova models. This finding is based on a sample of ≃ 30 CV white dwarfs with accurate mass measurements, most of them in eclipsing systems. Given the fundamental importance of the mass evolution of accreting white dwarfs, it is necessary to enlarge this sample and to diversify the methods used for measuring masses. We have begun a systematic study of 27 CVs to almost double the number of CV white dwarfs with an accurate mass measurement. Using VLT/X-shooter phase-resolved observations, we can measure the white dwarf masses to a few percent, and will be able to answer the question whether accreting CV white dwarfs grow in mass.

  3. Effects of magnetic fields in white dwarfs

    NASA Astrophysics Data System (ADS)

    Franzon, Bruno; Schramm, Stefan

    2017-06-01

    We perform calculations of white dwarfs endowed with strong magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they are widely used as candles to show that the Universe is expanding and accelerating. However, observations of ultraluminous supernovae have suggested that the progenitor of such an explosion should be a white dwarf with mass above the well-known Chandrasekhar limit ~ 1.4 M⊙. In corroboration with other works, but by using a fully general relativistic framework, we obtained also strongly magnetized white dwarfs with masses M ~ 2.0 M⊙.

  4. White dwarfs and the interstellar medium

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Raymond, J. C.

    1983-01-01

    Radiation emanating from hot (T greater than 40,000 K) white dwarfs can create large volumes of ionized material containing substantial column densities of highly ionized species, in particular Si IV and C IV. The ions N V and O VI can also be produced by hot, hydrogen-rich white dwarfs. These ionization spheres may be detectable around the nearby dwarfs. The relatively high space motions of these stars coupled with long recombination times in the interstellar medium suggest that a white dwarf leaves a region of ionized material - a fossil Stroemgren trail - that marks its progress through the galaxy. White dwarfs create a patchy substrate of ionized gas in the galactic plane and lead to extended ionized regions out of the plane. The spatial frequency of hot white dwarfs indicates that they contribute a radiative energy comparable to that provided by nondegenerate stars and by supernovae and capable of affecting the ionization balance of the interstellar medium.

  5. Surfing the photon noise: New techniques to find low-mass planets around M dwarfs

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Butler, R. P.; Reiners, A.; Jones, H. R. A.; Tuomi, M.; Jenkins, J. S.; Barnes, J. R.; Vogt, S. S.; Zechmeister, M.

    2013-02-01

    The current precision radial velocities techniques to detect low mass planets in M dwarf are quickly reviewed. This includes high resolution spectroscopic observations made both in the optical and in the near infrared. We discuss that, given the current instrumental performance, optical RVs are still far ahead over other approaches. However, this situation might change soon with the advent of new spectrographs with red/nIR capabilities. We review a newly developed method to obtain precision RV measurements on stabilized spectrographs and how it is implemented to archival HARPS observations. In addition to get much closer to the photon noise, this approach allows us to identify and filter out wavelength dependent noise sources achieving unprecedented accuracy on G, K and specially M dwarfs. We show how including red/infrared observations is of paramount importance to efficiently and unambiguously detect very low mass planets around cool spectral types. As examples, we show new measurements on Barnard's star indicating that the star is stable down to 0.9 cm s^-1 over a time-span of 4 years and how RV signals correlated with activity indices disappear when using the reddest half of the HARPS wavelength range. To conclude, we present new results, detections and describe the implications in terms of planet/multi-planet abundances around cool stars.

  6. DE Canum Venaticorum: a bright, eclipsing red dwarf-white dwarf binary

    NASA Astrophysics Data System (ADS)

    van den Besselaar, E. J. M.; Greimel, R.; Morales-Rueda, L.; Nelemans, G.; Thorstensen, J. R.; Marsh, T. R.; Dhillon, V. S.; Robb, R. M.; Balam, D. D.; Guenther, E. W.; Kemp, J.; Augusteijn, T.; Groot, P. J.

    2007-05-01

    Context: Close white dwarf-red dwarf binaries must have gone through a common-envelope phase during their evolution. DE CVn is a detached white dwarf-red dwarf binary with a relatively short (~8.7 h) orbital period. Its brightness and the presence of eclipses makes this system ideal for a more detailed study. Aims: From a study of photometric and spectroscopic observations of DE CVn we derive the system parameters that we discuss in the framework of common-envelope evolution. Methods: Photometric observations of the eclipses are used to determine an accurate ephemeris. From a model fit to an average low-resolution spectrum of DE CVn, we constrain the temperature of the white dwarf and the spectral type of the red dwarf. The eclipse light curve is analysed and combined with the radial velocity curve of the red dwarf determined from time-resolved spectroscopy to derive constraints on the inclination and the masses of the components in the system. Results: The derived ephemeris is HJDmin = 2 452 784.5533(1) + 0.3641394(2) × E. The red dwarf in DE CVn has a spectral type of M3V and the white dwarf has an effective temperature of 8 000 K. The inclination of the system is 86+3°-2 and the mass and radius of the red dwarf are 0.41± 0.06 M⊙ and 0.37+0.06-0.007 R⊙, respectively, and the mass and radius of the white dwarf are 0.51+0.06-0.02 M⊙ and 0.0136+0.0008-0.0002 R⊙, respectively. Conclusions: We found that the white dwarf has a hydrogen-rich atmosphere (DA-type). Given that DE CVn has experienced a common-envelope phase, we can reconstruct its evolution and we find that the progenitor of the white dwarf was a relatively low-mass star (M≤ 1.6~M⊙). The current age of this system is 3.3-7.3× 109 years, while it will take longer than the Hubble time for DE CVn to evolve into a semi-detached system.

  7. A COMPREHENSIVE SPECTROSCOPIC ANALYSIS OF DB WHITE DWARFS

    SciTech Connect

    Bergeron, P.; Wesemael, F.; Dufour, Pierre; Beauchamp, A.; Hunter, C.; Gianninas, A.; Limoges, M.-M.; Dufour, Patrick; Fontaine, G.; Saffer, Rex A.; Ruiz, M. T.; Liebert, James E-mail: wesemael@astro.umontreal.ca E-mail: limoges@astro.umontreal.ca E-mail: fontaine@astro.umontreal.ca E-mail: chris.hunter@yale.edu E-mail: mtruiz@das.uchile.cl

    2011-08-10

    We present a detailed analysis of 108 helium-line (DB) white dwarfs based on model atmosphere fits to high signal-to-noise optical spectroscopy. We derive a mean mass of 0.67 M{sub sun} for our sample, with a dispersion of only 0.09 M{sub sun}. White dwarfs also showing hydrogen lines, the DBA stars, comprise 44% of our sample, and their mass distribution appears similar to that of DB stars. As in our previous investigation, we find no evidence for the existence of low-mass (M < 0.5 M{sub sun}) DB white dwarfs. We derive a luminosity function based on a subset of DB white dwarfs identified in the Palomar-Green Survey. We show that 20% of all white dwarfs in the temperature range of interest are DB stars, although the fraction drops to half this value above T{sub eff} {approx} 20,000 K. We also show that the persistence of DB stars with no hydrogen features at low temperatures is difficult to reconcile with a scenario involving accretion from the interstellar medium, often invoked to account for the observed hydrogen abundances in DBA stars. We present evidence for the existence of two different evolutionary channels that produce DB white dwarfs: the standard model where DA stars are transformed into DB stars through the convective dilution of a thin hydrogen layer and a second channel where DB stars retain a helium atmosphere throughout their evolution. We finally demonstrate that the instability strip of pulsating V777 Her white dwarfs contains no non-variables, if the hydrogen content of these stars is properly accounted for.

  8. THE (DOUBLE) WHITE DWARF BINARY SDSS 1257+5428

    SciTech Connect

    Kulkarni, S. R.; Van Kerkwijk, M. H.

    2010-08-20

    SDSS 1257+5428 is a white dwarf in a close orbit with a companion that has been suggested to be a neutron star. If so, it hosts the closest known neutron star, and its existence implies a great abundance of similar systems and a rate of white dwarf neutron-star mergers similar to that of the type Ia supernova rate. Here, we present high signal-to-noise spectra of SDSS 1257+5428, which confirm an independent finding that the system is in fact composed of two white dwarfs, one relatively cool and with low mass and the other hotter and more massive. With this, the demographics and merger rate are no longer puzzling (various factors combine to lower the latter by more than 2 orders of magnitude). We show that the spectra are fit well with a combination of two hydrogen model atmospheres, as long as the lines of the higher-gravity component are broadened significantly relative to what is expected from just pressure broadening. Interpreting this additional broadening as due to rotation, the inferred spin period is short, about 1 minute. Similarly rapid rotation is only seen in accreting white dwarfs that are magnetic; empirically, it appears that in non-magnetized white dwarfs, accreted angular momentum is lost by nova explosions before it can be transferred to the white dwarf. This suggests that the massive white dwarf in SDSS 1257+5428 is magnetic as well, with B {approx_equal} 10{sup 5} G. Alternatively, the broadening seen in the spectral lines could be due to a stronger magnetic field, of {approx}10{sup 6} G. The two models can be distinguished by further observations.

  9. Double White Dwarf Merger Rates

    NASA Astrophysics Data System (ADS)

    Toonen, Silvia; Nelemans, Gijs; Portegies Zwart, Simon

    2013-01-01

    Type Ia supernovae (SNe Ia) are very successfully used as standard candles on cosmological distance scales, but so far the nature of the progenitor(s) is unclear. A possible scenario for SNe Ia are merging carbon/oxygen white dwarfs with a combined mass exceeding the Chandrasekhar mass. We determine the theoretical rates and delay time distribution of these mergers for two different common envelope prescriptions and metallicities. The shape of the delay time distributions is rather insensitive to the assumptions. The normalization is a factor ~3-13 too low compared to observations.

  10. Helium runaways in white dwarfs

    NASA Technical Reports Server (NTRS)

    Taam, R. E.

    1980-01-01

    The long-term evolution of a carbon-accreting white dwarf (M = 0.5 solar mass) has been studied from the onset of accretion to the ignition of helium. The variations in the details of the helium-shell flash have been examined with respect to variations in mass accretion rate. For intermediate rates (10 to the -9th to 10 to the -8th solar mass/yr) the helium flash is potentially explosive, whereas for high rates (5 x 10 to the -8th solar mass/yr) the shell flash is relatively weak. The results are discussed in the context of the long-term evolution of novae.

  11. Theories of white dwarf oscillations

    NASA Technical Reports Server (NTRS)

    Vanhorn, H. M.

    1980-01-01

    The current status of theoretical understanding of the oscillations observed in the ZZ Ceti stars and cataclysmic variables is briefly reviewed. Nonradial g-mode oscillations appear to provide a satisfactory explanation for the low amplitude variables such as R548, with periods in the range of approximately 200 to 300 seconds, but for the longer period (800 to 1000 seconds) oscillators, the situation is still unclear. Rotation may play an important role in this problem, and the effects of both slow and fast rotation upon the mode structure are discussed. In the cataclysmic variables, both accretion and thermonuclear burning may act to excite oscillations of the white dwarf.

  12. Testing low-mass stellar models with M-dwarf eclipsing binaries from SDSS Stripe 82

    NASA Astrophysics Data System (ADS)

    Bhatti, Waqas A.

    , and the binary systems themselves. From this sample, we identify six total M-dwarf eclipsing binary candidates for additional follow-up observations. For the brightest two targets, we obtain estimates of the absolute masses and radii of the stars in these systems and find that the measured radii are systematically larger than predictions generated by models of the low-mass stellar main sequence. Finally, we characterize the influence of tidally-induced magnetic fields on the measured radii of the M-dwarf components of these systems.

  13. Extremely Low Mass: The Circumstellar Envelope of a Potential Proto-Brown Dwarf

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2011-01-01

    What is the environment for planet formation around extremely low mass stars? Is the environment around brown dwarfs and extremely low mass stars conducive and sufficiently massive for planet production? The determining conditions may be set very early in the process of the host object's formation. IRAS 16253-2429, the source of the Wasp-Waist Nebula seen in Spitzer IRAC images, is an isolated, very low luminosity ("VeLLO") Class 0 protostar in the nearby rho Ophiuchi cloud. We present VLA ammonia mapping observations of the dense gas envelope feeding the central core accreting system. We find a flattened envelope perpendicular to the outflow axis, and gas cavities that appear to cradle the outflow lobes as though carved out by the flow and associated (apparently precessing) jet, indicating environmental disruption. Based on the NH3 (1,1) and (2,2) emission distribution, we derive the mass, velocity fields and temperature distribution for the envelope. We discuss the combined evidence for this source to be one of the youngest and lowest mass sources in formation yet known, and discuss the ramifications for planet formation potential in this extremely low mass system.

  14. Star formation in the lagoon nebula & low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Castro, Philip J.

    Topic I of this thesis reports on star formation in the Lagoon Nebula. We report on deep Chandra X-Ray Observatory observations of the Lagoon Nebula (NGC 6530 and the Hourglass Nebula) totaling 233 ks. We find 1482 X-ray sources, 1130 associated with catalogued near-infrared or optical stars. These X-ray sources are mainly concentrated in the young Hourglass Nebula Cluster (HNC), the older NGC 6530 cluster, and the young M8E cluster in the southern rim. The clustering of X-ray sources near 850mum emission along the central ridge of NGC 6530, M8E, the southern ridge, and coincident with the Hourglass Nebula, provides evidence of triggered star formation. Chandra point-source density contours show a ridge of increased density between NGC 6530 and the HNC, 9 Sgr and the HNC, and class III/II contours stretching from 9 Sgr to the HNC, respectively, provide support for a proposed sequence of star formation in the Lagoon Nebula. Topic II of this thesis reports on low-mass stars and brown dwarfs (BDs). We report on Chandra X-Ray Observatory observations of the TW Hydrae BD 2MASSW J1139511-315921 (2M1139). In the combined 31 ks ACIS-S exposure, 2M1139 is detected at the 3sigma confidence level. This object is similar to another TW Hydrae BD member, CD-33 7795B (TWA 5B), previously detected in X-rays an order of magnitude more luminous than 2M1139. We find the discrepancy between their X-ray luminosities is consistent with BDs of similar spectral type in the Orion Nebula Cluster. Though rotation may play a role in the X-ray activity of ultracool dwarfs like 2M1139 and TWA 5B, the discrepancy cannot be explained by rotation alone. We discover five high proper motion spectroscopically confirmed L dwarfs by comparing WISE to 2MASS. Two of these are L dwarfs at the L/T transition within 10 pc, and three are early L dwarfs within 25 pc. Of the early L dwarfs, one is a member of the class of unusually red L dwarfs whose red spectra can not be easily attributed to youth.

  15. White Dwarf Critical Tests for Modified Gravity.

    PubMed

    Jain, Rajeev Kumar; Kouvaris, Chris; Nielsen, Niklas Grønlund

    2016-04-15

    Scalar-tensor theories of gravity can lead to modifications of the gravitational force inside astrophysical objects. We exhibit that compact stars such as white dwarfs provide a unique setup to test beyond Horndeski theories of G^{3} type. We obtain stringent and independent constraints on the parameter ϒ characterizing the deviations from Newtonian gravity using the mass-radius relation, the Chandrasekhar mass limit, and the maximal rotational frequency of white dwarfs. We find that white dwarfs impose stronger constraints on ϒ than red and brown dwarfs.

  16. THE SURVEY OF H I IN EXTREMELY LOW-MASS DWARFS (SHIELD)

    SciTech Connect

    Cannon, John M.; Engstrom, Eric; Allan, John; Erny, Grace; Fliss, Palmer; Smith, AnnaLeigh

    2011-09-20

    We present first results from the Survey of H I in Extremely Low-mass Dwarfs (SHIELD), a multi-configuration Expanded Very Large Array (EVLA) study of the neutral gas contents and dynamics of galaxies with H I masses in the 10{sup 6}-10{sup 7} M{sub sun} range detected by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We describe the survey motivation and concept demonstration using Very Large Array imaging of six low-mass galaxies detected in early ALFALFA data products. We then describe the primary scientific goals of SHIELD and present preliminary EVLA and WIYN 3.5 m imaging of the 12 SHIELD galaxies. With only a few exceptions, the neutral gas distributions of these extremely low-mass galaxies are centrally concentrated. In only one system have we detected H I column densities higher than 10{sup 21} cm{sup -2}. Despite this, the stellar populations of all of these systems are dominated by blue stars. Further, we find ongoing star formation as traced by H{alpha} emission in 10 of the 11 galaxies with H{alpha} imaging obtained to date. Taken together these results suggest that extremely low-mass galaxies are forming stars in conditions different from those found in more massive systems. While detailed dynamical analysis requires the completion of data acquisition, the most well-resolved system is amenable to meaningful position-velocity analysis. For AGC 749237, we find well-ordered rotation of 30 km s{sup -1} at {approx}40'' distance from the dynamical center. At the adopted distance of 3.2 Mpc, this implies the presence of a {approx}>1 x 10{sup 8} M{sub sun} dark matter halo and a baryon fraction {approx}<0.1.

  17. Magnetic White Dwarfs with Heavy Elements

    NASA Astrophysics Data System (ADS)

    Hardy, F.; Dufour, P.; Jordan, S.

    2017-03-01

    Using our newly developed model atmosphere code appropriate for magnetic white dwarfs with metal lines in the Paschen-Back regime, we study various magnetic white dwarfs and explore the effects of various parameters such as the field geometry and the convective efficiency.

  18. HELIUM CORE WHITE DWARFS IN CATACLYSMIC VARIABLES

    SciTech Connect

    Shen, Ken J.; Bildsten, Lars; Idan, Irit

    2009-11-01

    Binary evolution predicts a population of helium core (M < 0.5 M{sub sun}) white dwarfs (WDs) that are slowly accreting hydrogen-rich material from low-mass main-sequence or brown dwarf donors with orbital periods less than 4 hr. Four binaries are presently known in the Milky Way that will reach such a mass-transferring state in a few Gyr. Despite these predictions and observations of progenitor binaries, there are still no secure cases of helium core WDs among the mass-transferring cataclysmic variables. This led us to calculate the fate of He WDs once accretion begins at a rate M-dot<10{sup -10}M-odot yr{sup -1} set by angular momentum losses. We show here that the cold He core temperatures (T{sub c} < 10{sup 7} K) and low M-dot thermonuclear runaway. Shara and collaborators noted that these large accumulated masses may lead to exceptionally long classical nova (CN) events. For a typical donor star of 0.2 M{sub sun}, such binaries will only yield a few hundred CNe, making these events rare among all CNe. We calculate the reheating of the accreting WD, allowing a comparison to the measured WD effective temperatures in quiescent dwarf novae and raising the possibility that WD seismology may be the best way to confirm the presence of a He WD. We also find that a very long (>1000 yr) stable burning phase occurs after the CN outburst, potentially explaining enigmatic short orbital period supersoft sources like RX J0537-7034 (P{sub orb} = 3.5 hr) and 1E 0035.4-7230 (P{sub orb} = 4.1 hr).

  19. A white dwarf with an oxygen atmosphere.

    PubMed

    Kepler, S O; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs. Copyright © 2016, American Association for the Advancement of Science.

  20. A white dwarf with an oxygen atmosphere

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Koester, Detlev; Ourique, Gustavo

    2016-04-01

    Stars born with masses below around 10 solar masses end their lives as white dwarf stars. Their atmospheres are dominated by the lightest elements because gravitational diffusion brings the lightest element to the surface. We report the discovery of a white dwarf with an atmosphere completely dominated by oxygen, SDSS J124043.01+671034.68. After oxygen, the next most abundant elements in its atmosphere are neon and magnesium, but these are lower by a factor of ≥25 by number. The fact that no hydrogen or helium are observed is surprising. Oxygen, neon, and magnesium are the products of carbon burning, which occurs in stars at the high-mass end of pre-white dwarf formation. This star, a possible oxygen-neon white dwarf, will provide a rare observational test of the evolutionary paths toward white dwarfs.

  1. AR Sco: A Precessing White Dwarf Synchronar?

    NASA Astrophysics Data System (ADS)

    Katz, J. I.

    2017-02-01

    The emission of the white dwarf–M dwarf binary AR Sco is driven by the rapid synchronization of its white dwarf, rather than by accretion. Synchronization requires a magnetic field ∼100 Gauss at the M dwarf and ∼ {10}8 Gauss at the white dwarf, larger than the fields of most intermediate polars but within the range of fields of known magnetic white dwarfs. The spindown power is dissipated in the atmosphere of the M dwarf, within the near zone of the rotating white dwarf’s field, by magnetic reconnection, accelerating particles that produce the observed synchrotron radiation. The displacement of the optical maximum from conjunction may be explained either by dissipation in a bow wave as the white dwarf’s magnetic field sweeps past the M dwarf or by a misaligned white dwarf rotation axis and oblique magnetic moment. In the latter case the rotation axis precesses with a period of decades, predicting a drift in the orbital phase of the optical maximum. Binaries whose emission is powered by synchronization may be termed synchronars, in analogy to magnetars.

  2. Properties of an eclipsing double white dwarf binary NLTT 11748

    SciTech Connect

    Kaplan, David L.; Walker, Arielle N.; Marsh, Thomas R.; Bours, Madelon C. P.; Breedt, Elmé; Bildsten, Lars; Copperwheat, Chris M.; Dhillon, Vik S.; Littlefair, Stuart P.; Howell, Steve B.; Shporer, Avi; Steinfadt, Justin D. R.

    2014-01-10

    We present high-quality ULTRACAM photometry of the eclipsing detached double white dwarf binary NLTT 11748. This system consists of a carbon/oxygen white dwarf and an extremely low mass (<0.2 M {sub ☉}) helium-core white dwarf in a 5.6 hr orbit. To date, such extremely low-mass white dwarfs, which can have thin, stably burning outer layers, have been modeled via poorly constrained atmosphere and cooling calculations where uncertainties in the detailed structure can strongly influence the eventual fates of these systems when mass transfer begins. With precise (individual precision ≈1%), high-cadence (≈2 s), multicolor photometry of multiple primary and secondary eclipses spanning >1.5 yr, we constrain the masses and radii of both objects in the NLTT 11748 system to a statistical uncertainty of a few percent. However, we find that overall uncertainty in the thickness of the envelope of the secondary carbon/oxygen white dwarf leads to a larger (≈13%) systematic uncertainty in the primary He WD's mass. Over the full range of possible envelope thicknesses, we find that our primary mass (0.136-0.162 M {sub ☉}) and surface gravity (log (g) = 6.32-6.38; radii are 0.0423-0.0433 R {sub ☉}) constraints do not agree with previous spectroscopic determinations. We use precise eclipse timing to detect the Rømer delay at 7σ significance, providing an additional weak constraint on the masses and limiting the eccentricity to ecos ω = (– 4 ± 5) × 10{sup –5}. Finally, we use multicolor data to constrain the secondary's effective temperature (7600 ± 120 K) and cooling age (1.6-1.7 Gyr).

  3. Planets around Low-mass Stars (PALMS). IV. The Outer Architecture of M Dwarf Planetary Systems

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (gsim1 M Jup) around 122 newly identified nearby (lsim40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M ⊙) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M Jup at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M Jup; L0+2-1; 120 ± 20 AU), GJ 3629 B (64+30-23 M Jup; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M Jup; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M Jup; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M Jup planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M Jup range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M Jup) companions to single M dwarfs between 10-100 AU is 2.8+2.4-1.5%. Altogether we find that giant planets, especially massive ones, are rare

  4. PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2015-01-01

    We present results from a high-contrast adaptive optics imaging search for giant planets and brown dwarfs (≳1 M {sub Jup}) around 122 newly identified nearby (≲40 pc) young M dwarfs. Half of our targets are younger than 135 Myr and 90% are younger than the Hyades (620 Myr). After removing 44 close stellar binaries (implying a stellar companion fraction of >35.4% ± 4.3% within 100 AU), 27 of which are new or spatially resolved for the first time, our remaining sample of 78 single M dwarfs makes this the largest imaging search for planets around young low-mass stars (0.1-0.6 M {sub ☉}) to date. Our H- and K-band coronagraphic observations with Keck/NIRC2 and Subaru/HiCIAO achieve typical contrasts of 12-14 mag and 9-13 mag at 1'', respectively, which correspond to limiting planet masses of 0.5-10 M {sub Jup} at 5-33 AU for 85% of our sample. We discovered four young brown dwarf companions: 1RXS J235133.3+312720 B (32 ± 6 M {sub Jup}; L0{sub −1}{sup +2}; 120 ± 20 AU), GJ 3629 B (64{sub −23}{sup +30} M {sub Jup}; M7.5 ± 0.5; 6.5 ± 0.5 AU), 1RXS J034231.8+121622 B (35 ± 8 M {sub Jup}; L0 ± 1; 19.8 ± 0.9 AU), and 2MASS J15594729+4403595 B (43 ± 9 M {sub Jup}; M8.0 ± 0.5; 190 ± 20 AU). Over 150 candidate planets were identified; we obtained follow-up imaging for 56% of these but all are consistent with background stars. Our null detection of planets enables strong statistical constraints on the occurrence rate of long-period giant planets around single M dwarfs. We infer an upper limit (at the 95% confidence level) of 10.3% and 16.0% for 1-13 M {sub Jup} planets between 10-100 AU for hot-start and cold-start (Fortney) evolutionary models, respectively. Fewer than 6.0% (9.9%) of M dwarfs harbor massive gas giants in the 5-13 M {sub Jup} range like those orbiting HR 8799 and β Pictoris between 10-100 AU for a hot-start (cold-start) formation scenario. The frequency of brown dwarf (13-75 M {sub Jup}) companions to single

  5. PREFACE: 16th European White Dwarfs Workshop

    NASA Astrophysics Data System (ADS)

    Garcia-Berro, Enrique; Hernanz, Margarita; Isern, Jordi; Torres, Santiago

    2009-07-01

    The 16th European Workshop on White Dwarfs was held in Barcelona, Spain, from 30 June to 4 July 2008 at the premises of the UPC. Almost 120 participants from Europe (France, Germany, United Kingdom, Italy, and several others), America (USA, Canada, Argentina, Brazil, and Chile), and other continents (Australia, South Africa, . . . ) attended the workshop. Among these participants were the most relevant specialists in the field. The topics covered by the conference were: White dwarf structure and evolution Progenitors and Planetary Nebulae White dwarfs in binaries: cataclysmic variables, double degenerates and other binaries White dwarfs, dust disks and planetary systems Atmospheres, chemical composition, magnetic fields Variable white dwarfs White dwarfs in stellar clusters and the halo White Dwarfs as SNIa progenitors The programme included 54 talks, and 45 posters. The oral presentations were distributed into the following sessions: Luminosity function, mass function and populations White dwarf structure and evolution White dwarf ages White dwarf catalogs and surveys Central stars of planetary nebulae Supernovae progenitors White dwarfs in novae and CVs Physical processes in white dwarfs and magnetic white dwarfs Disks, dust and planets around white dwarfs Pulsating white dwarfs Additionally we had a special open session about Spitzer and white dwarfs. The Proceedings of the 16th European Workshop on White Dwarfs are representative of the current state-of-the-art of the research field and include new and exciting results. We acknowledge the very positive attitude of the attendants to the workshop, which stimulated very fruitful discussions that took place in all the sessions and after the official schedule. Also, the meeting allowed new collaborations tp start that will undoubtedly result in significant advances in the research field. We also acknowledge the willingness of the participants to deliver their contributions before the final deadline. We sincerely

  6. A Pulsation Search among Young Brown Dwarfs and Very-low-mass Stars

    NASA Astrophysics Data System (ADS)

    Cody, Ann Marie; Hillenbrand, Lynne A.

    2014-12-01

    In 2005, Palla & Baraffe proposed that brown dwarfs (BDs) and very-low-mass stars (VLMSs; < 0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated periods of one to four hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters σ Orionis, Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able to grow to observable amplitudes in the early pre-main sequence. In spite of the nondetection, we did uncover a rich set of variability behavior—both periodic and aperiodic—on day to week timescales. We present new compilations of variable sources from our sample, as well as three new candidate cluster members in Chamaeleon I.

  7. A pulsation search among young brown dwarfs and very-low-mass stars

    SciTech Connect

    Cody, Ann Marie; Hillenbrand, Lynne A.

    2014-12-01

    In 2005, Palla and Baraffe proposed that brown dwarfs (BDs) and very-low-mass stars (VLMSs; < 0.1 solar masses) may be unstable to radial oscillations during the pre-main-sequence deuterium burning phase. With associated periods of one to four hours, this potentially new class of pulsation offers unprecedented opportunities to probe the interiors and evolution of low-mass objects in the 1-15 million year age range. Following up on reports of short-period variability in young clusters, we designed a high-cadence photometric monitoring campaign to search for deuterium-burning pulsation among a sample of 348 BDs and VLMSs in the four young clusters σ Orionis, Chamaeleon I, IC 348, and Upper Scorpius. In the resulting light curves we achieved sensitivity to periodic signals of amplitude several millimagnitudes, on timescales from 15 minutes to two weeks. Despite the exquisite data quality, we failed to detect any periodicities below seven hours. We conclude that D-burning pulsations are not able to grow to observable amplitudes in the early pre-main sequence. In spite of the nondetection, we did uncover a rich set of variability behavior—both periodic and aperiodic—on day to week timescales. We present new compilations of variable sources from our sample, as well as three new candidate cluster members in Chamaeleon I.

  8. Throwing Icebergs at White Dwarfs

    NASA Astrophysics Data System (ADS)

    Stephan, Alexander P.; Naoz, Smadar; Zuckerman, B.

    2017-08-01

    White dwarfs (WDs) have atmospheres that are expected to consist nearly entirely of hydrogen and helium, since heavier elements will sink out of sight on short timescales. However, observations have revealed atmospheric pollution by heavier elements in about a quarter to a half of all WDs. While most of the pollution can be accounted for with asteroidal or dwarf planetary material, recent observations indicate that larger planetary bodies, as well as icy and volatile material from Kuiper belt analog objects, are also viable sources of pollution. The commonly accepted pollution mechanisms, namely scattering interactions between planetary bodies orbiting the WDs, can hardly account for pollution by objects with large masses or long-period orbits. Here we report on a mechanism that naturally leads to the emergence of massive body and icy and volatile material pollution. This mechanism occurs in wide binary stellar systems, where the mass loss of the planets’ host stars during post main sequence stellar evolution can trigger the Eccentric Kozai-Lidov mechanism. This mechanism leads to large eccentricity excitations, which can bring massive and long-period objects close enough to the WDs to be accreted. We find that this mechanism readily explains and is consistent with observations.

  9. New circumstellar disk candidates around young low mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Boucher, Anne; Lafrenière, David; Gagné, Jonathan; Malo, Lison; Doyon, Rene

    2015-12-01

    It is now common knowledge that circumstellar disks are signposts of past or ongoing planetary system formation. Their presence and their properties, in relation to those of their host star, also bear valuable information about the process of star formation itself. To address these questions, we started a project to uncover new circumstellar disks around newly identified low mass star and brown dwarf candidates in nearby young kinematic associations. Being near the stellar/substellar mass boundary, these hosts - and their potential disks - are particularly interesting to study both star and planet formation. We used a least squares approach to fit synthetic spectra to the observed photometric data of each star, covering from 0.8 µm up to 22 µm, and then identified candidates showing a significant excess compared to the best fits. We then carefully looked at the data for these candidates to filter out those biased by contaminants or other artefacts. We ended up with a list of 4 young stars and brown dwarfs strongly suspected of being surrounded by a disk. Here we will present our search method and some properties of our newly identified disk-bearing candidates.

  10. The Effect of Feedback and Reionization on Star Formation in Low-mass Dwarf Galaxy Halos

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Bryan, G.; Johnston, K. V.; Smith, B. D.; Mac Low, M.; Sharma, S.; Tumlinson, J.

    2013-01-01

    I will present a set of high resolution simulations of a 109 M⊙ dark matter halo in a cosmological setting done with an adaptive-mesh refinement code as a mass analogue to local low-luminosity dwarf spheroidal galaxies. The primary goal of our simulations is to investigate the roles of reionization and supernova feedback in determining the star formation histories of low mass dwarf galaxies. We include a wide range of physical effects, including metal cooling, molecular hydrogen formation and cooling, photoionization and photodissociation from a metagalactic (but not local) background, a simple prescription for self-shielding, star formation, and a simple model for supernova driven energetic feedback. We find that reionization is primarily responsible for expelling most of the gas in our simulations, but that supernova feedback is required to disperse the dense, cold gas in the core of the halo. Moreover, we show that the timing of reionization can produce an order of magnitude difference in the final stellar mass of the system. For our full physics run with reionization at z=9, we find a stellar mass of about 105 M⊙ at z=0, and a mass-to-light ratio within the half-light radius of approximately 130 M⊙/L⊙, consistent with observed low-luminosity dwarfs. However, the resulting median stellar metallicity is 0.06 Z⊙, considerably larger than observed systems. In addition, we find star formation is truncated between redshifts 4 and 7, at odds with the observed late time star formation in isolated dwarf systems but in agreement with Milky Way ultrafaint dwarf spheroidals. We investigate the efficacy of energetic feedback in our simple thermal-energy driven feedback scheme, and suggest that it may still suffer from excessive radiative losses, despite reaching stellar particle masses of about 100 M⊙, and a comoving spatial resolution of 11 pc. This has led us to pursue improvements in our supernova feedback model to include kinetic as well as thermal energy in

  11. Magnetars and white dwarf pulsars

    NASA Astrophysics Data System (ADS)

    Lobato, Ronaldo V.; Malheiro, Manuel; Coelho, Jaziel G.

    2016-07-01

    The anomalous X-ray pulsars (AXPs) and soft gamma-ray repeaters (SGRs) are a class of pulsars understood as neutron stars (NSs) with super strong surface magnetic fields, namely B ≳ 1014G, and for that reason are known as magnetars. However, in the last years, some SGRs/AXPs with low surface magnetic fields B ˜ (1012-1013)G have been detected, challenging the magnetar description. Moreover, some fast and very magnetic white dwarfs (WDs) have also been observed, and at least one showed X-ray energy emission as an ordinary pulsar. Following this fact, an alternative model based on WDs pulsars has been proposed to explain this special class of pulsars. In this model, AXPs and SGRs as dense and magnetized WDs can have surface magnetic field B ˜ 107-1010 G and rotate very fast with frequencies Ω ˜ 1rad/s, consistent with the observed rotation periods P ˜ (2-12)s.

  12. An overview of white dwarf stars

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Charpinet, S.; Randall, S. K.; Van Grootel, V.

    2013-03-01

    We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning) that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid/solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms) is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state. We set the stage for the reviews that follow on cooling white dwarfs as cosmochronometers and physics laboratories, as well as on the properties of pulsating white dwarfs and the asteroseismological results that can be inferred.

  13. SDSS DR7 WHITE DWARF CATALOG

    SciTech Connect

    Kleinman, S. J.; Nitta, A.; Kepler, S. O.; Pelisoli, Ingrid; Pecanha, Viviane; Costa, J. E. S.; Koester, D.; Krzesinski, J.; Dufour, P.; Lachapelle, F.-R.; Bergeron, P.; Yip, Ching-Wa; Harris, Hugh C.; Eisenstein, Daniel J.; Althaus, L.; Corsico, A.

    2013-01-15

    We present a new catalog of spectroscopically confirmed white dwarf stars from the Sloan Digital Sky Survey (SDSS) Data Release 7 spectroscopic catalog. We find 20,407 white dwarf spectra, representing 19,712 stars, and provide atmospheric model fits to 14,120 DA and 1011 DB white dwarf spectra from 12,843 and 923 stars, respectively. These numbers represent more than a factor of two increase in the total number of white dwarf stars from the previous SDSS white dwarf catalogs based on DR4 data. Our distribution of subtypes varies from previous catalogs due to our more conservative, manual classifications of each star in our catalog, supplementing our automatic fits. In particular, we find a large number of magnetic white dwarf stars whose small Zeeman splittings mimic increased Stark broadening that would otherwise result in an overestimated log g if fit as a non-magnetic white dwarf. We calculate mean DA and DB masses for our clean, non-magnetic sample and find the DB mean mass is statistically larger than that for the DAs.

  14. White Dwarfs population as seen by Gaia

    NASA Astrophysics Data System (ADS)

    Carrasco, J. M.; Catalán, S.; Jordi, C.; Tremblay, P.-E.; Napiwotzki, R.; Luri, X.; Robin, A. C.; Kowalski, P. M.; Reylé, C.

    2013-05-01

    The launch of Gaia satellite of ESA is approaching (scheduled in 2013) and the scientific community is preparing for the maximal scientific return. As white dwarfs are very faint (especially in the very cool regime, Teff ≤ 5,000 K), they are very hard to detect and only the closest ones have been observed until now. Gaia, through its 5--6 years survey of the whole sky up to magnitude 20-25 (depending on the colour of the source), will drastically increase the sample of known white dwarfs and provide a lot of new science in this field. Using synthetic spectral energy distribution libraries and the most recent Gaia transmission curves, we derive colours of three different kinds of white dwarfs (pure hydrogen, pure helium and mixed composition with H/He=0.1). With these colours we derive transformations to other common photometric systems (Johnson-Cousins, Sloan Digital Sky Survey and 2MASS). Different relationships have to be considered for different white dwarfs compositions. Pure-He white dwarfs show an unique behaviour valid at different temperatures, but pure-H white dwarfs need to be analysed in two different temperature regimes, as their behaviour changes around Teff =5,000 K. We also compare the estimations of number of white dwarfs as predicted by the Gaia Universe Model Snapshot and by a different model of white dwarfs population (Napiwotzky's simulations). Among all white dwarfs observed, the most interesting ones will be those in the very cool regime. According to our simulations, Gaia will be able to observe thousands of them for the first time.

  15. Are white dwarfs born with a `KICK'?

    NASA Astrophysics Data System (ADS)

    Davis, Saul; Richer, H. B.; Coffey, J.; Anderson, J.; Brewer, J.; Fahlman, G. G.; Hansen, B. M.; Hurley, J.; Kalirai, J. S.; King, I. R.; Reitzel, D.; Rich, R. M.; Rich, M. R.; Shara, M. M.

    2006-12-01

    The unusually large kinetic energies possessed by some pulsars, as inferred from their observed velocities in excess of the escape speed of the Galaxy, imply that the violent explosions in which they are born impart some fraction of their energy into the motion of the pulsar. Does a similar, but less energetic process occur during the birth of a white dwarf? Two major Hubble Space Telescope imaging campaigns of the two nearest globular star clusters, NGC 6397 and Messier 4, yield the radial distribution of both white dwarfs and main-sequences. Because globular clusters are relaxed populations, the velocity dispersion, and hence radial distribution, for stars of a particular mass is directly dependent on that mass. To first approximation, all white dwarf s have a mass of 0.55 M⊙. If white dwarfs are not born with a kick, we expect white dwarf s of an age younger than a relaxation time to have a radial distribution similar to main-sequence stars of 0.8 M⊙, i.e. the mass of their progenitor. Conversely, if white dwarf s are born with a kick, the radial distribution of white dwarfs younger than the relaxation time should mimic that of main-sequence stars of lesser mass. By comparing the radial distributions of white dwarfs of various ages with those of main-sequence stars of various masses in these two globular clusters, we find that the radial distributions of young white dwarfs are most similar to that of main-sequence stars of 0.2 M⊙, implying a natal kick of >1.6 km/s.

  16. Observations and Theory of Pulsating Helium White Dwarfs

    NASA Astrophysics Data System (ADS)

    Steinfadt, Justin D.

    Average C/O-core white dwarf stars pulsate in observable normal modes of oscillation with amplitudes of a few percent and periods of 100-1,000 seconds. As of this dissertation, no WD of less than 0.5 M sun has been observed to pulsate. White dwarfs of this low mass likely possess a He core and are products of very different stellar evolution. In this dissertation, we have constructed very low mass He-core WD models and predict the parameter space in which they may be observed to pulsate. We have also observed 13 stars, most of which are He-core WDs, in a search for the first He-core WD pulsator. While we were unsuccessful in discovering a pulsator, our detection limits offer unique constraints on He-core WD pulsation parameter space. As a fortuitous result of our pulsation search, we have discovered two unique eclipsing binary systems. One of these is the first eclipsing detached double white dwarf binary system offering the first opportunity to make model independent constraints on He-core WD models and evolution.

  17. Imaging Extrasolar Planets Around Nearby White Dwarfs

    NASA Astrophysics Data System (ADS)

    Burleigh, M.; Clarke, F.; Hodgkin, S.

    White dwarfs should retain planetary systems in wide orbits (greater than about 5 AU). Evolutionary models for jovian planets show that infrared imaging of suitable nearby white dwarfs should allow us to resolve and detect companions of mass greater than about 5 Jupiter masses. We have instigated programs with both the 8m Gemini North (using NIRI), Gemini South (using Flamingos) and with the NAOMI Adaptive Optics system on the 4.2m William Herschel Telescope to search for such objects, which will share the large proper motions of their white dwarf hosts.

  18. Imaging planets around nearby white dwarfs

    NASA Astrophysics Data System (ADS)

    Burleigh, M. R.; Clarke, F. J.; Hodgkin, S. T.

    2002-04-01

    We suggest that Jovian planets will survive the late stages of stellar evolution, and that white dwarfs will retain planetary systems in wide orbits (>~5au). Utilizing evolutionary models for Jovian planets, we show that infrared imaging with 8-m class telescopes of suitable nearby white dwarfs should allow us to resolve and detect companions >~3M JUP . Detection of massive planetary companions to nearby white dwarfs would prove that such objects can survive the final stages of stellar evolution, place constraints on the frequency of main-sequence stars with planetary systems dynamically similar to our own and allow direct spectroscopic investigation of their composition and structure.

  19. Empirical Determination of Convection in Pulsating White Dwarfs

    NASA Astrophysics Data System (ADS)

    Provencal, Judith L.; Hermes, J. J.; Montgomery, M.; Reed, Mike; Shipman, Harry; Fraga, Luciano

    2013-02-01

    We propose high speed photometric observations of WD J1518+0658 with SOAR and the KPNO 2m as important components of a coordinated international campaign designed to survey the properties of convection in white dwarf atmospheres. Convection remains the largest source of theoretical uncertainty in our understanding of stellar physics. Asteroseismology has proven a powerful tool to attack this problem. White dwarf pulsations appear as local surface temperature variations. The extreme temperature sensitivity of convection leads to local variations in the convection zone's depth. This in turn modulates the local energy flux, producing nonsinusoidal light curves. The observed nonlinearities provide a self-consistent observational test of convection in white dwarf atmospheres. WD J1518+0658 is a member of the newly discovered class of extremely low mass white dwarf pulsators (ELMVs). ELMVs offer the opportunity to extend our investigation to unexplored regions of lower effective temperatures and surface gravities, where conditions are closer to those found in main sequence stars. High precision light curves from SOAR, combined with frequency, amplitude, and phase information provided by the KPNO 2m and the entire WET run, will allow us to recover WD J1518+0658's convective thermal response timescale.

  20. White Dwarf Period Tables I. Pulsators with hydrogen-dominated atmospheres

    NASA Astrophysics Data System (ADS)

    Bognar, Zs.; Sodor, A.

    2016-09-01

    We aimed at collecting all known white dwarf pulsators with hydrogen-dominated atmospheres and list their main photometric and atmospheric parameters together with their pulsation periods and amplitudes observed at different epochs. For this purpose, we explored the pulsating white dwarf related literature with the systematic use of the SIMBAD and the NASA's Astrophysics Data System (ADS) databases. We summarized our results in four tables listing seven ZZ Ceti stars in detached white dwarf plus main-sequence binaries, seven extremely low-mass DA pulsators, three hot DAVs and 180 ZZ Ceti stars.

  1. PHL 5038: a spatially resolved white dwarf + brown dwarf binary

    NASA Astrophysics Data System (ADS)

    Steele, P. R.; Burleigh, M. R.; Farihi, J.; Gänsicke, B. T.; Jameson, R. F.; Dobbie, P. D.; Barstow, M. A.

    2009-06-01

    A near-infrared excess is detected at the white dwarf PHL 5038 in UKIDSS photometry, consistent with the presence of a cool, substellar companion. We have obtained H- and K-grism spectra and images of PHL 5038 using NIRI on Gemini North. The target is spatially and spectrally resolved into two components: an 8000 K DA white dwarf, and a likely L8 brown dwarf companion, separated by 0.94 arcsec. The spectral type of the secondary was determined using standard spectral indices for late L and T dwarfs. The projected orbital separation of the binary is 55 AU, so it becomes only the second known wide WD+dL binary to be found after GD 165AB. This object could potentially be used as a benchmark for testing substellar evolutionary models at intermediate to older ages.

  2. Merging white dwarfs and thermonuclear supernovae.

    PubMed

    van Kerkwijk, M H

    2013-06-13

    Thermonuclear supernovae result when interaction with a companion reignites nuclear fusion in a carbon-oxygen white dwarf, causing a thermonuclear runaway, a catastrophic gain in pressure and the disintegration of the whole white dwarf. It is usually thought that fusion is reignited in near-pycnonuclear conditions when the white dwarf approaches the Chandrasekhar mass. I briefly describe two long-standing problems faced by this scenario, and the suggestion that these supernovae instead result from mergers of carbon-oxygen white dwarfs, including those that produce sub-Chandrasekhar-mass remnants. I then turn to possible observational tests, in particular, those that test the absence or presence of electron captures during the burning.

  3. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  4. Tidal Effects in Inspiraling Double White Dwarfs

    NASA Astrophysics Data System (ADS)

    Willems, B.; Kalogera, Vicky; Vecchio, A.; Ivanova, N.; Deloye, C.; Hansen, B.

    2006-12-01

    Despite the overwhelming abundance of double white dwarfs in the LISA gravitational wave frequency band, modeling of their waveforms has remained limited to the point-mass approximation in which gravitational radiation is the only source of systemic orbital angular momentum loss. As a significant fraction of these systems spirals in to periods as short as 5-10 minutes, tidal effects can, however, play an important role in modifying the gravitational wave frequency evolution. The strength of the tidal effects depends strongly on the energy dissipation mechanism damping the tides, which, for white dwarfs, is highly uncertain. In this poster, we present the first results of a systematic study of tidal dissipation in white dwarfs, and the impact of tides on the gravitational wave signal of close double white dwarfs.

  5. Transit probabilities for debris around white dwarfs

    NASA Astrophysics Data System (ADS)

    Lewis, John Arban; Johnson, John A.

    2017-01-01

    The discovery of WD 1145+017 (Vanderburg et al. 2015), a metal-polluted white dwarf with an infrared-excess and transits confirmed the long held theory that at least some metal-polluted white dwarfs are actively accreting material from crushed up planetesimals. A statistical understanding of WD 1145-like systems would inform us on the various pathways for metal-pollution and the end states of planetary systems around medium- to high-mass stars. However, we only have one example and there are presently no published studies of transit detection/discovery probabilities for white dwarfs within this interesting regime. We present a preliminary look at the transit probabilities for metal-polluted white dwarfs and their projected space density in the Solar Neighborhood, which will inform future searches for analogs to WD 1145+017.

  6. Pulsating White Dwarf Stars and Precision Asteroseismology

    NASA Astrophysics Data System (ADS)

    Winget, D. E.; Kepler, S. O.

    2008-09-01

    Galactic history is written in the white dwarf stars. Their surface properties hint at interiors composed of matter under extreme conditions. In the forty years since their discovery, pulsating white dwarf stars have moved from side-show curiosities to center stage as important tools for unraveling the deep mysteries of the Universe. Innovative observational techniques and theoretical modeling tools have breathed life into precision asteroseismology. We are just learning to use this powerful tool, confronting theoretical models with observed frequencies and their time rate-of-change. With this tool, we calibrate white dwarf cosmochronology; we explore equations of state; we measure stellar masses, rotation rates, and nuclear reaction rates; we explore the physics of interior crystallization; we study the structure of the progenitors of Type Ia supernovae, and we test models of dark matter. The white dwarf pulsations are at once the heartbeat of galactic history and a window into unexplored and exotic physics.

  7. WHITE DWARFS IN LOCAL STAR STREAMS

    SciTech Connect

    Fuchs, Burkhard; Dettbarn, Christian

    2011-01-15

    We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in these streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.

  8. White Dwarfs, Neutron Stars and Black Holes

    ERIC Educational Resources Information Center

    Szekeres, P.

    1977-01-01

    The three possible fates of burned-out stars: white dwarfs, neutron stars and black holes, are described in elementary terms. Characteristics of these celestial bodies, as provided by Einstein's work, are described. (CP)

  9. A circumbinary debris disk in a polluted white dwarf system

    NASA Astrophysics Data System (ADS)

    Farihi, J.; Parsons, S. G.; Gänsicke, B. T.

    2017-03-01

    Planetary systems commonly survive the evolution of single stars, as evidenced by terrestrial-like planetesimal debris observed orbiting and polluting the surfaces of white dwarfs 1,2 . Here, we report the identification of a circumbinary dust disk surrounding a white dwarf with a substellar companion in a 2.27 h orbit. The system bears the dual hallmarks of atmospheric metal pollution and infrared excess 3,4 ; however, the standard (flat and opaque) disk configuration is dynamically precluded by the binary. Instead, the detected reservoir of debris must lie well beyond the Roche limit in an optically thin configuration, where erosion by stellar irradiation is relatively rapid. This finding shows that rocky planetesimal formation is robust around close binaries, even those with low mass ratios.

  10. Spitzer: Accretion in Low-Mass Stars and Brown Dwarfs in the λ Orionis Cluster

    NASA Astrophysics Data System (ADS)

    Barrado y Navascués, David; Stauffer, John R.; Morales-Calderón, María; Bayo, Amelia; Fazzio, Giovanni; Megeath, Tom; Allen, Lori; Hartmann, Lee W.; Calvet, Nuria

    2007-07-01

    We present multiwavelength optical and IR photometry of 170 previously known low-mass stars and brown dwarfs of the 5 Myr Collinder 69 cluster (λ Orionis). The new photometry supports cluster membership for most of them, with less than 15% of the previous candidates identified as probable nonmembers. The near-IR photometry allows us to identify stars with IR excesses, and we find that the Class II population is very large, around 25% for stars (in the spectral range M0-M6.5) and 40% for brown dwarfs, down to 0.04 Msolar, despite the fact that the Hα equivalent width is low for a significant fraction of them. In addition, there are a number of substellar objects, classified as Class III, that have optically thin disks. The Class II members are distributed in an inhomogeneous way, lying preferentially in a filament running toward the southeast. The IR excesses for the Collinder 69 members range from pure Class II (flat or nearly flat spectra longward of 1 μm), to transition disks with no near-IR excess but excesses beginning within the IRAC wavelength range, to two stars with excess only detected at 24 μm. Collinder 69 thus appears to be at an age where it provides a natural laboratory for the study of primordial disks and their dissipation. Based on observations collected by the Spitzer Space Telescope, at the German-Spanish Astronomical Center of Calar Alto jointly operated by the Max-Planck-Institut für Astronomie Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC), and at the WHT operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofisica de Canarias.

  11. UBV photometry of hot DA white dwarfs

    NASA Technical Reports Server (NTRS)

    Kidder, K. M.; Holberg, J. B.; Mason, Paul A.

    1991-01-01

    Johnson UBV photometry has been obtained photoelectrically for a set of DA white dwarfs with effective temperatures greater than 20,000 K and for the AM Her type binary HO538 + 608. Most of the white dwarfs lie within existing Einstein IPC or EXOSAT LE soft X-ray fields, therefore they are of interest as potential serendipitous soft X-ray sources. In addition, high dispersion spectroscopy has been used to differentiate seven of these objects to be subdwarfs.

  12. ON THE EVOLUTION OF MAGNETIC WHITE DWARFS

    SciTech Connect

    Tremblay, P.-E.; Fontaine, G.; Brassard, P.; Freytag, B.; Steiner, O.; Ludwig, H.-G.; Steffen, M.; Wedemeyer, S.

    2015-10-10

    We present the first radiation magnetohydrodynamic simulations of the atmosphere of white dwarf stars. We demonstrate that convective energy transfer is seriously impeded by magnetic fields when the plasma-β parameter, the thermal-to-magnetic-pressure ratio, becomes smaller than unity. The critical field strength that inhibits convection in the photosphere of white dwarfs is in the range B = 1–50 kG, which is much smaller than the typical 1–1000 MG field strengths observed in magnetic white dwarfs, implying that these objects have radiative atmospheres. We have employed evolutionary models to study the cooling process of high-field magnetic white dwarfs, where convection is entirely suppressed during the full evolution (B ≳ 10 MG). We find that the inhibition of convection has no effect on cooling rates until the effective temperature (T{sub eff}) reaches a value of around 5500 K. In this regime, the standard convective sequences start to deviate from the ones without convection due to the convective coupling between the outer layers and the degenerate reservoir of thermal energy. Since no magnetic white dwarfs are currently known at the low temperatures where this coupling significantly changes the evolution, the effects of magnetism on cooling rates are not expected to be observed. This result contrasts with a recent suggestion that magnetic white dwarfs with T{sub eff} ≲ 10,000 K cool significantly slower than non-magnetic degenerates.

  13. Building Magnetic Fields in White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-03-01

    White dwarfs, the compact remnants left over at the end of low- and medium-mass stars lifetimes, are often found to have magnetic fields with strengths ranging from thousands to billions of times that of Earth. But how do these fields form?MultiplePossibilitiesAround 1020% of white dwarfs have been observed to have measurable magnetic fields with a wide range of strengths. There are several theories as to how these fields might be generated:The fields are fossil.The original weak magnetic fields of the progenitor stars were amplified as the stars cores evolved into white dwarfs.The fields are caused by binary interactions.White dwarfs that formed in the merger of a binary pair might have had a magnetic field amplified as a result of a dynamo that was generated during the merger.The fields were produced by some other internal physical mechanism during the cooling of the white dwarf itself.In a recent publication, a team of authors led by Jordi Isern (Institute of Space Sciences, CSIC, and Institute for Space Studies of Catalonia, Spain) explored this third possibility.Dynamos from CrystallizationThe inner and outer boundaries of the convective mantle of carbon/oxygen white dwarfs of two different masses (top vs. bottom panel) as a function of luminosity. As the white dwarf cools (toward the right), the mantle grows thinner due to the crystallization and settling of material. [Isern et al. 2017]As white dwarfs have no nuclear fusion at their centers, they simply radiate heat and gradually cool over time. The structure of the white dwarf undergoes an interesting change as it cools, however: though the object begins as a fluid composed primarily of an ionized mixture of carbon and oxygen (and a few minor species like nickel and iron), it gradually crystallizes as its temperature drops.The crystallized phase of the white dwarf is oxygen-rich which is denser than the liquid, so the crystallized material sinks to the center of the dwarf as it solidifies. As a result, the

  14. Confirmation and characterization of low-mass and brown dwarf candidate members of nearby young associations

    NASA Astrophysics Data System (ADS)

    Malo, Lison; Gagne, Jonathan; Doyon, Rene; Lafreniere, David; Artigau, Etienne; Chene, Andre-Nicolas; Faherty, Jackie; Albert, Loic; Naud, Marie-Eve

    2013-08-01

    Young nearby associations provide a crucial sample of stars for studying the local star formation history, investigating the early phases of planet formation, and searching for exoplanets through direct imaging. While new associations have been identified in the last decade, their members are mostly restricted to relatively massive (F,G,K) stars. Through a novel statistical analysis, we have identified 357 highly probable young low-mass and brown dwarfs members of BetaPictoris and ABDoradus moving groups, TWHydrae, Tucana-Horologium, Columba, Carina and Argus associations. A confirmation of their membership and their young age require, however, measurements of their radial velocity, parallax and spectroscopic age indicators. First, we propose to use Phoenix to measure radial velocity for 40 northern candidates. Previous time allocations have already enabled the confirmation of 39 new members. Second, we propose to confirm the kinematic age of 15 candidates by using Chiron to measure several spectroscopic youth indicators, such as CaH, lithium, Halpha and HeI line (accretion) and rotation. Finally, we proposed to continue our trigonometric parallax program, initiated in 2011, to measure precisely the fourth astrometric epoch of 19 candidates. Our program will significantly improve the census of young moving group members.

  15. Self-consistent evolution of accreting low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Baraffe, I.; Elbakyan, V. G.; Vorobyov, E. I.; Chabrier, G.

    2017-01-01

    We present self-consistent calculations coupling numerical hydrodynamics simulations of collapsing pre-stellar cores and stellar evolution models of accreting objects. We analyse the main impact of consistent accretion history on the evolution and lithium depletion of young low-mass stars and brown dwarfs. These consistent models confirm the generation of a luminosity spread in Herzsprung-Russell diagrams at ages 1-10 Myr. They also confirm that early accretion can produce objects with abnormal Li depletion, as found in a previous study that was based on arbitrary accretion rates. The results strengthen that objects with anomalously high level of Li depletion in young clusters should be extremely rare. We also find that early phases of burst accretion can produce coeval models of similar mass with a range of different Li surface abundances, and in particular with Li-excess compared to the predictions of non-accreting counterparts. This result is due to a subtle competition between the effect of burst accretion and its impact on the central stellar temperature, the growth of the stellar radiative core and the accretion of fresh Li from the accretion disk. Only consistent models could reveal such a subtle combination of effects. This new result could explain the recent, puzzling observations of Li-excess of fast rotators in the young cluster NGC 2264. Present self-consistent accreting models are available in electronic form.

  16. Angular Momentum Evolution of Young Very Low Mass Stars and Brown Dwarfs: The Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Rodríguez-Ledesma, M. V.; Mundt, R.; Eislöffel, J.; Herbst, W.

    2008-12-01

    The rotational periods of young late-type stars and brown dwarfs (BDs) can be derived from photometric light curves, due to the rotational brightness modulation by surface features (i.e. magnetic cool spots). These kind of studies give important constrains on certain aspects of the so-called angular momentum problem of star formation. We report the first results of an extensive rotational period study of young stellar objects (YSOs) down into the BD mass regime in the Orion Nebula Cluster (ONC, d=450pc, age ˜ 1Myr). Our results are based on an deep photometric monitoring campaign, using the Wide Field Imager (WFI) camera on the ESO/MPG 2.2 meter telescope in La Silla, Chile. We found that 487 objects show detectable periodic light modulations, 377 of which are new detections. In addition 124 are potential BDs. This is by far the most extensive and complete rotational periods data set in the very low mass (VLM) star and BD regime. The spatial distribution of the variable objects, their rotational periods as well as the amplitude of the brightness modulation have been analyzed clearly indicating different stellar properties inside and outside the half-mass cluster radius of the ONC (R_{cluster} = 6.7'). In addition, we studied the dependence of the periodic brightness modulation on the magnitude (mass) of the objects and performed a comparison of the found period distribution with those of higher-mass objects in the ONC ( te{H2002}).

  17. THE INITIAL-FINAL MASS RELATION AMONG WHITE DWARFS IN WIDE BINARIES

    SciTech Connect

    Zhao, J. K.; Oswalt, T. D.; Willson, L. A.; Wang, Q.; Zhao, G. E-mail: toswalt@fit.edu E-mail: lwillson@iastate.edu

    2012-02-20

    We present the initial-final mass relation derived from 10 white dwarfs in wide binaries that consist of a main-sequence star and a white dwarf. The temperature and gravity of each white dwarf were measured by fitting theoretical model atmospheres to the observed spectrum using a {chi}{sup 2} fitting algorithm. The cooling time and mass were obtained using theoretical cooling tracks. The total age of each binary was estimated from the chromospheric activity of its main-sequence component to an uncertainty of about 0.17 dex in log t. The difference between the total age and white dwarf cooling time is taken as the main-sequence lifetime of each white dwarf. The initial mass of each white dwarf was then determined using stellar evolution tracks with a corresponding metallicity derived from spectra of their main-sequence companions, thus yielding the initial-final mass relation. Most of the initial masses of the white dwarf components are between 1 and 2 M{sub Sun }. Our results suggest a correlation between the metallicity of a white dwarf's progenitor and the amount of post-main-sequence mass loss it experiences-at least among progenitors with masses in the range of 1-2 M{sub Sun }. A comparison of our observations to theoretical models suggests that low-mass stars preferentially lose mass on the red giant branch.

  18. Building an Unusual White-Dwarf Duo

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-09-01

    A new study has examined how the puzzling wide binary system HS 2220+2146 which consists of two white dwarfs orbiting each other might have formed. This system may be an example of a new evolutionary pathway for wide white-dwarf binaries.Evolution of a BinaryMore than 100 stellar systems have been discovered consisting of two white dwarfs in a wide orbit around each other. How do these binaries form? In the traditional picture, the system begins as a binary consisting of two main-sequence stars. Due to the large separation between the stars, the stars evolve independently, each passing through the main-sequence and giant branches and ending their lives as white dwarfs.An illustration of a hierarchical triple star system, in which two stars orbit each other, and a third star orbits the pair. [NASA/JPL-Caltech]Because more massive stars evolve more quickly, the most massive of the two stars in a binary pair should be the first to evolve into a white dwarf. Consequently, when we observe a double-white-dwarf binary, its usually a safe bet that the more massive of the two white dwarfs will also be the older and cooler of the pair, since it should have formed first.But in the case of the double-white-dwarf binary HS 2220+2146, the opposite is true: the more massive of the two white dwarfs appears to be the younger and hotter of the pair. If it wasnt created in the traditional way, then how did this system form?Two From Three?Led by Jeff Andrews (Foundation for Research and Technology-Hellas, Greece and Columbia University), a team of scientists recently examined this system more carefully, analyzing its spectra to confirm our understanding of the white dwarfs temperatures and masses.Based on their observations, Andrews and collaborators determined that there are no hidden additional companions that could have caused the unusual evolution of this system. Instead, the team proposed that this unusual binary might be an example of an evolutionary channel that involves three

  19. Brown dwarfs as close companions to white dwarfs

    NASA Technical Reports Server (NTRS)

    Stringfellow, Guy S.; Bodenheimer, Peter; Black, David C.

    1990-01-01

    The influence of the radiation flux emitted by a white dwarf primary on the evolution of a closely orbiting brown dwarf (BD) companion is investigated. Full stellar evolutionary calculations are presented for both isolated and thermal bath cases, including effects of large variations in the atmospheric grain opacities. High grain opacities significantly increase the radii of the BDs, but the thermal bath does not. The major influence of the thermal bath is to increase substantially the surface temperature and luminosity of the BD at a given age. These results are compared with the observational properties of the possible BD companion of the white dwarf G29-38. Inclusion of both physical effects, high grain opacities and thermal bath, increases the mass range (0.034-0.063 solar masses) of viable models significantly, yet the final determination of whether the object is indeed a BD requires improvements in the observations of the system's properties.

  20. A HERSCHEL SURVEY OF COLD DUST IN DISKS AROUND BROWN DWARFS AND LOW-MASS STARS

    SciTech Connect

    Harvey, Paul M.; Evans, Neal J. II; Henning, Thomas; Liu Yao; Wolf, Sebastian; Menard, Francois; Pinte, Christophe; Pascucci, Ilaria E-mail: nje@astro.as.utexas.edu E-mail: wolf@astrophysik.uni-kiel.de E-mail: yliu@pmo.ac.cn E-mail: christophe.pinte@obs.ujf-grenoble.fr E-mail: pascucci@lpl.arizona.edu

    2012-08-10

    We report the complete photometric results from our Herschel study which is the first comprehensive program to search for far-infrared emission from cold dust around young brown dwarfs (BDs). We surveyed 50 fields containing 51 known or suspected BDs and very low mass stars that have evidence of circumstellar disks based on Spitzer photometry and/or spectroscopy. The objects with known spectral types range from M3 to M9.5. Four of the candidates were subsequently identified as extragalactic objects. Of the remaining 47 we have successfully detected 36 at 70 {mu}m and 14 at 160 {mu}m with signal-to-noise ratio (S/N) greater than 3, as well as several additional possible detections with low S/N. The objects exhibit a range of [24]-[70] {mu}m colors suggesting a range in mass and/or structure of the outer disk. We present modeling of the spectral energy distributions of the sample and discuss trends visible in the data. Using two Monte Carlo radiative transfer codes we investigate disk masses and geometry. We find a very wide range in modeled total disk masses from less than 10{sup -6} M{sub Sun} up to 10{sup -3} M{sub Sun} with a median disk mass of the order of 3 Multiplication-Sign 10{sup -5} M{sub Sun }, suggesting that the median ratio of disk mass to central object mass may be lower than for T Tauri stars. The disk scale heights and flaring angles, however, cover a range consistent with those seen around T Tauri stars. The host clouds in which the young BDs and low-mass stars are located span a range in estimated age from {approx}1-3 Myr to {approx}10 Myr and represent a variety of star-forming environments. No obvious dependence on cloud location or age is seen in the disk properties, though the statistical significance of this conclusion is not strong.

  1. Direct measurements of the fundamental properties of low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Dupuy, Trent J.

    2010-10-01

    [approximate]2 at a given mass, which means that model-based substellar mass determinations (e.g., for directly imaged extrasolar planets and the low-mass initial mass function) may be systematically overestimating the masses. (3) We have employed our large sample of binary orbits to carry out a novel test of the earliest evolutionary stages, by using the distribution of orbital eccentricities to distinguish between competing models of brown dwarf formation.

  2. Properties and Star Formation Histories of Intermediate Redshift Dwarf Low-Mass Star-Forming Galaxies

    NASA Astrophysics Data System (ADS)

    Rodríguez-Muñoz, L.; Gallego, J.; Pacifici, C.; Tresse, L.; Charlot, S.; Gil de Paz, A.; Barro, G.; Villar, V.

    2017-03-01

    The epoch when low-mass star-forming galaxies (LMSFGs) form the bulk of their stellar mass is uncertain. While some models predict an early formation, others favor a delayed scenario until later ages of the Universe. We present improved constraints on the physical properties and star formation histories (SFHs) of a sample of intermediate redshift LMSFGs selected by their stellar mass or blue-compact-dwarf-like properties. Our work takes advantage of the deep UV-to-FIR photometric coverage available on the Extended-Chandra Deep Field South and our own dedicated deep VLT/VIMOS optical spectroscopy programs. On the one hand, we estimate the stellar mass (M_{*}), star formation rate (SFR), and SFH of each galaxy modeling its spectral energy distribution. We use a novel approach by Pacifici et al. 2012, that (1) consistently combines photometric (broad-band) and spectroscopic (emission line fluxes and equivalent widths) data, and (2) uses physically-motivated SFHs with non-uniform variations of the SFR as a function of time. On the other hand, we characterize the properties of their interstellar medium by analyzing the emission line features visible in the VIMOS spectroscopy. The final sample includes 91 spectroscopically confirmed LMSFGs (7.3 ≤ logM_{*}/M_{⊙} ≤ 9.5) at 0.3

  3. Hints for Small Disks around Very Low Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Hendler, Nathanial P.; Mulders, Gijs D.; Pascucci, Ilaria; Greenwood, Aaron; Kamp, Inga; Henning, Thomas; Ménard, François; Dent, William R. F.; Evans, Neal J., II

    2017-06-01

    The properties of disks around brown dwarfs and very low mass stars (hereafter VLMOs) provide important boundary conditions on the process of planet formation and inform us about the numbers and masses of planets than can form in this regime. We use the Herschel Space Observatory PACS spectrometer to measure the continuum and [O i] 63 μm line emission toward 11 VLMOs with known disks in the Taurus and Chamaeleon I star-forming regions. We fit radiative transfer models to the spectral energy distributions of these sources. Additionally, we carry out a grid of radiative transfer models run in a regime that connects the luminosity of our sources with brighter T Tauri stars. We find that VLMO disks with sizes 1.3-78 au, smaller than typical T Tauri disks, fit well the spectral energy distributions assuming that disk geometry and dust properties are stellar mass independent. Reducing the disk size increases the disk temperature, and we show that VLMOs do not follow previously derived disk temperature-stellar luminosity relationships if the disk outer radius scales with stellar mass. Only 2 out of 11 sources are detected in [O i] despite a better sensitivity than was achieved for T Tauri stars, suggesting that VLMO disks are underluminous. Using thermochemical models, we show that smaller disks can lead to the unexpected [O i] 63 μm nondetections in our sample. The disk outer radius is an important factor in determining the gas and dust observables. Hence, spatially resolved observations with ALMA—to establish if and how disk radii scale with stellar mass—should be pursued further. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  4. BANYAN. VIII. New Low-mass Stars and Brown Dwarfs with Candidate Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Boucher, Anne; Lafrenière, David; Gagné, Jonathan; Malo, Lison; Faherty, Jacqueline K.; Doyon, René; Chen, Christine H.

    2016-11-01

    We present the results of a search for new circumstellar disks around low-mass stars and brown dwarfs with spectral types >K5 that are confirmed or candidate members of nearby young moving groups. Our search input sample was drawn from the BANYAN surveys of Malo et al. and Gagné et al. Two Micron All-Sky Survey and Wide-field Infrared Survey Explorer data were used to detect near- to mid-infrared excesses that would reveal the presence of circumstellar disks. A total of 13 targets with convincing excesses were identified: 4 are new and 9 were already known in the literature. The new candidates are 2MASS J05010082-4337102 (M4.5), J08561384-1342242 ({{M}}8γ ), J12474428-3816464 ({{M}}9γ ), and J02265658-5327032 ({{L}}0δ ); they are candidate members of the TW Hya (˜ 10+/- 3 Myr), Columba (˜{42}-4+6 Myr), and Tucana-Horologium (˜ 45+/- 4 Myr) associations, with masses of 120 and 13-18 {M}{Jup}. The M8-L0 objects in Columba and Tucana-Horologium are potentially among the first substellar disk systems aged ˜40 Myr. Estimates of the new candidates’ mean disk temperatures and fractional luminosities are in the ranges ˜135{--}520 {{K}} and 0.021{--}0.15, respectively. New optical spectroscopy of J0501-4337 reveals strong Hα emission, possibly indicating ongoing accretion, provides a detection of lithium absorption, and shows a radial velocity measurement that is consistent with a membership to Columba. We also present a near-infrared spectrum of J0226-5327 that reveals Paschen β emission and shows signs of low surface gravity, consistent with accretion from a disk and a young age.

  5. PLANETS AROUND LOW-MASS STARS (PALMS). II. A LOW-MASS COMPANION TO THE YOUNG M DWARF GJ 3629 SEPARATED BY 0.''2

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Tamura, Motohide

    2012-09-01

    We present the discovery of a 0.''2 companion to the young M dwarf GJ 3629 as part of our high-contrast adaptive optics imaging search for giant planets around low-mass stars with the Keck-II and Subaru telescopes. Two epochs of imaging confirm that the pair is comoving and reveal signs of orbital motion. The primary exhibits saturated X-ray emission which, together with its UV photometry from GALEX, points to an age younger than {approx}300 Myr. At these ages the companion lies below the hydrogen burning limit with a model-dependent mass of 46 {+-} 16 M{sub Jup} based on the system's photometric distance of 22 {+-} 3 pc. Resolved YJHK photometry of the pair indicates a spectral type of M7 {+-} 2 for GJ 3629 B. With a projected separation of 4.4 {+-} 0.6 AU and an estimated orbital period of 21 {+-} 5 yr, GJ 3629 AB is likely to yield a dynamical mass in the next several years, making it one of only a handful of brown dwarfs to have a measured mass and an age constrained from the stellar primary.

  6. The Potential of White Dwarf Cosmochronology

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Bergeron, P.

    2001-04-01

    In the light of recent significant progress on both the observational and theoretical fronts, we review the status of white dwarf stars as cosmochronometers. These objects represent the end products of stellar evolution for the vast majority of stars and, as such, can be used to constrain the ages of various populations of evolved stars in the Galaxy. For example, the oldest white dwarfs in the solar neighborhood (the remnants of the very first generation of intermediate-mass stars in the Galactic disk) are still visible and can be used, in conjunction with cooling theory, to estimate the age of the disk. More recent observations suggest the tantalizing possibility that a population of very old white dwarfs inhabits the Galactic halo. Such a population may contribute significantly to baryonic ``dark'' matter in the Milky Way and may be used to obtain an independent estimate of the age of the halo. In addition, white dwarf cosmochronology is likely to play a very significant role in the coming era of giant 8-10 m telescopes when faint white dwarf populations should be routinely discovered and studied in open and globular clusters. Based, in part, on the C. S. Beals Lecture presented by G. Fontaine at the Annual General Meeting of the Canadian Astronomical Society held in Vancouver (2000 May).

  7. White Dwarfs in the GALEX Survey

    NASA Technical Reports Server (NTRS)

    Kawka, Adela; Vennes, Stephane

    2007-01-01

    We have cross-correlated the 2dF QSO Redshift Survey (2QZ) white dwarf catalog with the GALEX 2nd Data Release and the Sloan Digital Sky Survey (SDSS) data release 5 to obtain ultraviolet photometry (FUV, NUV) for approximately 700 objects and optical photometry (ugriz) for approximately 800 objects. We have compared the optical-ultraviolet colors to synthetic white dwarf colors to obtain temperature estimates for approximately 250 of these objects. These white dwarfs have effective temperatures ranging from 10 000 K (cooling age of about 1Gyr) up to about 40000 K (cooling age of about 3 Myrs), with a few that have even higher temperatures. We found that to distinguish white dwarfs from other stellar luminosity classes both optical and ultraviolet colors are necessary, in particular for the hotter objects where there is contamination from B and 0 main-sequence stars. Using this sample we build a luminosity function for the DA white dwarfs with Mv < 12 mag.

  8. White Dwarf Stars: A Brief Overview

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Brassard, P.; Charpinet, S.; Randall, S. K.; Van Grootel, V.

    2013-12-01

    We present a brief summary of what is currently known about white dwarf stars, with an emphasis on their evolutionary and internal properties. As is well known, white dwarfs represent the end products of stellar evolution for the vast majority of stars and, as such, bear the signatures of past events (such as mass-loss, mixing phases, loss and redistribution of angular momentum, and thermonuclear burning) that are of essential importance in the evolution of stars in general. In addition, white dwarf stars represent ideal testbeds for our understanding of matter under extreme conditions, and work on their constitutive physics (neutrino production rates, conductive and radiative opacities, interior liquid and solid equations of state, partially ionized and partially degenerate envelope equations of state, diffusion coefficients, line broadening mechanisms) is still being actively pursued. Given a set of constitutive physics, cooling white dwarfs can be used advantageously as cosmochronometers. Moreover, the field has been blessed by the existence of four distinct families of pulsating white dwarfs, each mapping a different evolutionary phase, and this allows the application of the asteroseismological method to probe and test their internal structure and evolutionary state.

  9. THE MASSES OF POPULATION II WHITE DWARFS

    SciTech Connect

    Kalirai, Jason S.; Davis, D. Saul; Richer, Harvey B.; Bergeron, P.; Catelan, Marcio; Hansen, Brad M. S.; Michael Rich, R. E-mail: sdavis@astro.ubc.c E-mail: bergeron@astro.umontreal.c E-mail: hansen@astro.ucla.ed

    2009-11-01

    Globular star clusters are among the first stellar populations to have formed in the Milky Way, and thus only a small sliver of their initial spectrum of stellar types are still burning hydrogen on the main sequence today. Almost all of the stars born with more mass than 0.8 M{sub sun} have evolved to form the white dwarf cooling sequence of these systems, and the distribution and properties of these remnants uniquely holds clues related to the nature of the now evolved progenitor stars. With ultra-deep Hubble Space Telescope imaging observations, rich white dwarf populations of four nearby Milky Way globular clusters have recently been uncovered, and are found to extend impressive 5-8 mag in the faint-blue region of the Hertzsprung-Russell diagram. In this paper, we characterize the properties of these population II remnants by presenting the first direct mass measurements of individual white dwarfs near the tip of the cooling sequence in the nearest of the Milky Way globulars, M4. Based on Gemini/GMOS and Keck/LRIS multiobject spectroscopic observations, our results indicate that 0.8 M{sub sun} population II main-sequence stars evolving today form 0.53 +- 0.01 M{sub sun} white dwarfs. We discuss the implications of this result as it relates to our understanding of stellar structure and evolution of population II stars and for the age of the Galactic halo, as measured with white dwarf cooling theory.

  10. White dwarf stars with carbon atmospheres.

    PubMed

    Dufour, P; Liebert, J; Fontaine, G; Behara, N

    2007-11-22

    White dwarfs represent the endpoint of stellar evolution for stars with initial masses between approximately 0.07 and 8-10, where is the mass of the Sun (more massive stars end their life as either black holes or neutron stars). The theory of stellar evolution predicts that the majority of white dwarfs have a core made of carbon and oxygen, which itself is surrounded by a helium layer and, for approximately 80 per cent of known white dwarfs, by an additional hydrogen layer. All white dwarfs therefore have been traditionally found to belong to one of two categories: those with a hydrogen-rich atmosphere (the DA spectral type) and those with a helium-rich atmosphere (the non-DAs). Here we report the discovery of several white dwarfs with atmospheres primarily composed of carbon, with little or no trace of hydrogen or helium. Our analysis shows that the atmospheric parameters found for these stars do not fit satisfactorily in any of the currently known theories of post-asymptotic giant branch evolution, although these objects might be the cooler counterpart of the unique and extensively studied PG 1159 star H1504+65 (refs 4-7). These stars, together with H1504+65, might accordingly form a new evolutionary sequence that follows the asymptotic giant branch.

  11. Gravitational Interactions of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    McKeough, James; Robinson, Chloe; Ortiz, Bridget; Hira, Ajit

    2016-03-01

    In the light of the possible role of White Dwarf stars as progenitors of Type Ia supernovas, we present computational simulations of some astrophysical phenomena associated with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.5 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We will extend our computational studies to blue giant and red giant stars in the future. Funding from National Science Foundation.

  12. VizieR Online Data Catalog: Near-IR spectroscopy of low-mass binaries and brown dwarfs (Mace, 2014)

    NASA Astrophysics Data System (ADS)

    Mace, G. N.

    2014-05-01

    The mass of a star at formation determines its subsequent evolution and demise. Low-mass stars are the most common products of star formation and their long main-sequence lifetimes cause them to accumulate over time. Star formation also produces many substellar-mass objects known as brown dwarfs, which emerge from their natal molecular clouds and continually cool as they age, pervading the Milky Way. Low-mass stars and brown dwarfs exhibit a wide range of physical characteristics and their abundance make them ideal subjects for testing formation and evolution models. I have examined a pair of pre-main sequence spectroscopic binaries and used radial velocity variations to determine orbital solutions and mass ratios. Additionally, I have employed synthetic spectra to estimate their effective temperatures and place them on theoretical Hertzsprung-Russell diagrams. From this analysis I discuss the formation and evolution of young binary systems and place bounds on absolute masses and radii. I have also studied the late-type T dwarfs revealed by the Wide-field Infrared Survey Explorer (WISE). This includes the exemplar T8 subdwarf Wolf 1130C, which has the lowest inferred metallicity in the literature and spectroscopic traits consistent with old age. Comparison to synthetic spectra implies that the dispersion in near-infrared colors of late-type T dwarfs is a result of age and/or thin sul de clouds. With the updated census of the L, T, and Y dwarfs we can now study specific brown dwarf subpopulations. Finally, I present a number of future studies that would develop our understanding of the physical qualities of T dwarf color outliers and disentangle the tracers of age and atmospheric properties. The thesis is available at: http://www.astro.ucla.edu/~gmace/thesis.html (7 data files).

  13. FIRST DIRECT EVIDENCE THAT BARIUM DWARFS HAVE WHITE DWARF COMPANIONS

    SciTech Connect

    Gray, R. O.; McGahee, C. E.; Griffin, R. E. M.; Corbally, C. J. E-mail: cmcgahe@g.clemson.edu E-mail: corbally@as.arizona.edu

    2011-05-15

    Barium II (Ba) stars are chemically peculiar F-, G-, and K-type objects that show enhanced abundances of s-process elements. Since s-process nucleosynthesis is unlikely to take place in stars prior to the advanced asymptotic giant branch (AGB) stage, the prevailing hypothesis is that each present Ba star was contaminated by an AGB companion which is now a white dwarf (WD). Unless the initial mass ratio of such a binary was fairly close to unity, the receiving star is thus at least as likely to be a dwarf as a giant. So although most known Ba stars appear to be giants, the hypothesis requires that Ba dwarfs be comparably plentiful and moreover that they should all have WD companions. However, despite dedicated searches with the IUE satellite, no WD companions have been directly detected to date among the classical Ba dwarfs, even though some 90% of those stars are spectroscopic binaries, so the contamination hypothesis is therefore presently in some jeopardy. In this paper, we analyze recent deep, near-UV and far-UV Galaxy Evolution Explorer (GALEX) exposures of four of the brightest of the class (HD 2454, 15360, 26367, and 221531), together with archived GALEX data for two newly recognized Ba dwarfs: HD 34654 and HD 114520 (which also prove to be spectroscopic binaries). The GALEX observations of the Ba dwarfs as a group show a significant far-UV excess compared to a control sample of normal F-type dwarfs. We suggest that this ensemble far-UV excess constitutes the first direct evidence that Ba dwarfs have WD companions.

  14. A SuperWASP Benchmark Eclipsing Binary with a Very Low-Mass Secondary in the Brown Dwarf Desert

    NASA Astrophysics Data System (ADS)

    Gomez Maqueo Chew, Yilen; Garcia-Melendo, Enrique; Hebb, Leslie; Faedi, Francesca; Lopez-Morales, Mercedes; Pollacco, Don

    2012-08-01

    We will obtain eclipse light curves of a newly discovered eclipsing binary composed of a Sun-like primary with a secondary companion which can be either a very low mass M-dwarf (less than ~0.15 Msun) or a brown dwarf. The objects orbit each other with a period of ~14.3 days in an eccentric orbit, which as been confirmed with a high- precision radial velocity curve for the system. Therefore, these eclipse light curves will allow us to constrain the radii of the eclipsing components and orbital inclination of the system. Furthermore, the depth of the secondary eclipse which can only be observed in the near-infrared, directly constrains the temperature ratio between the components. In combination with the the masses derived from the radial velocity curve, our light curve analysis will unveil the true nature of the secondary. Whether it is a very-low mass star or a brown dwarf, direct measurements of the fundamental properties (masses, radii and temperatures) of such objects are very scarce and will provide key tests to current evolutionary models. Thus, we request two nights with FLAMINGOS at the KPNO 2.1m to observe a complete secondary eclipse of the system at near-infrared wavelengths in order to fully characterize the very low-mass component of the system.

  15. Recombination energy in double white dwarf formation

    NASA Astrophysics Data System (ADS)

    Nandez, J. L. A.; Ivanova, N.; Lombardi, J. C.

    2015-06-01

    In this Letter, we investigate the role of recombination energy during a common envelope event. We confirm that taking this energy into account helps to avoid the formation of the circumbinary envelope commonly found in previous studies. For the first time, we can model a complete common envelope event, with a clean compact double white dwarf binary system formed at the end. The resulting binary orbit is almost perfectly circular. In addition to considering recombination energy, we also show that between 1/4 and 1/2 of the released orbital energy is taken away by the ejected material. We apply this new method to the case of the double white dwarf system WD 1101+364, and we find that the progenitor system at the start of the common envelope event consisted of an ˜1.5 M⊙ red giant star in an ˜30 d orbit with a white dwarf companion.

  16. White dwarfs, the Galaxy and Dirac's cosmology

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1976-01-01

    The additive and multiplicative versions of Dirac's cosmological hypothesis relating the gravitational constant variation with elapsed time and number of particles populating the universe is invoked to account for the deficiency or absence of white dwarfs fainter than about 0.0001 solar luminosity. An estimate is made of white dwarf luminosity in accordance with the two evolutionary models, and it is conjectured that some old white dwarfs with high space velocities may be on the verge of gravitational collapse. Lack of a special mechanism to produce the vast numbers of black holes or other dead stars accounting for 'missing matter' in the vicinity of the sun and in the galactic halo is noted in Dirac's multiplicative model. Results indicate that either Dirac's theory is untenable, or that radiation and heating are of some unknown nature, or that the process of creation of new matter requires a corresponding input of energy.

  17. Be stars with white dwarf companions

    NASA Astrophysics Data System (ADS)

    Orio, Marina; Luna, Gerardo; Zemko, Polina; Kotulla, Ralf; Gallagher, Jay; Harbeck, Daniel

    2016-07-01

    A handful of supersoft X-ray sources in the Magellanic Clouds that could not be identified with transient nova outbursts turned out to be mainly massive close binaries. Recently, we have clearly identified a Be binary in M31, and are currently collecting data for another candidate in that galaxy. Work is in progress to assess whether the compact object companion really is a hydrogen burning white dwarf (the alternative being a massive stellar-mass black hole). If we can prove that Be+white dwarf interacting close binaries are common, and that hydrogen is often ignited on the white dwarf in these systems, we have discovered a new promising channel towards the explosion of supernovae of type Ia in star forming regions, without invoking double degenerate systems

  18. White dwarfs, the Galaxy and Dirac's cosmology

    NASA Technical Reports Server (NTRS)

    Stothers, R.

    1976-01-01

    The additive and multiplicative versions of Dirac's cosmological hypothesis relating the gravitational constant variation with elapsed time and number of particles populating the universe is invoked to account for the deficiency or absence of white dwarfs fainter than about 0.0001 solar luminosity. An estimate is made of white dwarf luminosity in accordance with the two evolutionary models, and it is conjectured that some old white dwarfs with high space velocities may be on the verge of gravitational collapse. Lack of a special mechanism to produce the vast numbers of black holes or other dead stars accounting for 'missing matter' in the vicinity of the sun and in the galactic halo is noted in Dirac's multiplicative model. Results indicate that either Dirac's theory is untenable, or that radiation and heating are of some unknown nature, or that the process of creation of new matter requires a corresponding input of energy.

  19. White Dwarfs in Gaia Data Release 1

    NASA Astrophysics Data System (ADS)

    Jordan, S.

    2017-03-01

    On September 14, the Gaia archives opened for access to the Gaia DR1. The catalogue with more than one billion star positions and more than two million parallaxes and proper motions will have enormous influence on many topics in astronomy. However, due to their extremely blue colour, parallaxes and proper motions of only six white dwarfs were directly measured. Tremblay et al. used these data and those for 46 white dwarfs in binaries in order to construct an empirical mass-radius relation. As it was the case for Hipparcos, the precision of the data does not allow for the characterisation of hydrogen envelope masses. With Gaia DR2 coming in late 2017 the prospects for white dwarf research are much better.

  20. THE LINK BETWEEN PLANETARY SYSTEMS, DUSTY WHITE DWARFS, AND METAL-POLLUTED WHITE DWARFS

    SciTech Connect

    Debes, John H.; Walsh, Kevin J.; Stark, Christopher

    2012-03-10

    It has long been suspected that metal-polluted white dwarfs (types DAZ, DBZ, and DZ) and white dwarfs with dusty disks possess planetary systems, but a specific physical mechanism by which planetesimals are perturbed close to a white dwarf has not yet been fully posited. In this paper, we demonstrate that mass loss from a central star during post-main-sequence evolution can sweep planetesimals into interior mean motion resonances with a single giant planet. These planetesimals are slowly removed through chaotic excursions of eccentricity that in time create radial orbits capable of tidally disrupting the planetesimal. Numerical N-body simulations of the solar system show that a sufficient number of planetesimals are perturbed to explain white dwarfs with both dust and metal pollution, provided other white dwarfs have more massive relic asteroid belts. Our scenario requires only one Jupiter-sized planet and a sufficient number of asteroids near its 2:1 interior mean motion resonance. Finally, we show that once a planetesimal is perturbed into a tidal crossing orbit, it will become disrupted after the first pass of the white dwarf, where a highly eccentric stream of debris forms the main reservoir for dust-producing collisions. These simulations, in concert with observations of white dwarfs, place interesting limits on the frequency of planetary systems around main-sequence stars, the frequency of planetesimal belts, and the probability that dust may obscure future terrestrial planet finding missions.

  1. Hubble COS Spectroscopy of the Dwarf Nova CW Mon: The White Dwarf in Quiescence?

    NASA Astrophysics Data System (ADS)

    Hause, Connor; Sion, Edward M.; Godon, Patrick; Gänsicke, Boris T.; Szkody, Paula; de Martino, Domitilla; Pala, Anna

    2017-08-01

    We present a synthetic spectral analysis of the HST COS spectrum of the U Geminorum-type dwarf nova CW Mon, taken during quiescence as part of our COS survey of accreting white dwarfs (WDs) in Cataclysmic Variables. We use a synthetic photosphere and optically thick accretion disk spectra to model the COS spectrum as well as archival IUE spectra obtained decades ago, when the system was in an even deeper quiescent state. Assuming a reddening of E(B-V) = 0.06, an inclination of 60° (CW Mon has eclipses of the accretion disk), and a WD mass of 0.8 {M}⊙ , our results indicate the presence of a 22-27,000 K WD and a low mass accretion rate \\dot{M}≲ {10}-10 {M}⊙ {{yr}}-1, for a derived distance of ˜200 to ˜300 pc. Based on observations made with the NASA-Hubble Space Telescope.

  2. White Dwarf Mergers on Adaptive Meshes

    NASA Astrophysics Data System (ADS)

    Katz, Maximilian Peter

    The mergers of binary white dwarf systems are potential progenitors of astrophysical explosions such as Type Ia supernovae. These white dwarfs can merge either by orbital decay through the emission of gravitational waves or by direct collisions as a result of orbital perturbations. The coalescence of the stars may ignite nuclear fusion, resulting in the destruction of both stars through a thermonuclear runaway and ensuing detonation. The goal of this dissertation is to simulate binary white dwarf systems using the techniques of computational fluid dynamics and therefore to understand what numerical techniques are necessary to obtain accurate dynamical evolution of the system, as well as to learn what conditions are necessary to enable a realistic detonation. For this purpose I have used software that solves the relevant fluid equations, the Poisson equation for self-gravity, and the systems governing nuclear reactions between atomic species. These equations are modeled on a computational domain that uses the technique of adaptive mesh refinement to have the highest spatial resolution in the areas of the domain that are most sensitive to the need for accurate numerical evolution. I have identified that the most important obstacles to accurate evolution are the numerical violation of conservation of energy and angular momentum in the system, and the development of numerically seeded thermonuclear detonations that do not bear resemblance to physically correct detonations. I then developed methods for ameliorating these problems, and determined what metrics can be used for judging whether a given white dwarf merger simulation is trustworthy. This involved the development of a number of algorithmic improvements to the simulation software, which I describe. Finally, I performed high-resolution simulations of typical cases of white dwarf mergers and head-on collisions to demonstrate the impacts of these choices. The results of these simulations and the corresponding

  3. General relativistic calculations for white dwarfs

    NASA Astrophysics Data System (ADS)

    Mathew, Arun; Nandy, Malay K.

    2017-05-01

    The mass-radius relations for white dwarfs are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of 1.4562{M}⊙ is modified to 1.4166{M}⊙ in the general relativistic case for {}_2^4{{He}} (and {}_612{{C}}) white dwarfs. Using the same general relativistic treatment, the critical mass for {}2656{{Fe}} white dwarfs is obtained as 1.2230{M}⊙ . In addition, departure from the ideal degenerate equation of state (EoS) is accounted for by considering Salpeter’s EoS along with the TOV equation, yielding slightly lower values for the critical masses, namely 1.4081{M}⊙ for {}_2^4{{He}}, 1.3916{M}⊙ for {}_612{{C}} and 1.1565{M}⊙ for {}2656{{Fe}} white dwarfs. We also compare the critical densities for gravitational instability with the neutronization threshold densities to find that {}_2^4{{He}} and {}_612{{C}} white dwarfs are stable against neutronization with the critical values of 1.4081{M}⊙ and 1.3916{M}⊙ , respectively. However, the critical masses for {}_816{{O}}, {}1020{{Ne}}, {}1224{{Mg}}, {}1428{{Si}}, {}1632{{S}} and {}2656{{Fe}} white dwarfs are lower due to neutronization. Corresponding to their central densities for neutronization thresholds, we obtain their maximum stable masses due to neutronization by solving the TOV equation coupled with the Salpeter EoS.

  4. Mystery of a Dimming White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-12-01

    In the wake of the recent media attention over an enigmatic, dimming star, another intriguing object has been discovered: J1529+2928, a white dwarf that periodically dims. This mystery, however, may have a simple solution with interesting consequences for future surveys of white dwarfs.Unexpected VariabilityJ1529+2928 is an isolated white dwarf that appears to have a mass of slightly more than the Sun. But rather than radiating steadily, J1529+2928 dims once every 38 minutes almost as though it were being eclipsed.The team that discovered these variations, led by Mukremin Kilic (University of Oklahoma), used telescopes at the Apache Point Observatory and the McDonald Observatory to obtain follow-up photometric data of J1529+2928 spread across 66 days. The team also took spectra of the white dwarf with the Gemini North telescope.Kilic and collaborators then began, one by one, to rule out possible causes of this objects variability.Eliminating OptionsThe period of the variability is too long for J1529+2928 to be a pulsating white dwarf with luminosity variation caused by gravity-wave pulsations.The variability cant be due to an eclipse by a stellar or brown-dwarf companion, because there isnt any variation in J1529+2928s radial velocity.Its not due to the orbit of a solid-body planetary object; such a transit would be too short to explain observations.It cant be due to the orbit of a disintegrated planet; this wouldnt explain the light curves observed in different filters plus the light curve doesnt change over the 66-day span.Spotty SurfaceTop and middle two panels: light curves from three different nights observing J1529+2928s periodic dimming. Bottom panel: The Fourier transform shows a peak at 37.7 cycles/day (and another, smaller peak at its first harmonic). [Kilic et al. 2015]So what explanation is left? The authors suggest that J1529+2928s variability is likely caused by a starspot on the white dwarfs surface that rotates into and out of our view. Estimates

  5. Formation of high-field magnetic white dwarfs from common envelopes.

    PubMed

    Nordhaus, Jason; Wellons, Sarah; Spiegel, David S; Metzger, Brian D; Blackman, Eric G

    2011-02-22

    The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion's orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields.

  6. Formation of high-field magnetic white dwarfs from common envelopes

    PubMed Central

    Nordhaus, Jason; Wellons, Sarah; Spiegel, David S.; Metzger, Brian D.; Blackman, Eric G.

    2011-01-01

    The origin of highly magnetized white dwarfs has remained a mystery since their initial discovery. Recent observations indicate that the formation of high-field magnetic white dwarfs is intimately related to strong binary interactions during post-main-sequence phases of stellar evolution. If a low-mass companion, such as a planet, brown dwarf, or low-mass star, is engulfed by a post-main-sequence giant, gravitational torques in the envelope of the giant lead to a reduction of the companion’s orbit. Sufficiently low-mass companions in-spiral until they are shredded by the strong gravitational tides near the white dwarf core. Subsequent formation of a super-Eddington accretion disk from the disrupted companion inside a common envelope can dramatically amplify magnetic fields via a dynamo. Here, we show that these disk-generated fields are sufficiently strong to explain the observed range of magnetic field strengths for isolated, high-field magnetic white dwarfs. A higher-mass binary analogue may also contribute to the origin of magnetar fields. PMID:21300910

  7. Pulsating White Dwarfs in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kanaan, A.; Zabot, A.; Fraga, L.

    2012-09-01

    We present our current efforts to detect pulsating white dwarfs in globular clusters and analyze the future of this area when the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT) and the Thirty-Meter Telescope (TMT) all become operational. Today we are able to detect pulsating white dwarfs in M 4, NGC 6397 and NGC 6752. When ELT comes on line we should be able to improve the quality of data for the nearby clusters and push the limit to at least 3 magnitudes further, up to NGC 6626, increasing the number of observable clusters from 3 to 20.

  8. White dwarf stars with chemically stratified atmospheres

    NASA Technical Reports Server (NTRS)

    Muchmore, D.

    1982-01-01

    Recent observations and theory suggest that some white dwarfs may have chemically stratified atmospheres - thin layers of hydrogen lying above helium-rich envelopes. Models of such atmospheres show that a discontinuous temperature inversion can occur at the boundary between the layers. Model spectra for layered atmospheres at 30,000 K and 50,000 K tend to have smaller decrements at 912 A, 504 A, and 228 A than uniform atmospheres would have. On the basis of their continuous extreme ultraviolet spectra, it is possible to distinguish observationally between uniform and layered atmospheres for hot white dwarfs.

  9. White Dwarf Pulsational Constraints on Stellar Evolution

    NASA Astrophysics Data System (ADS)

    Dunlap, Bart H.; Clemens, J. Christopher; O'Brien, Patrick C.; Hermes, J. J.; Fuchs, Joshua T.

    2017-01-01

    The complex processes that convert a protostellar cloud into a carbon/oxygen-core white dwarf star are distilled and modeled in state of the art stellar evolution codes. Many of these processes are well-constrained, but several are uncertain or must be parameterized in the models because a complete treatment would be computationally prohibitive—turbulent motions such as convective overshoot cannot, for example, be modeled in 1D. Various free parameters in the models must therefore be calibrated. We will discuss how white dwarf pulsations can inform such calibrations. The results of all prior evolution are cemented into the interiors of white dwarf stars and, so, hidden from view. However, during certain phases of their cooling, pulsations translate the star's evolutionary history into observable surface phenomena. Because the periods of a pulsating white dwarf star depend on an internal structure assembled as it evolved to its final state, white dwarf pulsation periods can be viewed as observable endpoints of stellar evolution. For example, the thickness of the helium layer in a white dwarf directly affects its pulsations; the observed periods are, therefore, a function of the number of thermal pulses during which the star converts helium into core material on the asymptotic giant branch. Because they are also a function of several other significant evolutionary processes, several pulsation modes are necessary to tease all of these apart. Unfortunately, white dwarf pulsators typically do not display enough oscillation modes to constrain stellar evolution. To avoid this limitation, we consider the pulsations of the entire collection of hot pulsating hydrogen-atmosphere white dwarf stars (DAVs). Though any one star may not have sufficient information to place interesting constraints on its evolutionary history, taken together, the stars show a pattern of modes that allows us to test evolutionary models. For an example set of published evolutionary models, we show a

  10. The Field White Dwarf Mass Distribution

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.

    2017-03-01

    We study the white dwarf mass distributions for the volume-complete survey within 20 pc and the SDSS magnitude-limited sample. The observed mass distributions are modelled with Monte Carlo simulations. We find that under fixed standard assumptions for Galactic and stellar evolution, the predicted masses are in good qualitative agreement with the observed values. Nevertheless, the number of massive white dwarfs is overpredicted and we find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disk vertical scale height as a function of stellar age, and binary evolution.

  11. Ultra-high precision white dwarf asteroseismology

    NASA Astrophysics Data System (ADS)

    Giammichele, Noemi; Charpinet, Stéphane; Fontaine, Gilles; Brassard, Pierre; Zong, Weikai

    We present a brief progress report in our quest for deriving seismic models of pulsating white dwarfs that can account simultaneously for all the observed periods at the precision of the observations. We point out that this is possible from a pratical point of view only if parametrized models are used to complement evolutionary models. We adopt a double optimization procedure that insures that the best possible model in parameter space is found objectively and automatically. Our ultimate goal is to be able to account for the exquisite period data gathered with Kepler and Kepler-2 on key pulsating white dwarfs of both the DA (ZZ Ceti) and DB (V777 Her) type.

  12. The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Young Clusters

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.; Rieke, G. H.; Young, Erick T.; Cotera, Angela S.; Chen, H.; Rieke, Marcia J.; Schneider, Glenn; Thompson, Rodger I.

    2000-09-01

    We have obtained images of the Trapezium Cluster (140''×140'' 0.3 pc×0.3 pc) with the Hubble Space Telescope Near-Infrared Camera and Multi-Object Spectrometer (NICMOS). Combining these data with new ground-based K-band spectra (R=800) and existing spectral types and photometry, we have constructed an H-R diagram and used it and other arguments to infer masses and ages. To allow comparison with the results of our previous studies of IC 348 and ρ Oph, we first use the models of D'Antona & Mazzitelli. With these models, the distributions of ages of comparable samples of stars in the Trapezium, ρ Oph, and IC 348 indicate median ages of ~0.4 Myr for the first two regions and ~1-2 Myr for the latter. The low-mass initial mass functions (IMFs) in these sites of clustered star formation are similar over a wide range of stellar densities (ρ Oph, n=0.2-1×103 pc-3 IC 348, n=1×103 pc-3 Trapezium, n=1-5×104 pc-3) and other environmental conditions (e.g., presence or absence of OB stars). With current data, we cannot rule out modest variations in the substellar mass functions among these clusters. We then make the best estimate of the true form of the IMF in the Trapezium by using the evolutionary models of Baraffe et al. and an empirically adjusted temperature scale and compare this mass function to recent results for the Pleiades and the field. All of these data are consistent with an IMF that is flat or rises slowly from the substellar regime to about 0.6 Msolar and then rolls over into a power law that continues from about 1 Msolar to higher masses with a slope similar to or somewhat larger than the Salpeter value of 1.35. For the Trapezium, this behavior holds from our completeness limit of ~0.02 Msolar and probably, after a modest completeness correction, even from 0.01-0.02 Msolar. These data include ~50 likely brown dwarfs. We test the predictions of theories of the IMF against (1) the shape of the IMF, which is not log-normal, in clusters and the field, (2) the

  13. Very Low Mass Stellar and Substellar Companions to Solar-like Stars from MARVELS. IV. A Candidate Brown Dwarf or Low-mass Stellar Companion to HIP 67526

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Ge, Jian; Cargile, Phillip; Crepp, Justin R.; De Lee, Nathan; Porto de Mello, Gustavo F.; Esposito, Massimiliano; Ferreira, Letícia D.; Femenia, Bruno; Fleming, Scott W.; Gaudi, B. Scott; Ghezzi, Luan; González Hernández, Jonay I.; Hebb, Leslie; Lee, Brian L.; Ma, Bo; Stassun, Keivan G.; Wang, Ji; Wisniewski, John P.; Agol, Eric; Bizyaev, Dmitry; Brewington, Howard; Chang, Liang; Nicolaci da Costa, Luiz; Eastman, Jason D.; Ebelke, Garrett; Gary, Bruce; Kane, Stephen R.; Li, Rui; Liu, Jian; Mahadevan, Suvrath; Maia, Marcio A. G.; Malanushenko, Viktor; Malanushenko, Elena; Muna, Demitri; Nguyen, Duy Cuong; Ogando, Ricardo L. C.; Oravetz, Audrey; Oravetz, Daniel; Pan, Kaike; Pepper, Joshua; Paegert, Martin; Allende Prieto, Carlos; Rebolo, Rafael; Santiago, Basilio X.; Schneider, Donald P.; Shelden Bradley, Alaina C.; Sivarani, Thirupathi; Snedden, Stephanie; van Eyken, J. C.; Wan, Xiaoke; Weaver, Benjamin A.; Zhao, Bo

    2013-09-01

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695^{+0.0188}_{-0.0187} days, an eccentricity of 0.4375 ± 0.0040, and a semi-amplitude of 2948.14^{+16.65}_{-16.55} m s-1. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T eff = 6004 ± 34 K, a surface gravity log g (cgs) =4.55 ± 0.17, and a metallicity [Fe/H] =+0.04 ± 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 ± 0.09 M ⊙ and 0.92 ± 0.19 R ⊙. The minimum mass of MARVELS-5b is 65.0 ± 2.9M Jup, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 ± 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M ⊙ at a separation larger than 40 AU.

  14. VERY LOW MASS STELLAR AND SUBSTELLAR COMPANIONS TO SOLAR-LIKE STARS FROM MARVELS. IV. A CANDIDATE BROWN DWARF OR LOW-MASS STELLAR COMPANION TO HIP 67526

    SciTech Connect

    Jiang Peng; Ge Jian; De Lee, Nathan; Fleming, Scott W.; Lee, Brian L.; Ma Bo; Wang, Ji; Cargile, Phillip; Hebb, Leslie; Stassun, Keivan G.; Crepp, Justin R.; Porto de Mello, Gustavo F.; Ferreira, Leticia D.; Esposito, Massimiliano; Femenia, Bruno; Gonzalez Hernandez, Jonay I.; Ghezzi, Luan; Wisniewski, John P.; Agol, Eric; and others

    2013-09-15

    We report the discovery of a candidate brown dwarf (BD) or a very low mass stellar companion (MARVELS-5b) to the star HIP 67526 from the Multi-object Apache point observatory Radial Velocity Exoplanet Large-area Survey (MARVELS). The radial velocity curve for this object contains 31 epochs spread over 2.5 yr. Our Keplerian fit, using a Markov Chain Monte Carlo approach, reveals that the companion has an orbital period of 90.2695{sup +0.0188}{sub -0.0187} days, an eccentricity of 0.4375 {+-} 0.0040, and a semi-amplitude of 2948.14{sup +16.65}{sub -16.55} m s{sup -1}. Using additional high-resolution spectroscopy, we find the host star has an effective temperature T{sub eff} = 6004 {+-} 34 K, a surface gravity log g (cgs) =4.55 {+-} 0.17, and a metallicity [Fe/H] =+0.04 {+-} 0.06. The stellar mass and radius determined through the empirical relationship of Torres et al. yields 1.10 {+-} 0.09 M{sub Sun} and 0.92 {+-} 0.19 R{sub Sun }. The minimum mass of MARVELS-5b is 65.0 {+-} 2.9M{sub Jup}, indicating that it is likely to be either a BD or a very low mass star, thus occupying a relatively sparsely populated region of the mass function of companions to solar-type stars. The distance to this system is 101 {+-} 10 pc from the astrometric measurements of Hipparcos. No stellar tertiary is detected in the high-contrast images taken by either FastCam lucky imaging or Keck adaptive optics imaging, ruling out any star with mass greater than 0.2 M{sub Sun} at a separation larger than 40 AU.

  15. White dwarfs identified in LAMOST DR 2

    NASA Astrophysics Data System (ADS)

    Guo, Jincheng; Zhao, Jingkun; Tziamtzis, Anestis; Liu, Jifeng; Li, Lifang; Zhang, Yong; Hou, Yonghui; Wang, Yuefei

    2015-12-01

    Here we present a catalogue of 1056 spectroscopically identified hydrogen-dominated white dwarfs (DAWDs), 34 helium-dominated white dwarfs (DBWDs) and 276 white dwarf main sequence (WDMS) binaries from the Large sky Area Multi-Object Fiber Spectroscopic Telescope (LAMOST) survey data release 2 (DR2). 383 DAWDs, 4 DBWDs and 138 WDMSs are new identifications after cross-match with literature. There are ˜4100 k spectra in total from DR 2. The low ratio of white dwarfs found in LAMOST is attributed to biased selection of LAMOST input catalogue and much brighter targets relative to stars observed in Sloan Digital Sky Survey. In this paper, a new DAWD selection method is adopted as a new attempt and supplement to the traditional methods. The effective temperature, surface gravity, mass, cooling age and distance of high signal-to-noise DAWDs are estimated. The peak of the mass distribution is found to be ˜0.6 M⊙, which is consistent with previous work. The parameters of WDMS binaries are also provided in this paper. As the foundation of our future work, which is to identify more WDs with debris disc, WDs found in LAMOST showed a lot of potential. Interesting infrared-excess WDs will be reported in our forthcoming paper.

  16. The 25 parsec local white dwarf population

    NASA Astrophysics Data System (ADS)

    Holberg, J. B.; Oswalt, T. D.; Sion, E. M.; McCook, G. P.

    2016-11-01

    We have extended our detailed survey of the local white dwarf population from 20 to 25 pc, effectively doubling the sample volume, which now includes 232 stars. In the process, new stars within 20 pc have been added, a more uniform set of distance estimates as well as improved spectral and binary classifications are available. The present 25 pc sample is estimated to be about 68 per cent complete (the corresponding 20 pc sample is now 86 per cent complete). The space density of white dwarfs is unchanged at 4.8 ± 0.5 × 10-3 pc-3. This new study includes a white dwarf mass distribution and luminosity function based on the 232 stars in the 25 pc sample. We find a significant excess of single stars over systems containing one or more companions (74 per cent versus 26 per cent). This suggests mechanisms that result in the loss of companions during binary system evolution. In addition, this updated sample exhibits a pronounced deficiency of nearby `Sirius-like' systems. 11 such systems were found within the 20 pc volume versus only one additional system found in the volume between 20 and 25 pc. An estimate of white dwarf birth rates during the last ˜8 Gyr is derived from individual remnant cooling ages. A discussion of likely ways new members of the local sample may be found is provided.

  17. Theoretical Study of White Dwarf Double Stars

    NASA Astrophysics Data System (ADS)

    Hira, Ajit; Koetter, Ted; Rivera, Ruben; Diaz, Juan

    2015-04-01

    We continue our interest in the computational simulation of the astrophysical phenomena with a study of gravitationally-bound binary stars, composed of at least one white dwarf star. Of particular interest to astrophysicists are the conditions inside a white dwarf star in the time frame leading up to its explosive end as a Type Ia supernova, for an understanding of the massive stellar explosions. In addition, the studies of the evolution of white dwarfs could serve as promising probes of theories of gravitation. We developed FORTRAN computer programs to implement our models for white dwarfs and other stars. These codes allow for different sizes and masses of stars. Simulations were done in the mass interval from 0.1 to 2.0 solar masses. Our goal was to obtain both atmospheric and orbital parameters. The computational results thus obtained are compared with relevant observational data. The data are further analyzed to identify trends in terms of sizes and masses of stars. We hope to extend our computational studies to blue giant stars in the future. Research Supported by National Science Foundation.

  18. White Dwarfs in the Galaxy's Halo

    NASA Astrophysics Data System (ADS)

    Oppenheimer, B.; Murdin, P.

    2002-12-01

    The Galaxy's large spherical halo (see GALACTICMETAL-POOR HALO and HALO, GALACTIC) may harboras many as several hundred billion WHITE DWARFS, apopulation as large in number as the total number of stars in theGalaxy's disk (see DISK GALAXIES and GALACTIC THIN DISK). Although this assertion iscontroversial, several astronomical surveys provide strong support for it andthe implications affect fields ...

  19. Photospheric composition and structure in white dwarfs

    NASA Astrophysics Data System (ADS)

    Barstow, M. A.

    1993-12-01

    One of the central mysteries of white dwarf studies has been the nature and abundance of trace elements in the atmospheres of these stars. It had been thought that the dominant trace element in otherwise pure hydrogen DA white dwarf atmospheres was helium. However, some spectroscopic and theoretical evidence suggested that, at least in some stars, heavier elements may be important. Prior to the launch of ROSAT the questions regarding the atmospheric composition of DA white dwarfs in general remained unresolved. The ROSAT mission has provided EUV and X-ray data for a large sample of DA white dwarfs with which we can study their photospheric composition and structure through the effect of trace opacity sources on the emergent fluxes. Contrary to expectations little (if any) helium is found and the main sources of opacity appear to be trace heavy elements. Support for these conclusions is found in recent EUV and far-UV spectra of several stars. However, photometric data do not allow us to determine the abundance of the individual elements and observations with the extreme ultraviolet explorer satellite (EUVE) spectrometers will be essential for detailed composition measurements.

  20. DA white dwarfs in the Kepler field

    NASA Astrophysics Data System (ADS)

    Doyle, T. F.; Howell, S. B.; Petit, V.; Lépine, S.

    2017-01-01

    We present 16 new, and confirm 7 previously identified, DA white dwarfs in the Kepler field through ground-based spectroscopy with the Hale 200″, Kitt Peak 4-m, and Bok 2.3-m telescopes. Using atmospheric models, we determine their effective temperatures and surface gravities to constrain their position with respect to the ZZ Ceti (DA pulsator) instability strip, and look for the presence or absence of pulsation with Kepler's unprecedented photometry. Our results are as follows. (i) From our measurements of temperature and surface gravity, 12 of the 23 DA white dwarfs from this work fall well outside of the instability strip. The Kepler photometry available for 11 of these WDs allows us to confirm that none are pulsating. One of these 11 happens to be a presumed binary, KIC 11604781, with a period of ˜5 d. (ii) The remaining 11 DA white dwarfs are instability strip candidates, potentially falling within the current, empirical instability strip, after accounting for uncertainties. These WDs will help constrain the strip's location further, as eight are near the blue edge and three are near the red edge of the instability strip. Four of these WDs do not have Kepler photometry, so ground-based photometry is needed to determine the pulsation nature of these white dwarfs. The remaining seven have Kepler photometry available, but do not show any periodicity on typical WD pulsation time-scales.

  1. NUCLEAR CONDENSATE AND HELIUM WHITE DWARFS

    SciTech Connect

    Bedaque, Paulo F.; Berkowitz, Evan; Cherman, Aleksey E-mail: evanb@umd.edu

    2012-04-10

    We consider a high-density region of the helium phase diagram, where the nuclei form a Bose-Einstein condensate rather than a classical plasma or a crystal. Helium in this phase may be present in helium-core white dwarfs. We show that in this regime there is a new gapless quasiparticle not previously noticed, arising when the constraints imposed by gauge symmetry are taken into account. The contribution of this quasiparticle to the specific heat of a white dwarf core turns out to be comparable in a range of temperatures to the contribution from the particle-hole excitations of the degenerate electrons. The specific heat in the condensed phase is two orders of magnitude smaller than in the uncondensed plasma phase, which is the ground state at higher temperatures, and four orders of magnitude smaller than the specific heat that an ion lattice would provide, if formed. Since the specific heat of the core is an important input for setting the rate of cooling of a white dwarf star, it may turn out that such a change in the thermal properties of the cores of helium white dwarfs has observable implications.

  2. SOAR + SMARTS Southern White Dwarf Survey

    NASA Astrophysics Data System (ADS)

    Subasavage, John P.; Lepine, S.

    2012-01-01

    We present early results from the SOAR + SMARTS Southern White Dwarf SURVEY (SSSWDS). Our initial sift of relatively bright (15 < V < 18), white dwarf candidates uses the technique of reduced proper motion with inputs from the SUPERBLINK proper motion database combined with photographic magnitudes. Crude distance estimates from the linear photographic magnitude-color relation of Oppenheimer et al. 2001 are obtained and permit prioritized follow-up. For confirmation of luminosity class, we use the SOAR telescope atop Cerro Pachon equipped with the Goodman Spectrograph and a moderate resolution grating. In tandem, we acquire multi-epoch, optical Johnson-Kron-Cousins BVRI photometry using the SMARTS 1.0m telescope atop CTIO. Combined with JHK from 2MASS, we compare the photometric SED to relevant white dwarf model atmospheres to estimate physical parameters (e.g., effective temperature, mass) and distance. For the nearest targets, specifically those within the RECONS (www.recons.org) horizon of 25 pc, we aim to obtain trigonometric parallaxes as part of the Cerro Tololo Inter-American Observatory Parallax Investigation (CTIOPI) project being conducted at the SMARTS 0.9m telescope. To date, we have confirmed 100 relatively bright, new white dwarfs in the southern hemisphere. Of those, 13 are estimated to be within our 25 pc horizon-of-interest, including two that are estimated to be within 15 pc. Ongoing observations will boost these figures by the end of the project.

  3. Disintegrating Planetary Bodies Around a White Dwarf

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-02-01

    Several months ago, the discovery of WD 1145+017 was announced. This white dwarf appears to be orbited by planetary bodies that are actively disintegrating due to the strong gravitational pull of their host. A follow-up study now reveals that this system has dramatically evolved since its discovery.Signs of DisruptionPotential planetary bodies orbiting a white dwarf would be exposed to a particular risk: if their orbits were perturbed and they passed inside the white dwarfs tidal radius, they would be torn apart. Their material could then form a debris disk around the white dwarf and eventually be accreted.Interestingly, we have two pieces of evidence that this actually happens:Weve observed warm, dusty debris disks around ~4% of white dwarfs, andThe atmospheres of ~25-50% of white dwarfs are polluted by heavy elements that have likely accreted recently.But in spite of this indirect evidence of planet disintegration, wed never observed planetary bodies actively being disrupted around white dwarfs until recently.Unusual TransitsIn April 2015, observations by Keplers K2 mission revealed a strange transit signal around WD 1145+017, a white dwarf 570 light-years from Earth that has both a dusty debris disk and a polluted atmosphere. This signal was interpreted as the transit of at least one, and possibly several, disintegrating planetesimals.In a recent follow-up, a team of scientists led by Boris Gnsicke (University of Warwick) obtained high-speed photometry of WD 1145+017 using the ULTRASPEC camera on the 2.4m Thai National Telescope. These observations were taken in November and December of 2015 roughly seven months after the initial photometric observations of the system. They reveal that dramatic changes have occurred in this short time.Rapid EvolutionA sample light curve from TNT/ULTRASPEC, obtained in December 2015 over 3.9 hours. Many varied transits are evident (click for a better view!). Transits labeled in color appear across multiple nights. [Gnsicke et al

  4. Characterizing Companions to Low-Mass Stars: A Large-Scale, Volume-Limited Survey of Local M-dwarfs

    NASA Astrophysics Data System (ADS)

    Ward-Duong, Kimberly; Patience, J.; De Rosa, R.; Rajan, A.

    2013-01-01

    M-dwarfs constitute the major fraction of stars within both the solar neighborhood and nearby star-forming regions. However, key M-dwarf companion characteristics - including multiplicity fraction, mass ratios, and separation distributions - are less certain for field stars, due to limited sample sizes and non-uniform selection criteria. Studies of star-forming regions often compare results to solar-type field stars due to the extensive population statistics available for G-dwarfs, but field M-dwarfs represent a more analogous population for comparison due to their prevalence. We present results on a stellar and substellar companion study covering separations from ~1 - 10,000 AU, based on a volume-limited survey of ~300 M-dwarfs within 15 pc. Our study constrains the frequency of binary companions and the shape of the companion separation and mass ratio distributions. Diffraction-limited, mid-to-near infrared archival data were obtained from the Very Large Telescope, Hubble Space Telescope, and Canada-France-Hawaii Telescope, to detect nearby companions to M-dwarfs from ~1 to 100 AU. To supplement the high-resolution data, wide-field archival plates were searched for companions with separations of 100 to 10,000 AU. The all-sky survey data include multiple epochs, and follow up observations at higher resolution will allow us to confirm or reject the new companion candidates detected during our analysis. These multi-epoch observations provide confirmation of common proper motions, thereby minimizing background contamination and providing comprehensive statistics for M-star binaries. Preliminary analysis of an initial subset of the sample suggests a lower limit to the multiplicity of 23 ± 7% within the restricted separation range. Characterizations of the binary frequency for M-dwarfs provide crucial insights into the low-mass star formation environment, and hold additional implications for the frequency and evolutionary histories of their associated disks and

  5. The Brown Dwarf Eclipsing Binary 2M0535-05: A Case Study for Activity Effects on Physical Properties of Low-Mass Stars and Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Stassun, K. G.

    2013-02-01

    2M0535-05 is a one-of-a-kind eclipsing binary (EB) comprising two brown dwarfs (BDs), and is an important benchmark for understanding the fundamental properties of BDs and low-mass stars. Because 2M0535-05 presents a peculiar reversal of temperatures with mass (the higher mass, magnetically active BD in the system is cooler than the lower mass companion BD), 2M0535-05 is particularly important as a case study for the effects of magnetic activity on the properties of low-mass objects. Using a large number of low-mass M-dwarfs and EBs in the field, we have developed empirical relations for determining the amount by which the temperatures and radii-and therefore the estimated masses-of low-mass stars and BDs are altered due to chromospheric activity. The relations link the amount by which an active object's temperature is suppressed, and its radius inflated, to the strength of its Hα emission. These relations are found to approximately preserve bolometric luminosity. Applying these relations to 2M0535-05 brings the activity-corrected radii and temperatures of 2M0535-05 into precise agreement with theoretical isochrones for inactive stars. The relations that we present are applicable to BDs and low-mass stars with masses below 0.8 M⊙ and for which the activity, as measured by Hα, is in the range - 4.6 < log LHα/Lbol < -3.3. We discuss implications of this work for determinations of young cluster IMFs, and discuss competing ideas for the physical mechanism by which magnetic fields alter the temperatures and radii of low-mass stars.

  6. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  7. White dwarf evolution - Cradle-to-grave constraints via pulsation

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1990-01-01

    White dwarf evolution, particularly in the early phases, is not very strongly constrained by observation. Fortunately, white dwarfs undergo nonradial pulsation in three distinct regions of the H-R diagram. These pulsations provide accurate masses, surface compositional structure and rotation velocities, and help constrain other important physical properties. We demonstrate the application of the tools of stellar seismology to white dwarf evolution using the hot white dwarf star PG 1159-035 and the cool DAV (or ZZ Ceti) stars as examples. From pulsation studies, significant challenges to the theory of white dwarf evolution emerge.

  8. Precise atmospheric parameters for the shortest-period binary white dwarfs: gravitational waves, metals, and pulsations

    SciTech Connect

    Gianninas, A.; Kilic, Mukremin; Dufour, P.; Bergeron, P.; Brown, Warren R.; Hermes, J. J.

    2014-10-10

    We present a detailed spectroscopic analysis of 61 low-mass white dwarfs and provide precise atmospheric parameters, masses, and updated binary system parameters based on our new model atmosphere grids and the most recent evolutionary model calculations. For the first time, we measure systematic abundances of He, Ca, and Mg for metal-rich, extremely low mass white dwarfs and examine the distribution of these abundances as a function of effective temperature and mass. Based on our preliminary results, we discuss the possibility that shell flashes may be responsible for the presence of the observed He and metals. We compare stellar radii derived from our spectroscopic analysis to model-independent measurements and find good agreement except for white dwarfs with T {sub eff} ≲ 10,000 K. We also calculate the expected gravitational wave strain for each system and discuss their significance to the eLISA space-borne gravitational wave observatory. Finally, we provide an update on the instability strip of extremely low mass white dwarf pulsators.

  9. A wide binary trigger for white dwarf pollution

    NASA Astrophysics Data System (ADS)

    Bonsor, Amy; Veras, Dimitri

    2015-11-01

    Metal pollution in white dwarf atmospheres is commonly assumed to be a signature of remnant planetary systems. Most explanations for this pollution predict a sharp decrease in the number of polluted systems with white dwarf cooling age. Observations do not confirm this trend, and metal pollution in old (1-5 Gyr) white dwarfs is difficult to explain. We propose an alternative, time-independent mechanism to produce the white dwarf pollution. The orbit of a wide binary companion can be perturbed by Galactic tides, approaching close to the primary star for the first time after billions of years of evolution on the white dwarf branch. We show that such a close approach perturbs a planetary system orbiting the white dwarf, scattering planetesimals on to star-grazing orbits, in a manner that could pollute the white dwarf's atmosphere. Our estimates find that this mechanism is likely to contribute to metal pollution, alongside other mechanisms, in up to a few per cent of an observed sample of white dwarfs with wide binary companions, independent of white dwarf age. This age independence is the key difference between this wide binary mechanism and others mechanisms suggested in the literature to explain white dwarf pollution. Current observational samples are not large enough to assess whether this mechanism makes a significant contribution to the population of polluted white dwarfs, for which better constraints on the wide binary population are required, such as those that will be obtained in the near future with Gaia.

  10. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Liebert, James; Giampapa, Mark; Macintosh, Bruce; Reid, Neill; Hamilton, Donald

    1994-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km s(exp -1) for approximately 20 candidate very low mass members of the Hyades and Pleiades clusters. The radial velocities for the Hyades sample suggest that nearly all of these stars are indeed highly probable members of the Hyades. The faintest stars in the Hyades sample have masses of order 0.1 solar mass. We also obtained radial velocities for four candidate very low mass members of the Pleiades and two objects that are candidate BD Pleiads. All of these stars have apparent V magnitudes fainter than the Hyades stars we observed, and the resultant radial velocity accuracy is worse. We believe that the three brighter stars are indeed likely very low mass stellar members of the Pleiades, whereas the status of the two brown dwarf candidates is uncertain. The Hyades stars we have observed and the three Pleiades very low mass stars are the lowest mass members of any open cluster whose membership has been confirmed by radial velocities and whose chromospheric activity has been measured. We see no change in chromospheric activity at the boundary where stars are expected to become fully convective (M approximately equals 0.3 solar mass) in either cluster. In the Pleiades, however, there may be a decrease in chromospheric activity for stars with (V-I)(sub K) greater than 3.5 (M less than or equal to 0.1 solar mass).

  11. REFINED METALLICITY INDICES FOR M DWARFS USING THE SLoWPoKES CATALOG OF WIDE, LOW-MASS BINARIES

    SciTech Connect

    Dhital, Saurav; Stassun, Keivan G.; Bastien, Fabienne A.; West, Andrew A.; Massey, Angela P.; Bochanski, John J.

    2012-03-15

    We report the results from spectroscopic observations of 113 ultra-wide, low-mass binary systems, largely composed of M0-M3 dwarfs, from the SLoWPoKES catalog of common proper motion pairs identified in the Sloan Digital Sky Survey. Radial velocities of each binary member were used to confirm that they are comoving and, consequently, to further validate the high fidelity of the SLoWPoKES catalog. Ten stars appear to be spectroscopic binaries based on broad or split spectral features, supporting previous findings that wide binaries are likely to be hierarchical systems. We measured the H{alpha} equivalent width of the stars in our sample and found that components of 81% of the observed pairs have similar H{alpha} levels. The difference in H{alpha} equivalent width among components with similar masses was smaller than the range of H{alpha} variability for individual objects. We confirm that the Lepine et al. {zeta}-index traces iso-metallicity loci for most of our sample of M dwarfs. However, we find a small systematic bias in {zeta}, especially in the early-type M dwarfs. We use our sample to recalibrate the definition of {zeta}. While representing a small change in the definition, the new {zeta} is a significantly better predictor of iso-metallicity for the higher-mass M dwarfs.

  12. A 0.6 to 4.1 mum spectroscopic study of very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Cushing, Michael C.

    2004-10-01

    We present the results of a 0.6 to 4.1 μm spectroscopic survey of a sample of very low-mass stars and brown dwarfs with spectral types ranging from M0 V to T5 V. The survey was conducted with SpeX, a 0.8 to 5.5 μm, medium-resolution spectrograph and imager on the NASA Infrared Telescope Facility. We developed a data reduction package for SpeX called Spextool which performs all the steps necessary to produce fully reduced spectra including preparation of calibration frames, processing and spectral extraction of science frames, wavelength calibration of spectra, and flux calibration of spectra. We have identified the most prominate atomic and molecular absorption features including ˜100 new FeH features, ˜30 new CH4 features, a new band of VO, and ˜80 atomic features. We have also derived the bolometric luminosities and effective temperatures of the dwarfs. Finally, by comparing the dwarf spectra to synthetic spectra computed from model atmospheres we show, for the first time, spectroscopic evidence for the prescence of condenstate clouds in the atmospheres of brown dwarfs.

  13. Spectroscopic Analysis of Hot (Pre-) White Dwarfs

    NASA Astrophysics Data System (ADS)

    Reindl, Nicole

    2015-03-01

    In this work, different kinds of hot (pre-) white dwarfs (WD) were analyzed by means of static and expanding non-LTE model atmospheres to obtain a better understanding of the late, hot stages of stellar evolution. In the first paper, Reindl et al. (2014c), we derived for the first time the temporal evolution of the atmospheric parameters of the unusually quick evolving, hydrogen-rich central star of planetary nebula (CSPN) SAO 244567. We confirm that SAO 244567 must be a low-mass star (M < 0.55 M ). The slow evolution of the respective canonical stellar evolutionary models is, however, in strong contradiction to the observed fast evolution and the young planetary nebula. We speculate that the star could be a late He-shell flash object. Alternatively, it could be the outcome of a close-binary evolution. Then SAO 244567 would be a low-mass (0.35 M ) helium pre-WD after the common-envelope phase, during which the planetary nebula was ejected. The paper Reindl et al. (2014b) aimed to obtain clues about the nature of the exotic O(He) stars. The new optical spectra allowed a more precise determination of the atmospheric parameters of the two CSPNe, K 1- 27 and LoTr 4. Furthermore, upper limits for the mass-loss rates of K 1- 27, LoTr 4, HS 1522+6615, and HS 2209+8229 were derived. Finally, the atmospheric parameters of the O(He) stars were compared to those of other helium-dominated stars and stellar evolution calculations in order to explain a helium-dominated stellar evolution sequence. In Reindl et al. (2014a), we identified 24 DO WDs in the tenth data release of the Sloan Digital Sky Survey and analyzed them for the first time by means of non-LTE model atmospheres. Two of our objects are the coolest DO WDs ever discovered that still show a considerable amount of carbon in the atmosphere. This is in strong contradiction with diffusion calculations and we suggested that a weak mass-loss is present in DO WDs. The mass distribution of DO WDs beyond the wind limit

  14. An expanded set of brown dwarf and very low mass star models

    NASA Technical Reports Server (NTRS)

    Burrows, A.; Hubbard, W. B.; Saumon, D.; Lunine, J. I.

    1993-01-01

    We present in this paper updated and improved theoretical models of brown dwarfs and late M dwarfs. The evolution and characteristics of objects between 0.01 and 0.2 solar mass are exhaustively investigated and special emphasis is placed on their properties at early ages. The dependence on the helium fraction, deuterium fraction, and metallicity of the masses, effective temperature and luminosities at the edge of the hydrogen main sequence are calculated. We derive luminosity functions for representative mass functions and compare our predictions to recent cluster data. We show that there are distinctive features in the theoretical luminosity functions that can serve as diagnostics of brown dwarf physics. A zero-metallicity model is presented as a bound to or approximation of a putative extreme halo population.

  15. The IMF of Low-Mass Stars and Brown Dwarfs in Taurus

    NASA Astrophysics Data System (ADS)

    Luhman, K.

    2001-05-01

    By combining deep optical imaging and infrared spectroscopy with data from the Two-Micron All-Sky Survey (2MASS) and from previous studies, I have measured the Initial Mass Function (IMF) for a reddening-limited sample in four fields in the Taurus star forming region. This IMF is representative of the young populations within these fields for masses above 0.02 Msun. Relative to the similarly derived IMF for the Trapezium Cluster (Luhman et al.), the IMF for Taurus exhibits a modest deficit of stars above one solar mass (i.e., steeper slope), the same turnover mass (0.8 Msun), and a significant deficit of brown dwarfs. If the IMF in Taurus were the same as that in the Trapezium, 12.8+/-1.8 brown dwarfs (>0.02 Msun) are expected in these Taurus fields where only one brown dwarf candidate is found. These results are used to test theories of the IMF.

  16. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  17. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  18. Pulsating White Dwarf Star GD99

    NASA Astrophysics Data System (ADS)

    Chynoweth, K. M.; Thompson, S.; Mullally, F.; Yeates, C.

    2004-12-01

    We present 15 hours of time-series photometry of the variable white dwarf star GD99. These data were obtained at the McDonald Observatory 2.1m Otto Struve Telescope in January 2003, using the Argos CCD photometer. We achieved a noise level as low as 0.07 %, as measured from the power spectrum of our first night. Our observations confirm that GD99 is a unique pulsating white dwarf whose modes show characteristics of both the hot and cold type of DA variable stars. Additionally, GD99 has a large number of modes, making it a good candidate for asteroseismological study. Our preliminary results indicate that this star merits further study to decipher its abundant set of unusual modes. With such a rich period structure, longer continuous data sets will be required to fully resolve the pulsation spectrum.

  19. PHYSICAL PROPERTIES OF YOUNG BROWN DWARFS AND VERY LOW MASS STARS INFERRED FROM HIGH-RESOLUTION MODEL SPECTRA

    SciTech Connect

    Rice, Emily L.; Mclean, Ian S.; Barman, T.; Prato, L.; Kirkpatrick, J. Davy

    2010-01-01

    By comparing near-infrared spectra with atmospheric models, we infer the effective temperature, surface gravity, projected rotational velocity, and radial velocity for 21 very low mass stars and brown dwarfs. The unique sample consists of two sequences in spectral type from M6-M9, one of 5-10 Myr objects and one of >1 Gyr field objects. A third sequence is comprised of only {approx}M6 objects with ages ranging from <1 Myr to >1 Gyr. Spectra were obtained in the J band at medium (R {approx} 2000) and high (R {approx} 20,000) resolutions with NIRSPEC on the Keck II telescope. Synthetic spectra were generated from atmospheric structures calculated with the PHOENIX model atmosphere code. Using multi-dimensional least-squares fitting and Monte Carlo routines we determine the best-fit model parameters for each observed spectrum and note which spectral regions provide consistent results. We identify successes in the reproduction of observed features by atmospheric models, including pressure-broadened K I lines, and investigate deficiencies in the models, particularly missing FeH opacity, that will need to be addressed in order to extend our analysis to cooler objects. The precision that can be obtained for each parameter using medium- and high-resolution near-infrared spectra is estimated and the implications for future studies of very low mass stars and brown dwarfs are discussed.

  20. White dwarfs in Be star binary systems

    NASA Technical Reports Server (NTRS)

    Apparao, K. M. V.

    1991-01-01

    An evaluation is made of possible reasons for the persistent inability to identify white dwarf stars in the Be binary systems. It is noted that many Be stars exhibiting large optical enhancements may be Be + WD and Be + He systems, and that observations of pulsations in the H-alpha emission, as well as observation of time delays between enhancements of optical line and continuum, can identify such systems.

  1. The field white dwarf mass distribution

    NASA Astrophysics Data System (ADS)

    Tremblay, P.-E.; Cummings, J.; Kalirai, J. S.; Gänsicke, B. T.; Gentile-Fusillo, N.; Raddi, R.

    2016-09-01

    We revisit the properties and astrophysical implications of the field white dwarf mass distribution in preparation of Gaia applications. Our study is based on the two samples with the best established completeness and most precise atmospheric parameters, the volume-complete survey within 20 pc and the Sloan Digital Sky Survey (SDSS) magnitude-limited sample. We explore the modelling of the observed mass distributions with Monte Carlo simulations, but find that it is difficult to constrain independently the initial mass function (IMF), the initial-to-final-mass relation (IFMR), the stellar formation history (SFH), the variation of the Galactic disc vertical scale height as a function of stellar age, and binary evolution. Each of these input ingredients has a moderate effect on the predicted mass distributions, and we must also take into account biases owing to unidentified faint objects (20 pc sample), as well as unknown masses for magnetic white dwarfs and spectroscopic calibration issues (SDSS sample). Nevertheless, we find that fixed standard assumptions for the above parameters result in predicted mean masses that are in good qualitative agreement with the observed values. It suggests that derived masses for both studied samples are consistent with our current knowledge of stellar and Galactic evolution. Our simulations overpredict by 40-50 per cent the number of massive white dwarfs (M > 0.75 M⊙) for both surveys, although we can not exclude a Salpeter IMF when we account for all biases. Furthermore, we find no evidence of a population of double white dwarf mergers in the observed mass distributions.

  2. Open Science Project in White Dwarf Research

    NASA Astrophysics Data System (ADS)

    Vornanen, T.

    2013-01-01

    I will propose a new way of advancing white dwarf research. Open science is a method of doing research that lets everyone who has something to say about the subject take part in the problem solving process. Already now, the amount of information we gather from observations, theory and modeling is too vast for any one individual to comprehend and turn into knowledge. And the amount of information just keeps growing in the future. A platform that promotes sharing of thoughts and ideas allows us to pool our collective knowledge of white dwarfs and get a clear picture of our research field. It will also make it possible for researchers in fields closely related to ours (AGB stars, planetary nebulae etc.) to join the scientific discourse. In the first stage this project would allow us to summarize what we know and what we don't, and what we should search for next. Later, it could grow into a large collaboration that would have the impact to, for example, suggest instrument requirements for future telescopes to satisfy the needs of the white dwarf community, or propose large surveys. A simple implementation would be a wiki page for collecting knowledge combined with a forum for more extensive discussions. These would be simple and cheap to maintain. A large community effort on the whole would be needed for the project to succeed, but individual workload should stay at a low level.

  3. White dwarf cosmochronology in the solar neighborhood

    SciTech Connect

    Tremblay, P.-E.; Kalirai, J. S.; Soderblom, D. R.; Cignoni, M.; Cummings, J.

    2014-08-20

    The study of the stellar formation history in the solar neighborhood is a powerful technique to recover information about the early stages and evolution of the Milky Way. We present a new method that consists of directly probing the formation history from the nearby stellar remnants. We rely on the volume complete sample of white dwarfs within 20 pc, where accurate cooling ages and masses have been determined. The well characterized initial-final mass relation is employed in order to recover the initial masses (1 ≲ M {sub initial}/M {sub ☉} ≲ 8) and total ages for the local degenerate sample. We correct for moderate biases that are necessary to transform our results to a global stellar formation rate, which can be compared to similar studies based on the properties of main-sequence stars in the solar neighborhood. Our method provides precise formation rates for all ages except in very recent times, and the results suggest an enhanced formation rate for the solar neighborhood in the last 5 Gyr compared to the range 5 < Age (Gyr) < 10. Furthermore, the observed total age of ∼10 Gyr for the oldest white dwarfs in the local sample is consistent with the early seminal studies that have determined the age of the Galactic disk from stellar remnants. The main shortcoming of our study is the small size of the local white dwarf sample. However, the presented technique can be applied to larger samples in the future.

  4. White Dwarf Convection Preceding Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Zingale, Michael; Almgren, A. S.; Bell, J. B.; Malone, C. M.; Nonaka, A.; Woosley, S. E.

    2010-01-01

    In the single degenerate scenario for Type Ia supernovae, a Chandrasekhar mass white dwarf `simmers' for centuries preceding the ultimate explosion. During this period, reactions near the center drive convection throughout most of the interior of the white dwarf. The details of this convective flow determine how the first flames in the white dwarf ignite. Simulating this phase is difficult because the flows are highly subsonic. Using the low Mach number hydrodynamics code, MAESTRO, we present 3-d, full star models of the final hours of this convective phase, up to the point of ignition of a Type Ia supernova. We discuss the details of the convective velocity field and the locations of the initial hot spots. Finally, we show some preliminary results with rotation. Support for this work came from the DOE/Office of Nuclear Physics, grant No. DE-FG02-06ER41448 (Stony Brook), the SciDAC Program of the DOE Office of Mathematics, Information, and Computational Sciences under the DOE under contract No. DE-AC02-05CH11231 (LBNL), and the DOE SciDAC program, under grant No. DE-FC02-06ER41438 (UCSC). We made use of the jaguar machine via a DOE INCITE allocation at the Oak Ridge Leadership Computational Facility.

  5. The White Dwarf Mass in Interacting Binaries

    NASA Astrophysics Data System (ADS)

    Mukai, Koji

    We are undertaking a comprehensive study of accreting white dwarfs in two broad types of interacting binaries, cataclysmic variables (CVs) and symbiotic stars, using X-ray and multi-wavelength data. Our goal is to understand the detailed accretion and X-ray emission processes in these binaries, and therefore determine what information can be extracted from X-ray observations of these systems. In paritular, we must measure the current masses of white dwarfs in CVs and symbiotic stars and understand if they gain or lose mass over time. We believe that these are all worthy objectives by themselves, with added interest in the context of Type Ia supernova progenitor models and the apparently diffuse Galactic ridge and bulge X-ray emission. For both these issues, we need surveys with well-understood selection effects to measure the space density of CVs and symbiotic stars, and X-ray surveys will likely play a key role. With these long-term goals in mind, we are undertaking several interlinked projects with overlapping sets of objectives and collaborators. In this proposal, we seek support for a subset of our overall research program, thematically linked to one of the most important parameters in any CVs and symbiotic stars: the white dwarf mass (Mwd). The depth of the gravitational potential of the white dwarf sets the maximum temperature that the accreting plasma can reach; therefore, by measuring the maximum temperature in the X-ray spectra of CVs and symbiotic stars, one can infer Mwd. This method has long been applied to magnetic CVs; we believe that it is also applicable to non-magnetic cases. We propose an empirical confirmation of this method for quiescent dwarf novae, and investigate any systematic uncertainties that may be inherent in this method. We already know that CVs and symbiotic stars with strong hard (>10 keV) X-ray emission harbor massive white dwarfs, and have used this fact to study the population such systems detected in INTEGRAL and Swift BAT

  6. THE ELM SURVEY. V. MERGING MASSIVE WHITE DWARF BINARIES

    SciTech Connect

    Brown, Warren R.; Kenyon, Scott J.; Kilic, Mukremin; Gianninas, A.; Allende Prieto, Carlos E-mail: skenyon@cfa.harvard.edu E-mail: alexg@nhn.ou.edu

    2013-05-20

    We present the discovery of 17 low-mass white dwarfs (WDs) in short-period (P {<=} 1 day) binaries. Our sample includes four objects with remarkable log g {approx_equal} 5 surface gravities and orbital solutions that require them to be double degenerate binaries. All of the lowest surface gravity WDs have metal lines in their spectra implying long gravitational settling times or ongoing accretion. Notably, six of the WDs in our sample have binary merger times <10 Gyr. Four have {approx}>0.9 M{sub Sun} companions. If the companions are massive WDs, these four binaries will evolve into stable mass transfer AM CVn systems and possibly explode as underluminous supernovae. If the companions are neutron stars, then these may be millisecond pulsar binaries. These discoveries increase the number of detached, double degenerate binaries in the ELM Survey to 54; 31 of these binaries will merge within a Hubble time.

  7. On the White Dwarf Mass Problem of Cataclysmic Variables

    NASA Astrophysics Data System (ADS)

    Liu, Wei-Min; Li, Xiang-Dong

    2016-11-01

    Recent observations show that white dwarfs (WDs) in cataclysmic variables (CVs) have an average mass significantly higher than isolated WDs and WDs in post-common envelope binaries (PCEBs), which are thought to be the progenitors of CVs. This suggests that either the WDs have grown in mass during the PCEB/CV evolution or the binaries with low-mass WDs are unable to evolve to be CVs. In this paper, we calculate the evolution of accreting WD binaries with updated hydrogen accumulation efficiency and angular momentum loss (AML) prescriptions. We show that thermal-timescale mass transfer is not effective in changing the average WD mass distribution. The WD mass discrepancy is most likely related to unstable mass transfer in WD binaries, in which an efficient mechanism of AML is required.

  8. Dynamical tides in compact white dwarf binaries: helium core white dwarfs, tidal heating and observational signatures

    NASA Astrophysics Data System (ADS)

    Fuller, Jim; Lai, Dong

    2013-03-01

    Tidal dissipation in compact white dwarf (WD) binary systems significantly influences the physical conditions (such as surface temperature and rotation rate) of the WDs prior to mass transfer or merger. In these systems, the dominant tidal effects involve the excitation of gravity waves and their dissipation in the outer envelope of the star. We calculate the amplitude of tidally excited gravity waves in low-mass (0.3 M⊙) helium (He) core WDs as a function of the tidal forcing frequency ω. Like carbon-oxygen (CO) WDs studied in our previous paper, we find that the dimensionless tidal torque F(ω) (inversely proportional to the effective tidal quality factor) depends on ω in an erratic way. On average, F(ω) scales approximately as ω6, and is several orders of magnitude smaller for He WDs than for CO WDs. We find that tidal torques can begin to synchronize the WD rotation when the orbital period is less than about an hour, although a nearly constant asynchronization is maintained even at small periods. We examine where the tidally excited gravity waves experience non-linear breaking or resonant absorption at a critical layer, allowing us to estimate the location and magnitude of tidal heating in the WD envelope. We then incorporate tidal heating in the MESA stellar evolution code, calculating the physical conditions of the WD as a function of orbital period for different WD models. We find that tidal heating makes a significant contribution to the WD luminosity for short-period (˜10 min) systems such as SDSS J0651+2844. We also find that for WDs containing a hydrogen envelope, tidal heating can trigger runaway hydrogen shell burning, leading to a nova-like event before the onset of mass transfer.

  9. A statistical analysis of seeds and other high-contrast exoplanet surveys: massive planets or low-mass brown dwarfs?

    SciTech Connect

    Brandt, Timothy D.; Spiegel, David S.; McElwain, Michael W.; Grady, C. A.; Turner, Edwin L.; Mede, Kyle; Kuzuhara, Masayuki; Schlieder, Joshua E.; Brandner, W.; Feldt, M.; Wisniewski, John P.; Abe, L.; Biller, B.; Carson, J.; Currie, T.; Egner, S.; Golota, T.; Guyon, O.; Goto, M.; Hashimoto, J.; and others

    2014-10-20

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ∼60 M {sub J} brown dwarf companions in the Pleiades, PZ Tel B, and CD–35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ∼30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ∼5 M {sub J}, with a single power-law distribution. We find that p(M, a)∝M {sup –0.65} {sup ±} {sup 0.60} a {sup –0.85} {sup ±} {sup 0.39} (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M {sub J} companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs.

  10. A Statistical Analysis of SEEDS and Other High-contrast Exoplanet Surveys: Massive Planets or Low-mass Brown Dwarfs?

    NASA Astrophysics Data System (ADS)

    Brandt, Timothy D.; McElwain, Michael W.; Turner, Edwin L.; Mede, Kyle; Spiegel, David S.; Kuzuhara, Masayuki; Schlieder, Joshua E.; Wisniewski, John P.; Abe, L.; Biller, B.; Brandner, W.; Carson, J.; Currie, T.; Egner, S.; Feldt, M.; Golota, T.; Goto, M.; Grady, C. A.; Guyon, O.; Hashimoto, J.; Hayano, Y.; Hayashi, M.; Hayashi, S.; Henning, T.; Hodapp, K. W.; Inutsuka, S.; Ishii, M.; Iye, M.; Janson, M.; Kandori, R.; Knapp, G. R.; Kudo, T.; Kusakabe, N.; Kwon, J.; Matsuo, T.; Miyama, S.; Morino, J.-I.; Moro-Martín, A.; Nishimura, T.; Pyo, T.-S.; Serabyn, E.; Suto, H.; Suzuki, R.; Takami, M.; Takato, N.; Terada, H.; Thalmann, C.; Tomono, D.; Watanabe, M.; Yamada, T.; Takami, H.; Usuda, T.; Tamura, M.

    2014-10-01

    We conduct a statistical analysis of a combined sample of direct imaging data, totalling nearly 250 stars. The stars cover a wide range of ages and spectral types, and include five detections (κ And b, two ~60 M J brown dwarf companions in the Pleiades, PZ Tel B, and CD-35 2722B). For some analyses we add a currently unpublished set of SEEDS observations, including the detections GJ 504b and GJ 758B. We conduct a uniform, Bayesian analysis of all stellar ages using both membership in a kinematic moving group and activity/rotation age indicators. We then present a new statistical method for computing the likelihood of a substellar distribution function. By performing most of the integrals analytically, we achieve an enormous speedup over brute-force Monte Carlo. We use this method to place upper limits on the maximum semimajor axis of the distribution function derived from radial-velocity planets, finding model-dependent values of ~30-100 AU. Finally, we model the entire substellar sample, from massive brown dwarfs to a theoretically motivated cutoff at ~5 M J, with a single power-law distribution. We find that p(M, a)vpropM -0.65 ± 0.60 a -0.85 ± 0.39 (1σ errors) provides an adequate fit to our data, with 1.0%-3.1% (68% confidence) of stars hosting 5-70 M J companions between 10 and 100 AU. This suggests that many of the directly imaged exoplanets known, including most (if not all) of the low-mass companions in our sample, formed by fragmentation in a cloud or disk, and represent the low-mass tail of the brown dwarfs. Based on data collected at Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  11. SHIELD: EVLA HI Spectral Line Observations of Low-mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Miazzo, Masao; Ruvolo, Elizabeth; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. Here we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. These low angular resolution (~40" beam) images localize the HI gas; with a few exceptions, the HI gas is co-spatial with the optical centers of the galaxies. These images provide the first glimpse of the neutral interstellar medium in these systems.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  12. Making Sense Out of Pulsating Pre-ELM and ELM White Dwarfs

    NASA Astrophysics Data System (ADS)

    Fontaine, G.; Istrate, A.; Gianninas, A.; Brassard, P.; Van Grootel, V.

    2017-03-01

    We present a unified view of pulsations in both pre-ELM and ELM white dwarfs within the framework of state-of-the-art binary evolution calculations that take into account the combined effects of diffusion and rotational mixing. We find that rotational mixing is able to maintain against settling a sufficient amount of helium in the envelope in order to fuel pulsations through He II-He III ionization on the pre-ELM branch of the evolutionary track in the spectroscopic HR diagram. By the time such a low-mass white dwarf enters the ZZ Ceti instability strip on the cooling branch, settling has taken over rotational mixing and produced a pure H envelope. Such a star then pulsates again, but, this time, as a DA white dwarf of the ZZ Ceti type.

  13. From Accretion to Explosion and Beyond: Transforming White Dwarfs to Neutron Stars and Black Holes

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Harris, R.

    2010-03-01

    White dwarfs accreting at high rates can grow in mass, exhibiting episodes of supersoft-source activity. Some can achieve the Chandrasekhar mass and will either become Type Ia supernovae or else will collapse, becoming neutron stars. We consider white dwarfs with giant donors, computing the rates of both supernovae and collapses. For the collapses, we follow each system to the end of accretion. Some of these systems will appear as ultraluminous x-ray sources and some will go on to become low-mass black holes. This scenario should be fairly common in young stellar populations and links a wide range of astrophysical phenomena. Indeed, it is a veritable cornucopia for the high-energy astrophysicist, offering accreting white dwarfs, neutron stars, and black holes, Type Ia supernovae, gamma-ray bursts, supersoft sources, ultraluminous sources, and neutron star and black hole binaries in globular clusters.

  14. The Initial Mass Function of Low-Mass Stars and Brown Dwarfs in Taurus

    NASA Astrophysics Data System (ADS)

    Luhman, K. L.

    2000-12-01

    By combining deep optical imaging and infrared spectroscopy with data from the Two-Micron All-Sky Survey (2MASS) and from previous studies (e.g., Briceño et al.), I have measured the initial mass function (IMF) for a reddening-limited sample in four fields in the Taurus star-forming region. This IMF is representative of the young populations within these fields for masses above 0.02 Msolar. Relative to the similarly derived IMF for the Trapezium Cluster (Luhman et al.), the IMF for Taurus exhibits a modest deficit of stars above 1 solar mass (i.e., steeper slope), the same turnover mass (~0.8 Msolar), and a significant deficit of brown dwarfs. If the IMF in Taurus were the same as that in the Trapezium, 12.8+/-1.8 brown dwarfs (>0.02 Msolar) are expected in these Taurus fields where only one brown dwarf candidate is found. These results are used to test theories of the IMF. Visiting Astronomer, Kitt Peak National Observatory, National Optical Astronomy Observatories, which is operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation.

  15. The evolution of white dwarfs resulting from helium-enhanced, low-metallicity progenitor stars

    NASA Astrophysics Data System (ADS)

    Althaus, Leandro G.; De Gerónimo, Francisco; Córsico, Alejandro; Torres, Santiago; García-Berro, Enrique

    2017-01-01

    Context. Some globular clusters host multiple stellar populations with different chemical abundance patterns. This is particularly true for ω Centauri, which shows clear evidence of a helium-enriched subpopulation characterized by a helium abundance as high as Y = 0.4 Aims: We present a whole and consistent set of evolutionary tracks from the ZAMS to the white dwarf stage that is appropriate for the study of the formation and evolution of white dwarfs resulting from the evolution of helium-rich progenitors. Methods: We derived white dwarf sequences from progenitors with stellar mass ranging from 0.60 to 2.0 M⊙ and for an initial helium abundance of Y = 0.4. We adopted two values of metallicity: Z = 0.001 and Z = 0.0005. Results: We explored different issues of white dwarf evolution and their helium-rich progenitors. In particular, the final mass of the remnants, the role of overshooting during the thermally pulsing phase, and the cooling of the resulting white dwarfs differ markedly from the evolutionary predictions of progenitor stars with the standard initial helium abundance. Finally, the pulsational properties of the resulting white dwarfs are also explored. Conclusions: We find that, for the range of initial masses explored in this paper, the final mass of the helium-rich progenitors is markedly higher than the final mass expected from progenitors with the usual helium abundance. We also find that progenitors with initial mass lower than M ≃ 0.65 M⊙ evolve directly into helium-core white dwarfs in less than 14 Gyr, and that, for larger progenitor masses, the evolution of the resulting low-mass carbon-oxygen white dwarfs is dominated by residual nuclear burning. For helium-core white dwarfs, we find that they evolve markedly faster than their counterparts coming from standard progenitors. Also, in contrast with what occurs for white dwarfs resulting from progenitors with the standard helium abundance, the impact of residual burning on the cooling time of

  16. Radial velocities of very low mass stars and candidate brown dwarf members of the Hyades and Pleiades, 2

    NASA Technical Reports Server (NTRS)

    Stauffer, John R.; Liebert, James; Giampapa, Mark

    1995-01-01

    We have determined H alpha equivalent widths and radial velocities with 1 sigma accuracies of approximately 5 km/s for approximately 20 candidate very low mass members of the Pleiades cluster and for a few proposed very low mass members of the Hyades. Most of the Pleiades targets were selected from the recent Hambly, Hawkins, and Jameson proper motion survey, where they were identified as probable Pleiades brown dwarfs with an age spread from 3 to 70 Myr. Our spectroscopic data and a reinterpretation of the photometric data confirm that these objects are indeed likely Pleiades members; however, we believe that they more likely have masses slightly above the hydrogen burning mass limit and that there is no firm evidence for an age spread amongst these stars. All of the very low mass Pleiades and Hyades members show H alpha in emission. However, the ratio of H alpha flux to biometric flux in the Pleiades shows a maximum near M(sub Bol) approximately equal to 9.5 (M approximately equal to 0.3 solar mass) and a sharp decrease to lower masses. This break occurs at the approximate mass where low mass stars are expected to become fully convective, and it is tempting to assume that the decrease in H alpha flux is caused by some change in the behavior of stellar dynamos at this mass. We do not see a similar break in activity at this mass in the Hyades. We discuss possible evolutionary explanations for this difference in the H alpha activity between the two clusters.

  17. Probing white dwarf interiors with LISA: periastron precession in eccentric double white dwarfs.

    PubMed

    Willems, B; Vecchio, A; Kalogera, V

    2008-02-01

    In globular clusters, dynamical interactions give rise to a population of eccentric double white dwarfs detectable by the Laser Interferometer Space Antenna (LISA) up to the Large Magellanic Cloud. In this Letter, we explore the detectability of periastron precession in these systems with LISA. Unlike previous investigations, we consider contributions due to tidal and rotational distortions of the binary components in addition to general relativistic contributions to the periastron precession. At orbital frequencies above a few mHz, we find that tides and stellar rotation dominate, opening up a possibly unique window to the study of the interior and structure of white dwarfs.

  18. Physical Properties of White Dwarfs from Multi-Band Photometry

    NASA Astrophysics Data System (ADS)

    Raddi, R.

    2017-03-01

    We describe a hierarchical Bayesian model to measure the physical parameters (mass, cooling age, distance, interstellar extinction) of single white dwarfs using only multi-band UV to IR photometry. We test our model on a set of known white dwarfs with well-assessed atmospheric parameters, determined via optical spectroscopy. Looking forward to the results of the ESA Gaia mission, we derive the posterior distributions of white dwarf parameters in two different scenarios with known or unknown parallaxes.

  19. THE BROWN DWARF KINEMATICS PROJECT. II. DETAILS ON NINE WIDE COMMON PROPER MOTION VERY LOW MASS COMPANIONS TO NEARBY STARS ,

    SciTech Connect

    Faherty, Jacqueline K.; Shara, Michael M.; Burgasser, Adam J.; West, Andrew A.; Bochanski, John J.; Cruz, Kelle L.; Walter, Frederick M.

    2010-01-15

    We report on nine wide common proper motion systems containing late-type M, L, or T companions. We confirm six previously reported companions, and identify three new systems. The ages of these systems are determined using diagnostics for both stellar primaries and low-mass secondaries and masses for the secondaries are inferred using evolutionary models. Of our three new discoveries, the M3+T6.5 pair G 204-39 and SDSS J1758+4633 has an age constrained to 0.5-1.5 Gyr making the secondary a potentially useful brown dwarf benchmark. The G5+L4 pair G 200-28 and SDSS J1416+5006 has a projected separation of {approx}25,000 AU making it one of the widest and lowest binding energy systems known to date. The system containing NLTT 2274 and SDSS J0041+1341 is an older M4+L0 (>4.5 Gyr) pair which shows H{alpha} activity in the secondary but not the primary making it a useful tracer of age/mass/activity trends. Two of the nine systems have discrepant component ages that emerge from stellar or ultracool diagnostics indicating possible shortcomings in our understanding of the age diagnostics of stars and brown dwarfs. We find a resolved binary frequency for widely separated (>100 AU) low-mass companions (i.e., at least a triple system) which is at least twice the frequency found for the field ultracool dwarf population. The ratio of triples to binaries and quadruples to binaries is also high for this sample: 3:5 and 1:4, respectively, compared to 8 pc sample values of 1:4 and 1:26. The additional components in these wide companion systems indicates a formation mechanism that requires a third or fourth component to maintain gravitational stability or facilitate the exchange of angular momentum. The binding energies for the nine multiples discussed in this text are among the lowest known for wide low-mass systems, suggesting that weakly bound, low-to-intermediate mass (0.2 M {sub sun} < M {sub tot}< 1.0 M {sub sun}) multiples can form and survive to exist in the field (1-8 Gyr)

  20. A study of circumstellar disk properties in low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Riaz, Basmah

    We present Spitzer Space Telescope IRAC and MIPS observations for a sample of eight M dwarfs: six dMe, one dM, and one sdMe star. All of our targets are found to have Spectral Energy Distributions (SEDs) which are fitted within the error bars by a purely photospheric spectrum out to 24m m . The estimated ages for all are >10 Myr, suggesting that enough disk dissipation has occurred within the inner several AU of the star. Scaling from Houdebine's model of the AU Mic chromosphere, we have computed the free-free infrared excesses for a range of densities. Our Spitzer 24m m data shows that the chromospheres in two of our targets are less dense than in AU Mic by a factor of 10 or more. Our models also indicate that the chromospheric contribution to the observed AU Mic emission at submillimeter wavelengths is only about 2%. We present Spitzer IRAC, MIPS and IRS observations for three sub-stellar members of the TW Hydrae Association (TWA): 2MASSW J1207334-393254 (2M1207), SSSPM J1102-3431 (SSSPM 1102), and 2MASS J1139511-315921 (2M1139). The near- to mid-infrared SEDs indicate the presence of flat optically thick disks around 2M1207 and SSSPM 1102, and a transition disk around 2M1139. 2M1207 shows absorption in the 10 m m silicate feature, with a peak near 11.3 m m due to crystalline forsterite. The absorption can be attributed to a close to edge-on disk. No silicate absorption/emission is observed towards SSSPM 1102. We have performed detailed modeling of these two brown dwarf disks. The best-fits have been obtained using a flat disk of mass 10 -4 [Special characters omitted.] , M of 10 -10 [Special characters omitted.] /yr, and an inclination angle of 75=B0 for 2M1207, whereas a disk mass of 10 -5 [Special characters omitted.] , M of 10 -11 [Special characters omitted.] /yr, and an inclination angle of 63° provides a good fit to SSSPM 1102. Modeling of the 10 m m silicate feature requires the presence of large (>50 m m ) grains in the disk midplane, which indicates

  1. Stripped Red Giants - Helium Core White Dwarf Progenitors and their sdB Siblings

    NASA Astrophysics Data System (ADS)

    Heber, U.

    2017-03-01

    Some gaps in the mosaic of binary star evolution have recently been filled by the discoveries of helium-core white dwarf progenitors (often called extremely low mass (ELM) white dwarfs) as stripped cores of first-giant branch objects. Two varieties can be distinguished. One class is made up by SB1 binaries, companions being white dwarfs as well. Another class, the so-called EL CVn stars, are composite spectrum binaries, with A-Type companions. Pulsating stars are found among both classes. A riddle is posed by the apparently single objects. There is a one-to-one correspondence of the phenomena found for these new classes of star to those observed for sdB stars. In fact, standard evolutionary scenarios explain the origin of sdB stars as red giants that have been stripped close to the tip of first red giant branch. A subgroup of subluminous B stars can also be identified as stripped helium-cores of red giants. They form an extension of the ELM sequence to higher temperatures. Hence low mass white dwarfs of helium cores and sdB stars in binaries are close relatives in terms of stellar evolution.

  2. The fate of exomoons in white dwarf planetary systems

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Veras, Dimitri; Gänsicke, Boris T.; Holman, Matthew J.

    2017-01-01

    Roughly 1000 white dwarfs are known to be polluted with planetary material, and the progenitors of this material are typically assumed to be asteroids. The dynamical architectures which perturb asteroids into white dwarfs are still unknown, but may be crucially dependent on moons liberated from parent planets during post-main-sequence gravitational scattering. Here, we trace the fate of these exomoons, and show that they more easily achieve deep radial incursions towards the white dwarf than do scattered planets. Consequently, moons are likely to play a significant role in white dwarf pollution, and in some cases may be the progenitors of the pollution itself.

  3. Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus

    NASA Astrophysics Data System (ADS)

    Visscher, Channon; Lodders, Katharina; Fegley, Bruce, Jr.

    2006-09-01

    Thermochemical equilibrium and kinetic calculations are used to model sulfur and phosphorus chemistry in giant planets, brown dwarfs, and extrasolar giant planets (EGPs). The chemical behavior of individual S- and P-bearing gases and condensates is determined as a function of pressure, temperature, and metallicity. The results are independent of particular model atmospheres, and in principle, the equilibrium composition along the pressure-temperature profile of any object can be determined. Hydrogen sulfide (H2S) is the dominant S-bearing gas throughout substellar atmospheres and approximately represents the atmospheric sulfur inventory. Silicon sulfide (SiS) is a potential tracer of weather in substellar atmospheres. Disequilibrium abundances of phosphine (PH3) approximately representative of the total atmospheric phosphorus inventory are expected to be mixed upward into the observable atmospheres of giant planets and T dwarfs. In hotter objects, several P-bearing gases (e.g., P2, PH3, PH 2, PH, and HCP) become increasingly important at high temperatures.

  4. Emission line diagnostics for accretion and outflows in young very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Stelzer, B.; Alcalá, J. M.; Whelan, E.; Scholz, A.

    2014-01-01

    We discuss accretion and outflow properties of three very low-mass young stellar objects based on broad-band mid-resolution X-Shooter/VLT spectra. Our targets (FU Tau A, 2M1207-39, and Par-Lup3-4) have spectral types between M5 and M8, ages between 1Myr and ~ 10Myr, and are known to be accreting from previous studies. The final objective of our project is the determination of mass outflow to accretion rate for objects near or within the substellar regime as a probe for the T Tauri phase of brown dwarfs and the investigation of variability in the accretion and outflow processes.

  5. Polarimetric evidence of a white dwarf pulsar in the binary system AR Scorpii

    NASA Astrophysics Data System (ADS)

    Buckley, D. A. H.; Meintjes, P. J.; Potter, S. B.; Marsh, T. R.; Gänsicke, B. T.

    2017-01-01

    The variable star AR Scorpii (AR Sco) was recently discovered to pulse in brightness every 1.97 min from ultraviolet wavelengths into the radio regime. The system is composed of a cool, low-mass star in a tight, 3.55-hour orbit with a more massive white dwarf. Here we report new optical observations of AR Sco that show strong linear polarization (up to 40%) that varies strongly and periodically on both the spin period of the white dwarf and the beat period between the spin and orbital period, as well as low-level (up to a few per cent) circular polarization. These observations support the notion that, similar to neutron-star pulsars, the pulsed luminosity of AR Sco is powered by the spin-down of the rapidly rotating white dwarf that is highly magnetized (up to 500 MG). The morphology of the modulated linear polarization is similar to that seen in the Crab pulsar, albeit with a more complex waveform owing to the presence of two periodic signals of similar frequency. Magnetic interactions between the two component stars, coupled with synchrotron radiation from the white dwarf, power the observed polarized and non-polarized emission. AR Sco is therefore the first example of a white dwarf pulsar.

  6. GRMHD formulation of highly super-Chandrasekhar magnetized white dwarfs: stable configurations of non-spherical white dwarfs

    SciTech Connect

    Das, Upasana; Mukhopadhyay, Banibrata E-mail: bm@physics.iisc.ernet.in

    2015-05-01

    The topic of magnetized super-Chandrasekhar white dwarfs is in the limelight, particularly in the last few years, since our proposal of their existence. By full-scale general relativistic magnetohydrodynamic (GRMHD) numerical analysis, we confirm in this work the existence of stable, highly magnetized, significantly super-Chandrasekhar white dwarfs with mass more than 3 solar mass. While a poloidal field geometry renders the white dwarfs oblate, a toroidal field makes them prolate retaining an overall quasi-spherical shape, as speculated in our earlier work. These white dwarfs are expected to serve as the progenitors of over-luminous type Ia supernovae.

  7. Search for Higgs shifts in white dwarfs

    SciTech Connect

    Onofrio, Roberto; Wegner, Gary A. E-mail: gary.a.wegner@dartmouth.edu

    2014-08-20

    We report on a search for differential shifts between electronic and vibronic transitions in carbon-rich white dwarfs BPM 27606 and Procyon B. The absence of differential shifts within the spectral resolution and taking into account systematic effects such as space motion and pressure shifts allows us to set the first upper bound of astrophysical origin on the coupling between the Higgs field and the Kreschmann curvature invariant. Our analysis provides the basis for a more general methodology to derive bounds to the coupling of long-range scalar fields to curvature invariants in an astrophysical setting complementary to the ones available from high-energy physics or table-top experiments.

  8. Untangling the White Dwarf Luminosity Functions

    NASA Astrophysics Data System (ADS)

    Lam, M. C.

    2017-03-01

    The inversion of the white dwarf luminosity function provides an independent way to prove the past star formation history of the Milky Way independent of any cosmological models. In Rowell & Hambly (2011), the effective volume method uses the average properties of all the objects in a given bin, so a significant amount of information is lost in the early stage of the analysis. In this work, I explore the possibility of assigning objects individually in a probabilistic way using the generalised Schmidt density estimator (1/Vmax).

  9. Magnetic activity in the HARPS M dwarf sample. The rotation-activity relationship for very low-mass stars through

    NASA Astrophysics Data System (ADS)

    Astudillo-Defru, N.; Delfosse, X.; Bonfils, X.; Forveille, T.; Lovis, C.; Rameau, J.

    2017-03-01

    Context. Atmospheric magnetic fields in stars with convective envelopes heat stellar chromospheres, and thus increase the observed flux in the Ca ii H and K doublet. Starting with the historical Mount Wilson monitoring program, these two spectral lines have been widely used to trace stellar magnetic activity, and as a proxy for rotation period (Prot) and consequently for stellar age. Monitoring stellar activity has also become essential in filtering out false-positives due to magnetic activity in extra-solar planet surveys. The Ca ii emission is traditionally quantified through the -index, which compares the chromospheric flux in the doublet to the overall bolometric flux of the star. Much work has been done to characterize this index for FGK-dwarfs, but M dwarfs - the most numerous stars of the Galaxy - were left out of these analyses and no calibration of their Ca ii H and K emission to an exists to date. Aims: We set out to characterize the magnetic activity of the low- and very-low-mass stars by providing a calibration of the -index that extends to the realm of M dwarfs, and by evaluating the relationship between and the rotation period. Methods: We calibrated the bolometric and photospheric factors for M dwarfs to properly transform the S-index (which compares the flux in the Ca ii H and K lines to a close spectral continuum) into the . We monitored magnetic activity through the Ca ii H and K emission lines in the HARPS M dwarf sample. Results: The index, like the fractional X-ray luminosity LX/Lbol, shows a saturated correlation with rotation, with saturation setting in around a ten days rotation period. Above that period, slower rotators show weaker Ca ii activity, as expected. Under that period, the index saturates to approximately 10-4. Stellar mass modulates the Ca ii activity, with showing a constant basal activity above 0.6 M⊙ and then decreasing with mass between 0.6 M⊙ and the fully-convective limit of 0.35 M⊙. Short-term variability of the

  10. White-dwarf-white-dwarf galactic background in the LISA data

    SciTech Connect

    Edlund, Jeffrey A.; Tinto, Massimo; Krolak, Andrzej; Nelemans, Gijs

    2005-06-15

    LISA (Laser Interferometer Space Antenna) is a proposed space mission, which will use coherent laser beams exchanged between three remote spacecraft to detect and study low-frequency cosmic gravitational radiation. In the low part of its frequency band, the LISA strain sensitivity will be dominated by the incoherent superposition of hundreds of millions of gravitational wave signals radiated by inspiraling white-dwarf binaries present in our own Galaxy. In order to estimate the magnitude of the LISA response to this background, we have simulated a synthesized population that recently appeared in the literature. Our approach relies on entirely analytic expressions of the LISA time-delay interferometric responses to the gravitational radiation emitted by such systems, which allows us to implement a computationally efficient and accurate simulation of the background in the LISA data. We find the amplitude of the galactic white-dwarf binary background in the LISA data to be modulated in time, reaching a minimum equal to about twice that of the LISA noise for a period of about two months around the time when the Sun-LISA direction is roughly oriented towards the Autumn equinox. This suggests that, during this time period, LISA could search for other gravitational wave signals incoming from directions that are away from the galactic plane. Since the galactic white-dwarf background will be observed by LISA not as a stationary but rather as a cyclostationary random process with a period of 1 yr, we summarize the theory of cyclostationary random processes, present the corresponding generalized spectral method needed to characterize such process, and make a comparison between our analytic results and those obtained by applying our method to the simulated data. We find that, by measuring the generalized spectral components of the white-dwarf background, LISA will be able to infer properties of the distribution of the white-dwarf binary systems present in our Galaxy.

  11. K2 Ultracool Dwarfs Survey. II. The White Light Flare Rate of Young Brown Dwarfs

    NASA Astrophysics Data System (ADS)

    Gizis, John E.; Paudel, Rishi R.; Mullan, Dermott; Schmidt, Sarah J.; Burgasser, Adam J.; Williams, Peter K. G.

    2017-08-01

    We use Kepler K2 Campaign 4 short-cadence (one-minute) photometry to measure white light flares in the young, moving group brown dwarfs 2MASS J03350208+2342356 (2M0335+23) and 2MASS J03552337+1133437 (2M0355+11), and report on long-cadence (thirty-minute) photometry of a superflare in the Pleiades M8 brown dwarf CFHT-PL-17. The rotation period (5.24 hr) and projected rotational velocity (45 km s-1) confirm 2M0335+23 is inflated (R≥slant 0.20 {R}⊙ ) as predicted for a 0.06 {M}⊙ , 24 Myr old brown dwarf βPic moving group member. We detect 22 white light flares on 2M0335+23. The flare frequency distribution follows a power-law distribution with slope -α =-1.8+/- 0.2 over the range 1031 to 1033 erg. This slope is similar to that observed in the Sun and warmer flare stars, and is consistent with lower-energy flares in previous work on M6-M8 very-low-mass stars; taking the two data sets together, the flare frequency distribution for ultracool dwarfs is a power law over 4.3 orders of magnitude. The superflare (2.6× {10}34 erg) on CFHT-PL-17 shows higher-energy flares are possible. We detect no flares down to a limit of 2× {10}30 erg in the nearby L5γ AB Dor moving group brown dwarf 2M0355+11, consistent with the view that fast magnetic reconnection is suppressed in cool atmospheres. We discuss two multi-peaked flares observed in 2M0335+23, and argue that these complex flares can be understood as sympathetic flares, in which fast-mode magnetohydrodynamic waves similar to extreme-ultraviolet waves in the Sun trigger magnetic reconnection in different active regions.

  12. Deep HST Imaging In 47 Tuc And NGC 6397: Helium-core White Dwarfs In The Core Of NGC 6397

    NASA Astrophysics Data System (ADS)

    Goldsbury, Ryan; Woodley, K.; Anderson, J.; Dotter, A.; Fahlman, G.; Hansen, B.; Hurley, J.; Kalirai, J.; King, I.; Rich, R. M.; Richer, H.; Shara, M.; Stetson, P.; Zurek, D.

    2011-01-01

    We present a detailed analysis of a population of helium-core white dwarfs in the core of the Galactic globular cluster NGC 6397. We analyze the radial distribution of these objects compared to the distributions of various other populations of known mass within the this cluster. From this comparison we are able to determine the average mass of the helium-core white dwarfs and their possible binary companions. We find that their distribution is inconsistent with the expected mass range of low-mass white dwarfs, but may be explained by the presence of massive companions to these objects. We also analyze the spectral energy distributions of the He-core white dwarfs to place constraints on the nature of their unresolved partners.

  13. Hunting For Wild Brown Dwarf Companions To White Dwarfs In UKIDSS And SDSS

    NASA Astrophysics Data System (ADS)

    Day-Jones, Avril; Pinfield, D. J.; Jones, H. R. A.; Napiwotzki, R.; Burningham, B.; Jenkins, J. S.; UKIDSS Cool Dwarf Science Working Group

    2008-03-01

    We present findings from our search of the latest releases of SDSS and UKIDSS LAS for very widely separated white dwarf - ultracool dwarf binaries. Ultracool dwarfs found in such binary systems could be used as benchmark objects, whose properties, such as age and distance can be inferred indirectly from the white dwarf primary (with no need to refer to atmospheric models) and can provide a test bed for theoretical models, they can therefore be used observationally pin down how physical properties affect ultracool dwarf spectra.

  14. Diffusion of neon in white dwarf stars.

    PubMed

    Hughto, J; Schneider, A S; Horowitz, C J; Berry, D K

    2010-12-01

    Sedimentation of the neutron rich isotope 22Ne may be an important source of gravitational energy during the cooling of white dwarf stars. This depends on the diffusion constant for 22Ne in strongly coupled plasma mixtures. We calculate self-diffusion constants D(i) from molecular dynamics simulations of carbon, oxygen, and neon mixtures. We find that D(i) in a mixture does not differ greatly from earlier one component plasma results. For strong coupling (coulomb parameter Γ> few), D(i) has a modest dependence on the charge Z(i) of the ion species, D(i)∝Z(i)(-2/3). However, D(i) depends more strongly on Z(i) for weak coupling (smaller Γ). We conclude that the self-diffusion constant D(Ne) for 22Ne in carbon, oxygen, and neon plasma mixtures is accurately known so that uncertainties in D(Ne) should be unimportant for simulations of white dwarf cooling.

  15. Freak waves in white dwarfs and magnetars

    SciTech Connect

    Sabry, R.; Moslem, W. M.; Shukla, P. K.

    2012-12-15

    We report properties of ion acoustic freak waves that propagate in a plasma composed of warm ions and ultrarelativistic electrons and positrons. The dynamics of the nonlinear freak waves is governed by the nonlinear Schroedinger equation. The possible region for the freak waves to exist is defined precisely for typical parameters of white dwarfs and magnetars corona. It is found that for low wave number, the nonlinear ion-acoustic wave packets are structurally stable in magnetars corona than in white dwarfs. However, for large wave numbers the situation is opposite. The critical wave number threshold (k{sub c}), which indicates where the modulational instability sets in, is defined for both applications. It is seen that near to k{sub c} the freak wave amplitude becomes high, but it decreases whenever we stepped away from k{sub c}. For the wave numbers close to k{sub c}, the increase of the unperturbed density ratio of positrons-to-electrons ({beta}) would lead to increase the freak wave amplitude, but for larger wave numbers the amplitude decreases with the increase of {beta}.

  16. Understanding the White Dwarfs in Intermediate Polars

    NASA Astrophysics Data System (ADS)

    Belle, Kunegunda E.; Sion, E. M.

    2006-12-01

    The temperature of a white dwarf (WD) in a cataclysmic variable (CV) can tell you much about the accretion history of the binary system, and hence the evolution of the system. Best seen in the ultraviolet, a white dwarf's temperature is typically measured through modeling of a UV spectrum. This approach has been taken for numerous CVs modeling the spectrum as a combination of accretion disk and WD photosphere and also for polars, the strongly magnetic (B 10-80 MG) subset of CVs that contain magnetically controlled accretion streams rather than a disk. The task of extracting information about the WD in an intermediate polar (IP, magnetic CVs with B < 5 MG) is a bit trickier as they contain both magnetically controlled accretion streams and a truncated accretion disk. The fact that there are only five IPs for which WD temperatures have been estimated is a testament to the difficulty of modeling these systems. Here we present initial results from our project of determining the temperatures of WDs in IPs. We show that traditional methods of obtaining an inner accretion disk radius via optical emission line wings is likely inaccurate for most IPs, and that in some cases, the truncation radius is so large that the accretion disk does not contribute UV flux. Finally, we show that IPs follow the general trend of magnetic CVs containing cooler WDs than non-magnetic CVs. This work is supported in part by NSF grant AST0507514 and by NASA grant NNG04GE78G.

  17. Circumstellar features in hot DA white dwarfs

    NASA Astrophysics Data System (ADS)

    Bannister, N. P.; Barstow, M. A.; Holberg, J. B.; Bruhweiler, F. C.

    2003-05-01

    We present a phenomenological study of highly ionized, non-photospheric absorption features in high spectral resolution vacuum ultraviolet spectra of 23 hot DA white dwarfs. Prior to this study, four of the survey objects (Feige 24, REJ 0457-281, G191-B2B and REJ 1614-085) were known to possess these features. We find four new objects with multiple components in one or more of the principal resonance lines: REJ 1738+665, Ton 021, REJ 0558-373 and WD 2218+706. A fifth object, REJ 2156-546, also shows some evidence of multiple components, though further observations are required to confirm the detection. We discuss possible origins for these features including ionization of the local interstellar environment, the presence of material inside the gravitational well of the white dwarf, mass loss in a stellar wind and the existence of material in an ancient planetary nebula around the star. We propose ionization of the local interstellar medium as the origin of these features in G191-B2B and REJ 1738+665, and demonstrate the need for higher-resolution spectroscopy of the sample, to detect multiple interstellar medium velocity components and to identify circumstellar features that may lie close to the photospheric velocity.

  18. Radial pulsations in DB white dwarfs?

    NASA Technical Reports Server (NTRS)

    Kawaler, Steven D.

    1993-01-01

    Theoretical models of DB white dwarfs are unstable against radial pulsation at effective temperatures near 20,000-30,000 K. Many high-overtone modes are unstable, with periods ranging from 12 s down to the acoustic cutoff period of approximately 0.1 s. The blue edge for radial instability lies at slightly higher effective temperatures than for nonradial pulsations, with the temperature of the blue edge dependent on the assumed efficiency of convection. Models with increased convective efficiency have radial blue edges that are increasingly closer to the nonradial blue edge; in all models the instability persists into the nonradial instability strip. Radial pulsations therefore may exist in the hottest DB stars that lie below the DB gap; the greatest chance for detection would be observations in the ultraviolet. These models also explain why searches for radial pulsations in DA white dwarfs have failed: the efficient convection needed to explain the blue edge for nonradial DA pulsation means that the radial instability strip is 1000 K cooler than found in previous investigations. The multiperiodic nature of the expected pulsations can be used to advantage to identify very low amplitude modes using the uniform spacing of the modes in frequency. This frequency spacing is a direct indicator of the mass of the star.

  19. Studying white dwarf merger remnants with FLASH

    NASA Astrophysics Data System (ADS)

    Jenks, Malia

    2017-01-01

    There is still uncertainty as to the progenitor systems of type Ia supernova (SN Ia). Both single and double degenerate systems have been suggested as progenitors. In a double degenerate system a merger between the two white dwarfs, with total mass at or exceeding the Chandrasekhar mass, leads to the supernova. If the explosion occurs during the merging process it is a violent merger. If an explosion doesn't occur while the stars merge the system becomes a white dwarf of unstable mass. For mergers of this type with differing starting masses it has been shown that during the viscous evolution carbon burning starts far from the center and stably converts the star to oxygen and neon. In this case the star will eventually collapse to a neutron star and not produce an SN Ia. The case of similar mass mergers has been much less explored. Using the results of a smooth particle hydrodynamic merger we simulate the viscous evolution of models of different mass ratios with FLASH. These simulations test if a similar mass merger can lead to an SN Ia, and begin to probe where the transition from similar to dissimilar mass occurs.

  20. Two new extremely hot pulsating white dwarfs

    NASA Technical Reports Server (NTRS)

    Bond, H. E.; Grauer, A. D.; Green, R. F.; Liebert, J. W.

    1984-01-01

    High speed photometry of the extremely hot, nearly degenerate stars PG 1707 + 427 and PG 2131 + 066 reveals that they are low-amplitude pulsating variables. Power spectral analysis shows both to be multiperiodic, with dominant periods of 7.5 and 6.4-6.9 minutes, respectively. Together with the known pulsators PG 1159 - 035 and the central star of the planetary nebula Kohoutek 1-16, these objects define a new pulsational instability strip at the hot edge of the H-R diagram. The variations of these objects closely resemble those of the much cooler pulsating ZZ Ceti DA white dwarfs; both groups are probably nonradial g-mode pulsators. Evolutionary contraction of the PG 1159 - 035 variables may lead to period changes that would be detectable in as little as 1 year. The optical and IUE spectra of the PG 1159 - 035 variables are characterized by absorption lines of C IV and other CNO ions, indicating radiative levitation of species heavier than helium. He II is also present in the spectra, but the hydrogen Balmer lines are absent. Effective temperatures near 100,000 K are required, and the He II 4686 A profiles indicate log g greater than 6. These helium-rich pulsators form the hottest known subgroup of the DO white dwarfs.

  1. Interpretation of the Spectra of Strongly Magnetised White Dwarfs

    NASA Astrophysics Data System (ADS)

    Wunner, G.

    Quite recently tremendous progress has been made in analysing the spectra of magnetic DA white dwarfs with field strengths above ≡50 Megagauss. One particular white dwarf has played the rôle of a "Rosetta Stone" in this development, and it is therefore worthwhile to briefly retell the story of this object.

  2. DISCOVERY OF MOLECULAR HYDROGEN IN WHITE DWARF ATMOSPHERES

    SciTech Connect

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B.; Koester, D. E-mail: jura@astro.ucla.edu E-mail: ben@astro.ucla.edu

    2013-04-01

    With the Cosmic Origins Spectrograph on board the Hubble Space Telescope, we have detected molecular hydrogen in the atmospheres of three white dwarfs with effective temperatures below 14,000 K, G29-38, GD 133, and GD 31. This discovery provides new independent constraints on the stellar temperature and surface gravity of white dwarfs.

  3. SEARCH FOR VERY LOW-MASS BROWN DWARFS AND FREE-FLOATING PLANETARY-MASS OBJECTS IN TAURUS

    SciTech Connect

    Quanz, Sascha P.; Goldman, Bertrand; Henning, Thomas; Brandner, Wolfgang; Burrows, Adam; Hofstetter, Lorne W.

    2010-01-01

    The number of low-mass brown dwarfs and even free floating planetary-mass objects in young nearby star-forming (SF) regions and associations is continuously increasing, offering the possibility to study the low-mass end of the initial mass function in greater detail. In this paper, we present six new candidates for (very) low-mass objects in the Taurus SF region one of which was recently discovered in parallel by Luhman et al. The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than 4 mag deeper than the Two Micron All Sky Survey and covers currently approx1.5 deg{sup 2}. Complementary optical photometry from Sloan Digital Sky Survey were available for roughly 1.0 deg{sup 2}. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail, we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra, we derive a spectral type of L2 +- 0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models, we find the effective temperature to be 2080 +- 140 K and the mass 5-15 Jupiter masses. For the second source, the J-band spectrum does not provide definite proof of the young, low-mass nature of the object, as the expected steep water vapor absorption at 1.33 mum is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 M{sub Jup}) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members.

  4. Search for Very Low-Mass Brown Dwarfs and Free-Floating Planetary-Mass Objects in Taurus

    NASA Astrophysics Data System (ADS)

    Quanz, Sascha P.; Goldman, Bertrand; Henning, Thomas; Brandner, Wolfgang; Burrows, Adam; Hofstetter, Lorne W.

    2010-01-01

    The number of low-mass brown dwarfs and even free floating planetary-mass objects in young nearby star-forming (SF) regions and associations is continuously increasing, offering the possibility to study the low-mass end of the initial mass function in greater detail. In this paper, we present six new candidates for (very) low-mass objects in the Taurus SF region one of which was recently discovered in parallel by Luhman et al. The underlying data we use is part of a new database from a deep near-infrared survey at the Calar Alto observatory. The survey is more than 4 mag deeper than the Two Micron All Sky Survey and covers currently ~1.5 deg2. Complementary optical photometry from Sloan Digital Sky Survey were available for roughly 1.0 deg2. After selection of the candidates using different color indices, additional photometry from Spitzer/IRAC was included in the analysis. In greater detail, we focus on two very faint objects for which we obtained J-band spectra. Based on comparison with reference spectra, we derive a spectral type of L2 ± 0.5 for one object, making it the object with the latest spectral type in Taurus known today. From models, we find the effective temperature to be 2080 ± 140 K and the mass 5-15 Jupiter masses. For the second source, the J-band spectrum does not provide definite proof of the young, low-mass nature of the object, as the expected steep water vapor absorption at 1.33 μm is not present in the data. We discuss the probability that this object might be a background giant or carbon star. If it were a young Taurus member, however, a comparison to theoretical models suggests that it lies close to or even below the deuterium burning limit (<13 M Jup) as well. A first proper motion analysis for both objects shows that they are good candidates for being Taurus members. Based on observations made at the Calar Alto Observatory. Based on observations made with ESO Telescopes at the Paranal Observatories under program ID 278.C-5043A. This

  5. Near-infrared imaging of white dwarfs with candidate debris disks

    SciTech Connect

    Wang, Zhongxiang; Tziamtzis, Anestis; Wang, Xuebing

    2014-02-10

    We have carried out JHK{sub s} imaging of 12 white dwarf debris disk candidates from the WIRED Sloan Digital Sky Survey Data Release 7 catalog, aiming to confirm or rule out disks among these sources. On the basis of positional identification and the flux density spectra, we find that seven white dwarfs have excess infrared emission, but mostly at Wide-field Infrared Survey Explorer W1 and W2 bands. Four are due to nearby red objects consistent with background galaxies or very low mass dwarfs, and one exhibits excess emission at JHK{sub s} consistent with an unresolved L0 companion at the correct distance. While our photometry is not inconsistent with all seven excesses arising from disks, the stellar properties are distinct from the known population of debris disk white dwarfs, making the possibility questionable. In order to further investigate the nature of these infrared sources, warm Spitzer imaging is needed, which may help resolve galaxies from the white dwarfs and provide more accurate flux measurements.

  6. Fate of accreting white dwarfs: Type I supernovae vs collapse

    SciTech Connect

    Nomoto, Ken'ichi

    1986-01-01

    The final fate of accreting C + O white dwarfs is either thermonuclear explosion or collapse, if the white dwarf mass grows to the Chandrasekhar mass. We discuss how the fate depends on the initial mass, age, composition of the white dwarf and the mass accretion rate. Relatively fast accretion leads to a carbon deflagration at low central density that gives rise to a Type Ia supernova. Slower accretion induces a helium detonation that could be observed as a Type Ib supernova. If the initial mass of the C + O white dwarf is larger than 1.2 Msub solar, a carbon deflagration starts at high central density and induces a collapse of the white dwarf to form a neutron star. We examine the critical condition for which a carbon deflagration leads to collapse, not explosion. For the case of explosion, we discuss to what extent the nucleosynthesis models are consistent with spectra of Type Ia and Ib supernovae. 61 refs., 18 figs.

  7. High Velocity White Dwarfs from Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Hansen, B.

    2002-12-01

    The single degenerate scenario for Type Ia supernovae predicts the post-supernova release of the donor star with a space velocity determined by the original binary orbital velocity. The mass transfer criteria for successful supernova ignition also place constraints on the mass of the donor. The combination of these two factors means that the great majority of high velocity donor remnants will be white dwarfs. We present models of the Type Ia supernova progenitors and antecedents in the Galaxy, and examine the donor remnant white dwarf population in the light of the current interest in high velocity white dwarfs. One potential discriminant between donor remnants and normal high velocity white dwarfs (from a thick disk or spheroid stellar population) is a determination of the binary fraction. White dwarfs which have their origin in disrupted close binaries will always be single.

  8. ROSAT Pointed Observations of Cool Magnetic White Dwarfs

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Porter, J. G.; Davis, J. M.

    1995-01-01

    Observational evidence for the existence of a chromosphere on the cool magnetic white dwarf GD 356 has been reported. In addition, there has been theoretical speculations that cool magnetic white dwarfs may be sources of coronal X-ray emission. This emission, if it exists, would be distinct from the two types of X-ray emission (deep photospheric and shocked wind) that have already been observed from hot white dwarfs. We have used the PSPC instrument on ROSAT to observe three of the most prominent DA white dwarf candidates for coronal X-ray emission: GD 356, KUV 2316+123, and GD 90. The data show no significant emission for these stars. The derived upper limits for the X-ray luminosities provide constraints for a revision of current theories of the generation of nonradiative energy in white dwarfs.

  9. Debris Disks around White Dwarfs: The DAZ Connection

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; von Hippel, Ted; Leggett, S. K.; Winget, D. E.

    2006-07-01

    We present near-infrared spectroscopic observations of 20 previously known DAZ white dwarfs obtained at the NASA Infrared Telescope Facility. Two of these white dwarfs (G29-38 and GD 362) are known to display significant K-band excesses due to circumstellar debris disks. Here we report the discovery of excess K-band radiation from another DAZ white dwarf, WD 0408-041 (GD 56). Using spectroscopic observations, we show that the excess radiation cannot be explained by a stellar or substellar companion, and is likely to be caused by a warm debris disk. Our observations strengthen the connection between the debris disk phenomena and the observed metal abundances in cool DAZ white dwarfs. However, we do not find any excess infrared emission from the most metal rich DAZs with Teff=16,000-20,000 K. This suggests that the metal abundances in warmer DAZ white dwarfs may require another explanation.

  10. Effect of accretion on the pre-main-sequence evolution of low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Vorobyov, Eduard I.; Elbakyan, Vardan; Hosokawa, Takashi; Sakurai, Yuya; Guedel, Manuel; Yorke, Harold

    2017-09-01

    Aims: The pre-main-sequence evolution of low-mass stars and brown dwarfs is studied numerically starting from the formation of a protostellar or proto-brown dwarf seed and taking into account the mass accretion onto the central object during the initial several Myr of evolution. Methods: The stellar evolution was computed using the STELLAR evolution code with recent modifications. The mass accretion rates were taken from numerical hydrodynamics models by computing the circumstellar disk evolution starting from the gravitational collapse of prestellar cloud cores of various mass and angular momentum. The resulting stellar evolution tracks were compared with the isochrones and isomasses calculated using non-accreting models. Results: We find that mass accretion in the initial several Myr of protostellar evolution can have a strong effect on the subsequent evolution of young stars and brown dwarfs. The disagreement between accreting and non-accreting models in terms of the total stellar luminosity L∗, stellar radius R∗, and effective temperature Teff depends on the thermal efficiency of accretion, that is, on the fraction of accretion energy that is absorbed by the central object. The largest mismatch is found for the cold accretion case, in which essentially all accretion energy is radiated away. The relative deviations in L∗ and R∗ in this case can reach 50% for objects 1.0 Myr old, and they remain notable even for objects 10 Myr old. In the hot and hybrid accretion cases, in which a constant fraction of accretion energy is absorbed, the disagreement between accreting and non-accreting models becomes less pronounced, but still remains notable for objects 1.0 Myr old. These disagreements may lead to an incorrect age estimate for objects of (sub-)solar mass when using the isochrones that are based on non-accreting models, as has also been noted previously. We find that objects with strong luminosity bursts exhibit notable excursions in the L∗-Teff diagram

  11. WHITE DWARF/M DWARF BINARIES AS SINGLE DEGENERATE PROGENITORS OF TYPE Ia SUPERNOVAE

    SciTech Connect

    Wheeler, J. Craig

    2012-10-20

    Limits on the companions of white dwarfs in the single-degenerate scenario for the origin of Type Ia supernovae (SNe Ia) have gotten increasingly tight, yet igniting a nearly Chandrasekhar mass C/O white dwarf from a condition of near hydrostatic equilibrium provides compelling agreement with observed spectral evolution. The only type of non-degenerate stars that survive the tight limits, M{sub V} {approx}> 8.4 on the SN Ia in SNR 0509-67.5 and M{sub V} {approx}> 9.5 in the remnant of SN 1572, are M dwarfs. While M dwarfs are observed in cataclysmic variables, they have special properties that have not been considered in most work on the progenitors of SNe Ia: they have small but finite magnetic fields and they flare frequently. These properties are explored in the context of SN Ia progenitors. White dwarf/M dwarf pairs may be sufficiently plentiful to provide, in principle, an adequate rate of explosions even with slow orbital evolution due to magnetic braking or gravitational radiation. Even modest magnetic fields on the white dwarf and M dwarf will yield adequate torques to lock the two stars together, resulting in a slowly rotating white dwarf, with the magnetic poles pointing at one another in the orbital plane. The mass loss will be channeled by a 'magnetic bottle' connecting the two stars, landing on a concentrated polar area on the white dwarf. This enhances the effective rate of accretion compared to spherical accretion. Luminosity from accretion and hydrogen burning on the surface of the white dwarf may induce self-excited mass transfer. The combined effects of self-excited mass loss, polar accretion, and magnetic inhibition of mixing of accretion layers give possible means to beat the 'nova limit' and grow the white dwarf to the Chandrasekhar mass even at rather moderate mass accretion rates.

  12. A radio-pulsing white dwarf binary star.

    PubMed

    Marsh, T R; Gänsicke, B T; Hümmerich, S; Hambsch, F-J; Bernhard, K; Lloyd, C; Breedt, E; Stanway, E R; Steeghs, D T; Parsons, S G; Toloza, O; Schreiber, M R; Jonker, P G; van Roestel, J; Kupfer, T; Pala, A F; Dhillon, V S; Hardy, L K; Littlefair, S P; Aungwerojwit, A; Arjyotha, S; Koester, D; Bochinski, J J; Haswell, C A; Frank, P; Wheatley, P J

    2016-09-15

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco's optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 10(7)-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf's spin, they mainly originate from the cool star. AR Sco's broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf's magnetosphere.

  13. A DARK SPOT ON A MASSIVE WHITE DWARF

    SciTech Connect

    Kilic, Mukremin; Gianninas, Alexandros; Curd, Brandon; Wisniewski, John P.; Bell, Keaton J.; Winget, D. E.; Winget, K. I.; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope.

  14. The Survey of HI in Extremely Low-mass Dwarfs: A Multi-Wavelength Perspective on Low-Mass Galaxy Evolution

    NASA Astrophysics Data System (ADS)

    Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies drawn from the Arecibo Legacy Fast ALFA (ALFALFA) catalog. HST/Spitzer joint program GO-12658 revealed the stellar populations of the first 12 SHIELD galaxies (Cannon et al. 2011), allowing accurate distance measurements (McQuinn et al. 2014) and detailed studies of the patterns of recent star formation in each galaxy (McQuinn et al. 2015). These HST and Spitzer images are a critical interpretive benchmark for ground-based optical imaging and spectroscopy (Haurberg et al. 2015), as well as for sensitive VLA HI spectral line imaging of the SHIELD galaxies (McNichols et al. 2016; Teich et al. 2016). These results have furthered our understanding of the evolution of galaxies in a mass regime that was previously only sparsely populated. With the low-redshift ALFALFA catalog now complete, the scope of the SHIELD program has been expanded to include all 82 galaxies that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. In HST program 13750, images of 18 more SHIELD galaxies have again set the physical scales for supporting HI spectral line imaging with both the VLA and the WSRT (Gordon et al. 2016). Taken as a whole, the ongoing SHIELD program is one of the most comprehensive multiwavelength studies of the physical properties of low-mass galaxies outside of the Local Group.

  15. Population Synthesis Studies of the White Dwarfs of the Galactic Disk and Halo

    NASA Astrophysics Data System (ADS)

    Cojocaru, Elena-Ruxandra

    2016-09-01

    white dwarf luminosity function employing different models for the initial mass function, density profile and stellar formation history. We also analyze if the white dwarf luminosity function can be used as a means to discriminate the role played by residual hydrogen burning in the atmospheres of low-mass white dwarfs. This process is known to become a significant source of energy for white dwarfs descending from very low metallicity progenitors, such as those that characterize the Galactic halo population. Lastly, we simulate the white dwarf-main sequence (WD+MS) binary population of the Galactic disk and compare it to the parameter distributions from the largest and most recent WD+MS catalog derived from the SDSS (Rebassa-Mansergas et al., 2016b). We not only reproduce the selection criteria, but we also account for spectroscopic completeness, observational errors and other biases that affect the sample. We use the observed population as a benchmark for constraining several important physical quantities specific to binary evolution, such as the initial mass ratio distribution and also the common envelope parametrization. This thesis is based on three published papers, Cojocaru et al. (2014), Rebassa-Mansergas et al. (2015) and Cojocaru et al. (2015) and another work in preparation.

  16. Three New Eclipsing White-dwarf-M-dwarf Binaries Discovered in a Search for Transiting Planets around M-dwarfs

    NASA Astrophysics Data System (ADS)

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel; Fulton, Benjamin J.; Hillenbrand, Lynne A.; Shporer, Avi; Lister, Tim; Baranec, Christoph; Bloom, Joshua S.; Bui, Khanh; Burse, Mahesh P.; Cenko, S. Bradley; Das, H. K.; Davis, Jack. T. C.; Dekany, Richard G.; Filippenko, Alexei V.; Kasliwal, Mansi M.; Kulkarni, S. R.; Nugent, Peter; Ofek, Eran O.; Poznanski, Dovi; Quimby, Robert M.; Ramaprakash, A. N.; Riddle, Reed; Silverman, Jeffrey M.; Sivanandam, Suresh; Tendulkar, Shriharsh P.

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 × faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R ⊙ (0.01 AU). The M-dwarfs have masses of approximately 0.35 M ⊙, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M ⊙. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R ⊙ (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%^{+0.10%}_{-0.05%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at relatively large orbital radii. Similar eclipsing

  17. THREE NEW ECLIPSING WHITE-DWARF-M-DWARF BINARIES DISCOVERED IN A SEARCH FOR TRANSITING PLANETS AROUND M-DWARFS

    SciTech Connect

    Law, Nicholas M.; Kraus, Adam L.; Street, Rachel; Fulton, Benjamin J.; Shporer, Avi; Lister, Tim; Hillenbrand, Lynne A.; Baranec, Christoph; Bui, Khanh; Davis, Jack T. C.; Dekany, Richard G.; Kulkarni, S. R.; Ofek, Eran O.; Bloom, Joshua S.; Cenko, S. Bradley; Filippenko, Alexei V.; Burse, Mahesh P.; Das, H. K.; Kasliwal, Mansi M.; Nugent, Peter; and others

    2012-10-01

    We present three new eclipsing white-dwarf/M-dwarf binary systems discovered during a search for transiting planets around M-dwarfs. Unlike most known eclipsing systems of this type, the optical and infrared emission is dominated by the M-dwarf components, and the systems have optical colors and discovery light curves consistent with being Jupiter-radius transiting planets around early M-dwarfs. We detail the PTF/M-dwarf transiting planet survey, part of the Palomar Transient Factory (PTF). We present a graphics processing unit (GPU)-based box-least-squares search for transits that runs approximately 8 Multiplication-Sign faster than similar algorithms implemented on general purpose systems. For the discovered systems, we decompose low-resolution spectra of the systems into white-dwarf and M-dwarf components, and use radial velocity measurements and cooling models to estimate masses and radii for the white dwarfs. The systems are compact, with periods between 0.35 and 0.45 days and semimajor axes of approximately 2 R{sub Sun} (0.01 AU). The M-dwarfs have masses of approximately 0.35 M{sub Sun }, and the white dwarfs have hydrogen-rich atmospheres with temperatures of around 8000 K and have masses of approximately 0.5 M{sub Sun }. We use the Robo-AO laser guide star adaptive optics system to tentatively identify one of the objects as a triple system. We also use high-cadence photometry to put an upper limit on the white-dwarf radius of 0.025 R{sub Sun} (95% confidence) in one of the systems. Accounting for our detection efficiency and geometric factors, we estimate that 0.08%{sub -0.05%}{sup +0.10%} (90% confidence) of M-dwarfs are in these short-period, post-common-envelope white-dwarf/M-dwarf binaries where the optical light is dominated by the M-dwarf. The lack of detections at shorter periods, despite near-100% detection efficiency for such systems, suggests that binaries including these relatively low-temperature white dwarfs are preferentially found at

  18. Cool Customers in the Stellar Graveyard. I. Limits to Extrasolar Planets Around the White Dwarf G29-38

    NASA Astrophysics Data System (ADS)

    Debes, John H.; Sigurdsson, Steinn; Woodgate, Bruce E.

    2005-11-01

    We present high-contrast images of the hydrogen white dwarf G29-38 taken in the near-infrared with the Hubble Space Telescope and the Gemini North Telescope as part of a high-contrast imaging search for substellar objects in orbit around nearby white dwarfs. We review the current limits on planetary companions for G29-38, the only nearby white dwarf with an infrared excess due to a dust disk. We add our recent observations to these limits to produce extremely tight constraints on the types of possible companions that could be present. No objects >6MJ are detected in our data at projected separations >12 AU, and no objects >16MJ are detected for separations from 3 to 12 AU, assuming a total system age of 1 Gyr. Limits for companions at separations <3 AU come from a combination of Two Micron All Sky Survey (2MASS) photometry and previous studies of G29-38's pulsations. Our imaging with Gemini cannot confirm a tentative claim for the presence of a low-mass brown dwarf. These observations demonstrate that a careful combination of several techniques can probe nearby white dwarfs for large planets and low-mass brown dwarfs.

  19. Chandra and MMT observations of low-mass black hole active galactic nuclei accreting at low rates in dwarf galaxies

    SciTech Connect

    Yuan, W.; Zhou, H.; Dou, L.; Dong, X.-B.; Wang, T.-G.; Fan, X.

    2014-02-10

    We report on Chandra X-ray observations of four candidate low-mass black hole (M {sub bh} ≲ 10{sup 6} M {sub ☉}) active galactic nuclei (AGNs) that have the estimated Eddington ratios among the lowest (∼10{sup –2}) found for this class. The aims are to validate the nature of their AGNs and to confirm the low Eddington ratios that are derived from the broad Hα line, and to explore this poorly studied regime in the AGN parameter space. Among them, two objects with the lowest significance of the broad lines are also observed with the Multi-Mirror Telescope, and the high-quality optical spectra taken confirm them as Seyfert 1 AGNs and as having small black hole masses. X-ray emission is detected from the nuclei of two of the galaxies, which is variable on timescales of ∼10{sup 3} s, whereas no significant (or only marginal at best) detection is found for the remaining two. The X-ray luminosities are on the order of 10{sup 41} erg s{sup –1} or even lower, on the order of 10{sup 40} erg s{sup –1} for non-detections, which are among the lowest regimes ever probed for Seyfert galaxies. The low X-ray luminosities, compared to their black hole masses derived from Hα, confirm their low accretion rates assuming typical bolometric corrections. Our results hint at the existence of a possibly large population of under-luminous low-mass black holes in the local universe. An off-nucleus ultra-luminous X-ray source in one of the dwarf galaxies is detected serendipitously, with a luminosity (6-9)× 10{sup 39} erg s{sup –1} in 2-10 keV.

  20. X-Shooter study of accretion in ρ-Ophiucus: very low-mass stars and brown dwarfs

    NASA Astrophysics Data System (ADS)

    Manara, C. F.; Testi, L.; Natta, A.; Alcalá, J. M.

    2015-07-01

    We present new VLT/X-Shooter optical and near-infrared spectra of a sample of 17 candidate young low-mass stars and brown dwarfs located in the ρ-Ophiucus cluster. We derived the spectral type and extinction for all the targets, and then we determined their physical parameters. All the objects but one have M⋆≲0.6 M⊙, and eight have mass below or close to the hydrogen-burning limit. Using the intensity of various permitted emission lines present in their spectra, we determined the accretion luminosity and mass accretion rates (Ṁacc) for all the objects. When compared with previous works targeting the same sample, we find that, in general, these objects are not as strongly accreting as previously reported, and we suggest that the reason is our more accurate estimate of the photospheric parameters. We also compare our findings with recent works in other slightly older star-forming regions, such as Lupus, to investigate possible differences in the accretion properties, but we find that the accretion properties for our targets have the same dependence on the stellar and substellar parameters as in the other regions. This leads us to conclude that we do not find evidence for a different dependence of Ṁacc with M⋆ when comparing low-mass stars and brown dwarfs. Moreover, we find a similar small (≲1 dex) scatter in the Ṁacc-M⋆ relation as in some of our recent works in other star-forming regions, and no significant differences in Ṁacc due to different ages or properties of the regions. The latter result suffers, however, from low statistics and sample selection biases in the current studies. The small scatter in the Ṁacc-M⋆ correlation confirms that mass accretion rate measurements in the literature based on uncertain photospheric parameters and single accretion indicators, such as the Hα width, can lead to a scatter that is unphysically large. Our studies show that only broadband spectroscopic surveys coupled with a detailed analysis of the

  1. The Star Formation Histories of Local Group Dwarf Galaxies. III. Characterizing Quenching in Low-mass Galaxies

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Dolphin, Andrew E.; Skillman, Evan D.; Holtzman, Jon; Gilbert, Karoline M.; Dalcanton, Julianne J.; Williams, Benjamin F.

    2015-05-01

    We explore the quenching of low-mass galaxies (104 ≲ {{M}\\star } ≲ 108 {{M}⊙ }) as a function of lookback time using the star formation histories (SFHs) of 38 Local Group dwarf galaxies. The SFHs were derived by analyzing color-magnitude diagrams of resolved stellar populations in archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. We find: (1) lower-mass galaxies quench earlier than higher-mass galaxies; (2) inside of Rvirial there is no correlation between a satellite’s current proximity to a massive host and its quenching epoch; and (3) there are hints of systematic differences in the quenching times of M31 and Milky Way (MW) satellites, although the sample size and uncertainties in the SFHs of M31 dwarfs prohibit definitive conclusions. Combined with results from the literature, we qualitatively consider the redshift evolution (z = 0-1) of the quenched galaxy fraction over ˜7 dex in stellar mass (104 ≲ {{M}\\star } ≲ 1011.5 {{M}⊙ }). The quenched fraction of all galaxies generally increases toward the present, with both the lowest and highest-mass systems exhibiting the largest quenched fractions at all redshifts. In contrast, galaxies between {{M}\\star } ˜ 108-1010 {{M}⊙ } have the lowest quenched fractions. We suggest that such intermediate-mass galaxies are the least efficient at quenching. Finally, we compare our quenching times with predictions for infall times for low-mass galaxies associated with the MW. We find that some of the lowest-mass satellites (e.g., CVn II, Leo IV) may have been quenched before infall, while higher-mass satellites (e.g., Leo I, Fornax) typically quench ˜1-4 Gyr after infall. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA constract NAS 5-26555.

  2. Adaptive Optics imaging of VHS 1256-1257: A Low Mass Companion to a Brown Dwarf Binary System

    NASA Astrophysics Data System (ADS)

    Stone, Jordan M.; Skemer, Andrew J.; Kratter, Kaitlin M.; Dupuy, Trent J.; Close, Laird M.; Eisner, Josh A.; Fortney, Jonathan J.; Hinz, Philip M.; Males, Jared R.; Morley, Caroline V.; Morzinski, Katie M.; Ward-Duong, Kimberly

    2016-02-01

    Recently, Gauza et al. reported the discovery of a companion to the late M-dwarf, VHS J125601.92-125723.9 (VHS 1256-1257). The companion’s absolute photometry suggests its mass and atmosphere are similar to the HR 8799 planets. However, as a wide companion to a late-type star, it is more accessible to spectroscopic characterization. We discovered that the primary of this system is an equal-magnitude binary. For an age ˜300 Myr the A and B components each have a mass of {64.6}-2.0+0.8 {M}{Jup}, and the b component has a mass of {11.2}-1.8+9.7, making VHS 1256-1257 only the third brown dwarf triple system. There exists some tension between the spectrophotometric distance of 17.2 ± 2.6 pc and the parallax distance of 12.7 ± 1.0 pc. At 12.7 pc VHS 1256-1257 A and B would be the faintest known M7.5 objects, and are even faint outliers among M8 types. If the larger spectrophotmetric distance is more accurate than the parallax, then the mass of each component increases. In particular, the mass of the b component increases well above the deuterium burning limit to ˜ 35 {M}{Jup} and the mass of each binary component increases to {73}-17+20 {M}{Jup}. At 17.1 pc, the UVW kinematics of the system are consistent with membership in the AB Dor moving group. The architecture of the system resembles a hierarchical stellar multiple suggesting it formed via an extension of the star formation process to low masses. Continued astrometric monitoring will resolve this distance uncertainty and will provide dynamical masses for a new benchmark system.

  3. TIDAL NOVAE IN COMPACT BINARY WHITE DWARFS

    SciTech Connect

    Fuller, Jim; Lai Dong

    2012-09-01

    Compact binary white dwarfs (WDs) undergoing orbital decay due to gravitational radiation can experience significant tidal heating prior to merger. In these WDs, the dominant tidal effect involves the excitation of outgoing gravity waves in the inner stellar envelope and the dissipation of these waves in the outer envelope. As the binary orbit decays, the WDs are synchronized from outside in (with the envelope synchronized first, followed by the core). We examine the deposition of tidal heat in the envelope of a carbon-oxygen WD and study how such tidal heating affects the structure and evolution of the WD. We show that significant tidal heating can occur in the star's degenerate hydrogen layer. This layer heats up faster than it cools, triggering runaway nuclear fusion. Such 'tidal novae' may occur in all WD binaries containing a CO WD, at orbital periods between 5 minutes and 20 minutes, and precede the final merger by 10{sup 5}-10{sup 6} years.

  4. UBV photometry of hot white dwarf stars

    NASA Astrophysics Data System (ADS)

    Cheselka, Mathew; Holberg, J. B.; Watkins, Ron; Collins, James; Tweedy, R. W.

    1993-12-01

    Johnson UBV photometry has been obtained for a set of hot degenerate stars, primarily DA and DO white dwarfs from among those detected in the Palomar-Green survey of UV excess objects. Most of our program stars have estimated effective temperatures (Teff) in the range 22,000 to 80,000 K and have no previous photometry. Some objects selected are also x-ray and extreme ultraviolet sources from the ROSAT all sky survey. The importance of precise photometric measurements in the analysis of x-ray data is discussed. A discrepancy between the observed colors and predicted colors is noted, and possibly accounted for by difficulties in defining the atmospheric cutoff of the U band and a general lack of hot stars used to define the photometric transformation between theoretical and observed colors.

  5. Heavy Metals Resisting Gravity in White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Rauch, T.; Gamrath, S.; Quinet, P.; Hoyer, D.; Werner, K.; Kruk, J. W.

    2017-03-01

    Spectral lines of heavy metals, identified in high-resolution ultraviolet spectra of the DO-type white dwarf RX J0503.9–2854 (RE 0503–289), allow precise abundance determinations of these species by means of advanced non-local thermodynamic equilibrium stellar-atmosphere models – provided that reliable atomic data is available. Such analyses of Zn (atomic number Z = 30), Ga (31), Ge (32), As (33), Mo (42), Kr (36), Zr (40), Xe (54), and Ba (56) have recently shown that, without exception, their abundances are unexpectedly strongly supersolar (up to about 5 dex). This is much higher than predicted by recent asymptotic giant branch nucleosynthesis calculations. Thus, the interplay of gravitational settling and radiative levitation may play an important role for their photospheric prominence.

  6. The g-modes of white dwarfs

    NASA Technical Reports Server (NTRS)

    Sobouti, Y.; Khajehpour, M. R. H.; Dixit, V. V.

    1980-01-01

    The neutral g-modes of a degenerate fluid at zero temperature are analyzed. The g-modes of a degenerate fluid at finite but small temperatures are then expanded in terms of those of the zero temperature fluid. For nonrelativistic degenerate fluids it is found that (1) the g-eigenvalues are proportional to T mu(6)sub e mu(-1)sub i, where T is the internal temperature of the fluid, mu sub e and mu sub i are the mean molecular weights of electrons and ions, respectively; (2) the ion pressure is solely responsible for driving the g-modes. For white dwarfs of about a solar mass, the periods of the g-oscillations are in the range of a few hundredths of seconds.

  7. REMNANTS OF BINARY WHITE DWARF MERGERS

    SciTech Connect

    Raskin, Cody; Scannapieco, Evan; Timmes, F. X.; Fryer, Chris; Rockefeller, Gabriel

    2012-02-10

    We carry out a comprehensive smooth particle hydrodynamics simulation survey of double-degenerate white dwarf binary mergers of varying mass combinations in order to establish correspondence between initial conditions and remnant configurations. We find that all but one of our simulation remnants share general properties such as a cold, degenerate core surrounded by a hot disk, while our least massive pair of stars forms only a hot disk. We characterize our remnant configurations by the core mass, the rotational velocity of the core, and the half-mass radius of the disk. We also find that some of our simulations with very massive constituent stars exhibit helium detonations on the surface of the primary star before complete disruption of the secondary. However, these helium detonations are insufficiently energetic to ignite carbon, and so do not lead to prompt carbon detonations.

  8. RE 0044+09: A new K dwarf rapid rotator with a white dwarf companion

    NASA Technical Reports Server (NTRS)

    Kellett, Barry J.; Bromage, Gordon E.; Brown, Alexander; Jeffries, Robin D.; James, David J.; Kilkenny, David; Robb, Russell M.; Wonnacott, David; Lloyd, Christopher; Clayton, C.

    1995-01-01

    We report the discovery of a new K dwarf rapid rotator with a potential white dwarf companion. The white dwarf accounts for over 90% of the observed extreme ultraviolet flux detected from this system. Analysis of ROSAT Wide Field Camera (WFC) and IUE data both suggest a white dwarf temperature of approximately 28,700 K. Optical photometry and the IUE long wavelength prime (LWP) spectrum (with the white dwarf contribution removed) imply that the late-type star has a spectral type of K1-3 V, and a distance of 55 +/- 5 pc. Using this distance, the observed IUE SWP flux, and the best-fit temperature results in a white dwarf radius of 0.0088 solar radius. The estimated white dwarf mass is then approximately 0.91 solar mass; somewhat over-massive compared to field white dwarfs. Optical photometry of the K star reveals a 'spot' modulation period of approximately 10 hr (now observed over 3 yr). However, radial velocity observations have revealed no significant variations. Spectroscopic observations place a low limit on the lithium abundance, but do show rapid rotation with a v sin i of 90 +/- 10 km/s. The K star was detected as a radio source at 3.6 cm (on two occasions) and 6 cm by the Very Large Array (VLA). The most likely evolutionary scenario is that the K star and hot white dwarf from either a wide binary or common proper motion pair with an age of 0.1-0.1 Gyr-consistent with the evolutionary timescale of the white dwarf and the rapid rotation of the K star. However, from the proper motion of the K star, this system does not seem to be associated with any of the known young stellar groups.

  9. A SEARCH FOR ASTEROIDS, MOONS, AND RINGS ORBITING WHITE DWARFS

    SciTech Connect

    Di Stefano, Rosanne; Howell, Steve B.; Kawaler, Steven D.

    2010-03-20

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  10. Optical spectroscopy of candidate Alpha Persei white dwarfs

    NASA Astrophysics Data System (ADS)

    Casewell, S. L.; Dobbie, P. D.; Geier, S.; Lodieu, N.; Hambly, N. C.

    2015-08-01

    As part of an investigation into the high-mass end of the initial mass-final mass relation we performed a search for new white dwarf members of the nearby (172.4 pc), young (80-90 Myr) α Persei open star cluster. The photometric and astrometric search using the United Kingdom InfraRed Telescope (UKIRT) Infrared Deep Sky Survey and SuperCOSMOS sky surveys discovered 14 new white dwarf candidates. We have obtained medium resolution optical spectra of the brightest 11 candidates using the William Herschel Telescope and confirmed that while 7 are DA white dwarfs, 3 are DB white dwarfs and 1 is an sdOB star, only three have cooling ages within the cluster age, and from their position on the initial mass-final mass relation, it is likely none are cluster members. This result is disappointing, as recent work on the cluster mass function suggests that there should be at least one white dwarf member, even at this young age. It may be that any white dwarf members of α Per are hidden within binary systems, as is the case in the Hyades cluster, however the lack of high-mass stars within the cluster also makes this seem unlikely. One alternative is that a significant level of detection incompleteness in the legacy optical image survey data at this Galactic latitude has caused some white dwarf members to be overlooked. If this is the case, Gaia will find them.

  11. Fingering Convection and its Consequences for Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vauclair, Sylvie; Vauclair, Gérard; Deal, Morgan; Wachlin, F. C.

    2015-06-01

    A number of white dwarf stars show absoption lines of heavy elements in their spectra. Many of them also exhibit infra-red excess in their spectral energy distribution. These observations prove that these white dwarfs are surrounded by an orbiting debris disk resulting from the disruption of rocky planetesimals, remnants of the primordial planetary system. Part of the material from the debris disk is accreted onto the white dwarfs, explaining the presence of heavy elements in their outer layers. Previous attempts to estimate the accretion rates have overlooked the importance of the fingering convection. The fingering convection is an instability triggered by the accumulation in the white dwarf outer layers of material heavier than the underlying H-rich (for the DA) or the He-rich (for the DB) composition. The fingering convection induces a deep mixing of the accreted material. Our preliminary simulations of the fingering convection show that the effect may be important in DA white dwarfs. The accretion rates needed in order to reproduce the observed heavy element abundances exceed by order of magnitudes the accretion rates estimated when this extra-mixing is ignored. By contrast, in the cases of the DB white dwarfs that we have considered in our simulations the fingering convection either does not occur or has very little effects on the derived accretion rates. We have undertaken a systematic exploration of the consequences of the fingering convection in accreting white dwarfs.

  12. A Search for Asteroids, Moons, and Rings Orbiting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Di Stefano, Rosanne; Howell, Steve B.; Kawaler, Steven D.

    2010-03-01

    Do white dwarfs host asteroid systems? Although several lines of argument suggest that white dwarfs may be orbited by large populations of asteroids, transits would provide the most direct evidence. We demonstrate that the Kepler mission has the capability to detect transits of white dwarfs by asteroids. Because white-dwarf asteroid systems, if they exist, are likely to contain many asteroids orbiting in a spatially extended distribution, discoveries of asteroid transits can be made by monitoring only a small number of white dwarfs, compatible with Kepler's primary mission, which is to monitor stars with potentially habitable planets. Possible future missions that survey 10 times as many stars with similar sensitivity and minute-cadence monitoring can establish the characteristics of asteroid systems around white dwarfs, such as the distribution of asteroid sizes and semimajor axes. Transits by planets would be more dramatic, but the probability that they will occur is lower. Ensembles of planetary moons and/or the presence of rings around planets can also produce transits detectable by Kepler. The presence of moons and rings can significantly increase the probability that Kepler will discover planets orbiting white dwarfs, even while monitoring only a small number of them.

  13. The M-dwarfs in Multiples (MINMS) survey - I. Stellar multiplicity among low-mass stars within 15 pc

    NASA Astrophysics Data System (ADS)

    Ward-Duong, K.; Patience, J.; De Rosa, R. J.; Bulger, J.; Rajan, A.; Goodwin, S. P.; Parker, Richard J.; McCarthy, D. W.; Kulesa, C.

    2015-05-01

    We present a large-scale, volume-limited companion survey of 245 late-K to mid-M (K7-M6) dwarfs within 15 pc. Infrared adaptive optics (AO) data were analysed from the Very Large Telescope, Subaru Telescope, Canada-France-Hawaii Telescope, and MMT Observatory to detect close companions to the sample from ˜ 1 to 100 au, while digitized wide-field archival plates were searched for wide companions from ˜ 100 to 10 000 au. With sensitivity to the bottom of the main sequence over a separation range of 3 to 10 000 au, multiple AO and wide-field epochs allow us to confirm candidates with common proper motions, minimize background contamination, and enable a measurement of comprehensive binary statistics. We detected 65 comoving stellar companions and find a companion star fraction of 23.5 ± 3.2 per cent over the 3 au to 10 000 au separation range. The companion separation distribution is observed to rise to a higher frequency at smaller separations, peaking at closer separations than measured for more massive primaries. The mass ratio distribution across the q = 0.2-1.0 range is flat, similar to that of multiple systems with solar-type primaries. The characterization of binary and multiple star frequency for low-mass field stars can provide crucial comparisons with star-forming environments and hold implications for the frequency and evolutionary histories of their associated discs and planets.

  14. Helium Shells on Sub-Chandrasekhar White Dwarfs: Ignition and Convection

    NASA Astrophysics Data System (ADS)

    Jacobs, Adam M.; Zingale, Michael; Nonaka, Andrew; Almgren, Ann; Bell, John

    2015-01-01

    Sub-Chandrasekhar white dwarfs accreting an envelope of helium allow for a range of explosive phenomena that could yield a variety of observable transients. Helium novae, so-called "point" Ia supernovae (.Ia SNe), rapid decline type Ia, and normal type Ia supernovae are all potential outcomes of helium accretion onto sub-Chandrasekhar white dwarfs. In this talk we outline why these systems have received a great deal of scrutiny recently and present our 3D models of convective nuclear burning in the helium envelope. We focus on thin, low-mass envelopes that are the best candidates for yielding normal type Ia supernovae. The envelope is modeled with the low-Mach hydrodynamics code Maestro. Maestro is optimized for modeling sub-sonic convective flow over long timescales while still being able to capture local compressibility effects due to nuclear burning as well as large-scale adjustments of stellar hydrostatic equilibrium. With it we model the convective burning in low-mass helium shells for carbon/oxygen white dwarf cores of 0.8, 1.0, 1.1, and 1.2 solar masses. For a suite of models we characterize the geometry, timing, and thermodynamics of ignition as well as the envelope's convective properties. Finally, we discuss the implications of our results for the viability of these systems as transient progenitors with a focus on normal type Ia supernovae.

  15. The White Dwarf in EM Cygni: Beyond the Veil

    NASA Astrophysics Data System (ADS)

    Godon, Patrick; Sion, Edward M.; Barrett, Paul E.; Linnell, Albert P.

    2009-07-01

    We present a spectral analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of the eclipsing double-line spectroscopic binary EM Cygni (EM Cyg), a Z Cam DN system. The FUSE spectrum, obtained in quiescence, consists of four individual exposures (orbits): two exposures, at orbital phases phi ~ 0.65 and phi ~ 0.90, have a lower flux; and two exposures, at orbital phases phi = 0.15 and 0.45, have a relatively higher flux. The change of flux level as a function of the orbital phase is consistent with the stream material (flowing over and below the disk from the hot spot region to smaller radii) partially masking the white dwarf. We carry out a spectral analysis of the FUSE data, obtained at phase 0.45 (when the flux is maximal), using synthetic spectra generated with the codes TLUSTY and SYNSPEC. Using a single white dwarf spectral component, we obtain a white dwarf temperature of 40, 000 K ± 1000 K, rotating at 100 km s-1. The white dwarf, or conceivably, the material overflowing the disk rim, shows suprasolar abundances of silicon, sulphur, and possibly nitrogen. Using a white dwarf+disk composite model, we obtain that the white dwarf temperature could be even as high as 50,000 K, contributing more than 90% of the FUV flux, and the disk contributing less than 10% must have a mass accretion rate reaching 10-10 M sun yr-1. The single white dwarf model fits the absorption lines better than the white dwarf+disk model, but the white dwarf+disk model fits better the continuum in the shorter wavelengths. In both cases, however, we obtain that the white dwarf temperature is much higher than previously estimated. We emphasize the importance of modeling the spectra of EM Cyg around phase phi < 0.5, when the white dwarf and disk are facing the observer, and we suggest that the discrepancy between the present analysis and previous spectral analysis might be due to the occulting effect of the stream veiling the white dwarf and disk. Based on observations made

  16. THE WHITE DWARF IN EM CYGNI: BEYOND THE VEIL

    SciTech Connect

    Godon, Patrick; Sion, Edward M.; Barrett, Paul E.; Linnell, Albert P. E-mail: edward.sion@villanova.edu E-mail: linnell@astro.washington.edu

    2009-07-10

    We present a spectral analysis of the Far Ultraviolet Spectroscopic Explorer (FUSE) spectra of the eclipsing double-line spectroscopic binary EM Cygni (EM Cyg), a Z Cam DN system. The FUSE spectrum, obtained in quiescence, consists of four individual exposures (orbits): two exposures, at orbital phases {phi} {approx} 0.65 and {phi} {approx} 0.90, have a lower flux; and two exposures, at orbital phases {phi} = 0.15 and 0.45, have a relatively higher flux. The change of flux level as a function of the orbital phase is consistent with the stream material (flowing over and below the disk from the hot spot region to smaller radii) partially masking the white dwarf. We carry out a spectral analysis of the FUSE data, obtained at phase 0.45 (when the flux is maximal), using synthetic spectra generated with the codes TLUSTY and SYNSPEC. Using a single white dwarf spectral component, we obtain a white dwarf temperature of 40, 000 K {+-} 1000 K, rotating at 100 km s{sup -1}. The white dwarf, or conceivably, the material overflowing the disk rim, shows suprasolar abundances of silicon, sulphur, and possibly nitrogen. Using a white dwarf+disk composite model, we obtain that the white dwarf temperature could be even as high as 50,000 K, contributing more than 90% of the FUV flux, and the disk contributing less than 10% must have a mass accretion rate reaching 10{sup -10} M{sub sun} yr{sup -1}. The single white dwarf model fits the absorption lines better than the white dwarf+disk model, but the white dwarf+disk model fits better the continuum in the shorter wavelengths. In both cases, however, we obtain that the white dwarf temperature is much higher than previously estimated. We emphasize the importance of modeling the spectra of EM Cyg around phase {phi} < 0.5, when the white dwarf and disk are facing the observer, and we suggest that the discrepancy between the present analysis and previous spectral analysis might be due to the occulting effect of the stream veiling the white

  17. Albus 1: A Very Bright White Dwarf Candidate

    NASA Astrophysics Data System (ADS)

    Caballero, José Antonio; Solano, Enrique

    2007-08-01

    We have serendipitously discovered a previously unknown, bright source (BT=11.75+/-0.07 mag) with a very blue VT-Ks color, which we have named Albus 1. A photometric and astrometric study using Virtual Observatory tools has shown that it possesses an appreciable proper motion and magnitudes and colors very similar to those of the well-known white dwarf G191-B2B. We consider Albus 1 as a DA-type white dwarf located at about 40 pc. If its nature is confirmed, Albus 1 would be the sixth brightest isolated white dwarf in the sky, which would make it an excellent spectrophotometric standard.

  18. Simulating AXAF Grating Spectra of Accreting White Dwarfs

    NASA Technical Reports Server (NTRS)

    Tennant, Allyn F.; Wu, Kinwah; ODell, Stephen L.; Weisskopf, Martin C.

    1998-01-01

    We present simulated AXAF spectra of accreting white dwarfs, using parameters appropriate for magnetic cataclysmic variables. The very high spectral resolution that can be obtained with the High-Energy Transmission Grating of AXAF can resolve the keV X-ray emission lines that characterize the temperature, density and velocity profiles of the shock-heated emission regions of these systems. These simulations demonstrate that actual spectra will allow us to place constraints on the white-dwarf mass and the accretion rate of the systems. The high-resolution spectra also allow the measurement of the velocity of the accretion flow in regions close to the white-dwarf surface.

  19. Using DA White Dwarfs to Calibrate Synthetic Photometry

    NASA Astrophysics Data System (ADS)

    Holberg, J. B.

    2007-04-01

    Four widely used photometric systems, namely the Johnson-Kron-Cousins UBVRI, the Strömgren uvby, the 2MASS JHKs and the Sloan Digital Sky Survey ugriz systems have been directly compared with the HST absolute photometric scale of Bohlin & Gilliland (2004). These comparisons are subsequently used to construct a large grid of accurate synthetic magnitudes for DA white dwarfs. This grid is, in turn, critically evaluated with respect to the observed photometry from substantial samples of actual white dwarfs. The advantages of DA white dwarfs as photometric stars are emphasized, and the prospects for extending the use of these stars into the near infrared are highlighted.

  20. On the Evolution of Hydrogen-Deficient White Dwarfs

    NASA Astrophysics Data System (ADS)

    Camisassa, M. E.; Althaus, L. G.; Rohrmann, R. D.; García–Berro, E.; Córsico, A. H.

    2017-03-01

    We present full evolutionary calculations for hydrogen-deficient white dwarfs. We take into account the evolutionary history of the progenitor stars, all relevant energy sources, element diffusion, and outer boundary conditions provided by new and detailed non-gray white dwarf model atmospheres for pure helium composition. Model atmospheres are based on the most up-to-date physical inputs. The calculations are extended down to an effective temperature of 2500 K. Our calculations provide a homogeneous set of evolutionary cooling tracks appropriate for mass and age determinations of old hydrogen-deficient white dwarfs.

  1. THE CORE COMPOSITION OF A WHITE DWARF IN A CLOSE DOUBLE-DEGENERATE SYSTEM

    SciTech Connect

    Vennes, S.; Kawka, A.

    2012-01-20

    We report the identification of the double-degenerate system NLTT 16249 that comprises a normal, hydrogen-rich (DA) white dwarf and a peculiar, carbon-polluted white dwarf (DQ) showing photospheric traces of nitrogen. We disentangled the observed spectra and constrained the properties of both stellar components. In the evolutionary scenario commonly applied to the sequence of DQ white dwarfs, both carbon and nitrogen would be dredged up from the core. The C/N abundance ratio ( Almost-Equal-To 50) in the atmosphere of this unique DQ white dwarf suggests the presence of unprocessed material ({sup 14}N) in the core or in the envelope. Helium burning in the DQ progenitor may have terminated early on the red giant branch after a mass-ejection event leaving unprocessed material in the core, although current mass estimates do not favor the presence of a low-mass helium core. Alternatively, some nitrogen in the envelope may have survived an abridged helium-core burning phase prior to climbing the asymptotic giant branch. Based on available data, we estimate a relatively short orbital period (P {approx}< 13 hr) and ongoing spectroscopic observations will help determine precise orbital parameters.

  2. A radio-pulsing white dwarf binary star

    NASA Astrophysics Data System (ADS)

    Marsh, T. R.; Gänsicke, B. T.; Hümmerich, S.; Hambsch, F.-J.; Bernhard, K.; Lloyd, C.; Breedt, E.; Stanway, E. R.; Steeghs, D. T.; Parsons, S. G.; Toloza, O.; Schreiber, M. R.; Jonker, P. G.; van Roestel, J.; Kupfer, T.; Pala, A. F.; Dhillon, V. S.; Hardy, L. K.; Littlefair, S. P.; Aungwerojwit, A.; Arjyotha, S.; Koester, D.; Bochinski, J. J.; Haswell, C. A.; Frank, P.; Wheatley, P. J.

    2016-09-01

    White dwarfs are compact stars, similar in size to Earth but approximately 200,000 times more massive. Isolated white dwarfs emit most of their power from ultraviolet to near-infrared wavelengths, but when in close orbits with less dense stars, white dwarfs can strip material from their companions and the resulting mass transfer can generate atomic line and X-ray emission, as well as near- and mid-infrared radiation if the white dwarf is magnetic. However, even in binaries, white dwarfs are rarely detected at far-infrared or radio frequencies. Here we report the discovery of a white dwarf/cool star binary that emits from X-ray to radio wavelengths. The star, AR Scorpii (henceforth AR Sco), was classified in the early 1970s as a δ-Scuti star, a common variety of periodic variable star. Our observations reveal instead a 3.56-hour period close binary, pulsing in brightness on a period of 1.97 minutes. The pulses are so intense that AR Sco’s optical flux can increase by a factor of four within 30 seconds, and they are also detectable at radio frequencies. They reflect the spin of a magnetic white dwarf, which we find to be slowing down on a 107-year timescale. The spin-down power is an order of magnitude larger than that seen in electromagnetic radiation, which, together with an absence of obvious signs of accretion, suggests that AR Sco is primarily spin-powered. Although the pulsations are driven by the white dwarf’s spin, they mainly originate from the cool star. AR Sco’s broadband spectrum is characteristic of synchrotron radiation, requiring relativistic electrons. These must either originate from near the white dwarf or be generated in situ at the M star through direct interaction with the white dwarf’s magnetosphere.

  3. Infrared spectrum of an extremely cool white-dwarf star

    PubMed

    Hodgkin; Oppenheimer; Hambly; Jameson; Smartt; Steele

    2000-01-06

    White dwarfs are the remnant cores of stars that initially had masses of less than 8 solar masses. They cool gradually over billions of years, and have been suggested to make up much of the 'dark matter' in the halo of the Milky Way. But extremely cool white dwarfs have proved difficult to detect, owing to both their faintness and their anticipated similarity in colour to other classes of dwarf stars. Recent improved models indicate that white dwarfs are much more blue than previously supposed, suggesting that the earlier searches may have been looking for the wrong kinds of objects. Here we report an infrared spectrum of an extremely cool white dwarf that is consistent with the new models. We determine the star's temperature to be 3,500 +/- 200 K, making it the coolest known white dwarf. The kinematics of this star indicate that it is in the halo of the Milky Way, and the density of such objects implied by the serendipitous discovery of this star is consistent with white dwarfs dominating the dark matter in the halo.

  4. Time dependent white dwarf radiative shocks

    SciTech Connect

    Imamura, J.N.; Wolff, M.T.; Durisen, R.H.

    1985-01-01

    We study the oscillatory instability of white dwarf radiative accretion shocks discovered by Langer, Chanmugam, and Shaviv. We extend previous works by examining spherical shocks dominated by: (1) bremsstrahlung and Compton cooling; and (2) bremsstrahlung and Compton cooling when the effects of electron thermal conduction are not negligible. The results of our calculations allow us to delineate stability regimes as a function of the dwarf mass, M/sub d/, and the accretion rate, M/sup 0/. We parameterize M/sup 0/ in terms of the optical depth to electron scattering through the preshock flow, tau/sub es/. In the Compton cooling and bremsstrahlung case, the shocks are unstable to low order oscillation modes if M/sub d/ less than or equal to (0.7 +- 0.1) M/sub solar/ for tau/sub es/ = 14, and if M/sub d/ less than or equal to (0.9 +- 0.1) M/sub solar/ for tau/sub es/ = 1. When electron thermal conduction is added, low order oscillation modes are unstable only if M/sub d/ less than or equal to (0.3 +- 0.1) M/sub sun mass/. The unstable modes have approximate oscillation periods of 1.1 tau/sub br/ and 0.63 tau/sub br/, where tau/sub br/ is the bremsstrahlung cooling time scale of the postshock plasma. Our results can be scaled to magnetically funneled accretion flows as long as cyclotron emission contributes less than about 10% of the postshock cooling. 14 refs., 1 fig.

  5. EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE

    SciTech Connect

    Shen, Ken J.

    2015-05-20

    Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examine low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.

  6. Hot White Dwarf Donors in Ultracompact X-Ray Binaries

    NASA Astrophysics Data System (ADS)

    Bildsten, Lars

    2002-09-01

    The discovery of two accreting millisecond X-ray pulsars in binaries with ~43 minute orbital periods allows for a new probe of the donor's structure. For XTE J1751-305, only a hot white dwarf (WD) can fill the Roche lobe. A cold He WD is a possible solution for XTE J0929-314, although I will show that evolutionary arguments make a hot WD more likely. In addition to being larger than the T=0 models, these finite entropy, low-mass (Mc<0.03 Msolar) WDs have a minimum mass for a fixed core temperature. If they remain hot as they lose mass and expand, they can ``evaporate'' to leave an isolated millisecond radio pulsar. They also adiabatically expand upon mass loss at a rate faster than the growth of the Roche radius if the angular momentum deposited in the disk is not returned to the donor. If the timescale of the resulting runaway mass transfer is shorter than the viscous timescale in the outer disk, then the mass transfer instability of Ruderman & Shaham for He WDs would be realized. However, my estimates of these timescales still make the instability unlikely for adiabatic responses. I close by noting the possible impact of finite temperature WDs on our understanding of AM CVn binaries.

  7. Every Interacting Double White Dwarf Binary May Merge

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.

    2015-05-01

    Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examine low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.

  8. A YOUNG WHITE DWARF WITH AN INFRARED EXCESS

    SciTech Connect

    Xu, S.; Jura, M.; Klein, B.; Zuckerman, B.; Pantoja, B.; Su, K. Y. L.; Meng, H. Y. A. E-mail: jura@astro.ucla.edu

    2015-06-10

    Using observations of Spitzer/IRAC, we report the serendipitous discovery of excess infrared emission from a single white dwarf PG 0010+280. At a temperature of 27,220 K and a cooling age of 16 Myr, it is the hottest and youngest white dwarf to display an excess at 3–8 μm. The infrared excess can be fit by either an opaque dust disk within the tidal radius of the white dwarf or a 1300 K blackbody, possibly from an irradiated substellar object or a re-heated giant planet. PG 0010+280 has two unique properties that are different from white dwarfs with a dust disk: (i) relatively low emission at 8 μm and (ii) non-detection of heavy elements in its atmosphere from high-resolution spectroscopic observations with Keck/HIRES. The origin of the infrared excess remains unclear.

  9. The Local Population of White Dwarfs within 25 pc

    NASA Astrophysics Data System (ADS)

    Holberg, Jay B.; Oswalt, Terry D.; Sion, Edward M.

    2015-01-01

    We have extended the detailed survey of the local white dwarf population from 20 pc to 25 pc, effectively doubling the sample volume to now include 231 stars. The present 25 pc has an estimated completeness of 70% (the corresponding 20 pc sample is now 85% complete). The space density of white dwarfs remains at 4.8 ± 0.5 x 10-3 pc-3. There exists a curious excess of single stars in the sample 70% vs 30% in systems with one or more companions. A pronounced apparent deficiency remains between the eleven known Sirius-like systems present in the 20 pc sample and only a single such system presently known in the extended 25 pc sample. Also demonstrated, using explicit individual white dwarf cooling ages, is the feasibility of estimating the white dwarf birth rates over the last ~ 5 Gyr.This work is supported by NSF grant AST-1413537

  10. Active states and structure transformations in accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Boneva, Daniela; Kaygorodov, Pavel

    2016-07-01

    Active states in white dwarfs are usually associated with light curve's effects that concern to the bursts, flickering or flare-up occurrences. It is common that a gas-dynamics source exists for each of these processes there. We consider the white dwarf binary stars with accretion disc around the primary. We suggest a flow transformation modeling of the mechanisms that are responsible for ability to cause some flow instability and bring the white dwarfs system to the outburst's development. The processes that cause the accretion rate to sufficiently increase are discussed. Then the transition from a quiescent to an active state is realized. We analyze a quasi-periodic variability in the luminosity of white dwarf binary stars systems. The results are supported with an observational data.

  11. Outbursts in Two New Cool Pulsating DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bell, Keaton J.; Hermes, J. J.; Montgomery, M. H.; Gentile Fusillo, N. P.; Raddi, R.; Gänsicke, B. T.; Winget, D. E.; Dennihy, E.; Gianninas, A.; Tremblay, P.-E.; Chote, P.; Winget, K. I.

    2016-10-01

    The unprecedented extent of coverage provided by Kepler observations recently revealed outbursts in two hydrogen-atmosphere pulsating white dwarfs (DAVs) that cause hours-long increases in the overall mean flux of up to 14%. We have identified two new outbursting pulsating white dwarfs in K2, bringing the total number of known outbursting white dwarfs to four. EPIC 211629697, with {T}{eff} = 10,780 ± 140 K and {log} g = 7.94 ± 0.08, shows outbursts recurring on average every 5.0 days, increasing the overall flux by up to 15%. EPIC 229227292, with {T}{eff} = 11,190 ± 170 K and {log} g = 8.02 ± 0.05, has outbursts that recur roughly every 2.4 days with amplitudes up to 9%. We establish that only the coolest pulsating white dwarfs within a small temperature range near the cool, red edge of the DAV instability strip exhibit these outbursts.

  12. Hard X-ray Emission from White Dwarfs

    NASA Technical Reports Server (NTRS)

    Chu, You-Hua; Gruendl, Robert

    2004-01-01

    Hot white dwarfs may exhibit photospheric emission at X-ray wavelengths, but their X- ray emission should be soft, mutch less than 0.5 keV. Hard X-ray emission, at approx. 1 keV, is not expected from white dwarfs, unless they are in binary systems and the hard X-ray emission is produced by a late-type companion's coronal activity or by accretion of a companion's material onto the surface of the white dwarf. We proposed to use the ROSAT archive to search for hard X-ray emission from white dwarfs in order to determine whether hard X-ray emission may provide a sensitive diagnostic for the existence of a binary companion.

  13. Discovery of the Partially Eclipsing White Dwarf Binary SDSS J143547.87+373338.5

    NASA Astrophysics Data System (ADS)

    Steinfadt, Justin D. R.; Bildsten, Lars; Howell, Steve B.

    2008-04-01

    We have discovered a partially eclipsing white dwarf, low-mass M dwarf binary (3.015114 hr orbital period), SDSS J143547.87+373338.5, from 2007 May observations at the WIYN telescope. Here we present blue-band photometry of three eclipses. Eclipse fitting gives main-sequence solutions to the M dwarf companion of MS = 0.15-0.35 M⊙ and RS = 0.17-0.32 R⊙. Analysis of the SDSS spectrum constrains the M dwarf further to be of type M4-M6 with MS = 0.11-0.20 M⊙. Once full radial velocity curves are measured, high-precision determinations of the masses and radii of both components will be easily obtained without any knowledge of stellar structure or evolution. ZZ Ceti pulsations from the white dwarf were not found at our 4 mmag detection limit. The WIYN Observatory is a joint facility of the University of Wisconsin-Madison, Indiana University, Yale University, and the National Optical Astronomy Observatory.

  14. An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova.

    PubMed

    Vennes, S; Nemeth, P; Kawka, A; Thorstensen, J R; Khalack, V; Ferrario, L; Alper, E H

    2017-08-18

    Subluminous Type Ia supernovae, such as the Type Iax-class prototype SN 2002cx, are described by a variety of models such as the failed detonation and partial deflagration of an accreting carbon-oxygen white dwarf star or the explosion of an accreting, hybrid carbon-oxygen-neon core. These models predict that bound remnants survive such events with, according to some simulations, a high kick velocity. We report the discovery of a high proper motion, low-mass white dwarf (LP 40-365) that travels at a velocity greater than the Galactic escape velocity and whose peculiar atmosphere is dominated by intermediate-mass elements. Strong evidence indicates that this partially burnt remnant was ejected following a subluminous Type Ia supernova event. This supports the viability of single-degenerate supernova progenitors. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  15. An unusual white dwarf star may be a surviving remnant of a subluminous Type Ia supernova

    NASA Astrophysics Data System (ADS)

    Vennes, S.; Nemeth, P.; Kawka, A.; Thorstensen, J. R.; Khalack, V.; Ferrario, L.; Alper, E. H.

    2017-08-01

    Subluminous Type Ia supernovae, such as the Type Iax–class prototype SN 2002cx, are described by a variety of models such as the failed detonation and partial deflagration of an accreting carbon-oxygen white dwarf star or the explosion of an accreting, hybrid carbon-oxygen-neon core. These models predict that bound remnants survive such events with, according to some simulations, a high kick velocity. We report the discovery of a high proper motion, low-mass white dwarf (LP 40-365) that travels at a velocity greater than the Galactic escape velocity and whose peculiar atmosphere is dominated by intermediate-mass elements. Strong evidence indicates that this partially burnt remnant was ejected following a subluminous Type Ia supernova event. This supports the viability of single-degenerate supernova progenitors.

  16. The Dwarf Novae UZ Serpentis and SS Aurigae During Quiescence: Exposed White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Lake, J.; Sion, E. M.

    2000-12-01

    UZ Serpentis and SS Aurigae are both U Geminorum-type dwarf novae with similar orbital periods, outburst amplitudes, and outburst recurrence times. Since dwarf novae above the period gap have higher accretion rates, their accretion disks may remain optically thick even during quiescence. Hence the detection of the white dwarf is more difficult. UZ Ser and SS Aur offer the possiblity of extending the range of systems for which the underlying white dwarf accreter has been analyzed with model atmospheres. We have applied the Massa-Fitzpatrick (2000) flux calibration correction to the archival IUE NEWSIPS SWP spectra of these two systems, obtained during dwarf nova quiescence. We have carried out high gravity model atmosphere using the codes TLUSTY195, SYNSPEC42, ROTIN and accretion disk synthetic spectra from the grid of Wade and Hubeny (1998). We have determined the physical properties of the white dwarf accreters, including temperature, gravity chemical abundances estimates, and the accretion rate during quiescence. We discuss our results in the context of the overall picture of accretion physics in dwarf novae and the effects of accretion on the white dwarf. This research was supported in part by NSF grant AST 99-01955, NASA ADP grant NAG5-8388 and by summer research funding from the NASA- Delaware Space Grant Colleges Consortium.

  17. Binary white dwarfs in the halo of the Milky Way

    NASA Astrophysics Data System (ADS)

    van Oirschot, Pim; Nelemans, Gijs; Toonen, Silvia; Pols, Onno; Brown, Anthony G. A.; Helmi, Amina; Portegies Zwart, Simon

    2014-09-01

    Aims: We study single and binary white dwarfs in the inner halo of the Milky Way in order to learn more about the conditions under which the population of halo stars was born, such as the initial mass function (IMF), the star formation history, or the binary fraction. Methods: We simulate the evolution of low-metallicity halo stars at distances up to ~3 kpc using the binary population synthesis code SeBa. We use two different white dwarf cooling models to predict the present-day luminosities of halo white dwarfs. We determine the white dwarf luminosity functions (WDLFs) for eight different halo models and compare these with the observed halo WDLF of white dwarfs in the SuperCOSMOS Sky Survey. Furthermore, we predict the properties of binary white dwarfs in the halo and determine the number of halo white dwarfs that is expected to be observed with the Gaia satellite. Results: By comparing the WDLFs, we find that a standard IMF matches the observations more accurately than a top-heavy one, but the difference with a bottom-heavy IMF is small. A burst of star formation 13 Gyr ago fits slightly better than a star formation burst 10 Gyr ago and also slightly better than continuous star formation 10-13 Gyr ago. Gaia will be the first instument to constrain the bright end of the field halo WDLF, where contributions from binary WDs are considerable. Many of these will have He cores, of which a handful have atypical surface gravities (log g < 6) and reach luminosities log (L/L⊙) > 0 in our standard model for WD cooling. These so called pre-WDs, if observed, can help us to constrain white dwarf cooling models and might teach us something about the fraction of halo stars that reside in binaries. Appendices are available in electronic form at http://www.aanda.org

  18. Two white dwarfs with oxygen-rich atmospheres.

    PubMed

    Gänsicke, B T; Koester, D; Girven, J; Marsh, T R; Steeghs, D

    2010-01-08

    Stars with masses ranging from 7 to 10 times the mass of the Sun end their lives either as massive white dwarfs or weak type II supernovae, but there are only limited observational constraints on either evolutionary channel. Here we report the detection of two white dwarfs with large photospheric oxygen abundances, implying that they are bare oxygen-neon cores and that they may have descended from the most massive progenitors that avoid core collapse.

  19. A disintegrating minor planet transiting a white dwarf.

    PubMed

    Vanderburg, Andrew; Johnson, John Asher; Rappaport, Saul; Bieryla, Allyson; Irwin, Jonathan; Lewis, John Arban; Kipping, David; Brown, Warren R; Dufour, Patrick; Ciardi, David R; Angus, Ruth; Schaefer, Laura; Latham, David W; Charbonneau, David; Beichman, Charles; Eastman, Jason; McCrady, Nate; Wittenmyer, Robert A; Wright, Jason T

    2015-10-22

    Most stars become white dwarfs after they have exhausted their nuclear fuel (the Sun will be one such). Between one-quarter and one-half of white dwarfs have elements heavier than helium in their atmospheres, even though these elements ought to sink rapidly into the stellar interiors (unless they are occasionally replenished). The abundance ratios of heavy elements in the atmospheres of white dwarfs are similar to the ratios in rocky bodies in the Solar System. This fact, together with the existence of warm, dusty debris disks surrounding about four per cent of white dwarfs, suggests that rocky debris from the planetary systems of white-dwarf progenitors occasionally pollutes the atmospheres of the stars. The total accreted mass of this debris is sometimes comparable to the mass of large asteroids in the Solar System. However, rocky, disintegrating bodies around a white dwarf have not yet been observed. Here we report observations of a white dwarf--WD 1145+017--being transited by at least one, and probably several, disintegrating planetesimals, with periods ranging from 4.5 hours to 4.9 hours. The strongest transit signals occur every 4.5 hours and exhibit varying depths (blocking up to 40 per cent of the star's brightness) and asymmetric profiles, indicative of a small object with a cometary tail of dusty effluent material. The star has a dusty debris disk, and the star's spectrum shows prominent lines from heavy elements such as magnesium, aluminium, silicon, calcium, iron, and nickel. This system provides further evidence that the pollution of white dwarfs by heavy elements might originate from disrupted rocky bodies such as asteroids and minor planets.

  20. QUIESCENT NUCLEAR BURNING IN LOW-METALLICITY WHITE DWARFS

    SciTech Connect

    Miller Bertolami, Marcelo M.; Althaus, Leandro G.

    2013-09-20

    We discuss the impact of residual nuclear burning in the cooling sequences of hydrogen-rich (DA) white dwarfs with very low metallicity progenitors (Z = 0.0001). These cooling sequences are appropriate for the study of very old stellar populations. The results presented here are the product of self-consistent, fully evolutionary calculations. Specifically, we follow the evolution of white dwarf progenitors from the zero-age main sequence through all the evolutionary phases, namely the core hydrogen-burning phase, the helium-burning phase, and the thermally pulsing asymptotic giant branch phase to the white dwarf stage. This is done for the most relevant range of main-sequence masses, covering the most usual interval of white dwarf masses—from 0.53 M {sub ☉} to 0.83 M {sub ☉}. Due to the low metallicity of the progenitor stars, white dwarfs are born with thicker hydrogen envelopes, leading to more intense hydrogen burning shells as compared with their solar metallicity counterparts. We study the phase in which nuclear reactions are still important and find that nuclear energy sources play a key role during long periods of time, considerably increasing the cooling times from those predicted by standard white dwarf models. In particular, we find that for this metallicity and for white dwarf masses smaller than about 0.6 M {sub ☉}, nuclear reactions are the main contributor to the stellar luminosity for luminosities as low as log (L/L {sub ☉}) ≅ –3.2. This, in turn, should have a noticeable impact in the white dwarf luminosity function of low-metallicity stellar populations.

  1. The Montreal White Dwarf Database: A Tool for the Community

    NASA Astrophysics Data System (ADS)

    Dufour, P.; Blouin, S.; Coutu, S.; Fortin-Archambault, M.; Thibeault, C.; Bergeron, P.; Fontaine, G.

    2017-03-01

    We present the "Montreal White Dwarf Database (MWDD), an accessible database with sortable/filterable table and interactive plots that will, when fully completed, allow the community to explore the physical properties of all white dwarfs ever analyzed by the Montreal group, as well as display data and analyses from the literature. We present its current capability and show how it will continuously be updated to instantly reflect improvements made on both the theoretical and observational fronts.

  2. A Low-mass Exoplanet Candidate Detected by K2 Transiting the Praesepe M Dwarf JS 183

    NASA Astrophysics Data System (ADS)

    Pepper, Joshua; Gillen, Ed; Parviainen, Hannu; Hillenbrand, Lynne A.; Cody, Ann Marie; Aigrain, Suzanne; Stauffer, John; Vrba, Frederick J.; David, Trevor; Lillo-Box, Jorge; Stassun, Keivan G.; Conroy, Kyle E.; Pope, Benjamin J. S.; Barrado, David

    2017-04-01

    We report the discovery of a repeating photometric signal from a low-mass member of the Praesepe open cluster that we interpret as a Neptune-sized transiting planet. The star is JS 183 (HSHJ 163, EPIC 211916756), with T eff = 3325 ± 100 K, M * = 0.44 ± 0.04 M ⊙, R * = 0.44 ± 0.03 R ⊙, and {log}{g}* = 4.82+/- 0.06. The planet has an orbital period of 10.134588 days and a radius of R P = 0.32 ± 0.02 R J. Since the star is faint at V = 16.5 and J = 13.3, we are unable to obtain a measured radial velocity orbit, but we can constrain the companion mass to below about 1.7 M J, and thus well below the planetary boundary. JS 183b (since designated as K2-95b) is the second transiting planet found with K2 that resides in a several-hundred-megayear open cluster; both planets orbit mid-M dwarf stars and are approximately Neptune sized. With a well-determined stellar density from the planetary transit, and with an independently known metallicity from its cluster membership, JS 183 provides a particularly valuable test of stellar models at the fully convective boundary. We find that JS 183 is the lowest-density transit host known at the fully convective boundary, and that its very low density is consistent with current models of stars just above the fully convective boundary but in tension with the models just below the fully convective boundary.

  3. White dwarf models of supernovae and cataclysmic variables

    SciTech Connect

    Nomoto, K.; Hashimoto, M.

    1986-01-01

    If the accreting white dwarf increases its mass to the Chandrasekhar mass, it will either explode as a Type I supernova or collapse to form a neutron star. In fact, there is a good agreement between the exploding white dwarf model for Type I supernovae and observations. We describe various types of evolution of accreting white dwarfs as a function of binary parameters (i.e,. composition, mass, and age of the white dwarf, its companion star, and mass accretion rate), and discuss the conditions for the precursors of exploding or collapsing white dwarfs, and their relevance to cataclysmic variables. Particular attention is given to helium star cataclysmics which might be the precursors of some Type I supernovae or ultrashort period x-ray binaries. Finally we present new evolutionary calculations using the updated nuclear reaction rates for the formation of O+Ne+Mg white dwarfs, and discuss the composition structure and their relevance to the model for neon novae. 61 refs., 14 figs.

  4. A Search for Fine Wines: Discovering Close Red Dwarf-White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Boyd, Mark; Finch, C. T.; Hambly, N. C.; Henry, T. J.; Jao, W.; Riedel, A. R.; Subasavage, J. P.; Winters, J. G.; RECONS

    2012-01-01

    Like fine wines, stars come in both red and white varieties. Here we present initial results of the Fine Wines Project that targets red dwarf-white dwarf pairs. The two scientific goals of Fine Wines are (1) to develop methods to estimate ages for red dwarfs based on the cooling ages of the white dwarfs, and (2) to identify suitable pairs for dynamical mass determinations of white dwarfs to probe their interior structures. Here we focus on the search for Fine Wines, including sample selection, elimination of false positives, and initial reconnaissance. The sample was extracted via color-color plots from a pool of more than 30,000 proper motion systems examined during the SuperCOSMOS-RECONS (SCR) and UCAC3 Proper Motion (UPM) surveys. The initial sample of 75 best candidates is being observed for BVRI photometry and 3500-9500 A spectroscopy to confirm whether or not the systems are red dwarf-white dwarf pairs. Early results indicate that roughly 50% of the candidates selected are indeed Fine Wine systems. This effort is supported by the NSF through grant AST 09-08402 and via observations made possible by the SMARTS Consortium.

  5. Where the Wild Young M Dwarfs Are: the SUPERBLINK Proper Motion Survey and a Search for Low-mass Moving Group Candidates

    NASA Astrophysics Data System (ADS)

    Lépine, Sébastien

    2016-01-01

    The SUPERBLINK survey catalogs all stars brighter than R = 19 mag and with proper motions larger than 40 mas yr-1, down to a declination of -33○. The catalog inevitably includes a significant fraction of the presumed low-mass members of several nearby young moving groups (Beta Pic, AB Dor, Tuc-Hor, Argus), or low-mass escapees from the Hyades and Pleiades clusters. We discuss opportunities and challenges in identifying the missing M dwarf members of these moving groups. While rounding up the majority of the potential M dwarf members of these groups, such samples are significantly affected by co-moving field stars, both young and old, due to the heavy clumping of the local field population in velocity space.

  6. Activity and Kinematics of White Dwarf-M Dwarf Binaries from the SUPERBLINK Proper Motion Survey

    NASA Astrophysics Data System (ADS)

    Skinner, Julie N.; Morgan, Dylan P.; West, Andrew A.; Lépine, Sébastien; Thorstensen, John R.

    2017-09-01

    We present an activity and kinematic analysis of high proper motion white dwarf-M dwarf binaries (WD+dMs) found in the SUPERBLINK survey, 178 of which are new identifications. To identify WD+dMs, we developed a UV–optical–IR color criterion and conducted a spectroscopic survey to confirm each candidate binary. For the newly identified systems, we fit the two components using model white dwarf spectra and M dwarf template spectra to determine physical parameters. We use Hα chromospheric emission to examine the magnetic activity of the M dwarf in each system, and investigate how its activity is affected by the presence of a white dwarf companion. We find that the fraction of WD+dM binaries with active M dwarfs is significantly higher than their single M dwarf counterparts at early and mid-spectral types. We corroborate previous studies that find high activity fractions at both close and intermediate separations. At more distant separations, the binary fraction appears to approach the activity fraction for single M dwarfs. Using derived radial velocities and the proper motions, we calculate 3D space velocities for the WD+dMs in SUPERBLINK. For the entire SUPERBLINK WD+dMs, we find a large vertical velocity dispersion, indicating a dynamically hotter population compared to high proper motion samples of single M dwarfs. We compare the kinematics for systems with active M dwarfs and those with inactive M dwarfs, and find signatures of asymmetric drift in the inactive sample, indicating that they are drawn from an older population. Based on observations obtained at the MDM Observatory operated by Dartmouth College, Columbia University, The Ohio State University, and the University of Michigan.

  7. TIDAL INTERACTIONS IN MERGING WHITE DWARF BINARIES

    SciTech Connect

    Piro, Anthony L.

    2011-10-20

    The recently discovered system J0651 is the tightest known detached white dwarf (WD) binary. Since it has not yet initiated Roche-lobe overflow, it provides a relatively clean environment for testing our understanding of tidal interactions. I investigate the tidal heating of each WD, parameterized in terms of its tidal Q parameter. Assuming that the heating can be radiated efficiently, the current luminosities are consistent with Q {sub 1} {approx} 7 x 10{sup 10} and Q {sub 2} {approx} 2 x 10{sup 7}, for the He and C/O WDs, respectively. Conversely, if the observed luminosities are merely from the cooling of the WDs, these estimated values of Q represent the upper limits. A large Q {sub 1} for the He WD means its spin velocity will be slower than that expected if it was tidally locked, which, since the binary is eclipsing, may be measurable via the Rossiter-McLaughlin effect. After one year, gravitational wave emission shifts the time of eclipses by 5.5 s, but tidal interactions cause the orbit to shrink more rapidly, changing the time by up to an additional 0.3 s after a year. Future eclipse timing measurements may therefore infer the degree of tidal locking.

  8. Calibrating White Dwarf Asteroseismic Fitting Techniques

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Romero, A. D.; Bischoff-Kim, A.

    2017-03-01

    The main goal of looking for intrinsic variability in stars is the unique opportunity to study their internal structure. Once we have extracted independent modes from the data, it appears to be a simple matter of comparing the period spectrum with those from theoretical model grids to learn the inner structure of that star. However, asteroseismology is much more complicated than this simple description. We must account not only for observational uncertainties in period determination, but most importantly for the limitations of the model grids, coming from the uncertainties in the constitutive physics, and of the fitting techniques. In this work, we will discuss results of numerical experiments where we used different independently calculated model grids (white dwarf cooling models WDEC and fully evolutionary LPCODE-PUL) and fitting techniques to fit synthetic stars. The advantage of using synthetic stars is that we know the details of their interior structure so we can assess how well our models and fitting techniques are able to the recover the interior structure, as well as the stellar parameters.

  9. The binary white dwarf LHS 3236

    SciTech Connect

    Harris, Hugh C.; Dahn, Conard C.; Canzian, Blaise; Guetter, Harry H.; Levine, Stephen E.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L.; Dupuy, Trent J.; Liu, Michael C.; Hartkopf, William I.; Ireland, Michael J.; Leggett, S. K.

    2013-12-10

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s{sup –1}, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M {sub ☉}; also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M {sub ☉}. In either case, the cooling ages of the stars are ∼3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M {sub ☉}) is well above the Chandrasekhar limit; however, the timescale for coalescence is long.

  10. DISCOVERY OF AN ULTRAMASSIVE PULSATING WHITE DWARF

    SciTech Connect

    Hermes, J. J.; Castanheira, Barbara G.; Winget, D. E.; Montgomery, M. H.; Harrold, Samuel T.; Kepler, S. O.; Gianninas, A.; Brown, Warren R.

    2013-07-01

    We announce the discovery of the most massive pulsating hydrogen-atmosphere white dwarf (WD) ever discovered, GD 518. Model atmosphere fits to the optical spectrum of this star show it is a 12, 030 {+-} 210 K WD with a log g =9.08 {+-} 0.06, which corresponds to a mass of 1.20 {+-} 0.03 M{sub Sun }. Stellar evolution models indicate that the progenitor of such a high-mass WD endured a stable carbon-burning phase, producing an oxygen-neon-core WD. The discovery of pulsations in GD 518 thus offers the first opportunity to probe the interior of a WD with a possible oxygen-neon core. Such a massive WD should also be significantly crystallized at this temperature. The star exhibits multi-periodic luminosity variations at timescales ranging from roughly 425 to 595 s and amplitudes up to 0.7%, consistent in period and amplitude with the observed variability of typical ZZ Ceti stars, which exhibit non-radial g-mode pulsations driven by a hydrogen partial ionization zone. Successfully unraveling both the total mass and core composition of GD 518 provides a unique opportunity to investigate intermediate-mass stellar evolution, and can possibly place an upper limit to the mass of a carbon-oxygen-core WD, which in turn constrains Type Ia supernovae progenitor systems.

  11. Liberating exomoons in white dwarf planetary systems

    NASA Astrophysics Data System (ADS)

    Payne, Matthew J.; Veras, Dimitri; Holman, Matthew J.; Gänsicke, Boris T.

    2016-03-01

    Previous studies indicate that more than a quarter of all white dwarf (WD) atmospheres are polluted by remnant planetary material, with some WDs being observed to accrete the mass of Pluto in 106 yr. The short sinking time-scale for the pollutants indicates that the material must be frequently replenished. Moons may contribute decisively to this pollution process if they are liberated from their parent planets during the post-main-sequence evolution of the planetary systems. Here, we demonstrate that gravitational scattering events amongst planets in WD systems easily trigger moon ejection. Repeated close encounters within tenths of planetary Hill radii are highly destructive to even the most massive, close-in moons. Consequently, scattering increases both the frequency of perturbing agents in WD systems, as well as the available mass of polluting material in those systems, thereby enhancing opportunities for collision and fragmentation and providing more dynamical pathways for smaller bodies to reach the WD. Moreover, during intense scattering, planets themselves have pericentres with respect to the WD of only a fraction of an astronomical unit, causing extreme Hill-sphere contraction, and the liberation of moons into WD-grazing orbits. Many of our results are directly applicable to exomoons orbiting planets around main-sequence stars.

  12. Dark-matter admixed white dwarfs

    NASA Astrophysics Data System (ADS)

    Leung, Shing Chi; Chu, Ming Chung; Lin, Lap Ming; Wong, Ka Wing

    2014-03-01

    We study the equilibrium structures of white dwarfs (WD) with dark matter cores formed by non-self-annihilating dark matter (DM) particles with masses ranging from 1 GeV to 100 GeV, assuming in form of an ideal degenerate Fermi gas inside the stars. For DM particles of mass 10 GeV and 100 GeV, we find that stable stellar models exist only if the mass of the DM core inside the star is less than O and -3)Msun , respectively. The global properties of these stars, and the corresponding Chandrasekhar mass (CM) limits, are essentially the same as those of traditional WD models without DM. Nevertheless, in the 10 GeV case, the gravitational attraction of the DM core is strong enough to squeeze the normal matter in the core region to densities above neutron drip. For the 1 GeV case, the DM core inside the star can be as massive as O and affects the global structure of the star significantly. The radius of a stellar model with DM can be about two times smaller than that of a traditional WD. Furthermore, the CM limit can be decreased by as much as 40%. Our results may have implications on the extent to which type Ia supernovae can be regarded as standard candles. This work is partially supported by a grant from the Research Grant Council of the Hong Kong Special Administrative Region, China (Project No. 400910).

  13. Effective geometry of a white dwarf

    SciTech Connect

    Bini, D.; Cherubini, C.; Filippi, S.

    2011-03-15

    The ''effective geometry'' formalism is used to study the perturbations of a white dwarf described as a self-gravitating fermion gas with a completely degenerate relativistic equation of state of barotropic type. The quantum nature of the system causes an absence of homological properties, manifested instead by polytropic stars, and requires a parametric study of the solutions both at the numerical and analytical level. We have explicitly derived a compact analytical parametric approximate solution of Pade type, which gives density curves and stellar radii in good accordance with already existing numerical results. After validation of this new type of approximate solutions, we use them to construct the effective acoustic metric governing general perturbations following Chebsch's formalism. Even in this quantum case, the stellar surface exhibits a curvature singularity due to the vanishing of density, as already evidenced in past studies on nonquantum self-gravitating polytropic stars. The equations of the theory are finally numerically integrated in the simpler case of irrotational spherical pulsating perturbations, including the effect of backreaction, in order to have a dynamical picture of the process occurring in the acoustic metric.

  14. A Dark Spot on a Massive White Dwarf

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Gianninas, Alexandros; Bell, Keaton J.; Curd, Brandon; Brown, Warren R.; Hermes, J. J.; Dufour, Patrick; Wisniewski, John P.; Winget, D. E.; Winget, K. I.

    2015-12-01

    We present the serendipitous discovery of eclipse-like events around the massive white dwarf SDSS J152934.98+292801.9 (hereafter J1529+2928). We selected J1529+2928 for time-series photometry based on its spectroscopic temperature and surface gravity, which place it near the ZZ Ceti instability strip. Instead of pulsations, we detect photometric dips from this white dwarf every 38 minutes. Follow-up optical spectroscopy observations with Gemini reveal no significant radial velocity variations, ruling out stellar and brown dwarf companions. A disintegrating planet around this white dwarf cannot explain the observed light curves in different filters. Given the short period, the source of the photometric dips must be a dark spot that comes into view every 38 minutes due to the rotation of the white dwarf. Our optical spectroscopy does not show any evidence of Zeeman splitting of the Balmer lines, limiting the magnetic field strength to B < 70 kG. Since up to 15% of white dwarfs display kG magnetic fields, such eclipse-like events should be common around white dwarfs. We discuss the potential implications of this discovery on transient surveys targeting white dwarfs, like the K2 mission and the Large Synoptic Survey Telescope. This work is based on observations obtained at the Gemini Observatory, McDonald Observatory, and the Apache Point Observatory 3.5-m telescope. The latter is owned and operated by the Astrophysical Research Consortium. Gemini Observatory is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência, Tecnologia e Inovação (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina).

  15. RXJ2130.6+4710 - an eclipsing white dwarf-M-dwarf binary star

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Marsh, T. R.; Morales-Rueda, L.; Barstow, M. A.; Dobbie, P. D.; Schreiber, M. R.; Dhillon, V. S.; Brinkworth, C. S.

    2004-12-01

    We report the detection of eclipses in the close white-dwarf-M-dwarf binary star RXJ2130.6+4710. We present light curves in the B, V and I bands and fast photometry obtained with the three-channel CCD photometer Ultracam of the eclipse in the u', g' and r' bands. The depth of the eclipse varies from 3.0 mag in the u' band to less than 0.1 mag in the I band. The times of mid-eclipse are given by the ephemeris BJD(mid-eclipse) = 2452785.681876(2) + 0.521035625(3) E, where figures in parentheses denote uncertainties in the final digit. We present medium-resolution spectroscopy from which we have measured the spectroscopic orbits of the M dwarf and white dwarf. We estimate that the spectral type of the M dwarf is M3.5Ve or M4Ve, although the data on which this is based are not ideal for spectral classification. We have compared the spectra of the white dwarf with synthetic spectra from pure hydrogen model atmospheres to estimate that the effective temperature of the white dwarf is Teff= 18000 +/- 1000 K. We have used the width of the primary eclipse and duration of totality measured precisely from the Ultracam u' data combined with the amplitude of the ellipsoidal effect in the I band and the semi-amplitudes of the spectroscopic orbits to derive masses and radii for the M dwarf and white dwarf. The M dwarf has a mass of 0.555 +/- 0.023 Msolar and a radius of 0.534 +/- 0.053 Rsolar, which is a typical radius for stars of this mass. The mass of the white dwarf is 0.554 +/- 0.017 Msolar and its radius is 0.0137 +/- 0.0014 Rsolar, which is the radius expected for a carbon-oxygen white dwarf of this mass and effective temperature. The light curves are affected by frequent flares from the M dwarf and the associated dark spots on its surface can be detected from the distortions to the light curves and radial velocities. RXJ2130.6+4710 is a rare example of a pre-cataclysmic variable star that will start mass transfer at a period above the period gap for cataclysmic variables.

  16. Chandra Observations of Magnetic White Dwarfs and Their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.; Six, N. Frank (Technical Monitor)

    2002-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is strong observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. Since these fields are likely to be generated by dynamo action and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs.

  17. Hubble Space Telescope Studies of Exposed White Dwarfs in Dwarf Novae

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.

    Coordinated AAVSO optical observations and Hubble Space Telescope (HST) far ultraviolet (UV) spectroscopic observations of cataclysmic variables, during dwarf nova quiescence when the underlying white dwarf is exposed in the far UV, have yielded a number of new insights into accretional heating, photospheric abundances of the accreted atmosphere, and rotational velocities of the underlying degenerates. Recent results of synthetic spectral analyses of HST spectra are highlighted. Their impact on our understanding of accretion physics and the effect of accretion on the white dwarf are discussed.

  18. Probing an Ancient Thermonuclear Runaway on a White Dwarf in a Dwarf Nova

    NASA Astrophysics Data System (ADS)

    Sion, Edward

    1999-07-01

    We unexpectedly discovered evidence, based upon two GHRS G160M spectra, of greatly elevated abundances of odd-numbered nuclei Phosphorus and Aluminum as well as a Nitrogen to Carbon ratio of 10 in the photosphere of the white dwarf in the dwarf nova VW Hy ons and determine the first chem ical abundances of many odd-numbered proton capture species; {2} determine a accurate mass for the white dwarf and; {3} probe changes in the accretion belt and surface abundances as a function of time since a superoutburst. This study will hold important

  19. SpeX SPECTROSCOPY OF UNRESOLVED VERY LOW MASS BINARIES. I. IDENTIFICATION OF 17 CANDIDATE BINARIES STRADDLING THE L DWARF/T DWARF TRANSITION

    SciTech Connect

    Burgasser, Adam J.; Cruz, Kelle L.; Cushing, Michael; Looper, Dagny L.; Gelino, Christopher R.; Kirkpatrick, J. Davy; Faherty, Jacqueline K.; Reid, I. Neill

    2010-02-20

    We report the identification of 17 candidate brown dwarf binaries whose components straddle the L dwarf/T dwarf transition. These sources were culled from a large near-infrared spectral sample of L and T dwarfs observed with the Infrared Telescope Facility SpeX spectrograph. Candidates were selected on the basis of spectral ratios which segregate known (resolved) L dwarf/T dwarf pairs from presumably single sources. Composite templates, constructed by combining 13,581 pairs of absolute flux-calibrated spectra, are shown to provide statistically superior fits to the spectra of our 17 candidates as compared to single templates. Ten of these candidates appear to have secondary components that are significantly brighter than their primaries over the 1.0-1.3 {mu}m band, indicative of rapid condensate depletion at the L dwarf/T dwarf transition. Our results support prior indications of enhanced multiplicity amongst early-type T dwarfs; 53% +- 7% of the T0-T4 dwarfs in our spectral sample are found to be either resolved or unresolved (candidate) pairs, although this is consistent with an intrinsic (volume complete) brown dwarf binary fraction of only 15%. If verified, this sample of spectral binaries more than doubles the number of known L dwarf/T dwarf transition pairs, enabling a broader exploration of this poorly understood phase of brown dwarf atmospheric evolution.

  20. Spectroscopy of the DA white dwarfs - Automatic atmospheric parameterization and mass distribution

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert K.

    1989-01-01

    A method for the automatic calculation of the atmospheric parameters (Teff and log g) of hydrogen-rich degenerate stars from low-resolution spectra is described, and then applied to the spectra of 53 DA white dwarfs. A value for the width of the DA mass distribution of sigma M/solar-M not greater than +0.10 is obtained using the proposed approach. The data indicate that the distribution is asymmetrically skewed to low masses; however, there is also evidence of a high-mass non-Gaussian tail.

  1. Spectroscopy of the DA white dwarfs - Automatic atmospheric parameterization and mass distribution

    NASA Technical Reports Server (NTRS)

    Mcmahan, Robert K.

    1989-01-01

    A method for the automatic calculation of the atmospheric parameters (Teff and log g) of hydrogen-rich degenerate stars from low-resolution spectra is described, and then applied to the spectra of 53 DA white dwarfs. A value for the width of the DA mass distribution of sigma M/solar-M not greater than +0.10 is obtained using the proposed approach. The data indicate that the distribution is asymmetrically skewed to low masses; however, there is also evidence of a high-mass non-Gaussian tail.

  2. BANYAN. V. A SYSTEMATIC ALL-SKY SURVEY FOR NEW VERY LATE-TYPE LOW-MASS STARS AND BROWN DWARFS IN NEARBY YOUNG MOVING GROUPS

    SciTech Connect

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-10

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ∼13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential ≥M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr{sup –1}. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by ≥M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  3. DISCOVERY OF A VERY LOW MASS TRIPLE WITH LATE-M AND T DWARF COMPONENTS: LP 704-48/SDSS J0006-0852AB

    SciTech Connect

    Burgasser, Adam J.; Luk, Christopher; Bardalez Gagliuffi, Daniella; Nicholls, Christine P.; Dhital, Saurav; Prato, L.; West, Andrew A.; Lepine, Sebastien

    2012-10-01

    We report the identification of the M9 dwarf SDSS J000649.16-085246.3 as a spectral binary and radial velocity (RV) variable with components straddling the hydrogen-burning mass limit. Low-resolution near-infrared spectroscopy reveals spectral features indicative of a T dwarf companion, and spectral template fitting yields component types of M8.5 {+-} 0.5 and T5 {+-} 1. High-resolution near-infrared spectroscopy with Keck/NIRSPEC reveals pronounced RV variations with a semi-amplitude of 8.2 {+-} 0.4 km s{sup -1}. From these we determine an orbital period of 147.6 {+-} 1.5 days and eccentricity of 0.10 {+-} 0.07, making SDSS J0006-0852AB the third tightest very low mass binary known. This system is also found to have a common proper motion companion, the inactive M7 dwarf LP 704-48, at a projected separation of 820 {+-} 120 AU. The lack of H{alpha} emission in both M dwarf components indicates that this system is relatively old, as confirmed by evolutionary model analysis of the tight binary. LP 704-48/SDSS J0006-0852AB is the lowest-mass confirmed triple identified to date, and one of only seven candidate and confirmed triples with total masses below 0.3 M{sub Sun} currently known. We show that current star and brown dwarf formation models cannot produce triple systems like LP 704-48/SDSS J0006-0852AB, and we rule out Kozai-Lidov perturbations and tidal circularization as a viable mechanism to shrink the inner orbit. The similarities between this system and the recently uncovered low-mass eclipsing triples NLTT 41135AB/41136 and LHS 6343ABC suggest that substellar tertiaries may be common in wide M dwarf pairs.

  4. BANYAN. V. A Systematic All-sky Survey for New Very Late-type Low-mass Stars and Brown Dwarfs in Nearby Young Moving Groups

    NASA Astrophysics Data System (ADS)

    Gagné, Jonathan; Lafrenière, David; Doyon, René; Malo, Lison; Artigau, Étienne

    2015-01-01

    We present the BANYAN All-Sky Survey (BASS) catalog, consisting of 228 new late-type (M4-L6) candidate members of nearby young moving groups (YMGs) with an expected false-positive rate of ~13%. This sample includes 79 new candidate young brown dwarfs and 22 planetary-mass objects. These candidates were identified through the first systematic all-sky survey for late-type low-mass stars and brown dwarfs in YMGs. We cross-matched the Two Micron All Sky Survey and AllWISE catalogs outside of the galactic plane to build a sample of 98,970 potential >=M5 dwarfs in the solar neighborhood and calculated their proper motions with typical precisions of 5-15 mas yr-1. We selected highly probable candidate members of several YMGs from this sample using the Bayesian Analysis for Nearby Young AssociatioNs II tool (BANYAN II). We used the most probable statistical distances inferred from BANYAN II to estimate the spectral type and mass of these candidate YMG members. We used this unique sample to show tentative signs of mass segregation in the AB Doradus moving group and the Tucana-Horologium and Columba associations. The BASS sample has already been successful in identifying several new young brown dwarfs in earlier publications, and will be of great interest in studying the initial mass function of YMGs and for the search of exoplanets by direct imaging; the input sample of potential close-by >=M5 dwarfs will be useful to study the kinematics of low-mass stars and brown dwarfs and search for new proper motion pairs.

  5. Planets around Low-mass Stars. III. A Young Dusty L Dwarf Companion at the Deuterium-burning Limit

    NASA Astrophysics Data System (ADS)

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 (≈52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R ≈ 3800) 1.5-2.4 μm spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the ~120 Myr AB Dor young moving group based on the photometric distance to the primary (36 ± 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I λ6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of ~10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where "hot-start" evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, κ And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is ≈12-13 M Jup or ≈22-27 M Jup if it is an AB Dor member, or possibly as low as 11 M Jup if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition (≈1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being retained to cooler temperatures at low surface gravities, as seen in the spectra of young (8-30 Myr) planetary

  6. PLANETS AROUND LOW-MASS STARS. III. A YOUNG DUSTY L DWARF COMPANION AT THE DEUTERIUM-BURNING LIMIT ,

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Shkolnik, Evgenya L.; Dupuy, Trent J.

    2013-09-01

    We report the discovery of an L-type companion to the young M3.5V star 2MASS J01225093-2439505 at a projected separation of 1.''45 ( Almost-Equal-To 52 AU) as part of our adaptive optics imaging search for extrasolar giant planets around young low-mass stars. 2MASS 0122-2439 B has very red near-infrared colors similar to the HR 8799 planets and the reddest known young/dusty L dwarfs in the field. Moderate-resolution (R Almost-Equal-To 3800) 1.5-2.4 {mu}m spectroscopy reveals a near-infrared spectral type of L4-L6 and an angular H-band shape, confirming its cool temperature and young age. The kinematics of 2MASS 0122-2439 AB are marginally consistent with members of the {approx}120 Myr AB Dor young moving group based on the photometric distance to the primary (36 {+-} 4 pc) and our radial velocity measurement of 2MASS 0122-2439 A from Keck/HIRES. We adopt the AB Dor group age for the system, but the high energy emission, lack of Li I {lambda}6707 absorption, and spectral shape of 2MASS 0122-2439 B suggest a range of {approx}10-120 Myr is possible. The age and luminosity of 2MASS 0122-2439 B fall in a strip where ''hot-start'' evolutionary model mass tracks overlap as a result of deuterium burning. Several known substellar companions also fall in this region (2MASS J0103-5515 ABb, AB Pic b, {kappa} And b, G196-3 B, SDSS 2249+0044 B, LP 261-75 B, HD 203030 B, and HN Peg B), but their dual-valued mass predictions have largely been unrecognized. The implied mass of 2MASS 0122-2439 B is Almost-Equal-To 12-13 M{sub Jup} or Almost-Equal-To 22-27 M{sub Jup} if it is an AB Dor member, or possibly as low as 11 M{sub Jup} if the wider age range is adopted. Evolutionary models predict an effective temperature for 2MASS 0122-2439 B that corresponds to spectral types near the L/T transition ( Almost-Equal-To 1300-1500 K) for field objects. However, we find a mid-L near-infrared spectral type, indicating that 2MASS 0122-2439 B represents another case of photospheric dust being

  7. Stellar explosions from accreting white dwarfs

    NASA Astrophysics Data System (ADS)

    Moore, Kevin L.

    Unstable thermonuclear burning on accreting white dwarfs (WDs) can lead to a wide variety of outcomes, and induce shock waves in several contexts. In classical and recurrent novae, a WD accreting hydrogen-rich material from a binary companion can experience thermonuclear runaways, ejecting mass into the interstellar/circumbinary environment at ~1000 km/s. This highly supersonic ejecta drives shock waves into the interstellar gas which may be relevant for sweeping out gas from globular clusters or forming circumstellar absorption regions in interacting supernovae. While runaway nuclear burning in novae releases enough energy for these objects to brighten by a factor of ~10 4 over roughly a weeklong outburst, it does not become dynamically unstable. In contrast, certain helium accretion scenarios may allow for dynamical burning modes, in part due to the higher temperature sensitivity of helium burning reactions and larger accreted envelopes. The majority of this thesis involves such dynamical burning modes, specifically detonations - shock waves sustained by nuclear energy release behind the shock front. We investigate when steady-state detonations are realizable in accreted helium layers on WDs, and model their strength and burning products using both semi-analytic and numerical models. We find the minimum helium layer thickness that will sustain a steady laterally propagating detonation and show that it depends on the density and composition of the helium layer, specifically 12 C and 16O. Though gravitationally unbound, the ashes still have unburned helium (~80% in the thinnest cases) and only reach up to heavy elements such as 40Ca, 44Ti, 48Cr, and 52Fe. It is rare for these thin shells to generate large amounts of radioactive isotopes necessary to power light curves, such as 56Ni. This has important implications on whether the unbound helium burning ashes may create faint and fast peculiar supernovae or events with virtually no radioactivity, as well as on off

  8. Merging white dwarfs and Type Ia supernovae

    NASA Astrophysics Data System (ADS)

    Yungelson, L. R.; Kuranov, A. G.

    2017-01-01

    Using population synthesis, we study a double-degenerate (DD) scenario for Type Ia supernovae (SNe Ia), aiming to estimate the maximum possible contribution to the rate of SNe from this scenario and the dependence of the delay-time distribution (DTD) on it. We make an extreme assumption that all mergers of super-Chandrasekhar pairs of CO white dwarfs (WDs) and mergers of CO WDs more massive than 0.47 M⊙ with hybrid or helium WDs more massive than 0.37 M⊙ produce SNe Ia. The models are parametrized by the product of the common envelope efficiency and the parameter of binding energy of stellar envelopes, αce λ, which we vary between 0.25 and 2. The best agreement with observations is obtained for αce λ = 2. A substantial contribution to the rate of SNe Ia is provided by the pairs with a hybrid WD. The estimated Galactic rate of SNe Ia is 6.5 × 10-3 yr-1 (for the mass of the bulge and thin disc equal to 7.2 × 1010 M⊙), which is comparable to the observational estimate (5.4 ± 0.12) × 10-3 yr-1. The model DTD for 1 ≤ t ≤ 8 Gyr satisfactorily fits the DTD for SNe Ia in the field galaxies (Maoz, Mannucci & Brandt). For this epoch, the model DTD is ∝t-1.64. At earlier and later epochs, our DTD has a deficit of events, as in other studies. Marginal agreement with the observational DTD is achieved even if only CO+CO WDs with M1 ≥ 0.8 M⊙ and M2 ≥ 0.6 M⊙ produce SNe Ia. A better agreement of observed and modelled DTD may be obtained if tidal effects are weaker than assumed and/or the metallicity of the population is much lower than solar.

  9. Spin and Magnetism of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kissin, Yevgeni; Thompson, Christopher

    2015-08-01

    The magnetism and rotation of white dwarf (WD) stars are investigated in relation to a hydromagnetic dynamo operating in the progenitor during shell burning phases. The downward pumping of angular momentum in the convective envelope, in combination with the absorption of a planet or tidal spin-up from a binary companion, can trigger strong dynamo action near the core-envelope boundary. Several arguments point to the outer core as the source for a magnetic field in the WD remnant: the outer third of a ˜ 0.55 {M}⊙ WD is processed during the shell burning phase(s) of the progenitor; the escape of magnetic helicity through the envelope mediates the growth of (compensating) helicity in the core, as is needed to maintain a stable magnetic field in the remnant; and the intense radiation flux at the core boundary facilitates magnetic buoyancy within a relatively thick tachocline layer. The helicity flux into the growing core is driven by a dynamical imbalance with a latitude-dependent rotational stress. The magnetic field deposited in an isolated massive WD is concentrated in an outer shell of mass ≲ 0.1 {M}⊙ and can reach ˜10 MG. A buried toroidal field experiences moderate ohmic decay above an age ˜0.3 Gyr, which may lead to growth or decay of the external magnetic field. The final WD spin period is related to a critical spin rate below which magnetic activity shuts off and core and envelope decouple; it generally sits in the range of hours to days. WD periods ranging up to a year are possible if the envelope re-expands following a late thermal pulse.

  10. The Binary White Dwarf LHS 3236

    NASA Astrophysics Data System (ADS)

    Harris, Hugh C.; Dahn, Conard C.; Dupuy, Trent J.; Canzian, Blaise; Guetter, Harry H.; Hartkopf, William I.; Ireland, Michael J.; Leggett, S. K.; Levine, Stephen E.; Liu, Michael C.; Luginbuhl, Christian B.; Monet, Alice K. B.; Stone, Ronald C.; Subasavage, John P.; Tilleman, Trudy; Walker, Richard L.

    2013-12-01

    The white dwarf LHS 3236 (WD1639+153) is shown to be a double-degenerate binary, with each component having a high mass. Astrometry at the U.S. Naval Observatory gives a parallax and distance of 30.86 ± 0.25 pc and a tangential velocity of 98 km s-1, and reveals binary orbital motion. The orbital parameters are determined from astrometry of the photocenter over more than three orbits of the 4.0 yr period. High-resolution imaging at the Keck Observatory resolves the pair with a separation of 31 and 124 mas at two epochs. Optical and near-IR photometry give a set of possible binary components. Consistency of all data indicates that the binary is a pair of DA stars with temperatures near 8000 and 7400 K and with masses of 0.93 and 0.91 M ⊙ also possible is a DA primary and a helium DC secondary with temperatures near 8800 and 6000 K and with masses of 0.98 and 0.69 M ⊙. In either case, the cooling ages of the stars are ~3 Gyr and the total ages are <4 Gyr. The combined mass of the binary (1.66-1.84 M ⊙) is well above the Chandrasekhar limit; however, the timescale for coalescence is long. Some of the data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Disk Accretion of Tidally Disrupted Rocky Bodies onto White Dwarfs

    NASA Astrophysics Data System (ADS)

    Feng, W.; Desch, S.

    2017-03-01

    The prevailing model for the pollution of white dwarf photospheres invokes accretion from a disk of gas and solid particles, fed by tidal disruption of rocky bodies inside the Roche radius. Current models can successfully explain the accretion rates of metals onto white dwarfs, provided the gaseous disks viscously spread at rates consistent with a partially suppressed magnetorotational instability (Metzger et al. 2012); however, these models do not explore the extent of the magnetorotational instability in disks by calculating the degree of ionization. We present ionization fractions for thermal and non-thermal processes to assess the extent of the magnetorotational instability in white dwarf disks. We determine that the disk viscosity parameter α can be as high as 0.1 in white disks, implying that the magnetorotational instability must be carefully modeled.

  12. A DEEPLY ECLIPSING DETACHED DOUBLE HELIUM WHITE DWARF BINARY

    SciTech Connect

    Parsons, S. G.; Marsh, T. R.; Gaensicke, B. T.; Drake, A. J.; Koester, D.

    2011-07-10

    Using Liverpool Telescope+RISE photometry we identify the 2.78 hr period binary star CSS 41177 as a detached eclipsing double white dwarf binary with a 21,100 K primary star and a 10,500 K secondary star. This makes CSS 41177 only the second known eclipsing double white dwarf binary after NLTT 11748. The 2 minute long primary eclipse is 40% deep and the secondary eclipse 10% deep. From Gemini+GMOS spectroscopy, we measure the radial velocities of both components of the binary from the H{alpha} absorption line cores. These measurements, combined with the light curve information, yield white dwarf masses of M{sub 1} = 0.283 {+-} 0.064 M{sub sun} and M{sub 2} = 0.274 {+-} 0.034 M{sub sun}, making them both helium core white dwarfs. As an eclipsing, double-lined spectroscopic binary, CSS 41177 is ideally suited to measuring precise, model-independent masses and radii. The two white dwarfs will merge in roughly 1.1 Gyr to form a single sdB star.

  13. Accreting Pulsating White Dwarfs: Hotter than Single DAVs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, A.; Gaensicke, B. T.; Woudt, P. A.; Solheim, J.; Sion, E. M.; Nitta, A.; Warner, B.; Sahu, D. K.; Prabhu, T.; Henden, A.

    2006-12-01

    Single DAV pulsating white dwarfs are known to show non-radial g-mode pulsations with periods around 50-1400s and have temperatures in the specific range of 11,000-12,500K. With the discovery of several pulsating white dwarfs in the accreting close binary systems of cataclysmic variables, it is possible to probe the effects of mass transfer and accretion, external heat input, He enriched envelopes and fast rotation on the location of the instability strip. Our UV observations of three pulsating accreting white dwarfs in the cataclysmic variables SDSSJ013132-0901, SDSSJ161033-0102 and SDSSJ220553+1155 with the Solar Blind Channel on HST show enhanced pulsation amplitudes over the optical and white dwarf temperatures near 15,000K. Combined with temperatures of two other known accreting pulsators (GW Lib and HS2331+3905), it appears that there is a wide range in the instability strip for accreting pulsators. This range may be due to different white dwarf masses or compositions compared to single DAVs. This research was supported by NASA grant GO-10233.01A from STScI.

  14. Do all barium stars have a white dwarf companion?

    NASA Technical Reports Server (NTRS)

    Dominy, J. F.; Lambert, D. L.

    1983-01-01

    International Ultraviolet Explorer short-wavelength, low-dispersion spectra were analyzed for four barium, two mild barium, and one R-type carbon star in order to test the hypothesis that the barium and related giants are produced by mass transfer from a companion now present as a white dwarf. An earlier tentative identification of a white dwarf companion to the mild barium star Zeta Cyg is confirmed. For the other stars, no ultraviolet excess attributable to a white dwarf is seen. Limits are set on the bolometric magnitude and age of a possible white dwarf companion. Since the barium stars do not have obvious progenitors among main-sequence and subgiant stars, mass transfer must be presumed to occur when the mass-gaining star is already on the giant branch. This restriction, and the white dwarf's minimum age, which is greater than 8 x 10 to the 8th yr, determined for several stars, effectively eliminates the hypothesis that mass transfer from an asymptotic giant branch star creates a barium star. Speculations are presented on alternative methods of producing a barium star in a binary system.

  15. Detonability of white dwarf plasma: turbulence models at low densities

    NASA Astrophysics Data System (ADS)

    Fenn, D.; Plewa, T.

    2017-06-01

    We study the conditions required to produce self-sustained detonations in turbulent, carbon-oxygen degenerate plasma at low densities. We perform a series of three-dimensional hydrodynamic simulations of turbulence driven with various degrees of compressibility. The average conditions in the simulations are representative of models of merging binary white dwarfs. We find that material with very short ignition times is abundant in case turbulence is driven compressively. This material forms contiguous structures that persist over many ignition times, and that we identify as prospective detonation kernels. Detailed analysis of prospective kernels reveals that these objects are centrally condensed and their shape is characterized by low curvature, supportive of self-sustained detonations. The key characteristic of the newly proposed detonation mechanism is thus high degree of compressibility of turbulent drive. The simulated detonation kernels have sizes notably smaller than the spatial resolution of any white dwarf merger simulation performed to date. The resolution required to resolve kernels is 0.1 km. Our results indicate a high probability of detonations in such well-resolved simulations of carbon-oxygen white dwarf mergers. These simulations will likely produce detonations in systems of lower total mass, thus broadening the population of white dwarf binaries capable of producing Type Ia supernovae. Consequently, we expect a downward revision of the lower limit of the total merger mass that is capable of producing a prompt detonation. We review application of the new detonation mechanism to various explosion scenarios of single, Chandrasekhar-mass white dwarfs.

  16. White Dwarfs in HETDEX: Preparation for the Survey

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Winget, D. E.

    2015-06-01

    In the past decade, large scale surveys have discovered a large number of white dwarf stars. Many new aspects have been revealed, including the discovery of the DQVs, close-in non-contact binary systems, and debris disks around many stars. Unfortunately, the population statistics of the newly discovered white dwarf stars are poorly constrained, because of the various methods used to assign objects to fibers for spectroscopic observations in the SDSS survey. A white dwarf sample that is magnitude limited, with well-constrained selection criteria, is needed. The HET Dark Energy Experiment (HETDEX) will use the 9.2 m HET at McDonald Observatory and a set of more than 100 spectrographs to map the three-dimensional positions of one million galaxies, to probe dark energy. In this unique magnitude limited survey, all objects that fall into the fibers will be observed. We expect to observe spectroscopically about 10,00 white dwarf stars. In this paper, we will present the specifications and current status of HETDEX, which will start taking data in Fall 2014. We will also show our first results from observations of white dwarf stars using an identical spectrograph with the 2.7m HJS Telescope and discuss some of the approaches we have been working on in preparation for this exciting survey.

  17. Cool white dwarf companions to four millisecond pulsars

    NASA Astrophysics Data System (ADS)

    Bassa, C. G.; Antoniadis, J.; Camilo, F.; Cognard, I.; Koester, D.; Kramer, M.; Ransom, S. R.; Stappers, B. W.

    2016-02-01

    We report on photometric and spectroscopic observations of white dwarf companions to four binary radio millisecond pulsars, leading to the discovery of companions to PSRs J0614-3329, J1231-1411 and J2017+0603. We place limits on the brightness of the companion to PSR J0613-0200. Optical spectroscopy of the companion to PSR J0614-3329 identifies it as a DA-type white dwarf with a temperature of Teff = 6460 ± 80 K, a surface gravity log g = 7.0 ± 0.2 cgs and a mass of MWD = 0.24 ± 0.04 M⊙. We find that the distance to PSR J0614-3329 is smaller than previously estimated, removing the need for the pulsar to have an unrealistically high γ-ray efficiency. Comparing the photometry with predictions from white dwarf cooling models allows us to estimate temperatures and cooling ages of the companions to PSRs J0613-0200, J1231-1411 and J2017+0603. We find that the white dwarfs in these systems are cool Teff < 4000 K and old ≳ 5 Gyr. Thin hydrogen envelopes are required for these white dwarfs to cool to the observed temperatures, and we suggest that besides hydrogen shell flashes, irradiation driven mass loss by the pulsar may have been important.

  18. Characterizing Cool Brown Dwarfs and Low-Mass Companions with Low-Resolution Near-Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Godfrey, Paige A.

    Exoplanet direct detections are reaching the temperature regime of cool brown dwarfs, motivating further understanding of the coolest substellar atmospheres. These objects, T and Y dwarfs, are numerous and isolated in the field, thus making them easier to study in detail than objects in companion systems. Brown dwarf spectral types are derived from spectral morphology and generally appear to correspond with decreasing mass and effective temperature (Teff). However, spectral subclasses of the colder objects do not share this monotonic temperature correlation, indicating that secondary parameters (gravity, metallicity, dust) significantly influence spectral morphology. These secondary atmospheric parameters can provide insight into age and formation mechanisms. We seek to disentangle the fundamental parameters that underlie the spectral morphology of T dwarfs, the coolest fully populated spectral class of brown dwarfs, using comparisons to atmospheric models. We investigate the relationship between spectral type and Teff from the best fit model parameters for a sample of 151 T dwarfs with low resolution (R˜75-100) near-infrared SpeX Prism spectra. We use synthetic spectra from three model grids (Morley+ 2012, Saumon+ 2012, and BT Settl 2013) and a Markov-Chain Monte Carlo (MCMC) analysis to determine robust best fit parameters with uncertainties. We perform our analysis on the full spectrum and on narrower wavelength ranges, for the BT-Settl 2013 model grid, where directly detected exoplanets are typically characterized. We provide foundational assessments of the factors that affect T dwarf spectral morphology to prescribe the best approach to interpreting spectra of cool substellar objects. Using T dwarfs as exoplanet analogs, we create spectral templates from observed spectra for comparison to cool companion spectra of high contrast imaged objects. Our analysis of these proof-of-concept cases provides the backbone for interpreting spectra for some of the benchmark

  19. The shortest period detached binary white dwarf system

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; Brown, Warren R.; Kenyon, S. J.; Allende Prieto, Carlos; Andrews, J.; Kleinman, S. J.; Winget, K. I.; Winget, D. E.; Hermes, J. J.

    2011-05-01

    We identify SDSS J010657.39-100003.3 (hereafter J0106-1000) as the shortest period detached binary white dwarf (WD) system currently known. We targeted J0106-1000 as part of our radial velocity programme to search for companions around known extremely low-mass (ELM; ˜0.2 M⊙) WDs using the 6.5-m Multiple Mirror Telescope. We detect peak-to-peak radial velocity variations of 740 km s-1 with an orbital period of 39.1 min. The mass function and optical photometry rule out a main-sequence star companion. Follow-up high-speed photometric observations obtained at the McDonald 2.1-m telescope reveal ellipsoidal variations from the distorted primary but no eclipses. This is the first example of a tidally distorted WD. Modelling the light curve, we constrain the inclination angle of the system to be 67°± 13°. J0106-1000 contains a pair of WDs (0.17 M⊙ primary + 0.43 M⊙ invisible secondary) at a separation of 0.32 R⊙. The two WDs will merge in 37 Myr and most likely form a core He-burning single subdwarf star. J0106-1000 is the shortest time-scale merger system currently known. The gravitational wave strain from J0106-1000 is at the detection limit of the Laser Interferometer Space Antenna (LISA). However, accurate ephemeris and orbital period measurements may enable LISA to detect J0106-1000 above the Galactic background noise. Based on observations obtained at the Multiple Mirror Telescope (MMT) Observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  20. The initiation and propagation of helium detonations in white dwarf envelopes

    SciTech Connect

    Shen, Ken J.; Moore, Kevin

    2014-12-10

    Detonations in helium-rich envelopes surrounding white dwarfs have garnered attention as triggers of faint thermonuclear '.Ia' supernovae and double detonation Type Ia supernovae. However, recent studies have found that the minimum size of a hotspot that can lead to a helium detonation is comparable to, or even larger than, the white dwarf's pressure scale height, casting doubt on the successful ignition of helium detonations in these systems. In this paper, we examine the previously neglected effects of C/O pollution and a full nuclear reaction network, and we consider hotspots with spatially constant pressure in addition to constant density hotspots. We find that the inclusion of these effects significantly decreases the minimum hotspot size for helium-rich detonation ignition, making detonations far more plausible during turbulent shell convection or during double white dwarf mergers. The increase in burning rate also decreases the minimum shell mass in which a helium detonation can successfully propagate and alters the composition of the shell's burning products. The ashes of these low-mass shells consist primarily of silicon, calcium, and unburned helium and metals and may explain the high-velocity spectral features observed in most Type Ia supernovae.

  1. Wind-driven evolution of white dwarf binaries to type Ia supernovae

    SciTech Connect

    Ablimit, Iminhaji; Xu, Xiao-jie; Li, X.-D.

    2014-01-01

    In the single-degenerate scenario for the progenitors of Type Ia supernovae (SNe Ia), a white dwarf rapidly accretes hydrogen- or helium-rich material from its companion star and appears as a supersoft X-ray source. This picture has been challenged by the properties of the supersoft X-ray sources with very low mass companions and the observations of several nearby SNe Ia. It has been pointed out that the X-ray radiation or the wind from the accreting white dwarf can excite winds or strip mass from the companion star, thus significantly influencing the mass transfer processes. In this paper, we perform detailed calculations of the wind-driven evolution of white dwarf binaries. We present the parameter space for the possible SN Ia progenitors and for the surviving companions after the SNe. The results show that the ex-companion stars of SNe Ia have characteristics more compatible with the observations, compared with those in the traditional single-degenerate scenario.

  2. Does an Average White Dwarf Have Enough Mass to Prevent Accretion Disk Tilt?

    NASA Astrophysics Data System (ADS)

    Montgomery, M. M.

    2010-11-01

    In a recent publication, we introduce the lift force as a common source to accretion disk tilt that is likely relevant to accretion disk systems. Lift is generated by slightly different supersonic gas stream speeds flowing over and under the disk at the bright spot. In this conference proceeding, we focus on whether the average white dwarf has enough mass to prevent a disk tilt in non-magnetic Cataclysmic Variables (CVs) with accretion disks. Assuming a white dwarf mass of 0.6 Msolar and a disk mass of 10-11 Msolar, we vary the secondary mass to establish theoretical minimum mass transfer rates needed to induce and maintain a disk tilt of four degrees around the line of nodes. For mass ratios in the range (0.13<=q = M2M-1<=0.45), we confirm that the secondary mass does not contribute significantly to disk tilt. We also confirm that the average white dwarf does not have enough mass to prevent a disk tilt. We find that disk tilt may be likely in low mass transfer rate systems such as CV SU UMa's.

  3. Implications for the origin of early-type dwarf galaxies - the discovery of rotation in isolated, low-mass early-type galaxies

    NASA Astrophysics Data System (ADS)

    Janz, Joachim; Penny, Samantha J.; Graham, Alister W.; Forbes, Duncan A.; Davies, Roger L.

    2017-07-01

    We present the discovery of rotation in quenched, low-mass early-type galaxies that are isolated. This finding challenges the claim that (all) rotating dwarf early-type galaxies in clusters were once spiral galaxies that have since been harassed and transformed into early-type galaxies. Our search of the Sloan Digital Sky Survey data within the Local Volume (z < 0.02) has yielded a sample of 46 galaxies with a stellar mass M⋆ ≲ 5 × 109 M⊙ (median M⋆ ˜ 9.29 × 108 M⊙), a low Hα equivalent width EWHα < 2 Å, and no massive neighbour (M⋆ ≳ 3 × 1010 M⊙) within a velocity interval of ΔV = 500 km s-1 and a projected distance of ˜1 Mpc. Nine of these galaxies were subsequently observed with Keck Echellette Spectrograph and Imager and their radial kinematics are presented here. These extend out to the half-light radius Re in the best cases, and beyond Re/2 for all. They reveal a variety of behaviours similar to those of a comparison sample of early-type dwarf galaxies in the Virgo cluster observed by Toloba et al. Both samples have similar frequencies of slow and fast rotators, as well as kinematically decoupled cores. This, and especially the finding of rotating quenched low-mass galaxies in isolation, reveals that the early-type dwarfs in galaxy clusters need not be harassed or tidally stirred spiral galaxies.

  4. Anomalous Cooling of the Massive White Dwarf in U Geminorum Following a Narrow Dwarf Nova Outburst

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.; Cheng, F. H.; Szkody, Paula; Sparks, Warren; Gänsicke, Boris; Huang, Min; Mattei, Janet

    1998-03-01

    We obtained Hubble Space Telescope Goddard High-Resolution Spectrograph medium-resolution (G160M grating), phase-resolved spectroscopic observations of the prototype dwarf nova U Geminorum during dwarf nova quiescence, 13 days and 61 days following the end of a narrow outburst. The spectral wavelength ranges were centered on three different line regions: N V (1238 Å, 1242 Å), Si III (1300 Å), and He II (1640 Å). All of the quiescent spectra at both epochs are dominated by absorption lines and show no emission features. The Si III and He II absorption-line velocities versus orbital phase trace the orbital motion of the white dwarf, but the N V absorption velocities appear to deviate from the white dwarf motion. We confirm our previously reported low white dwarf rotational velocity, V sin i = 100 km s-1. We obtain a white dwarf orbital velocity semiamplitude K1 = 107 km s-1. Using the γ-velocity of Wade, we obtain an Einstein redshift of 80.4 km s-1 and hence a carbon core white dwarf mass of ~1.1 M⊙. We report the first subsolar chemical abundances of C and Si for U Gem with C/H = 0.05 times solar, almost certainly a result of C depletion due to thermonuclear processing. This C depletion is discussed within the framework of a weak thermonuclear runaway, contamination of the secondary during the common envelope phase, and mixing of C-depleted white dwarf gas with C-depleted matter deposited during a dwarf nova event. Remarkably, the Teff of the white dwarf 13 days after outburst is only 32,000 K, anomalously cooler than previous early postoutburst measurements. Extensive cooling during an extraordinarily long (210 days) quiescence followed by accretion onto an out-of-equilibrium cooled degenerate could explain the lower Teff. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  5. Spin-up and mixing in accreting white dwarfs

    SciTech Connect

    Livio, M.; Truran, J.W.

    1987-07-01

    It is demonstrated that existing theories of mixing in accreting white dwarfs encounter difficulties when confronted with observations of enrichments in nova ejecta. Arguments are presented, based on the Ekman spin-up process, which suggest that angular momentum transport from the accreted material to the white dwarf is more efficient than previously thought. This should lead to matter spreading over the entire white dwarf surface, as well as inward mixing. It is shown that when efficient transfer of angular momentum is taken into account, the gross features of nova outbursts can be reproduced, with the runaway occuring in a mixed layer. Some implications of the results for DQ Her, the hibernation model of novae, recurrent novae, and soft X-ray emission are discussed. 63 references.

  6. I -Love- Q relations for white dwarf stars

    NASA Astrophysics Data System (ADS)

    Boshkayev, K.; Quevedo, H.; Zhami, B.

    2017-02-01

    We investigate the equilibrium configurations of uniformly rotating white dwarfs, using Chandrasekhar and Salpeter equations of state in the framework of Newtonian physics. The Hartle formalism is applied to integrate the field equation together with the hydrostatic equilibrium condition. We consider the equations of structure up to the second order in the angular velocity, and compute all basic parameters of rotating white dwarfs to test the so-called moment of inertia, rotational Love number, and quadrupole moment (I-Love-Q) relations. We found that the I-Love-Q relations are also valid for white dwarfs regardless of the equation of state and nuclear composition. In addition, we show that the moment of inertia, quadrupole moment, and eccentricity (I-Q-e) relations are valid as well.

  7. A catalogue of white dwarf candidates in VST ATLAS

    NASA Astrophysics Data System (ADS)

    Gentile Fusillo, Nicola Pietro; Raddi, Roberto; Gänsicke, Boris T.; Hermes, J. J.; Pala, Anna F.; Fuchs, Joshua T.; Chehade, Ben; Metcalfe, Nigel; Shanks, Tom

    2017-07-01

    The Sloan Digital Sky Survey (SDSS) has created a knowledge gap between the Northern and the Southern hemispheres, which is very marked for white dwarfs: Only ≃15 per cent of the known white dwarfs are south of the equator. Here, we make use of the VLT Survey Telescope (VST) ATLAS survey, one of the first surveys obtaining deep, optical, multiband photometry over a large area of the southern skies, to remedy this situation. Applying the colour and proper-motion selection developed in our previous work on SDSS to the most recent internal data release (2016 April 25) of VST ATLAS, we created a catalogue of ≃4200 moderately bright (g ≤ 19), high-confidence southern white dwarf candidates, which can be followed up individually with both the large array of southern telescopes or in bulk with ESO's forthcoming multi-object spectrograph 4MOST.

  8. Atypical Thermonuclear Supernovae from Tidally Crushed White Dwarfs

    SciTech Connect

    Rosswog, S.; Ramirez-Ruiz, E.; Hix, William Raphael

    2008-01-01

    Suggestive evidence has accumulated that intermediate mass black holes (IMBHs) exist in some globular clusters. Some stars will inevitably wander sufficiently close to the hole to suffer a tidal disruption. IMBHs can disrupt not only solar-type stars but also compact white dwarf stars. We investigate the fate of white dwarfs that approach the hole close enough to be disrupted and compressed to such an extent that explosive nuclear burning is triggered. Based on a precise modeling of the gas dynamics together with the nuclear reactions, it is argued that thermonuclear ignition is a natural outcome for white dwarfs of all masses passing well within the tidal radius. A good fraction of the star is accreted, yielding high luminosities that persist for up to a year. A peculiar, underluminous thermonuclear explosion accompanied by a soft X-ray transient signal would, if detected, be a compelling testimony for the presence of an IMBH.

  9. Detection of a white dwarf in a visual binary system

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1980-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with International Ultraviolet Explorer (IUE) shows that the white dwarf has an effective temperature of 23,000 +/- 2,000 K. If log g = 8 the Ly(alpha) profile indicates an effective temperature around 24,500 K. Using the theoretical models, one finds a visual magnitude of m(sub v) is approximately 16.5. For T(sub eff) = 24,500 K one expects for a white dwarf a luminosity of log L/solar luminosity is approximately -1.3 and M(sub V) is approximately 10.67. This gives a distance modulus for the system of m(sub v) - M(sub V) = 5.83 and an absolute magnitude M(sub v) = 0.3 for the giant.

  10. Cool DZ white dwarfs I: Identification and spectral analysis

    NASA Astrophysics Data System (ADS)

    Hollands, M. A.; Koester, D.; Alekseev, V.; Herbert, E. L.; Gänsicke, B. T.

    2017-01-01

    White dwarfs with metal lines in their spectra act as signposts for post-main sequence planetary systems. Searching the Sloan Digital Sky Survey (SDSS) data release 12, we have identified 231 cool (<9000 K) DZ white dwarfs with strong metal absorption, extending the DZ cooling sequence to both higher metal abundances, lower temperatures, and hence longer cooler ages. Of these 231 systems, 104 are previously unknown white dwarfs. Compared with previous work, our spectral fitting uses improved model atmospheres with updated line profiles and line-lists, which we use to derive effective temperatures and abundances for up to 8 elements. We also determine spectroscopic distances to our sample, identifying two halo-members with tangential space-velocities >300 km s-1. The implications of our results on remnant planetary systems are to be discussed in a separate paper.

  11. Halo White Dwarfs, Thick Disks, and a Sanity Check

    NASA Astrophysics Data System (ADS)

    Hansen, Brad M. S.

    2001-09-01

    The recent discovery of a population of high proper-motion white dwarfs by Oppenheimer and coworkers has caused a lot of speculation as to the origin of these stars. I show that the age distribution of the white dwarfs offers a kind of sanity check in these discussions. In particular, the majority of the identified population appears to have a similar age distribution to those in the standard, thin-disk white dwarf population. This is not what is expected for either the halo or thick disk, which are thought to be old populations. A subset of the Oppenheimer ``halo'' sample does indeed possess an age distribution consistent with a halo origin, but the density is smaller and consistent with the results of Gould, Flynn, & Bahcall for a high-end mass function slope of -0.9.

  12. Calibration of Synthetic Photometry Using DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Holberg, J. B.; Bergeron, P.

    2005-12-01

    We have calibrated four major ground-based photometric systems with respect to the Hubble Space Telescope absolute flux scale, which is defined by Vega and four fundamental DA white dwarfs. These photometric systems include the Johnson-Kron-Cousins UBVRI, the Stromgren uvby filters, the 2MASS JHKs and the Sloan Digital Sky Survey ugriz filters. Synthetic magnitudes are calculated from model white dwarf spectra folded through the published filter response functions, these magnitudes in turn are absolutely calibrated with respect to the HST flux scale. Effective zero magnitude fluxes and zero point offsets of each system are determined. In order to verify the external observational consistency as well as to demonstrate the applicability of these definitions, the synthetic magnitudes are compared with the respective observed magnitudes of larger sets of DA white dwarfs that have well determined effective temperatures and surface gravities and which span a wide range in both of these parameters.

  13. Detection of a white dwarf in a visual binary system

    NASA Technical Reports Server (NTRS)

    Boehm-Vitense, Erika

    1992-01-01

    The F6 giant HD 160365 was detected to have a white dwarf companion about 8 arcsec south of the star. The UV energy distribution observed with IUE shows that the white dwarf has an effective temperature of 23,000 +/- 2000 K. If log g = 8 the Lya profile indicates an effective temperature around 24,500 K. Using the theoretical models by Wesemael et al. (1980) one finds a visual magnitude of m(V) about 16.5. For T(eff) = 24,500 K one expects for a white dwarf a luminosity of log L/L(solar) about 1.3 and M(V) about 10.67. This gives a distance modulus for the system of m(V) - M(V) = 5.83 and an absolute magnitude M(V)= 0.3 for the giant.

  14. THE SPECTRAL EVOLUTION OF CONVECTIVE MIXING WHITE DWARFS, THE NON-DA GAP, AND WHITE DWARF COSMOCHRONOLOGY

    SciTech Connect

    Chen, Eugene Y.; Hansen, Brad M. S. E-mail: hansen@astro.ucla.edu

    2012-07-01

    The spectral distribution of field white dwarfs shows a feature called the 'non-DA gap'. As defined by Bergeron et al., this is a temperature range (5100-6100 K) where relatively few non-DA stars are found, even though such stars are abundant on either side of the gap. It is usually viewed as an indication that a significant fraction of white dwarfs switch their atmospheric compositions back and forth between hydrogen-rich and helium-rich as they cool. In this Letter, we present a Monte Carlo model of the Galactic disk white dwarf population, based on the spectral evolution model of Chen and Hansen. We find that the non-DA gap emerges naturally, even though our model only allows white dwarf atmospheres to evolve monotonically from hydrogen-rich to helium-rich through convective mixing. We conclude by discussing the effects of convective mixing on the white dwarf luminosity function and the use thereof for Cosmochronology.

  15. FURTHER DEFINING SPECTRAL TYPE 'Y' AND EXPLORING THE LOW-MASS END OF THE FIELD BROWN DWARF MASS FUNCTION

    SciTech Connect

    Davy Kirkpatrick, J.; Gelino, Christopher R.; Griffith, Roger L.; Marsh, Kenneth A.; Cushing, Michael C.; Mace, Gregory N.; Wright, Edward L.; McLean, Ian S.; Skrutskie, Michael F.; Eisenhardt, Peter R.; Mainzer, Amanda K.; Burgasser, Adam J.; Tinney, C. G.; Parker, Stephen; Salter, Graeme

    2012-07-10

    We present the discovery of another seven Y dwarfs from the Wide-field Infrared Survey Explorer (WISE). Using these objects, as well as the first six WISE Y dwarf discoveries from Cushing et al., we further explore the transition between spectral types T and Y. We find that the T/Y boundary roughly coincides with the spot where the J - H colors of brown dwarfs, as predicted by models, turn back to the red. Moreover, we use preliminary trigonometric parallax measurements to show that the T/Y boundary may also correspond to the point at which the absolute H (1.6 {mu}m) and W2 (4.6 {mu}m) magnitudes plummet. We use these discoveries and their preliminary distances to place them in the larger context of the solar neighborhood. We present a table that updates the entire stellar and substellar constituency within 8 pc of the Sun, and we show that the current census has hydrogen-burning stars outnumbering brown dwarfs by roughly a factor of six. This factor will decrease with time as more brown dwarfs are identified within this volume, but unless there is a vast reservoir of cold brown dwarfs invisible to WISE, the final space density of brown dwarfs is still expected to fall well below that of stars. We also use these new Y dwarf discoveries, along with newly discovered T dwarfs from WISE, to investigate the field substellar mass function. We find that the overall space density of late-T and early-Y dwarfs matches that from simulations describing the mass function as a power law with slope -0.5 < {alpha} < 0.0; however, a power law may provide a poor fit to the observed object counts as a function of spectral type because there are tantalizing hints that the number of brown dwarfs continues to rise from late-T to early-Y. More detailed monitoring and characterization of these Y dwarfs, along with dedicated searches aimed at identifying more examples, are certainly required.

  16. Two white dwarfs in ultrashort binaries with detached, eclipsing, likely sub-stellar companions detected by K2

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Hermes, J. J.; Marsh, T. R.; Gänsicke, B. T.; Tremblay, P.-E.; Littlefair, S. P.; Sahman, D. I.; Ashley, R. P.; Green, M.; Rattanasoon, S.; Dhillon, V. S.; Burleigh, M. R.; Casewell, S. L.; Buckley, D. A. H.; Braker, I. P.; Irawati, P.; Dennihy, E.; Rodríguez-Gil, P.; Winget, D. E.; Winget, K. I.; Bell, Keaton J.; Kilic, Mukremin

    2017-10-01

    Using data from the extended Kepler mission in K2 Campaign 10, we identify two eclipsing binaries containing white dwarfs with cool companions that have extremely short orbital periods of only 71.2 min (SDSS J1205-0242, a.k.a. EPIC 201283111) and 72.5 min (SDSS J1231+0041, a.k.a. EPIC 248368963). Despite their short periods, both systems are detached with small, low-mass companions, in one case a brown dwarf and in the other case either a brown dwarf or a low-mass star. We present follow-up photometry and spectroscopy of both binaries, as well as phase-resolved spectroscopy of the brighter system, and use these data to place preliminary estimates on the physical and binary parameters. SDSS J1205-0242 is composed of a 0.39 ± 0.02 M⊙ helium-core white dwarf that is totally eclipsed by a 0.049 ± 0.006 M⊙ (51 ± 6MJ) brown-dwarf companion, while SDSS J1231+0041 is composed of a 0.56 ± 0.07 M⊙ white dwarf that is partially eclipsed by a companion of mass ≲0.095 M⊙. In the case of SDSS J1205-0242, we look at the combined constraints from common-envelope evolution and brown-dwarf models; the system is compatible with similar constraints from other post-common-envelope binaries, given the current parameter uncertainties, but has potential for future refinement.

  17. An Update on the Quirks of Pulsating, Accreting White Dwarfs

    NASA Astrophysics Data System (ADS)

    Szkody, Paula; Mukadam, Anjum S.; Gänsicke, Boris T.; Hermes, J. J.; Toloza, Odette

    2015-06-01

    At the 18th European White Dwarf Workshop, we reported results for several dwarf novae containing pulsating white dwarfs that had undergone an outburst in 2006-2007. HST and optical data on the white dwarfs in GW Lib, EQ Lyn and V455 And all showed different behaviors in the years following their outbursts. We continued to follow these objects for the last 2 years, providing timescales of 6-7 years past outburst. All three reached their optical quiescent values within 4 years but pulsational stability has not returned. EQ Lyn showed its pre-outburst pulsation period after 3 years, but it continues to show photometric variability that alternates between pulsation and disk superhump periods while remaining at quiescence. V455 And has almost reached its pre-outburst pulsation period, while GW Lib still remains heated and with a different pulsation spectrum than at quiescence. These results indicate that asteroseismology provides a unique picture of the effects of outburst heating on the white dwarf.

  18. Globular cluster interstellar media: ionized and ejected by white dwarfs

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2015-01-01

    Ultraviolet radiation from white dwarfs can efficiently clear Galactic globular clusters (GCs) of their intracluster medium (ICM). This solves the problem of the missing ICM in clusters, which is otherwise expected to build up to easily observable quantities. To show this, we recreate the ionizing flux in 47 Tuc, following randomly generated stars through their asymptotic giant branch (AGB), post-AGB and white dwarf evolution. Each white dwarf can ionize all the material injected into the cluster by stellar winds for ˜3 Myr of its evolution: ˜40 such white dwarfs exist at any point. Every GC's ICM should be ionized. The neutral cloud in M15 should be caused by a temporary overdensity. A pressure-supported ICM will expand over the cluster's tidal radius, where it will be truncated, allowing Jeans escape. The modelled Jeans mass-loss rate approximates the total stellar mass-loss rate, allowing efficient clearing of ICM. Any cluster's ICM mass should equal the mass injected by its stars over the sound travel time between the cluster core and tidal radius. We predict ˜11.3 M⊙ of ICM within 47 Tuc, cleared over ˜4 Myr, compared to a dynamical time-scale of 4.3 Myr. We present a new mass hierarchy, discussing the transition between GCs dwarf galaxies.

  19. The Chemical Abundances of White Dwarfs in CVS

    NASA Astrophysics Data System (ADS)

    Sion, Edward M.

    Dwarf novae and nova-like variables contain accreting white dwarfs which may have undergone numerous thermonuclear runaways as classical novae. In order to demonstrate their connection with novae however attempts have been made to detect ejected shells without success (references). However a new approach has recently emerged for systems in which the white dwarf photosphere has been detected spectroscopically. Sion et al. (1997) showed that the surface abundances of the white dwarf in VW Hydri during its quiescence manifests a direct evolutionary to a past thermonuclear event. This conclusion is based upon the presence of a large ratio of nitrogen to carbon abundance and the spectroscopic presence of odd-numbered proton-capture nuclei in abundances greatly elevated above solar. Both of these spectroscopic characteristics point to hot CNO processing as the source of the abundances. Other systems besides VW Hyi reveal further evidence of nova processing. This talk will review all of the determinations of surface chemical abundances of white dwarfs in cataclysmic variables both above and below the period gap and will discuss the implications for CV evolution and contributions to the heavy element content of the interstellar medium.

  20. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    SciTech Connect

    Córsico, A.H.; Althaus, L.G.; García-Berro, E. E-mail: althaus@fcaglp.unlp.edu.ar E-mail: kepler@if.ufrgs.br

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μ{sub ν}) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pidot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pidot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μ{sub ν} ∼< 10{sup -11} μ{sub B}. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  1. Constraining the neutrino magnetic dipole moment from white dwarf pulsations

    NASA Astrophysics Data System (ADS)

    Córsico, A. H.; Althaus, L. G.; Miller Bertolami, M. M.; Kepler, S. O.; García-Berro, E.

    2014-08-01

    Pulsating white dwarf stars can be used as astrophysical laboratories to constrain the properties of weakly interacting particles. Comparing the cooling rates of these stars with the expected values from theoretical models allows us to search for additional sources of cooling due to the emission of axions, neutralinos, or neutrinos with magnetic dipole moment. In this work, we derive an upper bound to the neutrino magnetic dipole moment (μν) using an estimate of the rate of period change of the pulsating DB white dwarf star PG 1351+489. We employ state-of-the-art evolutionary and pulsational codes which allow us to perform a detailed asteroseismological period fit based on fully DB white dwarf evolutionary sequences. Plasmon neutrino emission is the dominant cooling mechanism for this class of hot pulsating white dwarfs, and so it is the main contributor to the rate of change of period with time (Pi dot) for the DBV class. Thus, the inclusion of an anomalous neutrino emission through a non-vanishing magnetic dipole moment in these sequences notably influences the evolutionary timescales, and also the expected pulsational properties of the DBV stars. By comparing the theoretical Pi dot value with the rate of change of period with time of PG 1351+489, we assess the possible existence of additional cooling by neutrinos with magnetic dipole moment. Our models suggest the existence of some additional cooling in this pulsating DB white dwarf, consistent with a non-zero magnetic dipole moment with an upper limit of μν lesssim 10-11 μB. This bound is somewhat less restrictive than, but still compatible with, other limits inferred from the white dwarf luminosity function or from the color-magnitude diagram of the Globular cluster M5. Further improvements of the measurement of the rate of period change of the dominant pulsation mode of PG 1351+489 will be necessary to confirm our bound.

  2. Hubble Space Telescope high resolution spectroscoy of the exposed white dwarf in the dwarf nova VW Hydri in quiescence: A rapidly rotating white dwarf

    NASA Technical Reports Server (NTRS)

    Sion, Edward M.; Huang, Min; Szkody, Paula; Cheng, Fu-Hua

    1995-01-01

    We obtained a far-ultraviolet spectrum of the dwarf nova VW Hyi in quiescence, with the Hubble Space Telescope Goddard High Resolution Spectrograph covering the region of the Si iv lambda(lambda)1393, 1402 resonance doublet. The broad, shallow Si iv doublet feature is fully resolved, has a total equivalent width of 2.8 A, and is the first metal absorption feature to be clearly detected in the exposed white dwarf. Our synthetic spectral analysis, using a model grid constructed with the code TLUSTY, resulted in a reasonable fit to a white dwarf photosphere with T(sub eff) = 22,000 +/- 2000 K, log g = 8.0 +/- 0.3, an approximately solar Si/H abundance, and a rotational velocity, v sin i approximately equal to 600 km/s. This rotation rate, while not definitive because it is based upon just one line transition, is 20% of the Keplerian (breakup) velocity of the white dwarf and hence does not account for the unexpectedly low boundary-layer luminosity inferred from the soft-X-ray/extreme ultra-violet bands where most of the boundary-layer luminosity should be radiated. The predicted boundary-layer luminosity for a 0.6 solar mass white dwarf accreting at the rate 10(exp -10) solar mass/yr and rotating at 600 km/s, corresponding to VW Hyi in quiescence, is 2 x 10(exp 32) ergs/s when proper account is taken of the rotational kinetic energy going into spinning up the white dwarf. If the boundary-layer area is equal to that of the white dwarf, then T(sub bl) = 24,000 K. This is essentially identical to the photspheric luminosity and temperature determined in far-ultraviolet photospheric analyses. If the boundary-layer area is 10(exp -3) of the white dwarf surface area, then T(sub bl) = 136,000 K.

  3. Magnetic white dwarf stars in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Kepler, S. O.; Pelisoli, I.; Jordan, S.; Kleinman, S. J.; Koester, D.; Külebi, B.; Peçanha, V.; Castanheira, B. G.; Nitta, A.; Costa, J. E. S.; Winget, D. E.; Kanaan, A.; Fraga, L.

    2013-03-01

    To obtain better statistics on the occurrence of magnetism among white dwarfs, we searched the spectra of the hydrogen atmosphere white dwarf stars (DAs) in the Data Release 7 of the Sloan Digital Sky Survey (SDSS) for Zeeman splittings and estimated the magnetic fields. We found 521 DAs with detectable Zeeman splittings, with fields in the range from around 1 to 733 MG, which amounts to 4 per cent of all DAs observed. As the SDSS spectra have low signal-to-noise ratios, we carefully investigated by simulations with theoretical spectra how reliable our detection of magnetic field was.

  4. Do Some X-ray Stars Have White Dwarf Companions?

    NASA Technical Reports Server (NTRS)

    McCollum, Bruce

    1995-01-01

    Some Be stars which are intermittent C-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be+WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 1OOOA. Either the detection or the nondetection of Be+WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  5. Pulsations powered by hydrogen shell burning in white dwarfs

    NASA Astrophysics Data System (ADS)

    Camisassa, M. E.; Córsico, A. H.; Althaus, L. G.; Shibahashi, H.

    2016-10-01

    Context. In the absence of a third dredge-up episode during the asymptotic giant-branch phase, white dwarf models evolved from low-metallicity progenitors have a thick hydrogen envelope, which makes hydrogen shell burning be the most important energy source. Aims: We investigate the pulsational stability of white dwarf models with thick envelopes to see whether nonradial g-mode pulsations are triggered by hydrogen burning, with the aim of placing constraints on hydrogen shell burning in cool white dwarfs and on a third dredge-up during the asymptotic giant-branch evolution of their progenitor stars. Methods: We construct white-dwarf sequences from low-metallicity progenitors by means of full evolutionary calculations that take into account the entire history of progenitor stars, including the thermally pulsing and the post-asymptotic giant-branch phases, and analyze their pulsation stability by solving the linear, nonadiabatic, nonradial pulsation equations for the models in the range of effective temperatures Teff 15 000-8000 K. Results: We demonstrate that, for white dwarf models with masses M⋆ ≲ 0.71 M⊙ and effective temperatures 8500 ≲ Teff ≲ 11 600 K that evolved from low-metallicity progenitors (Z = 0.0001, 0.0005, and 0.001), the dipole (ℓ = 1) and quadrupole (ℓ = 2) g1-modes are excited mostly as a result of the hydrogen-burning shell through the ɛ-mechanism, in addition to other g-modes driven by either the κ - γ or the convective driving mechanism. However, the ɛ mechanism is insufficient to drive these modes in white dwarfs evolved from solar-metallicity progenitors. Conclusions: We suggest that efforts should be made to observe the dipole g1-mode in white dwarfs associated with low-metallicity environments, such as globular clusters and/or the galactic halo, to place constraints on hydrogen shell burning in cool white dwarfs and the third dredge-up episode during the preceding asymptotic giant-branch phase.

  6. Constraints on modified gravity models from white dwarfs

    NASA Astrophysics Data System (ADS)

    Banerjee, Srimanta; Shankar, Swapnil; Singh, Tejinder P.

    2017-10-01

    Modified gravity theories can introduce modifications to the Poisson equation in the Newtonian limit. As a result, we expect to see interesting features of these modifications inside stellar objects. White dwarf stars are one of the most well studied stars in stellar astrophysics. We explore the effect of modified gravity theories inside white dwarfs. We derive the modified stellar structure equations and solve them to study the mass-radius relationships for various modified gravity theories. We also constrain the parameter space of these theories from observations.

  7. Bayesian Evidence for Two Populations of White Dwarfs: Preliminary Results

    NASA Astrophysics Data System (ADS)

    Valentim, R.; Romero, A. D.; Kepler, S. O.; Horvath, J. E.; Rangel, E. M.

    2017-03-01

    White dwarf (WD) populations are analyzed using Bayesian tools, which allows inferring possible evolutionary paths through the study of the mass values. We employed a sample of 2761 DA white dwarf stars from the SDSS, and obtained the central mass values and their corresponding standard deviations using a bimodal population as an ansatz. The results indicate a population with M1 = 0.60 M⊙ and σ1 = 0.06 M⊙, corresponding to a single stellar evolution, and a second population with M2 = 1.00 M⊙ and σ1 = 0.11 M⊙ possibly due to binary evolution resulting from mergers.

  8. Helium at White Dwarf Photospheric Conditions: Preliminary Laboratory Results

    NASA Astrophysics Data System (ADS)

    Schaeuble, M.; Falcon, R. E.; Gomez, T. A.; Winget, D. E.; Montgomery, M. H.; Bailey, J. E.

    2017-03-01

    We present preliminary results of an experimental study exploring helium at photospheric conditions of white dwarf stars. These data were collected at Sandia National Laboratories' Z-machine, the largest x-ray source on earth. Our helium results could have many applications ranging from validating current DB white dwarf model atmospheres to providing accurate He pressure shifts at varying temperatures and densities. In a much broader context, these helium data can be used to guide theoretical developments in new continuum-lowering models for two-electron atoms. We also discuss future applications of our updated experimental design, which enables us to sample a greater range of densities, temperatures, and gas compositions.

  9. Astro-archaeology - The white dwarfs and hot subwarfs

    NASA Technical Reports Server (NTRS)

    Van Horn, Hugh M.

    1991-01-01

    By 'astroarcheology' is presently meant the effort to ascertain the Galaxy's past in light of what is found in its most ancient, white dwarf constituents. Attention is given to the controversial role of the hot subdwarfs and the theory of white dwarf spectral evolution, as well as to the concept of the 'Whole Earth Telescope', involving continuous photometric coverage of rapidly varying astronomical sources and thereby eliminating the otherwise troublesome diurnal gaps in data. Much higher resolution of the power spectra of these objects is attainable by these means than any current alternative.

  10. Do some x-ray stars have white dwarf companions

    NASA Technical Reports Server (NTRS)

    Mccollum, Bruce

    1995-01-01

    Some Be stars which are intermittent X-ray sources may have white dwarf companions rather than neutron stars. It is not possible to prove or rule out the existence of Be + WD systems using X-ray or optical data. However, the presence of a white dwarf could be established by the detection of its EUV continuum shortward of the Be star's continuum turnover at 100 A. Either the detection or the nondetection of Be + WD systems would have implications for models of Be star variability, models of Be binary system formation and evolution, and models of wind-fed accretion.

  11. EL CVn-type binaries - discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems

    NASA Astrophysics Data System (ADS)

    Maxted, P. F. L.; Bloemen, S.; Heber, U.; Geier, S.; Wheatley, P. J.; Marsh, T. R.; Breedt, E.; Sebastian, D.; Faillace, G.; Owen, C.; Pulley, D.; Smith, D.; Kolb, U.; Haswell, C. A.; Southworth, J.; Anderson, D. R.; Smalley, B.; Collier Cameron, A.; Hebb, L.; Simpson, E. K.; West, R. G.; Bochinski, J.; Busuttil, R.; Hadigal, S.

    2014-01-01

    The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from the Wide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses ({≈ } 0.2{ M_{⊙}}). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B.

  12. FORETELLINGS OF RAGNAROeK: WORLD-ENGULFING ASYMPTOTIC GIANTS AND THE INHERITANCE OF WHITE DWARFS

    SciTech Connect

    Mustill, Alexander J.; Villaver, Eva

    2012-12-20

    The search for planets around white dwarf stars, and evidence for dynamical instability around them in the form of atmospheric pollution and circumstellar disks, raises questions about the nature of planetary systems that can survive the vicissitudes of the asymptotic giant branch (AGB). We study the competing effects, on planets at several AU from the star, of strong tidal forces arising from the star's large convective envelope, and of the planets' orbital expansion due to stellar mass loss. We study, for the first time, the evolution of planets while following each thermal pulse on the AGB. For Jovian planets, tidal forces are strong, and can pull into the envelope planets initially at {approx}3 AU for a 1 M{sub Sun} star and {approx}5 AU for a 5 M{sub Sun} star. Lower-mass planets feel weaker tidal forces, and terrestrial planets initially within 1.5-3 AU enter the stellar envelope. Thus, low-mass planets that begin inside the maximum stellar radius can survive, as their orbits expand due to mass loss. The inclusion of a moderate planetary eccentricity slightly strengthens the tidal forces experienced by Jovian planets. Eccentric terrestrial planets are more at risk, since their eccentricity does not decay and their small pericenter takes them inside the stellar envelope. We also find the closest radii at which planets will be found around white dwarfs, assuming that any planet entering the stellar envelope is destroyed. Planets are in that case unlikely to be found inside {approx}1.5 AU of a white dwarf with a 1 M{sub Sun} progenitor and {approx}10 AU of a white dwarf with a 5 M{sub Sun} progenitor.

  13. SpeX spectroscopy of unresolved very low mass binaries. II. Identification of 14 candidate binaries with late-M/early-L and T dwarf components

    SciTech Connect

    Bardalez Gagliuffi, Daniella C.; Burgasser, Adam J.; Nicholls, Christine P.; Gelino, Christopher R.; Looper, Dagny L.; Schmidt, Sarah J.; Cruz, Kelle; West, Andrew A.; Gizis, John E.; Metchev, Stanimir

    2014-10-20

    Multiplicity is a key statistic for understanding the formation of very low mass (VLM) stars and brown dwarfs. Currently, the separation distribution of VLM binaries remains poorly constrained at small separations (≤1 AU), leading to uncertainty in the overall binary fraction. We approach this problem by searching for late-M/early-L plus T dwarf spectral binaries whose combined light spectra exhibit distinct peculiarities, allowing for separation-independent identification. We define a set of spectral indices designed to identify these systems, and we use a spectral template fitting method to confirm and characterize spectral binary candidates from a library of 815 spectra from the SpeX Prism Spectral Libraries. We present 11 new binary candidates, confirm 3 previously reported candidates, and rule out 2 previously identified candidates, all with primary and secondary spectral types in the range M7-L7 and T1-T8, respectively. We find that subdwarfs and blue L dwarfs are the primary contaminants in our sample and propose a method for segregating these sources. If confirmed by follow-up observations, these systems may add to the growing list of tight separation binaries, whose orbital properties may yield further insight into brown dwarf formation scenarios.

  14. An independent test of the photometric selection of white dwarf candidates using LAMOST DR3

    NASA Astrophysics Data System (ADS)

    Gentile Fusillo, N. P.; Rebassa-Mansergas, A.; Gänsicke, B. T.; Liu, X.-W.; Ren, J. J.; Koester, D.; Zhan, Y.; Hou, Y.; Wang, Y.; Yang, M.

    2015-09-01

    In previous work by Gentile Fusillo et al., we developed a selection method for white dwarf candidates which makes use of photometry, colours and proper motions to calculate a probability of being a white dwarf (PWD). The application of our method to the Sloan Digital Sky Survey (SDSS) data release 10 resulted in ≃66 000 photometrically selected objects with a derived PWD, approximately ≃21 000 of which are high-confidence white dwarf candidates. Here, we present an independent test of our selection method based on a sample of spectroscopically confirmed white dwarfs from the Large Sky Area Multi-Fiber Spectroscopic Telescope (LAMOST) survey. We do this by cross-matching all our ≃66 000 SDSS photometric white dwarf candidates with the over 4 million spectra available in the third data release of LAMOST. This results in 1673 white dwarf candidates with no previous SDSS spectroscopy, but with available LAMOST spectra. Among these objects, we identify 309 genuine white dwarfs. We find that our PWD can efficiently discriminate between confirmed LAMOST white dwarfs and contaminants. Our white dwarf candidate selection method can be applied to any multiband photometric survey and in this work we conclusively confirm its reliability in selecting white dwarfs without recourse to spectroscopy. We also discuss the spectroscopic completeness of white dwarfs in LAMOST, as well as deriving effective temperatures, surface gravities and masses for the hydrogen-rich atmosphere white dwarfs in the newly identified LAMOST sample.

  15. SDSS 1355+0856: a detached white dwarf + M star binary in the period gap discovered by the SWARMS survey

    NASA Astrophysics Data System (ADS)

    Badenes, Carles; van Kerkwijk, Marten H.; Kilic, Mukremin; Bickerton, Steven J.; Mazeh, Tsevi; Mullally, Fergal; Tal-Or, Lev; Thompson, Susan E.

    2013-03-01

    SDSS J135523.92 + 085645.4 (SDSS 1355+0856) was identified as a hot white dwarf with a companion from time-resolved Sloan Digital Sky Survey spectroscopy as part of the ongoing Sloan White Dwarf Radial velocity data Mining Survey survey. Follow-up observations with the Astrophysical Research Consortium 3.5 m telescope and the Multiple Mirror Telescope revealed weak emission lines in the central cores of the Balmer absorption lines during some phases of the orbit, but no line emission during other phases. This can be explained if SDSS 1355+0856 is a detached white dwarf + M dwarf binary similar to GD 448, where one of the hemispheres of the low-mass companion is irradiated by the proximity of the hot white dwarf. Based on the available data, we derive an orbital period of 0.114 38 ± 0.000 06 d, a primary mass of 0.46 ± 0.01 M⊙, a secondary mass between 0.083 and 0.097 M⊙, and an orbital inclination larger than 57°. This makes SDSS 1355+0856 one of the shortest period post-common envelope white dwarf + M dwarf binaries, and the record holder for the lowest mass stellar companion, which has interesting implications for our understanding of common envelope evolution and the phenomenology of cataclysmic variables. The short cooling time of the WD (25 Myr) implies that the system emerged from the common envelope phase with an orbital period very similar to what we observe today, and was born in the period gap of cataclysmic variables.

  16. Mass-radius relation of strongly magnetized white dwarfs

    NASA Astrophysics Data System (ADS)

    Bera, Prasanta; Bhattacharya, Dipankar

    2016-07-01

    We study the strongly magnetized white dwarf configurations in a self-consistent manner as a progenitor of the over-luminous type-Ia supernovae. We compute static equilibria of white dwarf stars containing a strong magnetic field and present the modification of white dwarf mass-radius relation caused by the magnetic field. From a static equilibrium study, we find that a maximum white dwarf mass of about 1.9 M_{⊙} may be supported if the interior poloidal field is as strong as approximately 10^{10} T. On the other hand, if the field is purely toroidal the maximum mass can be more than 5 M_⊙. All these modifications are mainly from the presence of Lorenz force. The effects of i) modification of equation of state due to Landau quantization ii) electrostatic interaction due to ions, ii) general relativistic calculation on the stellar structure and, iii) field geometry are also considered. These strongly magnetised configurations are sensitive to magnetic instabilities where the perturbations grow at the corresponding Alfven time scales.

  17. First Detection of Krypton and Xenon in a White Dwarf

    NASA Technical Reports Server (NTRS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  18. FIRST DETECTION OF KRYPTON AND XENON IN A WHITE DWARF

    SciTech Connect

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-07-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 {+-} 0.5 and log Xe = -4.2 {+-} 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.

  19. Imaging Extra-Solar Planets around White Dwarfs

    NASA Astrophysics Data System (ADS)

    Burleigh, Matt R.; Clarke, Fraser

    In Burleigh Clarke and Hodgkin (2002 MNRAS 331 L41) we showed that Jovian planets in initially wide orbits (>5AU) should survive the final stages of stellar evolution and migrate outwards to orbit the resultant white dwarfs at separations of up to >100AU. Using evolutionary models for massive Jupiters we also showed that such planets should be detectable around a variety of suitable white dwarfs within 20pc of the Sun. Based on these predictions we have been searching for planets >5Mjup around nearby white dwarfs using direct imaging in the near infra-red. We will present results from our observational programmes with the two 8m Gemini Telescopes and with the NAOMI Adaptive Optics programme on the 4m William Herschell Telescope on La Palma. Detection of massive planetary companions to nearby white dwarfs would prove that such objects can survive the final stages of stellar evolution place constraints on the frequency of main sequence stars with planetary systems dynamically similar to our own and allow direct spectroscopic investigation of their composition and structure.

  20. White dwarfs constraints on dark sector models with light particles

    SciTech Connect

    Ubaldi, Lorenzo

    2014-06-24

    The white dwarf luminosity function is well understood in terms of standard model physics and leaves little room for exotic cooling mechanisms related to the possible existence of new weakly interacting light particles. This puts significant constraints on the parameter space of models that contain a massive dark photon and light dark sector particles.

  1. White Dwarf Stars in the HET Dark Energy Experiment

    NASA Astrophysics Data System (ADS)

    Castanheira, Barbara; Winget, D.; Gebhardt, K.; Allende Prieto, C.; Shetrone, M.; Odewahn, S.; Montgomery, M. H.

    2012-01-01

    In this poster, we present the project that will survey all white dwarf stars observed in the Hobby-Eberly Telescope Dark Energy Experiment (HETDEX) and the Visible Integral-field Replicable Unit Spectrograph (VIRUS) observations in parallel mode. The final product will be a unique magnitude-limited catalog of as many as 10,000 stars. Since we will use data from an Integral-field Units, our survey will be free of the selection biases that plagued preceding surveys, e.g. the Sloan Digital Sky Survey (SDSS). The critical advantages of our program are our ability to produce a white dwarf luminosity function five magnitudes fainter than the one derived from the Palomar-Green survey and with a similar number of faint stars as the one from SDSS. Our project will help to derive a more precise age of the Galactic disk, and will provide fundamental information about the white dwarf population and the star formation history of the Milky Way, impacting the white dwarf field and many other fields of astronomy.

  2. White dwarf dynamical interactions and fast optical transients

    NASA Astrophysics Data System (ADS)

    García-Berro, Enrique; Badenes, Carles; Aznar-Siguán, Gabriela; Lorén-Aguilar, Pablo

    2017-07-01

    Recent advances in time-domain astronomy have uncovered a new class of optical transients with time-scales shorter than typical supernovae and a wide range of peak luminosities. Several subtypes have been identified within this broad class, including Ca-rich transients, Type Ia supernovae (SNe Ia) and fast/bright transients. We examine the predictions from a state-of-the-art grid of three-dimensional simulations of dynamical white dwarf interactions in the context of these fast optical transients. We find that for collisions involving carbon-oxygen or oxygen-neon white dwarfs, the peak luminosities and durations of the light curves in our models are in good agreement with the properties of fast/bright transients. When one of the colliding white dwarfs is made of helium, the properties of the light curves are similar to those of Ca-rich gap transients. The model light curves from our white dwarf collisions are too slow to reproduce those of SNe Ia, and too fast to match any normal or peculiar SNe Ia.

  3. Planetary Engulfment as a Trigger for White Dwarf Pollution

    NASA Astrophysics Data System (ADS)

    Petrovich, Cristobal; Muñoz, Diego J.

    2017-01-01

    The presence of a planetary system can shield a planetesimal disk from the secular gravitational perturbations due to distant outer massive objects (planets or stellar companions). As the host star evolves off the main sequence to become a white dwarf, these planets can be engulfed during the giant phase, triggering secular instabilities and leading to the tidal disruptions of small rocky bodies. These disrupted bodies can feed the white dwarfs with rocky material and possibly explain the high-metallicity material in their atmospheres. We illustrate how this mechanism can operate when the gravitational perturbations are due to the KL mechanism from a stellar binary companion, a process that is activated only after the planet has been removed/engulfed. We show that this mechanism can explain the observed accretion rates if: (1) the planetary engulfment happens rapidly compared to the secular timescale, which is generally the case for wide binaries (> 100 au) and planetary engulfment during the asymptotic giant branch; (2) the planetesimal disk has a total mass of ∼ {10}-4-{10}-2{M}\\oplus . We show that this new mechanism can provide a steady supply of material throughout the entire life of the white dwarfs for all cooling ages and can account for a large fraction (up to nearly half) of the observed polluted white dwarfs.

  4. High-Resolution EUV Spectroscopy of White Dwarfs

    NASA Astrophysics Data System (ADS)

    Kowalski, Michael P.; Wood, K. S.; Barstow, M. A.

    2014-01-01

    We compare results of high-resolution EUV spectroscopic measurements of the isolated white dwarf G191-B2B and the binary system Feige 24 obtained with the J-PEX (Joint Plasmadynamic Experiment), which was sponsored jointly by the U.S. Naval Research Laboratory and NASA. J-PEX delivers the world's highest resolution in EUV and does so at high effective area (e.g., more effective area in a sounding rocket than is available with Chandra at adjacent energies, but in a waveband Chandra cannot reach). The capability J-PEX represents is applicable to the astrophysics of hot plasmas in stellar coronae, white dwarfs and the ISM. G191-B2B and Feige 24 are quite distinct hot white dwarf systems having in common that they are bright in the portion of the EUV where He emission features and edges occur, hence they can be exploited to probe both the stellar atmosphere and the ISM, separating those components by model-fitting that sums over all relevant (He) spectral features in the band. There is evidence from these fits that atmospheric He is being detected but the result is more conservatively cast as a pair of upper limits. We discuss how longer duration satellite observations with the same instrumentation could increase exposure to detect atmospheric He in these and other nearby hot white dwarfs.

  5. A Common Origin of Magnetism from Planets to White Dwarfs

    NASA Astrophysics Data System (ADS)

    Isern, Jordi; García-Berro, Enrique; Külebi, Baybars; Lorén-Aguilar, Pablo

    2017-02-01

    Isolated magnetic white dwarfs have field strengths ranging from kilogauss to gigagauss. However, the origin of the magnetic field has not been hitherto elucidated. Whether these fields are fossil, hence the remnants of original weak magnetic fields amplified during the course of the evolution of their progenitor stars, or are the result of binary interactions, or, finally, they are produced by other internal physical mechanisms during the cooling of the white dwarf itself, remains a mystery. At sufficiently low temperatures, white dwarfs crystallize. Upon solidification, phase separation of its main constituents, 12C and 16O, and of the impurities left by previous evolution occurs. This process leads to the formation of a Rayleigh–Taylor unstable liquid mantle on top of a solid core. This convective region, as it occurs in solar system planets like the Earth and Jupiter, can produce a dynamo able to yield magnetic fields of strengths of up to 0.1 MG, thus providing a mechanism that could explain magnetism in single white dwarfs.

  6. Mass-Radius Relation of Strongly Magnetized White Dwarfs

    NASA Astrophysics Data System (ADS)

    Bera, P.; Bhattacharya, D.

    2017-03-01

    We study the strongly magnetized white dwarf configurations in a self-consistent manner as a progenitor of the over-luminous type-Ia supernovae. We compute static equilibria of white dwarf stars containing a strong magnetic field and present the modification of the white dwarf mass-radius relation caused by the magnetic field. From a static equilibrium study, we find that a maximum white dwarf mass of about 1.9 M⊙ may be supported if the interior poloidal field is as strong as approximately 1010 T. On the other hand if the field is purely toroidal the maximum mass can be more than 5 M⊙. All these modifications are mainly from the presence of the Lorenz force. The effects of i) modification of the equation of state due to Landau quantization, ii) electrostatic interaction due to ions, iii) general relativistic calculation on the stellar structure and, iv) field geometry are also considered. These strongly magnetised configurations are sensitive to magnetic instabilities where the perturbations grow at the corresponding Alfven time scales.

  7. Central Magnetic Field of a Magnetic White Dwarf Star

    NASA Astrophysics Data System (ADS)

    Shah, Hridaya; Sebastian, Kunnat

    2017-07-01

    Observations of over-luminous Type 1a supernovae have prompted researchers to come up with various hypotheses in order to explain them. One hypothesis is based on the explosion of a progenitor super-massive magnetic white dwarf star. These stars are assumed to have very strong magnetic fields inside of them. However, there is a lack of analytic proof of the existence of such magnetic fields in the magnetic white dwarf stars. In this work, we plan to address an analytic proof of the existence of very strong magnetic fields in the center of these magnetic white dwarfs. We will see that for a one Landau-level white dwarf star, with central density {10}9{--}{10}11 {{g}} {{cm}}-3, it is possible to have central magnetic fields of the order of {10}13{--}{10}15G at least. In the presence of strong magnetic fields, the threshold densities chosen for this work that correspond to instabilities due to general relativity and pycnonuclear reactions have been found to increase so that the matter does not acquire instability at such central densities.

  8. Asteroseismic constraints on diffusion in white dwarf envelopes

    NASA Astrophysics Data System (ADS)

    Bischoff-Kim, A.; Metcalfe, T. S.

    2011-06-01

    The asteroseismic analysis of white dwarfs allows us to peer below their photospheres and determine their internal structure. At ˜28 000 K EC20058-5234 is the hottest known pulsating helium atmosphere white dwarf. As such, it constitutes an important link in the evolution of white dwarfs down the cooling track. It is also astrophysically interesting because it is at a temperature where white dwarfs are expected to cool mainly through the emission of plasmon neutrinos. In the present work, we perform an asteroseismic analysis of EC20058-5234 and place the results in the context of stellar evolution and time-dependent diffusion calculations. We use a parallel genetic algorithm complemented with targeted grid searches to find the models that fit the observed periods best. Comparing our results with similar modelling of EC20058-5234's cooler cousin CBS114, we find a helium envelope thickness consistent with time-dependent diffusion calculations and obtain a precise mode identification for EC20058-5234.

  9. UV Spectroscopy of a Peculiar White Dwarf Supernova

    NASA Astrophysics Data System (ADS)

    McCully, Curtis

    2012-10-01

    While type Ia supernovae {SNe Ia} have been extremely useful for studying the cosmic expansion history, their explosion mechanism and progenitor system remain unsolved problems. Moreover, as large samples of SNe are observed, the diversity among these explosions has grown: not all exploding white dwarfs look like normal SNe Ia. Understanding why these "peculiar" objects are different from the normal ones can help explain the standard SN Ia scenario, as well as give us a better understanding of the many endpoints of stellar evolution. Connecting observations to physical models has been difficult for both normal and peculiar white dwarf supernovae. The ultraviolet is an unexplored wavelength region for peculiar SNe Ia; the high opacity in the UV from typical thermonuclear burning products means that the UV flux in white dwarf supernovae is very sensitive to the outermost layers of ejecta. This material is the least processed, and is thus an ideal place to look for clues to progenitors and explosion mechanisms. Here we propose target-of-opportunity UV spectroscopy of a peculiar white dwarf SN using the STIS NUV-MAMA instrument to add a unique piece of the puzzle connecting peculiar SNe Ia and their progenitors.

  10. Chandra grating spectroscopy of three hot white dwarfs

    NASA Astrophysics Data System (ADS)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2012-10-01

    Context. High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB 1919) and the other is a non-DA of spectral type PG 1159 (PG 1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD 246). Aims: The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB 1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD 246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG 1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods: The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results: No metals could be identified in LB 1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD 246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG 1520+525 constrains the effective temperature to Teff = 150 000 ± 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GW Vir class (PG 1159 - 035) defines the location of the blue edge of the GW Vir

  11. Chandra Grating Spectroscopy of Three Hot White Dwarfs

    NASA Technical Reports Server (NTRS)

    Adamczak, J.; Werner, K.; Rauch, T.; Schuh, S.; Drake, J. J.; Kruk, J. W.

    2013-01-01

    High-resolution soft X-ray spectroscopic observations of single hot white dwarfs are scarce. With the Chandra Low-Energy Transmission Grating, we have observed two white dwarfs, one is of spectral type DA (LB1919) and the other is a non-DA of spectral type PG1159 (PG1520+525). The spectra of both stars are analyzed, together with an archival Chandra spectrum of another DA white dwarf (GD246). Aims. The soft X-ray spectra of the two DA white dwarfs are investigated in order to study the effect of gravitational settling and radiative levitation of metals in their photospheres. LB1919 is of interest because it has a significantly lower metallicity than DAs with otherwise similar atmospheric parameters. GD246 is the only white dwarf known that shows identifiable individual iron lines in the soft X-ray range. For the PG1159 star, a precise effective temperature determination is performed in order to confine the position of the blue edge of the GW Vir instability region in the HRD. Methods. The Chandra spectra are analyzed with chemically homogeneous as well as stratified NLTE model atmospheres that assume equilibrium between gravitational settling and radiative acceleration of chemical elements. Archival EUV and UV spectra obtained with EUVE, FUSE, and HST are utilized to support the analysis. Results. No metals could be identified in LB1919. All observations are compatible with a pure hydrogen atmosphere. This is in stark contrast to the vast majority of hot DA white dwarfs that exhibit light and heavy metals and to the stratified models that predict significant metal abundances in the atmosphere. For GD246 we find that neither stratified nor homogeneous models can fit the Chandra spectrum. The Chandra spectrum of PG1520+525 constrains the effective temperature to T(sub eff) = 150 000 +/- 10 000 K. Therefore, this nonpulsating star together with the pulsating prototype of the GWVir class (PG1159-035) defines the location of the blue edge of the GWVir instability region

  12. M dwarfs in the Local Milky Way: The Field Low-Mass Stellar Luminosity and Mass Functions

    SciTech Connect

    Bochanski, Jr, John J.

    2008-01-01

    Modern sky surveys, such as the Sloan Digital Sky Survey (SDSS) and the Two-Micron All Sky Survey, have revolutionized how Astronomy is done. With millions of photometric and spectroscopic observations, global observational properties can be studied with unprecedented statistical significance. Low-mass stars dominate the local Milky Way, with tens of millions observed by SDSS within a few kpc. Thus, they make ideal tracers of the Galactic potential, and the thin and thick disks. In this thesis dissertation, I present my efforts to characterize the local low-mass stellar population, using a collection of observations from the Sloan Digital Sky Survey (SDSS). First, low-mass stellar template spectra were constructed from the co-addition of thousands of SDSS spectroscopic observations. These template spectra were used to quantify the observable changes introduced by chromospheric activity and metallicity. Furthermore, the average ugriz colors were measured as a function of spectral type. Next, the local kinematic structure of the Milky Way was quantified, using a special set of SDSS spectroscopic observations. Combining proper motions and radial velocities (measured using the spectral templates), along with distances, the full UVW space motions of over 7000 low-mass stars along one line of sight were computed. These stars were also separated kinematically to investigate other observational differences between the thin and thick disks. Finally, this dissertation details a project designed to measure the luminosity and mass functions of low-mass stars. Using a new technique optimized for large surveys, the field luminosity function (LF) and local stellar density profile are measured simultaneously. The sample size used to estimate the LF is nearly three orders of magnitude larger than any previous study, offering a definitive measurement of this quantity. The observed LF is transformed into a mass function (MF) and compared to previous studies.

  13. Sirius B - A still mysterious white dwarf

    NASA Astrophysics Data System (ADS)

    Wesemael, F.; Fontaine, G.

    1982-02-01

    Observations and knowledge of Sirius B, the companion star to Sirius A are reviewed, noting the solar mass and terrestrial radius of the dwarf. The system is 2.65 pc distant, with separation between the stars oscillating from 8-32 AU. Spectral observations are best obtained when the stars are at maximum distance, and redshifts which affirm the theory of relativity have been detected. Copernicus satellite observations have also revealed the emissions of UV and X rays from the dwarf. It is noted that Grecian records over 2000 yr old cite Sirius as a red star, which implies that the dwarf was then a red star since Sirius A is a main sequence star, an implication which does not correspond with the known evolution of stars. Another mystery is cited, that of the tribal records of the Sudanese Dogon, which maintains an ancient legend of Sirius A having an invisible companion called Digitaria, composed of a substance called segala, which cannot be lifted by all the humans on earth combined.

  14. Characterizing Cool Brown Dwarfs And Low-Mass Companions With Low-Resolution Near-Infrared Spectra

    NASA Astrophysics Data System (ADS)

    Godfrey, Paige

    2017-05-01

    My doctoral dissertation on modeling cool substellar atmospheres. This work was completed while I was a graduate student affiliated with the City University of New York Graduate Center, City University of New York College of Staten Island, the Brown Dwarfs of NYC (BDNYC) research group, and the American Museum of Natural History.

  15. Contrasting Accreting White Dwarf Pulsators with the ZZ Ceti Stars

    NASA Astrophysics Data System (ADS)

    Mukadam, A. S.; Szkody, P.; Gänsicke, B. T.; Pala, A.

    2017-03-01

    Understanding the similarities and differences between the accreting white dwarf pulsators and their non-interacting counterparts, the ZZ Ceti stars, will eventually help us deduce how accretion affects pulsations. ZZ Ceti stars pulsate in a narrow instability strip in the range 10800-12300 K due to H ionization in their pure H envelopes; their pulsation characteristics depend on their temperature and stellar mass. Models of accreting white dwarfs are found to be pulsationally unstable due to the H/HeI ionization zone, and even show a second instability strip around 15000 K due to HeII ionization. Both these strips are expected to merge for a He abundance higher than 0.48 to form a broad instability strip, which is consistent with the empirical determination of 10500-16000 K. Accreting pulsators undergo outbursts, during which the white dwarf is heated to temperatures well beyond the instability strip and is observed to cease pulsations. The white dwarf then cools to quiescence in a few years as its outer layers cool more than a million times faster than the evolutionary rate. This provides us with an exceptional opportunity to track the evolution of pulsations from the blue edge to quiescence in a few years, while ZZ Ceti stars evolve on Myr timescales. Some accreting pulsators have also been observed to cease pulsations without any apparent evidence of an outburst. This is a distinct difference between this class of pulsators and the non-interacting ZZ Ceti stars. While the ZZ Ceti instability strip is well sampled, the strip for the accreting white dwarfs is sparsely sampled and we hereby add two new potential discoveries to improve the statistics.

  16. The brightest pure-H ultracool white dwarf

    NASA Astrophysics Data System (ADS)

    Catalán, S.; Tremblay, P.-E.; Pinfield, D. J.; Smith, L. C.; Zhang, Z. H.; Napiwotzki, R.; Marocco, F.; Day-Jones, A. C.; Gomes, J.; Forde, K. P.; Lucas, P. W.; Jones, H. R. A.

    2012-10-01

    We report the identification of LSR J0745+2627 in the United Kingdom InfraRed Telescope Infrared Deep Sky Survey (UKIDSS) Large Area Survey (LAS) as a cool white dwarf with kinematics and age compatible with the thick-disk/halo population. LSR J0745+2627 has a high proper motion (890 mas/yr) and a high reduced proper motion value in the J band (HJ = 21.87). We show how the infrared-reduced proper motion diagram is useful for selecting a sample of cool white dwarfs with low contamination. LSR J0745+2627 is also detected in the Sloan Digital Sky Survey (SDSS) and the Wide-field Infrared Survey Explorer (WISE). We have spectroscopically confirmed this object as a cool white dwarf using X-Shooter on the Very Large Telescope. A detailed analysis of its spectral energy distribution reveals that its atmosphere is compatible with a pure-H composition model with an effective temperature of 3880 ± 90 K. This object is the brightest pure-H ultracool white dwarf (Teff < 4000 K) ever identified. We have constrained the distance (24-45 pc), space velocities and age considering different surface gravities. The results obtained suggest that LSR J0745+2627 belongs to the thick-disk/halo population and is also one of the closest ultracool white dwarfs. Based on observations made with ESO telescopes at the Paranal Observatory under programme ID 088.C-0048(B).FITS version of the reduced spectrum is only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/546/L3

  17. Dark baryons not in ancient halo white dwarfs

    NASA Astrophysics Data System (ADS)

    Crézé, M.; Mohan, V.; Robin, A. C.; Reylé, C.; McCracken, H. J.; Cuillandre, J.-C.; Le Fèvre, O.; Mellier, Y.

    2004-10-01

    Having ruled out the possibility that stellar objects are the main contributor of the dark matter embedding galaxies, microlensing experiments cannot exclude the hypothesis that a significant fraction of the Milky Way dark halo might be made of MACHOs with masses in the range 0.5-0.8 M⊙. Ancient white dwarfs are generally considered the most plausible candidates for such MACHOs. We report the results of a search for such white dwarfs in a proper motion survey covering a 0.16 sq. deg. field at three epochs at high galactic latitude, and 0.938 sq. deg. at two epochs at intermediate galactic latitude (VIRMOS survey), using the CFH telescope. Both surveys are complete to I = 23, with detection efficiency fading to 0 at I = 24.2. Proper motion data are suitable to separate unambiguously halo white dwarfs identified as belonging to a non rotating system. No candidates were found within the colour-magnitude-proper motion volume where such objects can be safely discriminated from any standard population as well as from possible artefacts. In the same volume, we estimate the maximum white dwarf halo fraction compatible with this observation at different significance levels if the halo is at least 14 gigayears old and under different ad hoc initial mass functions. Our data alone rule out a halo fraction greater than 14 % at a 95% confidence level. Combined with two previous investigations exploring comparable volumes, this pushes the limit below 4 % (95% confidence level) or below 1 % (64% confidence), and implies that if baryonic dark matter is present in galaxy halos, it is not, or is only marginally in the form of faint hydrogen white dwarfs. Based on observations made at Canada-France-Hawaii Telescope (CFHT).

  18. Observations of the Ultraviolet Spectra of Helium (DB) White Dwarfs and a Study of the Ultraviolet Spectra of White Dwarfs Containing Carbon

    NASA Technical Reports Server (NTRS)

    Wegner, G. A.

    1984-01-01

    Strong ultraviolet carbon lines were detected in the spectrum of the southern DC white dwarf BPM 11668. Observations of a number of hotter DB white dwarfs with IUE show no evidence of carbon features. Two additional DA white dwarfs were observed that have the strong unidentified absorption near 1400 A which now seems to be identified with another lower temperature feature as satellite lines to Lyman alpha radiation.

  19. Spectroscopic Analysis of Hybrid White Dwarf Spectra from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Manseau, P. M.; Bergeron, P.; Green, E. M.

    2017-03-01

    We present a model atmosphere analysis of hot (Teff> 30 000 K) white dwarf spectra from the Sloan Digital Sky Survey showing both hydrogen and helium lines, under the assumption of chemically homogeneous and stratified atmospheric compositions. We identify several hybrid white dwarfs in the SDSS that are better explained in terms of chemically stratified atmospheres, where a thin hydrogen atmosphere floats in diffusive equilibrium on top of a more massive helium envelope. We also present an updated analysis of PG 1305–017, the only stratified white dwarf identified in previous spectroscopic analyses of DAO white dwarfs. We interpret our results in the general context of the spectral evolution of white dwarfs.

  20. Spectroscopic observations of V443 Herculis - A symbiotic binary with a low mass white dwarf

    NASA Technical Reports Server (NTRS)

    Dobrzycka, Danuta; Kenyon, Scott J.; Mikolajewska, Joanna

    1993-01-01

    We present an analysis of new and existing photometric and spectroscopic observations of the symbiotic binary V443 Herculis. This binary system consists of a normal M5 giant and a hot compact star. These two objects have comparable luminosities: about 1500 solar for the M5 giant and about 1000 solar for the compact star. We identify three nebular regions in this binary: a small, highly ionized volume surrounding the hot component, a modestly ionized shell close to the red giant photosphere, and a less dense region of intermediate ionization encompassing both binary components. The system parameters for V443 Her suggest the hot component currently declines from a symbiotic nova eruption.

  1. Chandra Observations of Magnetic White Dwarfs and their Theoretical Implications

    NASA Technical Reports Server (NTRS)

    Musielak, Z. E.; Noble, M.; Porter, J. G.; Winget, D. E.

    2003-01-01

    Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.

  2. THE MASS OF THE WHITE DWARF IN GW LIBRA

    SciTech Connect

    Van Spaandonk, L.; Steeghs, D.; Marsh, T. R.; Parsons, S. G.

    2010-06-01

    We report a mass and rotational broadening (vsin i) for the pulsating white dwarf (WD) component of the WZ Sge type Dwarf Nova GW Lib based on high-resolution Very Large Telescope spectroscopy that resolves the Mg II 4481 A absorption feature. Its gravitational redshift combined with WD mass-radius models provides us with a direct measurement of the WD mass of M {sub 1} = 0.84 {+-} 0.02 M {sub sun}. The line is clearly resolved and if associated with rotational broadening gives vsin i = 87.0 {+-} 3.4 km s{sup -1}, equivalent to a spin period of 97 {+-} 12 s.

  3. The Dwarf Novae Ty Psc and V436 Cen During Quiescence: Exposed White Dwarfs?

    NASA Astrophysics Data System (ADS)

    Nadalin, I.; Sion, E. M.

    2000-12-01

    The dwarf novae TY Psc and V436 Cen are SU UMa systems with very similar orbital periods, similar recurrence times for normal outbursts ( 23 days) and superoutbursts ( ~ 340 days) and nearly identical outburst amplitudes. We have applied the Massa-Fitzpatrick (2000) flux calibration correction to the archival IUE NEWSIPS SWP spectra of these two systems, obtained during dwarf nova quiescence. We have carried out high gravity model atmosphere using the codes TLUSTY195, SYNSPEC42, ROTIN and accretion disk synthetic spectra from the grid of Wade and Hubeny (1998). We present our results on the physical properties of the underlying white dwarf accreters, including temperature, gravity, chemical abundances estimates, and the accretion rate during quiescence. We discuss our results in the context of the overall picture of accretion physics in dwarf novae and the effects of accretion on the white dwarf. This research was supported in part by NSF grant AST 99-01955, NASA ADP grant NAG5-8388 and by summer research funding from the NASA- Delaware Space Grant Colleges Consortium.

  4. The binarity of the local white dwarf population

    NASA Astrophysics Data System (ADS)

    Toonen, S.; Hollands, M.; Gänsicke, B. T.; Boekholt, T.

    2017-06-01

    Context. As endpoints of stellar evolution, white dwarfs (WDs) are powerful tools to study the evolutionary history of the Galaxy. In particular, the multiplicity of WDs contains information regarding the formation and evolution of binary systems. Aims: Can we understand the multiplicity of the local WD sample from a theoretical point of view? Population synthesis methods are often applied to estimate stellar space densities and event rates, but how well are these estimates calibrated? This can be tested by a comparison with the 20 pc sample, which contains ≃100 stars and is minimally affected by selection biases. Methods: We model the formation and evolution of single stars and binaries within 20 pc with a population synthesis approach. We construct a model of the current sample of WDs and differentiate between WDs in different configurations, that is single WDs, and resolved and unresolved binaries containing a WD with either a main-sequence (MS) component or with a second WD. We also study the effect of different assumptions concerning the star formation history, binary evolution, and the initial distributions of binary parameters. We compile from the literature the available information on the sample of WDs within 20 pc, with a particular emphasis on their multiplicity, and compare this to the synthetic models. Results: The observed space densities of single and binary WDs are well reproduced by the models. The space densities of the most common WD systems (single WDs and unresolved WD-MS binaries) are consistent within a factor two with the observed value. We find a discrepancy only for the space density of resolved double WDs. We exclude that observational selection effects, fast stellar winds, or dynamical interactions with other objects in the Milky Way explain this discrepancy. We find that either the initial mass ratio distribution in the solar neighbourhood is biased towards low mass-ratios, or more than ten resolved DWDs have been missed

  5. A Population Synthesis Study of the White Dwarf Cooling Sequence of the Galactic Bulge

    NASA Astrophysics Data System (ADS)

    Torres, S.; García-Berro, E. G.; Cojocaru, R. E.; Calamida, A.

    2017-03-01

    Recent Hubble Space Telescope observations have allowed to determine, for the first time, the white dwarf cooling sequence of the Galactic bulge. However, observations show systematically redder objects than those predicted by the theoretical cooling tracks of carbon-oxygen white dwarfs. Here we present a population synthesis study of the white dwarf cooling sequence of the galactic bulge including both single white dwarfs and binary systems. These calculations incorporate the most up-to-date cooling sequences for white dwarfs with hydrogen-rich and hydrogen-deficient atmospheres, for both white dwarfs with carbon-oxygen and helium cores, and also take into account detailed prescriptions of the evolution of binary systems and of the observational biases. This allows us to model with a high degree of realism the white dwarf population of the Galactic bulge. Among other interesting results we estimate the fraction of binaries and double degenerate systems of the Galactic bulge.

  6. A 1.05 M ⊙ Companion to PSR J2222-0137: The Coolest Known White Dwarf?

    NASA Astrophysics Data System (ADS)

    Kaplan, David L.; Boyles, Jason; Dunlap, Bart H.; Tendulkar, Shriharsh P.; Deller, Adam T.; Ransom, Scott M.; McLaughlin, Maura A.; Lorimer, Duncan R.; Stairs, Ingrid H.

    2014-07-01

    The recycled pulsar PSR J2222-0137 is one of the closest known neutron stars (NSs) with a parallax distance of 267_{-0.9}^{+1.2} pc and an edge-on orbit. We measure the Shapiro delay in the system through pulsar timing with the Green Bank Telescope, deriving a low pulsar mass (1.20 ± 0.14 M ⊙) and a high companion mass (1.05 ± 0.06 M ⊙) consistent with either a low-mass NS or a high-mass white dwarf. We can largely reject the NS hypothesis on the basis of the system's extremely low eccentricity (3 × 10-4)—too low to have been the product of two supernovae under normal circumstances. However, despite deep optical and near-infrared searches with Southern Astrophysical Research and the Keck telescopes we have not discovered the optical counterpart of the system. This is consistent with the white dwarf hypothesis only if the effective temperature is <3000 K, a limit that is robust to distance, mass, and atmosphere uncertainties. This would make the companion to PSR J2222-0137 one of the coolest white dwarfs ever observed. For the implied age to be consistent with the age of the Milky Way requires the white dwarf to have already crystallized and entered the faster Debye-cooling regime.

  7. A 1.05 M{sub ☉} companion to PSR J2222–0137: The coolest known white dwarf?

    SciTech Connect

    Kaplan, David L.; Boyles, Jason; McLaughlin, Maura A.; Lorimer, Duncan R.; Dunlap, Bart H.; Tendulkar, Shriharsh P.; Deller, Adam T.; Ransom, Scott M.; Stairs, Ingrid H.

    2014-07-10

    The recycled pulsar PSR J2222–0137 is one of the closest known neutron stars (NSs) with a parallax distance of 267{sub −0.9}{sup +1.2} pc and an edge-on orbit. We measure the Shapiro delay in the system through pulsar timing with the Green Bank Telescope, deriving a low pulsar mass (1.20 ± 0.14 M{sub ☉}) and a high companion mass (1.05 ± 0.06 M{sub ☉}) consistent with either a low-mass NS or a high-mass white dwarf. We can largely reject the NS hypothesis on the basis of the system's extremely low eccentricity (3 × 10{sup –4})—too low to have been the product of two supernovae under normal circumstances. However, despite deep optical and near-infrared searches with Southern Astrophysical Research and the Keck telescopes we have not discovered the optical counterpart of the system. This is consistent with the white dwarf hypothesis only if the effective temperature is <3000 K, a limit that is robust to distance, mass, and atmosphere uncertainties. This would make the companion to PSR J2222–0137 one of the coolest white dwarfs ever observed. For the implied age to be consistent with the age of the Milky Way requires the white dwarf to have already crystallized and entered the faster Debye-cooling regime.

  8. THE DYNAMICAL EVOLUTION OF LOW-MASS HYDROGEN-BURNING STARS, BROWN DWARFS, AND PLANETARY-MASS OBJECTS FORMED THROUGH DISK FRAGMENTATION

    SciTech Connect

    Li, Yun; Kouwenhoven, M. B. N.; Stamatellos, D.; Goodwin, S. P.

    2015-06-01

    Theory and simulations suggest that it is possible to form low-mass hydrogen-burning stars, brown dwarfs (BDs), and planetary-mass objects (PMOs) via disk fragmentation. As disk fragmentation results in the formation of several bodies at comparable distances to the host star, their orbits are generally unstable. Here, we study the dynamical evolution of these objects. We set up the initial conditions based on the outcomes of the smoothed-particle hydrodynamics simulations of Stamatellos and Whitworth, and for comparison we also study the evolution of systems resulting from lower-mass fragmenting disks. We refer to these two sets of simulations as set 1 and set 2, respectively. At 10 Myr, approximately half of the host stars have one companion left, and approximately 22% (set 1) to 9.8% (set 2) of the host stars are single. Systems with multiple secondaries in relatively stable configurations are common (about 30% and 44%, respectively). The majority of the companions are ejected within 1 Myr with velocities mostly below 5 km s{sup −1}, with some runaway escapers with velocities over 30 km s{sup −1}. Roughly 6% (set 1) and 2% (set 2) of the companions pair up into very low-mass binary systems, resulting in respective binary fractions of 3.2% and 1.2%. The majority of these pairs escape as very low-mass binaries, while others remain bound to the host star in hierarchical configurations (often with retrograde inner orbits). Physical collisions with the host star (0.43 and 0.18 events per host star for set 1 and set 2, respectively) and between companions (0.08 and 0.04 events per host star for set 1 and set 2, respectively) are relatively common and their frequency increases with increasing disk mass. Our study predicts observable properties of very low-mass binaries, low-mass hierarchical systems, the BD desert, and free-floating BDs and PMOs in and near young stellar groupings, which can be used to distinguish between different formation scenarios of very low-mass

  9. A precision study of two eclipsing white dwarf plus M dwarf binaries

    NASA Astrophysics Data System (ADS)

    Parsons, S. G.; Marsh, T. R.; Gänsicke, B. T.; Rebassa-Mansergas, A.; Dhillon, V. S.; Littlefair, S. P.; Copperwheat, C. M.; Hickman, R. D. G.; Burleigh, M. R.; Kerry, P.; Koester, D.; Nebot Gómez-Morán, A.; Pyrzas, S.; Savoury, C. D. J.; Schreiber, M. R.; Schmidtobreick, L.; Schwope, A. D.; Steele, P. R.; Tappert, C.

    2012-03-01

    We use a combination of X-shooter spectroscopy, ULTRACAM high-speed photometry and SOFI near-infrared photometry to measure the masses and radii of both components of the eclipsing post common envelope binaries SDSS J121258.25-012310.1 and GK Vir. For both systems, we measure the gravitational redshift of the white dwarf (WD) and combine it with light-curve model fits to determine the inclinations, masses and radii. For SDSS J1212-0123, we find an inclination of i= 85?7 ± 0?5, masses of MWD= 0.439 ± 0.002 M⊙ and Msec= 0.273 ± 0.002 M⊙, and radii RWD= 0.0168 ± 0.0003 R⊙ and Rsec= 0.306 ± 0.007 R⊙. For GK Vir, we find an inclination of i= 89?5°± 0?6, masses of MWD= 0.564 ± 0.014 M⊙ and Msec= 0.116 ± 0.003 M⊙ and radii RWD= 0.0170 ± 0.0004 R⊙ and Rsec= 0.155 ± 0.003 R⊙. The mass and radius of the WD in GK Vir are consistent with evolutionary models for a 50 000 K carbon-oxygen (CO) core WD. Although the mass and radius of the WD in SDSS J1212-0123 are consistent with CO core models, evolutionary models imply that a WD with such a low mass and in a short period binary must have a helium core. The mass and radius measurements are consistent with helium core models but only if the WD has a very thin hydrogen envelope (MH/MWD≤ 10-6). Such a thin envelope has not been predicted by any evolutionary models. The mass and radius of the secondary star in GK Vir are consistent with evolutionary models after correcting for the effects of irradiation by the WD. The secondary star in SDSS J1212-0123 has a radius ˜9 per cent larger than predicted.

  10. PLANETS AROUND LOW-MASS STARS (PALMS). I. A SUBSTELLAR COMPANION TO THE YOUNG M DWARF 1RXS J235133.3+312720

    SciTech Connect

    Bowler, Brendan P.; Liu, Michael C.; Cieza, Lucas A.; Kraus, Adam L.; Shkolnik, Evgenya L.; Dupuy, Trent J.; Tamura, Motohide

    2012-07-10

    We report the discovery of a brown dwarf companion to the young M dwarf 1RXS J235133.3+312720 as part of a high contrast imaging search for planets around nearby young low-mass stars with Keck-II/NIRC2 and Subaru/HiCIAO. The 2.''4 ({approx}120 AU) pair is confirmed to be comoving from two epochs of high-resolution imaging. Follow-up low- and moderate-resolution near-infrared spectroscopy of 1RXS J2351+3127 B with IRTF/SpeX and Keck-II/OSIRIS reveals a spectral type of L0{sup +2}{sub -1}. The M2 primary star 1RXS J2351+3127 A exhibits X-ray and UV activity levels comparable to young moving group members with ages of {approx}10-100 Myr. UVW kinematics based the measured radial velocity of the primary and the system's photometric distance (50 {+-} 10 pc) indicate it is likely a member of the {approx}50-150 Myr AB Dor moving group. The near-infrared spectrum of 1RXS J2351+3127 B does not exhibit obvious signs of youth, but its H-band morphology shows subtle hints of intermediate surface gravity. The spectrum is also an excellent match to the {approx}200 Myr M9 brown dwarf LP 944-20. Assuming an age of 50-150 Myr, evolutionary models imply a mass of 32 {+-} 6 M{sub Jup} for the companion, making 1RXS J2351+3127 B the second lowest-mass member of the AB Dor moving group after the L4 companion CD-35 2722 B and one of the few benchmark brown dwarfs known at young ages.

  11. IDENTIFICATION OF A WIDE, LOW-MASS MULTIPLE SYSTEM CONTAINING THE BROWN DWARF 2MASS J0850359+105716

    SciTech Connect

    Faherty, Jacqueline K.; Burgasser, Adam J.; Bochanski, John J.; Looper, Dagny L.; West, Andrew A.; Van der Bliek, Nicole S.

    2011-03-15

    We report our discovery of NLTT 20346 as an M5+M6 companion system to the tight binary (or triple) L dwarf 2MASS J0850359+105716. This nearby ({approx}31 pc), widely separated ({approx}7700 AU) quadruple system was identified through a cross-match of proper motion catalogs. Follow-up imaging and spectroscopy of NLTT 20346 revealed it to be a magnetically active M5+M6 binary with components separated by {approx}2'' (50-80 AU). Optical spectroscopy of the components shows only moderate H{alpha} emission corresponding to a statistical age of {approx}5-7 Gyr for both M dwarfs. However, NLTT 20346 is associated with the XMM-Newton source J085018.9+105644, and based on X-ray activity the age of NLTT 20346 is between 250 and 450 Myr. Strong Li absorption in the optical spectrum of 2MASS J0850+1057 indicates an upper age limit of 0.8-1.5 Gyr, favoring the younger age for the primary. Using evolutionary models in combination with an adopted system age of 0.25-1.5 Gyr indicates a total mass for 2MASS J0850+1057 of 0.07 {+-} 0.02 M{sub sun}, if it is a binary. NLTT 20346/2MASS J0850+1057 joins a growing list of hierarchical systems containing brown dwarf binaries and is among the lowest binding energy associations found in the field. Formation simulations via gravitational fragmentation of massive extended disks have successfully produced a specific analog to this system.

  12. Mass loss, levitation, accretion, and the sharp-lined features in hot white dwarfs

    NASA Technical Reports Server (NTRS)

    Bruhweiler, F. C.; Kondo, Y.

    1983-01-01

    A study has been conducted of eight white dwarfs, including seven DA and one He-rich types. The study is based on high-resolution observations conducted with the aid of the International Ultraviolet Explorer. Four of the dwarfs show features related to heavy elements which are not interstellar in origin. It is tentatively suggested that, at least in the hottest low-gravity DA white dwarfs, the observed narrow-lined features are formed in expanding halos or winds associated with the white dwarfs. Theoretically, stable white dwarf halos should actually be coronae with temperatures in excess of 1,000,000 K. However, the observed narrow-lined features do not suggest such high temperatures. The observed radial velocities suggest weak stellar winds in two hot white dwarfs, namely, G191-B2B and 2111+49. It is tentatively proposed that radiative levitation can explain the appearance of the observed metallic lines in the hot DA white dwarfs.

  13. Primeval very low-mass stars and brown dwarfs - I. Six new L subdwarfs, classification and atmospheric properties

    NASA Astrophysics Data System (ADS)

    Zhang, Z. H.; Pinfield, D. J.; Gálvez-Ortiz, M. C.; Burningham, B.; Lodieu, N.; Marocco, F.; Burgasser, A. J.; Day-Jones, A. C.; Allard, F.; Jones, H. R. A.; Homeier, D.; Gomes, J.; Smart, R. L.

    2017-01-01

    We have conducted a search for L subdwarf candidates within the photometric catalogues of the UKIRT Infrared Deep Sky Survey and Sloan Digital Sky Survey. Six of our candidates are confirmed as L subdwarfs spectroscopically at optical and/or near-infrared wavelengths. We also present new optical spectra of three previously known L subdwarfs (WISEA J001450.17-083823.4, 2MASS J00412179+3547133, and ULAS J124425.75+102439.3). We examined the spectral type and metallicity classification of subclasses of known L subdwarfs. We summarized the spectroscopic properties of L subdwarfs with different spectral types and subclasses. We classify these new L subdwarfs by comparing their spectra to known L subdwarfs and L dwarf standards. We estimate temperatures and metallicities of 22 late-type M and L subdwarfs by comparing their spectra to BT-Settl models. We find that L subdwarfs have temperatures between 1500 and 2700 K, which are higher than similar-typed L dwarfs by around 100-400 K depending on different subclasses and subtypes. We constrained the metallicity ranges of subclasses of M, L, and T subdwarfs. We also discussed the spectral-type and absolute magnitude relationships for L and T subdwarfs.

  14. Strong Radio Emission from a Hyperactive L Dwarf: A Low-Mass Oddball or a Rosetta Stone for Ultracool Dwarf Activity?

    NASA Astrophysics Data System (ADS)

    Burgasser, Adam J.; Melis, C.; Zauderer, B. A.; Berger, E.

    2013-01-01

    We report the detection of radio emission at 5.5 GHz from the unusually active L5 + T7 binary 2MASS J13153094-2649513AB, based on observations conducted with the Australian Telescope Compact Array. An unresolved source at the proper-motion-corrected position of 2MASS J1315-2649AB was detected with a continuum flux of 0.37+/-0.05 mJy, corresponding to a radio luminosity L_rad = (9+/-3)x10^23 erg/s or log(L_rad/L_bol) = -5.24+/-0.22. While we cannot resolve the emission to one or both components, its strength strongly favors the L5 primary, making this component the latest-type L dwarf to be detected in the radio. No detection is made at 9.0 GHz to a 5-sigma limit of 0.29 mJy, consistent with a declining power law spectrum scaling as nu^-0.5 or steeper. The emission is quiescent, with no evidence of variability or bursts over 3 hours, and no measurable polarization (V/I < 34%). 2MASS J1315-2649AB is one of the most radio-luminous ultracool dwarfs detected in quiescent emission to date, comparable in strength to other ultracool dwarfs detected while in outburst. Its combination of strong and persistent H-alpha and radio emission is unique among L dwarfs, but we find no evidence of interaction between primary and secondary. We suggest further observations that may reveal whether 2MASS J1315-2649AB is a true oddball or a benchmark for understanding the origins of activity in the coldest stars and brown dwarfs.

  15. Polluting white dwarfs with perturbed exo-comets

    NASA Astrophysics Data System (ADS)

    Caiazzo, Ilaria; Heyl, Jeremy S.

    2017-08-01

    We present a model to account for the observed debris discs around young white dwarfs and the presence of metal lines in their spectra. Stellar evolution models predict that the mass-loss on the AGB will be pulsed; furthermore, observations indicate that the bulk of the mass-loss occurs on the AGB. In this case, if the progenitors of the white dwarfs had remnants of planetary formation like the Sun's Oort cloud or the Kuiper Belt and a planet lying within that cloud or nearby, we find that up to 2 per cent of the planetesimals will fall either into planet-crossing orbits or into chaotic regions after the mass-loss, depending on the location and mass of the planet (from Mars to Neptune). This yields a sufficient mass of comets that can be scattered towards the star, form a debris disc and pollute the atmosphere.

  16. Discovery of five new massive pulsating white dwarf stars

    NASA Astrophysics Data System (ADS)

    Castanheira, B. G.; Kepler, S. O.; Kleinman, S. J.; Nitta, A.; Fraga, L.

    2013-03-01

    Using the SOuthern Astrophysical Research telescope (SOAR) Optical Imager at the SOAR 4.1 m telescope, we report on the discovery of five new massive pulsating white dwarf stars. Our results represent an increase of about 20 per cent in the number of massive pulsators. We have detected both short and long periods, low and high amplitude pulsation modes, covering the whole range of the ZZ Ceti instability strip. In this paper, we present a first seismological study of the new massive pulsators based on the few frequencies detected. Our analysis indicates that these stars have masses higher than average, in agreement with the spectroscopic determinations. In addition, we study for the first time the ensemble properties of the pulsating white dwarf stars with masses above 0.8 M⊙. We found a bimodal distribution of the main pulsation period with the effective temperature for the massive DAVs, which indicates mode selection mechanisms.

  17. A gaseous metal disk around a white dwarf.

    PubMed

    Gänsicke, B T; Marsh, T R; Southworth, J; Rebassa-Mansergas, A

    2006-12-22

    The destiny of planetary systems through the late evolution of their host stars is very uncertain. We report a metal-rich gas disk around a moderately hot and young white dwarf. A dynamical model of the double-peaked emission lines constrains the outer disk radius to just 1.2 solar radii. The likely origin of the disk is a tidally disrupted asteroid, which has been destabilized from its initial orbit at a distance of more than 1000 solar radii by the interaction with a relatively massive planetesimal object or a planet. The white dwarf mass of 0.77 solar mass implies that planetary systems may form around high-mass stars.

  18. The Pulsating, Accreting White Dwarf in GW Lib after Outburst

    NASA Astrophysics Data System (ADS)

    Szkody, Paula

    The first known pulsating white dwarf in an accreting close binary system (GW Lib) underwent an outburst in April, 2007. We aim to follow the pulsation spectrum as the white dwarf cools back to to its quiescent temperature from its heating due to the outburst which should take about 3 years. As it cools, it should re-enter the instability strip and we can witness changes in the driving mechanism and detect modes that are excited by the temperature changes. The higher pulse amplitude in UV vs optical and the available time-tag mode makes GALEX the instrument of choice. The data in 2008 will be combined with our DOT time in May, June 2007 to provide coverage of the largest cooling that takes place in the year following outburst. Since the few known systems only outburst every 20-30 yrs, this is the first opportunity to accomplish a study of this type."

  19. Testing Common Envelopes on Double White Dwarf Binaries

    NASA Astrophysics Data System (ADS)

    Nandez, Jose L. A.; Ivanova, Natalia; Lombardi, James C., Jr.

    2015-06-01

    The formation of a double white dwarf binary likely involves a common envelope (CE) event between a red giant and a white dwarf (WD) during the most recent episode of Roche lobe overflow mass transfer. We study the role of recombination energy with hydrodynamic simulations of such stellar interactions. We find that the recombination energy helps to expel the common envelope entirely, while if recombination energy is not taken into account, a significant fraction of the common envelope remains bound. We apply our numerical methods to constrain the progenitor system for WD 1101+364 - a double WD binary that has well-measured mass ratio of q=0.87±0.03 and an orbital period of 0.145 days. Our best-fit progenitor for the pre-common envelope donor is a 1.5 ⊙ red giant.

  20. The optical emission from oscillating white dwarf radiative shock waves

    NASA Technical Reports Server (NTRS)

    Imamura, James N.; Rashed, Hussain; Wolff, Michael T.

    1991-01-01

    The hypothesis that quasi-periodic oscillations (QPOs) are due to the oscillatory instability of radiative shock waves discovered by Langer et al. (1981, 1092) is examined. The time-dependent optical spectra of oscillating radiative shocks produced by flows onto magnetic white dwarfs are calculated. The results are compared with the observations of the AM Her QPO sources V834 Cen, AN UMa, EF Eri, and VV Pup. It is found that the shock oscillation model has difficulties with aspects of the observations for each of the sources. For VV Pup, AN UMa, and V834 Cen, the cyclotron luminosities for the observed magnetic fields of these systems, based on our calculations, are large. The strong cyclotron emission probably stabilizes the shock oscillations. For EF Eri, the mass of the white dwarf based on hard X-ray observations is greater than 0.6 solar mass.

  1. Chemical stratification in white dwarf atmospheres and envelopes

    NASA Technical Reports Server (NTRS)

    Koester, D.

    1989-01-01

    Theoretical arguments supporting a new mechanism maintaining a homogeneously mixed composition in white dwarf atmospheres with traces of helium are presented. Diffusion time scales, meridional circulation, mass loss, accretion of interstellar matter, convection, and radiative levitation are discussed. Theoretically, layered envelopes, with hydrogen on top of helium and an abundance profile in the transition layer determined by diffusion equilibrium, are expected. In cases with observed helium and hydrogen in the atmosphere this means that the total hydrogen mass must be very small. The empirical evidence for such atmospheres are assessed, using a new grid of model atmospheres with stratified element abundances and applying it to typical mixed abundance cases at the hot end of the white dwarf temperature sequence.

  2. Discovery of Photospheric Germanium in Hot DA White Dwarfs

    NASA Astrophysics Data System (ADS)

    Vennes, Stéphane; Chayer, Pierre; Dupuis, Jean

    2005-04-01

    We report the identification of Ge IV resonance lines in ultraviolet spectra of the hot DA white dwarfs Feige 24, G191-B2B, and GD 246. The lines originate in the stellar photosphere, and we measure low Ge/H abundance ratios ranging between -8.0 and -8.7. We also tentatively identify a resonance line of Sn IV blended with an Fe V line in the spectrum of G191-B2B. The presence of germanium extends our knowledge of the abundance pattern in hot white dwarfs beyond the iron group. The abundance ratio appears nearly solar, which implies either that the germanium abundance mixture in these stars has remained unaltered since leaving the main sequence or that diffusion processes (e.g., selective radiation pressure) are coincidentally reproducing a solar Ge/H ratio.

  3. Photometric Variability and Rotation in Magnetic White Dwarfs

    NASA Astrophysics Data System (ADS)

    Lawrie, K. A.; Burleigh, M. R.; Brinkworth, C. S.; Marsh, T. R.

    2010-11-01

    We present a search for long term (months-years) photometric variability in a sample of ten isolated magnetic white dwarfs using observations taken with the Liverpool Robotic Telescope between March 2005 and January 2007. These stars had previously been found to be photometrically stable on short (hours-one week) timescales [1]. We construct differential light curves for each target and then use CLEAN and Lomb-Scargle periodograms to determine any periodicity that may be present. Photometric variability is detected in two of the targets during the observed timescale-G 240-72 and G 227-28. We find no variability in the remaining eight targets above the 1% level. Finally, we search for any correlations between the spin periods and intrinsic physical properties of magnetic white dwarfs, such as the magnetic field strength, temperature, mass and age.

  4. The pi line polarization in magnetic white dwarfs

    NASA Astrophysics Data System (ADS)

    Achilleos, N.; Wickramasinghe, D. T.

    1995-01-01

    The pi subcomponents of hydrogen line transitions only absorb light that is linearly polarized parallel to a local magnetic field. In the spectra of magnetic white dwarfs, the circular polarization in these pi lines is usually expected and often observed to be reduced in magnitude relative to the neighbouring continuum. However, observations of some strongly magnetized white dwarfs show some pi lines that have circular polarization equal to that of the adjacent continuum. We show that this is a consequence of the effect of magnetic anomalous dispersion (magneto-optical effects) on radiative transfer. The observed equality between continuum and pi line polarization is obtained, in theory, at adequately high fields and for special field geometries.

  5. s-Process Abundances in Binary Stars With White Dwarfs

    NASA Astrophysics Data System (ADS)

    Merle, T.; Jorissen, A.; Van Eck, S.; Masseron, T.; van Winckel, H.

    2015-12-01

    The enrichment of barium stars in s-process elements is known to be due to pollution by mass transfer from an asymptotic giant branch (AGB) companion star, now an extincted C-O white-dwarf (McClure et al. [4]; Gray et al. [1]). We investigate the relationship between the level of enrichment in s-process elements in the barium star and the mass of its white dwarf (WD) companion. It is expected that helium WDs, which have masses smaller than about 0.5 M⊙ and whose progenitor never reached the AGB phase, should not pollute with s-process elements their giant companion. That companion should thus never turn into a barium star. Our results conform to the expectation that binary systems with WD companions less massive than 0.5 M⊙ do not host barium stars.

  6. Four new massive pulsating white dwarfs including an ultramassive DAV

    NASA Astrophysics Data System (ADS)

    Curd, Brandon; Gianninas, A.; Bell, Keaton J.; Kilic, Mukremin; Romero, A. D.; Allende Prieto, Carlos; Winget, D. E.; Winget, K. I.

    2017-06-01

    We report the discovery of four massive (M > 0.8 M⊙) ZZ Ceti white dwarfs, including an ultramassive 1.16 M⊙ star. We obtained ground-based, time series photometry for 13 white dwarfs from the Sloan Digital Sky Survey Data Release 7 and Data Release 10 whose atmospheric parameters place them within the ZZ Ceti instability strip. We detect monoperiodic pulsations in three of our targets (J1015, J1554 and J2038) and identify three periods of pulsation in J0840 (173, 327 and 797 s). Fourier analysis of the remaining nine objects does not indicate variability above the 4 detection threshold. Our preliminary asteroseismic analysis of J0840 yields a stellar mass M = 1.14 ± 0.01 M⊙, hydrogen and helium envelope masses of MH = 5.8 × 10-7 M⊙ and MHe = 4.5 × 10-4 M⊙ and an expected core crystallized mass ratio of 50-70 per cent. J1015, J1554 and J2038 have masses in the range 0.84-0.91 M⊙ and are expected to have a CO core; however, the core of J0840 could consist of highly crystallized CO or ONeMg given its high mass. These newly discovered massive pulsators represent a significant increase in the number of known ZZ Ceti white dwarfs with mass M > 0.85 M⊙, and detailed asteroseismic modelling of J0840 will allow for significant tests of crystallization theory in CO and ONeMg core white dwarfs.

  7. The Theoretical Instability Strip of V777 Her White Dwarfs

    NASA Astrophysics Data System (ADS)

    Van Grootel, V.; Fontaine, G.; Brassard, P.; Dupret, M.-A.

    2017-03-01

    We present a new theoretical investigation of the instability strip of V777 Her (DBV) white dwarfs. We apply a time-dependent convection (TDC) treatment to cooling models of DB and DBA white dwarfs. Using the spectroscopic calibration for the convective efficiency, ML2/α=1.25, we find a wide strip covering the range of effective temperature from 30,000 K down to about 22,000 K at log g = 8.0. This accounts very well for the empirical instability strip derived from a new accurate and homogenous spectroscopic analysis of known pulsators. Our approach leads to an exact description of the blue edge and to a correct understanding of the onset and development of pulsational instabilities, similarly to our results of TDC applied to ZZ Ceti white dwarfs in the recent past. We propose that, contrarily to what is generally believed, there is practically no fuzziness on the boundaries of the V777 Her instability strip due to traces of hydrogen in the atmospheres of some of these helium-dominated-atmosphere stars. Contrary to the blue edge, the red edge provided by TDC computations is far too cool compared to the empirical one. A similar situation was observed for the ZZ Ceti stars as well. We hence test the energy leakage argument (i.e., the red edge occurs when the thermal timescale in the driving region becomes equal to the critical period beyond which gravity modes cease to exist), which was successful to correctly reproduce the red edge of ZZ Ceti white dwarfs. Based on this argument, the red edge is qualitatively well reproduced as indicated above. However, upon close inspection, it may be about 1000 K too cool compared to the empirical one, although the latter relies on a few objects only. We also test the hypothesis of including turbulent pressure in our TDC computations in order to provide an alternate physical mechanism to account for the red edge. First promising results are presented.

  8. The white dwarf affair: Chandrasekhar, Eddington and the limiting mass

    NASA Astrophysics Data System (ADS)

    Gooneratne, Sakura

    A thesis describing and analysing the controversy between Subrahmanyan Chandrasekhar and Arthur Stanley Eddington over the limiting mass of white dwarf stars. The aim of the thesis is to discover why the controversy occurred and to analyse the reasons behind Eddington's rejection of relativistic degeneracy and the limiting mass. The ultimate reason behind Eddington's attack on relativistic degeneracy was found to be Eddington's severe objection to singularities which was apparent long before Chandrasekhar's discovery of the limiting mass and occurred in three separate areas of research undertaken by Eddington during this period: astrophysics, cosmology, general relativity and Dirac's relativistic equation of the electron which led to Eddington's fundamental theory. The thesis will focus on the problem of the limiting mass of white dwarfs between 1929 and 1935 but will use the problem to analyse Eddington's view of singularities within the three different research areas spanning two decades from 1916 to 1936. The Chandrasekhar-Eddington controversy is set within Eddington's earlier controversies with James Jeans and Edward Arthur Milne who together with Eddington founded theoretical astrophysics during the 1920s. The thesis will examine the problem of white dwarfs within the context of the earlier controversies on stellar structure. As well as the technical analysis of the controversy, the thesis will also analyse the social dynamics and interactions within the astronomical community and their impact on the controversies. The aim of this thesis is to create a more complete picture of the Chandrasekhar-Eddington controversy by analysing Eddington's arguments for rejecting relativistic degeneracy, the limiting mass of white dwarfs and singularities not just within the context of astrophysics, but also cosmology, general relativity and quantum mechanics and to provide some new explanations as to why Eddington opposed relativistic degeneracy.

  9. Planet-Planet Scattering and White Dwarf Pollution

    NASA Astrophysics Data System (ADS)

    Joasil, Arielle; Payne, Matthew John; Veras, Dimitri

    2017-01-01

    About one-quarter to one-half of white dwarfs are observed to have polluted atmospheres. White dwarfs (WD) are expected to be chemically stratified, with heavy elements rapidly sinking. The frequent observation of heavy element pollution in WD atmospheres indicates that there must be a copious and frequent supply of rocky material from remnant planetary systems acting as a pollutant. Recently, the white dwarf WD 1145+017 has been observed to have been transited by a rocky body apparently in the process of disintegrating (Vanderburg et al. 2015).Post-main sequence expansion may render the planetary system unstable (Veras 2016). Planets orbiting the white dwarf may perturb and scatter one another. If this scattering happens, any moons can be scattered about the system. As such, one possible source of the material polluting WDs is destabilized exomoons (Payne et al. 2016a, 2016b). Moons offer a plausible source of pollution due to their large total mass (in the Solar system), and their generally rocky composition that matches that found in the atmospheric pollution of WDs. During a planet-planet scattering event, the probability that a moon will be ejected from its parent planet is a function of the velocity of the perturbing planet and the distance between the perturbed moon and the perturbing planet (as well as the initial orbit of the moon). We review the results of Payne et al. (2016a, 2016b) and present new results illustrating the probability of moon ejection as a function of these key parameters. We demonstrate the utility of these results for (a) the pollution and WDs, and for (b) general planet-planet scattering scenarios around main-sequence stars.

  10. Mapping the Properties of Convection in Pulsating White Dwarfs<