Science.gov

Sample records for low-noise mmic amplifiers

  1. Low-Noise MMIC Amplifiers for 120 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Peralta, Alejandro; Bayuk, Brian; Grundbacher, Ron; Oliver, Patricia; Cavus, Abdullah; Liu, Po-Hsin

    2009-01-01

    Three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifiers capable of providing useful amounts of gain over the frequency range from 120 to 180 GHz have been developed as prototype low-noise amplifiers (LNAs) to be incorporated into instruments for sensing cosmic microwave background radiation. There are also potential uses for such LNAs in electronic test equipment, passive millimeter- wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The main advantage afforded by these MMIC LNAs, relative to prior MMIC LNAs, is that their coverage of the 120-to-180-GHz frequency band makes them suitable for reuse in a wider variety of applications without need to redesign them. Each of these MMIC amplifiers includes InP transistors and coplanar waveguide circuitry on a 50- mthick chip (see Figure 1). Coplanar waveguide transmission lines are used for both applying DC bias and matching of input and output impedances of each transistor stage. Via holes are incorporated between top and bottom ground planes to suppress propagation of electromagnetic modes in the substrate. On the basis of computational simulations, each of these amplifiers was expected to operate with a small-signal gain of 14 dB and a noise figure of 4.3 dB. At the time of writing this article, measurements of noise figures had not been reported, but on-chip measurements had shown gains approaching their simulated values (see Figure 2).

  2. Tests of Low-Noise MMIC Amplifier Module at 290 to 340 GHz

    NASA Technical Reports Server (NTRS)

    Gaier, Todd; Samoska, Lorene; Fung, King Man; Deal, William; Mei, Xiaobing; Lai, Richard

    2009-01-01

    A document presents data from tests of a low-noise amplifier module operating in the frequency range from 290 to 340 GHz said to be the highest-frequency low-noise, solid-state amplifier ever developed. The module comprised a three-stage monolithic microwave integrated circuit (MMIC) amplifier integrated with radial probe MMIC/waveguide transitions and contained in a compact waveguide package, all according to the concepts described in the immediately preceding article and in the referenced prior article, "Integrated Radial Probe Transition From MMIC to Waveguide" (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. The tests included measurements by the Y-factor method, in which noise figures are measured repeatedly with an input noise source alternating between an "on" (hot-load) condition and an "off" (cold-load) condition. (The Y factor is defined as the ratio between the "on" and "off" noise power levels.) The test results showed that, among other things, the module exhibited a minimum noise figure of about 8.7 dB at 325 GHz and that the gain at that frequency under the bias conditions that produced the minimum noise figure was between about 9 and 10 dB.

  3. Recent Advances In Cryogenic Monolithic Millimeter-wave Integrated Circuit (MMIC) Low Noise Amplifiers For Astrophysical Observations

    NASA Astrophysics Data System (ADS)

    Samoska, Lorene; Church, S.; Cleary, K.; Gaier, T.; Gawande, R.; Kangaslahti, P.; Lawrence, C.; Readhead, A.; Reeves, R.; Seiffert, M.; Sieth, M.; Varonen, M.; Voll, P.

    2012-05-01

    In this work, we discuss advances in high electron mobility transistor (HEMT) low noise amplifier (LNA) monolithic millimeter-wave integrated circuits (MMICs) for use as front end amplifiers in ultra-low noise receivers. Applications include focal plane arrays for studying the polarization of the cosmic microwave background radiation and foreground separation, receiver arrays for molecular spectroscopy, and high redshift CO surveys for probing the epoch of reionization. Recent results and a summary of best indium phosphide (InP) low noise amplifier data will be presented. Cryogenic MMIC LNAs using state-of-the-art InP technology have achieved record performance, and have advantages over other detectors in the 30-300 GHz range. InP MMIC LNAs operate at room temperature and may achieve near-optimum performance at 20K, a temperature readily achieved with modern cryo-coolers. In addition, wide-bandwidth LNAs are suitable for heterodyne applications as well as direct detector applications. Recent results include Ka-band MMICs with 15K noise temperature performance, and Q-Band MMICs with on-wafer measured cryogenic noise of 12K at 38 GHz. In addition, W-Band amplifiers with 25K noise temperature at 95 GHz will be presented, as well as wide-band LNAs with noise temperature below 45K up to 116 GHz. At higher frequencies, we will discuss progress on MMIC LNAs and receiver modules in G-Band (140-220 GHz), where our group has achieved less than 60K receiver noise temperature at 166 GHz. We will address extending the high performance of these MMIC LNAs to even higher frequencies for spectroscopic surveys, and make projections on future performance given current trends. These MMIC amplifiers can play a key role in future ground-based and space-based instruments for astrophysical observations.

  4. 94-GHz MMIC CPW low-noise amplifier on InP

    NASA Astrophysics Data System (ADS)

    Dambrine, Gilles; Hoel, Virginie; Boret, Samuel; Grimbert, Bertrand; Bollaert, Sylvain; Wallart, Xavier; Lepilliet, Sylvie; Cappy, Alain

    1999-12-01

    High performances have been achieved at W-band with a 2- stage, 0.1 micrometers gate-length InGaAs/InAlAs/InP LM-HEMT MMIC low noise amplifier in coplanar technology. To obtain the T- gate profile, we use silicon nitride SixNy technology, which leads to naturally passivated devices. For a drain-to-source current Ids equals 350 mA/mm the devices demonstrate a maximum intrinsic transconductance Gm of 1600 mS/mm and an intrinsic current gain cutoff frequency Fc equals 220 GHz. The extrinsic current gain cut-off frequency Ft is 175 GHz. The LNA shows a minimum noise figure of 3.3 dB with an associated gain of 11.5 dB at 94 GHz.

  5. Ultra-Low-Noise W-Band MMIC Detector Modules

    NASA Technical Reports Server (NTRS)

    Gaier, Todd C.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Van Vinkle, Dan; Tantawi, Sami; Fox, John; Church, Sarah E.; Lau, Jusy M.; Sieth, Matthew M.; Voll, Patricia E.; Bryerton, Eric

    2010-01-01

    A monolithic microwave integrated circuit (MMIC) receiver can be used as a building block for next-generation radio astronomy instruments that are scalable to hundreds or thousands of pixels. W-band (75-110 GHz) low-noise receivers are needed for radio astronomy interferometers and spectrometers, and can be used in missile radar and security imagers. These receivers need to be designed to be mass-producible to increase the sensitivity of the instrument. This innovation is a prototyped single-sideband MMIC receiver that has all the receiver front-end functionality in one small and planar module. The planar module is easy to assemble in volume and does not require tuning of individual receivers. This makes this design low-cost in large volumes.

  6. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterized at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130, and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimeter wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurements campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography alitmetery.

  7. Low Noise Amplifiers and Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigtsen, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2011-01-01

    The study of atmospheric dynamics and climatology depend on accurate and frequent measurements of temperature and humidity profiles of the atmosphere. These measurements furthermore enable highly accurate measurements of ocean topography by providing total column water vapour data for radar path delay correction. The atmospheric temperature profile is characterised at the oxygen molecule absorption frequencies (60 and 118 GHz) and the humidity profile at the water molecule absorption frequencies (23 and 183 GHz). Total column measurements can be achieved by comparing measured radiometric temperatures at atmospheric window channels, such as 90, 130 and 166 GHz. The standard receiver technology for these frequencies was diode mixers with MMIC LNAs being applied at the lower frequencies. The sensitivity of millimetre wave receivers improved significantly with the introduction of the low noise 35 nm gate length InP MMIC amplifiers. We currently achieve 3 dB noise figure at 180 GHz and 2 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  8. European low-noise MMIC technologies for cryogenic millimetre wave radio astronomical applications

    NASA Astrophysics Data System (ADS)

    Cremonini, Andrea; Mariotti, Sergio; Valenziano, Luca

    2012-09-01

    The Low Noise technology has a paramount relevance on radiotelescopes and radiometers performances. Its influence on sensitivity and temporal stability has a deep impact on obtainable scientific results. As well known, front end active part of scientific instruments are cryocooled in order to drastically reduce the intrinsic thermal noise generated by its electronic parts and consequently increase the sensitivity. In this paper we will describe the obtained results by an Italian Space Agency funded activity. The aim is to validate European MMIC Low Noise technologies and designs for cryogenic environments in the range of millimetre wave. As active device, HEMT (High Electron Mobility Transistor) are considered the best device for high frequency and low noise cryo applications. But not all the semiconductor foundry process are suitable for applications in such environment. Two European Foundries has been selected and two different HEMT based Low Noise Amplifiers have been designed and produced. The main goal of this activity is identify an European technology basement for space and ground based low noise cryogenic applications. Designs, layout, architectures, foundry processes and results will be compared.

  9. Low Noise Amplifier Receivers from Millimeter Wave Atmospheric Remote Sensing

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Lim, Boon; Gaier, Todd; Tanner, Alan; Varonen, Mikko; Samoska, Lorene; Brown, Shannon; Lambrigsten, Bjorn; Reising, Steven; Tanabe, Jordan; Montes, Oliver; Dawson, Douglas; Parashare, Chaitali

    2012-01-01

    We currently achieve 3.4 dB noise figure at 183GHz and 2.1 dB noise figure at 90 GHz with our MMIC low noise amplifiers (LNAs) in room temperature. These amplifiers and the receivers we have built using them made it possible to conduct highly accurate airborne measurement campaigns from the Global Hawk unmanned aerial vehicle, develop millimeter wave internally calibrated radiometers for altimeter radar path delay correction, and build prototypes of large arrays of millimeter receivers for a geostationary interferometric sounder. We use the developed millimeter wave receivers to measure temperature and humidity profiles in the atmosphere and in hurricanes as well as to characterize the path delay error in ocean topography altimetry.

  10. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  11. Low-Noise Amplifier for 100 to 180 GHz

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Pukala, David; Fung, King Man; Gaier, Todd; Mei, Xiaobing; Lai, Richard; Deal, William

    2009-01-01

    A three-stage monolithic millimeter-wave integrated-circuit (MMIC) amplifier designed to exhibit low noise in operation at frequencies from about 100 to somewhat above 180 GHz has been built and tested. This is a prototype of broadband amplifiers that have potential utility in diverse applications, including measurement of atmospheric temperature and humidity and millimeter-wave imaging for inspecting contents of opaque containers. Figure 1 depicts the amplifier as it appears before packaging. Figure 2 presents data from measurements of the performance of the amplifier as packaged in a WR-05 waveguide and tested in the frequency range from about 150 to about 190 GHz. The amplifier exhibited substantial gain throughout this frequency range. Especially notable is the fact that at 165 GHz, the noise figure was found to be 3.7 dB, and the noise temperature was found to be 370 K: This is less than half the noise temperature of the prior state of the art.

  12. Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design

    DTIC Science & Technology

    2012-10-01

    Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design by John E. Penn ARL-TR-6237 October 2012...Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design John E. Penn Sensors and Electron Devices Directorate, ARL...TITLE AND SUBTITLE Distributed Amplifier Monolithic Microwave Integrated Circuit (MMIC) Design 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c

  13. MMIC Amplifiers for 90 to 130 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Pukala, David; Peralta, Alejandro; Bryerton, Eric; Morgan, Matt; Boyd, T.; Hu, Ming; Schmitz, Adele

    2007-01-01

    This brief describes two monolithic microwave integrated-circuit (MMIC) amplifier chips optimized to function in the frequency range of 90 to 130 GHz, covering nearly all of F-band (90 - 140 GHz). These amplifiers were designed specifically for local-oscillator units in astronomical radio telescopes such as the Atacama Large Millimeter Array (ALMA). They could also be readily adapted for use in electronic test equipment, automotive radar systems, and communications systems that operate between 90 and 130 GHz.

  14. Matched wideband low-noise amplifiers for radio astronomy.

    PubMed

    Weinreb, S; Bardin, J; Mani, H; Jones, G

    2009-04-01

    Two packaged low noise amplifiers for the 0.3-4 GHz frequency range are described. The amplifiers can be operated at temperatures of 300-4 K and achieve noise temperatures in the 5 K range (<0.1 dB noise figure) at 15 K physical temperature. One amplifier utilizes commercially available, plastic-packaged SiGe transistors for first and second stages; the second amplifier is identical except it utilizes an experimental chip transistor as the first stage. Both amplifiers use resistive feedback to provide input reflection coefficient S11<-10 dB over a decade bandwidth with gain over 30 dB. The amplifiers can be used as rf amplifiers in very low noise radio astronomy systems or as i.f. amplifiers following superconducting mixers operating in the millimeter and submillimeter frequency range.

  15. Towards Terahertz MMIC Amplifiers: Present Status and Trends

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2006-01-01

    This viewgraph presentation surveys the fastest Monolithic Millimeter-wave Integrated Circuit (MMIC) amplifiers to date; summarize previous solid state power amp results to date; reviews examples of MMICs, reviews Power vs. Gate periphery and frequency; Summarizes previous LNA results to date; reviews Noise figure results and trends toward higher frequency

  16. External Peltier Cooler For Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Soper, Terry A.

    1990-01-01

    Inexpensive Peltier-effect cooling module made of few commercially available parts used to reduce thermal noise in microwave amplifier. Retrofitted to almost any microwave low-noise amplifier or receiver preamplifier used in communication, telemetry, or radar. Includes copper or aluminum cold plate held tightly against unit to be cooled by strap-type worm-gear clamps.

  17. Cryogenic ultra-low-noise SiGe transistor amplifier.

    PubMed

    Ivanov, B I; Trgala, M; Grajcar, M; Il'ichev, E; Meyer, H-G

    2011-10-01

    An ultra-low-noise one-stage SiGe heterojunction bipolar transistor amplifier was designed for cryogenic temperatures and a frequency range of 10 kHz-100 MHz. A noise temperature T(N) ≈ 1.4 K was measured at an ambient temperature of 4.2 K at frequencies between 100 kHz and 100 MHz for a source resistance of ~50 Ω. The voltage gain of the amplifier was 25 dB at a power consumption of 720 μW. The input voltage noise spectral density of the amplifier is about 35 pV/√Hz. The low noise resistance and power consumption makes the amplifier suitable for readout of resistively shunted DC SQUID magnetometers and amplifiers.

  18. X-Band Ultra-Low Noise Maser Amplifier Performance

    NASA Technical Reports Server (NTRS)

    Glass, G.; Johnson, D.; Ortiz, G.

    1993-01-01

    Noise temperature measurements of an 8440 MHz ultra-low noise maser amplifier (ULNA) have been performed at sub-atmospheric, liquid helium temperatures. The traveling wave maser operated while immersed in a liquid helium bath. The lowest input noise temperature measured was 1.23 plus or minus 0.16 K at a physical temperature of 1.60 kelvin. At this physical temperature the observed gain per unit length of ruby was 4.6 dB/cm, and the amplifier had a 3 dB-bandwidth of 76 MHz.

  19. Enhancing the noise performance of monolithic microwave integrated circuit-based low noise amplifiers through the use of a discrete preamplifying transistor

    NASA Astrophysics Data System (ADS)

    McCulloch, Mark A.; Melhuish, Simon J.; Piccirillo, Lucio

    2015-01-01

    An approach to enhancing the noise performance of an InP monolithic microwave integrated circuit (MMIC)-based low noise amplifiers (LNA) through the use of a discrete 100-nm gate length InP high electron mobility transistor is outlined. This LNA, known as a transistor in front of MMIC (T + MMIC) LNA, possesses a gain in excess of 40 dB and an average noise temperature of 9.4 K across the band 27 to 33 GHz at a physical temperature of 8 K. This compares favorably with 14.5 K for an LNA containing an equivalent MMIC. A simple advanced design system model offering further insights into the operation of the LNA is also presented and the LNA is compared with the current state-of-the-art Planck LFI LNAs.

  20. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, S.P.; Patterson, F.G.; Deri, R.J.

    1995-07-25

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier. 11 figs.

  1. Cross-talk free, low-noise optical amplifier

    DOEpatents

    Dijaili, Sol P.; Patterson, Frank G.; Deri, Robert J.

    1995-01-01

    A low-noise optical amplifier solves crosstalk problems in optical amplifiers by using an optical cavity oriented off-axis (e.g. perpendicular) to the direction of a signal amplified by the gain medium of the optical amplifier. Several devices are used to suppress parasitic lasing of these types of structures. The parasitic lasing causes the gain of these structures to be practically unusable. The lasing cavity is operated above threshold and the gain of the laser is clamped to overcome the losses of the cavity. Any increase in pumping causes the lasing power to increase. The clamping action of the gain greatly reduces crosstalk due to gain saturation for the amplified signal beam. It also reduces other nonlinearities associated with the gain medium such as four-wave mixing induced crosstalk. This clamping action can occur for a bandwidth defined by the speed of the laser cavity. The lasing field also reduces the response time of the gain medium. By having the lasing field off-axis, no special coatings are needed. Other advantages are that the lasing field is easily separated from the amplified signal and the carrier grating fluctuations induced by four-wave mixing are decreased. Two related methods reduce the amplified spontaneous emission power without sacrificing the gain of the optical amplifier.

  2. Update on Waveguide-Embedded Differential MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schleht, Erich

    2010-01-01

    There is an update on the subject matter of Differential InP HEMT MMIC Amplifiers Embedded in Waveguides (NPO-42857) NASA Tech Briefs, Vol. 33, No. 9 (September 2009), page 35. To recapitulate: Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The MMICs are designed integrally with, and embedded in, waveguide packages. The instant work does not mention InP HEMTs but otherwise reiterates part of the subject matter of the cited prior article, with emphasis on the following salient points: An MMIC is mounted in the electric-field plane ("E-plane") of a waveguide and includes a finline transition to each differential-amplifier stage. The differential configuration creates a virtual ground within each pair of transistor-gate fingers, eliminating the need for external radio-frequency grounding. This work concludes by describing a single-stage differential submillimeter-wave amplifier packaged in a rectangular waveguide and summarizing results of tests of this amplifier at frequencies of 220 and 305 GHz.

  3. Two-Stage, 90-GHz, Low-Noise Amplifier

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Xenos, Stephanie; Soria, Mary M.; Kangaslahti, Pekka P.; Cleary, Kieran A.; Ferreira, Linda; Lai, Richard; Mei, Xiaobing

    2010-01-01

    A device has been developed for coherent detection of the polarization of the cosmic microwave background (CMB). A two-stage amplifier has been designed that covers 75-110 GHz. The device uses the emerging 35-nm InP HEMT technology recently developed at Northrop Grumman Corporation primarily for use at higher frequencies. The amplifier has more than 18 dB gain and less than 35 K noise figure across the band. These devices have noise less than 30 K at 100 GHz. The development started with design activities at JPL, as well as characterization of multichip modules using existing InP. Following processing, a test campaign was carried out using single-chip modules at 100 GHz. Successful development of the chips will lead to development of multichip modules, with simultaneous Q and U Stokes parameter detection. This MMIC (monolithic microwave integrated circuit) amplifier takes advantage of performance improvements intended for higher frequencies, but in this innovation are applied at 90 GHz. The large amount of available gain ultimately leads to lower possible noise performance at 90 GHz.

  4. MMIC HEMT Power Amplifier for 140 to 170 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Ngo, Catherine; Janke, Paul; Hu, Ming; Micovic, Miro

    2003-01-01

    A three-stage monolithic microwave integrated circuit (MMIC) power amplifier that features high-electron-mobility transistors (HEMTs) as gain elements is reviewed. This amplifier is designed to operate in the frequency range of 140 to 170 GHz, which contains spectral lines of several atmospheric molecular species plus subharmonics of other such spectral lines. Hence, this amplifier could serve as a prototype of amplifiers to be incorporated into heterodyne radiometers used in atmospheric science. The original intended purpose served by this amplifier is to boost the signal generated by a previously developed 164-GHz MMIC HEMT doubler and drive a 164-to-328-GHz doubler to provide a few milliwatts of power at 328 GHz.

  5. Compact, Single-Stage MMIC InP HEMT Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Fung, King Man; Gaier, Todd; Deal, W. R.; Mei, Gerry; Radisic, Vesna; Lai, Richard

    2008-01-01

    A monolithic micro - wave integrated-circuit (MMIC) singlestage amplifier containing an InP-based high-electron-mobility transistor (HEMT) plus coplanar-waveguide (CPW) transmission lines for impedance matching and input and output coupling, all in a highly miniaturized layout as needed for high performance at operating frequencies of hundreds of gigahertz is described.

  6. MMIC DHBT Common-Base Amplifier for 172 GHz

    NASA Technical Reports Server (NTRS)

    Paidi, Vamsi; Griffith, Zack; Wei, Yun; Dahlstrom, Mttias; Urteaga, Miguel; Rodwell, Mark; Samoska, Lorene; Fung, King Man; Schlecht, Erich

    2006-01-01

    Figure 1 shows a single-stage monolithic microwave integrated circuit (MMIC) power amplifier in which the gain element is a double-heterojunction bipolar transistor (DHBT) connected in common-base configuration. This amplifier, which has been demonstrated to function well at a frequency of 172 GHz, is part of a continuing effort to develop compact, efficient amplifiers for scientific instrumentation, wide-band communication systems, and radar systems that will operate at frequencies up to and beyond 180 GHz. The transistor is fabricated from a layered structure formed by molecular beam epitaxy in the InP/InGaAs material system. A highly doped InGaAs base layer and a collector layer are fabricated from the layered structure in a triple mesa process. The transistor includes two separate emitter fingers, each having dimensions of 0.8 by 12 m. The common-base configuration was chosen for its high maximum stable gain in the frequency band of interest. The input-matching network is designed for high bandwidth. The output of the transistor is matched to a load line for maximum saturated output power under large-signal conditions, rather than being matched for maximum gain under small-signal conditions. In a test at a frequency of 172 GHz, the amplifier was found to generate an output power of 7.5 mW, with approximately 5 dB of large-signal gain (see Figure 2). Moreover, the amplifier exhibited a peak small-signal gain of 7 dB at a frequency of 176 GHz. This performance of this MMIC single-stage amplifier containing only a single transistor represents a significant advance in the state of the art, in that it rivals the 170-GHz performance of a prior MMIC three-stage, four-transistor amplifier. [The prior amplifier was reported in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11 (November 2003), page 49.] This amplifier is the first heterojunction- bipolar-transistor (HBT) amplifier built for medium power operation in this

  7. Three-Stage InP Submillimeter-Wave MMIC Amplifier

    NASA Technical Reports Server (NTRS)

    Pukala, David; Samoska, Lorene; Man, King; Gaier, Todd; Deal, William; Lai, Richard; Mei, Gerry; Makishi, Stella

    2008-01-01

    A submillimeter-wave monolithic integrated- circuit (S-MMIC) amplifier has been designed and fabricated using an indium phosphide (InP) 35-nm gate-length high electron mobility transistor (HEMT) device, developed at Northrop Grumman Corporation. The HEMT device employs two fingers each 15 micrometers wide. The HEMT wafers are grown by molecular beam epitaxy (MBE) and make use of a pseudomorphic In0.75Ga0.25As channel, a silicon delta-doping layer as the electron supply, an In0.52Al0.48As buffer layer, and an InP substrate. The three-stage design uses coplanar waveguide topology with a very narrow ground-to-ground spacing of 14 micrometers. Quarter-wave matching transmission lines, on-chip metal-insulator-metal shunt capacitors, series thin-film resistors, and matching stubs were used in the design. Series resistors in the shunt branch arm provide the basic circuit stabilization. The S-MMIC amplifier was measured for S-parameters and found to be centered at 320 GHz with 13-15-dB gain from 300-345 GHz. This chip was developed as part of the DARPA Submillimeter Wave Imaging Focal Plane Technology (SWIFT) program (see figure). Submillimeter-wave amplifiers could enable more sensitive receivers for earth science, planetary remote sensing, and astrophysics telescopes, particularly in radio astronomy, both from the ground and in space. A small atmospheric window at 340 GHz exists and could enable ground-based observations. However, the submillimeter-wave regime (above 300 GHz) is best used for space telescopes as Earth s atmosphere attenuates most of the signal through water and oxygen absorption. Future radio telescopes could make use of S-MMIC amplifiers for wideband, low noise, instantaneous frequency coverage, particularly in the case of heterodyne array receivers.

  8. Multiple Differential-Amplifier MMICs Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich

    2010-01-01

    Compact amplifier assemblies of a type now being developed for operation at frequencies of hundreds of gigahertz comprise multiple amplifier units in parallel arrangements to increase power and/or cascade arrangements to increase gains. Each amplifier unit is a monolithic microwave integrated circuit (MMIC) implementation of a pair of amplifiers in differential (in contradistinction to single-ended) configuration. Heretofore, in cascading amplifiers to increase gain, it has been common practice to interconnect the amplifiers by use of wires and/or thin films on substrates. This practice has not yielded satisfactory results at frequencies greater than 200 Hz, in each case, for either or both of two reasons: Wire bonds introduce large discontinuities. Because the interconnections are typically tens of wavelengths long, any impedance mismatches give rise to ripples in the gain-vs.-frequency response, which degrade the performance of the cascade.

  9. Ultra-low noise miniaturized neural amplifier with hardware averaging

    NASA Astrophysics Data System (ADS)

    Dweiri, Yazan M.; Eggers, Thomas; McCallum, Grant; Durand, Dominique M.

    2015-08-01

    presence of high source impedances that are associated with the miniaturized contacts and the high channel count in electrode arrays. This technique can be adopted for other applications where miniaturized and implantable multichannel acquisition systems with ultra-low noise and low power are required.

  10. Special Component Designs for Differential-Amplifier MMICs

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka

    2010-01-01

    Special designs of two types of electronic components transistors and transmission lines have been conceived to optimize the performances of these components as parts of waveguide-embedded differential-amplifier monolithic microwave integrated circuits (MMICs) of the type described in the immediately preceding article. These designs address the following two issues, the combination of which is unique to these particular MMICs: Each MMIC includes a differential double-strip transmission line that typically has an impedance between 60 and 100 W. However, for purposes of matching of impedances, transmission lines having lower impedances are also needed. The transistors in each MMIC are, more specifically, one or more pair(s) of InP-based high-electron-mobility transistors (HEMTs). Heretofore, it has been common practice to fabricate each such pair as a single device configured in the side-to-side electrode sequence source/gate/drain/gate/source. This configuration enables low-inductance source grounding from the sides of the device. However, this configuration is not suitable for differential operation, in which it is necessary to drive the gates differentially and to feed the output from the drain electrodes differentially. The special transmission-line design provides for three conductors, instead of two, in places where lower impedance is needed. The third conductor is a metal strip placed underneath the differential double-strip transmission line. The third conductor increases the capacitance per unit length of the transmission line by such an amount as to reduce the impedance to between 5 and 15 W. In the special HEMT-pair design, the side-to-side electrode sequence is changed to drain/gate/source/gate/ drain. In addition, the size of the source is reduced significantly, relative to corresponding sizes in prior designs. This reduction is justified by the fact that, by virtue of the differential configuration, the device has an internal virtual ground, and

  11. Three MMIC Amplifiers for the 120-to-200 GHz Frequency Band

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Schmitz, Adele

    2009-01-01

    Closely following the development reported in the immediately preceding article, three new monolithic microwave integrated circuit (MMIC) amplifiers that would operate in the 120-to-200-GHz frequency band have been designed and are under construction at this writing. The active devices in these amplifiers are InP high-electron-mobility transistors (HEMTs). These amplifiers (see figure) are denoted the LSLNA150, the LSA200, and the LSA185, respectively. Like the amplifiers reported in the immediately preceding article, the LSLNA150 (1) is intended to be a prototype of low-noise amplifiers (LNAs) to be incorporated into spaceborne instruments for sensing cosmic microwave background radiation and (2) has potential for terrestrial use in electronic test equipment, passive millimeter-wave imaging systems, radar receivers, communication receivers, and systems for detecting hidden weapons. The HEMTs in this amplifier were fabricated according to 0.08- m design rules of a commercial product line of InP HEMT MMICs at HRL Laboratories, LLC, with a gate geometry of 2 fingers, each 15 m wide. On the basis of computational simulations, this amplifier is designed to afford at least 15 dB of gain, with a noise figure of no more than about 6 dB, at frequencies from 120 to 160 GHz. The measured results of the amplifier are shown next to the chip photo, with a gain of 16 dB at 150 GHz. Noise figure work is ongoing. The LSA200 and the LSA185 are intended to be prototypes of transmitting power amplifiers for use at frequencies between about 180 and about 200 GHz. These amplifiers have also been fabricated according to rules of the aforesaid commercial product line of InP HEMT MMICs, except that the HEMTs in these amplifiers are characterized by a gate geometry of 4 fingers, each 37 m wide. The measured peak performance of the LSA200 is characterized by a gain of about 1.4 dB at a frequency of 190 GHz; the measured peak performance of the LSA185 is characterized by a gain of about 2

  12. A Low Noise Amplifier for Neural Spike Recording Interfaces

    PubMed Central

    Ruiz-Amaya, Jesus; Rodriguez-Perez, Alberto; Delgado-Restituto, Manuel

    2015-01-01

    This paper presents a Low Noise Amplifier (LNA) for neural spike recording applications. The proposed topology, based on a capacitive feedback network using a two-stage OTA, efficiently solves the triple trade-off between power, area and noise. Additionally, this work introduces a novel transistor-level synthesis methodology for LNAs tailored for the minimization of their noise efficiency factor under area and noise constraints. The proposed LNA has been implemented in a 130 nm CMOS technology and occupies 0.053 mm-sq. Experimental results show that the LNA offers a noise efficiency factor of 2.16 and an input referred noise of 3.8 μVrms for 1.2 V power supply. It provides a gain of 46 dB over a nominal bandwidth of 192 Hz–7.4 kHz and consumes 1.92 μW. The performance of the proposed LNA has been validated through in vivo experiments with animal models. PMID:26437411

  13. Cryogenic ultra-low noise HEMT amplifiers board

    NASA Astrophysics Data System (ADS)

    de la Broïse, Xavier; Bounab, Ayoub

    2015-07-01

    High Electron Mobility Transistors (HEMTs), optimized by CNRS/LPN laboratory for ultra-low noise at a very low temperature, have demonstrated their capacity to be used in place of Si JFETs, when very high input impedance and working temperatures below 100 K are required. We have developed and tested simple amplifiers based only on this transistor technology, in order to work at a temperature as low as 1 K or less. They demonstrate at 4.2 K a typical noise of 1.6 nV/√{ Hz } at 100 Hz, 0.42 nV/√{ Hz } at 1 kHz and 0.32 nV/√{ Hz } at 10 kHz, with a gain of 50 and a power consumption of 1.4 mW per channel. Two boards have been designed for two different research applications: one for the readout of GMR magnetometers for medical and space applications, the other for search of weakly interacting massive particles (WIMPs) in Edelweiss experiment (HARD project).

  14. Cooling a low noise amplifier with a micromachined cryogenic cooler

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Witvers, R. H.; Vanapalli, S.; Holland, H. J.; ter Brake, H. J. M.

    2013-10-01

    The sensitivity of antenna systems increases with increasing active area, but decreases at higher noise figure of the low-noise amplifier (LNA). Cooling the LNA locally results in significant improvement in the gain and in lowering the noise figure of the LNA. Micromachined Joule-Thomson (JT) coolers can provide a cryogenic environment to the LNA. They are attractive because they have no cold moving parts and can be scaled down to match the size and the power consumption of LNAs. The performance of a LNA mounted on a JT microcooler with dimensions of 60.0 × 9.5 × 0.72 mm3 is reported in this paper. The microcooler is operated with nitrogen gas and the cold-end temperature is controlled at 115 K. The measured net cooling power of the microcooler is about 43 mW when the LNA is not operating. The power dissipation of the LNA is 26 mW, with a supply voltage of 2 V. At room temperature the noise figure of the LNA is 0.83 dB and the gain lies between 17.9 and 13.1 dB, in the frequency range of 0.65 and 1.05 GHz. Upon cooling to 115 K, the noise figure drops to 0.50 dB and the increase in gain varies in the range of 0.6-1.5 dB.

  15. Differential InP HEMT MMIC Amplifiers Embedded in Waveguides

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Schlecht, Erich; Samoska, Lorene

    2009-01-01

    Monolithic microwave integrated-circuit (MMIC) amplifiers of a type now being developed for operation at frequencies of hundreds of gigahertz contain InP high-electron-mobility transistors (HEMTs) in a differential configuration. The differential configuration makes it possible to obtain gains greater than those of amplifiers having the single-ended configuration. To reduce losses associated with packaging, the MMIC chips are designed integrally with, and embedded in, waveguide packages, with the additional benefit that the packages are compact enough to fit into phased transmitting and/or receiving antenna arrays. Differential configurations (which are inherently balanced) have been used to extend the upper limits of operating frequencies of complementary metal oxide/semiconductor (CMOS) amplifiers to the microwave range but, until now, have not been applied in millimeter- wave amplifier circuits. Baluns have traditionally been used to transform from single-ended to balanced configurations, but baluns tend to be lossy. Instead of baluns, finlines are used to effect this transformation in the present line of development. Finlines have been used extensively to drive millimeter- wave mixers in balanced configurations. In the present extension of the finline balancing concept, finline transitions are integrated onto the affected MMICs (see figure). The differential configuration creates a virtual ground within each pair of InP HEMT gate fingers, eliminating the need for inductive vias to ground. Elimination of these vias greatly reduces parasitic components of current and the associated losses within an amplifier, thereby enabling more nearly complete utilization of the full performance of each transistor. The differential configuration offers the additional benefit of multiplying (relative to the single-ended configuration) the input and output impedances of each transistor by a factor of four, so that it is possible to use large transistors that would otherwise have

  16. Comparison of cryogenic W band low noise amplifier based on different III-V HEMT foundry process and technologies

    NASA Astrophysics Data System (ADS)

    Valenziano, L.; Zannoni, M.; Mariotti, S.; Cremonini, A.; De Rosa, A.; Banfi, S.; Baó, A.; Gervasi, M.; Limiti, E.; Passerini, A.; Schiavone, F.

    2014-07-01

    We present the results of a development activity for cryogenic Low Noise Amplifiers based on HEMT technology for ground based and space-borne application. We have developed and realized two LNA design in W band, based on m-HEMT technology. MMIC chips have been manufactured by European laboratories and companies and assembled in test modules by our team. We compare performances with other technologies and manufacturers. LNA RF properties (noise figures, S-parameters) have been measured at room and cryogenic temperature and test results are reported in this paper. Performance are compared with those of state-of-the-art devices, as available in the literature. Strengths and improvements of this project are also discussed.

  17. Novel WSi/Au T-shaped gate GaAs metal-semiconductor field-effect-transistor fabrication process for super low-noise microwave monolithic integrated circuit amplifiers

    SciTech Connect

    Takano, H.; Hosogi, K.; Kato, T.

    1995-05-01

    A fully ion-implanted self-aligned T-shaped gate Ga As metal-semiconductor field-effect transistor (MESFET) with high frequency and extremely low-noise performance has been successfully fabricated for super low-noise microwave monolithic integrated circuit (MMIC) amplifiers. A subhalf-micrometer gate structure composed of WSi/Ti/Mo/Au is employed to reduce gate resistance effectively. This multilayer gate structure is formed by newly developed dummy SiON self-alignment technology and a photoresist planarization process. At an operating frequency of 12 GHz, a minimum noise figure of 0.87 dB with an associated gain of 10.62 dB has been obtained. Based on the novel FET process, a low-noise single-stage MMIC amplifier with an excellent low-noise figure of 1.2 dB with an associated gain of 8 dB in the 14 GHz band has been realized. This is the lowest noise figure ever reported at this frequency for low-noise MMICs based on ion-implanted self-aligned gate MESFET technology. 14 refs., 9 figs.

  18. Hybrid cryogenic low noise amplifier for the MeetKAT array

    NASA Astrophysics Data System (ADS)

    Jiang, Frank; Claude, Stephan; Garcia, Dominic

    2014-07-01

    Hybrid microwave integrated circuit technology is used to design and develop an L-band (900-2100 MHz) ultra-low noise amplifier for the MeerKAT array. This low noise amplifier achieved 2 K noise temperature, more than 40 dB gain, S11 & S22 better than -11 & -15 dB at 15 K ambient. Linearity and gain compression is verified. The noise performance is explored as the cooling temperature changes from 15 to 85 K.

  19. Matching technique yields optimum LNA performance. [Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Sifri, J. D.

    1986-01-01

    The present article is concerned with a case in which an optimum noise figure and unconditional stability have been designed into a 2.385-GHz low-noise preamplifier via an unusual method for matching the input with a suspended line. The results obtained with several conventional line-matching techniques were not satisfactory. Attention is given to the minimization of thermal noise, the design procedure, requirements for a high-impedance line, a sampling of four matching networks, the noise figure of the single-line matching network as a function of frequency, and the approaches used to achieve unconditional stability.

  20. Ultra low noise cryogenic amplifiers for radio astronomy

    NASA Astrophysics Data System (ADS)

    Bryerton, E. W.; Morgan, Matthew Alexander; Pospieszalski, Marian W.

    2013-01-01

    Cryogenic cooling of receivers to reduce their noise temperature is especially important in radio astronomy, as the antenna noise temperature is determined by the cosmic microwave background radiation (2.725 K) modified by the presence of atmosphere. For frequencies up to 120 GHz direct amplification at cryogenic temperatures is typically employed using InP heterostructure field-effect transistors (HFETs) or, more recently, SiGe heterostructure bipolar transistors (HBTs). This article reviews developments in this field and presents the current state-of-the-art. Examples of noise performance of amplifiers using InP HFETs and SiGe HBTs are compared with the model predications. Some gaps in our current understanding of experimental results are emphasized, and some comments on possible future developments are offered.

  1. Extremely low noise UHF-band amplifiers for square kilometer array

    NASA Astrophysics Data System (ADS)

    Jiang, Nianhua; Garcia, Dominic; Niranjanan, Pat; Halman, Mark; Wevers, Ivan

    2016-07-01

    This paper demonstrates two designs of extremely low noise amplifiers in the low frequency range of 350 MHz to 1070 MHz. Hybrid microwave integrated circuit is adapted for a low noise design at this low frequency range. Discrete passive components with high-Q and large values are selected to integrate with the best low noise transistors to optimize the LNA performance. The first UHF band cryogenic LNA was designed with InP HEMTs in all three stages for Square Kilometer Array - mid telescope band-1 receiver. This LNA extended the low end frequency to 350 MHz, and achieved averaging 1.4 Kelvin of a record low noise temperature, more than 47 dB gain, and good input and output return losses < -10 dB over the broad bandwidth from 350 to 1050 MHz at 15 K. The second UHF band cryogenic LNA was developed for MeerKAT Array, a precursor of Square Kilometer Array. This LNA was designed with InP HEMT transistor at first stage to achieve best low noise performance and GaAs HEMTs for second and third stages to replace InP HEMTs and realize high gain and good amplitude stability at cryogenic temperature. The second LNA achieved a record low noise temperature of averaging 0.6 Kelvin, more than 45 dB gain, and good input and output return losses ≤ -12 dB over the wide bandwidth from 580 to 1070 MHz at 15 K.

  2. MMIC Amplifier Produces Gain of 10 dB at 235 GHz

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Fung, King Man; Lee, Karen; Samoska, Lorene; Wells, Mary; Gaier, Todd; Kangaslahti, Pekka; Grundbacher, Ronald; Lai, Richard; Raja, Rohit; Liu, Po-Hsin

    2007-01-01

    The first solid-state amplifier capable of producing gain at a frequency >215 GHz has been demonstrated. This amplifier was fabricated as a monolithic microwave integrated-circuit (MMIC) chip containing InP high-electron-mobility transistors (HEMTs) of 0.07 micron gate length on a 50- m-thick InP substrate.

  3. Cryogenic, low-noise high electron mobility transistor amplifiers for the Deep Space Network

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.

    1993-01-01

    The rapid advances recently achieved by cryogenically cooled high electron mobility transistor (HEMT) low-noise amplifiers (LNA's) in the 1- to 10-GHz range are making them extremely competitive with maser amplifiers. In order to address future spacecraft navigation, telemetry, radar, and radio science needs, the Deep Space Network is investing both maser and HEMT amplifiers for its Ka-band (32-GHz) downlink capability. This article describes the current state cryogenic HEMT LNA development at Ka-band for the DSN. Noise performance results at S-band (2.3 GHz) and X-band (8.5 GHz) for HEMT's and masers are included for completeness.

  4. Beyond G-band : a 235 GHz InP MMIC amplifier

    NASA Technical Reports Server (NTRS)

    Dawson, Douglas; Samoska, Lorene; Fung, A. K.; Lee, Karen; Lai, Richard; Grundbacher, Ronald; Liu, Po-Hsin; Raja, Rohit

    2005-01-01

    We present results on an InP monolithic millimeter- wave integrated circuit (MMIC) amplifier having 10-dB gain at 235 GHz. We designed this circuit and fabricated the chip in Northrop Grumman Space Technology's (NGST) 0.07- m InP high electron mobility transistor (HEMT) process. Using a WR3 (220-325 GHz) waveguide vector network analyzer system interfaced to waveguide wafer probes, we measured this chip on-wafer for -parameters. To our knowledge, this is the first time a WR3 waveguide on-wafer measurement system has been used to measure gain in a MMIC amplifier above 230 GHz.

  5. Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers

    NASA Technical Reports Server (NTRS)

    Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen

    2013-01-01

    We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.

  6. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement.

    PubMed

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 10(11) V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  7. Note: A temperature-stable low-noise transimpedance amplifier for microcurrent measurement

    NASA Astrophysics Data System (ADS)

    Xie, Kai; Shi, Xueyou; Zhao, Kai; Guo, Lixin; Zhang, Hanlu

    2017-02-01

    Temperature stability and noise characteristics often run contradictory in microcurrent (e.g., pA-scale) measurement instruments because low-noise performance requires high-value resistors with relatively poor temperature coefficients. A low-noise transimpedance amplifier with high-temperature stability, which involves an active compensation mechanism to overcome the temperature drift mainly caused by high-value resistors, is presented. The implementation uses a specially designed R-2R compensating network to provide programmable current gain with extra-fine trimming resolution. The temperature drifts of all components (e.g., feedback resistors, operational amplifiers, and the R-2R network itself) are compensated simultaneously. Therefore, both low-temperature drift and ultra-low-noise performance can be achieved. With a current gain of 1011 V/A, the internal current noise density was about 0.4 fA/√Hz, and the average temperature coefficient was 4.3 ppm/K at 0-50 °C. The amplifier module maintains accuracy across a wide temperature range without additional thermal stabilization, and its compact size makes it especially suitable for high-precision, low-current measurement in outdoor environments for applications such as electrochemical emission supervision, air pollution particles analysis, radiation monitoring, and bioelectricity.

  8. Low noise buffer amplifiers and buffered phase comparators for precise time and frequency measurement and distribution

    NASA Technical Reports Server (NTRS)

    Eichinger, R. A.; Dachel, P.; Miller, W. H.; Ingold, J. S.

    1982-01-01

    Extremely low noise, high performance, wideband buffer amplifiers and buffered phase comparators were developed. These buffer amplifiers are designed to distribute reference frequencies from 30 KHz to 45 MHz from a hydrogen maser without degrading the hydrogen maser's performance. The buffered phase comparators are designed to intercompare the phase of state of the art hydrogen masers without adding any significant measurement system noise. These devices have a 27 femtosecond phase stability floor and are stable to better than one picosecond for long periods of time. Their temperature coefficient is less than one picosecond per degree C, and they have shown virtually no voltage coefficients.

  9. An integrated, low noise patch-clamp amplifier for biological nanopore applications.

    PubMed

    Wang, Gang; Dunbar, William B

    2010-01-01

    We present an integrated, low noise patch-clamp amplifier for biological nanopore applications. Our amplifier consists of an integrator-differentiator architecture coupled with a novel opamp design in the CMOS 0.35 µm process. The post-layout full-chip simulation shows the input referred noise of the amplifier is 0.49 pA RMS over a 5 kHz bandwidth using a verified electrical model for the biological nanopore system. In our biological nanopore experiments studying protein-DNA interactions, we encounter capacitive transients with a nominal settling time of 5 ms. Our amplifier design reduces the settling time to 0.2 ms, without requiring any compensation circuitry.

  10. Influence of ion-implanted profiles on the performance of GaAs MESFET's and MMIC amplifiers

    SciTech Connect

    Pavlidis, D.; Cazaux, J.L.; Graffeuil, J.

    1988-04-01

    The RF small-signal performance of GaAs MESFET's and MMIC amplifiers as a function of various ion-implanted profiles is theoretically and experimentally investigated. Implantation energy, dose, and recess depth influence are theoretically analyzed with the help of a specially developed device simulator. The performance of MMIC amplifiers processed with various energies, doses, recess depths, and bias conditions is discussed and compared to experimental characteristics. Some criteria are finally proposed for the choice of implantation conditions and process in order to optimize the characteristics of ion-implanted FET's and to realize process-tolerant MMIC amplifiers.

  11. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording.

    PubMed

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-05-19

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter.

  12. A Low-Noise Transimpedance Amplifier for BLM-Based Ion Channel Recording

    PubMed Central

    Crescentini, Marco; Bennati, Marco; Saha, Shimul Chandra; Ivica, Josip; de Planque, Maurits; Morgan, Hywel; Tartagni, Marco

    2016-01-01

    High-throughput screening (HTS) using ion channel recording is a powerful drug discovery technique in pharmacology. Ion channel recording with planar bilayer lipid membranes (BLM) is scalable and has very high sensitivity. A HTS system based on BLM ion channel recording faces three main challenges: (i) design of scalable microfluidic devices; (ii) design of compact ultra-low-noise transimpedance amplifiers able to detect currents in the pA range with bandwidth >10 kHz; (iii) design of compact, robust and scalable systems that integrate these two elements. This paper presents a low-noise transimpedance amplifier with integrated A/D conversion realized in CMOS 0.35 μm technology. The CMOS amplifier acquires currents in the range ±200 pA and ±20 nA, with 100 kHz bandwidth while dissipating 41 mW. An integrated digital offset compensation loop balances any voltage offsets from Ag/AgCl electrodes. The measured open-input input-referred noise current is as low as 4 fA/√Hz at ±200 pA range. The current amplifier is embedded in an integrated platform, together with a microfluidic device, for current recording from ion channels. Gramicidin-A, α-haemolysin and KcsA potassium channels have been used to prove both the platform and the current-to-digital converter. PMID:27213382

  13. A CMOS Sub-GHz Wideband Low-Noise Amplifier for Digital TV Tuner Applications

    NASA Astrophysics Data System (ADS)

    Cha, Hyouk-Kyu

    A high performance highly integrated sub-GHz wideband differential low-noise amplifier (LNA) for terrestrial and cable digital TV tuner applications is realized in 0.18µm CMOS technology. A noise-canceling topology using a feed-forward current reuse common-source stage is presented to obtain low noise characteristics and high gain while achieving good wideband input matching within 48-860MHz. In addition, linearization methods are appropriately utilized to improve the linearity. The implemented LNA achieves a power gain of 20.9dB, a minimum noise figure of 2.8dB, and an OIP3 of 24.2dBm. The chip consumes 32mA of current at 1.8V power supply and the core die size is 0.21mm2.

  14. A Dynamic Instrumentation Amplifier for Low-Power and Low-Noise Biopotential Acquisition

    PubMed Central

    Kim, Jongpal; Ko, Hyoungho

    2016-01-01

    A low-power and low-noise dynamic instrumentation amplifier (IA) for biopotential acquisition is presented. A dynamic IA that can reduce power consumption with a timely piecewise power-gating method, and noise level with an alternating input and chopper stabilization technique is fabricated with a 0.13-μm CMOS. Using the reconfigurable architecture of the IA, various combinations of the low-noise schemes are investigated. The combination of power gating and chopper stabilization shows a lower noise performance than the combination of power gating and alternating input switching scheme. This dynamic IA achieved a power reduction level of 50% from 10 µA to 5 µA and a noise reduction of 90% from 9.1 µVrms to 0.92 µVrms with the combination of the power gating and chopper stabilization scheme.

  15. Design of a wideband low noise amplifier for radio-astronomy applications

    NASA Astrophysics Data System (ADS)

    Hamaizia, Z.; Sengouga, N.; Missous, M.; Yagoub, M. C. E.

    2010-04-01

    In this work, we discuss the design of two low noise amplifiers (LNA) based on 1μm gate-length pHEMT InP transistors using two topologies. Designed for radio-astronomy applications, the first is a cascode circuit with a maximum gain of 15dB and noise figure of 0.6dB, while the second is a 2-stage cascaded amplifier with 27 dB gain and 0.63dB noise figure. The two amplifiers exhibit an input 1-dB compression point of -22dBm and -26dBm respectively, and a third order input intercept point of -10dBm and -5dBm, respectively.

  16. A microwave cryogenic low-noise amplifier based on sige heterostructures

    NASA Astrophysics Data System (ADS)

    Ivanov, B. I.; Grajcar, M.; Novikov, I. L.; Vostretsov, A. G.; Il'ichev, E.

    2016-04-01

    A low-noise cryogenic amplifier for the measurement of weak microwave signals at sub-Kelvin temperatures is constructed. The amplifier has five stages based on SiGe bipolar heterostructure transistors and has a gain factor of 35 dB in the frequency band from 100 MHz to 4 GHz at an operating temperature of 800 mK. The parameters of a superconducting quantum bit measured with this amplifier in the ultralow-power mode are presented as an application example. The amplitude-frequency response of the "supercon-ducting qubit-coplanar cavity" structure is demonstrated. The ground state of the qubit is characterized in the quasi-dispersive measurement mode.

  17. Design criteria of low-power low-noise charge amplifiers in VLSI bipolar technology

    SciTech Connect

    Bertuccio, G.; Fasoli, L.; Sampietro, M.

    1997-10-01

    The criteria underlying the design of low-noise front-end integrated electronics for radiation and particle detectors have been determined, taking into account the limits in the allowable power dissipation. The analysis specifically treats integrated amplifiers employing silicon bipolar transistors, whose performance has been studied to highlight the ultimate noise limit and the roles of the front-end device parameters such as the current gain, the base spreading resistance, the junction and diffusion capacitances, the transition frequency, and the device geometry. The relationships existing among the power dissipated in the front-end stage, the noise performance, and the characteristic of signal processing are derived.

  18. Low Noise Optically Pre-amplified Lightwave Receivers and Other Applications of Fiber Optic Parametric Amplifiers

    DTIC Science & Technology

    2010-07-27

    noise performance, optical gain bandwidth, and power efficiency. An interesting alternative to the mature Erbium-doped fiber amplifier ( EDFA ) is the...fibers (HNLF) and high power booster EDFAs . The FOPA can provide a very wide gain bandwidth [2], very high gain (70 dB was demonstrated in [3]), and...amplified spontaneous emission (ASE) noise in EDFAs is also generated. It is sometimes referred to as amplified quantum noise. Maximum gain (at the gain

  19. Development of a cryogenic DC-low noise amplifier for SQuID-based readout electronics

    NASA Astrophysics Data System (ADS)

    Macculi, C.; Torrioli, G.; Di Giorgio, A.; Spinoglio, L.; Piro, Luigi

    2014-07-01

    We present the preliminary results of the design and test activities for a DC cryogenic low noise amplifier for the SAFARI imaging spectrometer, planned to be onboard the SPICA mission, necessary not only to drive, as usual, the voltage signal produced by the SQuID but also to boost such signals over about 7 meter of path towards the warm feedback electronics. This development has been done in the framework of the mission preparation studies, within the European Consortium for the development of the SAFARI instrument. The actual configuration of the SAFARI focal plane assembly (FPA), indeed, foresees a long distance to the warm back end electronics. It is therefore mandatory to boost the faint electric signal coming from the SQuID device by keeping under control both power dissipation and noise: this is the main role of the designed Cryogenic Low Noise Amplifier (LNA). Working at 136K, it has a differential input gain-stage, and a differential balanced voltage buffer output stage, running at few mW target overall power. At present the design is based on the use of Heterojunction Si:Ge transistors, the required bandwidth is DC-4MHz and the required noise lower than 1 nV/rtHz.

  20. On-Wafer Measurement of a Multi-Stage MMIC Amplifier with 10 dB of Gain at 475 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Fung, KingMan; Pukala, David M.; Kangaslahti, Pekka P.; Lai, Richard; Ferreira, Linda

    2012-01-01

    JPL has measured and calibrated a WR2.2 waveguide wafer probe from GGB Industries in order to allow for measurement of circuits in the 325-500 GHz range. Circuits were measured, and one of the circuits exhibited 10 dB of gain at 475 GHz. The MMIC circuit was fabricated at Northrop Grumman Corp. (NGC) as part of a NASA Innovative Partnerships Program, using NGC s 35-nm-gatelength InP HEMT process technology. The chip utilizes three stages of HEMT amplifiers, each having two gate fingers of 10 m in width. The circuits use grounded coplanar waveguide topology on a 50- m-thick substrate with through substrate vias. Broadband matching is achieved with coplanar waveguide transmission lines, on-chip capacitors, and open stubs. When tested with wafer probing, the chip exhibited 10 dB of gain at 475 GHz, with over 9 dB of gain from 445-490 GHz. Low-noise amplifiers in the 400-500 GHz range are useful for astrophysics receivers and earth science remote sensing instruments. In particular, molecular lines in the 400-500 GHz range include the CO 4-3 line at 460 GHz, and the CI fine structure line at 492 GHz. Future astrophysics heterodyne instruments could make use of high-gain, low-noise amplifiers such as the one described here. In addition, earth science remote sensing instruments could also make use of low-noise receivers with MMIC amplifier front ends. Present receiver technology typically employs mixers for frequency down-conversion in the 400-500 GHz band. Commercially available mixers have typical conversion loss in the range of 7-10 dB with noise figure of 1,000 K. A low-noise amplifier placed in front of such a mixer would have 10 dB of gain and lower noise figure, particularly if cooled to low temperature. Future work will involve measuring the noise figure of this amplifier.

  1. Updated design for a low-noise, wideband transimpedance photodiode amplifier

    SciTech Connect

    Paul, S. F.; Marsala, R.

    2006-10-15

    The high-speed rotation diagnostic developed for Columbia's HBT-EP tokamak requires a high quantum efficiency, very low drift detector/amplifier combination. An updated version of the circuit developed originally for the beam emission spectroscopy experiment on TFTR is being used. A low dark current (2 nA at 15 V bias), low input source capacitance (2 pF) FFD-040 N-type Si photodiode is operated in photoconductive mode. It has a quantum efficiency of 40% at the 468.6 nm (He II line that is being observed). A low-noise field-effect transistor (InterFET IFN152 with e{sub Na}=1.2 nV/{radical}Hz) is used to reduce the noise in the transimpedance preamplifier (A250 AMPTEK op-amp) and a very high speed (unity-gain bandwidth=200 MHz) voltage feedback amplifier (LM7171) is used to restore the frequency response up to 100 kHz. This type of detector/amplifier is photon-noise limited at this bandwidth for incident light with a power of >{approx}2 nW. The circuit has been optimized using SIMETRIX 4.0 SPICE software and a prototype circuit has been tested successfully. Though photomultipliers and avalanche photodiodes can detect much lower light levels, for light levels >2 nW and a 10 kHz bandwidth, this detector/amplifier combination is more sensitive because of the absence of excess (internally generated) noise.

  2. Shunted Josephson tunnel junctions: High-frequency, self-pumped low noise amplifiers

    NASA Astrophysics Data System (ADS)

    Calander, N.; Claeson, T.; Rudner, S.

    1982-07-01

    The high-frequency amplification properties of transformer coupled, resistively shunted Josephson tunnel junctions have been investigated. The importance of the shunt loop inductance is stressed. It allows a high cutoff frequency, of significance for good high-frequency performance. The self-pumped parametric amplifier showed none of the excessive noise rise, which has hitherto plagued the development of externally pumped Josephson junction amplifiers. Around 10 GHz, we estimated a noise temperature less than 30 K for an amplifier pumped by a Josephson oscillation with a frequency well above twice the signal frequency. The corresponding gain of 5 dB may be increased in a better impedance matched circuit. The gain was very stable against variations in the bias conditions. A gain-bandwidth product as high as 0.3 was registered. The experimental results agreed well with the established theory for self-pumped parametric Josephson amplifiers. It should be possible to extend the low noise amplification by this device to mm wave frequencies. A relaxation oscillation occurred at a subharmonic of the Josephson frequency when the shunt loop inductance became large. The amplification in this mode followed closely the predictions of a simple model, where the signal modulated the switching of the sawtooth-like (relatively low frequency) relaxation current. Gains of about 15 dB were measured around 10 GHz, but the amplification was sensitive to bias conditions and noisy in this case where the relaxation frequency fell well below the signal frequency. Much improved properties were registered when the inductance was decreased so that the relaxation frequency approached the Josephson frequency and exceeded twice the signal frequency. The behavior then resembled that of a Josephson mode parametric amplifier, but the high content of harmonics of a relaxation oscillation meant that the amplifier became noisier due to converted noise from the many idler frequencies.

  3. A sub-0.5 V operating RF low noise amplifier using tunneling-FET

    NASA Astrophysics Data System (ADS)

    Jhon, Hee-Sauk; Jeon, Jongwook; Kang, Myunggon; Choi, Woo Young

    2017-02-01

    60 nm tunneling FET (TFET) based low noise amplifier (LNA) with a sub-0.5 V supply voltage for 2.4 GHz WSN application has been evaluated systematically from device level up to circuit level design. With the help of TFET’s unique property of high subthreshold swing, it shows that substantial increase of gain performance was confirmed compared to that of conventional LNA using 60 nm bulk MOSFET at ultra-low voltage (ULV) condition. From the simulation study, TFET LNA at 0.4 V operating voltage has the gain of 15.1 dB and noise figure 50 of 3.5 dB while dissipating DC power consumption of 0.41 mW.

  4. A single-to-differential low-noise amplifier with low differential output imbalance

    NASA Astrophysics Data System (ADS)

    Lian, Duan; Wei, Huang; Chengyan, Ma; Xiaofeng, He; Yuhua, Jin; Tianchun, Ye

    2012-03-01

    This paper presents a single-ended input differential output low-noise amplifier intended for GPS applications. We propose a method to reduce the gain/amplitude and phase imbalance of a differential output exploiting the inductive coupling of a transformer or center-tapped differential inductor. A detailed analysis of the theory of imbalance reduction, as well as a discussion on the principle of choosing the dimensions of a transformer, are given. An LNA has been implemented using TSMC 0.18 μm technology with ESD-protected. Measurement on board shows a voltage gain of 24.6 dB at 1.575 GHz and a noise figure of 3.2 dB. The gain imbalance is below 0.2 dB and phase imbalance is less than 2 degrees. The LNA consumes 5.2 mA from a 1.8 V supply.

  5. A W-band integrated power module using MMIC MESFET power amplifiers and varactor doublers

    SciTech Connect

    Ho, T.C.; Chen, Seng Woon; Pande, K. ); Rice, P.D. )

    1993-12-01

    A high-performance integrated power module using U-band MMIC MESFET power amplifiers in conjunction with W-band MMIC high efficiency varactor doublers has been developed for millimeter-wave system applications. This paper presents the design, fabrication, and performance of this W-band integrated power module. Measured results of the complete integrated power module show an output power of 90 mW with an overall associated gain of 29.5 dB at 94 GHz. A saturated power of over 95 mW was also achieved. These results represent the highest reported power and gain at W-band using MESFET and varactor frequency doubling technologies. This integrated power module is suitable for the future 94 GHz missile seeker applications.

  6. Simple nonlinearity evaluation and modeling of low-noise amplifiers with application to radio astronomy receivers.

    PubMed

    Casas, F J; Pascual, J P; de la Fuente, M L; Artal, E; Portilla, J

    2010-07-01

    This paper describes a comparative nonlinear analysis of low-noise amplifiers (LNAs) under different stimuli for use in astronomical applications. Wide-band Gaussian-noise input signals, together with the high values of gain required, make that figures of merit, such as the 1 dB compression (1 dBc) point of amplifiers, become crucial in the design process of radiometric receivers in order to guarantee the linearity in their nominal operation. The typical method to obtain the 1 dBc point is by using single-tone excitation signals to get the nonlinear amplitude to amplitude (AM-AM) characteristic but, as will be shown in the paper, in radiometers, the nature of the wide-band Gaussian-noise excitation signals makes the amplifiers present higher nonlinearity than when using single tone excitation signals. Therefore, in order to analyze the suitability of the LNA's nominal operation, the 1 dBc point has to be obtained, but using realistic excitation signals. In this work, an analytical study of compression effects in amplifiers due to excitation signals composed of several tones is reported. Moreover, LNA nonlinear characteristics, as AM-AM, total distortion, and power to distortion ratio, have been obtained by simulation and measurement with wide-band Gaussian-noise excitation signals. This kind of signal can be considered as a limit case of a multitone signal, when the number of tones is very high. The work is illustrated by means of the extraction of realistic nonlinear characteristics, through simulation and measurement, of a 31 GHz back-end module LNA used in the radiometer of the QUIJOTE (Q U I JOint TEnerife) CMB experiment.

  7. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    SciTech Connect

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-04

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  8. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    PubMed Central

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone we are able to generate parametric amplification using three-wave mixing. The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. Compared to similarly constructed four-wave mixing amplifiers, these devices operate with the RF pump at ~20 dB lower power and at frequencies far from the signal. This will permit easier integration into large scale qubit and detector applications. PMID:27114615

  9. Low-noise kinetic inductance traveling-wave amplifier using three-wave mixing

    NASA Astrophysics Data System (ADS)

    Vissers, M. R.; Erickson, R. P.; Ku, H.-S.; Vale, Leila; Wu, Xian; Hilton, G. C.; Pappas, D. P.

    2016-01-01

    We have fabricated a wide-bandwidth, high dynamic range, low-noise cryogenic amplifier based on a superconducting kinetic inductance traveling-wave device. The device was made from NbTiN and consisted of a long, coplanar waveguide on a silicon chip. By adding a DC current and an RF pump tone, we are able to generate parametric amplification using three-wave mixing (3WM). The devices exhibit gain of more than 15 dB across an instantaneous bandwidth from 4 to 8 GHz. The total usable gain bandwidth, including both sides of the signal-idler gain region, is more than 6 GHz. The noise referred to the input of the devices approaches the quantum limit, with less than 1 photon excess noise. We compare these results directly to the four-wave mixing amplification mode, i.e., without DC-biasing. We find that the 3WM mode allows operation with the pump at lower RF power and at frequencies far from the signal. We have used this knowledge to redesign the amplifiers to utilize primarily 3WM amplification, thereby allowing for direct integration into large scale qubit and detector applications.

  10. Low input reflection cryogenic low noise amplifier for Radio Astronomy multipixel receivers

    NASA Astrophysics Data System (ADS)

    Amils, R. I.; Gallego, J. D.; Diez, C.; López Fernández, I.; Barcia, A.; Muñoz, S.; Sebastián, J. L.; Malo, I.

    2016-10-01

    The advancement of Radio Astronomy instruments pushes innovation in several fronts. Sensitivity aside, one way in which cryogenic receivers can be upgraded is by increasing the number of beams in single dish antennas, building what is commonly known as a Focal Plane Array (FPA). In this paper we present a novel reduced input reflection 4-12 GHz cryogenic Low Noise Amplifier (LNA) for the Intermediate Frequency (IF) of millimeter wave superheterodyne multipixel receivers with Superconductor-Insulator-Superconductor (SIS) mixers. The aim of this development is to reduce the input reflection of the amplifier to a level at which the bulky cryogenic isolators traditionally used in this type of receivers are no longer necessary and can be avoided. Ultimately this simplification would allow complying with the tight mass and volume restrictions imposed over FPAs. However, the improvement of the input reflection has a cost in terms of noise and gain performance. This effect is critically evaluated by comparing it with other alternative options built with devices of the same technology. The results show that this approach may have advantages in terms of sensitivity of the complete receiver.

  11. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers With Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branch-line hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two MMIC power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is approximately 93 percent over the above frequency band.

  12. Ka-Band Waveguide Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2009-01-01

    The design, simulation and characterization of a novel Ka-band (32.05 +/- 0.25 GHz) rectangular waveguide branchline hybrid unequal power combiner is presented. The manufactured combiner was designed to combine input signals, which are nearly in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The application of the branch-line hybrid for combining two monolithic microwave integrated circuit (MMIC) power amplifiers with output power ratio of two is demonstrated. The measured combining efficiency is 92.9% at the center frequency of 32.05 GHz.

  13. Ka-Band Waveguide Two-Way Hybrid Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chevalier, Christine T.; Wintucky, Edwin G.; Freeman, Jon C.

    2010-01-01

    The design, simulation, and characterization of a novel Ka-band (32.05 0.25 GHz) rectangular waveguide two-way branch-line hybrid unequal power combiner (with port impedances matched to that of a standard WR-28 waveguide) has been created to combine input signals, which are in phase and with an amplitude ratio of two. The measured return loss and isolation of the branch-line hybrid are better than 22 and 27 dB, respectively. The measured combining efficiency is 92.9 percent at the center frequency of 32.05 GHz. This circuit is efficacious in combining the unequal output power from two Ka-band GaAs pseudomorphic high electron mobility transistor (pHEMT) monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with high efficiency. The component parts include the branch-line hybrid-based power combiner and the MMIC-based PAs. A two-way branch-line hybrid is a four-port device with all ports matched; power entering port 1 is divided in phase, and into the ratio 2:1 between ports 3 and 4. No power is coupled to port 2. MMICs are a type of integrated circuit fabricated on GaAs that operates at microwave frequencies, and performs the function of signal amplification. The power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA's deep space frequency band. The power combiner would have an output return loss better than 20 dB. Isolation between the output port and the isolated port is greater than 25 dB. Isolation between the two input ports is greater than 25 dB. The combining efficiency would be greater than 90 percent when the ratio of the two input power levels is two. The power combiner is machined from aluminum with E-plane split-block arrangement, and has excellent reliability. The flexibility of this design allows the combiner to be customized for combining the power from MMIC PAs with an arbitrary power output ratio. In addition, it allows combining a low-power GaAs MMIC with a high-power GaN MMIC. The arbitrary

  14. K-Band Power Enbedded Transmission Line (ETL) MMIC Amplifiers for Satellite Communication Applications

    NASA Technical Reports Server (NTRS)

    Tserng, Hua-Quen; Ketterson, Andrew; Saunier, Paul; McCarty, Larry; Davis, Steve

    1998-01-01

    The design, fabrication, and performance of K-band high-efficiency, linear power pHEMT amplifiers implemented in Embedded Transmission Line (ETL) MMIC configuration with unthinned GaAs substrate and topside grounding are reported. A three-stage amplifier achieved a power-added efficiency of 40.5% with 264 mW output at 20.2 GHz. The linear gain is 28.5 dB with 1-dB gain compression output power of 200 mW and 31% power-added efficiency. The carrier-to-third-order intermodulation ratio is approx. 20 dBc at the 1-dB compression point. A RF functional yield of more than 90% has been achieved.

  15. Compact, Miniature MMIC Receiver Modules for an MMIC Array Spectrograph

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Gaier, Todd C.; Cooperrider, Joelle T.; Samoska, Lorene A.; Soria, Mary M.; ODwyer, Ian J.; Weinreb, Sander; Custodero, Brian; Owen, Heahter; Grainge, Keith; Church, Sarah; Lai, Richard; Mei, Xiaobing

    2009-01-01

    A single-pixel prototype of a W-band detector module with a digital back-end was developed to serve as a building block for large focal-plane arrays of monolithic millimeter-wave integrated circuit (MMIC) detectors. The module uses low-noise amplifiers, diode-based mixers, and a WR10 waveguide input with a coaxial local oscillator. State-of-the-art InP HEMT (high electron mobility transistor) MMIC amplifiers at the front end provide approximately 40 dB of gain. The measured noise temperature of the module, at an ambient temperature of 300 K, was found to be as low as 450 K at 95 GHz. The modules will be used to develop multiple instruments for astrophysics radio telescopes, both on the ground and in space. The prototype is being used by Stanford University to characterize noise performance at cryogenic temperatures. The goal is to achieve a 30-50 K noise temperature around 90 GHz when cooled to a 20 K ambient temperature. Further developments include characterization of the IF in-phase (I) and quadrature (Q) signals as a function of frequency to check amplitude and phase; replacing the InP low-noise amplifiers with state-of-the-art 35-nm-gate-length NGC low-noise amplifiers; interfacing the front-end module with a digital back-end spectrometer; and developing a scheme for local oscillator and IF distribution in a future array. While this MMIC is being developed for use in radio astronomy, it has the potential for use in other industries. Applications include automotive radar (both transmitters and receivers), communication links, radar systems for collision avoidance, production monitors, ground-penetrating sensors, and wireless personal networks.

  16. Method and apparatus for linear low-frequency feedback in monolithic low-noise charge amplifiers

    DOEpatents

    DeGeronimo, Gianluigi

    2006-02-14

    A charge amplifier includes an amplifier, feedback circuit, and cancellation circuit. The feedback circuit includes a capacitor, inverter, and current mirror. The capacitor is coupled across the signal amplifier, the inverter is coupled to the output of the signal amplifier, and the current mirror is coupled to the input of the signal amplifier. The cancellation circuit is coupled to the output of the signal amplifier. A method of charge amplification includes providing a signal amplifier; coupling a first capacitor across the signal amplifier; coupling an inverter to the output of the signal amplifier; coupling a current mirror to the input of the signal amplifier; and coupling a cancellation circuit to the output of the signal amplifier. A front-end system for use with radiation sensors includes a charge amplifier and a current amplifier, shaping amplifier, baseline stabilizer, discriminator, peak detector, timing detector, and logic circuit coupled to the charge amplifier.

  17. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into a hybrid circuit and characterized at liquid nitrogen temperatures. This superconducting/seismology circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  18. Performance of a Y-Ba-Cu-O superconducting filter/GaAs low noise amplifier hybrid circuit

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Toncich, S. S.; Chorey, C. M.; Bonetti, R. R.; Williams, A. E.

    1992-01-01

    A superconducting 7.3 GHz two-pole microstrip bandpass filter and a GaAs low noise amplifier (LNA) were combined into an active circuit and characterized at liquid nitrogen temperatures. This superconducting/semiconducting circuit's performance was compared to a gold filter/GaAs LNA hybrid circuit. The superconducting filter/GaAs LNA hybrid circuit showed higher gain and lower noise figure than its gold counterpart.

  19. Low-noise correlation measurements based on software-defined-radio receivers and cooled microwave amplifiers

    NASA Astrophysics Data System (ADS)

    Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J.

    2016-11-01

    We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

  20. Low-noise correlation measurements based on software-defined-radio receivers and cooled microwave amplifiers.

    PubMed

    Nieminen, Teemu; Lähteenmäki, Pasi; Tan, Zhenbing; Cox, Daniel; Hakonen, Pertti J

    2016-11-01

    We present a microwave correlation measurement system based on two low-cost USB-connected software defined radio dongles modified to operate as coherent receivers by using a common local oscillator. Existing software is used to obtain I/Q samples from both dongles simultaneously at a software tunable frequency. To achieve low noise, we introduce an easy low-noise solution for cryogenic amplification at 600-900 MHz based on single discrete HEMT with 21 dB gain and 7 K noise temperature. In addition, we discuss the quantization effects in a digital correlation measurement and determination of optimal integration time by applying Allan deviation analysis.

  1. Radio astronomy ultra-low-noise amplifier for operation at 91 cm wavelength in high RFI environment

    NASA Astrophysics Data System (ADS)

    Korolev, A. M.; Zakharenko, V. V.; Ulyanov, O. M.

    2016-02-01

    An ultra-low-noise input amplifier intended for a use in a radio telescope operating at 91 cm wavelength is presented. The amplifier noise temperatures are 12.8 ± 1.5 and 10.0 ± 1.5 K at ambient temperatures of 293 and 263 K respectively. The amplifier does not require cryogenic cooling. It can be quickly put in operation thus shortening losses in the telescope observation time. High linearity of the amplifier (output power at 1 dB gain compression P1dB ≥ 22 dBm, output third order intercept point OIP3 ≥ 37 dBm) enables the telescope operation in highly urbanized and industrialized regions. To obtain low noise characteristics along with high linearity, high-electron-mobility field-effect transistors were used in parallel in the circuit developed. The transistors used in the amplifier are cost-effective and commercially available. The circuit solution is recommended for similar devices working in ultra-high frequency band.

  2. MMIC packaging with Waffleline

    NASA Astrophysics Data System (ADS)

    Perry, R. W.; Ellis, T. T.; Schineller, E. R.

    1990-06-01

    The design principle of Waffleline, a patented MMIC packaging technology, is discussed, and several recent applications are described and illustrated with drawings, diagrams, and photographs. Standard Waffleline is a foil-covered waffle-iron-like grid with dielectric-coated signal and power wires running in the channels and foil-removed holes for mounting prepackaged chips or chip carriers. With spacing of 50 mils between center conductors, this material is applicable at frequencies up to 40 GHz; EHF devices require Waffleline with 25-mil spacing. Applications characterized include a subassembly for a man-transportable SHF satellite-communication terminal, a transmitter driver for a high-power TWT, and a 60-GHz receiver front end (including an integrated monolithic microstrip antenna, a low-noise amplifier, a mixer, and an IF amplifier in a 0.25-inch-thick 1.6-inch-diameter package). The high package density and relatively low cost of Waffleline are emphasized.

  3. Cryogenically cooled low-noise amplifier for radio-astronomical observations and centimeter-wave deep-space communications systems

    NASA Astrophysics Data System (ADS)

    Vdovin, V. F.; Grachev, V. G.; Dryagin, S. Yu.; Eliseev, A. I.; Kamaletdinov, R. K.; Korotaev, D. V.; Lesnov, I. V.; Mansfeld, M. A.; Pevzner, E. L.; Perminov, V. G.; Pilipenko, A. M.; Sapozhnikov, B. D.; Saurin, V. P.

    2016-01-01

    We report a design solution for a highly reliable, low-noise and extremely efficient cryogenically cooled transmit/receive unit for a large antenna system meant for radio-astronomical observations and deep-space communications in the X band. We describe our design solution and the results of a series of laboratory and antenna tests carried out in order to investigate the properties of the cryogenically cooled low-noise amplifier developed. The transmit/receive unit designed for deep-space communications (Mars missions, radio observatories located at Lagrangian point L2, etc.) was used in practice for communication with live satellites including "Radioastron" observatory, which moves in a highly elliptical orbit.

  4. Low Noise Amplifier for Use with Submillimeter Electric-Field Probes.

    DTIC Science & Technology

    1987-05-01

    linear active region of operation, the voltage potentials on the positive and negative terminals of the input opamps are almost identical. Taking them...is introduced into an opamp because the gain from the positive terminal to the output is slightly different in magnitude from the gain from the...circuit. Using a very low noise opamp in a unity gain configuration, the best results can be obtained. The dc voltage supply may 4’v 21 +Vcc 100k IR MEG

  5. Miniature MMIC Low Mass/Power Radiometer Modules for the 180 GHz GeoSTAR Array

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Tanner, Alan; Pukala, David; Lambrigtsen, Bjorn; Lim, Boon; Mei, Xiaobing; Lai, Richard

    2010-01-01

    We have developed and demonstrated miniature 180 GHz Monolithic Microwave Integrated Circuit (MMIC) radiometer modules that have low noise temperature, low mass and low power consumption. These modules will enable the Geostationary Synthetic Thinned Aperture Radiometer (GeoSTAR) of the Precipitation and All-weather Temperature and Humidity (PATH) Mission for atmospheric temperature and humidity profiling. The GeoSTAR instrument has an array of hundreds of receivers. Technology that was developed included Indium Phosphide (InP) MMIC Low Noise Amplifiers (LNAs) and second harmonic MMIC mixers and I-Q mixers, surface mount Multi-Chip Module (MCM) packages at 180 GHz, and interferometric array at 180 GHz. A complete MMIC chip set for the 180 GHz receiver modules (LNAs and I-Q Second harmonic mixer) was developed. The MMIC LNAs had more than 50% lower noise temperature (NT=300K) than previous state-of-art and MMIC I-Q mixers demonstrated low LO power (3 dBm). Two lots of MMIC wafers were processed with very high DC transconductance of up to 2800 mS/mm for the 35 nm gate length devices. Based on these MMICs a 180 GHz Multichip Module was developed that had a factor of 100 lower mass/volume (16x18x4.5 mm3, 3g) than previous generation 180 GHz receivers.

  6. Low noise parametric amplifiers for radio astronomy observations at 18-21 cm wavelength

    NASA Technical Reports Server (NTRS)

    Kanevskiy, B. Z.; Veselov, V. M.; Strukov, I. A.; Etkin, V. S.

    1974-01-01

    The principle characteristics and use of SHF parametric amplifiers for radiometer input devices are explored. Balanced parametric amplifiers (BPA) are considered as the SHF signal amplifiers allowing production of the amplifier circuit without a special filter to achieve decoupling. Formulas to calculate the basic parameters of a BPA are given. A modulator based on coaxial lines is discussed as the input element of the SHF. Results of laboratory tests of the receiver section and long-term stability studies of the SHF sector are presented.

  7. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  8. Low-noise Raman fiber amplifier pumped by semiconductor disk laser.

    PubMed

    Chamorovskiy, A; Rautiainen, J; Rantamäki, A; Okhotnikov, O G

    2011-03-28

    A 1.3 µm Raman fiber amplifier pumped by 1.22 µm semiconductor disk laser in co-propagation geometry is demonstrated. Measured relative intensity noise of -148 dB/Hz over frequency range up to 3.5 GHz was measured at 900 mW of pump power. 9 dB gain was achieved with co-propagating pumping geometry with less than 2 dB additional noise induced by amplifier to the signal. Nearly shot-noise-limited operation of semiconductor disk laser combined with the diffraction-limited beam allows for efficient core-pumping of the single-mode fiber Raman amplifiers and represents a highly practical approach which takes full advantage of co-propagating pumping.

  9. Low-noise wide-band amplifiers for stochastic beam cooling experiments

    NASA Astrophysics Data System (ADS)

    Leskovar, B.; Lo, C. C.

    1982-09-01

    Noise characteristics of the continuous wave broadband amplifier systems for stochastic beam cooling experiments are presented. The noise performance, bandwidth capability and gain stability of components used in these amplifiers are summarized and compared in the 100 MHz to 40 GHz frequency range. This includes bipolar and field effect transistors, parametric amplifier, Schottky diode mixer and maser. Measurements of the noise characteristics and scattering parameters of variety GaAs FETs as a function of ambient temperature are also given. Performance data and design information are presented on a broadband 150-500 MHz preamplifier with noise temperature of approximately 350 K at ambient temperature of 200 K. Preamplifier stability based on scattering parameters concept is analyzed.

  10. Low noise, tunable Ho:fiber soliton oscillator for Ho:YLF amplifier seeding

    NASA Astrophysics Data System (ADS)

    Li, Peng; Ruehl, Axel; Bransley, Colleen; Hartl, Ingmar

    2016-06-01

    We present a passively mode-locked, tunable soliton Ho:fiber ring oscillator, optimized for seeding of holmium-doped yttrium lithium flouride (Ho:YLF) amplifiers. The oscillator is independently tunable in central wavelength and spectral width from 2040 to 2070 nm and from 5 to 10 nm, respectively. At all settings the pulse energy within the soliton is around 800 pJ. The soliton oscillator was optimized to fully meet the spectral requirements for seeding Ho:YLF amplifiers. Its Kelly sidebands are located outside the amplifier gain spectrum, resulting in a train of about 1 ps long pedestal-free pulses with relative intensity noise of only 0.13% RMS when integrated from 1 Hz to Nyquist frequency.

  11. Ka-Band Waveguide Three-Way Serial Combiner for MMIC Amplifiers

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Freeman, Jon C.; Chevalier, Christine T.

    2012-01-01

    In this innovation, the three-way combiner consists internally of two branch-line hybrids that are connected in series by a short length of waveguide. Each branch-line hybrid is designed to combine input signals that are in phase with an amplitude ratio of two. The combiner is constructed in an E-plane split-block arrangement and is precision machined from blocks of aluminum with standard WR-28 waveguide ports. The port impedances of the combiner are matched to that of a standard WR-28 waveguide. The component parts include the power combiner and the MMIC (monolithic microwave integrated circuit) power amplifiers (PAs). The three-way series power combiner is a six-port device. For basic operation, power that enters ports 3, 5, and 6 is combined in phase and appears at port 1. Ports 2 and 4 are isolated ports. The application of the three-way combiner for combining three PAs with unequal output powers was demonstrated. NASA requires narrow-band solid-state power amplifiers (SSPAs) at Ka-band frequencies with output power in the range of 3 to 5 W for radio or gravity science experiments. In addition, NASA also requires wideband, high-efficiency SSPAs at Ka-band frequencies with output power in the range of 5 to 15 W for high-data-rate communications from deep space to Earth. The three-way power combiner is designed to operate over the frequency band of 31.8 to 32.3 GHz, which is NASA s deep-space frequency band.

  12. A low-noise and fast pre-amplifier and readout system for SiPMs

    NASA Astrophysics Data System (ADS)

    Biroth, M.; Achenbach, P.; Downie, E.; Thomas, A.

    2015-07-01

    To operate silicon photomultipliers (SiPMs) in a demanding environment with large temperature gradients, different amplifier concepts were characterized by analyzing SiPM pulse-shapes and charge distributions. A fully differential 4-wire SiPM pre-amplifier with separated tracks for the bias voltage and with good common-mode noise suppression was developed and successfully tested. To achieve highest single-pixel resolutions an online after-pulse and pile-up suppression was realized with fast readout electronics based on digital filters.

  13. Low-noise two-wired buffer electrodes for bioelectric amplifiers.

    PubMed

    Degen, Thomas; Torrent, Simon; Jäckel, Heinz

    2007-07-01

    Active buffer electrodes are known to improve the immunity of bioelectric recordings against power line interferences. A survey of published work reveals that buffer electrodes are almost exclusively designed using operational amplifiers (opamps). In this paper, we discuss the advantage of utilizing a single transistor instead. This allows for a simple electrode, which is small and requires only two wires. In addition, a single transistor adds considerably less noise when compared to an opamp with the same power consumption. We then discuss output resistance and gain as well as their respective effect on the common mode rejection ratio (CMRR). Finally, we demonstrate the use of two-wired buffer electrodes for a bioelectric amplifier.

  14. FM notch filter in front - and - behind the low noise amplifier of a Callisto Radio Spectrometer in Gauribidanur, India

    NASA Astrophysics Data System (ADS)

    Monstein, C.

    2014-03-01

    In the framework of IHY2007 a Callisto spectrometer [Benz(2004)] was installed and set into operation at the location of the solar heliograph in Gauribidanur, India. At that time the level of radio frequency interference (RFI) was amazingly low. In recent years more and more FM broadcast transmitters were installed with high power compared to the requirements of radio astronomical observations. So, the spectral observations with Callisto experienced more and more interference by these FM transmitters. Recently an FM-notch filter was installed between the low noise amplifier and Callisto, but it did not work out. The notch filter was then moved to the input of the LNA and the result was much better, as expected from theoretical concepts.

  15. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottenger, Warren

    1995-01-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  16. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Astrophysics Data System (ADS)

    Pottenger, Warren

    1995-06-01

    The broad objective of this program was to demonstrate a proof of concept insertion of Monolithic Microwave Integrated Circuit (MMIC) device technology into an innovative (tile architecture) active phased array antenna application supporting advanced EHF communication systems. Ka-band MMIC arrays have long been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in close proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments.

  17. A 24dB Gain 51-68GHz Common Source Low Noise Amplifier Using Asymmetric-Layout Transistors

    NASA Astrophysics Data System (ADS)

    Li, Ning; Bunsen, Keigo; Takayama, Naoki; Bu, Qinghong; Suzuki, Toshihide; Sato, Masaru; Kawano, Yoichi; Hirose, Tatsuya; Okada, Kenichi; Matsuzawa, Akira

    At mm-wave frequency, the layout of CMOS transistors has a larger effect on the device performance than ever before in low frequency. In this work, the distance between the gate and drain contact (Dgd) has been enlarged to obtain a better maximum available gain (MAG). By using the asymmetric-layout transistor, a 0.6dB MAG improvement is realized when Dgd changes from 60nm to 200nm. A four-stage common-source low noise amplifier is implemented in a 65nm CMOS process. A measured peak power gain of 24dB is achieved with a power dissipation of 30mW from a 1.2-V power supply. An 18dB variable gain is also realized by adjusting the bias voltage. The measured 3-dB bandwidth is about 17GHz from 51GHz to 68GHz, and noise figure (NF) is from 4.0dB to 7.6dB.

  18. Low Noise Optical Amplifiers

    DTIC Science & Technology

    2010-05-01

    the gain spectrum is broad (> 10 nm), it could be used for amplification in WDM systems, while still avoiding four wave mixing between the channels...into a detailed description of noise issues we have studied the dynamics of the four -wave mixing (FWM) equations using a Stokes like parametrization...any results. Finally, in collaboration with Colin Mc.Kinstrie, Alcatel-Lucent, NJ, USA, we have been working on Self Seeded Four wave mixing. This

  19. Li-ion battery operated power amplifier MMICs utilizing SrTiO 3 capacitors and heterojunction FETs for PDC and CDMA cellular phones

    NASA Astrophysics Data System (ADS)

    Iwata, N.; Yamaguchi, K.; Nishimura, T. B.; Takemura, K.; Miyasaka, Y.

    1999-04-01

    Highly efficient two-stage 1 W power amplifier MMICs utilizing SrTiO 3 capacitors and Si-doped AlGaAs/InGaAs/Si-doped AlGaAs FETs have been developed for Li-ion battery operated digital cellular phones. For the personal digital cellular (PDC) applications, a power amplifier MMIC with 2.0×2.4 mm 2 area includes all bias and matching circuits. The MMIC delivered a 950 MHz π/4-shifted QPSK output signal power ( Pout) of 0.8 W (29.0 dBm), a power-added efficiency (PAE) of 30% and an associated gain ( Ga) of 26.4 dB with an adjacent channel leakage power ratio (ACPR) of -50.5 dBc at 50 kHz off-center frequency under 3.4 V drain bias operation. The power performance showed good agreement with a simulated one when series resistances in the output matching circuit and the drain bias circuit for the second-stage FET were taken into account. When the circuits were removed from the MMIC, it exhibited PAE of 42.4% and Pout of 1.0 W (30.0 dBm) with Ga of 29.8 dB at the PDC criteria. These results revealed that a low loss in the output passive circuits of a power amplifier MMIC is essential. Then, a power amplifier MMIC for the IS-95 application at 840 MHz was designed and evaluated without the output circuit. The MMIC with 2.0×1.5 mm 2 area delivered Pout of 0.93 W (29.7 dBm), PAE of 48.6% and Ga of 28.4 dB with ACPR of -42 dBc at 0.9 MHz off-center frequency under 3.5 V operation. Even operated at a reduced supply voltage of 1.2 V, a high PAE of 46.9% was obtained. These results indicate that the developed power amplifier MMICs and its approach are promising for small-size and lightweight digital cellular phones with long talk time.

  20. Design of Low-Noise Output Amplifiers for P-channel Charge-Coupled Devices Fabricated on High-Resistivity Silicon

    SciTech Connect

    Haque, S; Frost, F Dion R.; Groulx, R; Holland, S E; Karcher, A; Kolbe, W F; Roe, N A; Wang, G; Yu, Y

    2011-12-22

    We describe the design and optimization of low-noise, single-stage output amplifiers for p-channel charge-coupled devices (CCDs) used for scientific applications in astronomy and other fields. The CCDs are fabricated on high-resistivity, 4000–5000 -cm, n-type silicon substrates. Single-stage amplifiers with different output structure designs and technologies have been characterized. The standard output amplifier is designed with an n{sup +} polysilicon gate that has a metal connection to the sense node. In an effort to lower the output amplifier readout noise by minimizing the capacitance seen at the sense node, buried-contact technology has been investigated. In this case, the output transistor has a p{sup +} polysilicon gate that connects directly to the p{sup +} sense node. Output structures with buried-contact areas as small as 2 μm × 2 μm are characterized. In addition, the geometry of the source-follower transistor was varied, and we report test results on the conversion gain and noise of the various amplifier structures. By use of buried-contact technology, better amplifier geometry, optimization of the amplifier biases and improvements in the test electronics design, we obtain a 45% reduction in noise, corresponding to 1.7 e{sup -} rms at 70 kpixels/sec.

  1. Low-noise superheterodyne receiver array for ECEI and MIR

    NASA Astrophysics Data System (ADS)

    Wang, Yan; Yu, Jo-Han; Pham, Anh-Vu; Domier, Calvin; Tobias, Benjamin; Luhmann, Neville

    2016-10-01

    Superheterodyne receiver array has been widely used in ECEI and MIR to extract the temperature and plasma density fluctuation, respectively. The system downconverts RF signals to a much lower IF for easy filtering and processing. The current system employs Schottky diode as the mixing element, which is mounted directly on the antenna. The LO and RF signals illuminate the antenna simultaneously to produce desired IF signals. One big drawback is that the system generates large amount of noise due to the lack of low-noise amplifier (LNA) before the mixer. It also requires complicated lens system in order to facilitate simultaneous RF and LO illumination. Additionally, it's difficult to shield the circuits from stray heating power and interfering signals. New receivers are developed for improving the signal quality as well as the ease of measurement. The new circuit consists of compact GaAs MMICs integrated on low-loss liquid crystal polymer substrate. Low noise and high gain GaAs LNAs, mixers and even complete receivers are available as off-the-shelf chips for V and W band applications. Employing MMICs in plasma diagnostics not only dramatically improves signal integrity, the on-board LO signal supply also eliminates the lenses for simultaneous RF and LO illumination. Additionally, the new receiver employs horn antennas, which produces directive radiation and strong interference attenuation.

  2. Efficient EM Simulation of GCPW Structures Applied to a 200-GHz mHEMT Power Amplifier MMIC

    NASA Astrophysics Data System (ADS)

    Campos-Roca, Yolanda; Amado-Rey, Belén; Wagner, Sandrine; Leuther, Arnulf; Bangert, Axel; Gómez-Alcalá, Rafael; Tessmann, Axel

    2017-01-01

    The behaviour of grounded coplanar waveguide (GCPW) structures in the upper millimeter-wave range is analyzed by using full-wave electromagnetic (EM) simulations. A methodological approach to develop reliable and time-efficient simulations is proposed by investigating the impact of different simplifications in the EM modelling and simulation conditions. After experimental validation with measurements on test structures, this approach has been used to model the most critical passive structures involved in the layout of a state-of-the-art 200-GHz power amplifier based on metamorphic high electron mobility transistors (mHEMTs). This millimeter-wave monolithic integrated circuit (MMIC) has demonstrated a measured output power of 8.7 dBm for an input power of 0 dBm at 200 GHz. The measured output power density and power-added efficiency (PAE) are 46.3 mW/mm and 4.5 %, respectively. The peak measured small-signal gain is 12.7 dB (obtained at 196 GHz). A good agreement has been obtained between measurements and simulation results.

  3. Extension of non-invasive EEG into the kHz range for evoked thalamocortical activity by means of very low noise amplifiers.

    PubMed

    Scheer, H J; Fedele, T; Curio, G; Burghoff, M

    2011-12-01

    Ultrafast electroencephalographic signals, having frequencies above 500 Hz, can be observed in somatosensory evoked potential measurements. Usually, these recordings have a poor signal-to-noise ratio (SNR) because weak signals are overlaid by intrinsic noise of much higher amplitude like that generated by biological sources and the amplifier. As an example, recordings at the scalp taken during electrical stimulation of the median nerve show a 600 Hz burst with submicro-volt amplitudes which can be extracted from noise by the use of massive averaging and digital signal processing only. We have investigated this signal by means of a very low noise amplifier made in-house (minimal voltage noise 2.7 nV Hz(-1/2), FET inputs). We examined how the SNR of the data is altered by the bandwidth and the use of amplifiers with different intrinsic amplifier noise levels of 12 and 4.8 nV Hz(-1/2), respectively. By analyzing different frequency contributions of the signal, we found an extremely weak 1 kHz component superimposed onto the well-known 600 Hz burst. Previously such high-frequency electroencephalogram responses around 1 kHz have only been observed by deep brain electrodes implanted for tremor therapy of Parkinson patients. For the non-invasive measurement of such signals, we recommend that amplifier noise should not exceed 4 nV Hz(-1/2).

  4. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in advanced Laser Interferometer Gravitational wave Observatory suspensions

    NASA Astrophysics Data System (ADS)

    Lockerbie, N. A.; Tokmakov, K. V.

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations—this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m-1(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  5. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.

    PubMed

    Lockerbie, N A; Tokmakov, K V

    2014-11-01

    This paper describes the design and performance of an extremely low-noise differential transimpedance amplifier, which takes its two inputs from separate photodiodes. The amplifier was planned to serve as the front-end electronics for a highly sensitive shadow-displacement sensing system, aimed at detecting very low-level "Violin-Mode" (VM) oscillations in 0.4 mm diameter by 600 mm long fused-silica suspension fibres. Four such highly tensioned fibres support the 40 kg test-masses/mirrors of the Advanced Laser Interferometer Gravitational wave Observatory interferometers. This novel design of amplifier incorporates features which prevent "noise-gain peaking" arising from large area photodiode (and cable) capacitances, and which also usefully separate the DC and AC photocurrents coming from the photodiodes. In consequence, the differential amplifier was able to generate straightforwardly two DC outputs, one per photodiode, as well as a single high-gain output for monitoring the VM oscillations-this output being derived from the difference of the photodiodes' two, naturally anti-phase, AC photocurrents. Following a displacement calibration, the amplifier's final VM signal output was found to have an AC displacement responsivity at 500 Hz of (9.43 ± 1.20) MV(rms) m(-1)(rms), and, therefore, a shot-noise limited sensitivity to such AC shadow- (i.e., fibre-) displacements of (69 ± 13) picometres/√Hz at this frequency, over a measuring span of ±0.1 mm.

  6. Development of a Low-Noise High Common-Mode-Rejection Instrumentation Amplifier. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Rush, Kenneth; Blalock, T. V.; Kennedy, E. J.

    1975-01-01

    Several previously used instrumentation amplifier circuits were examined to find limitations and possibilities for improvement. One general configuration is analyzed in detail, and methods for improvement are enumerated. An improved amplifier circuit is described and analyzed with respect to common mode rejection and noise. Experimental data are presented showing good agreement between calculated and measured common mode rejection ratio and equivalent noise resistance. The amplifier is shown to be capable of common mode rejection in excess of 140 db for a trimmed circuit at frequencies below 100 Hz and equivalent white noise below 3.0 nv/square root of Hz above 1000 Hz.

  7. Low-noise detector and amplifier design for 100 ns direct detection CO{sub 2} LIDAR receiver

    SciTech Connect

    Cafferty, M.M.; Cooke, B.J.; Laubscher, B.E.; Olivas, N.L.; Fuller, K.

    1997-06-01

    The development and test results of a prototype detector/amplifier design for a background limited, pulsed 100 ns, 10--100 kHz repetition rate LIDAR/DIAL receiver system are presented. Design objectives include near-matched filter detection of received pulse amplitude and round trip time-of-flight, and the elimination of excess correlated detector/amplifier noise for optimal pulse averaging. A novel pole-zero cancellation amplifier, coupled with a state-of-the-art SBRC (Santa Barbara Research Center) infrared detector was implemented to meet design objectives. The pole-zero cancellation amplifier utilizes a tunable, pseudo-matched filter technique to match the width of the laser pulse to the shaping time of the filter for optimal SNR performance. Low frequency correlated noise, (l/f and drift noise) is rejected through a second order high gain feedback loop. The amplifier also employs an active detector bias stage minimizing detector drift. Experimental results will be provided that demonstrate near-background limited, 100 ns pulse detection performance given a 8.5--11.5 {micro}m (300 K B.B.) radiant background, with the total noise floor spectrally white for optimal pulse averaging efficiency.

  8. Single-polarization optical low-noise pre-amplified receiver for heavily coded optical communications links

    NASA Astrophysics Data System (ADS)

    Roth, Jeffrey M.; Masurkar, Amrita; Scalesse, Vincent; Minch, Jeffrey R.; Walther, Frederick G.; Savage, Shelby J.; Ulmer, Todd G.

    2015-03-01

    We report a single-polarization, optical low-noise pre-amplfier (SP-OLNA) that enhances the receiver sensitivity of heavily-coded 1.55-μm optical communication links. At channel bit-error ratios of approximately 10%, the erbium-doped SP-OLNA provides an approximately 1.0-dB receiver sensitivity enhancement over a conventional two-polarization pre-amplfier. The SP-OLNA includes three gain stages, each followed by narrow-band athermal fiber Bragg gratings. This cascaded fiter is matched to a return-to-zero, 2.88-Gb/s, variable burst-mode, differential phase shift keying (DPSK) waveform. The SP-OLNA enhancement of approximately 1.0 dB is demonstrated over a range of data rates, from the full 2.88-Gb/s (non-burst) data rate, down to a 1/40th burst rate (72 Mb/s). The SP-OLNA'sfirst stage of ampli_cation is a single-polarization gain block constructed from polarization-maintaining (PM) fiber components, PM erbium gain fiber, and a PM integrated pump coupler and polarizer. This first stage sets the SP-OLNA's noise figure, measured at 3.4 dB. Two subsequent non-PM gain stages allow the SP-OLNA to provide an overall gain of 78 dB to drive a DPSK demodulator receiver. This receiver is comprised of a delay-line interferometer and balanced photo-receiver. The SP-OLNA is packaged into a compact, 5"x7"x1.6" volume, which includes an electronic digital interface to control and monitor pump lasers, optical switches, and power monitors.

  9. Low noise gain-clamped L-band erbium-doped fiber amplifier by utilizing fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Wang, Tianshu; Guo, Yubin; Yan, Hongwei; Wang, Yuhang; Wang, Ke

    2006-11-01

    A novel gain-clamped long wavelength band (L-band) erbium-doped fiber amplifier (EDFA) is proposed and experimented by using a fiber Bragg grating (FBG) at the input end of the amplifier. This design provides a good gain clamping and decreases noise effectively. It uses two sections of erbium-doped fiber (EDF) pumped by a 1480-nm laser diode (LD) for higher efficiency and lower noise figure (NF). The gain is clamped at 23 dB with a variation of 0.5 dB from input signal power of -30 to -8 dBm for 1589 nm and NF below 5 dB is obtained. At the longer wavelength in L-band higher gain is also obtained and the gain is clamped at 16 dB for 1614 nm effectively. Because the FBG injects a portion of backward amplified spontaneous emission (ASE) back into the system, the gain enhances 5 dB with inputting small signal.

  10. Device and Circuit Codesign Strategy for Application to Low-Noise Amplifier Based on Silicon Nanowire Metal-Oxide-Semiconductor Field Effect Transistors

    NASA Astrophysics Data System (ADS)

    Seongjae Cho,; Hee-Sauk Jhon,; Jung Hoon Lee,; Se Hwan Park,; Hyungcheol Shin,; Byung-Gook Park,

    2010-04-01

    In this study, a full-range approach from device level to circuit level design is performed for RF application of silicon nanowire (SNW) metal-oxide-semiconductor field effect transistors (MOSFETs). Both DC and AC analyses have been conducted to confirm the advantages of an SNW MOSFET over the conventional planar (CPL) MOSFET device having dimensional equivalence. Besides the intrinsic characteristic parameters, the extrinsic resistance and capacitance caused by wiring components are extracted from each device. On the basis of these intrinsic and extrinsic parameters, a multi-fingered 5.8 GHz low-noise amplifier (LNA) design adopting SNW MOSFETs has been achieved, which shows an improved gain of 17.5 dB and a noise figure of 3.1 dB over a CPL MOSFET LNA.

  11. First On-Wafer Power Characterization of MMIC Amplifiers at Sub-Millimeter Wave Frequencies

    NASA Technical Reports Server (NTRS)

    Fung, A. K.; Gaier, T.; Samoska, L.; Deal, W. R.; Radisic, V.; Mei, X. B.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Lai, R.

    2008-01-01

    Recent developments in semiconductor technology have enabled advanced submillimeter wave (300 GHz) transistors and circuits. These new high speed components have required new test methods to be developed for characterizing performance, and to provide data for device modeling to improve designs. Current efforts in progressing high frequency testing have resulted in on-wafer-parameter measurements up to approximately 340 GHz and swept frequency vector network analyzer waveguide measurements to 508 GHz. On-wafer noise figure measurements in the 270-340 GHz band have been demonstrated. In this letter we report on on-wafer power measurements at 330 GHz of a three stage amplifier that resulted in a maximum measured output power of 1.78mW and maximum gain of 7.1 dB. The method utilized demonstrates the extension of traditional power measurement techniques to submillimeter wave frequencies, and is suitable for automated testing without packaging for production screening of submillimeter wave circuits.

  12. A 3.5-4.5 GHz Complementary Metal-Oxide-Semiconductor Ultrawideband Receiver Frontend Low-Noise Amplifier with On-Chip Integrated Antenna for Interchip Communication

    NASA Astrophysics Data System (ADS)

    Azhari, Afreen; Kimoto, Kentaro; Sasaki, Nobuo; Kikkawa, Takamaro

    2010-04-01

    Chip-to-chip ultrawideband (UWB) wireless interconnections are essential for reducing resistance capacitance (RC) delay in wired interconnections and three-dimensional (3D) highly integrated packaging. In this study, we demonstrated a wireless interchip signal transmission between two on-chip meander antennas on printed circuit board (PCB) for 1 to 20 mm transmission distances where the low power gain of each antenna due to a lossy Si substrate has been amplified by a low-noise amplifier (LNA). The measured result shows that the LNA produces 26 dB of improvement in antenna power gain at 4.5 GHz on a lossy Si substrate. Moreover, a Gaussian monocycle pulse with a center frequency of 2.75 GHz was also received by an on-chip antenna and amplified by the LNA. The LNA was integrated with an on-chip antenna on a Si substrate with a resistivity of 10 Ω·cm using 180 nm complementary metal-oxide-semiconductor (CMOS) technology. The investigated system is required for future single chip transceiver front ends, integrated with an on-chip antenna for 3D mounting on a printed circuit (PC) board.

  13. Development of a 150 GHz MMIC module prototype for large-scale CMB radiation experiments

    NASA Astrophysics Data System (ADS)

    Voll, Patricia; Lau, Judy M.; Sieth, Matthew; Church, Sarah E.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Soria, Mary; Gaier, Todd C.; Van Winkle, Dan; Tantawi, Sami

    2010-07-01

    A prototype heterodyne amplifier module has been designed for operation from 140 to 170 GHz using Monolithic Millimeter- Wave Integrated Circuit (MMIC) low noise InP High Electron Mobility Transistor (HEMT) amplifiers. In the last few decades, astronomical instruments have made state-of-the-art measurements operating over the frequency range of 5-100 GHz, using HEMT amplifiers that offer low noise, low power dissipation, high reliability, and inherently wide bandwidths. Recent advances in low-noise MMIC amplifiers, coupled with industry-driven advances in high frequency signal interconnects and in the miniaturization and integration of many standard components, have improved the frequency range and scalability of receiver modules that are sensitive to a wide (20-25%) simultaneous bandwidth. HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured around 100 GHz, but the advances in technology should make it possible to develop receiver modules with even higher operation frequency - up to 200 GHz. This paper discusses the design of a compact, scalable module centered on the 150 GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry.

  14. Ka-Band MMIC Subarray Technology Program (Ka-Mist)

    NASA Technical Reports Server (NTRS)

    Pottinger, W.

    1995-01-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  15. Ka-band MMIC subarray technology program (Ka-Mist)

    NASA Astrophysics Data System (ADS)

    Pottinger, W.

    1995-09-01

    Ka-band monolithic microwave integrated circuit (MMIC) arrays have been considered as having high potential for increasing the capability of space, aircraft, and land mobile communication systems in terms of scan performance, data rate, link margin, and flexibility while offering a significant reduction in size, weight, and power consumption. Insertion of MMIC technology into antenna systems, particularly at millimeter wave frequencies using low power and low noise amplifiers in closed proximity to the radiating elements, offers a significant improvement in the array transmit efficiency, receive system noise figure, and overall array reliability. Application of active array technology also leads to the use of advanced beamforming techniques that can improve beam agility, diversity, and adaptivity to complex signal environments. The objective of this program was to demonstrate the technical feasibility of the 'tile' array packaging architecture at EHF via the insertion of 1990 MMIC technology into a functional tile array or subarray module. The means test of this objective was to demonstrate and deliver to NASA a minimum of two 4 x 4 (16 radiating element) subarray modules operating in a transmit mode at 29.6 GHz. Available (1990) MMIC technology was chosen to focus the program effort on the novel interconnect schemes and packaging requirements rather than focusing on MMIC development. Major technical achievements of this program include the successful integration of two 4 x 4 subarray modules into a single antenna array. This 32 element array demonstrates a transmit EIRP of over 300 watts yielding an effective directive power gain in excess of 55 dB at 29.63 GHz. The array has been actively used as the transmit link in airborne/terrestrial mobile communication experiments accomplished via the ACTS satellite launched in August 1993.

  16. Ka-Band SiGe Receiver Front-End MMIC for Transponder Applications

    NASA Technical Reports Server (NTRS)

    Venkatesan, Jaikrishna; Mysoor, Narayan R.; Hashemi, Hassein; Aflatouni, Firooz

    2010-01-01

    A fully integrated, front-end Ka-band monolithic microwave integrated circuit (MMIC) was developed that houses an LNA (low noise amplifier) stage, a down-conversion stage, and output buffer amplifiers. The MMIC design employs a two-step quadrature down-conversion architecture, illustrated in the figure, which results in improved quality of the down-converted IF quadrature signals. This is due to the improved sensitivity of this architecture to amplitude and phase mismatches in the quadrature down-conversion process. Current sharing results in reduced power consumption, while 3D-coupled inductors reduce the chip area. Improved noise figure is expected over previous SiGe-based, frontend designs

  17. Influence of gate metal engineering on small-signal and noise behaviour of silicon nanowire MOSFET for low-noise amplifiers

    NASA Astrophysics Data System (ADS)

    Gupta, Neha; Chaujar, Rishu

    2016-08-01

    In this paper, we have investigated the small-signal behaviour and RF noise performance of gate electrode workfunction engineered (GEWE) silicon nanowire (SiNW) MOSFET, and the results so obtained are simultaneously compared with SiNW and conventional MOSFET at THz frequency range. This work examines reflection and transmission coefficients, noise conductance, minimum noise figure and cross-correlation factor. Results reveal significant reduction in input/output reflection coefficient and an increase in forward/reverse transmission coefficient owing to improved transconductance in GEWE-SiNW in comparison with conventional counterparts. It is also observed that minimum noise figure and noise conductance of GEWE-SiNW is reduced by 17.4 and 31.2 %, respectively, in comparison with SiNW, thus fortifying its potential application for low-noise amplifiers (LNAs) at radio frequencies. Moreover, the efficacy of gate metal workfunction engineering is also studied and the results validate that tuning of workfunction difference results further improvement in device small-signal behaviour and noise performance.

  18. Amplifier Module for 260-GHz Band Using Quartz Waveguide Transitions

    NASA Technical Reports Server (NTRS)

    Padmanabhan, Sharmila; Fung, King Man; Kangaslahti, Pekka P.; Peralta, Alejandro; Soria, Mary M.; Pukala, David M.; Sin, Seth; Samoska, Lorene A.; Sarkozy, Stephen; Lai, Richard

    2012-01-01

    Packaging of MMIC LNA (monolithic microwave integrated circuit low-noise amplifier) chips at frequencies over 200 GHz has always been problematic due to the high loss in the transition between the MMIC chip and the waveguide medium in which the chip will typically be used. In addition, above 200 GHz, wire-bond inductance between the LNA and the waveguide can severely limit the RF matching and bandwidth of the final waveguide amplifier module. This work resulted in the development of a low-loss quartz waveguide transition that includes a capacitive transmission line between the MMIC and the waveguide probe element. This capacitive transmission line tunes out the wirebond inductance (where the wire-bond is required to bond between the MMIC and the probe element). This inductance can severely limit the RF matching and bandwidth of the final waveguide amplifier module. The amplifier module consists of a quartz E-plane waveguide probe transition, a short capacitive tuning element, a short wire-bond to the MMIC, and the MMIC LNA. The output structure is similar, with a short wire-bond at the output of the MMIC, a quartz E-plane waveguide probe transition, and the output waveguide. The quartz probe element is made of 3-mil quartz, which is the thinnest commercially available material. The waveguide band used is WR4, from 170 to 260 GHz. This new transition and block design is an improvement over prior art because it provides for better RF matching, and will likely yield lower loss and better noise figure. The development of high-performance, low-noise amplifiers in the 180-to- 700-GHz range has applications for future earth science and planetary instruments with low power and volume, and astrophysics array instruments for molecular spectroscopy. This frequency band, while suitable for homeland security and commercial applications (such as millimeter-wave imaging, hidden weapons detection, crowd scanning, airport security, and communications), also has applications to

  19. Cryogenic 160-GHz MMIC Heterodyne Receiver Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Soria, Mary M.; Owen, Heather R.; Dawson, Douglas E.; Kangaslahti, Pekka P.; Gaier, Todd C.; Voll, Patricia; Lau, Judy; Sieth, Matt; Church, Sarah

    2011-01-01

    A cryogenic 160-GHz MMIC heterodyne receiver module has demonstrated a system noise temperature of 100 K or less at 166 GHz. This module builds upon work previously described in Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation (NPO-47664), NASA Tech Briefs, Vol. 35, No. 8 (August 2011), p. 27. In the original module, the local oscillator signal was saturating the MMIC low-noise amplifiers (LNAs) with power. In order to suppress the local oscillator signal from reaching the MMIC LNAs, the W-band (75 110 GHz) signal had to be filtered out before reaching 140 170 GHz. A bandpass filter was developed to cover 120 170 GHz, using microstrip parallel-coupled lines to achieve the desired filter bandwidth, and ensure that the unwanted W-band local oscillator signal would be sufficiently suppressed. With the new bandpass filter, the entire receiver can work over the 140 180-GHz band, with a minimum system noise temperature of 460 K at 166 GHz. The module was tested cryogenically at 20 K ambient temperature, and it was found that the receiver had a noise temperature of 100 K over an 8-GHz bandwidth. The receiver module now includes a microstrip bandpass filter, which was designed to have a 3-dB bandwidth of approximately 120-170 GHz. The filter was fabricated on a 3-mil-thick alumina substrate. The filter design was based on a W-band filter design made at JPL and used in the QUIET (Q/U Imaging ExperimenT) radiometer modules. The W-band filter was scaled for a new center frequency of 150 GHz, and the microstrip segments were changed accordingly. Also, to decrease the bandwidth of the resulting scaled design, the center gaps between the microstrip lines were increased (by four micrometers in length) compared to the gaps near the edges. The use of the 150-GHz bandpass filter has enabled the receiver module to function well at room temperature. The system noise temperature was measured to be less than 600 K (at room temperature) from 154 to 168 GHz

  20. MMIC Replacement for Gunn Diode Oscillators

    NASA Technical Reports Server (NTRS)

    Crowe, Thomas W.; Porterfield, David

    2011-01-01

    An all-solid-state replacement for high-frequency Gunn diode oscillators (GDOs) has been proposed for use in NASA s millimeter- and submillimeter-wave sensing instruments. Highly developed microwave oscillators are used to achieve a low-noise and highly stable reference signal in the 10-40-GHz band. Compact amplifiers and high-power frequency multipliers extend the signal to the 100-500-GHz band with minimal added phase noise and output power sufficient for NASA missions. This technology can achieve improved output power and frequency agility, while maintaining phase noise and stability comparable to other GDOs. Additional developments of the technology include: a frequency quadrupler to 145 GHz with 18 percent efficiency and 15 percent fixed tuned bandwidth; frequency doublers featuring 124, 240, and 480 GHz; an integrated 874-GHz subharmonic mixer with a mixer noise temperature of 3,000 K DSB (double sideband) and mixer conversion loss of 11.8 dB DSB; a high-efficiency frequency tripler design with peak output power of 23 mW and 14 mW, and efficiency of 16 and 13 percent, respectively; millimeter-wave integrated circuit (MMIC) power amplifiers to the 30-40 GHz band with high DC power efficiency; and an 874-GHz radiometer suitable for airborne observation with state-of-the-art sensitivity at room temperature and less than 5 W of total power consumption.

  1. MMICs with Radial Probe Transitions to Waveguides

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam; Pukala, David; Soria, Mary; Fung, King Man; Gaier, Todd; Radisic, Vesna; Lai, Richard

    2009-01-01

    A document presents an update on the innovation reported in Integrated Radial Probe Transition From MMIC to Waveguide (NPO-43957), NASA Tech Briefs Vol. 31, No. 5 (May 2007), page 38. To recapitulate: To enable operation or testing of a monolithic microwave integrated circuit (MMIC), it is necessary to mount the MMIC in a waveguide package that typically has cross-sectional waveguide dimensions of the order of a few hundred microns. A radial probe transition between an MMIC operating at 340 GHz and a waveguide had been designed (but not yet built and tested) to be fabricated as part of a monolithic unit that would include the MMIC. The radial probe could readily be integrated with an MMIC amplifier because the design provided for fabrication of the transition on a substrate of the same material (InP) and thickness (50 m) typical of substrates of MMICs that can operate above 300 GHz. As illustrated in the updated document by drawings, photographs, and plots of test data, the concept has now been realized by designing, fabricating, and testing several MMIC/radial- probe integrated-circuit chips and designing and fabricating a waveguide package to contain each chip.

  2. Low-noise cryogenic transmission line

    NASA Technical Reports Server (NTRS)

    Norris, D.

    1987-01-01

    New low-noise cryogenic input transmission lines have been developed for the Deep Space Network (DSN) at 1.668 GHz for cryogenically cooled Field Effect Transistors (FET) and High Electron Mobility Transistor (HEMT) amplifiers. These amplifiers exhibit very low noise temperatures of 5 K to 15 K, making the requirements for a low-noise input transmission line critical. Noise contribution to the total amplifier system from the low-noise line is less than 0.5 K for both the 1.668-GHz and 2.25-GHz FET systems. The 1.668-GHz input line was installed in six FET systems which were implemented in the DSN for the Venus Balloon Experiment. The 2.25-GHz input line has been implemented in three FET systems for the DSN 34-m HEF antennas, and the design is currently being considered for use at higher frequencies.

  3. Integrated Radial Probe Transition From MMIC to Waveguide

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam

    2007-01-01

    A radial probe transition between a monolithic microwave integrated circuit (MMIC) and a waveguide has been designed for operation at frequency of 340 GHz and to be fabricated as part of a monolithic unit that includes the MMIC. Integrated radial probe transitions like this one are expected to be essential components of future MMIC amplifiers operating at frequencies above 200 GHz. While MMIC amplifiers for this frequency range have not yet been widely used because they have only recently been developed, there are numerous potential applications for them-- especially in scientific instruments, test equipment, radar, and millimeter-wave imaging systems for detecting hidden weapons.

  4. Ka-Band Waveguide 2-Way Hybrid Combiner for MMIC Amplifiers with Unequal and Arbitrary Power Output Ratio

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N (Inventor); Chevalier, Christine T (Inventor); Wintucky, Edwin G (Inventor); Freeman, Jon C (Inventor)

    2016-01-01

    One or more embodiments of the present invention describe an apparatus and method to combine unequal powers. The apparatus includes a first input port, a second input port, and a combiner. The first input port is operably connected to a first power amplifier and is configured to receive a first power from the first power amplifier. The second input port is operably connected to a second power amplifier and is configured to receive a second power from the second power amplifier. The combiner is configured to simultaneously receive the first power from the first input port and the second power from the second input port. The combiner is also configured to combine the first power and second power to produce a maximized power. The first power and second power are unequal.

  5. Efficiency Enhancement of Pico-cell Base Station Power Amplifier MMIC in Gallium Nitride HFET Technology Using the Doherty technique

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sashieka

    With the growth of smart phones, the demand for more broadband, data centric technologies are being driven higher. As mobile operators worldwide plan and deploy 4th generation (4G) networks such as LTE to support the relentless growth in mobile data demand, the need for strategically positioned pico-sized cellular base stations known as 'pico-cells' are gaining traction. In addition to having to design a transceiver in a much compact footprint, pico-cells must still face the technical challenges presented by the new 4G systems, such as reduced power consumptions and linear amplification of the signals. The RF power amplifier (PA) that amplifies the output signals of 4G pico-cell systems face challenges to minimize size, achieve high average efficiencies and broader bandwidths while maintaining linearity and operating at higher frequencies. 4G standards as LTE use non-constant envelope modulation techniques with high peak to average ratios. Power amplifiers implemented in such applications are forced to operate at a backed off region from saturation. Therefore, in order to reduce power consumption, a design of a high efficiency PA that can maintain the efficiency for a wider range of radio frequency signals is required. The primary focus of this thesis is to enhance the efficiency of a compact RF amplifier suitable for a 4G pico-cell base station. For this aim, an integrated two way Doherty amplifier design in a compact 10mm x 11.5mm2 monolithic microwave integrated circuit using GaN device technology is presented. Using non-linear GaN HFETs models, the design achieves high effi-ciencies of over 50% at both back-off and peak power regions without compromising on the stringent linearity requirements of 4G LTE standards. This demonstrates a 17% increase in power added efficiency at 6 dB back off from peak power compared to conventional Class AB amplifier performance. Performance optimization techniques to select between high efficiency and high linearity operation are

  6. Waveguide Transition for Submillimeter-Wave MMICs

    NASA Technical Reports Server (NTRS)

    Leong, Kevin M.; Deal, William R.; Radisic, Vesna; Mei, Xiaobing; Uyeda, Jansen; Lai, Richard; Fung, King Man; Gaier, Todd C.

    2009-01-01

    An integrated waveguide-to-MMIC (monolithic microwave integrated circuit) chip operating in the 300-GHz range is designed to operate well on high-permittivity semiconductor substrates typical for an MMIC amplifier, and allows a wider MMIC substrate to be used, enabling integration with larger MMICs (power amplifiers). The waveguide-to- CBCPW (conductor-backed coplanar waveguide) transition topology is based on an integrated dipole placed in the E-plane of the waveguide module. It demonstrates low loss and good impedance matching. Measurement and simulation demonstrate that the loss of the transition and waveguide loss is less than 1-dB over a 340-to-380-GHz bandwidth. A transition is inserted along the propagation direction of the waveguide. This transition uses a planar dipole aligned with the maximum E-field of the TE10 waveguide mode as an inter face between the waveguide and the MMIC. Mode conversion between the coplanar striplines (CPS) that feed the dipole and the CBCPW transmission line is accomplished using a simple air-bridge structure. The bottom side ground plane is truncated at the same reference as the top-side ground plane, leaving the end of the MMIC suspended in air.

  7. MMIC Package for Millimeter Wave Frequency

    NASA Technical Reports Server (NTRS)

    Bharj, Sarjit Singh; Yuan, Steve

    1997-01-01

    Princeton Microwave Technology has successfully demonstrated the transfer of technology for the MMIC package. During this contract the package design was licensed from Hughes Aircraft Company for manufacture within the U.S. A major effort was directed towards characterization of the ceramic material for its dielectric constant and loss tangent properties. After selection of a ceramic tape, the high temperature co-fired ceramic package was manufactured in the U.S. by Microcircuit Packaging of America, Inc. Microwave measurements of the MMIC package were conducted by an intercontinental microwave test fixture. The package demonstrated a typical insertion loss of 0.5 dB per transition up to 32 Ghz and a return loss of better than 15 db. The performance of the package has been demonstrated from 2 to 30 Ghz by assembling three different MMIC amplifiers. Two of the MMIC amplifiers were designed for the 26 Ghz to 30 Ghz operation while the third MMIC was a distributed amplifier from 2 to 26.5 Ghz. The measured gain of the amplifier is consistent with the device data. The package costs are substantially lower than comparable packages available commercially. Typically the price difference is greater than a factor of three. The package cost is well under $5.00 for a quantity of 10,000 pieces.

  8. Broadband Characterization of a 100 to 180 GHz Amplifier

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka; Deal, W. R.; Mei, X. B.; Lai, R.

    2007-01-01

    Atmospheric science and weather forecasting require measurements of the temperature and humidity vs. altitude. These sounding measurements are obtained at frequencies close to the resonance frequencies of oxygen (118 GHz) and water (183 GHz) molecules. We have characterized a broadband amplifier that will increase the sensitivity of sounding and other instruments at these frequencies. This study demonstrated for the first t1me continuous low noise amplification from 100 to 180 GHz. The measured InP monolithic millimeter-wave Integrated circuit (MMIC) amplifier had more than 18 dB of gain from 100 to 180 GHz and 15 dB of gain up to 220 GHz. This is the widest bandwidth low noise amplifier result at these frequencies to date. The circuit was fabricated in Northrop Grumman Corporation 35 nm InP high electron mobility transistor (HEMT).

  9. A novel low-noise linear-in-dB intermediate frequency variable-gain amplifier for DRM/DAB tuners

    NASA Astrophysics Data System (ADS)

    Keping, Wang; Zhigong, Wang; Jianzheng, Zhou; Xuemei, Lei; Mingzhu, Zhou

    2009-03-01

    A broadband CMOS intermediate frequency (IF) variable-gain amplifier (VGA) for DRM/DAB tuners is presented. The VGA comprises two cascaded stages: one is for noise-canceling and another is for signal-summing. The chip is fabricated in a standard 0.18 μm 1P6M RF CMOS process of SMIC. Measured results show a good linear-in-dB gain characteristic in 28 dB dynamic gain range of -10 to 18 dB. It can operate in the frequency range of 30-700 MHz and consumes 27 mW at 1.8 V supply with the on-chip test buffer. The minimum noise figure is only 3.1 dB at maximum gain and the input-referred 1 dB gain compression point at the minimum gain is -3.9 dBm.

  10. A design concept for an MMIC microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Smetana, J.; Acosta, R.

    1986-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka band advanced satellite communication antenna systems. The proposed design concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required. The proposed design concept takes into consideration the RF characteristics and actual phyical dimensions of the MMIC devices. Also, solutions to spatial constraints and interconnections associated with currently available packaging designs are discussed. Finally, the design of the microstrip radiating elements and their radiation characteristics are examined.

  11. Development of a 150-GHz MMIC Module Prototype for Large-Scale CMB Radiation

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Lau, Judy M.; Sieth, Matthew M.; VanWinkle, Daniel; Tantawi, Sami

    2011-01-01

    HEMT-based receiver arrays with excellent noise and scalability are already starting to be manufactured at 100 GHz, but the advances in technology should make it possible to develop receiver modules with even greater operation frequency up to 200 GHz. A prototype heterodyne amplifier module has been developed for operation from 140 to 170 GHz using monolithic millimeter-wave integrated circuit (MMIC) low-noise InP high electron mobility transistor (HEMT) amplifiers. The compact, scalable module is centered on the 150-GHz atmospheric window using components known to operate well at these frequencies. Arrays equipped with hundreds of these modules can be optimized for many different astrophysical measurement techniques, including spectroscopy and interferometry. This module is a heterodyne receiver module that is extremely compact, and makes use of 35-nm InP HEMT technology, and which has been shown to have excellent noise temperatures when cooled cryogenically to 30 K. This reduction in system noise over prior art has been demonstrated in commercial mixers (uncooled) at frequencies of 160-180 GHz. The module is expected to achieve a system noise temperature of 60 K when cooled. An MMIC amplifier module has been designed to demonstrate the feasibility of expanding heterodyne amplifier technology to the 140 to 170-GHz frequency range for astronomical observations. The miniaturization of many standard components and the refinement of RF interconnect technology have cleared the way to mass-production of heterodyne amplifier receivers, making it a feasible technology for many large-population arrays. This work furthers the recent research efforts in compact coherent receiver modules, including the development of the Q/U Imaging ExperimenT (QUIET) modules centered at 40 and 90 GHz, and the production of heterodyne module prototypes at 90 GHz.

  12. Ultra-low-noise microwave amplifiers

    NASA Technical Reports Server (NTRS)

    Clauss, R. C.; Trowbridge, D.

    1980-01-01

    The highlights of 20 years of maser use and development are presented. Masers discussed include cavity, traveling wave, K band, and S band. Noise temperatures measured since 1960 are summarized. Use of masers in the Deep Space Network is presented. Costs associated with the construction of masers systems are given.

  13. EHF low-noise FET receiver

    NASA Technical Reports Server (NTRS)

    Schellenberg, J. M.; Watkins, E. T.

    1983-01-01

    Extremely high frequency (EHF) receivers for military and NASA programs must be small, lightweight, and highly reliable. In connection with recent advances in the development of mm-wave FET devices and circuits, a basis has been obtained for the eventual replacement of diode mixer front-ends by FET preamplifiers in receivers up to 94 GHz. By placing a low noise amplifier in front of the mixer it is possible to achieve a lower system noise figure than that found in conventional mm-wave receivers. A broader bandwidth can also be provided. Attention is given to the receiver configuration, a low noise FET amplifier, an image rejection filter, a dual-gate FET mixer, a FET local oscillator, and a FET receiver.

  14. Millimeter wave band ultra wideband transmitter MMIC

    NASA Astrophysics Data System (ADS)

    Ling, Jin; Rolland, Nathalie

    2015-09-01

    This paper presents a new millimeter-wave (MMW) ultra wideband (UWB) transmitter MMIC which has been developed in an OMMIC 0.1 μm GaAs PHEMT foundry process (ft = 100 GHz) for 22-29 GHz vehicular radar systems. The transmitter is composed of an MMW negative resistance oscillator (NRO), a power amplifier (PA), and two UWB pulse generators (PGs). In order to convert the UWB pulse signal to MMW frequency and reduce the total power consumption, the MMW NRO is driven by one of the UWB pulse generators and the power amplifier is triggered by another UWB pulse generator. The main advantages of this transmitter are: new design, simple architecture, high-precision distance measurements, infinite ON/OFF switch ratio, and low power consumption. The total power consumption of the transmitter MMIC is 218 mW with a peak output power of 5.5 dBm at 27 GHz.

  15. A design concept for an MMIC (Monolithic Microwave Integrated Circuit) microstrip phased array

    NASA Technical Reports Server (NTRS)

    Lee, Richard Q.; Smetana, Jerry; Acosta, Roberto

    1987-01-01

    A conceptual design for a microstrip phased array with monolithic microwave integrated circuit (MMIC) amplitude and phase controls is described. The MMIC devices used are 20 GHz variable power amplifiers and variable phase shifters recently developed by NASA contractors for applications in future Ka proposed design, which concept is for a general NxN element array of rectangular lattice geometry. Subarray excitation is incorporated in the MMIC phased array design to reduce the complexity of the beam forming network and the number of MMIC components required.

  16. MMIC technology for advanced space communications systems

    NASA Technical Reports Server (NTRS)

    Downey, A. N.; Connolly, D. J.; Anzic, G.

    1984-01-01

    The current NASA program for 20 and 30 GHz monolithic microwave integrated circuit (MMIC) technology is reviewed. The advantages of MMIC are discussed. Millimeter wavelength MMIC applications and technology for communications systems are discussed. Passive and active MMIC compatible components for millimeter wavelength applications are investigated. The cost of a millimeter wavelength MMIC's is projected.

  17. V-band pseudomorphic HEMT MMIC phased array components for space communications

    NASA Astrophysics Data System (ADS)

    Lan, G. L.; Pao, C. K.; Wu, C. S.; Hu, M.; Downey, Alan N.

    1992-08-01

    Recent advances in pseudomorphic high-electron-mobility transistor (PMHEMT) monolithic microwave integrated circuit (MMIC) technology have made it the preferred candidate for high performance millimeter-wave components for phased array applications. The development of V-band PMHEMT/MMIC components including power amplifiers and phase shifters is described. For the single-stage MMIC power amplifier employing a 200 micron PMHEMT, we achieved 151.4 mW output power (757.0 mW/mm) with 1.8 dB associated gain and 26.4 percent power-added efficiency at 60 GHz. A two-stage MMIC amplifier utilizing the same devices demonstrated small-signal gain as high as 15 dB at 58 GHz. And, for the phase shifter, a four-bit phase shifter with less than 8 dB insertion loss from 61 to 63 GHz was measured.

  18. Ultra low-noise charge coupled device

    NASA Technical Reports Server (NTRS)

    Janesick, James R. (Inventor)

    1993-01-01

    Special purpose CCD designed for ultra low-noise imaging and spectroscopy applications that require subelectron read noise floors, wherein a non-destructive output circuit operating near its 1/f noise regime is clocked in a special manner to read a single pixel multiple times. Off-chip electronics average the multiple values, reducing the random noise by the square-root of the number of samples taken. Noise floors below 0.5 electrons rms are possible in this manner. In a preferred embodiment of the invention, a three-phase CCD horizontal register is used to bring a pixel charge packet to an input gate adjacent a floating gate amplifier. The charge is then repeatedly clocked back and forth between the input gate and the floating gate. Each time the charge is injected into the potential well of the floating gate, it is sensed non-destructively. The floating gate amplifier is provided with a reference voltage of a fixed value and a pre-charge gate for resetting the amplifier between charge samples to a constant gain. After the charge is repeatedly sampled a selected number of times, it is transferred by means of output gates, back into the horizontal register, where it is clocked in a conventional manner to a diffusion MOSFET amplifier. It can then be either sampled (destructively) one more time or otherwise discarded.

  19. 164-GHz MMIC HEMT Frequency Doubler

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi; Morgan, Matthew

    2003-01-01

    A monolithic microwave integrated circuit (MMIC) that includes a high-electron-mobility transistor (HEMT) has been developed as a prototype of improved frequency doublers for generating signals at frequencies greater than 100 GHz. Signal sources that operate in this frequency range are needed for a variety of applications, notably including general radiometry and, more specifically, radiometric remote sensing of the atmosphere. Heretofore, it has been common practice to use passive (diode-based) frequency multipliers to obtain frequencies greater than 100 GHz. Unfortunately, diode-based frequency multipliers are plagued by high DC power consumption and low conversion efficiency. Moreover, multiplier diodes are not easily integrated with such other multiplier-circuit components as amplifiers and oscillators. The goals of developing the present MMIC HEMT frequency doubler were (1) to utilize the HEMT as an amplifier to increase conversion efficiency (more precisely, to reduce conversion loss), thereby increasing the output power for a given DC power consumption or, equivalently, reducing the DC power consumption for a given output power; and (2) to provide for the integration of amplifier and oscillator components on the same chip. The MMIC frequency doubler (see Figure 1) contains an AlInAs/GaInAs/InP HEMT biased at pinch-off to make it function as a class-B amplifier (meaning that it conducts in half-cycle pulses). Grounded coplanar waveguides (GCPWs) are used as impedance-matching transmission lines. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. Another combination of GCPWs also serves both as a low-pass filter to suppress undesired oscillations at frequencies below 60 GHz and as a DC blocker. Large decoupling capacitors and epitaxial resistors are added in the drain and gate lines to suppress bias oscillations. At the output terminal, the fundamental frequency is suppressed by a quarter-wave open stub, which presents

  20. The 30 GHz communications satellite low noise receiver

    NASA Technical Reports Server (NTRS)

    Steffek, L. J.; Smith, D. W.

    1983-01-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  1. The 30 GHz communications satellite low noise receiver

    NASA Astrophysics Data System (ADS)

    Steffek, L. J.; Smith, D. W.

    1983-10-01

    A Ka-band low noise front end in proof of concept (POC) model form for ultimate spaceborne communications receiver deployment was developed. The low noise receiver consists of a 27.5 to 30.0 GHz image enhanced mixer integrated with a 3.7 to 6.2 GHz FET low noise IF amplifier and driven by a self contained 23.8 GHz phase locked local oscillator source. The measured level of receiver performance over the 27.3 to 30.0 GHz RF/3.7 to 6.2 GHz IF band includes 5.5 to 6.5 dB (typ) SSB noise figure, 20.5 + or - 1.5 dB conversion gain and +23 dBm minimum third order two tone intermodulation output intercept point.

  2. Low noise lead screw positioner

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1986-01-01

    A very precise and low noise lead screw positioner, for positioning a retroreflector in an interferometer is described. A gas source supplies inert pressurized gas, that flows through narrow holes into the clearance space between a nut and the lead screw. The pressurized gas keeps the nut out of contact with the screw. The gas flows axially along the clearance space, into the environment. The small amount of inert gas flowing into the environment minimizes pollution. By allowing such flow into the environment, no seals are required between the end of the nut and the screw.

  3. Low-noise pulse conditioner

    DOEpatents

    Bird, David A.

    1983-01-01

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits.

  4. Low noise charge ramp electrometer

    DOEpatents

    Morgan, John P.; Piper, Thomas C.

    1992-01-01

    An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit.

  5. Low noise charge ramp electrometer

    DOEpatents

    Morgan, J.P.; Piper, T.C.

    1992-10-06

    An electrometer capable of measuring small currents without the use of a feedback resistor which tends to contribute a large noise factor to the measured data. The electrometer eliminates the feedback resistor through the use of a feedback capacitor located across the electrometer amplifier. The signal from the electrometer amplifier is transferred to a electrometer buffer amplifier which serves to transfer the signal to several receptors. If the electrometer amplifier is approaching saturation, the buffer amplifier signals a reset discriminator which energizes a coil whose magnetic field closes a magnetic relay switch which in turn resets or zeros the feedback capacitor. In turn, a reset complete discriminator restarts the measurement process when the electrometer amplifier approaches its initial condition. The buffer amplifier also transmits the voltage signal from the electrometer amplifier to a voltage-to-frequency converter. The signals from the voltage-to-frequency converter are counted over a fixed period of time and the information is relayed to a data processor. The timing and sequencing of the small current measuring system is under the control of a sequence control logic unit. 2 figs.

  6. Low-noise pulse conditioner

    DOEpatents

    Bird, D.A.

    1981-06-16

    A low-noise pulse conditioner is provided for driving electronic digital processing circuitry directly from differentially induced input pulses. The circuit uses a unique differential-to-peak detector circuit to generate a dynamic reference signal proportional to the input peak voltage. The input pulses are compared with the reference signal in an input network which operates in full differential mode with only a passive input filter. This reduces the introduction of circuit-induced noise, or jitter, generated in ground referenced input elements normally used in pulse conditioning circuits, especially speed transducer processing circuits. This circuit may be used for conditioning the sensor signal from the Fidler coil in a gas centrifuge for separation of isotopic gaseous mixtures.

  7. A design on low noise imaging circuit for SWIR sensor

    NASA Astrophysics Data System (ADS)

    Fan, Ben; Han, Zhixue; Ma, Fei; Dong, Shuli

    2016-11-01

    SWIR (Short Wave Infrared) imaging is an important imaging technology in space remote sensing. According to the characteristics of SWIR detector, the whole scheme of low noise imaging circuit is presented in this paper. For certain key circuit which noise is sensitive in the design, such as bias generation circuit, analysis of noise sources and calculation of theoretical noise value of actual circuit which is usually ignored in previous researches are proposed in order to estimate the level of circuit noise and optimize the circuit to reduce noise. The structure of analog filter amplifier circuit is also analyzed by introducing noise-factor analytic approach, based on the analysis result some design principles of the circuit are proposed. The noise suppression methods in the design are separately analyzed in both time suppression and space suppression; some specific methods for these two kinds of measures are listed in this paper. The final experiment results indicate that the low noise imaging circuit design based on above methods is reasonable and effective, the circuit has a higher SNR and can work normally at room temperature, and the whole design meets the original requirement of low noise. This low noise circuit for SWIR detector and its methods to analyze and calculate noise value are valuable examples for future similar designs.

  8. Scalable, Low-Noise Architecture for Integrated Terahertz Imagers

    NASA Astrophysics Data System (ADS)

    Gergelyi, Domonkos; Földesy, Péter; Zarándy, Ákos

    2015-06-01

    We propose a scalable, low-noise imager architecture for terahertz recordings that helps to build large-scale integrated arrays from any field-effect transistor (FET)- or HEMT-based terahertz detector. It enhances the signal-to-noise ratio (SNR) by inherently enabling complex sampling schemes. The distinguishing feature of the architecture is the serially connected detectors with electronically controllable photoresponse. We show that this architecture facilitate room temperature imaging by decreasing the low-noise amplifier (LNA) noise to one-sixteenth of a non-serial sensor while also reducing the number of multiplexed signals in the same proportion. The serially coupled architecture can be combined with the existing read-out circuit organizations to create high-resolution, coarse-grain sensor arrays. Besides, it adds the capability to suppress overall noise with increasing array size. The theoretical considerations are proven on a 4 by 4 detector array manufactured on 180 nm feature sized standard CMOS technology. The detector array is integrated with a low-noise AC-coupled amplifier of 40 dB gain and has a resonant peak at 460 GHz with 200 kV/W overall sensitivity.

  9. Cryogenetically Cooled Field Effect Transistors for Low-Noise Systems

    NASA Technical Reports Server (NTRS)

    Wollack, Edward J.; Rabin, Douglas M. (Technical Monitor)

    2002-01-01

    Recent tends in the design, fabrication and use of High-Electron-Mobility-Transistors (HEMT) in low noise amplifiers are reviewed. Systems employing these devices have achieved the lowest system noise for wavelengths greater than three millimeters with relatively modest cryogenic cooling requirements in a variety of ground and space based applications. System requirements which arise in employing such devices in imaging applications are contrasted with other leading coherent detector candidates at microwave wavelengths. Fundamental and practical limitations which arise in the context of microwave application of field effect devices at cryogenic temperatures will be discussed from a component and systems point of view.

  10. Superconducting Quantum Arrays for Wideband Antennas and Low Noise Amplifiers

    NASA Technical Reports Server (NTRS)

    Mukhanov, O.; Prokopemko, G.; Romanofsky, Robert R.

    2014-01-01

    Superconducting Quantum Iinetference Filters (SQIF) consist of a two-dimensional array of niobium Josephson Junctions formed into N loops of incommensurate area. This structure forms a magnetic field (B) to voltage transducer with an impulse like response at B0. In principle, the signal-to-noise ratio scales as the square root of N and the noise can be made arbitrarily small (i.e. The SQIF chips are expected to exhibit quantum limited noise performance). A gain of about 20 dB was recently demonstrated at 10 GHz.

  11. Low Noise Amplifiers Based on Lattice Engineered Substrates

    DTIC Science & Technology

    2007-11-02

    34 Improvement of the interface quality during thermal oxidation of -3.5 -3 -2.5 -2 -1.5 .1 -0.5 0 0.5 Al/sub 0.98/Ga/sub 0.02/As layers due to the...Partially oxidized pHEMTs showed improved power added efficiencies (PAEs) in comparison to fully oxidized or unoxidized devices and negligible charge...lattice- matched material system. The current aperture in the devices presented in this paper were produced by the partial oxidation of a high

  12. An Extremely Wide Bandwidth, Low Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, J.

    2004-01-01

    Our group has designed a heterodyne submillimeter receiver that offers a very wide IF bandwidth of 12 GHz, while still maintaining a low noise temperature. The 180-300 GHz double-sideband design uses a single SI5 device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz. providing an instantaneous RF bandwidth of 24 GHz (double-sideband). Intensive simulations predict that the junction will achieve a conversion loss better than 1-2 dB and a mixer noise temperature of less than 20 K across the band (twice the quantum limit). The single sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical and environmental observations beyond the capabilities of current instruments. Lab testing of the receiver will begin this summer, and first light on the CSO should be in the Spring of 2003. At the CSO, we plan to use receiver with WASP2, a wideband spectrometer, to search for spectral lines from SCUBA sources. This approach should allow us to rapidly develop a catalog of redshifts for these objects.

  13. A 90 GHz Amplifier Assembled Using a Bump-Bonded InP-Based HEMT

    NASA Technical Reports Server (NTRS)

    Pinsukanjana, Paul R.; Samoska, Lorene A.; Gaier, Todd C.; Smith, R. Peter; Ksendzov, Alexander; Fitzsimmons, Michael J.; Martin, Suzanne C.

    1998-01-01

    We report on the performance of a novel W-band amplifier fabricated utilizing very compact bump bonds. We bump-bonded a high-speed, low-noise InP high electron mobility transistor (HEMT) onto a separately fabricated passive circuit having a GaAs substrate. The compact bumps and small chip size were used for efficient coupling and maximum circuit design flexibility. This new quasi-monolithic millimeter-wave integrated circuit (Q-MMIC) amplifier exhibits a peak gain of 5.8 dB at approx. 90 GHz and a 3 dB bandwidth of greater than 25%. To our knowledge, this is the highest frequency amplifier assembled using bump-bonded technology. Our bump-bonding technique is a useful alternative to the high cost of monolithic millimeter-wave integrated circuits (MMIC's). Effects of the bumps on the circuit appear to be minimal. We used the simple matching circuit for demonstrating the technology - future circuits would have all of the elements (resistors, via holes, bias lines, etc.) included 'in conventional MMIC's. Our design in different from other investigators' efforts in that the bumps are only 8 microns thick by 15 microns wide. The bump sizes were sufficiently small that the devices, originally designed for W-band hybrid circuits, could be bonded without alteration. Figure 3 shows the measured and simulated magnitude of S-parameters from 85-120 GHz, of the InP HEMT bump-bonded to the low noise amplifier (LNA) passive. The maximum gain is 5.8 dB at approx. 90 GHz, and gain extends to 117 GHz. Measurement of a single device (without matching networks) shows approx. 1 dB of gain at 90 GHz. The measured gain of the amplifier agrees well with the design in the center of the measurement band, and the agreement falls off at the band edges. Since no accommodation for the bump-bonding parasitics was made in the design, the result implies that the parasitic elements associated with the bonding itself do not dominate the performance of the LNA circuit. It should be noted that this

  14. The low noise limit in gene expression

    SciTech Connect

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.; Razooky, Brandon S.

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.

  15. The Low Noise Limit in Gene Expression

    PubMed Central

    Dar, Roy D.; Razooky, Brandon S.; Weinberger, Leor S.; Cox, Chris D.; Simpson, Michael L.

    2015-01-01

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiency can–and in the case of E. coli does–control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. These results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes. PMID:26488303

  16. The low noise limit in gene expression

    DOE PAGES

    Dar, Roy D.; Weinberger, Leor S.; Cox, Chris D.; ...

    2015-10-21

    Protein noise measurements are increasingly used to elucidate biophysical parameters. Unfortunately noise analyses are often at odds with directly measured parameters. Here we show that these inconsistencies arise from two problematic analytical choices: (i) the assumption that protein translation rate is invariant for different proteins of different abundances, which has inadvertently led to (ii) the assumption that a large constitutive extrinsic noise sets the low noise limit in gene expression. While growing evidence suggests that transcriptional bursting may set the low noise limit, variability in translational bursting has been largely ignored. We show that genome-wide systematic variation in translational efficiencymore » can-and in the case of E. coli does-control the low noise limit in gene expression. Therefore constitutive extrinsic noise is small and only plays a role in the absence of a systematic variation in translational efficiency. Lastly, these results show the existence of two distinct expression noise patterns: (1) a global noise floor uniformly imposed on all genes by expression bursting; and (2) high noise distributed to only a select group of genes.« less

  17. A battery-based, low-noise voltage source

    NASA Astrophysics Data System (ADS)

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of ±15 and ±5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7×10-7 over 6.5 h and a noise level equal or smaller than 30 nV/√Hz is achieved.

  18. A battery-based, low-noise voltage source.

    PubMed

    Wagner, Anke; Sturm, Sven; Schabinger, Birgit; Blaum, Klaus; Quint, Wolfgang

    2010-06-01

    A highly stable, low-noise voltage source was designed to improve the stability of the electrode bias voltages of a Penning trap. To avoid excess noise and ground loops, the voltage source is completely independent of the public electric network and uses a 12 V car battery to generate output voltages of +/-15 and +/-5 V. First, the dc supply voltage is converted into ac-voltage and gets amplified. Afterwards, the signal is rectified, filtered, and regulated to the desired output value. Each channel can deliver up to 1.5 A. The current as well as the battery voltage and the output voltages can be read out via a universal serial bus (USB) connection for monitoring purposes. With the presented design, a relative voltage stability of 7 x 10(-7) over 6.5 h and a noise level equal or smaller than 30 nV/square root(Hz) is achieved.

  19. A Wide-Bandwidth, Low-Noise SIS Receiver Design for Millimeter and Submillimeter Wavelengths

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; LeDuc, Henry G.; Miller, David; Rice, Frank; Weinreb, Sander; Zmuidzinas, Jonas

    2004-01-01

    In principle, millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We are applying modem design tools, such as 3D electromagnetic simulators and Caltech's SuperMix SIS analysis package, to develop a new generation of waveguide SIS mixers with very broad RF and IF bandwidths. Our initial design consists of a double-sideband mixer targeted for the 180- 300 GHz band that uses a single SIS junction excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output band, limited by the MMIC low-noise IF preamplifier, is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss is predicted to be no more than 1-2 dB (single-sideband) with mixer noise temperatures across the band within 10 Kelvin of the quantum limit. The single-sideband receiver noise temperature goal is 70 Kelvin. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and a demonstration on the CSO should occur in the spring of 2003.

  20. An Extremely Wide Bandwidth, Low-Noise SIS Heterodyne Receiver Design for Millimeter and Submillimeter Observations

    NASA Technical Reports Server (NTRS)

    Sumner, Matthew; Blain, Andrew; Harris, Andrew; Hu, Robert; Rice, Frank; LeDuc, H. G.; Weinreb, Sander; Zmuidzinas, Jonas

    2002-01-01

    Millimeter and submillimeter heterodyne receivers using state-of-the-art SIS detectors are capable of extremely large instantaneous bandwidths with noise temperatures within a few Kelvin of the quantum limit. We present the design for a broadband, sensitive, heterodyne spectrometer under development for the Caltech Submillimeter Observatory (CSO). The 180-300 GHz double-sideband design uses a single SIS device excited by a full bandwidth, fixed-tuned waveguide probe on a silicon substrate. The IF output frequency (limited by the MMIC low noise IF preamplifier) is 6-18 GHz, providing an instantaneous RF bandwidth of 24 GHz (double-sideband). The SIS mixer conversion loss should be no more than 1-2 dB with mixer noise temperatures across the band within 10 K of the quantum limit. The single-sideband receiver noise temperature goal is 70 K. The wide instantaneous bandwidth and low noise will result in an instrument capable of a variety of important astrophysical observations beyond the capabilities of current instruments. Lab testing of the receiver will begin in the summer of 2002, and the first use on the CSO should occur in the spring of 2003.

  1. Progress in GaAs Metamorphic HEMT Technology for Microwave Applications. High Efficiency Ka-Band MHEMT Power MMICs

    NASA Technical Reports Server (NTRS)

    Smith, P. M.; Dugas, D.; Chu, K.; Nichols, K.; Duh, K. H.; Fisher, J.; MtPleasant, L.; Xu, D.; Gunter, L.; Vera, A.

    2003-01-01

    This paper reviews recent progress in the development of GaAs metamorphic HEMT (MHEMT) technology for microwave applications. Commercialization has begun, while efforts to further improve performance, manufacturability and reliability continue. We also report the first multi-watt MHEMT MMIC power amplifiers, demonstrating up to 3.2W output power and record power-added efficiency (PAE) at Ka-band.

  2. Hybrid matrix amplifier

    DOEpatents

    Martens, J.S.; Hietala, V.M.; Plut, T.A.

    1995-01-03

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N[times]M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise. 6 figures.

  3. Hybrid matrix amplifier

    DOEpatents

    Martens, Jon S.; Hietala, Vincent M.; Plut, Thomas A.

    1995-01-01

    The present invention comprises a novel matrix amplifier. The matrix amplifier includes an active superconducting power divider (ASPD) having N output ports; N distributed amplifiers each operatively connected to one of the N output ports of the ASPD; and a power combiner having N input ports each operatively connected to one of the N distributed amplifiers. The distributed amplifier can included M stages of amplification by cascading superconducting active devices. The power combiner can include N active elements. The resulting (N.times.M) matrix amplifier can produce signals of high output power, large bandwidth, and low noise.

  4. A LOW NOISE RF SOURCE FOR RHIC.

    SciTech Connect

    HAYES,T.

    2004-07-05

    The Relativistic Heavy Ion Collider (RHIC) requires a low noise rf source to ensure that beam lifetime during a store is not limited by the rf system. The beam is particularly sensitive to noise from power line harmonics. Additionally, the rf source must be flexible enough to handle the frequency jump required for rebucketing (transferring bunches from the acceleration to the storage rf systems). This paper will describe the design of a Direct Digital Synthesizer (DDS) based system that provides both the noise performance and the flexibility required.

  5. W-Band InP Wideband MMIC LNA with 30K Noise Temperature

    NASA Technical Reports Server (NTRS)

    Weinreb, S.; Lai, R.; Erickson, N.; Gaier, T.; Wielgus, J.

    2000-01-01

    This paper describe a millimeter wave low noise amplifier with extraordinary low noise, low consumption, and wide frequency range. These results are achieved utilizing state-of-the-art InP HEMT transistors coupled with CPW circuit design. The paper describes the transistor models, modeled and measured on-wafer and in-module results at both 300K am 24K operating temperatures for many samples of the device.

  6. Low noise spacecraft attitude control systems

    NASA Technical Reports Server (NTRS)

    Gondhalekar, Vijay; Downer, James R.; Eisenhaure, David B.; Hockney, Richard L.; Johnson, Bruce G.

    1991-01-01

    The authors describe two ongoing research efforts directed at developing advanced spacecraft momentum control flywheels. The first effort is directed at developing low-noise momentum wheels through the use of magnetic bearings. The second effort is directed at demonstrating critical subcomponents of an integrated power and attitude control system (IPACS) that stores energy as kinetic energy in mechanical rotors with the accompanying angular momentum available for attitude control of the spacecraft. The authors describe a ground experiment that was designed to demonstrate an energy storage capability of 1 kWh at a 40 Wh/kg energy density and a 1 kW electrical generation capacity at 85 percent round-trip efficiency and that will allow single-degree-of-freedom gimballing to quantify experimentally the bearing power requirements for processing the flywheel.

  7. Low noise and conductively cooled microchannel plates

    NASA Technical Reports Server (NTRS)

    Feller, W. B.

    1990-01-01

    Microchannel plate (MCP) dynamic range has recently been enhanced for both very low and very high input flux conditions. Improvements in MCP manufacturing technology reported earlier have led to MCPs with substantially reduced radioisotope levels, giving dramatically lower internal background-counting rates. An update is given on the Galileo low noise MCP. Also, new results in increasing the MCP linear counting range for high input flux densities are presented. By bonding the active face of a very low resistance MCP (less than 1 megaohm) to a substrate providing a conductive path for heat transport, the bias current limit (hence, MCP output count rate limit) can be increased up to two orders of magnitude. Normal pulse-counting MCP operation was observed at bias currents of several mA when a curved-channel MCP (80:1) was bonded to a ceramic multianode substrate; the MCP temperature rise above ambient was less than 40 C.

  8. Low-noise fan exit guide vanes

    NASA Technical Reports Server (NTRS)

    Jones, Michael G. (Inventor); Parrott, Tony L. (Inventor); Heidelberg, Laurence J. (Inventor); Envia, Edmane (Inventor)

    2008-01-01

    Low-noise fan exit guide vanes are disclosed. According to the present invention a fan exit guide vane has an outer shell substantially shaped as an airfoil and defining an interior cavity. A porous portion of the outer shell allows communication between the fluctuations in the air passing over the guide vane and the interior cavity. At least one acoustically resonant chamber is located within the interior cavity. The resonant chamber is in communication with the porous portion of the outer perimeter. The resonant chamber is configured to reduce the noise generated at a predetermined frequency. In various preferred embodiments, there is a plurality of acoustically resonant chambers located within the interior cavity. The resonant chambers can be separated by one or more partitions within the interior cavity. In these embodiments, the resonant chambers can be configured to reduce the noise generated over a range of predetermined frequencies.

  9. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  10. Enabling compact MMIC-based frontends for millimeter-wave imaging radar and radiometry at 94 and 210 GHz

    NASA Astrophysics Data System (ADS)

    Kallfass, Ingmar; Tessmann, Axel; Leuther, Arnulf; Kuri, Michael; Riessle, Markus; Zink, Martin; Massler, Hermann; Schlechtweg, Michael; Ambacher, Oliver

    2008-10-01

    We report on MMIC-based analog frontend components for imaging radar and radiometry at high millimeter-wave frequencies. The MMICs are realized in our metamorphic HEMT technology. In W-band, the focus is on analog frontends with multi-pixel capability. A compact four-channel receiver module based on four single-chip heterodyne receiver MMICs achieves a noise figure of 4.2 dB and a conversion gain of 7 dB. A W-band five-to-one switch MMIC with less than 3.5 dB insertion loss addresses four antenna ports and uses an integrated reference termination for pixel normalization. Both components operate in a frequency range from 75 to 100 GHz, making them suitable for broadband imaging systems with high geometrical resolution. After an overview of MMIC amplifier performance over the entire millimeter-wave frequency range, we present a chip set for imaging radar at 210 GHz, comprising linear and frequency-translating circuits.

  11. High-Altitude MMIC Sounding Radiometer for the Global Hawk Unmanned Aerial Vehicle

    NASA Technical Reports Server (NTRS)

    Brown, Shannon T.; Lim, Boon H.; Tanner, Alan B.; Tanabe, Jordan M.; Kangaslahti, Pekka P.; Gaier, Todd C.; Soria, Mary M.; Lambrigtsen, Bjorn H.; Denning, Richard F.; Stachnik, Robert A.

    2012-01-01

    Microwave imaging radiometers operating in the 50-183 GHz range for retrieving atmospheric temperature and water vapor profiles from airborne platforms have been limited in the spatial scales of atmospheric structures that are resolved not because of antenna aperture size, but because of high receiver noise masking the small variations that occur on small spatial scales. Atmospheric variability on short spatial and temporal scales (second/ km scale) is completely unresolved by existing microwave profilers. The solution was to integrate JPL-designed, high-frequency, low-noise-amplifier (LNA) technology into the High-Altitude MMIC Sounding Radiometer (HAMSR), which is an airborne microwave sounding radiometer, to lower the system noise by an order of magnitude to enable the instrument to resolve atmospheric variability on small spatial and temporal scales. HAMSR has eight sounding channels near the 60-GHz oxygen line complex, ten channels near the 118.75-GHz oxygen line, and seven channels near the 183.31-GHz water vapor line. The HAMSR receiver system consists of three heterodyne spectrometers covering the three bands. The antenna system consists of two back-to-back reflectors that rotate together at a programmable scan rate via a stepper motor. A single full rotation includes the swath below the aircraft followed by observations of ambient (roughly 0 C in flight) and heated (70 C) blackbody calibration targets located at the top of the rotation. A field-programmable gate array (FPGA) is used to read the digitized radiometer counts and receive the reflector position from the scan motor encoder, which are then sent to a microprocessor and packed into data files. The microprocessor additionally reads telemetry data from 40 onboard housekeeping channels (containing instrument temperatures), and receives packets from an onboard navigation unit, which provides GPS time and position as well as independent attitude information (e.g., heading, roll, pitch, and yaw). The raw

  12. The potential impact of MMICs on future satellite communications

    NASA Technical Reports Server (NTRS)

    Dunn, Vernon E.

    1988-01-01

    This is the Final Report representing the results of a 17-month study on the future trends and requirements of Monolithic Microwave Integrated Circuits (MMIC) for space communication applications. Specifically this report identifies potential space communication applications of MMICs, assesses the impact of MMIC on the classes of systems that were identified, determines the present status and probable 10-year growth in capability of required MMIC and competing technologies, identifies the applications most likely to benefit from further MMIC development and presents recommendations for NASA development activities to address the needs of these applications.

  13. Development of an ultra low noise, miniature signal conditioning device for vestibular evoked response recordings

    PubMed Central

    2014-01-01

    Background Inner ear evoked potentials are small amplitude (<1 μVpk) signals that require a low noise signal acquisition protocol for successful extraction; an existing such technique is Electrocochleography (ECOG). A novel variant of ECOG called Electrovestibulography (EVestG) is currently investigated by our group, which captures vestibular responses to a whole body tilt. The objective is to design and implement a bio-signal amplifier optimized for ECOG and EVestG, which will be superior in noise performance compared to low noise, general purpose devices available commercially. Method A high gain configuration is required (>85 dB) for such small signal recordings; thus, background power line interference (PLI) can have adverse effects. Active electrode shielding and driven-right-leg circuitry optimized for EVestG/ECOG recordings were investigated for PLI suppression. A parallel pre-amplifier design approach was investigated to realize low voltage, and current noise figures for the bio-signal amplifier. Results In comparison to the currently used device, PLI is significantly suppressed by the designed prototype (by >20 dB in specific test scenarios), and the prototype amplifier generated noise was measured to be 4.8 nV/Hz @ 1 kHz (0.45 μVRMS with bandwidth 10 Hz-10 kHz), which is lower than the currently used device generated noise of 7.8 nV/Hz @ 1 kHz (0.76 μVRMS). A low noise (<1 nV/Hz) radio frequency interference filter was realized to minimize noise contribution from the pre-amplifier, while maintaining the required bandwidth in high impedance measurements. Validation of the prototype device was conducted for actual ECOG recordings on humans that showed an increase (p < 0.05) of ~5 dB in Signal-to-Noise ratio (SNR), and for EVestG recordings using a synthetic ear model that showed a ~4% improvement (p < 0.01) over the currently used amplifier. Conclusion This paper presents the design and evaluation of an ultra-low noise and miniaturized bio

  14. A gimbaled low noise momentum wheel

    NASA Technical Reports Server (NTRS)

    Bichler, U.; Eckardt, T.

    1993-01-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  15. A low-noise beta-radiometer

    SciTech Connect

    Antonenko, G.I.; Savina, V.I.

    1995-12-01

    The two-channel detector for a low-noise (down to 0.06 sec{sup -1}) beta-radiometer for measuring the mass concentration of {sup 90}Sr in the environment after the chemical extraction of strontium by the oxalate-nitrate method was certified at the D.I. Mendeleev Institute of Metrology (certificate No. 137/93). A detector unit using two end-window self-quenching counters with thin input windows (8 {mu}m thick and 60 mm in diameter) operating as a Geiger-Mueller counter and filled with a mixture of 90% helium (atomic gas) and 10% ethanol (organic molecules) can measure the beta-activity of two substrates concurrently. It is often used to detect the beta-radiation of {sup 90}Sr. This isotope produces particles with energies ranging from 180 to 1000 keV, and the detection efficiency is 50% at a level of 0.1 Bq after measuring for 20 min with an uncertainty of 25%.

  16. Low Noise Exhaust Nozzle Technology Development

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Balan, C.; Mengle, V.; Brausch, J. F.; Shin, H.; Askew, J. W.

    2005-01-01

    NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Development of a propulsion system that satisfies strict airport noise regulations and provides high levels of cruise and transonic performance with adequate takeoff performance, at an acceptable weight, is critical to the success of any HSCT program. The principal objectives were to: 1. Develop a preliminary design of an innovative 2-D exhaust nozzle with the goal of meeting FAR36 Stage III noise levels and providing high levels of cruise performance with a high specific thrust for Mach 2.4 HSCT with a range of 5000 nmi and a payload of 51,900 lbm, 2. Employ advanced acoustic and aerodynamic codes during preliminary design, 3. Develop a comprehensive acoustic and aerodynamic database through scale-model testing of low-noise, high-performance, 2-D nozzle configurations, based on the preliminary design, and 4. Verify acoustic and aerodynamic predictions by means of scale-model testing. The results were: 1. The preliminary design of a 2-D, convergent/divergent suppressor ejector nozzle for a variable-cycle engine powered, Mach 2.4 HSCT was evolved, 2. Noise goals were predicted to be achievable for three takeoff scenarios, and 3. Impact of noise suppression, nozzle aerodynamic performance, and nozzle weight on HSCT takeoff gross weight were assessed.

  17. Forward sweep, low noise rotor blade

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor)

    1996-01-01

    A forward-swept, low-noise rotor blade includes an inboard section, an aft-swept section and a forward-swept outboard section. The rotor blade reduces the noise of rotorcraft, including both standard helicopters and advanced systems such as tiltrotors. The primary noise reduction feature is the forward sweep of the planform over a large portion of the outer blade radius. The rotor blade also includes an aft-swept section. The purpose of the aft-swept region is to provide a partial balance to pitching moments produced by the outboard forward-swept portion of the blade. The rotor blade has a constant chord width; or has a chord width which decreases linearly along the entire blade span; or combines constant and decreasing chord widths, wherein the blade is of constant chord width from the blade root to a certain location on the rotor blade, then decreases linearly to the blade tip thereafter. The noise source showing maximum noise reduction is blade-vortex interaction (BVI) noise. Also reduced are thickness, noise, high speed impulsive noise, cabin vibration and loading noise.

  18. A gimbaled low noise momentum wheel

    NASA Astrophysics Data System (ADS)

    Bichler, U.; Eckardt, T.

    1993-05-01

    The bus actuators are the heart and at the same time the Achilles' heel of accurate spacecraft stabilization systems, because both their performance and their perturbations can have a deciding influence on the achievable pointing accuracy of the mission. The main task of the attitude actuators, which are mostly wheels, is the generation of useful torques with sufficiently high bandwidth, resolution and accuracy. This is because the bandwidth of the whole attitude control loop and its disturbance rejection capability is dependent upon these factors. These useful torques shall be provided, without - as far as possible - parasitic noise like unbalance forces and torques and harmonics. This is because such variable frequency perturbations excite structural resonances which in turn disturb the operation of sensors and scientific instruments. High accuracy spacecraft will further require bus actuators for the three linear degrees of freedom (DOF) to damp structural oscillations excited by various sources. These actuators have to cover the dynamic range of these disturbances. Another interesting feature, which is not necessarily related to low noise performance, is a gimballing capability which enables, in a certain angular range, a three axis attitude control with only one wheel. The herein presented Teldix MWX, a five degree of freedom Magnetic Bearing Momentum Wheel, incorporates all the above required features. It is ideally suited to support, as a gyroscopic actuator in the attitude control system, all High Pointing Accuracy and Vibration Sensitive space missions.

  19. Si/SiGe MMIC's

    NASA Astrophysics Data System (ADS)

    Luy, Johann-Friedrich; Strohm, Karl M.; Sasse, Hans-Eckard; Schueppen, Andreas; Buechler, Josef; Wollitzer, Michael; Gruhle, Andreas; Schaeffler, Friedrich; Guettich, Ulrich; Klaassen, Andreas

    1995-04-01

    Silicon-based millimeter-wave integrated circuits (SIMMWIC's) can provide new solutions for near range sensor and communication applications in the frequency range above 50 GHz. This paper gives a survey on the state-of-the-art performance of this technology and on first applications. The key devices are IMPATT diodes for mm-wave power generation and detection in the self-oscillating mixer mode, p-i-n diodes for use in switches and phase shifters, and Schottky diodes in detector and mixer circuits. The silicon/silicon germanium heterobipolar transistor (SiGe HBT) with f(sub max) values of more than 90 GHz is now used for low-noise oscillators at Ka-band frequencies. First system applications are discussed.

  20. A Low-Noise, Wideband Preamplifier for a Fourier-Transform Ion Cyclotron Resonance Mass Spectrometer

    PubMed Central

    Mathur, Raman; Knepper, Ronald W.; O'Connor, Peter B.

    2009-01-01

    FTMS performance parameters such as limits of detection, dynamic range, sensitivity, and even mass accuracy and resolution can be greatly improved by enhancing its detection circuit. An extended investigation of significant design considerations for optimal signal-to-noise ratio in an FTMS detection circuit are presented. A low noise amplifier for an FTMS is developed based on the discussed design rules. The amplifier has a gain of ≈ 3500 and a bandwidth of 10 kHz - 1 MHz corresponding to m/z range of 100 Da to 10 kDa (at 7 Tesla). The performance of the amplifier was tested on a MALDI-FTMS, and has demonstrated a 25-fold reduction in noise in a mass spectrum of C60 compared to that of a commercial amplifier. PMID:18029195

  1. A very low noise monolithic Horizontal accelerometer.

    NASA Astrophysics Data System (ADS)

    Bertolini, Alessandro; Takamori, Akiteru; Cella, Giancarlo; Fidecaro, Francesco; Francesconi, Mario; Desalvo, Riccardo; Sannibale, Virginio

    2000-04-01

    We present a new low noise, low frequency, horizontal accelerometer. The mechanical design and the machining process aim to improve the sensitivity in the frequency region between 0.01 and 1 Hz, where metal internal friction and thermal elastic effects become critical. The accelerometer mechanics is shaped as a small folded pendulum in order to obtain a very low resonant frequency and low mechanical losses. A folded pendulum is essentially a mass suspended on one side by a simple pendulum and on the other by an inverted pendulum working antagonistically. The straight pendulum positive gravitational spring constant is balanced by the inverted pendulum’s negative one; by changing the center of mass position one can lower arbitrarily the resonant frequency. The only dissipation is in the anelasticity of the mechanical flex joint and in the readout/actuation system. If the spring constant is minimised, the mechanical losses are minimal. The monolithic design of the accelerometer eliminates the stick-and-slip friction localised in the flexure clamps. Low stiffness, 10 micron thick flex joints are achieved by EDM and electropolishing. The instrument is equipped with a low capacitance position sensor; the signal from the sensor is filtered by a PID controller and fed back to the mass through capacitive force actuator for feedback closed-loop operation. The sensor noise matches the expected thermal noise performances, 10-12 m/√Hz , with measuring range of a few microns. The expected sensitivity, less than 10-11 m/ s^2 / √Hz around 150 mHz, is a factor 30 below the state of the art limit. This accelerometer was designed to be integrated in the active control of the LIGO II mirror seismic isolators.

  2. Low Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Hobbs, David E.; Neubert, Robert J.; Malmborg, Eric W.; Philbrick, Daniel H.; Spear, David A.

    1995-01-01

    This report describes the design of a Low Noise ADP Research Fan stage. The fan is a variable pitch design which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes and core stators. This fan stage design was combined with a nacelle and engine core duct to form a powered fan/nacelle, subscale model. This model is intended for use in aerodynamic performance, acoustic and structural testing in a wind tunnel. The model has a 22-inch outer fan diameter and a hub-to-top ratio of 0.426 which permits the use of existing NASA fan and cowl force balance designs and rig drive system. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the PW 17-inch rig previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric analysis at aerodynamic design condition are included. The structural analysis of the fan rotor and attachment is described including the material selections and stress analysis. The blade and attachment are predicted to have adequate low cycle fatigue life, and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the fan exit guide vane and core stator to minimize noise. A fan-FEGV tone analysis developed separately under NASA contract was used to determine these airfoil counts. The fan stage design was matched to a nacelle design to form a fan/nacelle model for wind tunnel testing. The nacelle design was developed under a separate NASA contract. The nacelle was designed with an axisymmetric inlet, cowl and nozzle for convenience in testing and fabrication. Aerodynamic analysis of the nacelle confirmed the required performance at various aircraft operating conditions.

  3. 338-GHz Semiconductor Amplifier Module

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Gaier, Todd C.; Soria, Mary M.; Fung, King Man; Rasisic, Vesna; Deal, William; Leong, Kevin; Mei, Xiao Bing; Yoshida, Wayne; Liu, Po-Hsin; Uyeda, Jansen; Lai, Richard

    2010-01-01

    Research findings were reported from an investigation of new gallium nitride (GaN) monolithic millimeter-wave integrated circuit (MMIC) power amplifiers (PAs) targeting the highest output power and the highest efficiency for class-A operation in W-band (75-110 GHz). W-band PAs are a major component of many frequency multiplied submillimeter-wave LO signal sources. For spectrometer arrays, substantial W-band power is required due to the passive lossy frequency multipliers.

  4. Power-Amplifier Module for 145 to 165 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Peralta, Alejandro

    2007-01-01

    A power-amplifier module that operates in the frequency range of 145 to 165 GHz has been designed and constructed as a combination of (1) a previously developed monolithic microwave integrated circuit (MMIC) power amplifier and (2) a waveguide module. The amplifier chip was needed for driving a high-electron-mobility-transistor (HEMT) frequency doubler. While it was feasible to connect the amplifier and frequency-doubler chips by use of wire bonds, it was found to be much more convenient to test the amplifier and doubler chips separately. To facilitate separate testing, it was decided to package the amplifier and doubler chips in separate waveguide modules. Figure 1 shows the resulting amplifier module. The amplifier chip was described in "MMIC HEMT Power Amplifier for 140 to 170 GHz" (NPO-30127), NASA Tech Briefs, Vol. 27, No. 11, (November 2003), page 49. To recapitulate: This is a three-stage MMIC power amplifier that utilizes HEMTs as gain elements. The amplifier was originally designed to operate in the frequency range of 140 to 170 GHz. The waveguide module is based on a previously developed lower frequency module, redesigned to support operation in the frequency range of 140 to 220 GHz. Figure 2 presents results of one of several tests of the amplifier module - measurements of output power and gain as functions of input power at an output frequency of 150 GHz. Such an amplifier module has many applications to test equipment for power sources above 100 GHz.

  5. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMIC's to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMIC's is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  6. Monolithic Microwave Integrated Circuit (MMIC) technology for space communications applications

    NASA Technical Reports Server (NTRS)

    Connolly, Denis J.; Bhasin, Kul B.; Romanofsky, Robert R.

    1987-01-01

    Future communications satellites are likely to use gallium arsenide (GaAs) monolithic microwave integrated-circuit (MMIC) technology in most, if not all, communications payload subsystems. Multiple-scanning-beam antenna systems are expected to use GaAs MMICs to increase functional capability, to reduce volume, weight, and cost, and to greatly improve system reliability. RF and IF matrix switch technology based on GaAs MMICs is also being developed for these reasons. MMIC technology, including gigabit-rate GaAs digital integrated circuits, offers substantial advantages in power consumption and weight over silicon technologies for high-throughput, on-board baseband processor systems. For the more distant future pseudomorphic indium gallium arsenide (InGaAs) and other advanced III-V materials offer the possibility of MMIC subsystems well up into the millimeter wavelength region. All of these technology elements are in NASA's MMIC program. Their status is reviewed.

  7. MMIC Amplifiers and Wafer Probes for 350 to 500 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Fung, King Man; Andrews, Michael; Campbell, Richard; Ferreira, Linda; Lai, Richard

    2010-01-01

    A wireless avionics interface exploits the constrained nature of data networks in flight systems to use a lightweight routing method. This simplified routing means that a processor is not required, and the logic can be implemented as an intellectual property (IP) core in a field-programmable gate array (FPGA). The FPGA can be shared with the flight subsystem application. In addition, the router is aware of redundant subsystems, and can be configured to provide hot standby support as part of the interface. This simplifies implementation of flight applications requiring hot stand - by support. When a valid inbound packet is received from the network, the destination node address is inspected to determine whether the packet is to be processed by this node. Each node has routing tables for the next neighbor node to guide the packet to the destination node. If it is to be processed, the final packet destination is inspected to determine whether the packet is to be forwarded to another node, or routed locally. If the packet is local, it is sent to an Applications Data Interface (ADI), which is attached to a local flight application. Under this scheme, an interface can support many applications in a subsystem supporting a high level of subsystem integration. If the packet is to be forwarded to another node, it is sent to the outbound packet router. The outbound packet router receives packets from an ADI or a packet to be forwarded. It then uses a lookup table to determine the next destination for the packet. Upon detecting a remote subsystem failure, the routing table can be updated to autonomously bypass the failed subsystem.

  8. Low Noise Results From IMS Site Surveys: A Preliminary New High-Frequency Low Noise Model

    NASA Astrophysics Data System (ADS)

    Ebeling, C.; Astiz, L.; Starovoit, Y.; Tavener, N.; Perez, G.; Given, H. K.; Barrientos, S.; Yamamoto, M.; Hfaiedh, M.; Stewart, R.; Estabrook, C.

    2002-12-01

    Since the establishment of the Provisional Technical Secretariat (PTS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) Organization, a vigorous seismic site survey program has been carried out to identify locations as necessary for International Monitoring System (IMS) primary and auxiliary seismic stations listed in Annex 1 to the Protocol to the CTBT. The IMS Seismic Section maintains for this purpose a small pool of seismic equipment comprised of Guralp CMG-3T and CMG-3ESP and Streckeisen STS-2 broadband seismometers, and Reftek and Guralp acquisition systems. Seismic site surveys are carried out by conducting continuous measurements of ground motion at temporary installations for approximately five to seven days. Seismometer installation methods, which depend on instrument type and on local conditions, range from placement within small cement-floored subsurface vaults to near-surface burial. Data are sampled at 40 Hz. Seismic noise levels are evaluated through the analysis of power spectral density distributions. Eleven 10.5-minute-long representative de-trended and mean-removed segments each of daytime and night-time data are chosen randomly, but reviewed to avoid event contamination. Fast Fourier Transforms are calculated for the five windows in each of these segments generated using a 50% overlap for Hanning-tapered sections ~200 s long. Instrument responses are removed. To date, 20 site surveys for primary and auxiliary stations have been carried out by the IMS. The sites surveyed represent a variety of physical and geological environments on most continents. The lowest high frequency (>1.4 Hz) noise levels at five sites with igneous or metamorphic geologies were as much as 6 dB below the USGS New Low Noise Model (NLNM) developed by Peterson (1993). These sites were in Oman (local geology consisting of Ordovician metasediments), Egypt (Precambrian granite), Niger (early Proterozoic tonalite and granodiorite), Saudi Arabia (Precambian metasediments), and

  9. Demonstration of a Sub-Millimeter Wave Integrated Circuit (S-MMIC) using InP HEMT with a 35-nm Gate

    NASA Technical Reports Server (NTRS)

    Deal, W. R.; Din, S.; Padilla, J.; Radisic, V.; Mei, G.; Yoshida, W.; Liu, P. S.; Uyeda, J.; Barsky, M.; Gaier, T.; Fung, A.; Samoska, Lorene A.; Lai, R.

    2006-01-01

    In this paper, we present two single stage MMIC amplifiers with the first demonstrating a measured S21 gain of 3-dB at 280-GHz and the second demonstrating 2.5-dB gain at 300- GHz, which is the threshold of the sub-millimeter wave regime. The high-frequency operation is enabled by a high-speed InP HEMT with a 35-nm gate. This is the first demonstrated S21 gain at sub-millimeter wave frequencies in a MMIC.

  10. Ka-band MMIC arrays for ACTS Aero Terminal Experiment

    NASA Technical Reports Server (NTRS)

    Raquet, C.; Zakrajsek, R.; Lee, R.; Turtle, J.

    1992-01-01

    An antenna system consisting of three experimental Ka-band active arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification is presented. The MMIC arrays are to be demonstrated in the ACTS Aeronautical Terminal Experiment, planned for early 1994. The experiment is outlined, with emphasis on a description of the antenna system. Attention is given to the way in which proof-of-concept MMIC arrays featuring three different state-of-the-art approaches to Ka-band MMIC insertion are being incorporated into an experimental aircraft terminal for the demonstration of an aircraft-to-satellite link, providing a basis for follow-on MMIC array development.

  11. InP Heterojunction Bipolar Transistor Amplifiers to 255 GHz

    NASA Technical Reports Server (NTRS)

    Radisic, Vesna; Sawdai, Donald; Scott, Dennis; Deal, William; Dang, Linh; Li, Danny; Cavus, Abdullah; To, Richard; Lai, Richard

    2009-01-01

    Two single-stage InP heterojunction bipolar transistor (HBT) amplifiers operate at 184 and 255 GHz, using Northrop Grumman Corporation s InP HBT MMIC (monolithic microwave integrated circuit) technology. At the time of this reporting, these are reported to be the highest HBT amplifiers ever created. The purpose of the amplifier design is to evaluate the technology capability for high-frequency designs and verify the model for future development work.

  12. InP MMIC Chip Set for Power Sources Covering 80-170 GHz

    NASA Technical Reports Server (NTRS)

    Ngo, Catherine

    2001-01-01

    We will present a Monolithic Millimeter-wave Integrated Circuit (MMIC) chip set which provides high output-power sources for driving diode frequency multipliers into the terahertz range. The chip set was fabricated at HRL Laboratories using a 0.1-micrometer gate-length InAlAs/InGaAs/InP high electron mobility transistor (HEMT) process, and features transistors with an f(sub max) above 600 GHz. The HRL InP HEMT process has already demonstrated amplifiers in the 60-200 GHz range. In this paper, these high frequency HEMTs form the basis for power sources up to 170 GHz. A number of state-of-the-art InP HEMT MMICs will be presented. These include voltage-controlled and fixed-tuned oscillators, power amplifiers, and an active doubler. We will first discuss an 80 GHz voltage-controlled oscillator with 5 GHz of tunability and at least 17 mW of output power, as well as a 120 GHz oscillator providing 7 mW of output power. In addition, we will present results of a power amplifier which covers the full WRIO waveguide band (75-110 GHz), and provides 40-50 mW of output power. Furthermore, we will present an active doubler at 164 GHz providing 8% bandwidth, 3 mW of output power, and an unprecedented 2 dB of conversion loss for an InP HEMT MMIC at this frequency. Finally, we will demonstrate a power amplifier to cover 140-170 GHz with 15-25 mW of output power and 8 dB gain. These components can form a power source in the 155-165 GHz range by cascading the 80 GHz oscillator, W-band power amplifier, 164 GHz active doubler and final 140-170 GHz power amplifier for a stable, compact local oscillator subsystem, which could be used for atmospheric science or astrophysics radiometers.

  13. A programmable ultra-low noise X-band exciter.

    PubMed

    MacMullen, A; Hoover, L R; Justice, R D; Callahan, B S

    2001-07-01

    A programmable ultra-low noise X-band exciter has been developed using commercial off-the-shelf components. Its phase noise is more than 10 dB below the best available microwave synthesizers. It covers a 7% frequency band with 0.1-Hz resolution. The X-band output at +23 dBm is a combination of signals from an X-band sapphire-loaded cavity oscillator (SLCO), a low noise UHF frequency synthesizer, and special-purpose frequency translation and up-conversion circuitry.

  14. Low-noise cryogenically cooled broad-band microwave preamplifiers

    NASA Astrophysics Data System (ADS)

    Leskovar, B.

    1987-04-01

    The present noise performance, bandwidth capability and gain stability of low-noise cryogenically cooled broad-band preamplifiers are summarized and reviewed in the 150 MHz to 4 GHz frequency range. Stability factor of Gallium Arsenide Field-Effect transistors as a function of frequency and ambient temperature is presented and discussed. Also, other performance data, such as gain nonuniformity, phase shift as a function of frequency, and voltage standing-wave ratio, of several low-noise wide-band preamplifiers of interest for research instrumentation systems are presented.

  15. MMIC Phased Array Demonstrations with ACTS

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A. (Compiler); Martzaklis, Konstantinos (Compiler); Zakrajsek, Robert J. (Compiler); Andro, Monty (Compiler); Turtle, John P.

    1996-01-01

    Over a one year period from May 1994 to May 1995, a number of demonstrations were conducted by the NASA Lewis Research Center (LeRC) in which voice, data, and/or video links were established via NASA's advanced communications technology satellite (ACTS) between the ACTS link evaluation terminal (LET) in Cleveland, OH, and aeronautical and mobile or fixed Earth terminals having monolithic microwave integrated circuit (MMIC) phased array antenna systems. This paper describes four of these. In one, a duplex voice link between an aeronautical terminal on the LeRC Learjet and the ACTS was achieved. Two others demonstrated duplex voice (and in one case video as well) links between the ACTS and an Army vehicle. The fourth demonstrated a high data rate downlink from ACTS to a fixed terminal. Array antenna systems used in these demonstrations were developed by LeRC and featured LeRC and Air Force experimental arrays using gallium arsenide MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The single 30 GHz transmit array was developed by NASA/LeRC and Texas Instruments. The three 20 GHz receive arrays were developed in a cooperative effort with the Air Force Rome Laboratory, taking advantage of existing Air Force array development contracts with Boeing and Lockheed Martin. The paper describes the four proof-of-concept arrays and the array control system. The system configured for each of the demonstrations is described, and results are discussed.

  16. Enhanced performance CCD output amplifier

    DOEpatents

    Dunham, Mark E.; Morley, David W.

    1996-01-01

    A low-noise FET amplifier is connected to amplify output charge from a che coupled device (CCD). The FET has its gate connected to the CCD in common source configuration for receiving the output charge signal from the CCD and output an intermediate signal at a drain of the FET. An intermediate amplifier is connected to the drain of the FET for receiving the intermediate signal and outputting a low-noise signal functionally related to the output charge signal from the CCD. The amplifier is preferably connected as a virtual ground to the FET drain. The inherent shunt capacitance of the FET is selected to be at least equal to the sum of the remaining capacitances.

  17. Radiation Response of Emerging High Gain, Low Noise Detectors

    NASA Technical Reports Server (NTRS)

    Becker, Heidi N.; Farr, William H; Zhu, David Q.

    2007-01-01

    Data illustrating the radiation response of emerging high gain, low noise detectors are presented. Ionizing dose testing of silicon internal discrete avalanche photodiodes, and 51-MeV proton testing of InGaAs/InAlAs avalanche photodiodes operated in Geiger mode are discussed.

  18. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Low-noise-emission product... ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a) The..., determine whether such product is a low-noise-emission product. In doing so, he will determine if...

  19. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Contracts for low-noise-emission... ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a) Data relied upon by the Administrator in determining that a product is a certified low-noise-emission...

  20. Ka-band MMIC microstrip array for high rate communications

    NASA Technical Reports Server (NTRS)

    Lee, R. Q.; Raquet, C. A.; Tolleson, J. B.; Sanzgiri, S. M.

    1991-01-01

    In a recent technology assessment of alternative communication systems for the space exploration initiative (SEI), Ka-band (18 to 40 GHz) communication technology was identified to meet the mission requirements of telecommunication, navigation, and information management. Compared to the lower frequency bands, Ka-band antennas offer higher gain and broader bandwidths; thus, they are more suitable for high data rate communications. Over the years, NASA has played an important role in monolithic microwave integrated circuit (MMIC) phased array technology development, and currently, has an ongoing contract with Texas Instrument (TI) to develop a modular Ka-band MMIC microstrip subarray (NAS3-25718). The TI contract emphasizes MMIC integration technology development and stipulates using existing MMIC devices to minimize the array development cost. The objective of this paper is to present array component technologies and integration techniques used to construct the subarray modules.

  1. High-efficiency solid state power amplifier

    NASA Technical Reports Server (NTRS)

    Wallis, Robert E. (Inventor); Cheng, Sheng (Inventor)

    2005-01-01

    A high-efficiency solid state power amplifier (SSPA) for specific use in a spacecraft is provided. The SSPA has a mass of less than 850 g and includes two different X-band power amplifier sections, i.e., a lumped power amplifier with a single 11-W output and a distributed power amplifier with eight 2.75-W outputs. These two amplifier sections provide output power that is scalable from 11 to 15 watts without major design changes. Five different hybrid microcircuits, including high-efficiency Heterostructure Field Effect Transistor (HFET) amplifiers and Monolithic Microwave Integrated Circuit (MMIC) phase shifters have been developed for use within the SSPA. A highly efficient packaging approach enables the integration of a large number of hybrid circuits into the SSPA.

  2. Low Noise Performance Perspectives Of Wideband Aperture Phased Arrays

    NASA Astrophysics Data System (ADS)

    Woestenburg, E. E. M.; Kuenen, J. C.

    2004-06-01

    A general analysis of phased array noise properties and measurements, applied to one square meter tiles of the Thousand Element Array (THEA), has resulted in a procedure to define the noise budget for a THEA-tile (Woestenburg and Dijkstra, 2003). The THEA system temperature includes LNA and receiver noise, antenna connecting loss, noise coupling between antenna elements and other possible contributions. This paper discusses the various noise contributions to the THEA system temperature and identifies the areas where improvement can be realized. We will present better understanding of the individual noise contributions using measurements and analysis of single antenna/receiver elements. An improved design for a 1-m2 Low Noise Tile (LNT) will be discussed and optimized low noise performance for the LNT is presented. We will also give future perspectives of the noise performance for such tiles, in relation to the requirements for SKA in the 1 GHz frequency range.

  3. Low-noise preamplifier for multistage photorefractive image amplification

    NASA Astrophysics Data System (ADS)

    Breugnot, S.; Rajbenbach, H.; Defour, M.; Huignard, J.-P.

    1995-07-01

    We present a two-beam coupling configuration in photorefractive BaTiO3 that provides a low-noise amplification of the signal to be detected. A two-wave mixing gain of 100 is reached, in conjunction with very low beam fanning background in the signal direction. The extensions of this configuration to photorefractive heterodyne detection and to multistage image amplification are theoretically and experimentally studied.

  4. Design and Testing of a Low Noise Flight Guidance Concept

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Oseguera-Lohr, Rosa M.; Lewis, Elliot T.

    2004-01-01

    A flight guidance concept was developed to assist in flying continuous descent approach (CDA) procedures designed to lower the noise under the flight path of jet transport aircraft during arrival operations at an airport. The guidance consists of a trajectory prediction algorithm that was tuned to produce a high-efficiency, low noise flight profile with accompanying autopilot and flight display elements needed by the flight control system and pilot to fly the approach. A key component of the flight guidance was a real-time display of energy error relative to the predicted flight path. The guidance was integrated with the conventional Flight Management System (FMS) guidance of a modern jet transport airplane and tested in a high fidelity flight simulation. A charted arrival procedure, which allowed flying conventional arrivals, CDA arrivals with standard guidance, and CDA arrivals with the new low noise guidance, was developed to assist in the testing and evaluation of the low noise guidance concept. Results of the simulation testing showed the low noise guidance was easy to use by airline pilot test subjects and effective in achieving the desired noise reduction. Noise under the flight path was reduced by at least 2 decibels in Sound Exposure Level (SEL) at distances from about 3 nautical miles out to about 17.5 nautical miles from the runway, with a peak reduction of 8.5 decibels at about 10.5 nautical miles. Fuel consumption was also reduced by about 17% for the LNG conditions compared to baseline runs for the same flight distance. Pilot acceptance and understanding of the guidance was quite high with favorable comments and ratings received from all test subjects.

  5. 52 W kHz-linewidth low-noise linearly-polarized all-fiber single-frequency MOPA laser

    NASA Astrophysics Data System (ADS)

    Yang, Changsheng; Xu, Shanhui; Chen, Dan; Zhang, Yuanfei; Zhao, Qilai; Li, Can; Zhou, Kaijun; Feng, Zhouming; Gan, Jiulin; Yang, Zhongmin

    2016-05-01

    An all-fiber Yb-doped kHz-linewidth low-noise linearly polarized single-frequency master-oscillator power-amplifier (MOPA) laser with a stable CW output power of >52 W is demonstrated. By suppressing the intensity noise of the DBR phosphate fiber oscillator, the linewidth of MOPA laser is not noticeably broadened, and an ultra-narrow linewidth of <3 kHz is obtained. Furthermore, the low-noise behavior of MOPA lasers is investigated. A measured relative intensity noise of < -130 dB Hz-1 at frequencies of over 2 MHz, a phase noise above 1 kHz of <5 μrad/Hz1/2, and a signal-to-noise ratio of >63 dB are achieved.

  6. Application of MMIC modules in future multiple beam satellite antenna systems

    NASA Technical Reports Server (NTRS)

    Smetana, J.

    1982-01-01

    Multiple beam antenna systems for advanced communication satellites operating in the 30/20 GHz frequency bands (30 GHz uplink, 20 GHz downlink) were developed. Up to twenty 0.3 deg HPBW fixed spot beams and six 0.3 deg HPBW scanning spot beams will be required. Array-fed dual reflector antenna systems in which monolithic microwave integrated circuit (MMIC) phase shift and amplifier modules are used with each radiating element of the feed array for beam pointing and power gain were developed. The feasibility of distributed power amplification and beam pointing with MMIC modules in the elements of an array and to develop a data base for future development were demonstrated. The technical discussion centers around the potential advantages of ""monolithic'' antennas for specific applications as compared to systems using high powered TWT's. These include: reduced losses in the beam forming network; advantage of space combining and graceful degradation; dynamic control of beam pointing and illumination contour; and possibilities for cost and weight reduction.

  7. A low noise CMOS RF front-end for UWB 6-9 GHz applications

    NASA Astrophysics Data System (ADS)

    Feng, Zhou; Ting, Gao; Fei, Lan; Wei, Li; Ning, Li; Junyan, Ren

    2010-11-01

    An integrated fully differential ultra-wideband CMOS RF front-end for 6-9 GHz is presented. A resistive feedback low noise amplifier and a gain controllable IQ merged folded quadrature mixer are integrated as the RF front-end. The ESD protected chip is fabricated in a TSMC 0.13 μm RF CMOS process and achieves a maximum voltage gain of 23-26 dB and a minimum voltage gain of 16-19 dB, an averaged total noise figure of 3.3-4.6 dB while operating in the high gain mode and an in-band IIP3 of -12.6 dBm while in the low gain mode. This RF front-end consumes 17 mA from a 1.2 V supply voltage.

  8. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy.

    PubMed

    Gawande, R; Bradley, R; Langston, G

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  9. Low noise, 0.4-3 GHz cryogenic receiver for radio astronomy

    NASA Astrophysics Data System (ADS)

    Gawande, R.; Bradley, R.; Langston, G.

    2014-10-01

    We present the design and measurement of a radio telescope receiver front end cooled to 100 K physical temperature, and working over 400 MHz to 3 GHz frequency band. The system uses a frequency independent feed developed for operation as a feed for parabola using sinuous elements and integrated with an ultra-wideband low noise amplifier. The ambient temperature system is tested on the 43 m radio telescope in Green Bank, WV and the system verification results on the sky are presented. The cryogenic receiver is developed using a Stirling cycle, one stage cryocooler. The measured far field patterns and the system noise less than 80 K over a 5:1 bandwidth are presented.

  10. On-wafer, cryogenic characterization of ultra-low noise HEMT devices

    NASA Technical Reports Server (NTRS)

    Bautista, J. J.; Laskar, J.; Szydlik, P.

    1995-01-01

    Significant advances in the development of high electron-mobility field-effect transistors (HEMT's) have resulted in cryogenic, low-noise amplifiers (LNA's) whose noise temperatures are within an order of magnitude of the quantum noise limit (hf/k). Further advances in HEMT technology at cryogenic temperatures may eventually lead to the replacement of maser and superconducting insulator superconducting front ends in the 1- to 100-GHz frequency band. Key to identification of the best HEMT's and optimization of cryogenic LNA's are accurate and repeatable device measurements at cryogenic temperatures. This article describes the design and operation of a cryogenic coplanar waveguide probe system for the characterization and modeling of advanced semiconductor transistors at cryogenic temperatures. Results on advanced HEMT devices are presented to illustrate the utility of the measurement system.

  11. Monolithic Microwave Integrated Circuit (MMIC) Frequency Doublers - 2nd Pass Correction

    DTIC Science & Technology

    2013-09-01

    Monolithic Microwave Integrated Circuit (MMIC) Frequency Doublers—2nd Pass Correction by John E. Penn ARL-TN-0580 September 2013...September 2013 Monolithic Microwave Integrated Circuit (MMIC) Frequency Doublers—2nd Pass Correction John E. Penn Sensors and Electron...COVERED (From - To) 4. TITLE AND SUBTITLE Monolithic Microwave Integrated Circuit (MMIC) Frequency Doublers–2nd Pass Correction 5a. CONTRACT NUMBER

  12. Microwave Characterization of the GaAs MESFET and Development of a Low Noise Microwave Amplifier.

    DTIC Science & Technology

    1979-12-01

    4*R*G) 548 BUF(75) 555 SAE- 1,i4 556 PLOT(REA(R1),IPIG(RI),3) 557 LABEL "X" 568 FOR N=I TO 5 STEP 2 565 IF N>3 LET Na6 578- LET G2-GI*(1.2599tN-1) 588...Si3.14159*M/12 638 PLOT(X+R3*COS(S),Y+R3*SIN(S),0) 648 NEXT M 645 LABEL "-"N 658 NEXT N 668 SP1ITH(1,1) Table 4. (Continued) 40 AI cc Ch a C C%-4JC’ 04...given by Pucel (IEEE Trans ED). The element values ore entered into data lines 10 thru 24 as follows: Ls,LgLd,Rg ,Rd,Rc ,lto, f,rCdg,Cgc ,Co, gmo 10

  13. Ultra Low Noise Infrared Detector Amplifier for Next Generation Standoff Detector

    DTIC Science & Technology

    2016-02-18

    are about 7 dBm and 10 dBm, respectively. At room temperature, the LNA draws 37 mA at 3 V voltage. We further characterized the LNA at cryogenic...temperature, the LNA draws 37 mA at 3 V voltage. We further characterized the LNA at cryogenic temperatures in terms of gain, input/output match and...33  Figure 36: AutoCAD drawing of the 2-layer board

  14. Low Noise 1.2 THz SIS Receiver

    NASA Technical Reports Server (NTRS)

    Karpov, A.; Miller, D.; Rice, F.; Zmuidzinas, J.; Stern, J. A.; Bumble, B.; LeDuc, H. G.

    2001-01-01

    We present the development of a low noise superconductor insulator superconductor (SIS) mixer for the 1.1 - 1.25 THz heterodyne receiver of FIRST space radiotelescope. The quasi-optical SIS mixer has two NbTiN/AlN/Nb junctions with critical current density 30 kA/sq cm. The individual junction area is close to 0.65 square micrometers. The SIS junctions are coupled to the optical input beam through a planar double slot antenna and a Si hyperhemispherical lens. The minimum DSB receiver noise temperature is 650 K, about 12 hv/k.

  15. The potential impact of MMICs on future satellite communications: Executive summary

    NASA Technical Reports Server (NTRS)

    Dunn, Vernon E.

    1988-01-01

    This Executive Summary presents the results of a 17-month study on the future trends and requirments for Monolithic Microwave Integrated circuits (MMIC) for space communication application. Specifically this report identifies potential space communication applications of MMICs, assesses the impact of MMIC on the classes of systems that were identified, determines the present status and probable 10-year growth in capability of required MMIC and competing technologies, identifies the applications most likely to benefit from further MMIC development, and presents recommendations for NASA development activities to address the needs of these applications.

  16. Hybrid EDFA/Raman Amplifiers

    NASA Astrophysics Data System (ADS)

    Masuda, Hiroji

    This chapter describes the technologies needed for cascading an erbium-doped fiber amplifier (EDFA) and a fiber Raman amplifier (FRA or RA) to create a hybrid amplifier (HA), the EDFA/Raman HA. Two kinds of HA are defined in this chapter: the narrowband HA (NB-HA) and the seamless and wideband HA (SWB-HA). The NB-HA employs distributed Raman amplification in the transmission fiber together with an EDFA and provides low noise transmission in the C- or L-band. The noise figure of the transmission line is lower than it would be if only an EDFA were used. The SWB-HA, on the other hand, employs distributed or discrete Raman amplification together with an EDFA, and provides a low-noise and wideband transmission line or a low-noise and wideband discrete amplifier for the C- and L-bands. The typical gain bandwidth (Δλ) of the NB-HA is ~30 to 40 nm, whereas that of the SWB-HA is ~70 to 80 nm.

  17. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  18. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  19. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  20. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  1. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  2. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  3. 40 CFR 203.6 - Contracts for low-noise-emission products.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Contracts for low-noise-emission products. 203.6 Section 203.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.6 Contracts for low-noise-emission products. (a)...

  4. 40 CFR 203.4 - Low-noise-emission product determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Low-noise-emission product determination. 203.4 Section 203.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS LOW-NOISE-EMISSION PRODUCTS § 203.4 Low-noise-emission product determination. (a)...

  5. Design and Evaluation of a Low-Noise Helicopter Blade

    NASA Astrophysics Data System (ADS)

    Kondo, Natsuki; Tsujiuchi, Tomoka; Murashige, Atsushi; Nishimura, Hiroki; Aoki, Makoto; Tsuchihashi, Akihiko; Yamakawa, Eiichi; Aoyama, Takashi; Saito, Shigeru

    A low-noise helicopter blade, AT1, was designed with the concept of reducing noise without the drop of rotor performance. In the concept, High-Speed Impulsive (HSI) noise is reduced by applying a thin airfoil in the tip region and a dog-tooth like extension in the leading-edge of the tip region. Blade-Vortex Interaction (BVI) noise is reduced by applying the extension and a strong taper near the tip end. The stall angle of the blade is increased by the effect of the vortex generated from the leading-edge extension. As a result, the drop of rotor performance caused by the thin airfoil and the reduction of rotor rotational speed is recovered. The low-noise characteristics and the performance of AT1 were evaluated by a model rotor test conducted at Deutsch Niederländischer Windkanal (DNW). It is shown that AT1 reduces HSI noise and BVI noise and has good performance in forward flight conditions. However, the improvement of performance in high-lift conditions still remains as a future problem.

  6. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Technical Reports Server (NTRS)

    Leonard, Regis F. (Editor); Bhasin, Kul B. (Editor)

    1991-01-01

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure.

  7. A very low noise preamplifier for extremely low frequency magnetic antenna

    NASA Astrophysics Data System (ADS)

    Shimin, Feng; Suihua, Zhou; Zhiyi, Chen

    2013-07-01

    Besides the electrode-pair antenna, the magnetic antenna is also used for the extremely low frequency (ELF) submarine communication. To receive the weak ELF signals, the structure of a small sized magnetic antenna determines its specific electrical characteristics. The ELF magnetic antenna shows high internal resistance, alternating-current impedance, and a resonance frequency near the operating bandwidth. In accordance with the electrical characteristics of ELF magnetic antenna, a low noise preamplifier and frequency compensation circuit were designed and realized. The preamplifier is a three-stage negative feedback circuit, which is composed of parallel JFET, common-emitter amplifier with a Darlington structure and a common-collector amplifier in push-pull connection. And a frequency compensation circuit is cascaded to compensate the characteristic in low frequency range. In the operating bandwidth f = 30-200 Hz, the circuit has a gain of 39.4 dB. The equivalent input noise is 1.97 nV/√Hz and the frequency response keeps flat in operating bandwidth. The proposed preamplifier of the ELF magnetic antenna performs well in receiving ELF signals.

  8. Low noise patch-clamp current amplification by nanoparticles plasmonic-photonic coupling (analysis and modelling).

    PubMed

    Haberal, E O; SalmanOgli, A; Nasseri, B

    2016-10-01

    In this article, a patch-clamp low noise current amplification based on nanoparticles plasmonic radiation is analyzed. It is well-known, a very small current is flowing from different membrane channels and so, for extra processing the current amplification is necessary. It is notable that there are some problems in traditional electronic amplifier due to its noise and bandwidth problem. Because of the important role of the patch-clamp current in cancer research and especially its small amplitude, it is vital to intensify it without adding any noises. In this study, the current amplification is performed firstly: from the excitement of nanoparticles by the patch-clamp pico-ampere current and then, the effect of nanoparticles plasmonic far-field radiation on conductor's carriers, which will cause the current amplification. This relates to the plasmonic-photonic coupling and their effect on conductor carriers as the current perturbation agent. In the steady state, the current amplification can reach to 1000 times of initial level. Furthermore, we investigated the nanoparticles morphology changing effect such as size, nanoparticles inter-distance, and nanoparticles distance from the conductor on the amplifier parameters. Finally, it should note that the original aim is to use nanoparticles plasmonic engineering and their coupling to photonics for output current manipulating.

  9. A 50 MHz-1 GHz high linearity CATV amplifier with a 0.15 μm InGaAs PHEMT process

    NASA Astrophysics Data System (ADS)

    Jian, Xu; Zhigong, Wang; Ying, Zhang; Jing, Huang

    2011-07-01

    A 50 MHz-1 GHz low noise and high linearity amplifier monolithic-microwave integrated-circuit (MMIC) for cable TV is presented. A shunt AC voltage negative feedback combined with source current negative feedback is adopted to extend the bandwidth and linearity. A novel DC bias feedback is introduced to stabilize the operation point, which improved the linearity further. The circuit was fabricated with a 0.15 μm InGaAs PHEMT (pseudomorphic high electron mobility transistor) process. The test was carried out in 75 Ω systems from 50 MHz to 1 GHz. The measurement results showed that it gave a small signal gain of 16.5 dB with little gain ripples of less than ± 1 dB. An excellent noise figure of 1.7-2.9 dB is obtained in the designed band. The IIP3 is 16 dBm, which shows very good linearity. The CSO and CTB are high up to 68 dBc and 77 dBc, respectively. The chip area is 0.56 mm2 and the power dissipation is 110 mA with a 5 V supply. It is ideally suited to cable TV systems.

  10. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, J.H.; Lavietes, A.D.

    1998-05-26

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector is disclosed. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radionuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components. 9 figs.

  11. Ambient temperature cadmium zinc telluride radiation detector and amplifier circuit

    DOEpatents

    McQuaid, James H.; Lavietes, Anthony D.

    1998-05-29

    A low noise, low power consumption, compact, ambient temperature signal amplifier for a Cadmium Zinc Telluride (CZT) radiation detector. The amplifier can be used within a larger system (e.g., including a multi-channel analyzer) to allow isotopic analysis of radionuclides in the field. In one embodiment, the circuit stages of the low power, low noise amplifier are constructed using integrated circuit (IC) amplifiers , rather than discrete components, and include a very low noise, high gain, high bandwidth dual part preamplification stage, an amplification stage, and an filter stage. The low noise, low power consumption, compact, ambient temperature amplifier enables the CZT detector to achieve both the efficiency required to determine the presence of radio nuclides and the resolution necessary to perform isotopic analysis to perform nuclear material identification. The present low noise, low power, compact, ambient temperature amplifier enables a CZT detector to achieve resolution of less than 3% full width at half maximum at 122 keV for a Cobalt-57 isotope source. By using IC circuits and using only a single 12 volt supply and ground, the novel amplifier provides significant power savings and is well suited for prolonged portable in-field use and does not require heavy, bulky power supply components.

  12. XV-15 Low-Noise Terminal Area Operations Testing

    NASA Technical Reports Server (NTRS)

    Edwards, B. D.

    1998-01-01

    Test procedures related to XV-15 noise tests conducted by NASA-Langley and Bell Helicopter Textron, Inc. are discussed. The tests. which took place during October and November 1995, near Waxahachie, Texas, documented the noise signature of the XV-15 tilt-rotor aircraft at a wide variety of flight conditions. The stated objectives were to: -provide a comprehensive acoustic database for NASA and U.S. Industry -validate noise prediction methodologies, and -develop and demonstrate low-noise flight profiles. The test consisted of two distinct phases. Phase 1 provided an acoustic database for validating analytical noise prediction techniques; Phase 2 directly measured noise contour information at a broad range of operating profiles, with emphasis on minimizing 'approach' noise. This report is limited to a documentation of the test procedures, flight conditions, microphone locations, meteorological conditions, and test personnel used in the test. The acoustic results are not included.

  13. Low noise electronics for the CLEO III silicon detector

    NASA Astrophysics Data System (ADS)

    Kagan, H.; Alexander, J.; Bean, A.; Bebek, C.; Brandenburg, G.; Darling, C.; Duboscq, J.; Fast, J.; Foland, A.; Gan, K. K.; Hopman, P.; Kass, R.; Kim, P.; Menon, N.; Miller, D.; Nemati, B.; Oliver, J.; Rush, C.; Shipsey, I.; Skubic, P.; Spencer, M. B.; Uhl, C.; Ward, C.; Wilson, R.; Yurko, M.; Zoeller, M. M.

    1996-02-01

    We report here the status of the CLEO III silicon vertex detector electronics. The CLEO III silicon detector is a 4-layer barrel-style device which spans 93% of the solid angle observing the interaction region. All layers will be constructed with double-sided silicon. The innermost layer must be able to handle large singles rates associated with a detector situated near the interaction region. In order to cover the required solid angle, the outermost layer is 55 cm long and presents a large capacitive load to the front-end electronics. The electronics chain chosen to meet this challenge consists of a low noise cascode preamplifier followed by an ADC on each channel. The system issues will be described herein together with the chosen solutions, noise performance of each subsystem prototype, and expected results of the full system.

  14. Advanced Low-Noise Research Fan Stage Design

    NASA Technical Reports Server (NTRS)

    Neubert, Robert; Bock, Larry; Malmborg, Eric; Owen-Peer, William

    1997-01-01

    This report describes the design of the Advanced Low-Noise Research Fan stage. The fan is a variable pitch design, which is designed at the cruise pitch condition. Relative to the cruise setting, the blade is closed at takeoff and opened for reverse thrust operation. The fan stage is a split flow design with fan exit guide vanes (FEGVs) and core stators. The fan stage design is combined with a nacelle and engine core duct to form a powered fan/nacelle subscale model. This model is intended for use in combined aerodynamic, acoustic, and structural testing in a wind tunnel. The fan has an outer diameter of 22 in. and a hub-to-tip of 0.426 in., which allows the use of existing NASA fan and cowl force balance and rig drive systems. The design parameters were selected to permit valid acoustic and aerodynamic comparisons with the Pratt & Whitney (P&W) 17- and 22-in. rigs previously tested under NASA contract. The fan stage design is described in detail. The results of the design axisymmetric and Navier-Stokes aerodynamic analysis are presented at the critical design conditions. The structural analysis of the fan rotor and attachment is included. The blade and attachment are predicted to have adequate low-cycle fatigue life and an acceptable operating range without resonant stress or flutter. The stage was acoustically designed with airfoil counts in the FEGV and core stator to minimize noise. A fan/FEGV tone analysis developed separately under NASA contract was used to determine the optimum airfoil counts. The fan stage was matched to the existing nacelle, designed under the previous P&W low-noise contract, to form a fan/nacelle model for wind tunnel testing. It is an axisymmetric nacelle for convenience in testing and analysis. Previous testing confirmed that the nacelle performed as required at various aircraft operating conditions.

  15. Ultra-low noise optical phase-locked loop

    NASA Astrophysics Data System (ADS)

    Ayotte, Simon; Babin, André; Costin, François

    2014-03-01

    The relative phase between two fiber lasers is controlled via a high performance optical phase-locked loop (OPLL). Two parameters are of particular importance for the design: the intrinsic phase noise of the laser (i.e. its linewidth) and a high-gain, low-noise electronic locking loop. In this work, one of the lowest phase noise fiber lasers commercially available was selected (i.e. NP Photonics Rock fiber laser module), with sub-kHz linewidth at 1550.12 nm. However, the fast tuning mechanism of such lasers is through stretching its cavity length with a piezoelectric transducer which has a few 10s kHz bandwidth. To further increase the locking loop bandwidth to several MHz, a second tuning mechanism is used by adding a Lithium Niobate phase modulator in the laser signal path. The OPLL is thus divided into two locking loops, a slow loop acting on the laser piezoelectric transducer and a fast loop acting on the phase modulator. The beat signal between the two phase-locked lasers yields a highly pure sine wave with an integrated phase error of 0.0012 rad. This is orders of magnitude lower than similar existing systems such as the Laser Synthesizer used for distribution of photonic local oscillator (LO) for the Atacama Large Millimeter Array radio telescope in Chile. Other applications for ultra-low noise OPLL include coherent power combining, Brillouin sensing, light detection and ranging (LIDAR), fiber optic gyroscopes, phased array antenna and beam steering, generation of LOs for next generation coherent communication systems, coherent analog optical links, terahertz generation and coherent spectroscopy.

  16. Monolithic optical integrated control circuitry for GaAs MMIC-based phased arrays

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Ponchak, G. E.; Kascak, T. J.

    1985-01-01

    Gallium arsenide (GaAs) monolithic microwave integrated circuits (MMIC's) show promise in phased-array antenna applications for future space communications systems. Their efficient usage will depend on the control of amplitude and phase signals for each MMIC element in the phased array and in the low-loss radiofrequency feed. For a phased array contining several MMIC elements a complex system is required to control and feed each element. The characteristics of GaAs MMIC's for 20/30-GHz phased-array systems are discussed. The optical/MMIC interface and the desired characteristics of optical integrated circuits (OIC's) for such an interface are described. Anticipated fabrication considerations for eventual full monolithic integration of optical integrated circuits with MMIC's on a GaAs substrate are presented.

  17. Low noise omnidirectional optical receiver for the mobile FSO networks

    NASA Astrophysics Data System (ADS)

    Witas, Karel; Hejduk, Stanislav; Vasinek, Vladimir; Vitasek, Jan; Latal, Jan

    2013-05-01

    A high sensitive optical receiver design for the mobile free space optical (FSO) networks is presented. There is an array of photo-detectors and preamplifiers working into same load. It is the second stage sum amplifier getting all signals together. This topology creates a parallel amplifier with an excellent signal to noise ratio (SNR). An automatic gain control (AGC) feature is included also. As a result, the effective noise suppression at the receiver side increases optical signal coverage even with the transmitter power being constant. The design has been verified on the model car which was able to respond beyond the line of sight (LOS).

  18. Low-noise THz MgB2 Josephson mixer

    NASA Astrophysics Data System (ADS)

    Cunnane, Daniel; Kawamura, Jonathan H.; Acharya, Narendra; Wolak, Matthäus A.; Xi, X. X.; Karasik, Boris S.

    2016-09-01

    The potential applications for high frequency operation of the Josephson effect in MgB2 include THz mixers, direct detectors, and digital circuits. Here we report on MgB2 weak links which exhibit the Josephson behavior up to almost 2 THz and using them for low-noise heterodyne detection of THz radiation. The devices are made from epitaxial film grown in the c-axis direction by the hybrid physical-chemical vapor deposition method. The current in the junctions travels parallel to the surface of the film, thus making possible a large contribution of the quasi-two-dimensional σ-gap in transport across the weak link. These devices are connected to a planar spiral antenna with a dielectric substrate lens to facilitate coupling to free-space radiation for use as a detector. The IcRn product of the junction is 5.25 mV, giving confirmation of a large gap parameter. The sensitivity of the mixer was measured from 0.6 THz to 1.9 THz. At a bath temperature of over 20 K, a mixer noise temperature less than 2000 K (DSB) was measured near 0.6 THz.

  19. A compact, multichannel, and low noise arbitrary waveform generator

    NASA Astrophysics Data System (ADS)

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  20. Compound semiconductors for low-noise microwave MESFET applications

    NASA Astrophysics Data System (ADS)

    Golio, J. M.; Trew, R. J.

    1980-07-01

    The paper discusses a one-dimensional field-effect transistor (FET) model in order to determine the low-noise potential of microwave MESFET's fabricated from material other than GaAs. The model makes possible the calculation of a small-signal equivalent circuit from which performance information is acquired from material parameters and device geometry. Material parameters, predicted from Monte Carlo calculations are used to simulate 1-micron devices fabricated from GaAs, InP, Ga(0.47)In(0.53)As(0.2), and Ga(0.5)In(0.5)As(0.96)Sb(0.04). Results from simulations comparing a Ga(0.5)In(0.5)As(0.96)Sb(0.04) device to an equivalent GaAs instrument indicate that a factor of two is possible in the minimum noise figure; considerable improvement in noise performance over GaAs equipment is predicted of devices fabricated from Ga(0.47)In(0.53)As and Ga(0.27)In(0.73)P(0.04)As(0.6) materials.

  1. Follow-on Low Noise Fan Aerodynamic Study

    NASA Technical Reports Server (NTRS)

    Heidegger, Nathan J.; Hall, Edward J.; Delaney, Robert A.

    1999-01-01

    The focus of the project was to investigate the effects of turbulence models on the prediction of rotor wake structures. The Advanced Ducted Propfan Analysis (ADPAC) code was modified through the incorporation of the Spalart-Allmaras one-equation turbulence model. Suitable test cases were solved numerically using ADPAC employing the Spalart-Allmaras turbulence model and another prediction code for comparison. A near-wall spacing study was also completed to determine the adequate spacing of the first computational cell off the wall. Solutions were also collected using two versions of the algebraic Baldwin-Lomax turbulence model in ADPAC. The effects of the turbulence model on the rotor wake definition was examined by obtaining ADPAC solutions for the Low Noise Fan rotor-only steady-flow case using the standard algebraic Baldwin-Lomax turbulence model, a modified version of the Baldwin-Lomax turbulence model and the one-equation Spalart-Allmaras turbulence model. The results from the three different turbulence modeling techniques were compared with each other and the available experimental data. These results include overall rotor performance, spanwise exit profiles, and contours of axial velocity taken along constant axial locations and along blade-to-blade surfaces. Wake characterizations were also performed on the experimental and ADPAC predicted results including the definition of a wake correlation function. Correlations were evaluated for wake width and wake depth. Similarity profiles of the wake shape were also compared between all numerical solutions and experimental data.

  2. A compact, multichannel, and low noise arbitrary waveform generator.

    PubMed

    Govorkov, S; Ivanov, B I; Il'ichev, E; Meyer, H-G

    2014-05-01

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  3. A compact, multichannel, and low noise arbitrary waveform generator

    SciTech Connect

    Govorkov, S.; Ivanov, B. I.; Il'ichev, E.; Meyer, H.-G.

    2014-05-15

    A new type of high functionality, fast, compact, and easy programmable arbitrary waveform generator for low noise physical measurements is presented. The generator provides 7 fast differential waveform channels with a maximum bandwidth up to 200 MHz frequency. There are 6 fast pulse generators on the generator board with 78 ps time resolution in both duration and delay, 3 of them with amplitude control. The arbitrary waveform generator is additionally equipped with two auxiliary slow 16 bit analog-to-digital converters and four 16 bit digital-to-analog converters for low frequency applications. Electromagnetic shields are introduced to the power supply, digital, and analog compartments and with a proper filter design perform more than 110 dB digital noise isolation to the output signals. All the output channels of the board have 50 Ω SubMiniature version A termination. The generator board is suitable for use as a part of a high sensitive physical equipment, e.g., fast read out and manipulation of nuclear magnetic resonance or superconducting quantum systems and any other application, which requires electromagnetic interference free fast pulse and arbitrary waveform generation.

  4. On Distortion in Digital Microwave Power Amplifiers

    NASA Astrophysics Data System (ADS)

    Al-Mozani, Dhamia; Wentzel, Andreas; Heinrich, Wolfgang

    2017-01-01

    In this paper, a first study of distortion in digital power amplifiers (PA) is presented. The work is based on a voltage mode class-S PA with a GaN MMIC for the 900 MHz frequency band. The investigation focuses on the quasi-static amplitude-to-amplitude (AM-AM) and amplitude-to-phase (AM-PM) distortions. Different digital modulation schemes are applied and studied versus output power back-off. This includes two pulse-width modulation (PWM) versions as well as band-pass delta-sigma (BPDS) modulation. The results are verified by measurement data.

  5. A 77–100 GHz power amplifier using 0.1-μm GaAs PHEMT technology

    NASA Astrophysics Data System (ADS)

    Ge, Qin; Liu, Wei; Xu, Bo; Qian, Feng; Yao, Changfei

    2017-03-01

    A wideband MMIC power amplifier at W-band is reported in this letter. The four-stage MMIC, developed using 0.1 μm GaAs pseudomorphic HEMT (PHEMT) technology, demonstrated a flat small signal gain of 12.4 ± 2 dB with a minimum saturated output power (Psat) of 14.2 dBm from 77 to 100 GHz. The typical Psat is better by 16.3 dBm with a flatness of 0.4 dB and the maximum power added efficiency is 6% between 77 and 92 GHz. This result shows that the amplifier delivers output power density of about 470 mW/mm with a total gate output periphery of 100 μm. As far as we know, it is nearly the best power density performance ever published from a single ended GaAs-based PHEMT MMIC at this frequency band.

  6. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4x2x1 cu cm. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10

  7. Compact, Low-Force, Low-Noise Linear Actuator

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea; Sherrit, Stewart; Bar-Cohen, Yoseph

    2012-01-01

    Actuators are critical to all the robotic and manipulation mechanisms that are used in current and future NASA missions, and are also needed for many other industrial, aeronautical, and space activities. There are many types of actuators that were designed to operate as linear or rotary motors, but there is still a need for low-force, low-noise linear actuators for specialized applications, and the disclosed mechanism addresses this need. A simpler implementation of a rotary actuator was developed where the end effector controls the motion of a brush for cleaning a thermal sensor. The mechanism uses a SMA (shape-memory alloy) wire for low force, and low noise. The linear implementation of the actuator incorporates a set of springs and mechanical hard-stops for resetting and fault tolerance to mechanical resistance. The actuator can be designed to work in a pull or push mode, or both. Depending on the volume envelope criteria, the actuator can be configured for scaling its volume down to 4 2 1 cm3. The actuator design has an inherent fault tolerance to mechanical resistance. The actuator has the flexibility of being designed for both linear and rotary motion. A specific configuration was designed and analyzed where fault-tolerant features have been implemented. In this configuration, an externally applied force larger than the design force does not damage the active components of the actuator. The actuator housing can be configured and produced using cost-effective methods such as injection molding, or alternatively, its components can be mounted directly on a small circuit board. The actuator is driven by a SMA -NiTi as a primary active element, and it requires energy on the order of 20 Ws(J) per cycle. Electrical connections to points A and B are used to apply electrical power in the resistive NiTi wire, causing a phase change that contracts the wire on the order of 5%. The actuation period is of the order of a second for generating the stroke, and 4 to 10 seconds

  8. Development of Ultra-Low-Noise TES Bolometer Arrays

    NASA Astrophysics Data System (ADS)

    Suzuki, T.; Khosropanah, P.; Ridder, M. L.; Hijmering, R. A.; Gao, J. R.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low-noise transition edge sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for SAFARI aboard SPICA. We have two major concerns about realizing TESs with an ultra-low NEP of 2× 10^{-19} hbox {W}/√{{ {Hz}}}: achieving lower thermal conductance and no excess noise with respect to the phonon noise. To realize TESs with phonon-noise-limited NEPs, we need to make thinner ({<}0.25 \\upmu hbox {m}) and narrower ({<}1 \\upmu hbox {m}) SiN legs. With deep reactive-ion etching, three types of TESs were fabricated in combination with different SiN island sizes and the presence or absence of an optical absorber. Those TESs have a thin (0.20 \\upmu hbox {m}), narrow (0.5-0.7 \\upmu hbox {m}), and long (340-460 \\upmu hbox {m}) SiN legs and show Tc of {˜ }93 hbox {mK} and Rn of {˜ }158 hbox {m}{Ω }. These TESs were characterized under AC bias using our frequency-division multiplexing readout (1-3 MHz) system. TESs without the absorber show NEPs as low as 1.1 × 10^{-19} hbox {W}/√{{ {Hz}}} with a reasonable response speed ({<}1 hbox {ms}), which achieved the phonon noise limit. For TESs with the absorber, we confirmed a higher hbox {NEP}_{el} ({˜ }5 × 10^{-19} hbox {W}/√{{ {Hz}}}) than that of TESs without the absorber likely due to stray light. The lowest NEP can make the new version of SAFARI with a grating spectrometer feasible.

  9. Microwave characteristics of GaAs MMIC integratable optical detectors

    NASA Technical Reports Server (NTRS)

    Claspy, Paul C.; Hill, Scott M.; Bhasin, Kul B.

    1989-01-01

    Interdigitated photoconductive detectors were fabricated on microwave device structures, making them easily integratable with Monolithic Microwave Integrated Circuits (MMIC). Detector responsivity as high as 2.5 A/W and an external quantum efficiency of 3.81 were measured. Response speed was nearly independent of electrode geometry, and all detectors had usable response at frequencies to 6 GHz. A small signal model of the detectors based on microwave measurements was also developed.

  10. Fast bias dependent device models for CAD of MMICs

    NASA Astrophysics Data System (ADS)

    Daniel, Tom T.; Tayrani, Reza

    1995-02-01

    Fast and accurate physics-based models for High Electron Mobility Transistors (HEMTs) and Metal-Semiconductor Field-Effect Transistors (MESFETs) suitable for computer-aided design of Monolithic Microwave Integrated Circuits (MMICs) are described. These models are incorporated into Microwave Harmonica(sup trademark) to enable the prediction of device IV characteristics and nonlinear performance, as well as bias dependent equivalent circuit parameters from device geometry and material profile.

  11. Evaluation of a Low-Noise Formate Spiral-Bevel Gear Set

    NASA Technical Reports Server (NTRS)

    Lewicki, David g.; Woods, Ron L.; Litvin, Faydor L.; Fuentes, Alfonso

    2007-01-01

    Studies to evaluate low-noise Formate spiral-bevel gears were performed. Experimental tests were performed on the OH-58D helicopter main-rotor transmission in the NASA Glenn 500-hp Helicopter Transmission Test Stand. Low-noise Formate spiral-bevel gears were compared to the baseline OH-58D spiral-bevel gear design, a high-strength design, and previously tested low-noise designs (including an original low-noise design and an improved-bearing-contact low-noise design). Noise, vibration, and tooth strain tests were performed. The Formate design showed a decrease in noise and vibration compared to the baseline OH-58D design, and was similar to that of the previously tested improved-bearing contact low-noise design. The pinion tooth stresses for the Formate design significantly decreased in comparison to the baseline OH-58D design. Also similar to that of the improved bearing-contact low-noise design, the maximum stresses of the Formate design shifted toward the heel, compared to the center of the face width for the baseline, high-strength, and previously tested low-noise designs.

  12. Novel active signal compression in low-noise analog readout at future X-ray FEL facilities

    NASA Astrophysics Data System (ADS)

    Manghisoni, M.; Comotti, D.; Gaioni, L.; Lodola, L.; Ratti, L.; Re, V.; Traversi, G.; Vacchi, C.

    2015-04-01

    This work presents the design of a low-noise front-end implementing a novel active signal compression technique. This feature can be exploited in the design of analog readout channels for application to the next generation free electron laser (FEL) experiments. The readout architecture includes the low-noise charge sensitive amplifier (CSA) with dynamic signal compression, a time variant shaper used to process the signal at the preamplifier output and a 10-bit successive approximation register (SAR) analog-to-digital converter (ADC). The channel will be operated in such a way to cope with the high frame rate (exceeding 1 MHz) foreseen for future XFEL machines. The choice of a 65 nm CMOS technology has been made in order to include all the building blocks in the target pixel pitch of 100 μm. This work has been carried out in the frame of the PixFEL Project funded by the Istituto Nazionale di Fisica Nucleare (INFN), Italy.

  13. Monolithic Microwave Integrated Circuit (MMIC) Phased Array Demonstrated With ACTS

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Monolithic Microwave Integrated Circuit (MMIC) arrays developed by the NASA Lewis Research Center and the Air Force Rome Laboratory were demonstrated in aeronautical terminals and in mobile or fixed Earth terminals linked with NASA's Advanced Communications Technology Satellite (ACTS). Four K/Ka-band experimental arrays were demonstrated between May 1994 and May 1995. Each array had GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The 30-GHz transmit array used in uplinks to ACTS was developed by Lewis and Texas Instruments. The three 20-GHz receive arrays used in downlinks from ACTS were developed in cooperation with the Air Force Rome Laboratory, taking advantage of existing Air Force integrated-circuit, active-phased-array development contracts with the Boeing Company and Lockheed Martin Corporation. Four demonstrations, each related to an application of high interest to both commercial and Department of Defense organizations, were conducted. The location, type of link, and the data rate achieved for each of the applications is shown. In one demonstration-- an aeronautical terminal experiment called AERO-X--a duplex voice link between an aeronautical terminal on the Lewis Learjet and ACTS was achieved. Two others demonstrated duplex voice links (and in one case, interactive video links as well) between ACTS and an Army high-mobility, multipurpose wheeled vehicle (HMMWV, or "humvee"). In the fourth demonstration, the array was on a fixed mount and was electronically steered toward ACTS. Lewis served as project manager for all demonstrations and as overall system integrator. Lewis engineers developed the array system including a controller for open-loop tracking of ACTS during flight and HMMWV motion, as well as a laptop data display and recording system used in all demonstrations. The Jet Propulsion Laboratory supported the AERO-X program, providing elements of the ACTS Mobile Terminal. The successful

  14. A discrete component low-noise preamplifier readout for a linear (1×16) SiC photodiode array

    NASA Astrophysics Data System (ADS)

    Kahle, Duncan; Aslam, Shahid; Herrero, Federico A.; Waczynski, Augustyn

    2016-09-01

    A compact, low-noise and inexpensive preamplifier circuit has been designed and fabricated to optimally readout a common cathode (1×16) channel 4H-SiC Schottky photodiode array for use in ultraviolet experiments. The readout uses an operational amplifier with 10 pF capacitor in the feedback loop in parallel with a low leakage switch for each of the channels. This circuit configuration allows for reiterative sample, integrate and reset. A sampling technique is given to remove Johnson noise, enabling a femtoampere level readout noise performance. Commercial-off-the-shelf acquisition electronics are used to digitize the preamplifier analog signals. The data logging acquisition electronics has a different integration circuit, which allows the bandwidth and gain to be independently adjusted. Using this readout, photoresponse measurements across the array between spectral wavelengths 200 nm and 370 nm are made to establish the array pixels external quantum efficiency, current responsivity and noise equivalent power.

  15. Low-noise gallium-arsenide field-effect transistor preamplifiers for stochastic beam-cooling systems

    NASA Astrophysics Data System (ADS)

    Leskovar, B.; Lo, C. C.

    1983-03-01

    The present noise performance, bandwidth capability and gain stability of bipolar and field-effect transistors, parametric amplifier, Schottky diode mixer and maser are summarized and compared in the 100 MHz to 40 CHz frequency range for stochastic beam cooling systems. Stability factor of GaAs FET's as a function of ambient temperature is presented and discussed. Performance data of several low-noise wide-band cryogenically cooled preamplifiers are presented including one with a noise figure of 0.35 dB over a bandwidth range of 150 to 500 MHz operating at ambient temperature of 200K. Also, data are given on a broadband 1 to 2 GHz preamplifier having a noise figure of approximately 0.2 dB. The gain, operating noise temperature, stability, gain nonuniformity and phase-shift as function of frequency of interest for beam cooling systems are discussed.

  16. Optical techniques to feed and control GaAs MMIC modules for phased array antenna applications

    NASA Technical Reports Server (NTRS)

    Bhasin, K. B.; Anzic, G.; Kunath, R. R.; Connolly, D. J.

    1986-01-01

    A complex signal distribution system is required to feed and control GaAs monolithic microwave integrated circuits (MMICs) for phased array antenna applications above 20 GHz. Each MMIC module will require one or more RF lines, one or more bias voltage lines, and digital lines to provide a minimum of 10 bits of combined phase and gain control information. In a closely spaced array, the routing of these multiple lines presents difficult topology problems as well as a high probability of signal interference. To overcome GaAs MMIC phased array signal distribution problems optical fibers interconnected to monolithically integrated optical components with GaAs MMIC array elements are proposed as a solution. System architecture considerations using optical fibers are described. The analog and digital optical links to respectively feed and control MMIC elements are analyzed. It is concluded that a fiber optic network will reduce weight and complexity, and increase reliability and performance, but higher power will be required.

  17. Ka-band MMIC receiver with ion-implanted technology for high-volume and low-cost application

    NASA Astrophysics Data System (ADS)

    Mondal, J.; Geddes, J.; Detry, J.; Carlson, D.

    1991-10-01

    A monolithic-microwave-integrated-circuit (MMIC) receiver in ion implantation technology, with LNA and mixer integrated circuits (ICs) shows 4.7-dB noise figure and 6.8-dB conversion gain at 35 GHz with a low IF frequency of 10-50 MHz. The data reported are for a receiver in the Ka-band. The results are for two separate amplifier and mixer ICs combined to form a receiver or down converter. The authors have successfully demonstrate viable and manufacturable technology that is useful for high volume and cost-effective applications. The measured results show the technology is able to deliver high performance with very good yield.

  18. Ambient and Cryogenic, Decade Bandwidth, Low Noise Receiving System for Radio Astronomy Using Sinuous Antenna

    NASA Astrophysics Data System (ADS)

    Gawande, Rohit Sudhir

    Traditionally, radio astronomy receivers have been limited to bandwidths less than an octave, and as a result multiple feeds and receivers are necessary to observe over a wide bandwidth. Next generation of instruments for radio astronomy will benefit greatly from reflector antenna feeds that demonstrate very wide instantaneous bandwidth, and exhibit low noise behavior. There is an increasing interest in wideband systems from both the cost and science point of view. A wideband feed will allow simultaneous observations or sweeps over a decade or more bandwidth. Instantaneous wide bandwidth is necessary for detection of short duration pulses. Future telescopes like square kilometer array (SKA), consisting of 2000 to 3000 coherently connected antennas and covering a frequency range of 70 MHz to 30 GHz, will need decade bandwidth single pixel feeds (SPFs) along with integrated LNAs to achieve the scientific objectives in a cost effective way. This dissertation focuses on the design and measurement of a novel decade bandwidth sinuous-type, dual linear polarized, fixed phase center, low loss feed with an integrated LNA. A decade bandwidth, low noise amplifier is specially designed for noise match to the higher terminal impedance encountered by this antenna yielding an improved sensitivity over what is possible with conventional 50 O amplifiers. The self-complementary, frequency independent nature of the planar sinuous geometry results in a nearly constant beam pattern and fixed phase center over more than a 10:1 operating frequency range. In order to eliminate the back-lobe response over such a wide frequency range, we have projected the sinuous pattern onto a cone, and a ground plane is placed directly behind the cone's apex. This inverted, conical geometry assures wide bandwidth operation by locating each sinuous resonator a quarter wavelength above the ground plane. The presence of a ground plane near a self complementary antenna destroys the self complementary nature

  19. Low flicker-noise amplifier for 50 Ω sources

    NASA Astrophysics Data System (ADS)

    Rubiola, Enrico; Lardet-Vieudrin, Franck

    2004-05-01

    This article analyzes the design of a low-noise amplifier intended as the input front-end for the measurement of the low-frequency components (below 10 Hz) of a 50 Ω source. Low residual flicker is the main desired performance. This feature can only be appreciated if white noise is sufficiently low, and if an appropriate design ensures dc stability. An optimal solution is proposed, in which the low-noise and dc-stability features are achieved at a reasonable complexity. Gain is accurate to more than 100 kHz, which makes the amplifier an appealing external front-end for fast Fourier transform (FFT) analyzers.

  20. Development of a low noise readout ASIC for CZT detectors for gamma-ray spectroscopy applications

    NASA Astrophysics Data System (ADS)

    Luo, J.; Deng, Z.; Wang, G.; Li, H.; Liu, Y.

    2012-08-01

    A multi-channel readout ASIC for pixelated CZT detectors has been developed for gamma-ray spectroscopy applications. Each channel consists of a low noise dual-stage charge sensitive amplifier (CSA), a CR-(RC)4 semi-Gaussian shaper and a class-AB output buffer. The equivalent noise charge (ENC) of input PMOS transistor is optimized for 5 pF input capacitance and 1 μs peaking time using gm/ID design methodology. The gain can be adjusted from 100 mV/fC to 400 mV/fC and the peaking time can be adjusted from 1 μs to 4 μs. A 16-channel chip has been designed and fabricated in 0.35 μm 2P4M CMOS technology. The test results show that the chip works well and fully satisfies the design specifications. The ENC was measured to be 72 e + 26 e/pF at 1 μs peaking time and 86 e + 20 e/pF at 4 μs peaking time. The non-uniformity of the channel gain and ENC was less than ±12% and ±11% respectively for 16 channels in one chip. The chip was also tested with a pixelated CZT detector at room temperature. The measured energy resolution at 59.5 keV photopeak of 241Am and 122 keV photopeak of 57Co were 4.5% FWHM and 2.8% FWHM for the central area pixels, respectively.

  1. Challenges and Techniques in Measurements of Noise, Cryogenic Noise and Power in Millimeter-Wave and Submillimeter-Wave Amplifiers

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene

    2014-01-01

    We will present the topic of noise measurements, including cryogenic noise measurements, of Monolithic Microwave Integrated Circuit (MMIC) and Sub-Millimeter-Wave Monolithic Microwave Integrated Circuit (S-MMIC) amplifiers, both on-wafer, and interfaced to waveguide modules via coupling probes. We will also present an overview of the state-of-the-art in waveguide probe techniques for packaging amplifier chips, and discuss methods to obtain the lowest loss packaging techniques available to date. Linearity in noise measurements will be discussed, and experimental methods for room temperature and cryogenic noise measurements will be presented. We will also present a discussion of power amplifier measurements for millimeter-wave and submillimeter-wave amplifiers, and the tools and hardware needed for this characterization.

  2. PULSE AMPLIFIER

    DOEpatents

    Johnstone, C.W.

    1958-06-17

    The improvement of pulse amplifiers used with scintillation detectors is described. The pulse amplifier circuit has the advantage of reducing the harmful effects of overloading cause by large signal inputs. In general the pulse amplifier circuit comprises two amplifier tubes with the input pulses applied to one amplifier grid and coupled to the second amplifier tube through a common cathode load. The output of the second amplifier is coupled from the plate circuit to a cathode follower tube grid and a diode tube in connected from grid to cathode of the cathode follower tube. Degenerative feedback is provided in the second amplifier by coupling a signal from the cathode follower cathode to the second amplifier grid. The circuit proqides moderate gain stability, and overload protection for subsequent pulse circuits.

  3. 80-GHz MMIC HEMT Voltage-Controlled Oscillator

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Radisic, Vesna; Micovic, Miro; Hu, Ming; Janke, Paul; Ngo, Catherine; Nguyen, Loi

    2003-01-01

    A voltage-controlled oscillator (VCO) that operates in the frequency range from 77.5 to 83.5 GHz has been constructed in the form of a monolithic microwave integrated circuit (MMIC) that includes high-electron-mobility transistors (HEMTs). This circuit is a prototype of electronically tunable signal sources in the 75-to-110-GHz range, needed for communication, imaging, and automotive radar applications, among others. This oscillator (see Figure 1) includes two AlInAs/GaInAs/InP HEMTs. One HEMT serves mainly as an oscillator gain element. The other HEMT serves mainly as a varactor for controlling the frequency: the frequency-control element is its gate-to-source capacitance, which is varied by changing its gate supply voltage. The gain HEMT is biased for class-A operation (meaning that current is conducted throughout the oscillation cycle). Grounded coplanar waveguides are used as impedance-matching transmission lines, the input and output matching being chosen to sustain oscillation and maximize output power. Air bridges are placed at discontinuities to suppress undesired slot electromagnetic modes. A high density of vias is necessary for suppressing a parallel-plate electromagnetic mode that is undesired because it can propagate energy into the MMIC substrate. Previous attempts at constructing HEMT-based oscillators yielded circuits with relatively low levels of output power and narrow tuning ranges. For example, one HEMT VCO reported in the literature had an output power of 7 dBm (.5 mW) and a tuning range 2-GHz wide centered approximately at a nominal frequency of 77 GHz. In contrast, as shown in Figure 2, the present MMIC HEMT VCO puts out a power of 12.5 dBm (.18 mW) or more over the 6-GHz-wide frequency range from 77.5 to 83.5 GHz

  4. Design of a KA-Band Image Rejection Sub-Harmonic Down-Converter MMIC

    NASA Astrophysics Data System (ADS)

    Liu, Yu; Yang, Tao; Yang, Ziqiang

    2010-12-01

    A Ka band image rejection sub-harmonic down-converter monolithic microwave integrated circuit (MMIC) is proposed. It contains a radio frequency (RF) amplifier, a broadband Lange coupler and two balanced mixers with two compact Marchand Baluns. The converter is fabricated by a commercial GaAs 0.2 μm pseudomorphic high electron mobility transistor (pHEMT) process, the size of which is 1.5 mm × 2 mm. Moreover, an improved nonlinear stability analysis method is presented in this paper. Based on the auxiliary generator (AG) technology, the method can analyze the nonlinear stability of circuits under the terminal impedance mismatched condition by setting the terminal load impedances as optimized variables. This method is applied to the sub-harmonic down-converter and is validated by the simulation and experiment. Experimental results show that from 30 GHz to 40 GHz, the conversion loss (CL) of the converter is less than 10 dB, and the image refection ratio (IMRR) is more than 15 dB.

  5. 180-GHz I-Q Second Harmonic Resistive Mixer MMIC

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    An indium phosphide MMIC (monolithic microwave integrated circuit) mixer was developed, processed, and tested in the NGC 35-nm-gate-length HEMT (high electron mobility transistor) process. This innovation is very compact in size and operates with very low LO power. Because it is a resistive mixer, this innovation does not require DC power. This is an enabling technology for the miniature receiver modules for the GeoSTAR instrument, which is the only viable option for the NRC decadal study mission PATH.

  6. MMIC-calibrated probing by CW electrooptic modulation

    NASA Astrophysics Data System (ADS)

    Le Quang, D.; Erasme, Didier; Huyart, Bernard

    1995-05-01

    This paper describes an electrooptic probing technique using a cw semiconductor-laser beam associated with a fast photodetector. Besides its simplicity, this technique presents some advantages over the sampling one thanks to the presence of a Fabry-Perot effect, namely an enhancement of the electrooptic interaction and a simple solution to the calibration problem. The good validity of the calibration method allows the application of this technique to S-parameter measurements. The S-parameter determination, in modulus and in phase, of an industrial MMIC by the electrooptic method is reported and compared with direct network analyzer measurements.

  7. Low-noise Collision Operators for Particle-in-cell Simulations

    SciTech Connect

    J.L.V. Lewandowski

    2005-03-08

    A new method to implement low-noise collision operators in particle-in-cell simulations is presented. The method is based on the fact that relevant collision operators can be included naturally in the Lagrangian formulation that exemplifies the particle-in-cell simulation method. Numerical simulations show that the momentum and energy conservation properties of the simulated plasma associated with the low-noise collision operator are improved as compared with standard collision algorithms based on random numbers.

  8. The 8.4-GHz low-noise maser pump source assembly

    NASA Technical Reports Server (NTRS)

    Cardenas, R.

    1987-01-01

    Improved pump source assemblies and new 8.4-GHz low noise traveling-wave masers (TWMs) were installed at the same time at Deep Space Stations 14 and 43 as part of the Mark IVA DSCC Antenna Microwave Subsystems upgrade. The pump source assemblies are part of the new 8.4-GHz TWMs, which are identified as Block IIA Low-Noise TWMs. Improved reliability of the pump source assemblies was required to meet stress analysis criteria.

  9. Bandwidth tunable amplifier for recording biopotential signals.

    PubMed

    Hwang, Sungkil; Aninakwa, Kofi; Sonkusale, Sameer

    2010-01-01

    This paper presents a low noise, low power, bandwidth tunable amplifier for bio-potential signal recording applications. By employing depletion-mode pMOS transistor in diode configuration as a tunable sub pA current source to adjust the resistivity of MOS-Bipolar pseudo-resistor, the bandwidth is adjusted without any need for a separate band-pass filter stage. For high CMRR, PSRR and dynamic range, a fully differential structure is used in the design of the amplifier. The amplifier achieves a midband gain of 39.8dB with a tunable high-pass cutoff frequency ranging from 0.1Hz to 300Hz. The amplifier is fabricated in 0.18εm CMOS process and occupies 0.14mm(2) of chip area. A three electrode ECG measurement is performed using the proposed amplifier to show its feasibility for low power, compact wearable ECG monitoring application.

  10. Low Noise and Highly Linear Wideband CMOS RF Front-End for DVB-H Direct-Conversion Receiver

    NASA Astrophysics Data System (ADS)

    Nam, Ilku; Moon, Hyunwon; Woo, Doo Hyung

    In this paper, a wideband CMOS radio frequency (RF) front-end for digital video broadcasting-handheld (DVB-H) receiver is proposed. The RF front-end circuit is composed of a single-ended resistive feedback low noise amplifier (LNA), a single-to-differential amplifier, an I/Q down-conversion mixer with linearized transconductors employing third order intermodulation distortion cancellation, and a divide-by-two circuit with LO buffers. By employing a third order intermodulation (IMD3) cancellation technique and vertical NPN bipolar junction transistor (BJT) switching pair for an I/Q down-conversion mixer, the proposed RF front-end circuit has high linearity and low low-frequency noise performance. It is fabricated in a 0.18µm deep n-well CMOS technology and draws 12mA from a 1.8V supply voltage. It shows a voltage gain of 31dB, a noise figure (NF) lower than 2.6dB, and an IIP3 of -8dBm from 470MHz to 862MHz.

  11. Channel Temperature Model for Microwave AlGaN/GaN HEMTs on SiC and Sapphire MMICs in High Power, High Efficiency SSPAs

    NASA Technical Reports Server (NTRS)

    Freeman, Jon C.

    2004-01-01

    A key parameter in the design trade-offs made during AlGaN/GaN HEMTs development for microwave power amplifiers is the channel temperature. An accurate determination can, in general, only be found using detailed software; however, a quick estimate is always helpful, as it speeds up the design cycle. This paper gives a simple technique to estimate the channel temperature of a generic microwave AlGaN/GaN HEMT on SiC or Sapphire, while incorporating the temperature dependence of the thermal conductivity. The procedure is validated by comparing its predictions with the experimentally measured temperatures in microwave devices presented in three recently published articles. The model predicts the temperature to within 5 to 10 percent of the true average channel temperature. The calculation strategy is extended to determine device temperature in power combining MMICs for solid-state power amplifiers (SSPAs).

  12. Submillimeter-Wave Amplifier Module with Integrated Waveguide Transitions

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene; Chattopadhyay, Goutam; Pukala, David; Gaier, Todd; Soria, Mary; ManFung, King; Deal, William; Mei, Gerry; Radisic, Vesna; Lai, Richard

    2009-01-01

    To increase the usefulness of monolithic millimeter-wave integrated circuit (MMIC) components at submillimeter-wave frequencies, a chip has been designed that incorporates two integrated, radial E-plane probes with an MMIC amplifier in between, thus creating a fully integrated waveguide module. The integrated amplifier chip has been fabricated in 35-nm gate length InP high-electron-mobility-transistor (HEMT) technology. The radial probes were mated to grounded coplanar waveguide input and output lines in the internal amplifier. The total length of the internal HEMT amplifier is 550 m, while the total integrated chip length is 1,085 m. The chip thickness is 50 m with the chip width being 320 m. The internal MMIC amplifier is biased through wire-bond connections to the gates and drains of the chip. The chip has 3 stages, employing 35-nm gate length transistors in each stage. Wire bonds from the DC drain and gate pads are connected to off-chip shunt 51-pF capacitors, and additional off-chip capacitors and resistors are added to the gate and drain bias lines for low-frequency stability of the amplifier. Additionally, bond wires to the grounded coplanar waveguide pads at the RF input and output of the internal amplifier are added to ensure good ground connections to the waveguide package. The S-parameters of the module, not corrected for input or output waveguide loss, are measured at the waveguide flange edges. The amplifier module has over 10 dB of gain from 290 to 330 GHz, with a peak gain of over 14 dB at 307 GHz. The WR2.2 waveguide cutoff is again observed at 268 GHz. The module is biased at a drain current of 27 mA, a drain voltage of 1.24 V, and a gate voltage of +0.21 V. Return loss of the module is very good between 5 to 25 dB. This result illustrates the usefulness of the integrated radial probe transition, and the wide (over 10-percent) bandwidth that one can expect for amplifier modules with integrated radial probes in the submillimeter-regime (>300 GHz).

  13. NASA satellite communications application research, phase 2 addendum. Efficient high power, solid state amplifier for EHF communications

    NASA Technical Reports Server (NTRS)

    Benet, James

    1994-01-01

    This document is an addendum to the NASA Satellite Communications Application Research (SCAR) Phase 2 Final Report, 'Efficient High Power, Solid State Amplifier for EHF Communications.' This report describes the work performed from 1 August 1993 to 11 March 1994, under contract number NASW-4513. During this reporting period an array of transistor amplifiers was repaired by replacing all MMIC amplifier chips. The amplifier array was then tested using three different feedhorn configurations. Descriptions, procedures, and results of this testing are presented in this report, and conclusions are drawn based on the test results obtained.

  14. Inertia Wheel on Low-Noise Active Magnetic Suspension

    NASA Astrophysics Data System (ADS)

    Carabelli, S.; Genta, G.; Silvagni, M.; Tonoli, A.

    2002-01-01

    Magnetic bearings are particularly suited for space applications for a number of reasons: - they are ideally suited for vacuum applications; - the lack of lubrication and wear enhances the reliability and guaranties a long maintenance-free operation - the low drag torque decreases power consumption and reduces the torque exerted on the stator of the machine. - the possibility of insulating actively the spacecraft from the excitation due to unbalance of the rotating system In the case of reaction wheels, a well designed magnetic suspension allows high speed operation with a very low power consumption and vibration level. Conversely, microgravity (and possibly vacuum) operation is an advantage for magnetic bearings. The absence of static forces allows to operate with low current levels, thus reducing electrical noise and allowing to reach even lower vibration levels than in Earth applications of magnetic bearings. Active magnetic bearings (AMB) allow to adapt the working characteristics of the system to the operating needs: it is possible to use the actuators to lock the system during launch (absence of grabbers) and to stiffen the suspension when the spacecraft is accelerated (impulsive phases), while working in conditions optimised for microgravity when this is needed. Magnetic suspension systems designed for microgravity environment cannot be correctly tested on the ground. Testing in ground conditions results in the need of grossly overdesigning the levitation device; furthermore, in some cases ground testing is completely impossible, if not by introducing devices which compensate for the Earth gravitational field. If the compensation for the gravitational force is supplied by the same actuators used for microgravity operation, the actuators and the power amplifiers must be overdesigned and in some cases the suspension can be altogether impossible. They work in conditions which are much different from nominal ones and, above all, it is impossible to reach the

  15. A 32-GHz solid-state power amplifier for deep space communications

    NASA Technical Reports Server (NTRS)

    Wamhof, P. D.; Rascoe, D. L.; Lee, K. A.; Lansing, F. S.

    1994-01-01

    A 1.5-W solid-state power amplifier (SSPA) has been demonstrated as part of an effort to develop and evaluate state-of-the-art transmitter and receiver components at 32 and 35 GHz for future deep space missions. Output power and efficiency measurements for a monolithic millimeter-wave integrated circuit (MMIC)-based SSPA are reported. Technical design details for the various modules and a thermal analysis are discussed, as well as future plans.

  16. LOGARITHMIC AMPLIFIER

    DOEpatents

    De Shong, J.A. Jr.

    1957-12-31

    A logarithmic current amplifier circuit having a high sensitivity and fast response is described. The inventor discovered the time constant of the input circuit of a system utilizing a feedback amplifier, ionization chamber, and a diode, is inversely proportional to the input current, and that the amplifier becomes unstable in amplifying signals in the upper frequency range when the amplifier's forward gain time constant equals the input circuit time constant. The described device incorporates impedance networks having low frequency response characteristic at various points in the circuit to change the forward gain of the amplifler at a rate of 0.7 of the gain magnitude for every two times increased in frequency. As a result of this improvement, the time constant of the input circuit is greatly reduced at high frequencies, and the amplifier response is increased.

  17. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Technical Reports Server (NTRS)

    Kunath, Richard R.; Claspy, Paul C.; Richard, Mark A.; Bhasin, Kul B.

    1990-01-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  18. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Astrophysics Data System (ADS)

    Kunath, Richard R.; Claspy, Paul C.; Richard, Mark A.; Bhasin, Kul B.

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  19. Design of an optically controlled Ka-band GaAs MMIC phased-array antenna

    NASA Astrophysics Data System (ADS)

    Kunath, Richard R.; Bhasin, Kul B.; Claspy, Paul C.; Richard, Mark A.

    1990-06-01

    Phased array antennas long were investigated to support the agile, multibeam radiating apertures with rapid reconfigurability needs of radar and communications. With the development of the Monolithic Microwave Integrated Circuit (MMIC), phased array antennas having the stated characteristics are becoming realizable. However, at K-band frequencies (20 to 40 GHz) and higher, the problem of controlling the MMICs using conventional techniques either severely limits the array size or becomes insurmountable due to the close spacing of the radiating elements necessary to achieve the desired antenna performance. Investigations were made that indicate using fiber optics as a transmission line for control information for the MMICs provides a potential solution. By adding an optical interface circuit to pre-existing MMIC designs, it is possible to take advantage of the small size, lightweight, mechanical flexibility and RFI/EMI resistant characteristics of fiber optics to distribute MMIC control signals. The architecture, circuit development, testing and integration of optically controlled K-band MMIC phased array antennas are described.

  20. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  1. Optical detectors for GaAs MMIC integration - Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  2. SiGe/Si Monolithically Integrated Amplifier Circuits

    NASA Technical Reports Server (NTRS)

    Katehi, Linda P. B.; Bhattacharya, Pallab

    1998-01-01

    With recent advance in the epitaxial growth of silicon-germanium heterojunction, Si/SiGe HBTs with high f(sub max) and f(sub T) have received great attention in MMIC applications. In the past year, technologies for mesa-type Si/SiGe HBTs and other lumped passive components with high resonant frequencies have been developed and well characterized for circuit applications. By integrating the micromachined lumped passive elements into HBT fabrication, multi-stage amplifiers operating at 20 GHz have been designed and fabricated.

  3. Reducing Printed Circuit Board Emissions with Low-Noise Design Practices

    NASA Technical Reports Server (NTRS)

    Bradley, Arthur T.; Fowler, Jennifer; Yavoich, Brian J.; Jennings, Stephen A.

    2012-01-01

    This paper presents the results of an experiment designed to determine the effectiveness of adopting several low-noise printed circuit board (PCB) design practices. Two boards were designed and fabricated, each consisting of identical mixed signal circuitry. Several important differences were introduced between the board layouts: one board was constructed using recommended low-noise practices and the other constructed without such attention. The emissions from the two boards were then measured and compared, demonstrating an improvement in radiated emissions of up to 22 dB.

  4. Operational Amplifiers.

    ERIC Educational Resources Information Center

    Foxcroft, G. E.

    1986-01-01

    Addresses the introduction of low cost equipment into high school and college physical science classes. Examines the properties of an "ideal" operational amplifier and discusses how it might be used under saturated and non-saturated conditions. Notes the action of a "real" operational amplifier. (TW)

  5. Amplifier Distortion

    NASA Astrophysics Data System (ADS)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  6. HEMT Amplifiers and Equipment for their On-Wafer Testing

    NASA Technical Reports Server (NTRS)

    Fung, King man; Gaier, Todd; Samoska, Lorene; Deal, William; Radisic, Vesna; Mei, Xiaobing; Lai, Richard

    2008-01-01

    Power amplifiers comprising InP-based high-electron-mobility transistors (HEMTs) in coplanar-waveguide (CPW) circuits designed for operation at frequencies of hundreds of gigahertz, and a test set for onwafer measurement of their power levels have been developed. These amplifiers utilize an advanced 35-nm HEMT monolithic microwave integrated-circuit (MMIC) technology and have potential utility as local-oscillator drivers and power sources in future submillimeter-wavelength heterodyne receivers and imaging systems. The test set can reduce development time by enabling rapid output power characterization, not only of these and similar amplifiers, but also of other coplanar-waveguide power circuits, without the necessity of packaging the circuits.

  7. Construction and Testing of Compact Low-Noise Hydrophones with Extended Frequency Response

    DTIC Science & Technology

    2004-06-01

    preamplifier performance was tested and documented herein. 15. NUMBER OF PAGES 77 14. SUBJECT TERMS Hydrophone, Sound Receiver, Transducer , Low Noise...During the last half century, the development of electroacoustic transducers in underwater acoustics, has been based on the well-known piezoelectric...their chemical composition. This results in three properties that are extremely useful in a transducer operation: linearity, passivity and

  8. Development of a low noise induction magnetic sensor using magnetic flux negative feedback in the time domain.

    PubMed

    Wang, X G; Shang, X L; Lin, J

    2016-05-01

    Time-domain electromagnetic system can implement great depth detection. As for the electromagnetic system, the receiver utilized an air coil sensor, and the matching mode of the sensor employed the resistance matching method. By using the resistance matching method, the vibration of the coil in the time domain can be effectively controlled. However, the noise of the sensor, especially the noise at the resonance frequency, will be increased as well. In this paper, a novel design of a low noise induction coil sensor is proposed, and the experimental data and noise characteristics are provided. The sensor is designed based on the principle that the amplified voltage will be converted to current under the influence of the feedback resistance of the coil. The feedback loop around the induction coil exerts a magnetic field and sends the negative feedback signal to the sensor. The paper analyses the influence of the closed magnetic feedback loop on both the bandwidth and the noise of the sensor. The signal-to-noise ratio is improved dramatically.

  9. A simplified poly(dimethylsiloxane) capillary electrophoresis microchip integrated with a low-noise contactless conductivity detector.

    PubMed

    Liu, Benyan; Zhang, Yi; Mayer, Dirk; Krause, Hans-Joachim; Jin, Qinghui; Zhao, Jianlong; Offenhäusser, Andreas

    2011-03-01

    A contactless conductivity detector integrated into a poly(dimethylsiloxane) microchip for electrophoresis is presented. It adopted the simplest configuration of electrodes commonly used in this detection mode for capillary electrophoresis microchips. Although the chip is based on a simple and effective design, it is able to obtain low detection levels due to the low noise of the detection circuit. A circuit based on a lock-in amplifier was designed on printed circuit boards to read out the signal. The property of the detection cell was studied by applying excitation signals of different frequencies and different amplitudes. It was found that the best detection limit could be achieved with a frequency of 50 kHz and amplitude of 20 V. The performance of the detector was demonstrated by successfully separating and detecting several inorganic ions and also a mixture of heavy metal ions. An average detection limit of 0.4 μM was obtained for inorganic cations. This value is significantly improved compared to similar microchip-based detectors. The presented detector could be promising for mass production due to its properties, such as simple construction, high degree of integration, high performance and low cost.

  10. Design and performances of a low-noise and radiation-hardened readout ASIC for CdZnTe detectors

    NASA Astrophysics Data System (ADS)

    Bo, Gan; Tingcun, Wei; Wu, Gao; Yongcai, Hu

    2016-06-01

    In this paper, we present the design and performances of a low-noise and radiation-hardened front-end readout application specific integrated circuit (ASIC) dedicated to CdZnTe detectors for a hard X-ray imager in space applications. The readout channel is comprised of a charge sensitive amplifier, a CR-RC shaping amplifier, an analog output buffer, a fast shaper, and a discriminator. An 8-channel prototype ASIC is designed and fabricated in TSMC 0.35-μm mixed-signal CMOS technology, the die size of the prototype chip is 2.2 × 2.2 mm2. The input energy range is from 5 to 350 keV. For this 8-channel prototype ASIC, the measured electrical characteristics are as follows: the overall gain of the readout channel is 210 V/pC, the linearity error is less than 2%, the crosstalk is less than 0.36%, The equivalent noise charge of a typical channel is 52.9 e- at zero farad plus 8.2 e- per picofarad, and the power consumption is less than 2.4 mW/channel. Through the measurement together with a CdZnTe detector, the energy resolution is 5.9% at the 59.5-keV line under the irradiation of the radioactive source 241Am. The radiation effect experiments show that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad(Si). Project supported by the National Key Scientific Instrument and Equipment Development Project (No. 2011YQ040082), the National Natural Science Foundation of China (Nos. 11475136, 11575144, 61176094), and the Shaanxi Natural Science Foundation of China (No. 2015JM1016).

  11. 434 W all-fiber linear-polarization dual-frequency Yb-doped fiber laser carrying low-noise radio frequency signal.

    PubMed

    Huang, Long; Li, Lei; Ma, Pengfei; Wang, Xiaolin; Zhou, Pu

    2016-11-14

    We demonstrate a high power dual-frequency linear-polarization fiber laser that carries radio frequency signal. Such fiber laser is based on an all-fiber master oscillator power amplifier configuration that consists of a dual-frequency seed laser and three-stage amplifiers. The dual-frequency seed laser is constructed by recombining two beams that are split from a single-frequency linearly-polarized laser. One beam has initial frequency and the other beam is modulated by an acoustic-optical modulator to have a frequency shift of 150 MHz. Then the radio frequency signal of 150 MHz is carried on the laser due to the beat frequency of these two beams. In the main amplifier, a piece of polarization maintaining large-mode-area fiber with short length is used to combine the SBS suppression with high power amplification. As a result, the dual-frequency laser is amplified to 434 W without the occurrence of SBS. The slope efficiency is 81.3%. The polarization degree of the laser and the modulation depth of the optically carried radio frequency signal are both well maintained during the amplification process. Besides, a high signal-noise-ratio of above 75 dB is realized, which demonstrates the low-noise property of the optically carried radio frequency signal. To the best of our knowledge, this is the highest reported output power of the optically carried radio frequency signal.

  12. MMIC antenna technology development in the 30/20 gigahertz band

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Kascak, T. J.; Alexovich, R. E.

    1986-01-01

    This paper presents a progress summary of NASA's efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to pushc GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future are also discussed.

  13. MMIC antenna technology development in the 30/20 gigahertz band

    NASA Technical Reports Server (NTRS)

    Smetana, J.; Kascak, T. J.; Alexovich, R. E.

    1986-01-01

    This paper presents a progress summary of NASA's efforts in developing 20 and 30 GHz GaAs MMIC devices and an advanced satellite communications antenna system using these devices. In the interest of preserving resources such as frequency spectrum and orbital space the antenna system is being developed with multiple fixed spot beams and multiple scanning spot beams. NASA set high goals for the MMIC development to push GaAs technology. These goals and the main features of the MMIC devices are discussed. Some packaging and characterization considerations are also discussed. The 20 GHz transmit antenna and 30 GHz receive antenna are being developed separately. The approach selected is to perform contractual configuration studies, purchase a 20-GHz experimental antenna system (EAS) and perform in-house evaluation. The features and key specifications of the EAS are discussed. Additional supporting technologies such as effects of coupling on modest sized arrays, MMIC matching techniques, in-house analytical capability, wideband and dual frequency microstrip patch array development, and MMIC packaging techniques are described. Some plans for future work are also discussed.

  14. Two stage dual gate MESFET monolithic gain control amplifier for Ka-band

    NASA Astrophysics Data System (ADS)

    Sokolov, V.; Geddes, J.; Contolatis, A.

    A monolithic two stage gain control amplifier has been developed using submicron gate length dual gate MESFETs fabricated on ion implanted material. The amplifier has a gain of 12 dB at 30 GHz with a gain control range of over 30 dB. This ion implanted monolithic IC is readily integrable with other phased array receiver functions such as low noise amplifiers and phase shifters.

  15. LOGARITHMIC AMPLIFIER

    DOEpatents

    Wade, E.J.; Stone, R.S.

    1959-03-10

    Electronic,amplifier circuits, especially a logai-ithmic amplifier characterizxed by its greatly improved strability are discussed. According to the in ention, means are provided to feed bach the output valtagee to a diode in the amplifier input circuit, the diode being utilized to produce the logarithmic characteristics. The diode is tics, The diode isition therewith and having its filament operated from thc same source s the filament of the logarithmic diode. A bias current of relatively large value compareii with the signal current is continuously passed through the compiting dioie to render the diode insensitivy to variations in the signal current. by this odes kdu to variaelled, so that the stability of the amlifier will be unimpaired.

  16. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter.

    PubMed

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-03-03

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) deletedCMOS terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31 × 31 focal plane array has been fully integrated in a 0 . 13 μ m standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0 . 2 μ V RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0 . 6 nW at 270 GHz and 0 . 8 nW at 600 GHz.

  17. Highly Efficient Amplifier for Ka-Band Communications

    NASA Technical Reports Server (NTRS)

    1996-01-01

    An amplifier developed under a Small Business Innovation Research (SBIR) contract will have applications for both satellite and terrestrial communications. This power amplifier uses an innovative series bias arrangement of active devices to achieve over 40-percent efficiency at Ka-band frequencies with an output power of 0.66 W. The amplifier is fabricated on a 2.0- by 3.8-square millimeter chip through the use of Monolithic Microwave Integrated Circuit (MMIC) technology, and it uses state-of-the-art, Pseudomorphic High-Electron-Mobility Transistor (PHEMT) devices. Although the performance of the MMIC chip depends on these high-performance devices, the real innovations here are a unique series bias scheme, which results in a high-voltage chip supply, and careful design of the on-chip planar output stage combiner. This design concept has ramifications beyond the chip itself because it opens up the possibility of operation directly from a satellite power bus (usually 28 V) without a dc-dc converter. This will dramatically increase the overall system efficiency. Conventional microwave power amplifier designs utilize many devices all connected in parallel from the bias supply. This results in a low-bias voltage, typically 5 V, and a high bias current. With this configuration, substantial I(sup 2) R losses (current squared times resistance) may arise in the system bias-distribution network. By placing the devices in a series bias configuration, the total current is reduced, leading to reduced distribution losses. Careful design of the on-chip planar output stage power combiner is also important in minimizing losses. Using these concepts, a two-stage amplifier was designed for operation at 33 GHz and fabricated in a standard MMIC foundry process with 0.20-m PHEMT devices. Using a 20-V bias supply, the amplifier achieved efficiencies of over 40 percent with an output power of 0.66 W and a 16-dB gain over a 2-GHz bandwidth centered at 33 GHz. With a 28-V bias, a power

  18. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    PubMed Central

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-01-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics. PMID:27796343

  19. Miniature Low-Noise G-Band I-Q Receiver

    NASA Technical Reports Server (NTRS)

    Kangaslahti, Pekka P.; Pukala, David M.; Gaier, Todd C.; Tanner, Alan B.; O'Dwyer, Ian J.; Lambrigtsen, Bjom H.; Soria, Mary M.; Owen, Heather R.; Lai, Richard; Mei, Xiaobing

    2010-01-01

    Weather forecasting, hurricane tracking, and atmospheric science applications depend on humidity sounding of atmosphere. Current instruments provide these measurements from groundbased, airborne, and low Earth orbit (LEO) satellites by measuring radiometric temperature on the flanks of the 183-GHz water vapor line. Miniature, low-noise receivers have been designed that will enable these measurements from a geostationary, thinned array sounder, which is based on hundreds of low-noise receivers that convert the 180-GHz signal directly to baseband in-phase and in-quadrature signals for digitization and correlation. The developed receivers provide a noise temperature of 450 K from 165 to 183 GHz (NF = 4.1 dB), and have a mass of 3 g while consuming 24 mW of power. These are the most sensitive broadband I-Q receivers at this frequency range that operate at room temperature, and are significantly lower in mass and power consumption than previously reported receivers.

  20. Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.; Young, Judith A.

    2004-01-01

    The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).

  1. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-01

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17fm/√Hz by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  2. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics.

    PubMed

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-31

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  3. A low-noise differential microphone inspired by the ears of the parasitoid fly Ormia ochracea.

    PubMed

    Miles, R N; Su, Q; Cui, W; Shetye, M; Degertekin, F L; Bicen, B; Garcia, C; Jones, S; Hall, N

    2009-04-01

    A miniature differential microphone is described having a low-noise floor. The sensitivity of a differential microphone suffers as the distance between the two pressure sensing locations decreases, resulting in an increase in the input sound pressure-referred noise floor. In the microphone described here, both the diaphragm thermal noise and the electronic noise are minimized by a combination of novel diaphragm design and the use of low-noise optical sensing that has been integrated into the microphone package. The differential microphone diaphragm measures 1 x 2 mm(2) and is fabricated out of polycrystalline silicon. The diaphragm design is based on the coupled directionally sensitive ears of the fly Ormia ochracea. The sound pressure input-referred noise floor of this miniature differential microphone has been measured to be less than 36 dBA.

  4. Development of low noise cantilever deflection sensor for multienvironment frequency-modulation atomic force microscopy

    SciTech Connect

    Fukuma, Takeshi; Kimura, Masayuki; Kobayashi, Kei; Matsushige, Kazumi; Yamada, Hirofumi

    2005-05-15

    We have developed a low noise cantilever deflection sensor with a deflection noise density of 17 fm/{radical}(Hz) by optimizing the parameters used in optical beam deflection (OBD) method. Using this sensor, we have developed a multienvironment frequency-modulation atomic force microscope (FM-AFM) that can achieve true molecular resolution in various environments such as in moderate vacuum, air, and liquid. The low noise characteristic of the deflection sensor makes it possible to obtain a maximum frequency sensitivity limited by the thermal Brownian motion of the cantilever in every environment. In this paper, the major noise sources in OBD method are discussed in both theoretical and experimental aspects. The excellent noise performance of the deflection sensor is demonstrated in deflection and frequency measurements. True molecular-resolution FM-AFM images of a polydiacetylene single crystal taken in vacuum, air, and water are presented.

  5. Energy-filtered Electron Transport Structures for Low-power Low-noise 2-D Electronics

    NASA Astrophysics Data System (ADS)

    Pan, Xuan; Qiu, Wanzhi; Skafidas, Efstratios

    2016-10-01

    In addition to cryogenic techniques, energy filtering has the potential to achieve high-performance low-noise 2-D electronic systems. Assemblies based on graphene quantum dots (GQDs) have been demonstrated to exhibit interesting transport properties, including resonant tunnelling. In this paper, we investigate GQDs based structures with the goal of producing energy filters for next generation lower-power lower-noise 2-D electronic systems. We evaluate the electron transport properties of the proposed GQD device structures to demonstrate electron energy filtering and the ability to control the position and magnitude of the energy passband by appropriate device dimensioning. We also show that the signal-to-thermal noise ratio performance of the proposed nanoscale device can be modified according to device geometry. The tunability of two-dimensional GQD structures indicates a promising route for the design of electron energy filters to produce low-power and low-noise electronics.

  6. Countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme

    NASA Astrophysics Data System (ADS)

    Lee, Min Soo; Park, Byung Kwon; Woo, Min Ki; Park, Chang Hoon; Kim, Yong-Su; Han, Sang-Wook; Moon, Sung

    2016-12-01

    We developed a countermeasure against blinding attacks on low-noise detectors with a background-noise-cancellation scheme in quantum key distribution (QKD) systems. Background-noise cancellation includes self-differencing and balanced avalanche photon diode (APD) schemes and is considered a promising solution for low-noise APDs, which are critical components in high-performance QKD systems. However, its vulnerability to blinding attacks has been recently reported. In this work, we propose a countermeasure that prevents this potential security loophole from being used in detector blinding attacks. An experimental QKD setup is implemented and various tests are conducted to verify the feasibility and performance of the proposed method. The obtained measurement results show that the proposed scheme successfully detects occurring blinding-attack-based hacking attempts.

  7. Bidirectional amplifier

    DOEpatents

    Wright, James T.

    1986-01-01

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  8. Bidirectional amplifier

    DOEpatents

    Wright, J.T.

    1984-02-02

    A bilateral circuit is operable for transmitting signals in two directions without generation of ringing due to feedback caused by the insertion of the circuit. The circuit may include gain for each of the signals to provide a bidirectional amplifier. The signals are passed through two separate paths, with a unidirectional amplifier in each path. A controlled sampling device is provided in each path for sampling the two signals. Any feedback loop between the two signals is disrupted by providing a phase displacement between the control signals for the two sampling devices.

  9. Improved PHIP polarization using a precision, low noise, voltage controlled current source.

    PubMed

    Agraz, Jose; Grunfeld, Alexander; Cunningham, Karl; Li, Debiao; Wagner, Shawn

    2013-10-01

    Existing para-hydrogen induced polarization (PHIP) instrumentation relies on magnetic fields to hyperpolarize substances. These hyperpolarized substances have enhanced magnetic resonance imaging (MRI) signals over 10,000 fold, allowing for MRI at the molecular level. Required magnetic fields are generated by energizing a solenoid coil with current produced by a voltage controlled voltage source (VCVS), also known as a power supply. A VCVS lacks the current regulation necessary to keep magnetic field fluctuations to a minimum, which results in low PHIP polarization. A voltage controlled current source (VCCS) is an electric circuit that generates a steady flow of electrons proportional to an input voltage. A low noise VCCS provides the solenoid current flow regulation necessary to generate a stable static magnetic field (Bo). We discuss the design and implementation of a low noise, high stability, VCCS for magnetic field generation with minimum variations. We show that a precision, low noise, voltage reference driving a metal oxide semiconductor field effect transistor (MOSFET) based current sink, results in the current flow control necessary for generating a low noise and high stability Bo. In addition, this work: (1) compares current stability for ideal VCVS and VCCS models using transfer functions (TF), (2) develops our VCCS design's TF, (3) measures our VCCS design's thermal & 1/f noise, and (4) measures and compares hydroxyethyl-propionate (HEP) polarization obtained using a VCVS and our VCCS. The hyperpolarization of HEP was done using a PHIP instrument developed in our lab. Using our VCCS design, HEP polarization magnitude data show a statistically significant increase in polarization over using a VCVS. Circuit schematic, bill of materials, board layout, TF derivation, and Matlab simulations code are included as supplemental files.

  10. Versatile, dynamically balanced low-noise optical-field manipulator using a coherently prepared atomic medium.

    PubMed

    Li, Yan; Zhu, Chengjie; Deng, L; Hagley, E W; Garrett, W R

    2015-11-15

    We propose a versatile dynamic optical-field manipulator using a coherently prepared atomic medium. We show that by locking the pump power change with the two-photon detuning, a π-phase shifting can be realized with unit probe fidelity in a broad two-photon detuning range. The two-photon-insensitive π-phase-shift mode with significantly reduced fluctuation makes this scheme an attractive system for low-noise phase-gate operations.

  11. ZnCdSe/ZnSe quantum-dot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Al-Mossawi, Muwaffaq Abdullah

    2017-02-01

    Gain of CdZnSe quantum dot (QD) semiconductor optical amplifiers (SOAs) is studied theoretically using non-Markovian gain model including many-body effects. The calculations are done at three mole fractions. Spontaneous emission and noise figure of the amplifier are studied. The effect of shot noise is included. High gain, polarization independence, and low noise figure are characterize these QD-SOAs. A multi-mode gain appears for Zn0.69Cd0.31Se structure while the structure Zn0.6Cd0.4Se give a low noise.

  12. Simulation and measurement of a Ka-band HTS MMIC Josephson junction mixer

    NASA Astrophysics Data System (ADS)

    Zhang, Ting; Pegrum, Colin; Du, Jia; Guo, Yingjie Jay

    2017-01-01

    We report modeling and simulation results for a Ka band high-temperature superconducting (HTS) monolithic microwave integrated circuit (MMIC) Josephson junction mixer. A Verilog-A model of a Josephson junction is established and imported into the system simulator to realize a full HTS MMIC circuit simulation containing the HTS passive circuit models. Impedance matching optimization between the junction and passive devices is investigated. Junction DC I-V characteristics, current and local oscillator bias conditions and mixing performance are simulated and compared with the experimental results. Good agreement is obtained between the simulation and measurement results.

  13. Amplified Policymaking

    ERIC Educational Resources Information Center

    Prince, Katherine; Woempner, Carolyn

    2010-01-01

    This brief examines the policy implications of two drivers of change presented in the "2020 Forecast: Creating the Future of Learning"-- Pattern Recognition and Amplified Organization. These drivers point toward a series of cultural shifts and illuminate how we are developing new ways of organizing, constructing, and managing knowledge.…

  14. Microwave/mm wave magnetics and MMIC compatibility (invited) (abstract)

    NASA Astrophysics Data System (ADS)

    Adam, J. D.

    1987-04-01

    Ferrite devices can be loosely classified into three different categories, namely: control components using polycrystalline ferrites, tunable filters and oscillators using YIG spheres, and devices based on epitaxial YIG or ferrite films. Ferrite control components such as circulators, isolators, and switches are used in almost all microwave and millimeter wave systems. Tunable YIG sphere devices see more limited use in radar and EW systems, and microwave test equipment while epitaxial YIG devices have yet to make a significant systems impact. GaAs chips for phased array modules are under development by several companies for both radar and EW applications. The GaAs chips can contain small signal and power gain, phase shifters, filters, mixers, and switches. The modules are usually designed, however, with discrete circulators or isolators which are often significantly larger than the MMIC chips. Further reduction in module size and cost will require the design of the module without nonreciprocal components, or the development of ferrite devices which are more compatible with the size, bandwidth, and fabrication of the GaAs device. Integration of nonreciprocal ferrite components on the GaAs chip could have a large impact but presents a significant challenge both in terms of processing compatibility between the ferrite and the GaAs and in terms of cost. The impact in the areas of tunable YIG filters and oscillators and MSW devices are smaller but, fortunately, so are the difficulties. Here the YIG films or spheres, or hexagonal ferrite films can be laid on the GaAs substrate thus forming a hybrid device. Having integrated the ferrite with the GaAs it is necessary to consider the magnetic bias field requirement. Bias fields are not required in latching devices and can be minimized in other devices by use of hexagonal ferrite films with their large anisotropy fields. It may even be possible to integrate a permanent magnet film onto the GaAs chip.

  15. A W-Band MMIC Radar System for Remote Detection of Vital Signs

    NASA Astrophysics Data System (ADS)

    Diebold, Sebastian; Ayhan, Serdal; Scherr, Steffen; Massler, Hermann; Tessmann, Axel; Leuther, Arnulf; Ambacher, Oliver; Zwick, Thomas; Kallfass, Ingmar

    2012-12-01

    In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75-110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

  16. Quasi-optical constrained lens amplifiers

    NASA Astrophysics Data System (ADS)

    Schoenberg, Jon S.

    1995-09-01

    A major goal in the field of quasi-optics is to increase the power available from solid state sources by combining the power of individual devices in free space, as demonstrated with grid oscillators and grid amplifiers. Grid amplifiers and most amplifier arrays require a plane wave feed, provided by a far field source or at the beam waist of a dielectric lens pair. These feed approaches add considerable loss and size, which is usually greater than the quasi-optical amplifier gain. In addition, grid amplifiers require external polarizers for stability, further increasing size and complexity. This thesis describes using constrained lens theory in the design of quasi optical amplifier arrays with a focal point feed, improving the power coupling between the feed and the amplifier for increased gain. Feed and aperture arrays of elements, input/output isolation and stability, amplifier circuitry, delay lines and bias distribution are all contained on a single planar substrate, making monolithic circuit integration possible. Measured results of X band transmission lenses and a low noise receive lens are presented, including absolute power gain up to 13 dB, noise figure as low as 1.7 dB, beam scanning to +/-30 deg, beam forming and beam switching of multiple sources, and multiple level quasi-optical power combining. The design and performance of millimeter wave power combining amplifier arrays is described, including a Ka Band hybrid array with 1 watt output power, and a V Band 36 element monolithic array with a 5 dB on/off ratio.

  17. Air backed mandrel type fiber optic hydrophone with low noise floor

    NASA Astrophysics Data System (ADS)

    Rajesh, R.; V, Sreehari C.; N, Praveen Kumar; Awasthi, R. L.; K, Vivek; B, Vishnu M.; Santhanakrishnan, T.; Moosad, K. P. B.; Mathew, Basil

    2014-10-01

    Low noise fiber optic hydrophone based on optical fiber coil wound on air-backed mandrel was developed. The sensor can be effectively used for underwater acoustic sensing. The design and characterization of the hydrophone is illustrated in this paper. A fiber Mach-Zehnder Interferometer (MZI) was developed and coupled with a Distributed Feedback (DFB) fiber laser source and an optical phase demodulation system, with an active modulation in one of the arms. The sensor head design was optimized to achieve noise spectral density <10 μrad/√Hz, for yielding sufficient sensitivity to sense acoustic pressure close to Deep Sea Sate Zero (DSS0).

  18. Low noise Kα-band hopping reflectometer based on yttrium iron garnet sources at TEXTOR

    NASA Astrophysics Data System (ADS)

    Soldatov, S.; Krämer-Flecken, A.; Zorenko, O.

    2011-03-01

    The heterodyne hopping reflectometer system based on wide-tuned low noise yttrium iron garnet sources was developed for TEXTOR experiment. Being installed in 1998 it successfully operates more than 10 years providing the measurements of plasma density fluctuations. Owing to the advance multihorn antennae systems installed at three different positions around the tokamak, the correlation properties as well as the propagation measurements of plasma density fluctuations are realized. The reflectometer operates in ordinary polarization mode providing the access mostly to plasma gradient and pedestal region. The capabilities of the diagnostic are illustrated with the examples of measured fluctuation characteristics in the variety of TEXTOR plasmas.

  19. A 20 GHz low noise, low cost receiver for digital satellite communication system, ground terminal applications

    NASA Technical Reports Server (NTRS)

    Allen, Glen

    1988-01-01

    A 45 month effort for the development of a 20 GHz, low-noise, low-cost receiver for digital, satellite communication system, ground terminal applications is discussed. Six proof-of-concept receivers were built in two lots of three each. Performance was generally consistent between the two lots. Except for overall noise figure, parameters were within or very close to specification. While noise figure was specified as 3.5 dB, typical performance was measured at 3.0 to 5.5 dB, over the full temperature range of minus 30 C to plus 75 C.

  20. Low noise wing slat system with rigid cove-filled slat

    NASA Technical Reports Server (NTRS)

    Shmilovich, Arvin (Inventor); Yadlin, Yoram (Inventor)

    2013-01-01

    Concepts and technologies described herein provide for a low noise aircraft wing slat system. According to one aspect of the disclosure provided herein, a cove-filled wing slat is used in conjunction with a moveable panel rotatably attached to the wing slat to provide a high lift system. The moveable panel rotates upward against the rear surface of the slat during deployment of the slat, and rotates downward to bridge a gap width between the stowed slat and the lower wing surface, completing the continuous outer mold line shape of the wing, when the cove-filled slat is retracted to the stowed position.

  1. DEVELOPMENT OF S-BAND LOW-NOISE PERIODIC PERMANENT MAGNETIC TRAVELING-WAVE TUBE

    DTIC Science & Technology

    MICROWAVE AMPLIFIERS, *TRAVELING WAVE TUBES, ANODES, DESIGN, ELECTRON BEAMS, ELECTRON GUNS, FOCUSING , HELIXES, IMPEDANCE MATCHING, MAGNETIC FIELDS, MAGNETS, NOISE (RADIO), REDUCTION, S BAND, STANDING WAVE RATIOS

  2. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    SciTech Connect

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A. -V.; Wang, Y.

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  3. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    DOE PAGES

    Tobias, B.; Domier, C. W.; Luhmann, Jr., N. C.; ...

    2016-07-25

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads tomore » 10x improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). As a result, implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.« less

  4. Low-noise heterodyne receiver for electron cyclotron emission imaging and microwave imaging reflectometry

    NASA Astrophysics Data System (ADS)

    Tobias, B.; Domier, C. W.; Luhmann, N. C.; Luo, C.; Mamidanna, M.; Phan, T.; Pham, A.-V.; Wang, Y.

    2016-11-01

    The critical component enabling electron cyclotron emission imaging (ECEI) and microwave imaging reflectometry (MIR) to resolve 2D and 3D electron temperature and density perturbations is the heterodyne imaging array that collects and downconverts radiated emission and/or reflected signals (50-150 GHz) to an intermediate frequency (IF) band (e.g. 0.1-18 GHz) that can be transmitted by a shielded coaxial cable for further filtering and detection. New circuitry has been developed for this task, integrating gallium arsenide (GaAs) monolithic microwave integrated circuits (MMICs) mounted on a liquid crystal polymer (LCP) substrate. The improved topology significantly increases electromagnetic shielding from out-of-band interference, leads to 10× improvement in the signal-to-noise ratio, and dramatic cost savings through integration. The current design, optimized for reflectometry and edge radiometry on mid-sized tokamaks, has demonstrated >20 dB conversion gain in upper V-band (60-75 GHz). Implementation of the circuit in a multi-channel electron cyclotron emission imaging (ECEI) array will improve the diagnosis of edge-localized modes and fluctuations of the high-confinement, or H-mode, pedestal.

  5. The microstrip SQUID amplifier

    NASA Astrophysics Data System (ADS)

    Therrien, Roy

    A Superconducting Quantum Interference Devices (SQUIDS) can operate at frequencies up to several GHz and can be cooled to less than 100 mK. Such characteristics make the SQUID---a flux-to-voltage transducer---an excellent candidate for use as a low-noise rf amplifier. Coupling of input signals of frequencies larger than 200 MHz, however, has been limited by the parasitic capacitance between the input coil and SQUID body. We present experimental observations of a do SQUID-based rf amplifier which circumvents this problem by incorporating the input coil as a microstrip resonator. The microstrip input configuration uses the capacitance and inductance of the input coil to form a resonant cavity capable of operating up to several GHz. The input signal is applied between the SQUID body and one end of the input coil, while the other end of the coil is left open. We present data from microstrip SQUID amplifiers with gains of up to 22 dB at 900 MHz. In order to understand the gain and input impedance of the microstrip SQUID in greater detail, we made and studied a 1:190 scale analog patterned on a double-sided printed circuit board consisting of copper deposited on a kapton sheet. The measured input impedance of the analog SQUID is successfully modeled by describing the microstrip input as a low-loss transmission line. When operated with the slit in the copper washer ground plane shorted, the input coil behaves exactly like a linear resonator with the resonant frequency given by f = 1/2ℓ(L 0C0)1/2, where L0 and C0 are the inductance and capacitance per unit length and ℓ is the coil length. With the slit in the washer left open, the inductance of the input coil is significantly altered in a manner partially consistent with the Ketchen-Jaycox model in which the reflected inductance of the input coil is Li = n2L, where L is the inductance of the washer loop and n is the number of turns in the coil. We present input impedance measurements on microstrip SQUIDs cooled to 4

  6. Low Noise Cruise Efficient Short Take-Off and Landing Transport Vehicle Study

    NASA Technical Reports Server (NTRS)

    Kim, Hyun D.; Berton, Jeffrey J.; Jones, Scott M.

    2007-01-01

    The saturation of the airspace around current airports combined with increasingly stringent community noise limits represents a serious impediment to growth in world aviation travel. Breakthrough concepts that both increase throughput and reduce noise impacts are required to enable growth in aviation markets. Concepts with a 25 year horizon must facilitate a 4x increase in air travel while simultaneously meeting community noise constraints. Attacking these horizon issues holistically is the concept study of a Cruise Efficient Short Take-Off and Landing (CESTOL) high subsonic transport under the NASA's Revolutionary Systems Concepts for Aeronautics (RSCA) project. The concept is a high-lift capable airframe with a partially embedded distributed propulsion system that takes a synergistic approach in propulsion-airframe-integration (PAI) by fully integrating the airframe and propulsion systems to achieve the benefits of both low-noise short take-off and landing (STOL) operations and efficient high speed cruise. This paper presents a summary of the recent study of a distributed propulsion/airframe configuration that provides low-noise STOL operation to enable 24-hour use of the untapped regional and city center airports to increase the capacity of the overall airspace while still maintaining efficient high subsonic cruise flight capability.

  7. Non-destructive single-pass low-noise detection of ions in a beamline

    SciTech Connect

    Schmidt, Stefan; Murböck, Tobias; Birkl, Gerhard; Andelkovic, Zoran; Vogel, Manuel; Nörtershäuser, Wilfried; Stahl, Stefan

    2015-11-15

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles’ beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar{sup 13+}) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  8. Non-destructive single-pass low-noise detection of ions in a beamline.

    PubMed

    Schmidt, Stefan; Murböck, Tobias; Andelkovic, Zoran; Birkl, Gerhard; Nörtershäuser, Wilfried; Stahl, Stefan; Vogel, Manuel

    2015-11-01

    We have conceived, built, and operated a device for the non-destructive single-pass detection of charged particles in a beamline. The detector is based on the non-resonant pick-up and subsequent low-noise amplification of the image charges induced in a cylindrical electrode surrounding the particles' beam path. The first stage of the amplification electronics is designed to be operated from room temperature down to liquid helium temperature. The device represents a non-destructive charge counter as well as a sensitive timing circuit. We present the concept and design details of the device. We have characterized its performance and show measurements with low-energy highly charged ions (such as Ar(13+)) passing through one of the electrodes of a cylindrical Penning trap. This work demonstrates a novel approach of non-destructive, low noise detection of charged particles which is, depending on the bunch structure, suitable, e.g., for ion traps, low-energy beamlines or accelerator transfer sections.

  9. Scalp EEG acquisition in a low-noise environment: a quantitative assessment.

    PubMed

    Zandi, Ali Shahidi; Dumont, Guy A; Yedlin, Matthew J; Lapeyrie, Philippe; Sudre, Christophe; Gaffet, Stéphane

    2011-08-01

    This pilot study investigates effects of an ultra shielded capsule at the low-noise underground laboratory (LSBB), Rustrel, France, when used to acquire scalp electroencephalogram (EEG). Analysis of EEG recordings from three volunteers confirms that clean EEG signals can be acquired in the LSBB capsule without the need for notch filtering. In addition, using different setups for acquiring EEG in the capsule, statistical analysis of power spectral densities based on a geodesic distance measure reveals that the laptop computer and patient module do not introduce any noise on recorded signals. Moreover, the current study shows that the backward counting task as a mental activity can be better detected using the EEG acquired in the capsule due to the higher level of â-band activities. The counting-relaxed â-band energy ratio is calculated using the S transform and compared between the hospital and capsule, revealing significantly higher values in the capsule (p < 0.05). Exploring the relative â-band energy (ratio of â-band energy to that of 0-12 Hz in counting state) reveals that the average of this measure is higher in the capsule for all subjects. Those results demonstrate the potential of the LSBB capsule for novel EEG studies, including establishing novel low-noise EEG benchmarks.

  10. A general approach to low noise readout of terahertz imaging arrays

    NASA Astrophysics Data System (ADS)

    Chisum, Jonathan D.; Grossman, Erich N.; Popović, Zoya

    2011-06-01

    This article describes the theory and design of an ultra-low noise electronic readout circuit for use with room temperature video-rate terahertz imaging arrays. First, the noise characteristics of various imaging detectors, including low resistance bolometers and high resistance diodes are discussed. Theoretical approaches to white and 1/f noise mitigation are examined, and a corresponding low-noise readout circuit is designed, built, and tested. It is shown that the circuit is capable of achieving detector limited noise performance for use in room temperature terahertz imaging systems. A thorough noise analysis of the circuit provides the necessary information for applying the readout circuit to any type of imaging detector, and more generally, any measurement of small signals from various source impedances in the presence of white and 1/f noise. W-band measurements of an 8-element, high-resistance detector array, and a 32-element, low-resistance detector array demonstrate the usefulness of the readout circuit. Finally, recommended circuit configurations for various detectors in the literature are provided, with theoretical performance metrics summarized.

  11. Device and Design Optimization for AlGaN/GaN X-Band-Power-Amplifiers with High Efficiency

    NASA Astrophysics Data System (ADS)

    Kühn, Jutta; van Raay, Friedbert; Quay, Rüdiger; Kiefer, Rudolf; Mikulla, Michael; Seelmann-Eggebert, Matthias; Bronner, Wolfgang; Schlechtweg, Michael; Ambacher, Oliver; Thumm, Manfred

    2010-03-01

    The design, realization and characterization of dual-stage X-band high-power and highly-efficient monolithic microwave integrated circuit (MMIC) power amplifiers (PAs) with AlGaN/GaN high electronic mobility transistors (HEMTs) is presented. These high power amplifiers (HPAs) are based on a precise investigation of circuit-relevant HEMT behavior using two different field-plate variants and its effects on PA performance as well as optimization of HPA driver stage size which also has a deep impact on the entire HPA. Two broadband (3 GHz) MMICs with different field-plate variants and two narrowband (1 GHz) PAs with different driver- to final-stage gate-width ratio are realized with a maximum output power of 19-23 W, a maximum power-added efficiency (PAE) of ≥40%, and an associated power gain of 17 dB at X-band. Furthermore, two 1 mm test transistors of the same technology with the mentioned field-plate variants and a 1 mm test MMIC support VSWR-ratio tests of 6:1 and 4:1, respectively.

  12. A low-noise 64-channel front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems

    NASA Astrophysics Data System (ADS)

    Gan, B.; Wei, T.; Gao, W.; Liu, H.; Hu, Y.

    2016-04-01

    In this paper, we report on the recent development of a 64-channel low-noise front-end readout ASIC for CdZnTe detectors aimed to hard X-ray imaging systems. The readout channel is comprised of a charge sensitive amplifier, a leakage current compensation circuit, a CR-RC shaper, two S-K filters, an inverse proportional amplifier, a peak-detect-and-hold circuit, a discriminator and trigger logic, a time sequence control circuit and a driving buffer. The readout ASIC is implemented in TSMC 0.35 μm mixed-signal CMOS technology, the die size of the prototype chip is 2.7 mm×8.0 mm. The overall gain of the readout channel is 200 mV/fC, the power consumption is less than 8 mW/channel, the linearity error is less than 1%, the inconsistency among the channels is less than 2.86%, and the equivalent noise charge of a typical channel is 66 e- at zero farad plus 14 e- per picofarad. By connecting this readout ASIC to an 8×8 pixel CdZnTe detector, we obtained an energy spectrum, the energy resolution of which is 4.5% at the 59.5 keV line of 241Am source.

  13. Power-Combined GaN Amplifier with 2.28-W Output Power at 87 GHz

    NASA Technical Reports Server (NTRS)

    Fung, King Man; Ward, John; Chattopadhyay, Goutam; Lin, Robert H.; Samoska, Lorene A.; Kangaslahti, Pekka P.; Mehdi, Imran; Lambrigtsen, Bjorn H.; Goldsmith, Paul F.; Soria, Mary M.; Cooperrider, Joelle T.; Bruneau, Peter J.; Kurdoghlian, Ara; Micovic, Miroslav

    2011-01-01

    Future remote sensing instruments will require focal plane spectrometer arrays with higher resolution at high frequencies. One of the major components of spectrometers are the local oscillator (LO) signal sources that are used to drive mixers to down-convert received radio-frequency (RF) signals to intermediate frequencies (IFs) for analysis. By advancing LO technology through increasing output power and efficiency, and reducing component size, these advances will improve performance and simplify architecture of spectrometer array systems. W-band power amplifiers (PAs) are an essential element of current frequency-multiplied submillimeter-wave LO signal sources. This work utilizes GaN monolithic millimeter-wave integrated circuit (MMIC) PAs developed from a new HRL Laboratories LLC 0.15- m gate length GaN semiconductor transistor. By additionally waveguide power combining PA MMIC modules, the researchers here target the highest output power performance and efficiency in the smallest volume achievable for W-band.

  14. A Low-Noise CMOS THz Imager Based on Source Modulation and an In-Pixel High-Q Passive Switched-Capacitor N-Path Filter

    PubMed Central

    Boukhayma, Assim; Dupret, Antoine; Rostaing, Jean-Pierre; Enz, Christian

    2016-01-01

    This paper presents the first low noise complementary metal oxide semiconductor (CMOS) terahertz (THz) imager based on source modulation and in-pixel high-Q filtering. The 31×31 focal plane array has been fully integrated in a 0.13μm standard CMOS process. The sensitivity has been improved significantly by modulating the active THz source that lights the scene and performing on-chip high-Q filtering. Each pixel encompass a broadband bow tie antenna coupled to an N-type metal-oxide-semiconductor (NMOS) detector that shifts the THz radiation, a low noise adjustable gain amplifier and a high-Q filter centered at the modulation frequency. The filter is based on a passive switched-capacitor (SC) N-path filter combined with a continuous-time broad-band Gm-C filter. A simplified analysis that helps in designing and tuning the passive SC N-path filter is provided. The characterization of the readout chain shows that a Q factor of 100 has been achieved for the filter with a good matching between the analytical calculation and the measurement results. An input-referred noise of 0.2μV RMS has been measured. Characterization of the chip with different THz wavelengths confirms the broadband feature of the antenna and shows that this THz imager reaches a total noise equivalent power of 0.6 nW at 270 GHz and 0.8 nW at 600 GHz. PMID:26950131

  15. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Fuentes, A.; Litvin, F. L.; Mullins, B. R.; Woods, R.; Handschuh, R. F.; Lewicki, David G.

    2002-01-01

    An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact is proposed. The procedure of computations is an iterative process that requires four separate procedures and provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment on noise and vibration, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis enables us to determine the contact and bending stresses and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require intermediate CAD computer programs for application of general purpose computer program for finite element analysis.

  16. Design and Stress Analysis of Low-Noise Adjusted Bearing Contact Spiral Bevel Gears

    NASA Technical Reports Server (NTRS)

    Litvin, Faydor L.; Fuentes, Alfonso; Mullins, Baxter R.; Woods, Ron

    2002-01-01

    An integrated computerized approach for design and stress analysis of low-noise spiral bevel gear drives with adjusted bearing contact has been developed. The computation procedure is an iterative process, requiring four separate steps that provide: (a) a parabolic function of transmission errors that is able to reduce the effect of errors of alignment, and (b) reduction of the shift of bearing contact caused by misalignment. Application of finite element analysis permits the contact and bending stresses to be determined and investigate the formation of the bearing contact. The design of finite element models and boundary conditions is automated and does not require an intermediate CAD computer program. A commercially available finite element analysis computer program with contact capability was used to conduct the stress analysis. The theory developed is illustrated with numerical examples.

  17. A low-noise delta-sigma phase modulator for polar transmitters.

    PubMed

    Zhou, Bo

    2014-01-01

    A low-noise phase modulator, using finite-impulse-response (FIR) filtering embedded delta-sigma (ΔΣ) fractional-N phase-locked loop (PLL), is fabricated in 0.18 μ m CMOS for GSM/EDGE polar transmitters. A simplified digital compensation filter with inverse-FIR and -PLL features is proposed to trade off the transmitter noise and linearity. Experimental results show that the presented architecture performs RF phase modulation well with 20 mW power dissipation from 1.6 V supply and achieves the root-mean-square (rms) and peak phase errors of 4° and 8.5°, respectively. The measured and simulated phase noises of -104 dBc/Hz and -120 dBc/Hz at 400-kHz offset from 1.8-GHz carrier frequency are observed, respectively.

  18. Quantum witness of high-speed low-noise single-photon detection.

    PubMed

    Zhao, Lin; Huang, Kun; Liang, Yan; Chen, Jie; Shi, Xueshun; Wu, E; Zeng, Heping

    2015-12-14

    We demonstrate high-speed and low-noise near-infrared single-photon detection by using a capacitance balancing circuit to achieve a high spike noise suppression for an InGaAs/InP avalanche photodiode. The single-photon detector could operate at a tunable gate repetition rate from 10 to 60 MHz. A peak detection efficiency of 34% has been achieved with a dark count rate of 9 × 10⁻³ per gate when the detection window was set to 1 ns. Additionally, quantum detector tomography has also been performed at 60 MHz of repetition rate and for the detection window of 1 ns, enabling to witness the quantum features of the detector with the help of a negative Wigner function. By varying the bias voltage of the detector, we further demonstrated a transition from the full-quantum to semi-classical regime.

  19. Using the Moon As A Low-Noise Seismic Detector For Strange Quark Nuggets

    NASA Technical Reports Server (NTRS)

    Banerdt, W. Bruce; Chui, Talso; Griggs, Cornelius E.; Herrin, Eugene T.; Nakamura, Yosio; Paik, Ho Jung; Penanen, Konstantin; Rosenbaum, Doris; Teplitz, Vigdor L.; Young, Joseph

    2006-01-01

    Strange quark matter made of up, down and strange quarks has been postulated by Witten [1]. Strange quark matter would be nearly charge neutral and would have density of nuclear matter (10(exp 14) gm/cu cm). Witten also suggested that nuggets of strange quark matter, or strange quark nuggets (SQNs), could have formed shortly after the Big Bang, and that they would be viable candidates for cold dark matter. As suggested by de Rujula and Glashow [2], an SQN may pass through a celestial body releasing detectable seismic energy along a straight line. The Moon, being much quieter seismically than the Earth, would be a favorable place to search for such events. We review previous searches for SQNs to illustrate the parameter space explored by using the Moon as a low-noise detector of SQNs. We also discuss possible detection schemes using a single seismometer, and using an International Lunar Seismic Network.

  20. An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies

    NASA Astrophysics Data System (ADS)

    Brida, G.; Degiovanni, I. P.; Genovese, M.; Piacentini, F.; Traina, P.; Della Frera, A.; Tosi, A.; Bahgat Shehata, A.; Scarcella, C.; Gulinatti, A.; Ghioni, M.; Polyakov, S. V.; Migdall, A.; Giudice, A.

    2012-11-01

    Low noise single-photon sources are a critical element for quantum technologies. We present a heralded single-photon source with an extremely low level of residual background photons, by implementing low-jitter detectors and electronics and a fast custom-made pulse generator controlling an optical shutter (a LiNbO3 waveguide optical switch) on the output of the source. This source has a second-order autocorrelation g(2)(0)=0.005(7), and an output noise factor (defined as the ratio of the number of noise photons to total photons at the source output channel) of 0.25(1)%. These are the best performance characteristics reported to date.

  1. An ultra-low noise, high-voltage piezo-driver

    NASA Astrophysics Data System (ADS)

    Pisenti, N. C.; Restelli, A.; Reschovsky, B. J.; Barker, D. S.; Campbell, G. K.

    2016-12-01

    We present an ultra-low noise, high-voltage driver suited for use with piezoelectric actuators and other low-current applications. The architecture uses a flyback switching regulator to generate up to 250 V in our current design, with an output of 1 kV or more possible with small modifications. A high slew-rate op-amp suppresses the residual switching noise, yielding a total root-mean-square noise of ≈100 μV (1 Hz-100 kHz). A low-voltage (±10 V), high bandwidth signal can be summed with unity gain directly onto the output, making the driver well-suited for closed-loop feedback applications. Digital control enables both repeatable setpoints and sophisticated control logic, and the circuit consumes less than 150 mA at ±15 V.

  2. Low-noise integrated balanced SIS mixer for 787-950 GHz

    NASA Astrophysics Data System (ADS)

    Fujii, Yasunori; Kojima, Takafumi; Gonzalez, Alvaro; Asayama, Shin'ichiro; Kroug, Matthias; Kaneko, Keiko; Ogawa, Hideo; Uzawa, Yoshinori

    2017-02-01

    We developed a low-noise, compact, balanced superconductor-insulator-superconductor (SIS) mixer, operating in the 787-950 GHz radio frequency range. A waveguide mixer block was designed to integrate all the key components, such as a radio frequency (RF) 90° hybrid coupler, two identical SIS mixer chips, bias-tees, and an intermediate frequency power-combiner. The RF waveguide 90° hybrid coupler consists of branch lines with wide slots optimized by numerical simulation, for ease of fabrication. The balanced mixer was installed into a cartridge type receiver, originally developed for the Atacama Large Millimeter/submillimeter Array Band 10 (787-950 GHz). The receiver demonstrated double sideband noise temperatures of approximately 200 K for most of the band, without any correction for loss in front of the receiver. The local oscillator noise rejection ratio was estimated to be more than 15 dB within the measured frequency range.

  3. Computerized Design and Generation of Low-noise Helical Gears with Modified Surface Topology

    NASA Technical Reports Server (NTRS)

    Litvin, F. L.; Chen, N. X.; Lu, J.; Handschuh, R. F.

    1994-01-01

    An approach for design and generation of low-noise helical gears with localized bearing contact is proposed. The approach is applied to double circular arc helical gears and modified involute helical gears. The reduction of noise and vibration is achieved by application of a predesigned parabolic function of transmission errors that is able to absorb a discontinuous linear function of transmission errors caused by misalignment. The localization of the bearing contact is achieved by the mismatch of pinion-gear tooth surfaces. Computerized simulation of meshing and contact of the designed gears demonstrated that the proposed approach will produce a pair of gears that has a parabolic transmission error function even when misalignment is present. Numerical examples for illustration of the developed approach are given.

  4. Low-Noise Submillimeter-Wave NbTiN Superconducting Tunnel Junction Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, J.; Chen, J.; Miller, D.; Kooi, J.; Zmuidzinas, J.; Bumble, B.; LeDuc, H. G.; Stern, J. A.

    1999-01-01

    We have developed a low-noise 850 GHz superconductor-insulator-superconductor (SIS) quasi-particle mixer with NbTiN thin-film microstrip tuning circuits and hybrid Nb/AlN/NbTiN tunnel junctions. The mixer uses a quasioptical configuration with a planar twin-slot antenna feeding a two-junction tuning circuit. At 798 GHz, we measured an uncorrected double-sideband receiver noise temperature of T(sub RX) = 260 K at 4.2 K bath temperature. This mixer outperforms current Nb SIS mixers by a factor of nearly 2 near 800 GHz. The high gap frequency and low loss at 800 GHz make NbTiN an attractive material with which to fabricate tuning circuits for SIS mixers. NbTiN mixers can potentially operate up to the gap frequency, 2(delta)/h is approximately 1.2THz.

  5. Low-noise humidity controller for imaging water mediated processes in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Gaponenko, I.; Gamperle, L.; Herberg, K.; Muller, S. C.; Paruch, P.

    2016-06-01

    We demonstrate the construction of a novel low-noise continuous flow humidity controller and its integration with a commercial variable-temperature atomic force microscope fluid cell, allowing precise control of humidity and temperature at the sample during nanoscale measurements. Based on wet and dry gas mixing, the design allows a high mechanical stability to be achieved by means of an ultrasonic atomiser for the generation of water-saturated gas, improving upon previous bubbler-based architectures. Water content in the flow is measured both at the inflow and outflow of the fluid cell, enabling the monitoring of water condensation and icing, and allowing controlled variation of the sample temperature independently of the humidity. To benchmark the performance of the controller, the results of detailed noise studies and time-based imaging of the formation of ice layers on highly oriented pyrolytic graphite are shown.

  6. A low-noise large dynamic-range readout suitable for laser spectroscopy with photodiodes

    NASA Astrophysics Data System (ADS)

    Pullia, A.; Sanvito, T.; Potenza, M. A.; Zocca, F.

    2012-10-01

    An original low-noise large dynamic-range readout system for optical light spectroscopy with PIN diodes is presented. The front-end circuit is equipped with a smart device for automatic cancellation of the large dc offset brought about by the photodiode current. This device sinks away the exact amount of dc current from the preamplifier input, yielding auto zeroing of the output-voltage offset, while introducing the minimum electronic noise possible. As a result the measurement dynamic-range is maximized. Moreover, an auxiliary inspection point is provided which precisely tracks the dc component of the photodiode current. This output allows for precise beam alignment and may also be used for diagnostic purposes. The excellent gain stability and linearity make the circuit perfectly suited for optical-light pulse spectroscopy. Applications include particle sizing in the 100 nm range, two-dimensional characterization of semiconductor detectors, ultra-precise characterization of laser beam stability, confocal microscopy.

  7. A low noise multichannel integrated circuit for recording neuronal signals using microelectrode arrays.

    PubMed

    Dabrowski, W; Grybos, P; Litke, A M

    2004-02-15

    This paper reports on the development of a fully integrated 32-channel integrated circuit (IC) for recording neuronal signals in neurophysiological experiments using microelectrode arrays. The IC consists of 32 channels of low-noise preamplifiers and bandpass filters, and an output analog multiplexer. The continuous-time RC active filters have a typical passband of 20-2000 Hz; the low and the high cut-off frequencies can be separately controlled by external reference currents. This chip provides a satisfactory signal-to-noise ratio for neuronal signals with amplitudes greater than 50 microV. For the nominal passband setting, an equivalent input noise of 3 microV rms has been achieved. A single channel occupies 0.35 mm(2) of silicon area and dissipates 1.7 mW of power. The chip was fabricated in a 0.7 microm CMOS process.

  8. Ultra-low noise TES bolometer arrays for SAFARI instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Khosropanah, P.; Suzuki, T.; Ridder, M. L.; Hijmering, R. A.; Akamatsu, H.; Gottardi, L.; van der Kuur, J.; Gao, J. R.; Jackson, B. D.

    2016-07-01

    SRON is developing ultra-low noise Transition Edge Sensors (TESs) based on a superconducting Ti/Au bilayer on a suspended SiN island with SiN legs for the SAFARI instrument aboard the SPICA mission. We successfully fabricated TESs with very narrow (0.5-0.7 μm) and thin (0.25 μm) SiN legs on different sizes of SiN islands using deep reactiveion etching process. The pixel size is 840x840 μm2 and there are variety of designs with and without optical absorbers. For TESs without absorbers, we measured electrical NEPs as low as <1x10-19 W/√Hz with response time of 0.3 ms and reached the phonon noise limit. Using TESs with absorbers, we quantified the darkness of our setup and confirmed a photon noise level of 2x10-19 W/√Hz.

  9. Fabrication of Low-Noise TES Arrays for the SAFARI Instrument on SPICA

    NASA Astrophysics Data System (ADS)

    Ridder, M. L.; Khosropanah, P.; Hijmering, R. A.; Suzuki, T.; Bruijn, M. P.; Hoevers, H. F. C.; Gao, J. R.; Zuiddam, M. R.

    2016-07-01

    Ultra-low-noise transition edge sensors (TES) with noise equivalent power lower than 2 × 10^{-19} W/Hz^{1/2 } have been fabricated by SRON, which meet the sensitivity requirements for the far-infrared SAFARI instrument on space infrared telescope for cosmology and astrophysics. Our TES detector is based on a titanium/gold (Ti/Au) thermistor on a silicon nitride (SiN) island. The island is thermally linked with SiN legs to a silicon support structure at the bath temperature. The SiN legs are very thin (250 nm), narrow (500 nm), and long (above 300 {\\upmu } m); these dimensions are needed in leg-isolated bolometers to achieve the required level of sensitivity. In this paper, we describe the latest fabrication process for our TES bolometers with improved sensitivity.

  10. Low-dimensional phononic structures for ultra-low-noise transition edge sensors

    NASA Astrophysics Data System (ADS)

    Withington, S.; Goldie, D. J.

    2012-09-01

    Understanding the thermal behaviour of low-dimensional dielectric support structures patterned in <500 nm dielectric membranes is an essential part of developing ultra-low-noise Transition Edge Sensors for space science. To advance the technology further, we wish to produce phononic components that minimize low-temperature (< 500 mK) thermal conductance, heat capacity, and thermal fluctuation noise, and thereby maximize sensitivity, saturation power, and optical packing. We describe a technique for simulating the low-temperature thermal behaviour of mesoscopic structures. Ballistic, elastic diffusive, localized and inelastic diffusive transport are included, and the respective scattering lengths can be comparable with the scale sizes of the patterned features. The technique computes the average fluxes of components having statistically characterized microstructure, the spread in behaviour of notionally identical devices, and the RMS thermal fluctuation noise.

  11. A high-speed and low-noise intelligent test system for infrared detectors

    NASA Astrophysics Data System (ADS)

    Jia, Tianshi; Xue, Yulong; Cui, Kun; Kong, Fansheng

    2016-11-01

    With the development of infrared focal plane technology, the scale of the detector becomes larger and larger, and the pixel noise level is lower and lower. We designed and implemented a set of infrared high-speed low noise intelligent test system based on OPENVPX standard, which is used to test the index, long term monitoring and life test of infrared detector. The system is mainly composed of main control board, image acquisition board, temperature acquisition board and the high speed back board, which has high speed image acquisition, processing, temperature monitoring and alarm function. Through testing and simulation, the results show that the system noise is less than 100uV, the dynamic range reaches 100dB, and the data throughput rate reaches 4Gbps, which can meet the requirements of the infrared detector test currently.

  12. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    SciTech Connect

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  13. Low-noise nano superconducting quantum interference device operating in Tesla magnetic fields.

    PubMed

    Schwarz, Tobias; Nagel, Joachim; Wölbing, Roman; Kemmler, Matthias; Kleiner, Reinhold; Koelle, Dieter

    2013-01-22

    Superconductivity in the cuprate YBa(2)Cu(3)O(7) (YBCO) persists up to huge magnetic fields (B) up to several tens of Teslas, and sensitive direct current (dc) superconducting quantum interference devices (SQUIDs) can be realized in epitaxially grown YBCO films by using grain boundary Josephson junctions (GBJs). Here we present the realization of high-quality YBCO nanoSQUIDs, patterned by focused ion beam milling. We demonstrate low-noise performance of such a SQUID up to B = 1 T applied parallel to the plane of the SQUID loop at the temperature T = 4.2 K. The GBJs are shunted by a thin Au layer to provide nonhysteretic current voltage characteristics, and the SQUID incorporates a 90 nm wide constriction which is used for on-chip modulation of the magnetic flux through the SQUID loop. The white flux noise of the device increases only slightly from 1.3 μΦ(0)/(Hz)(1/2) at B = 0 to 2.3 μΦ(0)/(Hz))(1/2) at 1 T. Assuming that a point-like magnetic particle with magnetization in the plane of the SQUID loop is placed directly on top of the constriction and taking into account the geometry of the SQUID, we calculate a spin sensitivity S(μ)(1/2) = 62 μ(B)/(Hz))(1/2) at B = 0 and 110 μ(B)/(Hz))(1/2) at 1 T. The demonstration of low noise of such a SQUID in Tesla fields is a decisive step toward utilizing the full potential of ultrasensitive nanoSQUIDs for direct measurements of magnetic hysteresis curves of magnetic nanoparticles and molecular magnets.

  14. The high speed low noise multi-data processing signal process circuit research of remote sensing

    NASA Astrophysics Data System (ADS)

    Su, Lei; Jiang, Haibin; Dong, Wang

    2013-08-01

    The high speed, low noise and integration characteristic are the main technology and the main development directions on the signal process circuit of the image sensor, especially in high resolution remote sensing. With these developments, the high noise limiting circuits, high speed data transfer system and the integrated design of the signal process circuit become more and more important. Therefore the requirement of the circuit system simulation is more and more important during the system design and PCB board design process. A CCD signal process circuit system which has the high speed, low noise and several selectable operate modes function was designed and certificated in this paper, during the CCD signal process circuit system design, simulation was made which include the signal integrity and the power integrity. The important devices such as FPGA and the DDR2 device were simulated, using the power integrity simulation the sensitive power planes of the FPGA on the PCB was modified to make the circuit operate more stabilize on a higher frequency. The main clock path and the high speed data path of the PCB board were simulated with the signal integrity. All the simulation works make the signal process circuit system's image's SNR value get higher and make the circuit system could operate well on higher frequency. In the board testing process, the PCB time diagrams were listed on the testing chapter and the wave's parameter meets the request. The real time diagram and the simulated result of the PCB board was listed respectively. The CCD signal process circuit system's images' SNR (Signal Noise Ratio) value, the 14bit AFE slew rate and the data transfer frequency is listed in the paper respective.

  15. A low noise and high precision linear power supply with thermal foldback protection

    NASA Astrophysics Data System (ADS)

    Carniti, P.; Cassina, L.; Gotti, C.; Maino, M.; Pessina, G.

    2016-05-01

    A low noise and high precision linear power supply was designed for use in rare event search experiments with macrobolometers. The circuit accepts at the input a "noisy" dual supply voltage up to ±15 V and gives at the output precise, low noise, and stable voltages that can be set between ±3.75 V and ±12.5 V in eight 1.25 V steps. Particular care in circuit design, component selection, and proper filtering results in a noise spectral density of 50 nV / √{ Hz } at 1 Hz and 20 nV / √{ Hz } white when the output is set to ±5 V. This corresponds to 125 nV RMS (0.8 μV peak to peak) between 0.1 Hz and 10 Hz, and 240 nV RMS (1.6 μV peak to peak) between 0.1 Hz and 100 Hz. The power supply rejection ratio (PSRR) of the circuit is 100 dB at low frequency, and larger than 40 dB up to high frequency, thanks to a proper compensation design. Calibration allows to reach a precision in the absolute value of the output voltage of ±70 ppm, or ±350 μV at ±5 V, and to reduce thermal drifts below ±1 ppm/∘C in the expected operating range. The maximum peak output current is about 6 A from each output. An original foldback protection scheme was developed that dynamically limits the maximum output current to keep the temperature of the output transistors within their safe operating range. An add-on card based on an ARM Cortex-M3 microcontroller is devoted to the monitoring and control of all circuit functionalities and provides remote communication via CAN bus.

  16. The use of quartz patch pipettes for low noise single channel recording.

    PubMed Central

    Levis, R A; Rae, J L

    1993-01-01

    Quartz has a dissipation factor of approximately 10(-4), which is an order of magnitude less than that of the best glasses previously used to fabricate patch pipettes; it's dielectric constant of 3.8 is also lower than that of other glasses. On the basis of these electrical characteristics it is expected that patch pipettes pulled from quartz tubing will produce significantly less noise than pipettes made from other glasses. Our work confirms these expectations and we describe theoretical and practical aspects of the use of quartz pipettes for single channel patch voltage clamp measurements. Methods for pulling quartz pipettes with a laser-based puller and coating them with low-loss elastomers are discussed, as are precautions that are necessary to achieve low noise recordings. We have shown that quartz pipettes can be pulled from tubing with outer diameter to inner diameter ratios as large as 3 and a method of applying heavy elastomer coatings all the way to the tip of pipettes is presented. Noise sources arising from the pipette and its holder are described theoretically, and it is shown that measured noise is in good agreement with such predictions. With low noise capacitive feedback electronics, small geometry holders, and thick-walled quartz pipettes coated with low-loss elastomers we have been routinely able to achieve noise of 100 fA rms or less in a 5-kHz bandwidth with real cell patches and a pipette immersion depth of approximately 2 mm. On occasion we have achieved noise as low as 60 fA rms in this bandwidth. Images FIGURE 1 FIGURE 2 PMID:7506069

  17. APS-Workshop on Characterization of MMIC (Monolithic Microwave Integrated Circuit) Devices for Array Antenna

    NASA Technical Reports Server (NTRS)

    Smetana, Jerry (Editor); Mittra, Raj (Editor); Laprade, Nick; Edward, Bryan; Zaghloul, Amir

    1987-01-01

    The IEEE AP-S ADCOM is attempting to expand its educational, tutorial and information exchange activities as a further benefit to all members. To this end, ADCOM will be forming specialized workshops on topics of interest to its members. The first such workshop on Characterization and Packaging of MMIC Devices for Array Antennas was conceived. The workshop took place on June 13, 1986 as part of the 1986 International Symposium sponsored by IEEE AP-S and URSI in Philadelphia, PA, June 9-13, 1986. The workshop was formed to foster the interchange of ideas among MMIC device users and to provide a forum to collect and focus information among engineers experienced and interested in the topic. After brief presentations by the panelists and comments from attendees on several subtopics, the group was divided into working committees. Each committee evaluated and made recommendations on one of the subtopics.

  18. Terahertz MMICs and Antenna-in-Package Technology at 300 GHz for KIOSK Download System

    NASA Astrophysics Data System (ADS)

    Tajima, Takuro; Kosugi, Toshihiko; Song, Ho-Jin; Hamada, Hiroshi; El Moutaouakil, Amine; Sugiyama, Hiroki; Matsuzaki, Hideaki; Yaita, Makoto; Kagami, Osamu

    2016-12-01

    Toward the realization of ultra-fast wireless communications systems, the inherent broad bandwidth of the terahertz (THz) band is attracting attention, especially for short-range instant download applications. In this paper, we present our recent progress on InP-based THz MMICs and packaging techniques based on low-temperature co-fibered ceramic (LTCC) technology. The transmitter MMICs are based on 80-nm InP-based high electron mobility transistors (HEMTs). Using the transmitter packaged in an E-plane split-block waveguide and compact lens receiver packaged in LTCC multilayered substrates, we tested wireless data transmission up to 27 Gbps with the simple amplitude key shifting (ASK) modulation scheme. We also present several THz antenna-in-packaging solutions based on substrate integrated waveguide (SIW) technology. A vertical hollow (VH) SIW was applied to a compact medium-gain SIW antenna and low-loss interconnection integrated in LTCC multi-layer substrates. The size of the LTCC antennas with 15-dBi gain is less than 0.1 cm3. For feeding the antenna, we investigated an LTCC-integrated transition and polyimide transition to LTCC VH SIWs. These transitions exhibit around 1-dB estimated loss at 300 GHz and more than 35 GHz bandwidth with 10-dB return loss. The proposed package solutions make antennas and interconnections easy to integrate in a compact LTCC package with an MMIC chip for practical applications.

  19. Design and Measurement of a Low-Noise 64-Channels Front-End Readout ASIC for CdZnTe Detectors

    SciTech Connect

    Gan, Bo; Wei, Tingcun; Gao, Wu; Liu, Hui; Hu, Yann

    2015-07-01

    Cadmium zinc telluride (CdZnTe) detectors, as one of the principal detectors for the next-generation X-ray and γ-ray imagers, have high energy resolution and supporting electrode patterning in the radiation environment at room-temperature. In the present, a number of internationally renowned research institutions and universities are actively using these detector systems to carry out researches of energy spectrum analysis, medical imaging, materials characterization, high-energy physics, nuclear plant monitoring, and astrophysics. As the most important part of the readout system for the CdZnTe detector, the front-end readout application specific integrated circuit (ASIC) would have an important impact on the performances of the whole detector system. In order to ensure the small signal to noise ratio (SNR) and sufficient range of the output signal, it is necessary to design a front-end readout ASIC with very low noise and very high dynamic range. In addition, radiation hardness should be considered when the detectors are utilized in the space applications and high energy physics experiments. In this paper, we present measurements and performances of a novel multi-channel radiation-hardness low-noise front-end readout ASIC for CdZnTe detectors. The readout circuits in each channel consist of charge sensitive amplifier, leakage current compensation circuit (LCC), CR-RC shaper, S-K filter, inverse proportional amplifier, peak detect and hold circuit (PDH), discriminator and trigger logic, time sequence control circuit and driving buffer. All of 64 readout channels' outputs enter corresponding inputs of a 64 channel multiplexer. The output of the mux goes directly out of the chip via the output buffer. The 64-channel readout ASIC is implemented using the TSMC 0.35 μm mixed-signal CMOS technology. The die size of the prototype chip is 2.7 mm x 8 mm. At room temperature, the equivalent noise level of a typical channel reaches 66 e{sup -} (rms) at zero farad for a power

  20. Monolithic microwave integrated circuits for sensors, radar, and communications systems; Proceedings of the Meeting, Orlando, FL, Apr. 2-4, 1991

    NASA Astrophysics Data System (ADS)

    Leonard, Regis F.; Bhasin, Kul B.

    Consideration is given to MMICs for airborne phased arrays, monolithic GaAs integrated circuit millimeter wave imaging sensors, accurate design of multiport low-noise MMICs up to 20 GHz, an ultralinear low-noise amplifier technology for space communications, variable-gain MMIC module for space applications, a high-efficiency dual-band power amplifier for radar applications, a high-density circuit approach for low-cost MMIC circuits, coplanar SIMMWIC circuits, recent advances in monolithic phased arrays, and system-level integrated circuit development for phased-array antenna applications. Consideration is also given to performance enhancement in future communications satellites with MMIC technology insertion, application of Ka-band MMIC technology for an Orbiter/ACTS communications experiment, a space-based millimeter wave debris tracking radar, low-noise high-yield octave-band feedback amplifiers to 20 GHz, quasi-optical MESFET VCOs, and a high-dynamic-range mixer using novel balun structure. (For individual items see A93-25777 to A93-25814)

  1. Ultra-Low-Noise Sub-mm/Far-IR Detectors for Space-Based Telescopes

    NASA Astrophysics Data System (ADS)

    Rostem, Karwan

    The sub-mm and Far-IR spectrum is rich with information from a wide range of astrophysical sources, including exoplanet atmospheres and galaxies at the peak star formation. In the 10-400 μm range, the spectral lines of important chemical species such H2O, HD, and [OI] can be used to map the formation and evolution of planetary systems. Dust emission in this spectral range is also an important tool for characterizing the morphology of debris disks and interstellar magnetic fields. At larger scales, accessing the formation and distribution of luminous Far-IR and sub-mm galaxies is essential to understanding star formation triggers, as well as the last stages of reionization at z 6. Detector technology is essential to realizing the full science potential of a next-generation Far-IR space telescope (Far-IR Surveyor). The technology gap in large-format, low-noise and ultra-low-noise Far-IR direct detectors is specifically highlighted by NASA's Cosmic Origins Program, and prioritized for development now to enable a flagship mission such as the Far-IR Surveyor that will address the key Cosmic Origins science questions of the next two decades. The detector requirements for a mid-resolution spectrometer are as follows: (1) Highly sensitive detectors with performance approaching 10^-19 - 10^-20 WHz 1/2 for background- limited operation in telescopes with cold optics. (2) Detector time constant in the sub- millisecond range. (3) Scalable architecture to a kilo pixel array with uniform detector characteristics. (4) Compatibility with space operation in the presence of particle radiation. We propose phononic crystals to meet the requirements of ultra-low-noise thermal detectors. By design, a phononic crystal exhibits phonon bandgaps where heat transport is forbidden. The size and location of the bandgaps depend on the elastic properties of the dielectric and the geometry of the phononic unit cell. A wide-bandwidth low-pass thermal filter with a cut-off frequency of 1.5 GHz and

  2. Implantable neurotechnologies: a review of integrated circuit neural amplifiers.

    PubMed

    Ng, Kian Ann; Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification.

  3. Implantable neurotechnologies: a review of integrated circuit neural amplifiers

    PubMed Central

    Greenwald, Elliot; Xu, Yong Ping; Thakor, Nitish V.

    2016-01-01

    Neural signal recording is critical in modern day neuroscience research and emerging neural prosthesis programs. Neural recording requires the use of precise, low-noise amplifier systems to acquire and condition the weak neural signals that are transduced through electrode interfaces. Neural amplifiers and amplifier-based systems are available commercially or can be designed in-house and fabricated using integrated circuit (IC) technologies, resulting in very large-scale integration or application-specific integrated circuit solutions. IC-based neural amplifiers are now used to acquire untethered/portable neural recordings, as they meet the requirements of a miniaturized form factor, light weight and low power consumption. Furthermore, such miniaturized and low-power IC neural amplifiers are now being used in emerging implantable neural prosthesis technologies. This review focuses on neural amplifier-based devices and is presented in two interrelated parts. First, neural signal recording is reviewed, and practical challenges are highlighted. Current amplifier designs with increased functionality and performance and without penalties in chip size and power are featured. Second, applications of IC-based neural amplifiers in basic science experiments (e.g., cortical studies using animal models), neural prostheses (e.g., brain/nerve machine interfaces) and treatment of neuronal diseases (e.g., DBS for treatment of epilepsy) are highlighted. The review concludes with future outlooks of this technology and important challenges with regard to neural signal amplification. PMID:26798055

  4. Low cost instrumentation amplifier

    NASA Technical Reports Server (NTRS)

    Sturman, J. C.

    1974-01-01

    Amplifier can be used for many applications requiring high input impedance and common mode rejection, low drift, and gain accuracy on order of one percent. Performance of inexpensive amplifier approaches that of some commercial instrumentation amplifiers in many specifications.

  5. Processing of optical combs with fiber optic parametric amplifiers.

    PubMed

    Slavík, R; Kakande, J; Petropoulos, P; Richardson, D J

    2012-04-23

    Low noise optical frequency combs consist of equally spaced narrow-linewidth optical tones. They are useful in many applications including, for example, line-by-line pulse shaping, THz generation, and coherent communications. In such applications the comb spacing, extent of spectral coverage, degree of spectral flatness, optical tone power and tone-to-noise ratio represent key considerations. Simultaneously achieving the level of performance required in each of these parameters is often challenging using existing comb generation technologies. Herein we suggest and demonstrate how fiber optic parametric amplifiers can be used to enhance all of these key comb parameters, allowing frequency span multiplication, low noise amplification with simultaneous comb spectrum flattening, and improvement in optical tone-to-noise ratio through various phase insensitive as well as phase sensitive implementations.

  6. A Ka-Band Wide-Bandgap Solid-State Power Amplifier: Architecture Performance Estimates

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solidstate power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents the results of a study to investigate power-combining technology and SSPA architectures that can enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results of the study indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. The proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This corresponds to MMIC requirements of 5- to 10-W output power and >48 percent PAE. For the three proposed architectures [1], detailed analysis and design of the power combiner are presented. The first architecture studied is based on a 16-way septum combiner that offers low loss and high isolation over the design band of 31 to 36 GHz. Analysis of a 2-way prototype septum combiner had an input match >25 dB, output match >30 dB, insertion loss <0.02 dB, and isolation >30 dB over the design band. A 16-way design, based on cascading this combiner in a binary fashion, is documented. The second architecture is based on a 24-way waveguide radial combiner. A prototype 24-way radial base was analyzed to have an input match >30 dB (under equal excitation of all input ports). The match of the mode transducer that forms the output of a radial combiner was found to be >27 dB. The functional bandwidth of the radial base and mode transducer, which together will form a radial combiner/divider, exceeded the design band. The third architecture employs a 32-way, parallel-plate radial combiner. Simulation results indicated an input match >24 dB, output match >22 dB, insertion loss <0.23 dB, and adjacent port isolation >20 dB over the design band. All

  7. Fully integrated low-noise readout circuit with automatic offset cancellation loop for capacitive microsensors.

    PubMed

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-Il Dan; Ko, Hyoungho

    2015-10-14

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm². The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of -250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms.

  8. Method and apparatus for providing high bandwidth, low noise mechanical I/O for computer systems

    DOEpatents

    Rosenberg, Louis B.

    1998-01-01

    A method and apparatus for providing high bandwidth and low noise mechanical input and output for computer systems. A gimbal mechanism provides two revolute degrees of freedom to an object about two axes of rotation. A linear axis member is coupled to the gimbal mechanism at the intersection of the two axes of rotation. The linear axis member is capable of being translated along a third axis to provide a third degree of freedom. The user object is coupled to the linear axis member and is thus translatable along the third axis so that the object can be moved along all three degrees of freedom. Transducers associated with the provided degrees of freedom include sensors and actuators and provide an electromechanical interface between the object and a digital processing system. Capstan drive mechanisms transmit forces between the transducers and the object. The linear axis member can also be rotated about its lengthwise axis to provide a fourth degree of freedom, and, optionally, a floating gimbal mechanism is coupled to the linear axis member to provide fifth and sixth degrees of freedom to an object. Transducer sensors are associated with the fourth, fifth, and sixth degrees of freedom. The interface is well suited for simulations of medical procedures and simulations in which an object such as a stylus or a joystick is moved and manipulated by the user.

  9. Seismoelectric and seismomagnetic measurements: original experiments within the Low Noise Underground Laboratory of Rustrel (France) (Invited)

    NASA Astrophysics Data System (ADS)

    Bordes, C.; Jouniaux, L.; Garambois, S.; Dietrich, M.

    2009-12-01

    Seismic wave propagation in fluid-filled porous materials induces electromagnetic effects due to relative pore-fluid motions. We present the original experimental apparatus built within the ultra-shielded chamber of the Low Noise Underground Laboratory of Rustrel (France) in order to detect the seismomagnetic couplings theoretically predicted by Pride (1994). This experiment included accelerometers, electric dipoles and induction magnetometers to characterize the seismo-electromagnetic propagation phenomena. Extra care has been taken to ensure the mechanical decoupling between the sand column and the magnetometers to avoid spurious vibrations of the magnetometers and misinterpretations of the recorded signals. Our results confirm that seismoelectric and seismomagnetic signals are associated with different wave propagation modes. Combined experimental and analytical approaches lead us to the conclusion that the measured seismo-magnetic field is probably about 0.35 nT for a 10m.s-2 seismic source acceleration (1 g). A better understanding of the physical processes and a reliable quantification of the conversion between seismic and electric energy are necessary. In this communication we compare frequency content and spectral ratios for seismic and seismoelectromagnetic signals, by analyzing transfert functions. Measured amplitudes are discussed in light of theoretical predictions taking into account the porous media properties.

  10. Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics

    NASA Astrophysics Data System (ADS)

    Li, Qing; Davanço, Marcelo; Srinivasan, Kartik

    2016-06-01

    Optical frequency conversion has applications ranging from tunable light sources to telecommunications-band interfaces for quantum information science. Here, we demonstrate efficient, low-noise frequency conversion on a nanophotonic chip through four-wave-mixing Bragg scattering in compact (footprint <0.5 × 10-4 cm2) Si3N4 microring resonators. We investigate three frequency conversion configurations: spectral translation over a few nanometres within the 980 nm band; upconversion from 1,550 nm to 980 nm and downconversion from 980 nm to 1,550 nm. With conversion efficiencies ranging from 25% for the first process to >60% for the last two processes, a signal conversion bandwidth of >1 GHz, a required continuous-wave pump power of <60 mW and background noise levels between a few femtowatts and a few picowatts, these devices are suitable for quantum frequency conversion of single-photon states from InAs/GaAs quantum dots. Simulations based on coupled mode equations and the Lugiato-Lefever equation are used to model device performance, and show quantitative agreement with measurements.

  11. A Low-Noise Terahertz SIS Mixer Incorporating a Waveguide Directional Coupler for LO Injection

    NASA Astrophysics Data System (ADS)

    Kojima, Takafumi; Kuroiwa, Kouichi; Uzawa, Yoshinori; Kroug, Matthias; Takeda, Masanori; Fujii, Yasunori; Kaneko, Keiko; Miyachi, Akihira; Wang, Zhen; Ogawa, Hideo

    2010-11-01

    We have developed a low-noise heterodyne waveguide Superconductor-Insulator-Superconductor (SIS) mixer with a novel local oscillator (LO) injection scheme for the Atacama Large Millimeter/submillimeter Array (ALMA) band 10, over the frequency range 0.78-0.95 THz. The SIS mixer uses radio frequency (RF) and LO receiving horns separately and a waveguide 10 dB LO coupler integrated in the mixer block. The insertion loss of the waveguide and coupling factor of the coupler were evaluated at terahertz frequencies at both room and cryogenic temperatures. The double-sideband (DSB) receiver noise temperatures were below 330 K (7.5 hf/ k B) at LO frequencies in the range 0.801-0.945 THz. The minimum temperature was 221 K at 0.873 THz over the intermediate frequency range of 4-12 GHz at an operating temperature of 4 K. This waveguide heterodyne SIS mixer exhibits great potential for practical applications, such as high-frequency receivers of the ALMA.

  12. Fabrication of Low Noise Borosilicate Glass Nanopores for Single Molecule Sensing

    PubMed Central

    Bafna, Jayesh A.; Soni, Gautam V.

    2016-01-01

    We show low-cost fabrication and characterization of borosilicate glass nanopores for single molecule sensing. Nanopores with diameters of ~100 nm were fabricated in borosilicate glass capillaries using laser assisted glass puller. We further achieve controlled reduction and nanometer-size control in pore diameter by sculpting them under constant electron beam exposure. We successfully fabricate pore diameters down to 6 nm. We next show electrical characterization and low-noise behavior of these borosilicate nanopores and compare their taper geometries. We show, for the first time, a comprehensive characterization of glass nanopore conductance across six-orders of magnitude (1M-1μM) of salt conditions, highlighting the role of buffer conditions. Finally, we demonstrate single molecule sensing capabilities of these devices with real-time translocation experiments of individual λ-DNA molecules. We observe distinct current blockage signatures of linear as well as folded DNA molecules as they undergo voltage-driven translocation through the glass nanopores. We find increased signal to noise for single molecule detection for higher trans-nanopore driving voltages. We propose these nanopores will expand the realm of applications for nanopore platform. PMID:27285088

  13. A biolized, compact, low noise, high performance implantable electromechanical ventricular assist system.

    PubMed

    Sasaki, T; Takatani, S; Shiono, M; Sakuma, I; Noon, G P; Nosé, Y; DeBakey, M E

    1991-01-01

    An implantable electromechanical ventricular assist system (VAS) intended for permanent human use was developed. It consisted of a conically shaped pumping chamber, a polyolefin (Hexsyn) rubber diaphragm attached to a pusher-plate, and a compact actuator with a direct current brushless motor and a planetary rollerscrew. The outer diameter was 97 mm, and the total thickness was 70 mm. This design was chosen to give a stroke volume of 63 ml. The device weighs 620 g, with a total volume of 360 ml. The pump can provide 8 L/min flow against 120 mmHg afterload with a preload of 10 mmHg. The inner surface of the device, including the pumping chamber and diaphragm, was made biocompatible with a dry gelatin coating. To date, two subacute (2 and 6 day) calf studies have been conducted. The pump showed reasonable anatomic fit inside the left thorax, and the entire system functioned satisfactorily in both the fill-empty mode using the Hall effect sensor signals and the conventional fixed rate mode. There were no thromboembolic complications despite no anticoagulation therapy. The system now is being endurance tested greater than 10 weeks (9 million cycles). This VAS is compact, low noise, easy to control, and has excellent biocompatibility.

  14. A low-noise CMOS pixel direct charge sensor, Topmetal-II-

    NASA Astrophysics Data System (ADS)

    An, Mangmang; Chen, Chufeng; Gao, Chaosong; Han, Mikyung; Ji, Rong; Li, Xiaoting; Mei, Yuan; Sun, Quan; Sun, Xiangming; Wang, Kai; Xiao, Le; Yang, Ping; Zhou, Wei

    2016-02-01

    We report the design and characterization of a CMOS pixel direct charge sensor, Topmetal-II-, fabricated in a standard 0.35 μm CMOS Integrated Circuit process. The sensor utilizes exposed metal patches on top of each pixel to directly collect charge. Each pixel contains a low-noise charge-sensitive preamplifier to establish the analog signal and a discriminator with tunable threshold to generate hits. The analog signal from each pixel is accessible through time-shared multiplexing over the entire array. Hits are read out digitally through a column-based priority logic structure. Tests show that the sensor achieved a < 15e- analog noise and a 200e- minimum threshold for digital readout per pixel. The sensor is capable of detecting both electrons and ions drifting in gas. These characteristics enable its use as the charge readout device in future Time Projection Chambers without gaseous gain mechanism, which has unique advantages in low background and low rate-density experiments.

  15. Development of low-noise kinetic inductance detectors for far-infrared astrophysics

    NASA Astrophysics Data System (ADS)

    Barlis, Alyssa; Hailey-Dunsheath, Steven; Bradford, Charles M.; McKenney, Christopher; Le Duc, Henry G.; Aguirre, James

    2017-01-01

    The star formation mechanisms at work in the early universe remain one of the major unsolved problems of modern astrophysics. Many spectral lines at far-infrared wavelengths (10 μm < λ < 1 mm) are excellent tracers of star formation, but detecting them requires the next generation of sensitive detectors. We are working to develop a detector system for a far-infrared balloon-borne spectroscopic experiment using kinetic inductance detectors (KIDs), which have the potential to achieve high sensitivity, low noise levels, high multiplexing factor, and may enable future space missions. We describe the design, fabrication, and noise performance measurements of prototype detector devices targeting an optical noise equivalent power below 1 ×10-17 WHz - 1 / 2 with readout frequencies below 250 MHz. The devices consist of arrays of 45 lumped-element KID pixels patterned out of thin-film aluminum on silicon wafers. They are optically coupled to incident radiation with a set of feedhorns. We use an FPGA-based readout system to read out the response of all the pixels in the array simultaneously. This work was supported by a NASA Space Technology Research Fellowship.

  16. A low-noise widely tunable Gm-C filter with frequency calibration

    NASA Astrophysics Data System (ADS)

    Yu, Wang; Jing, Liu; Na, Yan; Hao, Min

    2016-09-01

    A fourth-order Gm-C Chebyshev low-pass filter is presented as channel selection filter for reconfigurable multi-mode wireless receivers. Low-noise technologies are proposed in optimizing the noise characteristics of both the Gm cells and the filter topology. A frequency tuning strategy is used by tuning both the transconductance of the Gm cells and the capacitance of the capacitor banks. To achieve accurate cut-off frequencies, an on-chip calibration circuit is presented to compensate for the frequency inaccuracy introduced by process variation. The filter is fabricated in a 0.13 μm CMOS process. It exhibits a wide programmable bandwidth from 322.5 kHz to 20 MHz. Measured results show that the filter has low input referred noise of 5.9 \\text{nV}/\\sqrt {\\text{Hz}} and high out-of-band IIP3 of 16.2 dBm. It consumes 4.2 and 9.5 mW from a 1 V power supply at its lowest and highest cut-off frequencies respectively. Project supported by the National Natural Science Foundation of China (No. 61574045).

  17. NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.

    2001-01-01

    To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.

  18. The Majorana low-noise low-background front-end electronics

    SciTech Connect

    Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; Barabash, A. S.; Bertrand, F. E.; Boswell, M.; Brudanin, V.; Busch, M.; Byram, D.; Caldwell, A. S.; Chan, Y. -D.; Christofferson, C. D.; Combs, D. C.; Cuesta, C.; Detwiler, J. A.; Doe, P. J.; Efremenko, Yu.; Egorov, V.; Ejiri, H.; Elliott, S. R.; Fast, J. E.; Finnerty, P.; Fraenkle, F. M.; Galindo-Uribarri, A.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guiseppe, V. E.; Gusev, K.; Hallin, A. L.; Hazama, R.; Hegai, A.; Henning, R.; Hoppe, E. W.; Howard, S.; Howe, M. A.; Keeter, K. J.; Kidd, M. F.; Kochetov, O.; Konovalov, S. I.; Kouzes, R. T.; LaFerriere, B. D.; Leon, J.; Leviner, L. E.; Loach, J. C.; MacMullin, J.; MacMullin, S.; Martin, R. D.; Meijer, S.; Mertens, S.; Nomachi, M.; Orrell, J. L.; O'Shaughnessy, C.; Overman, N. R.; Phillips, II, D. G.; Poon, A. W.P.; Pushkin, K.; Radford, D. C.; Rager, J.; Rielage, K.; Robertson, R. G.H.; Romero-Romero, E.; Ronquest, M. C.; Schubert, A. G.; Shanks, B.; Shima, T.; Shirchenko, M.; Snavely, K. J.; Snyder, N.; Suriano, A. M.; Thompson, J.; Timkin, V.; Tornow, W.; Trimble, J. E.; Varner, R. L.; Vasilyev, S.; Vetter, K.; Vorren, K.; White, B. R.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yakushev, E.; Young, A. R.; Yu, C. -H.; Yumatov, V.

    2015-03-24

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolution performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.

  19. Fully Integrated Low-Noise Readout Circuit with Automatic Offset Cancellation Loop for Capacitive Microsensors

    PubMed Central

    Song, Haryong; Park, Yunjong; Kim, Hyungseup; Cho, Dong-il Dan; Ko, Hyoungho

    2015-01-01

    Capacitive sensing schemes are widely used for various microsensors; however, such microsensors suffer from severe parasitic capacitance problems. This paper presents a fully integrated low-noise readout circuit with automatic offset cancellation loop (AOCL) for capacitive microsensors. The output offsets of the capacitive sensing chain due to the parasitic capacitances and process variations are automatically removed using AOCL. The AOCL generates electrically equivalent offset capacitance and enables charge-domain fine calibration using a 10-bit R-2R digital-to-analog converter, charge-transfer switches, and a charge-storing capacitor. The AOCL cancels the unwanted offset by binary-search algorithm based on 10-bit successive approximation register (SAR) logic. The chip is implemented using 0.18 μm complementary metal-oxide-semiconductor (CMOS) process with an active area of 1.76 mm2. The power consumption is 220 μW with 3.3 V supply. The input parasitic capacitances within the range of −250 fF to 250 fF can be cancelled out automatically, and the required calibration time is lower than 10 ms. PMID:26473877

  20. The Majorana low-noise low-background front-end electronics

    DOE PAGES

    Abgrall, N.; Aguayo, E.; Avignone, III, F. T.; ...

    2015-03-24

    The Majorana Demonstrator will search for the neutrinoless double beta decay (ββ(0ν)) of the isotope ⁷⁶Ge with a mixed array of enriched and natural germanium detectors. In view of the next generation of tonne-scale germanium-based ββ(0ν)-decay searches, a major goal of the Majorana Demonstrator is to demonstrate a path forward to achieving a background rate at or below 1 cnt/(ROI-t-y) in the 4 keV region of interest (ROI) around the 2039-keV Q-value of the ⁷⁶Ge ββ(0ν)-decay. Such a requirement on the background level significantly constrains the design of the readout electronics, which is further driven by noise and energy resolutionmore » performances. We present here the low-noise low-background front-end electronics developed for the low-capacitance p-type point contact (P-PC) germanium detectors of the Majorana Demonstrator. This resistive-feedback front-end, specifically designed to have low mass, is fabricated on a radioassayed fused-silica substrate where the feedback resistor consists of a sputtered thin film of high purity amorphous germanium and the feedback capacitor is based on the capacitance between gold conductive traces.« less

  1. A Low-Noise, Modular, and Versatile Analog Front-End Intended for Processing In Vitro Neuronal Signals Detected by Microelectrode Arrays

    PubMed Central

    Regalia, Giulia; Biffi, Emilia; Ferrigno, Giancarlo; Pedrocchi, Alessandra

    2015-01-01

    The collection of good quality extracellular neuronal spikes from neuronal cultures coupled to Microelectrode Arrays (MEAs) is a binding requirement to gather reliable data. Due to physical constraints, low power requirement, or the need of customizability, commercial recording platforms are not fully adequate for the development of experimental setups integrating MEA technology with other equipment needed to perform experiments under climate controlled conditions, like environmental chambers or cell culture incubators. To address this issue, we developed a custom MEA interfacing system featuring low noise, low power, and the capability to be readily integrated inside an incubator-like environment. Two stages, a preamplifier and a filter amplifier, were designed, implemented on printed circuit boards, and tested. The system is characterized by a low input-referred noise (<1 μV RMS), a high channel separation (>70 dB), and signal-to-noise ratio values of neuronal recordings comparable to those obtained with the benchmark commercial MEA system. In addition, the system was successfully integrated with an environmental MEA chamber, without harming cell cultures during experiments and without being damaged by the high humidity level. The devised system is of practical value in the development of in vitro platforms to study temporally extended neuronal network dynamics by means of MEAs. PMID:25977683

  2. A low-noise low-power readout electronics circuit at 4 K in standard CMOS technology for PACS/Herschel

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Creten, Ybe; Putzeys, Jan; Souverijns, Tim; Van Hoof, Chris

    2004-10-01

    IMEC has designed, in the framework of the PACS project (for the European Herschel Space Observatory) the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for the CRE were high linearity (3 %), low power consumption (80 μW for an 18 channel array), and very low noise (200 e-) at an operating temperature of 4.2 K (LHT - Liquid Helium Temperature). IMEC has implemented this circuit in a standard CMOS technology (AMIS 0.7 μm), which guarantees high production yield and uniformity, relatively easy availability of the technology and portability of the design. However, the drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K, known as kink and hysteresis effects and under certain conditions the presence of excess noise. These cryogenic phenomena disturb the normal functionality of commonly used circuits or building blocks like buffer amplifiers and opamps. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. These techniques have been validated in an automated cryogenic test set-ups developed at IMEC. We will present here in detail the full design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance and demonstrate that all major specifications at 4.2 K were met. Future designs and implementations will be equally presented.

  3. Development of a compact radiation-hardened low-noise front-end readout ASIC for CZT-based hard X-ray imager

    NASA Astrophysics Data System (ADS)

    Gao, W.; Gan, B.; Li, X.; Wei, T.; Gao, D.; Hu, Y.

    2015-04-01

    In this paper, we present the development and performances of a radiation-hardened front-end readout application-specific integrated circuit (ASIC) dedicated to CZT detectors for a hard X-ray imager in space applications. The readout channel consists of a charge sensitive amplifier (CSA), a CR-RC shaper, a fast shaper, a discriminator and a driving buffer. With the additional digital filtering, the readout channel can achieve very low noise performances and low power dissipation. An eight-channel prototype ASIC is designed and fabricated in 0.35 μm CMOS process. The energy range of the detected X-rays is evaluated as 1.45 keV to 281 keV. The gain is larger than 100 mV/fC. The equivalent noise charge (ENC) of the ASIC is 53 e- at zero farad plus 10 e- per picofarad. The power dissipation is less than 4.4 mW/channel. Through the measurement with a CZT detector, the energy resolution is less than 3.45 keV (FWHM) under the irradiation of the radioactive source 241Am. The radiation effect experiments indicate that the proposed ASIC can resist the total ionization dose (TID) irradiation of higher than 200 krad (Si).

  4. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, Claude; Martinis, John M.; Clarke, John

    1986-01-01

    A low noise radiofrequency amplifier (10), using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID (11) and an input coil (12) are maintained at superconductivity temperatures in a superconducting shield (13), with the input coil (12) inductively coupled to the superconducting ring (17) of the dc SQUID (11). A radiofrequency signal from outside the shield (13) is applied to the input coil (12), and an amplified radiofrequency signal is developed across the dc SQUID ring (17) and transmitted to exteriorly of the shield (13). A power gain of 19.5.+-.0.5 dB has been achieved with a noise temperature of 1.0.+-.0.4 K. at a frequency of 100 MHz.

  5. Ka-Band Wide-Bandgap Solid-State Power Amplifier: Hardware Validation

    NASA Technical Reports Server (NTRS)

    Epp, L.; Khan, P.; Silva, A.

    2005-01-01

    Motivated by recent advances in wide-bandgap (WBG) gallium nitride (GaN) semiconductor technology, there is considerable interest in developing efficient solid-state power amplifiers (SSPAs) as an alternative to the traveling-wave tube amplifier (TWTA) for space applications. This article documents proof-of-concept hardware used to validate power-combining technologies that may enable a 120-W, 40 percent power-added efficiency (PAE) SSPA. Results in previous articles [1-3] indicate that architectures based on at least three power combiner designs are likely to enable the target SSPA. Previous architecture performance analyses and estimates indicate that the proposed architectures can power combine 16 to 32 individual monolithic microwave integrated circuits (MMICs) with >80 percent combining efficiency. This combining efficiency would correspond to MMIC requirements of 5- to 10-W output power and >48 percent PAE. In order to validate the performance estimates of the three proposed architectures, measurements of proof-of-concept hardware are reported here.

  6. An 8-18 GHz broadband high power amplifier

    NASA Astrophysics Data System (ADS)

    Lifa, Wang; Ruixia, Yang; Jingfeng, Wu; Yanlei, Li

    2011-11-01

    An 8-18 GHz broadband high power amplifier (HPA) with a hybrid integrated circuit (HIC) is designed and fabricated. This HPA is achieved with the use of a 4-fingered micro-strip Lange coupler in a GaAs MMIC process. In order to decrease electromagnetic interference, a multilayer AlN material with good heat dissipation is adopted as the carrier of the power amplifier. When the input power is 25 dBm, the saturated power of the continuous wave (CW) outputted by the power amplifier is more than 39 dBm within the frequency range of 8-13 GHz, while it is more than 38.6 dBm within other frequency ranges. We obtain the peak power output, 39.4 dBm, at the frequency of 11.9 GHz. In the whole frequency band, the power-added efficiency is more than 18%. When the input power is 18 dBm, the small signal gain is 15.7 ± 0.7 dB. The dimensions of the HPA are 25 × 15 × 1.5 mm3.

  7. SQUARE WAVE AMPLIFIER

    DOEpatents

    Leavitt, M.A.; Lutz, I.C.

    1958-08-01

    An amplifier circuit is described for amplifying sigmals having an alternating current component superimposed upon a direct current component, without loss of any segnnent of the alternating current component. The general circuit arrangement includes a vibrator, two square wave amplifiers, and recombination means. The amplifier input is connected to the vibrating element of the vibrator and is thereby alternately applied to the input of each square wave amplifier. The detailed circuitry of the recombination means constitutes the novelty of the annplifier and consists of a separate, dual triode amplifier coupled to the output of each square wave amplifier with a recombination connection from the plate of one amplifier section to a grid of one section of the other amplifier. The recombination circuit has provisions for correcting distortion caused by overlapping of the two square wave voltages from the square wave amplifiers.

  8. LLNL/Lion Precision LVDT amplifier

    SciTech Connect

    Hopkins, D.J.

    1994-04-01

    A high-precision, low-noise, LVDT amplifier has been developed which is a significant advancement on the current state of the art in contact displacement measurement. This amplifier offers the dynamic range of a typical LVDT probe but with a resolution that rivals that of non contact displacement measuring systems such as capacitance gauges and laser interferometers. Resolution of 0.1 {mu} in with 100 Hz bandwidth is possible. This level of resolution is over an order of magnitude greater than what is now commercially available. A front panel switch can reduce the bandwidth to 2.5 Hz and attain a resolution of 0.025 {mu} in. This level of resolution meets or exceeds that of displacement measuring laser interferometry or capacitance gauge systems. Contact displacement measurement offers high part spatial resolution and therefore can measure not only part contour but surface finish. Capacitance gauges and displacement laser interferometry offer poor part spatial resolution and can not provide good surface finish measurements. Machine tool builders, meteorologists and quality inspection departments can immediately utilize the higher accuracy and capabilities that this amplifier offers. The precision manufacturing industry can improve as a result of improved capability to measure parts that help reduce costs and minimize material waste.

  9. Low-noise dc superconducting quantum interference devices for gravity wave detection

    NASA Astrophysics Data System (ADS)

    Jin, Insik

    I have designed, built and tested a low noise dc Superconducting QUantum Interference Device (SQUID) system which is intended primarily for use in a 50 mK omnidirectional gravity wave antenna. The SQUID system has three SQUIDs on a single chip: one SQUID is the sensor, another SQUID is the main readout, and the last is a spare readout. For good impedance matching between the sensor SQUID and the input circuit, I use a thin-film transformer. This thin-film transformer gives an input inductance of about 1 muH, which is good for many applications. A SQUID system in a gravity wave antenna must operate continuously for at least 6 months with high reliability. To meet these requirements, I fabricated dc SQUID chips from Nb-Al/AlOsbx-Nb trilayers. I tested the SQUID chips in a liquid helium bath and a dilution refrigerator in the temperature range of 4.2 K to 90 mK. I have designed and tested an eddy-current damping filter as a distributed microwave filter to damp out microwave resonances in strip-line input coils coupled to SQUIDs. The filter chip consists of a Au/Cu-dot array. The filter chip was coupled to the SQUID using a flip-chip arrangement on the SQUID chip. I found that the filter reduced noise bumps and removed distortion from the current-voltage curves. To flux-lock the SQUID system, I developed 2-stage SQUID feedback loops. I investigated two cascade SQUID systems in which I feed the feedback signal into the sensor SQUID and couple the ac modulation signal to the readout SQUID. I found that the noise spectrum with 2-SQUID feedback operation recovers the noise spectrum of the sensor SQUID with about 9% higher noise.

  10. Aerodynamic Performance of Scale-Model Turbofan Outlet Guide Vanes Designed for Low Noise

    NASA Technical Reports Server (NTRS)

    Hughes, Christopher E.

    2001-01-01

    The design of effective new technologies to reduce aircraft propulsion noise is dependent on an understanding of the noise sources and noise generation mechanisms in the modern turbofan engine. In order to more fully understand the physics of noise in a turbofan engine, a comprehensive aeroacoustic wind tunnel test programs was conducted called the 'Source Diagnostic Test.' The text was cooperative effort between NASA and General Electric Aircraft Engines, as part of the NASA Advanced Subsonic Technology Noise Reduction Program. A 1/5-scale model simulator representing the bypass stage of a current technology high bypass ratio turbofan engine was used in the test. The test article consisted of the bypass fan and outlet guide vanes in a flight-type nacelle. The fan used was a medium pressure ratio design with 22 individual, wide chord blades. Three outlet guide vane design configurations were investigated, representing a 54-vane radial Baseline configuration, a 26-vane radial, wide chord Low Count configuration and a 26-vane, wide chord Low Noise configuration with 30 deg of aft sweep. The test was conducted in the NASA Glenn Research Center 9 by 15-Foot Low Speed Wind Tunnel at velocities simulating the takeoff and approach phases of the aircraft flight envelope. The Source Diagnostic Test had several acoustic and aerodynamic technical objectives: (1) establish the performance of a scale model fan selected to represent the current technology turbofan product; (2) assess the performance of the fan stage with each of the three distinct outlet guide vane designs; (3) determine the effect of the outlet guide vane configuration on the fan baseline performance; and (4) conduct detailed flowfield diagnostic surveys, both acoustic and aerodynamic, to characterize and understand the noise generation mechanisms in a turbofan engine. This paper addresses the fan and stage aerodynamic performance results from the Source Diagnostic Test.

  11. Acoustical Testing Laboratory Developed to Support the Low-Noise Design of Microgravity Space Flight Hardware

    NASA Technical Reports Server (NTRS)

    Cooper, Beth A.

    2001-01-01

    The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.

  12. High Power SiGe X-Band (8-10 GHz) Heterojunction Bipolar Transistors and Amplifiers

    NASA Technical Reports Server (NTRS)

    Ma, Zhenqiang; Jiang, Ningyue; Ponchak, George E.; Alterovitz, Samuel A.

    2005-01-01

    Limited by increased parasitics and thermal effects as the device size becomes large, current commercial SiGe power HBTs are difficult to operate at X-band (8-12 GHz) with adequate power added efficiencies at high power levels. We found that, by changing the heterostructure and doping profile of SiGe HBTs, their power gain can be significantly improved without resorting to substantial lateral scaling. Furthermore, employing a common-base configuration with proper doping profile instead of a common-emitter configuration improves the power gain characteristics of SiGe HBTs, which thus permits these devices to be efficiently operated at X-band. In this paper, we report the results of SiGe power HBTs and MMIC power amplifiers operating at 8-10 GHz. At 10 GHz, 22.5 dBm (178 mW) RF output power with concurrent gain of 7.32 dB is measured at the peak power-added efficiency of 20.0% and the maximum RF output power of 24.0 dBm (250 mW) is achieved from a 20 emitter finger SiGe power HBT. Demonstration of single-stage X-band medium-power linear MMIC power amplifier is also realized at 8 GHz. Employing a 10-emitter finger SiGe HBT and on-chip input and output matching passive components, a linear gain of 9.7 dB, a maximum output power of 23.4 dBm and peak power added efficiency of 16% is achieved from the power amplifier. The MMIC exhibits very low distortion with third order intermodulation (IM) suppression C/I of -13 dBc at output power of 21.2 dBm and over 20dBm third order output intercept point (OIP3).

  13. Optimization of a low noise detection circuit for probing the structure of damage cascades with IBIC

    SciTech Connect

    Auden, Elizabeth C.; Doyle, Barney L.; Bielejec, Edward; Vizkelethy, Gyorgy; Wampler, William R.

    2015-06-18

    Optimal detector / pre-amplifier combinations have been identified for the use of light ion IBIC (ion beam induced charge) to probe the physical structure of electrically active defects in damage cascades caused by heavy ion implantation. The ideal detector must have a sufficiently thin dead layer that incident ions will produce the majority of damage cascades in the depletion region of the detector rather than the dead layer. Detector and circuit noise must be low enough to detect the implantation of a single heavy ion as well as the decrease in the light ion IBIC signal caused by Shockley-Read-Hall recombination when the beam scans regions of the detector damaged by the heavy ion. The IBIC signals from three detectors irradiated with 750 keV He⁺ ions are measured with commercial and bespoke charge sensitive pre-amplifiers to identify the combination with the lowest noise.

  14. Optimization of a low noise detection circuit for probing the structure of damage cascades with IBIC

    DOE PAGES

    Auden, Elizabeth C.; Doyle, Barney L.; Bielejec, Edward; ...

    2015-06-18

    Optimal detector / pre-amplifier combinations have been identified for the use of light ion IBIC (ion beam induced charge) to probe the physical structure of electrically active defects in damage cascades caused by heavy ion implantation. The ideal detector must have a sufficiently thin dead layer that incident ions will produce the majority of damage cascades in the depletion region of the detector rather than the dead layer. Detector and circuit noise must be low enough to detect the implantation of a single heavy ion as well as the decrease in the light ion IBIC signal caused by Shockley-Read-Hall recombinationmore » when the beam scans regions of the detector damaged by the heavy ion. The IBIC signals from three detectors irradiated with 750 keV He⁺ ions are measured with commercial and bespoke charge sensitive pre-amplifiers to identify the combination with the lowest noise.« less

  15. The low-noise 115-GHz receiver on the Columbia-GISS 4-ft radio telescope

    NASA Technical Reports Server (NTRS)

    Cong, H.-I.; Kerr, A. R.; Mattauch, R. J.

    1979-01-01

    The superheterodyne millimeter-wave radiometer on the Columbia-GISS 4-ft telescope is described. This receiver uses a room-temperature Schottky diode mixer, with a resonant-ring filter as LO diplexer. The diplexer has low signal loss, efficient LO power coupling, and suppresses most of the LO noise at both sidebands. The receiver IF section has a parametric amplifier as its first stage with sufficient gain to overcome the second-stage amplifier noise. A broad-banded quarter-wave impedance transformer minimizes the mismatch between mixer and paramp. At 115 GHz, the SSB receiver noise temperature is 860 K, which is believed to be the lowest figure so far reported for a room-temperature receiver at this frequency.

  16. Segmented amplifier configurations for laser amplifier

    DOEpatents

    Hagen, Wilhelm F.

    1979-01-01

    An amplifier system for high power lasers, the system comprising a compact array of segments which (1) preserves high, large signal gain with improved pumping efficiency and (2) allows the total amplifier length to be shortened by as much as one order of magnitude. The system uses a three dimensional array of segments, with the plane of each segment being oriented at substantially the amplifier medium Brewster angle relative to the incident laser beam and with one or more linear arrays of flashlamps positioned between adjacent rows of amplifier segments, with the plane of the linear array of flashlamps being substantially parallel to the beam propagation direction.

  17. Ka-band MMIC array system for ACTS aeronautical terminal experiment (Aero-X)

    NASA Technical Reports Server (NTRS)

    Raquet, Charles A.; Zakrajsek, Robert J.; Lee, Richard Q.; Andro, Monty; Turtle, John P.

    1995-01-01

    During the summer of 1994, the Advanced Communication Technology Satellite (ACTS) Aeronautical Terminal Experiment (Aero-X) was successfully completed by the NASA Lewis Research Center (LeRC) and the Jet Propulsion Laboratory (JPL). 4.8 and 9.6 Kbps duplex voice links were established between the LeRC Learjet and the ACTS Link Evaluation Terminal (LET) in Cleveland, Ohio, via the ACTS. The antenna system used in this demonstration was developed by LeRC and featured LeRC and US Air Force experimental arrays using GaAs MMIC devices at each radiating element for electronic beam steering and distributed power amplification. The antenna system consisted of three arrays mounted inside the LeRC Learjet, pointing out through the windows. An open loop tracking controller developed by LeRC used information from the aircraft position and attitude sensors to automatically steer the arrays toward ACTS during flight JPL ACTS Mobile Terminal (AMT) system hardware was used as transceivers both on the aircraft and at the LET. The single 32 element MMIC transmit array developed by NASA/LeRC and Texas Instruments has an EIRP of 23.4 dBW at boresight. The two 20 GHz MMIC receive arrays were developed in a cooperative effort with the USAF Rome Laboratory/Electronic System Center, taking advantage of existing USAF array development contracts with Boeing and Martin Marietta. The Boeing array has 23 elements and a G/T of 16/6 db/degK at boresight. The Martin Marietta array has 16 elements and a G/T of 16.1 db/degK at boresight. The three proof-of-concept arrays, the array control system and their integration and operation in the Learjet for Aero-X are described.

  18. High gain low noise L-band preamplifier with cascade double-pass structure

    NASA Astrophysics Data System (ADS)

    Jia, Dongfang; Wang, Yanyong; Bao, Huanmin; Yang, Tianxin; Li, Shichen

    2005-06-01

    An optimized two-stage-cascade double-pass structure L-band preamplifier was proposed and experimentally studied to overcome the shortcomings of low gain coefficient and high noise figure of L-band erbium-doped fiber amplifier (EDFA). The fiber lengthes of 6.5 and 32.5 m, pump powers of 130 and 119 mW for the first and second stages respectively are used in the experiment. When input signal power is -30 dBm, the amplifier can provide gain above 38.84 dB in a wavelength range of 34 nm (1568---1602 nm), gain ripple less than 2.04 dB (40.88---38.84 dB), and noise figures lower than 5.29 dB with the lowest value of 3.95 dB at 1590 nm. Experimental and simulation results show that this low cost and high pump efficiency amplifier is suitable for the application as an L-band preamplifier in the broadband fiber communication system.

  19. Maintenance Management Information and Control System (MMICS). Administrative Boon or Burden.

    DTIC Science & Technology

    1984-03-01

    AD A145 762 MAINTENANCE MANAGEMENT INFORMATION AND CONTROL SYSTEM li MMICS ADMINISTRATIVE BOON OR RtJRDEN(U) LESLEY COLL U L, CAMBRIDOE MA IP MURRAY...monitoring hranch training programs. EVALUAT ION "ETHODOLOGY A questionnaire/survey of orc3nization manar.ers 3nd suoerviscrs will be administered to...Questionnaire 4. Review l i Li terature x 5.Ccllectt t Completed Data J ~ [ 6. Evaluate Findings x xX 7. Prepare , _ _ Conclusions I.......i _ _ _jX x0

  20. Wideband bandpass filters employing broadside-coupled microstrip lines for MIC and MMIC applications

    NASA Technical Reports Server (NTRS)

    Tran, M.; Nguyen, C.

    1994-01-01

    Wideband bandpass filters employing half-wavelength broadside-coupled microstrip lines suitable for microwave and mm-wave integrated monolithic integrated circuits (MIC and MMIC) are presented. Several filters have been developed at X-band (8 to 12 GHz) with 1 dB insertion loss. Fair agreement between the measured and calculated results has been observed. The analysis of the broadside-coupled microstrip lines used in the filters, based on the quasi-static spectral domain technique, is also described.

  1. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2010-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  2. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2011-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  3. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2008-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  4. Cross-differential amplifier

    NASA Technical Reports Server (NTRS)

    Hajimiri, Seyed-Ali (Inventor); Kee, Scott D. (Inventor); Aoki, Ichiro (Inventor)

    2013-01-01

    A cross-differential amplifier is provided. The cross-differential amplifier includes an inductor connected to a direct current power source at a first terminal. A first and second switch, such as transistors, are connected to the inductor at a second terminal. A first and second amplifier are connected at their supply terminals to the first and second switch. The first and second switches are operated to commutate the inductor between the amplifiers so as to provide an amplified signal while limiting the ripple voltage on the inductor and thus limiting the maximum voltage imposed across the amplifiers and switches.

  5. Development of low-noise CCD drive electronics for the world space observatory ultraviolet spectrograph subsystem

    NASA Astrophysics Data System (ADS)

    Salter, Mike; Clapp, Matthew; King, James; Morse, Tom; Mihalcea, Ionut; Waltham, Nick; Hayes-Thakore, Chris

    2016-07-01

    World Space Observatory Ultraviolet (WSO-UV) is a major Russian-led international collaboration to develop a large space-borne 1.7 m Ritchey-Chrétien telescope and instrumentation to study the universe at ultraviolet wavelengths between 115 nm and 320 nm, exceeding the current capabilities of ground-based instruments. The WSO Ultraviolet Spectrograph subsystem (WUVS) is led by the Institute of Astronomy of the Russian Academy of Sciences and consists of two high resolution spectrographs covering the Far-UV range of 115-176 nm and the Near-UV range of 174-310 nm, and a long-slit spectrograph covering the wavelength range of 115-305 nm. The custom-designed CCD sensors and cryostat assemblies are being provided by e2v technologies (UK). STFC RAL Space is providing the Camera Electronics Boxes (CEBs) which house the CCD drive electronics for each of the three WUVS channels. This paper presents the results of the detailed characterisation of the WUVS CCD drive electronics. The electronics include a novel high-performance video channel design that utilises Digital Correlated Double Sampling (DCDS) to enable low-noise readout of the CCD at a range of pixel frequencies, including a baseline requirement of less than 3 electrons rms readout noise for the combined CCD and electronics system at a readout rate of 50 kpixels/s. These results illustrate the performance of this new video architecture as part of a wider electronics sub-system that is designed for use in the space environment. In addition to the DCDS video channels, the CEB provides all the bias voltages and clocking waveforms required to operate the CCD and the system is fully programmable via a primary and redundant SpaceWire interface. The development of the CEB electronics design has undergone critical design review and the results presented were obtained using the engineering-grade electronics box. A variety of parameters and tests are included ranging from general system metrics, such as the power and mass

  6. Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the

  7. Integrated low noise low power interface for neural bio-potentials recording and conditioning

    NASA Astrophysics Data System (ADS)

    Bottino, Emanuele; Martinoia, Sergio; Valle, Maurizio

    2005-06-01

    The recent progress in both neurobiology and microelectronics suggests the creation of new, powerful tools to investigate the basic mechanisms of brain functionality. In particular, a lot of efforts are spent by scientific community to define new frameworks devoted to the analysis of in-vitro cultured neurons. One possible approach is recording their spiking activity to monitor the coordinated cellular behaviour and get insights about neural plasticity. Due to the nature of neurons action-potentials, when considering the design of an integrated microelectronic-based recording system, a number of problems arise. First, one would desire to have a high number of recording sites (i.e. several hundreds): this poses constraints on silicon area and power consumption. In this regard, our aim is to integrate-through on-chip post-processing techniques-hundreds of bio-compatible microsensors together with CMOS standard-process low-power (i.e. some tenths of uW per channel) conditioning electronics. Each recording channel is provided with sampling electronics to insure synchronous recording so that, for example, cross-correlation between signals coming from different sites can be performed. Extra-cellular potentials are in the range of [50-150] uV, so a comparison in terms of noise-efficiency was carried out among different architectures and very low-noise pre-amplification electronics (i.e. less than 5 uVrms) was designed. As spikes measurements are made with respect to the voltage of a reference electrode, we opted for an AC-coupled differential-input preamplifier provided with band-pass filtering capability. To achieve this, we implemented large time-constant (up to seconds) integrated components in the preamp feedback path. Thus, we got rid also of random slow-drifting DC-offsets and common mode signals. The paper will present our achievements in the design and implementation of a fully integrated bio-abio interface to record neural spiking activity. In particular

  8. An ultra low noise telecom wavelength free running single photon detector using negative feedback avalanche diode.

    PubMed

    Yan, Zhizhong; Hamel, Deny R; Heinrichs, Aimee K; Jiang, Xudong; Itzler, Mark A; Jennewein, Thomas

    2012-07-01

    It is challenging to implement genuine free running single-photon detectors for the 1550 nm wavelength range with simultaneously high detection efficiency (DE), low dark noise, and good time resolution. We report a novel read out system for the signals from a negative feedback avalanche diode (NFAD) [M. A. Itzler, X. Jiang, B. Nyman, and K. Slomkowski, "Quantum sensing and nanophotonic devices VI," Proc. SPIE 7222, 72221K (2009); X. Jiang, M. A. Itzler, K. ODonnell, M. Entwistle, and K. Slomkowski, "Advanced photon counting techniques V," Proc. SPIE 8033, 80330K (2011); M. A. Itzler, X. Jiang, B. M. Onat, and K. Slomkowski, "Quantum sensing and nanophotonic devices VII," Proc. SPIE 7608, 760829 (2010)], which allows useful operation of these devices at a temperature of 193 K and results in very low darkcounts (∼100 counts per second (CPS)), good time jitter (∼30 ps), and good DE (∼10%). We characterized two NFADs with a time-correlation method using photons generated from weak coherent pulses and photon pairs produced by spontaneous parametric down conversion. The inferred detector efficiencies for both types of photon sources agree with each other. The best noise equivalent power of the device is estimated to be 8.1 × 10(-18) W Hz(-1/2), more than 10 times better than typical InP/InGaAs single photon avalanche diodes (SPADs) show in free running mode. The afterpulsing probability was found to be less than 0.1% per ns at the optimized operating point. In addition, we studied the performance of an entanglement-based quantum key distribution (QKD) using these detectors and develop a model for the quantum bit error rate that incorporates the afterpulsing coefficients. We verified experimentally that using these NFADs it is feasible to implement QKD over 400 km of telecom fiber. Our NFAD photon detector system is very simple, and is well suited for single-photon applications where ultra-low noise and free-running operation is required, and some afterpulsing

  9. A low noise and ultra-narrow bandwidth frequency-locked loop based on the beat method.

    PubMed

    Gao, Wei; Sui, Jianping; Chen, Zhiyong; Yu, Fang; Sheng, Rongwu

    2011-06-01

    A novel frequency-locked loop (FLL) based on the beat method is proposed in this paper. Compared with other frequency feedback loops, this FLL is a digital loop with simple structure and very low noise. As shown in the experimental results, this FLL can be used to reduce close-in phase noise on atomic frequency standards, through which a composite frequency standard with ultra-low phase noise and low cost can be easily realized.

  10. System Noise Assessment and the Potential for a Low Noise Hybrid Wing Body Aircraft with Open Rotor Propulsion

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H.; Burley, Casey L.; Lopes, Leonard V.; Bahr, Christopher J.; Gern, Frank H.; VanZante, Dale E.

    2014-01-01

    An aircraft system noise assessment was conducted for a hybrid wing body freighter aircraft concept configured with three open rotor engines. The primary objective of the study was to determine the aircraft system level noise given the significant impact of installation effects including shielding the open rotor noise by the airframe. The aircraft was designed to carry a payload of 100,000 lbs on a 6,500 nautical mile mission. An experimental database was used to establish the propulsion airframe aeroacoustic installation effects including those from shielding by the airframe planform, interactions with the control surfaces, and additional noise reduction technologies. A second objective of the study applied the impacts of projected low noise airframe technology and a projection of advanced low noise rotors appropriate for the NASA N+2 2025 timeframe. With the projection of low noise rotors and installation effects, the aircraft system level was 26.0 EPNLdB below Stage 4 level with the engine installed at 1.0 rotor diameters upstream of the trailing edge. Moving the engine to 1.5 rotor diameters brought the system level noise to 30.8 EPNLdB below Stage 4. At these locations on the airframe, the integrated level of installation effects including shielding can be as much as 20 EPNLdB cumulative in addition to lower engine source noise from advanced low noise rotors. And finally, an additional set of technology effects were identified and the potential impact at the system level was estimated for noise only without assessing the impact on aircraft performance. If these additional effects were to be included it is estimated that the potential aircraft system noise could reach as low as 38.0 EPNLdB cumulative below Stage 4.

  11. A 12 GHz satellite video receiver: Low noise, low cost prototype model for TV reception from broadcast satellites

    NASA Technical Reports Server (NTRS)

    Hreha, M. A.; Baprawski, J. G.; Chamaneria, C. N.; Ferry, S. J.; Keithly, G.; Kuklin, H. S.; Lockyear, W. H.; Schifter, L. H.; Swanberg, N. E.; Swift, G. W.

    1978-01-01

    A 12-channel synchronous phase lock video receiver consisting of an outdoor downconverter unit and an indoor demodulator unit was developed to provide both low noise performance and low cost in production quantities of 1000 units. The prototype receiver can be mass produced at a cost under $1540 without sacrificing system performance. The receiver also has the capability of selecting any of the twelve assigned satellite broadcast channels in the frequency range 11.7 to 12.2 GHz.

  12. Low-noise ultra-high-speed dc SQUID readout electronics

    NASA Astrophysics Data System (ADS)

    Drung, Dietmar; Hinnrichs, Colmar; Barthelmess, Henry-Jobes

    2006-05-01

    User-friendly ultra-high-speed readout electronics for dc superconducting quantum interference devices (SQUIDs) are presented. To maximize the system bandwidth, the SQUID is directly read out without flux modulation. A composite preamplifier is used consisting of a slow dc amplifier in parallel with a fast ac amplifier. In this way, excellent dc precision and a high amplifier bandwidth of 50 MHz are achieved, simultaneously. A virtual 50 Ω amplifier input resistance with negligible excess noise is realized by active shunting, i.e., by applying feedback from preamplifier output to input via a high resistance. The white voltage and current noise levels are 0.33 nV Hz-1 and 2.6 pA Hz-1/2, respectively. The electronics is fully computer controlled via a microcontroller integrated into the flux-locked loop (FLL) board. Easy-to-use software makes the various electronic settings accessible. A wide bias voltage range of 1.3 mV enables the readout of series SQUID arrays. Furthermore, additional current sources allow the operation of two-stage SQUIDs or transition edge sensors. The electronics was tested using various SQUIDs with input inductances between 30 nH and 1.5 µH. Typically, the maximum FLL bandwidth was 20 MHz, which is close to the theoretical limit given by transmission line delay within the FLL. Slew rates of up to 4.6 Φ0 µs-1 were achieved with series SQUID arrays. Current noise levels as low as 0.47 pA Hz-1/2 and coupled energy sensitivities between 90 h and 500 h were measured at 4.2 K, where h is the Planck constant. The noise did not degrade when the system bandwidth was increased to the maximum value of about 20 MHz. With a two-stage set-up, intrinsic white energy sensitivities of 30 h and 2.3 h were measured at 4.2 and 0.3 K, respectively.

  13. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors

    PubMed Central

    Kawahito, Shoji; Seo, Min-Woong

    2016-01-01

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e−rms) when compared with the CMS gain of two (2.4 e−rms), or 16 (1.1 e−rms). PMID:27827972

  14. Noise Reduction Effect of Multiple-Sampling-Based Signal-Readout Circuits for Ultra-Low Noise CMOS Image Sensors.

    PubMed

    Kawahito, Shoji; Seo, Min-Woong

    2016-11-06

    This paper discusses the noise reduction effect of multiple-sampling-based signal readout circuits for implementing ultra-low-noise image sensors. The correlated multiple sampling (CMS) technique has recently become an important technology for high-gain column readout circuits in low-noise CMOS image sensors (CISs). This paper reveals how the column CMS circuits, together with a pixel having a high-conversion-gain charge detector and low-noise transistor, realizes deep sub-electron read noise levels based on the analysis of noise components in the signal readout chain from a pixel to the column analog-to-digital converter (ADC). The noise measurement results of experimental CISs are compared with the noise analysis and the effect of noise reduction to the sampling number is discussed at the deep sub-electron level. Images taken with three CMS gains of two, 16, and 128 show distinct advantage of image contrast for the gain of 128 (noise(median): 0.29 e(-)rms) when compared with the CMS gain of two (2.4 e(-)rms), or 16 (1.1 e(-)rms).

  15. Design and Analysis of Broad-Band Fixed-Tuned Submillimeter-Waveguide Multipliers using MMIC Style Circuit Topology

    NASA Technical Reports Server (NTRS)

    Bruston, J.; Kim, M.; Martin, S. C.; Mehdi, I.; Smith, R. P.; Siegel, P. H.

    1996-01-01

    The design and analysis of varactor diode doubler, quadrupler and cascaded doubler circuits for 320 and 640 GHz have been completed. A new approach has been employed to produce a tunerless waveguide mount with a very flexible, frequency scaleable, MMIC style multiplier circuit. The concept, design, predicted performance and measurements on some of the constituent mount elements are presented.

  16. MMIC linear-phase and digital modulators for deep space spacecraft X-band transponder applications

    NASA Technical Reports Server (NTRS)

    Mysoor, Narayan R.; Ali, Fazal

    1991-01-01

    The design concepts, analyses, and development of GaAs monolithic microwave integrated circuit (MMIC) linear-phase and digital modulators for the next generation of space-borne communications systems are summarized. The design approach uses a compact lumped element quadrature hybrid and Metal Semiconductor Field Effect Transistors (MESFET)-varactors to provide low loss and well-controlled phase performance for deep space transponder (DST) applications. The measured results of the MESFET-diode show a capacitance range of 2:1 under reverse bias, and a Q of 38 at 10 GHz. Three cascaded sections of hybrid-coupled reflection phase shifters were modeled and simulations performed to provide an X-band (8415 +/- 50 MHz) DST phase modulator with +/- 2.5 radians of peak phase deviation. The modulator will accommodate downlink signal modulation with composite telemetry and ranging data, with a deviation linearity tolerance of +/- 8 percent and insertion loss of less than 8 +/- 0.5 dB. The MMIC digital modulator is designed to provide greater than 10 Mb/s of bi-phase modulation at X-band.

  17. A low power low noise analog front end for portable healthcare system

    NASA Astrophysics Data System (ADS)

    Yanchao, Wang; Keren, Ke; Wenhui, Qin; Yajie, Qin; Ting, Yi; Zhiliang, Hong

    2015-10-01

    The presented analog front end (AFE) used to process human bio-signals consists of chopping instrument amplifier (IA), chopping spikes filter and programmable gain and bandwidth amplifier. The capacitor-coupling input of AFE can reject the DC electrode offset. The power consumption of current-feedback based IA is reduced by adopting capacitor divider in the input and feedback network. Besides, IA's input thermal noise is decreased by utilizing complementary CMOS input pairs which can offer higher transconductance. Fabricated in Global Foundry 0.35 μm CMOS technology, the chip consumes 3.96 μA from 3.3 V supply. The measured input noise is 0.85 μVrms (0.5-100 Hz) and the achieved noise efficient factor is 6.48. Project supported by the Science and Technology Commission of Shanghai Municipality (No. 13511501100), the State Key Laboratory Project of China (No. 11MS002), and the State Key Laboratory of ASIC & System, Fudan University.

  18. Portable musical instrument amplifier

    SciTech Connect

    Christian, David E.

    1990-07-24

    The present invention relates to a musical instrument amplifier which is particularly useful for electric guitars. The amplifier has a rigid body for housing both the electronic system for amplifying and processing signals from the guitar and the system's power supply. An input plug connected to and projecting from the body is electrically coupled to the signal amplifying and processing system. When the plug is inserted into an output jack for an electric guitar, the body is rigidly carried by the guitar, and the guitar is operatively connected to the electrical amplifying and signal processing system without use of a loose interconnection cable. The amplifier is provided with an output jack, into which headphones are plugged to receive amplified signals from the guitar. By eliminating the conventional interconnection cable, the amplifier of the present invention can be used by musicians with increased flexibility and greater freedom of movement.

  19. A 94GHz Temperature Compensated Low Noise Amplifier in 45nm Silicon-on-Insulator Complementary Metal-Oxide Semiconductor (SOI CMOS)

    DTIC Science & Technology

    2014-01-01

    discovering techniques to build wide temperature range electronics for millimeter wave imaging applications. Realization of this plan has resulted in a...State Circuits. 41.12 (December 2006): 2992-2997. 8. De Vida , G., and G. Iannaccone. “An Ultra-Low Power, Temperature Compensated Voltage

  20. A fully integrated low-noise amplifier in SiGe 0.35 μm technology for 802.11a WIFI applications

    NASA Astrophysics Data System (ADS)

    Pulido, R.; Khemchandani, S. L.; Goni-Iturri, A.; Diaz, R.; Hernandez, A.; del Pino, J.

    2005-06-01

    In the last years, WIFI market has shown an incredible growth, exceeding expectations. This paper presents the design of two fully integrated LNAs using a low cost SiGe 0.35 um technology for the 5 GHz band, according to the IEEE 802.11a WIFI standard. One LNA has an asymmetric configuration and the other a balanced configuration. A comparison between the two LNAs has been made. All passives devices are on chip, including integrated inductors which have been designed by electromagnetic simulations. This work demonstrates the feasibility of a low cost silicon technology for the design of 5 GHz band circuits

  1. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers

    PubMed Central

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-01-01

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/Hz at 50 kHz, which corresponds to 100 μg/Hz. PMID:28042830

  2. Programmable Low-Power Low-Noise Capacitance to Voltage Converter for MEMS Accelerometers.

    PubMed

    Royo, Guillermo; Sánchez-Azqueta, Carlos; Gimeno, Cecilia; Aldea, Concepción; Celma, Santiago

    2016-12-30

    In this work, we present a capacitance-to-voltage converter (CVC) for capacitive accelerometers based on microelectromechanical systems (MEMS). Based on a fully-differential transimpedance amplifier (TIA), it features a 34-dB transimpedance gain control and over one decade programmable bandwidth, from 75 kHz to 1.2 MHz. The TIA is aimed for low-cost low-power capacitive sensor applications. It has been designed in a standard 0.18-μm CMOS technology and its power consumption is only 54 μW. At the maximum transimpedance configuration, the TIA shows an equivalent input noise of 42 fA/ Hz at 50 kHz, which corresponds to 100 μg/ Hz .

  3. Low-Noise Large-Area Photoreceivers with Low Capacitance Photodiodes

    NASA Technical Reports Server (NTRS)

    Joshi, Abhay M. (Inventor); Datta, Shubhashish (Inventor)

    2013-01-01

    A quad photoreceiver includes a low capacitance quad InGaAs p-i-n photodiode structure formed on an InP (100) substrate. The photodiode includes a substrate providing a buffer layer having a metal contact on its bottom portion serving as a common cathode for receiving a bias voltage, and successive layers deposited on its top portion, the first layer being drift layer, the second being an absorption layer, the third being a cap layer divided into four quarter pie shaped sections spaced apart, with metal contacts being deposited on outermost top portions of each section to provide output terminals, the top portions being active regions for detecting light. Four transimpedance amplifiers have input terminals electrically connected to individual output terminals of each p-i-n photodiode.

  4. Laser amplifier chain

    DOEpatents

    Hackel, Richard P.

    1992-01-01

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain.

  5. Laser amplifier chain

    DOEpatents

    Hackel, R.P.

    1992-10-20

    A laser amplifier chain has a plurality of laser amplifiers arranged in a chain to sequentially amplify a low-power signal beam to produce a significantly higher-power output beam. Overall efficiency of such a chain is improved if high-gain, low efficiency amplifiers are placed on the upstream side of the chain where only a very small fraction of the total pumped power is received by the chain and low-gain, high-efficiency amplifiers are placed on the downstream side where a majority of pumping energy is received by the chain. 6 figs.

  6. Radiofrequency amplifier based on a dc superconducting quantum interference device

    DOEpatents

    Hilbert, C.; Martinis, J.M.; Clarke, J.

    1984-04-27

    A low noise radiofrequency amplifer, using a dc SQUID (superconducting quantum interference device) as the input amplifying element. The dc SQUID and an input coil are maintained at superconductivity temperatures in a superconducting shield, with the input coil inductively coupled to the superconducting ring of the dc SQUID. A radiofrequency signal from outside the shield is applied to the input coil, and an amplified radiofrequency signal is developed across the dc SQUID ring and transmitted to exteriorly of the shield. A power gain of 19.5 +- 0.5 dB has been achieved with a noise temperature of 1.0 +- 0.4 K at a frequency of 100 MHz.

  7. Nanocasted synthesis of magnetic mesoporous iron cerium bimetal oxides (MMIC) as an efficient heterogeneous Fenton-like catalyst for oxidation of arsenite.

    PubMed

    Wen, Zhipan; Zhang, Yalei; Dai, Chaomeng; Sun, Zhen

    2015-04-28

    Magnetic mesoporous iron cerium bimetal oxides (MMIC) with large surface area and pore volume was synthesized via the hard template approach. This obtained MMIC was easily separated from aqueous solution with an external magnetic field and was proposed as a heterogeneous Fenton-like catalyst for oxidation of As(III). The MMIC presented excellent catalytic activity for the oxidation of As(III), achieving almost complete oxidation of 1000ppb As(III) after 60min and complete removal of arsenic species after 180min with reaction conditions of 0.4g/L catalyst, pH of 3.0 and 0.4mM H2O2. Kinetics analysis showed that arsenic removal followed the pseudo-first order, and the pseudo-first-order rate constants increased from 0.0014min(-1) to 0.0548min(-1) as the H2O2 concentration increased from 0.04mM to 0.4mM. On the basis of the effects of XPS analysis and reactive oxidizing species, As(III) in aqueous solution was mainly oxidized by OH radicals, including the surface-bound OHads generated on the MMIC surface which were involved in Fe(2+) and Ce(3+), and free OHfree generation by soluble iron ions which were released from the MMIC into the bulk solution, and the generated As(V) was finally removed by MMIC through adsorption.

  8. Development of a new free wake model considering a blade vane interaction for a low noise axial fan planform optimization

    NASA Astrophysics Data System (ADS)

    Shin, Hyungki; Sun, Hyosung; Lee, Soogab

    2006-03-01

    Multidisciplinary Design Optimization (MDO) is an essential part for low noise axial fan design since various parameters, such as flow rate, efficiency, noise etc., should be considered. For this reason, Response Surface Method (RSM) design technique is adopted as an axial fan design method. RSM has an advantage of choosing objective functions and constraint conditions unrestrictedly on a design space. However, RSM needs a lot of independent variables to construct a proper response surface. Thus an efficient and accurate flow analysis tool is indispensable for optimization. In an axial fan, the discrete (commonly called Blade-Passage-Frequency) components are usually dominant in the noise spectrum. Especially the blade-guide vane interaction is one of most important noise sources. In order to predict this noise component efficiently at the design stage, a new free wake model named Finite Vortex Element (FVE) is devised to simulate this blade-guide vane interaction, which is very difficult to analyze numerically in a conventional free wake model. In this new free wake model, the blade-wake-guide vane interaction is described by cutting a vortex filament when the filament collides with a guide vane. This FVE model is compared with a conventional curved vortex methodology and verified by a comparison with measured data to show its effectiveness and validity. Then FVE model is coupled with RSM to implement a low noise axial fan blade optimization. Using this method, a reduction of 8 dB(A) at 2 m from fan hub in the overall noise level is achieved while the flow rate and the efficiency are maintained as the values of the baseline blade, which implies that FVE wake model coupled with RSM is very effective methodology for MDO problems such as a low noise axial fan design.

  9. Integrated circuit amplifiers for multi-electrode intracortical recording.

    PubMed

    Jochum, Thomas; Denison, Timothy; Wolf, Patrick

    2009-02-01

    Significant progress has been made in systems that interpret the electrical signals of the brain in order to control an actuator. One version of these systems senses neuronal extracellular action potentials with an array of up to 100 miniature probes inserted into the cortex. The impedance of each probe is high, so environmental electrical noise is readily coupled to the neuronal signal. To minimize this noise, an amplifier is placed close to each probe. Thus, the need has arisen for many amplifiers to be placed near the cortex. Commercially available integrated circuits do not satisfy the area, power and noise requirements of this application, so researchers have designed custom integrated-circuit amplifiers. This paper presents a comprehensive survey of the neural amplifiers described in publications prior to 2008. Methods to achieve high input impedance, low noise and a large time-constant high-pass filter are reviewed. A tutorial on the biological, electrochemical, mechanical and electromagnetic phenomena that influence amplifier design is provided. Areas for additional research, including sub-nanoampere electrolysis and chronic cortical heating, are discussed. Unresolved design concerns, including teraohm circuitry, electrical overstress and component failure, are identified.

  10. Design and development of 1 KW solid state RF amplifier

    NASA Astrophysics Data System (ADS)

    Ashok, Gayatri; Kadia, Bhavesh; Jain, Pragya; Kulkarni, S. V.; ICRH-RF Group

    2010-02-01

    Since low power tube based RF amplifiers are complicated, occupy a large space and are bulky, the efforts are on to develop indigenously 1 KW solid state technology based RF Power amplifier. A power level of 1KW is chosen for the initial design because RF power Mosfets upto 250 watt are easily available and by clubbing 3-4 stages the power level of 1 KW can be made. Presently design and testing of 100-watt stage is in progress. The first 2 stages are designed to give 5 Watt RF power using bipolar transistors and are operated in CE, Class A to provide low noise level at the output of the system. The 3rd stage will be MOSFET based MRF 174, which is ideally suited for class A operation and is designed for 100 Watt RF power. The last stage will be MOSFET based ARF446 power MOSFET in TO-247 plastic package. This amplifier will be used in the classical push- pull configuration. This paper describes the design aspects as well as the test results of 100 watt amplifier on 50 Ohm dummy load along with the specifications, design criteria, circuit used, operating parameters of 1 KW Solid State RF power amplifier to be used as driver for 91.2 MHz, 1.5 MW stage for ICRH experiments on SST-1 tokamak .

  11. A low-noise low-power EEG acquisition node for scalable brain-machine interfaces

    NASA Astrophysics Data System (ADS)

    Sullivan, Thomas J.; Deiss, Stephen R.; Cauwenberghs, Gert; Jung, Tzyy-Ping

    2007-05-01

    Electroencephalograph (EEG) recording systems offer a versatile, noninvasive window on the brain's spatio-temporal activity for many neuroscience and clinical applications. Our research aims at improving the spatial resolution and mobility of EEG recording by reducing the form factor, power drain and signal fanout of the EEG acquisition node in a scalable sensor array architecture. We present such a node integrated onto a dimesized circuit board that contains a sensor's complete signal processing front-end, including amplifier, filters, and analog-to-digital conversion. A daisy-chain configuration between boards with bit-serial output reduces the wiring needed. The circuit's low power consumption of 423 μW supports EEG systems with hundreds of electrodes to operate from small batteries for many hours. Coupling between the bit-serial output and the highly sensitive analog input due to dense integration of analog and digital functions on the circuit board results in a deterministic noise component in the output, larger than the intrinsic sensor and circuit noise. With software correction of this noise contribution, the system achieves an input-referred noise of 0.277 μVrms in the signal band of 1 to 100 Hz, comparable to the best medical-grade systems in use. A chain of seven nodes using EEG dry electrodes created in micro-electrical-mechanical system (MEMS) technology is demonstrated in a real-world setting.

  12. Low noise electro-optic comb generation by fully stabilizing to a mode-locked fiber comb.

    PubMed

    Kuse, Naoya; Schibli, Thomas R; Fermann, Martin E

    2016-07-25

    A fully stabilized EO comb is demonstrated by phase locking the two degrees of freedom of an EO comb to a low noise mode-locked fiber comb. Division/magnification of residual phase noise of locked beats is observed by measuring an out-of-loop beat. By phase locking the 200 th harmonics of the EO comb and a driving cw frequency to a fiber comb, a record low phase noise EO comb across +/- 200 harmonics (from 1544.8 nm to 1577.3 nm) is demonstrated.

  13. Simultaneous low noise radio frequency tone and narrow linewidth optical comb generation from a regeneratively mode-locked laser

    NASA Astrophysics Data System (ADS)

    Ozdur, Ibrahim; Ozharar, Sarper; Delfyett, Peter J.

    2014-10-01

    A regeneratively mode-locked laser with simultaneous low noise radio frequency (RF) tone and optical comb generation is presented. The laser does not need any external RF signal and emits a pulse train at ˜10 GHz repetition rate with a 1.5-ps optical pulse width after compression. The generated RF tone has a signal-to-noise ratio of 121 dB/Hz and an RF fluctuation of 10-9 over 0.1 s. The optical frequency comb spacing is also at ˜10 GHz and the optical comb tooth has a linewidth of <1 kHz.

  14. Low noise 4-channel front end ASIC with on-chip DLL for the upgrade of the LHCb Calorimeter

    NASA Astrophysics Data System (ADS)

    Picatoste, E.; Bigbeder-Beau, C.; Duarte, O.; Garrido, L.; Gascon, D.; Grauges, E.; Lefrançois, J.; Machefert, F.; Mauricio, J.; Vilasis, X.

    2015-04-01

    An integrated circuit for the Upgrade of the LHCb Calorimeter front end electronics is presented. It includes four analog channels, a Delay Locked Loop (DLL) for signal phase synchronization for all channels and an SPI communication protocol based interface. The analog circuit is based on two fully differential interleaved channels with a switched integrator to avoid dead time and it incorporates dedicated solutions to achieve low noise, linearity and spill-over specifications. The included DLL is capable of shifting the phase of the LHC clock (25 ns) in steps of 1 ns. The selected technology is AMS SiGe BiCMOS 0.35 um.

  15. Development of a low-noise readout ASIC for Silicon Drift Detectors in high energy resolution X-ray spectrometry

    NASA Astrophysics Data System (ADS)

    Atkin, E.; Levin, V.; Malankin, E.; Shumikhin, V.

    2017-03-01

    ASIC with a low-noise readout channel for Silicon Drift Detectors in high energy resolution X-ray spectrometry was designed and prototyped in the AMS 350 nm CMOS process via Europractice as a miniASIC. For the analog readout channel tests there was used the detector module SDD-10-130-PTW LTplus-ic (PNDetector GmbH). The measured energy resolution of this module with the designed readout channel: 200 eV (FWHM) at 55Fe, -16 °C, 1 kcps and a peaking time of 8 μs.

  16. Single-Pole Double-Throw MMIC Switches for a Microwave Radiometer

    NASA Technical Reports Server (NTRS)

    Montes, Oliver; Dawson, Douglas E.; Kangaslahti, Pekka P.

    2012-01-01

    In order to reduce the effect of gain and noise instabilities in the RF chain of a microwave radiometer, a Dicke radiometer topology is often used, as in the case of the proposed surface water and ocean topography (SWOT) radiometer instrument. For this topology, a single-pole double-throw (SPDT) microwave switch is needed, which must have low insertion loss at the radiometer channel frequencies to minimize the overall receiver noise figure. Total power radiometers are limited in accuracy due to the continuous variation in gain of the receiver. High-frequency SPDT switches were developed in the form of monolithic microwave integrated circuits (MMICs) using 75 micron indium phosphide (InP) PIN-diode technology. These switches can be easily integrated into Dicke switched radiometers that utilize microstrip technology.

  17. 155- and 213-GHz AlInAs/GaInAs/InP HEMT MMIC oscillators

    NASA Technical Reports Server (NTRS)

    Rosenbaum, Steven E.; Kormanyos, Brian K.; Jelloian, Linda M.; Matloubian, Mehran; Brown, April S.; Larson, Lawrence E.; Nguyen, Loi D.; Thompson, Mark A.; Katehi, Linda P. B.; Rebeiz, Gabriel M.

    1995-01-01

    We report on the design and measurement of monolithic 155- and 213-GHz quasi-optical oscillators using AlInAs/GaInAs/InP HEMTs (high-electron mobility transistors). These results are believed to be the highest frequency three-terminal oscillators reported to date. The indium concentration in the channel was 80% for high sheet charge and mobility. The HEMT gates were fabricated with self-aligned sub-tenth-micrometer electron-beam techniques to achieve gate lengths on the order of 50 nm and drain-source spacing of 0.25 micron. Planar antennas were integrated into the fabrication process resulting in a compact and efficient quasi-optical Monolithic Millimeter-wave Integrated Circuit (MMIC) oscillator.

  18. T/R Multi-Chip MMIC Modules for 150 GHz

    NASA Technical Reports Server (NTRS)

    Samoska, Lorene A.; Pukala, David M.; Soria, Mary M.; Sadowy, Gregory A.

    2009-01-01

    Modules containing multiple monolithic microwave integrated-circuit (MMIC) chips have been built as prototypes of transmitting/receiving (T/R) modules for millimeter-wavelength radar systems, including phased-array radar systems to be used for diverse purposes that could include guidance and avoidance of hazards for landing spacecraft, imaging systems for detecting hidden weapons, and hazard-avoidance systems for automobiles. Whereas prior landing radar systems have operated at frequencies around 35 GHz, the integrated circuits in this module operate in a frequency band centered at about 150 GHz. The higher frequency (and, hence, shorter wavelength), is expected to make it possible to obtain finer spatial resolution while also using smaller antennas and thereby reducing the sizes and masses of the affected systems.

  19. Wireless Josephson amplifier

    SciTech Connect

    Narla, A.; Sliwa, K. M.; Hatridge, M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Devoret, M. H.

    2014-06-09

    Josephson junction parametric amplifiers are playing a crucial role in the readout chain in superconducting quantum information experiments. However, their integration with current 3D cavity implementations poses the problem of transitioning between waveguide, coax cables, and planar circuits. Moreover, Josephson amplifiers require auxiliary microwave components, like directional couplers and/or hybrids, that are sources of spurious losses and impedance mismatches that limit measurement efficiency and amplifier tunability. We have developed a wireless architecture for these parametric amplifiers that eliminates superfluous microwave components and interconnects. This greatly simplifies their assembly and integration into experiments. We present an experimental realization of such a device operating in the 9–11 GHz band with about 100 MHz of amplitude gain-bandwidth product, on par with devices mounted in conventional sample holders. The simpler impedance environment presented to the amplifier also results in increased amplifier tunability.

  20. Low noise multi-channel biopotential wireless data acquisition system for dry electrodes

    NASA Astrophysics Data System (ADS)

    Pandian, P. S.; Whitchurch, Ashwin K.; Abraham, Jose K.; Bhusan Baskey, Himanshu; Radhakrishnan, J. K.; Varadan, Vijay K.; Padaki, V. C.; Bhasker Rao, K. U.; Harbaugh, R. E.

    2008-03-01

    The bioelectrical potentials generated within the human body are the result of electrochemical activity in the excitable cells of the nervous, muscular or glandular tissues. The ionic potentials are measured using biopotential electrodes which convert ionic potentials to electronic potentials. The commonly monitored biopotential signals are Electrocardiogram (ECG), Electroencephalogram (EEG) and Electromyogram (EMG). The electrodes used to monitor biopotential signals are Ag-AgCl and gold, which require skin preparation by means of scrubbing to remove the dead cells and application of electrolytic gel to reduce the skin contact resistance. The gels used in biopotential recordings dry out when used for longer durations and add noise to the signals and also prolonged use of gels cause irritations and rashes to skin. Also noises such as motion artifact and baseline wander are added to the biopotential signals as the electrode floats over the electrolytic gel during monitoring. To overcome these drawbacks, dry electrodes are used, where the electrodes are held against the skin surface to establish contact with the skin without the need for electrolytic fluids or gels. The major drawback associated with the dry electrodes is the high skin-electrode impedance in the low frequency range between 0.1-120 Hz, which makes it difficult to acquire clean and noise free biopotential signals. The paper presents the design and development of biopotential data acquisition and processing system to acquire biopotential signals from dry electrodes. The electrode-skin-electrode- impedance (ESEI) measurements was carried out for the dry electrodes by impedance spectroscopy. The biopotential signals are processed using an instrumentation amplifier with high CMRR and high input impedance achieved by boot strapping the input terminals. The signals are band limited by means of a second order Butterworth band pass filters to eliminate noise. The processed biopotential signals are digitized

  1. Compact laser amplifier system

    DOEpatents

    Carr, R.B.

    1974-02-26

    A compact laser amplifier system is described in which a plurality of face-pumped annular disks, aligned along a common axis, independently radially amplify a stimulating light pulse. Partially reflective or lasing means, coaxially positioned at the center of each annualar disk, radially deflects a stimulating light directed down the common axis uniformly into each disk for amplification, such that the light is amplified by the disks in a parallel manner. Circumferential reflecting means coaxially disposed around each disk directs amplified light emission, either toward a common point or in a common direction. (Official Gazette)

  2. Very High Current Density Nb/AlN/Nb Tunnel Junctions for Low-Noise Submillimeter Mixers

    NASA Technical Reports Server (NTRS)

    Kawamura, Jonathan; Miller, David; Chen, Jian; Zmuidzinas, Jonas; Bumble, Bruce; LeDuc, Henry G.; Stern, Jeff A.

    2000-01-01

    We have fabricated and tested submillimeter-wave superconductor-insulator-superconductor (SIS) mixers using very high current density Nb/AlN/Nb tunnel junctions (J(sub c) approximately equal 30 kA/sq cm) . The junctions have low resistance-area products (R(sub N)A approximately 5.6 Omega.sq micron), good subgap to normal resistance ratios R(sub sg)/R(sub N) approximately equal 10, and good run-to-run reproducibility. From Fourier transform spectrometer measurements, we infer that omega.R(sub N)C = 1 at 270 GHz. This is a factor of 2.5 improvement over what is generally available with Nb/AlO(x)/Nb junctions suitable for low-noise mixers. The AlN-barrier junctions are indeed capable of low-noise operation: we measure an uncorrected receiver noise temperature of T(sub RX) = 110 K (DSB) at 533 GHz for an unoptimized device. In addition to providing wider bandwidth operation at lower frequencies, the AlN-barrier junctions will considerably improve the performance of THz SIS mixers by reducing RF loss in the tuning circuits.

  3. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose

    PubMed Central

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-01-01

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal–oxide–semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm2. The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively. PMID:27792131

  4. Low-noise low-power readout electronics circuit development in standard CMOS technology for 4 K applications

    NASA Astrophysics Data System (ADS)

    Merken, Patrick; Souverijns, Tim; Putzeys, Jan; Creten, Ybe; Van Hoof, Chris

    2006-06-01

    In the framework of the Photodetector Array Camera and Spectrometer (PACS) project IMEC designed the Cold Readout Electronics (CRE) for the Ge:Ga far-infrared detector array. Key specifications for this circuit were high linearity, low power consumption and low noise at an operating temperature of 4.2K. We have implemented this circuit in a standard CMOS technology which guarantees high yield and uniformity, and design portability. A drawback of this approach is the anomalous behavior of CMOS transistors at temperatures below 30-40K. These cryogenic phenomena disturb the normal functionality of commonly used circuits. We were able to overcome these problems and developed a library of digital and analog building blocks based on the modeling of cryogenic behavior, and on adapted design and layout techniques. We will present the design of the 18 channel CRE circuit, its interface with the Ge:Ga sensor, and its electrical performance. We will show how the library that was developed for PACS served as a baseline for the designs used in the Darwin-far-infrared detector array, where a cryogenic 180 channel, 30μm pitch, Readout Integrated Circuit (ROIC) for flip-chip integration was developed. Other designs and topologies for low noise and low power applications will be equally presented.

  5. Acoustic Prediction Methodology and Test Validation for an Efficient Low-Noise Hybrid Wing Body Subsonic Transport

    NASA Technical Reports Server (NTRS)

    Kawai, Ronald T. (Compiler)

    2011-01-01

    This investigation was conducted to: (1) Develop a hybrid wing body subsonic transport configuration with noise prediction methods to meet the circa 2007 NASA Subsonic Fixed Wing (SFW) N+2 noise goal of -52 dB cum relative to FAR 36 Stage 3 (-42 dB cum re: Stage 4) while achieving a -25% fuel burned compared to current transports (re :B737/B767); (2) Develop improved noise prediction methods for ANOPP2 for use in predicting FAR 36 noise; (3) Design and fabricate a wind tunnel model for testing in the LaRC 14 x 22 ft low speed wind tunnel to validate noise predictions and determine low speed aero characteristics for an efficient low noise Hybrid Wing Body configuration. A medium wide body cargo freighter was selected to represent a logical need for an initial operational capability in the 2020 time frame. The Efficient Low Noise Hybrid Wing Body (ELNHWB) configuration N2A-EXTE was evolved meeting the circa 2007 NRA N+2 fuel burn and noise goals. The noise estimates were made using improvements in jet noise shielding and noise shielding prediction methods developed by UC Irvine and MIT. From this the Quiet Ultra Integrated Efficient Test Research Aircraft #1 (QUIET-R1) 5.8% wind tunnel model was designed and fabricated.

  6. Characteristics of a multichannel low-noise front-end ASIC for CZT-based small animal PET imaging

    NASA Astrophysics Data System (ADS)

    Gao, W.; Liu, H.; Gan, B.; Hu, Y.

    2014-05-01

    In this paper, we present the design and characteristics of a novel low-noise front-end readout application-specific integrated circuit dedicated to CdZnTe (CZT) detectors for a small animal PET imaging system. A low-noise readout method based on the charge integration and the delayed peak detection is proposed. An eight-channel front-end readout prototype chip is designed and implemented in a 0.35 μm CMOS process. The die size is 2.3 mm ×2.3 mm. The prototype chip is tested in different methods including electronic test, energy spectrum test and irradiation test. The input range of the ASIC is from 2000e- to 180,000e-, reflecting the energy of the gamma ray from 11.2 keV to 1 MeV. The gain of the readout channel is 65 mV/fC at the shaping time of 1 μs. The best test result of the equivalent noise charge (ENC) is 58.9 e- at zero farad plus 5.4 e- per picofarad. The nonlinearity and the crosstalk are less than 3% and less than 2%, respectively, at the room temperature. The static power dissipation is about 3 mW/channel.

  7. A Low Noise CMOS Readout Based on a Polymer-Coated SAW Array for Miniature Electronic Nose.

    PubMed

    Wu, Cheng-Chun; Liu, Szu-Chieh; Chiu, Shih-Wen; Tang, Kea-Tiong

    2016-10-25

    An electronic nose (E-Nose) is one of the applications for surface acoustic wave (SAW) sensors. In this paper, we present a low-noise complementary metal-oxide-semiconductor (CMOS) readout application-specific integrated circuit (ASIC) based on an SAW sensor array for achieving a miniature E-Nose. The center frequency of the SAW sensors was measured to be approximately 114 MHz. Because of interference between the sensors, we designed a low-noise CMOS frequency readout circuit to enable the SAW sensor to obtain frequency variation. The proposed circuit was fabricated in Taiwan Semiconductor Manufacturing Company (TSMC) 0.18 μm 1P6M CMOS process technology. The total chip size was nearly 1203 × 1203 μm². The chip was operated at a supply voltage of 1 V for a digital circuit and 1.8 V for an analog circuit. The least measurable difference between frequencies was 4 Hz. The detection limit of the system, when estimated using methanol and ethanol, was 0.1 ppm. Their linearity was in the range of 0.1 to 26,000 ppm. The power consumption levels of the analog and digital circuits were 1.742 mW and 761 μW, respectively.

  8. Development of a HgCdTe photomixer and impedance matched GaAs FET amplifier

    NASA Technical Reports Server (NTRS)

    Shanley, J. F.; Paulauskas, W. A.; Taylor, D. R.

    1982-01-01

    A research program for the development of a 10.6 micron HgCdTe photodiode/GaAs field effect transistor amplifier package for use at cryogenic temperatures (77k). The photodiode/amplifier module achieved a noise equivalent power per unit bandwidth of 5.7 times 10 to the 20th power W/Hz at 2.0 GHz. The heterodyne sensitivity of the HgCdTe photodiode was improved by designing and building a low noise GaAs field effect transistor amplifier operating at 77K. The Johnson noise of the amplifier was reduced at 77K, and thus resulted in an increased photodiode heterodyne sensitivity.

  9. Nonlinear phase noise mitigation in phase-sensitive amplified transmission systems.

    PubMed

    Olsson, Samuel L I; Karlsson, Magnus; Andrekson, Peter A

    2015-05-04

    We investigate the impact of in-line amplifier noise in transmission systems amplified by two-mode phase-sensitive amplifiers (PSAs) and present the first experimental demonstration of nonlinear phase noise (NLPN) mitigation in a modulation format independent PSA-amplified transmission system. The NLPN mitigation capability is attributed to the correlated noise on the signal and idler waves at the input of the transmission span. We study a single-span system with noise loading in the transmitter but the results are expected to be applicable also in multi-span systems. The experimental investigation is supported by numerical simulations showing excellent agreement with the experiments. In addition to demonstrating NLPN mitigation we also present a record high sensitivity receiver, enabled by low-noise PSA-amplification, requiring only 4.1 photons per bit to obtain a bit error ratio (BER) of 1 × 10(-3) with 10 GBd quadrature phase-shift keying (QPSK) data.

  10. 91-km attenuation-free transmission with low noise accumulation by use of distributed erbium-doped fiber

    NASA Astrophysics Data System (ADS)

    Lester, Christian; Rottwitt, Karsten; Povlsen, Jørn H.; Varming, Poul; Newhouse, Mark A.; Antos, A. J.

    1995-06-01

    Transparency of a 91-km distributed erbium-doped fiber is achieved with 0.46 mW / km of pump power at a signal power of -12dBm . The accumulation of amplifier noise is measured to be smaller than the minimum noise accumulation that can be achieved in a 91-km link with two lumped amplifiers separated by 45 km.

  11. Design of ultra-low power biopotential amplifiers for biosignal acquisition applications.

    PubMed

    Zhang, Fan; Holleman, Jeremy; Otis, Brian P

    2012-08-01

    Rapid development in miniature implantable electronics are expediting advances in neuroscience by allowing observation and control of neural activities. The first stage of an implantable biosignal recording system, a low-noise biopotential amplifier (BPA), is critical to the overall power and noise performance of the system. In order to integrate a large number of front-end amplifiers in multichannel implantable systems, the power consumption of each amplifier must be minimized. This paper introduces a closed-loop complementary-input amplifier, which has a bandwidth of 0.05 Hz to 10.5 kHz, an input-referred noise of 2.2 μ Vrms, and a power dissipation of 12 μW. As a point of comparison, a standard telescopic-cascode closed-loop amplifier with a 0.4 Hz to 8.5 kHz bandwidth, input-referred noise of 3.2 μ Vrms, and power dissipation of 12.5 μW is presented. Also for comparison, we show results from an open-loop complementary-input amplifier that exhibits an input-referred noise of 3.6 μ Vrms while consuming 800 nW of power. The two closed-loop amplifiers are fabricated in a 0.13 μ m CMOS process. The open-loop amplifier is fabricated in a 0.5 μm SOI-BiCMOS process. All three amplifiers operate with a 1 V supply.

  12. Dye laser amplifier

    DOEpatents

    Moses, Edward I.

    1992-01-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye lr amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant.

  13. Dye laser amplifier

    DOEpatents

    Moses, E.I.

    1992-12-01

    An improved dye laser amplifier is disclosed. The efficiency of the dye laser amplifier is increased significantly by increasing the power of a dye beam as it passes from an input window to an output window within the dye chamber, while maintaining the intensity of the dye beam constant. 3 figs.

  14. DIRECT COUPLED AMPLIFIER

    DOEpatents

    Dandl, R.A.

    1961-09-19

    A transistor amplifier is designed for vyery small currents below 10/sup -8/ amperes. The filrst and second amplifier stages use unusual selected transistors in which the current amplification increases markedly for values of base current below 10/sup -6/ amperes.

  15. DISTRIBUTED AMPLIFIER INCORPORATING FEEDBACK

    DOEpatents

    Bell, P.R. Jr.

    1958-10-21

    An improved distributed amplifier system employing feedback for stabilization is presented. In accordance with the disclosed invention, a signal to be amplified is applled to one end of a suitable terminated grid transmission line. At intervals along the transmission line, the signal is fed to stable, resistance-capacitance coupled amplifiers incorporating feedback loops therein. The output current from each amplifier is passed through an additional tube to minimize the electrostatic capacitance between the tube elements of the last stage of the amplifier, and fed to appropriate points on an output transmission line, similar to the grid line, but terminated at the opposite (input) end. The output taken from the unterminated end of the plate transmission line is proportional to the input voltage impressed upon the grid line.

  16. Versatile composite amplifier configuration

    NASA Astrophysics Data System (ADS)

    Gift, Stephan J. G.; Maundy, Brent

    2015-06-01

    This paper describes a versatile composite amplifier in which a current feedback amplifier (CFA) drives an operational amplifier (OPA). In the conventional OPA-CFA composite amplifier, an OPA drives a CFA resulting in a composite structure that combines the DC input stability of the OPA and the high speed capability of the CFA. The proposed composite configuration combines different features of the CFA and OPA, specifically the constant bandwidth property of the CFA and the high power and high current output capacity of the OPA. The new circuit is easily implemented in the standard inverting and non-inverting configurations using commercially available devices, and the accuracy and constant bandwidth features were experimentally verified. Local feedback around the associated CFA ensures that the proposed composite amplifier possesses a higher level of bandwidth constancy than a single CFA.

  17. High Efficiency Ka-Band Solid State Power Amplifier Waveguide Power Combiner

    NASA Technical Reports Server (NTRS)

    Wintucky, Edwin G.; Simons, Rainee N.; Chevalier, Christine T.; Freeman, Jon C.

    2010-01-01

    A novel Ka-band high efficiency asymmetric waveguide four-port combiner for coherent combining of two Monolithic Microwave Integrated Circuit (MMIC) Solid State Power Amplifiers (SSPAs) having unequal outputs has been successfully designed, fabricated and characterized over the NASA deep space frequency band from 31.8 to 32.3 GHz. The measured combiner efficiency is greater than 90 percent, the return loss greater than 18 dB and input port isolation greater than 22 dB. The manufactured combiner was designed for an input power ratio of 2:1 but can be custom designed for any arbitrary power ratio. Applications considered are NASA s space communications systems needing 6 to 10 W of radio frequency (RF) power. This Technical Memorandum (TM) is an expanded version of the article recently published in Institute of Engineering and Technology (IET) Electronics Letters.

  18. Cross-correlation measurement of quantum shot noise using homemade transimpedance amplifiers

    SciTech Connect

    Hashisaka, Masayuki Ota, Tomoaki; Yamagishi, Masakazu; Fujisawa, Toshimasa; Muraki, Koji

    2014-05-15

    We report a cross-correlation measurement system, based on a new approach, which can be used to measure shot noise in a mesoscopic conductor at milliKelvin temperatures. In contrast to other measurement systems in which high-speed low-noise voltage amplifiers are commonly used, our system employs homemade transimpedance amplifiers (TAs). The low input impedance of the TAs significantly reduces the crosstalk caused by unavoidable parasitic capacitance between wires. The TAs are designed to have a flat gain over a frequency band from 2 kHz to 1 MHz. Low-noise performance is attained by installing the TAs at a 4 K stage of a dilution refrigerator. Our system thus fulfills the technical requirements for cross-correlation measurements: low noise floor, high frequency band, and negligible crosstalk between two signal lines. Using our system, shot noise generated at a quantum point contact embedded in a quantum Hall system is measured. The good agreement between the obtained shot-noise data and theoretical predictions demonstrates the accuracy of the measurements.

  19. Tuning Broadband Microwave Amplifiers

    SciTech Connect

    Alaniz, Gabriel

    2003-09-05

    The PEP-II/DA {Phi} NE/ALS longitudinal feedback systems are complex wide bandwidth systems requiring analog, digital and microwave circuits. The solid-state amplifier is one of the components in the microwave circuit that is required to suppress the coupled bunch instabilities that exist in the PEP-II accelerator. The suppression is achieved by using an antenna as a kicker structure that provides an electric field in order to increase or decrease the energy of particles passing through the structure. The amplifier is made up of sixteen 30 to 35W microstrip GaAs FET modules that are combined to obtain 500W over a bandwidth of 850MHz to 1850MHz. The amplifier malfunctioned causing a reduction in the functionality and power output of the individual GaAs FET modules. The amplifier must be repaired. After repair, the amplifier must be tuned to optimize the gain while maintaining proper power output. The amplifier is tuned using microstrip circuit techniques. A variety of microstrip methods are used to obtain the proper line impedance. The result is a working amplifier that operates efficiently.

  20. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Medelius, Pedro J.; Hallberg, Carl; Cecil, Jim

    1994-01-01

    A state-of-the-art instrumentation amplifier capable of being used with most types of transducers has been developed at the Kennedy Space Center. This Universal Signal Conditioning Amplifier (USCA) can eliminate costly measurement setup item and troubleshooting, improve system reliability and provide more accurate data than conventional amplifiers. The USCA can configure itself for maximum resolution and accuracy based on information read from a RAM chip attached to each transducer. Excitation voltages or current are also automatically configured. The amplifier uses both analog and digital state-of-the-art technology with analog-to-digital conversion performed in the early stages in order to minimize errors introduced by offset and gain drifts in the analog components. A dynamic temperature compensation scheme has been designed to achieve and maintain 12-bit accuracy of the amplifier from 0 to 70 C. The digital signal processing section allows the implementation of digital filters up to 511th order. The amplifier can also perform real-time linearizations up to fourth order while processing data at a rate of 23.438 kS/s. Both digital and analog outputs are available from the amplifier.

  1. A Low Noise, Microprocessor-Controlled, Internally Digitizing Rotating-Vane Electric Field Mill for Airborne Platforms

    NASA Technical Reports Server (NTRS)

    Bateman, M. G.; Stewart, M. F.; Blakeslee, R. J.; Podgorny, s. J.; Christian, H. J.; Mach, D. M.; Bailey, J. C.; Daskar, D.

    2006-01-01

    This paper reports on a new generation of aircraft-based rotating-vane style electric field mills designed and built at NASA's Marshall Spaceflight Center. The mills have individual microprocessors that digitize the electric field signal at the mill and respond to commands from the data system computer. The mills are very sensitive (1 V/m per bit), have a wide dynamic range (115 dB), and are very low noise (+/-1 LSB). Mounted on an aircraft, these mills can measure fields from +/-1 V/m to +/-500 kV/m. Once-per-second commanding from the data collection computer to each mill allows for precise timing and synchronization. The mills can also be commanded to execute a self-calibration in flight, which is done periodically to monitor the status and health of each mill.

  2. A Low-Power Low-Noise Clock Signal Generator for Next-Generation Mobile Wireless Terminals

    NASA Astrophysics Data System (ADS)

    Sai, Akihide; Kurose, Daisuke; Yamaji, Takafumi; Itakura, Tetsuro

    Sampling clock jitter degrades the dynamic range of an analog-to-digital converter (ADC). In this letter, a low-power low-noise clock signal generator for ADCs is described. As a clock signal generator, a ring-VCO-based charge pump PLL is used to reduce power dissipation within a given jitter specification. The clock signal generator is fabricated on a CMOS chip with 200-MSPS 10-bit ADC. The measured results show that the ADC keeps a 60-MHz input bandwidth and 53-dB dynamic range and a next-generation mobile wireless terminal can be realized with the ADCs and the on-chip low-power clock generator.

  3. Low noise terahertz MgB2 hot-electron bolometer mixers with an 11 GHz bandwidth

    NASA Astrophysics Data System (ADS)

    Novoselov, E.; Cherednichenko, S.

    2017-01-01

    Terahertz (THz) hot-electron bolometer mixers reach a unique combination of low noise, wide noise bandwidth, and high operation temperature when 6 nm thick superconducting MgB2 films are used. We obtained a noise bandwidth of 11 GHz with a minimum receiver noise temperature of 930 K with a 1.63 THz Local Oscillator (LO), and a 5 K operation temperature. At 15 K and 20 K, the noise temperature is 1100 K and 1600 K, respectively. From 0.69 THz to 1.63 THz, the receiver noise increases by only 12%. Device current-voltage characteristics are identical when pumped with LOs from 0.69 THz up to 2.56 THz, and match well with IVs at elevated temperatures. Therefore, the effect of the THz waves on the mixer is totally thermal, due to absorption in the π conduction band of MgB2.

  4. 100 nm AlSb/InAs HEMT for Ultra-Low-Power Consumption, Low-Noise Applications

    PubMed Central

    Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/fmax of 100/125 GHz together with minimum noise figure NFmin = 0.5 dB and associated gain Gass = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime. PMID:24707193

  5. Hybrid and electric low-noise cars cause an increase in traffic accidents involving vulnerable road users in urban areas.

    PubMed

    Brand, Stephan; Petri, Maximilian; Haas, Philipp; Krettek, Christian; Haasper, Carl

    2013-01-01

    Due to resource scarcity, the number of low-noise and electric cars is expected to increase rapidly. The frequent use of these cars will lead to a significant reduction of traffic related noise and pollution. On the other hand, due to the adaption and conditioning of vulnerable road users the number of traffic accidents involving pedestrians and bicyclists is postulated to increase as well. Children, older people with reduced eyesight and the blind are especially reliant on a combination of acoustic and visual warning signals with approaching or accelerating vehicles. This is even more evident in urban areas where the engine sound is the dominating sound up to 30 kph (kilometres per hour). Above this, tyre-road interaction is the main cause of traffic noise. With the missing typical engine sound a new sound design is necessary to prevent traffic accidents in urban areas. Drivers should not be able to switch the sound generator off.

  6. A low noise front end electronics for micro-channel plate detector with wedge and strip anode

    NASA Astrophysics Data System (ADS)

    Hu, K.; Li, F.; Liang, F.; Chen, L.; Jin, G.

    2016-03-01

    A low noise Front End Electronics (FEE) for two-dimensional position sensitive Micro-Channel Plate (MCP) detector has been developed. The MCP detector is based on Wedge and Strip Anode (WSA) with induction readout mode. The WSA has three electrodes, the wedge electrode, the strip electrode, and the zigzag electrode. Then, three readout channels are designed in the Printed Circuit Board (PCB). The FEE is calibrated by a pulse generator from Agilent. We also give an analysis of the charge loss from the CSA. The noise levels of the three channels are less than 1 fC RMS at the shaping time of 200 ns. The experimental result shows that the position resolution of the MCP detector coupled with the designed PCB can reach up to 110 μm.

  7. Implementation of a galvanically isolated low-noise power supply board for multi-channel headstage preamplifiers.

    PubMed

    Tóth, Attila; Máthé, Kálmán; Petykó, Zoltán; Szabó, Imre; Czurkó, András

    2008-06-15

    Custom made multi-channel headstage preamplifiers are traditionally powered by battery. By the use of an isolated unregulated DC/DC converter integrated circuit (DCP010512B from Texas Instruments Inc., TX, USA), here we describe the implementation of a galvanically isolated low-noise power supply board for multi-channel headstage preamplifiers. The implemented galvanically isolated power supply board provides the same quality noise free recording as the battery power supply. The non-isolated part of the power supply board is powered by standard 230 V AC/6 V DC wall mount adapter or USB cable. The described galvanically isolated power supply board can replace the batteries in preamplifier power supplies without any deterioration of the quality of recordings.

  8. 100 nm AlSb/InAs HEMT for ultra-low-power consumption, low-noise applications.

    PubMed

    Gardès, Cyrille; Bagumako, Sonia; Desplanque, Ludovic; Wichmann, Nicolas; Bollaert, Sylvain; Danneville, François; Wallart, Xavier; Roelens, Yannick

    2014-01-01

    We report on high frequency (HF) and noise performances of AlSb/InAs high electron mobility transistor (HEMT) with 100 nm gate length at room temperature in low-power regime. Extrinsic cut-off frequencies fT/f max of 100/125 GHz together with minimum noise figure NF(min) = 0.5 dB and associated gain G(ass) = 12 dB at 12 GHz have been obtained at drain bias of only 80 mV, corresponding to 4 mW/mm DC power dissipation. This demonstrates the great ability of AlSb/InAs HEMT for high-frequency operation combined with low-noise performances in ultra-low-power regime.

  9. A Tool for Low Noise Procedures Design and Community Noise Impact Assessment: The Rotorcraft Noise Model (RNM)

    NASA Technical Reports Server (NTRS)

    Conner, David A.; Page, Juliet A.

    2002-01-01

    To improve aircraft noise impact modeling capabilities and to provide a tool to aid in the development of low noise terminal area operations for rotorcraft and tiltrotors, the Rotorcraft Noise Model (RNM) was developed by the NASA Langley Research Center and Wyle Laboratories. RNM is a simulation program that predicts how sound will propagate through the atmosphere and accumulate at receiver locations located on flat ground or varying terrain, for single and multiple vehicle flight operations. At the core of RNM are the vehicle noise sources, input as sound hemispheres. As the vehicle "flies" along its prescribed flight trajectory, the source sound propagation is simulated and accumulated at the receiver locations (single points of interest or multiple grid points) in a systematic time-based manner. These sound signals at the receiver locations may then be analyzed to obtain single event footprints, integrated noise contours, time histories, or numerous other features. RNM may also be used to generate spectral time history data over a ground mesh for the creation of single event sound animation videos. Acoustic properties of the noise source(s) are defined in terms of sound hemispheres that may be obtained from theoretical predictions, wind tunnel experimental results, flight test measurements, or a combination of the three. The sound hemispheres may contain broadband data (source levels as a function of one-third octave band) and pure-tone data (in the form of specific frequency sound pressure levels and phase). A PC executable version of RNM is publicly available and has been adopted by a number of organizations for Environmental Impact Assessment studies of rotorcraft noise. This paper provides a review of the required input data, the theoretical framework of RNM's propagation model and the output results. Code validation results are provided from a NATO helicopter noise flight test as well as a tiltrotor flight test program that used the RNM as a tool to aid in

  10. A low-noise 15-μm pixel-pitch 640×512 hybrid InGaAs image sensor for night vision

    NASA Astrophysics Data System (ADS)

    Guellec, Fabrice; Dubois, Sébastien; de Borniol, Eric; Castelein, Pierre; Martin, Sébastien; Guiguet, Romain; Tchagaspanian, Micha"l.; Rouvié, Anne; Bois, Philippe

    2012-03-01

    Hybrid InGaAs focal plane arrays are very interesting for night vision because they can benefit from the nightglow emission in the Short Wave Infrared band. Through a collaboration between III-V Lab and CEA-Léti, a 640x512 InGaAs image sensor with 15μm pixel pitch has been developed. The good crystalline quality of the InGaAs detectors opens the door to low dark current (around 20nA/cm2 at room temperature and -0.1V bias) as required for low light level imaging. In addition, the InP substrate can be removed to extend the detection range towards the visible spectrum. A custom readout IC (ROIC) has been designed in a standard CMOS 0.18μm technology. The pixel circuit is based on a capacitive transimpedance amplifier (CTIA) with two selectable charge-to-voltage conversion gains. Relying on a thorough noise analysis, this input stage has been optimized to deliver low-noise performance in high-gain mode with a reasonable concession on dynamic range. The exposure time can be maximized up to the frame period thanks to a rolling shutter approach. The frame rate can be up to 120fps or 60fps if the Correlated Double Sampling (CDS) capability of the circuit is enabled. The first results show that the CDS is effective at removing the very low frequency noise present on the reference voltage in our test setup. In this way, the measured total dark noise is around 90 electrons in high-gain mode for 8.3ms exposure time. It is mainly dominated by the dark shot noise for a detector temperature settling around 30°C when not cooled. The readout noise measured with shorter exposure time is around 30 electrons for a dynamic range of 71dB in high-gain mode and 108 electrons for 79dB in low-gain mode.

  11. Gigahertz to terahertz tunable all-optical single-side-band microwave generation via semiconductor optical amplifier gain engineering.

    PubMed

    Li, Fangxin; Helmy, Amr S

    2013-11-15

    We propose and demonstrate a technique to generate low-noise broadly tunable single-side-band microwaves using cascaded semiconductor optical amplifiers (SOAs) using no RF bias. The proposed technique uses no RF components and is based on polarization-state controlled gain-induced four-wave mixing in SOAs. Microwave generation from 40 to 875 GHz with a line-width ~22 KHz is experimentally demonstrated.

  12. Amplify Interest in STS.

    ERIC Educational Resources Information Center

    Chiappetta, Eugene L; Mays, John D.

    1992-01-01

    Presents activities in which students construct simple crystal radio sets and amplifiers out of diodes, transistors, and integrated circuits. Provides conceptual background, materials needed, instructions, diagrams, and classroom applications. (MDH)

  13. Optoisolators simplify amplifier design

    NASA Astrophysics Data System (ADS)

    Ting, Joseph Wee

    2007-09-01

    Simplicity and low parts count are key virtues to this high voltage amplifier. Optoisolators replace complex high voltage transistor biasing schemes. This amplifier employs only 2 optoisolators, 16 high voltage mosfets transistors, 2 low voltage ones, 6 linear IC's and a score of passive components. Yet it can amplify opamp signals to 5 kV peak-to-peak from DC to sine waves up to 20 kHz. Resistor feedback guarantees the fidelity of the signal. It can source and sink 10 mA of output current. This amplifier was conceived to power ion traps for biological whole cell mass measurements. It is a versatile tool for a variety of applications.

  14. Fully relayed regenerative amplifier

    DOEpatents

    Glass, Alexander J.

    1981-01-01

    A regenerative laser apparatus and method using the optical relay concept to maintain high fill factors, to suppress diffraction effects, and to minimize phase distortions in a regenerative amplifier.

  15. High stability amplifier

    NASA Technical Reports Server (NTRS)

    Adams, W. A.; Reinhardt, V. S. (Inventor)

    1983-01-01

    An electrical RF signal amplifier for providing high temperature stability and RF isolation and comprised of an integrated circuit voltage regulator, a single transistor, and an integrated circuit operational amplifier mounted on a circuit board such that passive circuit elements are located on side of the circuit board while the active circuit elements are located on the other side is described. The active circuit elements are embedded in a common heat sink so that a common temperature reference is provided for changes in ambient temperature. The single transistor and operational amplifier are connected together to form a feedback amplifier powered from the voltage regulator with transistor implementing primarily the desired signal gain while the operational amplifier implements signal isolation. Further RF isolation is provided by the voltage regulator which inhibits cross-talk from other like amplifiers powered from a common power supply. Input and output terminals consisting of coaxial connectors are located on the sides of a housing in which all the circuit components and heat sink are located.

  16. The High Altitude MMIC Sounding Radiometer on the GLOBAL HAWK: From Technology Development to Science Discovery

    NASA Technical Reports Server (NTRS)

    Brown, Shannon; Denning, Richard; Lambrigtsen, Bjorn; Lim, Boon; Tanabe, Jordan; Tanner, Alan

    2013-01-01

    This paper presents results from the High Altitude MMIC Sounding Radiometer (HAMSR) during three recent field campaigns on the Global Hawk Unmanned Ariel Vehicles (UAV), focusing on the enabling technology that led to unprecedented observations of significant weather phenomenon, such as thermodynamic evolution of the tropical cyclone core during rapid intensification and the high resolution three dimensional mapping of several atmospheric river events. HAMSR is a 25 channel cross-track scanning microwave sounder with channels near the 60 and 118 GHz oxygen lines and the 183 GHz water vapor line. HAMSR was originally designed and built at the Jet Propulsion Laboratory as a technology demonstrator in 1998. Subsequent to this, HAMSR participated in three NASA hurricane field campaigns, CAMEX-4, TCSP and NAMMA. Beginning in 2008, HAMSR was extensively upgraded to deploy on the NASA Global Hawk (GH) platform and serve as an asset to the NASA sub-orbital program. HAMSR has participated on the Global Hawk during the 2010 Genesis and Rapid Intensification (GRIP) campaign, the 2011 Winter Storms and Atmospheric Rivers (WISPAR) campaign and is currently participating in the NASA Ventures Hurricane and Severe Storm Sentinel (HS3) campaign (2011-2015).

  17. RF MEMS Phase Shifters and their Application in Phase Array Antennas

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian; Ponchak, George E.; Zaman, Afroz J.; Lee, Richard Q.

    2005-01-01

    Electronically scanned arrays are required for space based radars that are capable of tracking multiple robots, rovers, or other assets simultaneously and for beam-hopping communication systems between the various assets. ^Traditionally, these phased array antennas used GaAs Monolithic Microwave Integrated Circuit (MMIC) phase shifters, power amplifiers, and low noise amplifiers to amplify and steer the beam, but the development of RF MEMS switches over the past ten years has enabled system designers to consider replacing the GaAs MMIC phase shifters with RF Micro-Electro Mechanical System (MEMS) phase shifters. In this paper, the implication of replacing the relatively high loss GaAs MMICs with low loss MEMS phase shifters is investigated.

  18. High input impedance amplifier

    NASA Technical Reports Server (NTRS)

    Kleinberg, Leonard L.

    1995-01-01

    High input impedance amplifiers are provided which reduce the input impedance solely to a capacitive reactance, or, in a somewhat more complex design, provide an extremely high essentially infinite, capacitive reactance. In one embodiment, where the input impedance is reduced in essence, to solely a capacitive reactance, an operational amplifier in a follower configuration is driven at its non-inverting input and a resistor with a predetermined magnitude is connected between the inverting and non-inverting inputs. A second embodiment eliminates the capacitance from the input by adding a second stage to the first embodiment. The second stage is a second operational amplifier in a non-inverting gain-stage configuration where the output of the first follower stage drives the non-inverting input of the second stage and the output of the second stage is fed back to the non-inverting input of the first stage through a capacitor of a predetermined magnitude. These amplifiers, while generally useful, are very useful as sensor buffer amplifiers that may eliminate significant sources of error.

  19. Laser amplifier and method

    DOEpatents

    Backus, Sterling; Kapteyn, Henry C.; Murnane, Margaret M.

    1997-01-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate.

  20. Laser amplifier and method

    DOEpatents

    Backus, S.; Kapteyn, H.C.; Murnane, M.M.

    1997-07-01

    Laser amplifiers and methods for amplifying a laser beam are disclosed. A representative embodiment of the amplifier comprises first and second curved mirrors, a gain medium, a third mirror, and a mask. The gain medium is situated between the first and second curved mirrors at the focal point of each curved mirror. The first curved mirror directs and focuses a laser beam to pass through the gain medium to the second curved mirror which reflects and recollimates the laser beam. The gain medium amplifies and shapes the laser beam as the laser beam passes therethrough. The third mirror reflects the laser beam, reflected from the second curved mirror, so that the laser beam bypasses the gain medium and return to the first curved mirror, thereby completing a cycle of a ring traversed by the laser beam. The mask defines at least one beam-clipping aperture through which the laser beam passes during a cycle. The gain medium is pumped, preferably using a suitable pumping laser. The laser amplifier can be used to increase the energy of continuous-wave or, especially, pulsed laser beams including pulses of femtosecond duration and relatively high pulse rate. 7 figs.

  1. Electrospun Amplified Fiber Optics

    PubMed Central

    2015-01-01

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm–1). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics. PMID:25710188

  2. Electrospun amplified fiber optics.

    PubMed

    Morello, Giovanni; Camposeo, Andrea; Moffa, Maria; Pisignano, Dario

    2015-03-11

    All-optical signal processing is the focus of much research aiming to obtain effective alternatives to existing data transmission platforms. Amplification of light in fiber optics, such as in Erbium-doped fiber amplifiers, is especially important for efficient signal transmission. However, the complex fabrication methods involving high-temperature processes performed in a highly pure environment slow the fabrication process and make amplified components expensive with respect to an ideal, high-throughput, room temperature production. Here, we report on near-infrared polymer fiber amplifiers working over a band of ∼20 nm. The fibers are cheap, spun with a process entirely carried out at room temperature, and shown to have amplified spontaneous emission with good gain coefficients and low levels of optical losses (a few cm(-1)). The amplification process is favored by high fiber quality and low self-absorption. The found performance metrics appear to be suitable for short-distance operations, and the large variety of commercially available doping dyes might allow for effective multiwavelength operations by electrospun amplified fiber optics.

  3. Receiver Performance of CO2 and CH4 Lidar with Low Noise HgCdTe Avalanche Photodiodes

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.

    2012-12-01

    NASA Goddard Space Flight Center (GSFC) is currently developing CO2 lidars at 1.57 μm wavelength for the Active Sensing of CO2 Emission over Days, Nights, and Seasons (ASCENDS) mission. One of the major technical challenges is the photodetectors that have to operate in short wave infrared (SWIR) wavelength region and sensitive to received laser pulses of only a few photons. We have been using InGaAs photocathode photomultiplier tubes (PMT) in our airborne simulator of the CO2 lidar that can detect single photon with up to 10% quantum efficiency at <1.6 μm wavelength. However it was difficult to maintain a sufficiently wide signal dynamic range and single photon sensitivity at the same time with the PMTs. There may also be a lifetime limitation with the InGaAs photocathode PMT for a multi-year space mission. We have been developing HgCdTe avalanche photodiode (APD) SWIR detector systems with DRS Technologies, Reconnaissance, Surveillance and Target Acquisition (RSTA) Division as an alternative photodetector for our CO2 lidars. The new HgCdTe APDs have typically a >50% quantum efficiency, including the effect of fill-factor, from 0.9 to 4.5 μm wavelength. DRS RSTA will integrate a low noise read-out integrated circuit (ROIC) with the HgCdTe APD array into a low noise analog SWIR detector with near single photon sensitivity. The new HgCdTe APD SWIR detector assembly is expected to improve the receiver sensitivity of our CO2 lidar by at least a factor of two and provide a sufficient wide signal dynamic range. The new SWIR detector systems can also be used in the CH4 lidars at 1.65 μm wavelength currently being developed at GSFC. The near infrared PMTs have diminishing quantum efficiency as the wavelength exceeds 1.6 μm. InGaAs APDs have a high quantum efficiency but too high an excess noise factor to achieve near quantum limited performance. The new HgCdTe APDs is expected to give a much superior performance than the PMTs and the InGaAs APDs. In this paper, we

  4. STABILIZED FEEDBACK AMPLIFIER

    DOEpatents

    Fishbine, H.L.; Sewell, C. Jr.

    1957-08-01

    Negative feedback amplifiers, and particularly a negative feedback circuit which is economical on amode power consumption, are described. Basically, the disclosed circuit comprises two tetrode tubes where the output of the first tube is capacitamce coupled to the grid of the second tube, which in turn has its plate coupled to the cathode of the first tube to form a degenerative feedback circuit. Operating potential for screen of the second tube is supplied by connecting the cathode resistor of the first tube to the screen, while the screen is by-passed to the cathode of its tube for the amplified frequencies. Also, the amplifier incorporates a circuit to stabilize the transconductance of the tubes by making the grid potential of each tube interdependent on anode currents of both lubes by voltage divider circuitry.

  5. Raman-Enhanced Phase-Sensitive Fibre Optical Parametric Amplifier

    PubMed Central

    Fu, Xuelei; Guo, Xiaojie; Shu, Chester

    2016-01-01

    Phase-sensitive amplification is of great research interest owing to its potential in noiseless amplification. One key feature in a phase-sensitive amplifier is the gain extinction ratio defined as the ratio of the maximum to the minimum gains. It quantifies the capability of the amplifier in performing low-noise amplification for high phase-sensitive gain. Considering a phase-sensitive fibre optical parametric amplifier for linear amplification, the gain extinction ratio increases with the phase-insensitive parametric gain achieved from the same pump. In this work, we use backward Raman amplification to increase the phase-insensitive parametric gain, which in turn improves the phase-sensitive operation. Using a 955 mW Raman pump, the gain extinction ratio is increased by 9.2 dB. The improvement in the maximum phase-sensitive gain is 18.7 dB. This scheme can significantly boost the performance of phase-sensitive amplification in a spectral range where the parametric pump is not sufficiently strong but broadband Raman amplification is available. PMID:26830136

  6. Low-noise SQUID

    DOEpatents

    Dantsker, Eugene; Clarke, John

    2000-01-01

    The present invention comprises a high-transition-temperature superconducting device having low-magnitude low-frequency noise-characteristics in magnetic fields comprising superconducting films wherein the films have a width that is less than or equal to a critical width, w.sub.C, which depends on an ambient magnetic field. For operation in the Earth's magnetic field, the critical width is about 6 micrometers (.mu.m). When made with film widths of about 4 .mu.m an inventive high transition-temperature, superconducting quantum interference device (SQUID) excluded magnetic flux vortices up to a threshold ambient magnetic field of about 100 microTesla (.mu.T). SQUIDs were fabricated having several different film strip patterns. When the film strip width was kept at about 4 .mu.m, the SQUIDs exhibited essentially no increase in low-frequency noise, even when cooled in static magnetic fields of magnitude up to 100 .mu.T. Furthermore, the mutual inductance between the inventive devices and a seven-turn spiral coil was at least 85% of that for inductive coupling to a conventional SQUID.

  7. Universal signal conditioning amplifier

    NASA Technical Reports Server (NTRS)

    Larson, William E.; Hallberg, Carl; Medelius, Pedro J.

    1994-01-01

    Engineers at NASA's Kennedy Space Center have designed a signal conditioning amplifier which automatically matches itself to almost any kind of transducer. The product, called Universal Signal Conditioning Amplifier (USCA), uses state-of-the-art technologies to deliver high accuracy measurements. USCA's features which can be either programmable or automated include: voltage, current, or pulsed excitation, unlimited resolution gain, digital filtering and both analog and digital output. USCA will be used at Kennedy Space Center's launch pads for environmental measurements such as vibrations, strains, temperatures and overpressures. USCA is presently being commercialized through a co-funded agreement between NASA, the State of Florida, and Loral Test and Information Systems, Inc.

  8. Spatial Light Amplifier Modulators

    NASA Technical Reports Server (NTRS)

    Eng, Sverre T.; Olsson, N. Anders

    1992-01-01

    Spatial light amplifier modulators (SLAM's) are conceptual devices that effect two-dimensional spatial modulation in optical computing and communication systems. Unlike current spatial light modulators, these provide gain. Optical processors incorporating SLAM's designed to operate in reflection or transmission mode. Each element of planar SLAM array is optical amplifier - surface-emitting diode laser. Array addressed electrically with ac modulating signals superimposed on dc bias currents supplied to lasers. SLAM device provides both desired modulation and enough optical gain to enable splitting of output signal into many optical fibers without excessive loss of power.

  9. A grid amplifier

    NASA Technical Reports Server (NTRS)

    Kim, Moonil; Weikle, Robert M., II; Hacker, Jonathan B.; Delisio, Michael P.; Rutledge, David B.; Rosenberg, James J.; Smith, R. P.

    1991-01-01

    A 50-MESFET grid amplifier is reported that has a gain of 11 dB at 3.3 GHz. The grid isolates the input from the output by using vertical polarization for the input beam and horizontal polarization for the transmitted output beam. The grid unit cell is a two-MESFET differential amplifier. A simple calibration procedure allows the gain to be calculated from a relative power measurement. This grid is a hybrid circuit, but the structure is suitable for fabrication as a monolithic wafer-scale integrated circuit, particularly at millimeter wavelengths.

  10. Ge/graded-SiGe multiplication layers for low-voltage and low-noise Ge avalanche photodiodes on Si

    NASA Astrophysics Data System (ADS)

    Miyasaka, Yuji; Hiraki, Tatsurou; Okazaki, Kota; Takeda, Kotaro; Tsuchizawa, Tai; Yamada, Koji; Wada, Kazumi; Ishikawa, Yasuhiko

    2016-04-01

    A new structure is examined for low-voltage and low-noise Ge-based avalanche photodiodes (APDs) on Si, where a Ge/graded-SiGe heterostructure is used as the multiplication layer of a separate-absorption-carrier-multiplication structure. The Ge/SiGe heterojunction multiplication layer is theoretically shown to be useful for preferentially enhancing impact ionization for photogenerated holes injected from the Ge optical-absorption layer via the graded SiGe, reflecting the valence band discontinuity at the Ge/SiGe interface. This property is effective not only for the reduction of operation voltage/electric field strength in Ge-based APDs but also for the reduction of excess noise resulting from the ratio of the ionization coefficients between electrons and holes being far from unity. Such Ge/graded-SiGe heterostructures are successfully fabricated by ultrahigh-vacuum chemical vapor deposition. Preliminary pin diodes having a Ge/graded-SiGe multiplication layer act reasonably as photodetectors, showing a multiplication gain larger than those for diodes without the Ge/SiGe heterojunction.

  11. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guan; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies (50) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  12. Wide-bandwidth electron bolometric mixers - A 2DEG prototype and potential for low-noise THz receivers

    NASA Technical Reports Server (NTRS)

    Yang, Jian-Xun; Agahi, Farid; Dai, Dong; Musante, Charles F.; Grammer, Wes; Lau, Kei M.; Yngvesson, K. S.

    1993-01-01

    This paper presents a new type of electron bolometric ('hot electron') mixer. We have demonstrated a 3 order-of-magnitude improvement in the bandwidth compared with previously known types of electron bolometric mixers, by using the two-dimensional electron gas (2DEG) medium at the heterointerface between AlGaAs and GaAs. We have tested both in-house MOCVD-grown material and MBE material, with similar results. The conversion loss (Lc) at 94 GHz is presently 18 dB for a mixer operating at 20 K, and calculations indicate that Lc can be decreased to about 10 dB in future devices. Calculated and measured curves of Lc versus P(LO), and I(DC), respectively, agree well. We argue that there are several different configurations of electron bolometric mixers, which will all show wide bandwidth, and that these devices are likely to become important as low-noise THz receivers in the future.

  13. Low-Noise Free-Running High-Rate Photon-Counting for Space Communication and Ranging

    NASA Technical Reports Server (NTRS)

    Lu, Wei; Krainak, Michael A.; Yang, Guangning; Sun, Xiaoli; Merritt, Scott

    2016-01-01

    We present performance data for low-noise free-running high-rate photon counting method for space optical communication and ranging. NASA GSFC is testing the performance of two types of novel photon-counting detectors 1) a 2x8 mercury cadmium telluride (HgCdTe) avalanche array made by DRS Inc., and a 2) a commercial 2880-element silicon avalanche photodiode (APD) array. We successfully measured real-time communication performance using both the 2 detected-photon threshold and logic AND-gate coincidence methods. Use of these methods allows mitigation of dark count, after-pulsing and background noise effects without using other method of Time Gating The HgCdTe APD array routinely demonstrated very high photon detection efficiencies ((is) greater than 50%) at near infrared wavelength. The commercial silicon APD array exhibited a fast output with rise times of 300 ps and pulse widths of 600 ps. On-chip individually filtered signals from the entire array were multiplexed onto a single fast output. NASA GSFC has tested both detectors for their potential application for space communications and ranging. We developed and compare their performances using both the 2 detected photon threshold and coincidence methods.

  14. Real-time ultrawide-band group delay profile monitoring through low-noise incoherent temporal interferometry.

    PubMed

    Park, Yongwoo; Malacarne, Antonio; Azaña, José

    2011-02-28

    A simple, highly accurate measurement technique for real-time monitoring of the group delay (GD) profiles of photonic dispersive devices over ultra-broad spectral bandwidths (e.g. an entire communication wavelength band) is demonstrated. The technique is based on time-domain self-interference of an incoherent light pulse after linear propagation through the device under test, providing a measurement wavelength range as wide as the source spectral bandwidth. Significant enhancement in the signal-to-noise ratio of the self-interference signal has been observed by use of a relatively low-noise incoherent light source as compared with the theoretical estimate for a white-noise light source. This fact combined with the use of balanced photo-detection has allowed us to significantly reduce the number of profiles that need to be averaged to reach a targeted GD measurement accuracy, thus achieving reconstruction of the device GD profile in real time. We report highly-accurate monitoring of (i) the group-delay ripple (GDR) profile of a 10-m long chirped fiber Bragg grating over the full C band (~42 nm), and (ii) the group velocity dispersion (GVD) and dispersion slope (DS) profiles of a ~2-km long dispersion compensating fiber module over an ~72-nm wavelength range, both captured at a 15 frames/s video rate update, with demonstrated standard deviations in the captured GD profiles as low as ~1.6 ps.

  15. Al substituted Ba ferrite films with high coercivity and excellent squareness for low noise perpendicular recording layer

    NASA Astrophysics Data System (ADS)

    Feng, J.; Matsushita, N.; Watanabe, K.; Nakagawa, S.; Naoe, M.

    1999-04-01

    Al substituted BaM (Al-BaM) ferrite films with composition of BaAlxFe12-xO19 (x=0,1,2) were deposited using facing targets sputtering apparatus on SiOx/Si wafers with a Pt seed layer. A postannealing process is necessary to crystallize the films. It was confirmed that the substrate temperature Ts is also one of the important parameters for the magnetic properties of the postannealed films. Al-BaM ferrite films exhibit the Ts dependence of magnetic properties different from that of simple BaM ones. With increase of the Al content x in Al-BaM ferrite films, 4πMs decreased, while Hc and the anisotropy field HA increased. It was found that acicular shape grains formed more easily in Al-BaM ferrite films than in simple BaM ones. The squareness S⊥ increased largely by substitution of Al for Fe. The Al-BaM ferrite films with high Hc⊥ (˜3 kOe) and large S⊥(˜0.9) may be applicable as perpendicular magnetic recording layers with low noise level.

  16. A Fast Multiple Sampling Method for Low-Noise CMOS Image Sensors With Column-Parallel 12-bit SAR ADCs.

    PubMed

    Kim, Min-Kyu; Hong, Seong-Kwan; Kwon, Oh-Kyong

    2015-12-26

    This paper presents a fast multiple sampling method for low-noise CMOS image sensor (CIS) applications with column-parallel successive approximation register analog-to-digital converters (SAR ADCs). The 12-bit SAR ADC using the proposed multiple sampling method decreases the A/D conversion time by repeatedly converting a pixel output to 4-bit after the first 12-bit A/D conversion, reducing noise of the CIS by one over the square root of the number of samplings. The area of the 12-bit SAR ADC is reduced by using a 10-bit capacitor digital-to-analog converter (DAC) with four scaled reference voltages. In addition, a simple up/down counter-based digital processing logic is proposed to perform complex calculations for multiple sampling and digital correlated double sampling. To verify the proposed multiple sampling method, a 256 × 128 pixel array CIS with 12-bit SAR ADCs was fabricated using 0.18 μm CMOS process. The measurement results shows that the proposed multiple sampling method reduces each A/D conversion time from 1.2 μs to 0.45 μs and random noise from 848.3 μV to 270.4 μV, achieving a dynamic range of 68.1 dB and an SNR of 39.2 dB.

  17. New microelectronic power amplifier

    NASA Technical Reports Server (NTRS)

    New, T. C.

    1968-01-01

    Integrated push-pull power amplifier fabricated on a chip of silicon has interdigitated power transistors and is hermetically encapsulated in a beryllia flat package. It provides current output greater than the nominal 10 amperes from an input current drive of 1 ampere.

  18. Fourier plane image amplifier

    DOEpatents

    Hackel, L.A.; Hermann, M.R.; Dane, C.B.; Tiszauer, D.H.

    1995-12-12

    A solid state laser is frequency tripled to 0.3 {micro}m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only about 1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power. 1 fig.

  19. Fourier plane image amplifier

    DOEpatents

    Hackel, Lloyd A.; Hermann, Mark R.; Dane, C. Brent; Tiszauer, Detlev H.

    1995-01-01

    A solid state laser is frequency tripled to 0.3 .mu.m. A small portion of the laser is split off and generates a Stokes seed in a low power oscillator. The low power output passes through a mask with the appropriate hole pattern. Meanwhile, the bulk of the laser output is focused into a larger stimulated Brillouin scattering (SBS) amplifier. The low power beam is directed through the same cell in the opposite direction. The majority of the amplification takes place at the focus which is the fourier transform plane of the mask image. The small holes occupy large area at the focus and thus are preferentially amplified. The amplified output is now imaged onto the multichip module where the holes are drilled. Because of the fourier plane amplifier, only .about.1/10th the power of a competitive system is needed. This concept allows less expensive masks to be used in the process and requires much less laser power.

  20. The radical amplifier

    NASA Technical Reports Server (NTRS)

    Hastie, D. R.

    1994-01-01

    The radical amplifier as a method for measuring radical concentrations in the atmosphere has received renewed attention lately. In principle, it can measure the total concentration of HO(x) and RO(x) radicals by reacting ambient air with high concentrations of CO (3-10 percent) and NO (2-6 ppmv), and measuring the NO2 produced.