Science.gov

Sample records for low-pressure plasma discharges

  1. Relatively high plasma density in low pressure inductive discharges

    SciTech Connect

    Kang, Hyun-Ju; Kim, Yu-Sin; Chung, Chin-Wook

    2015-09-15

    Electron energy probability functions (EEPFs) were measured in a low pressure argon inductive discharge. As radio frequency (RF) power increases, discharge mode is changed from E-mode (capacitively coupled) to H-mode (inductively coupled) and the EEPFs evolve from a bi-Maxwellian distribution to a Maxwellian distribution. It is found that the plasma densities at low RF powers (<30 W) are much higher than the density predicted from the slope of the densities at high powers. Because high portion of high energy electrons of the bi-Maxwellian distribution lowers the collisional energy loss and low electron temperature of low energy electrons reduces particle loss rate at low powers. Therefore, the energy loss of plasma decreases and electron densities become higher at low powers.

  2. Investigation of plasma-sheath resonances in low pressure discharges

    NASA Astrophysics Data System (ADS)

    Naggary, Schabnam; Kemaneci, Efe; Brinkmann, Ralf Peter; Megahed, Mustafa

    2016-09-01

    Plasma sheath resonances (PSR) arise from a periodic exchange between the kinetic electron energy in the plasma bulk and the electric field energy in the sheath and can easily be excited by the sheath-generated harmonics of the applied RF. In this contribution, we employ a series of models to obtain a well-defined description of these phenomena. In the first part, we use a global model to study the influence of the nonlinear charge-voltage characteristics on the electron dynamics. However, the global model is restricted to the assumption of spatially constant potential at each driven and grounded electrode and thus delivers only the fundamental mode of the current. In order to remedy the deficiency, we introduce a spatially resolved model for arbitrary reactor geometries with no assumptions on the homogeneity of the plasma. An exact evaluation of the analytical solution is realized on the assumption of a cylinderical plasma reactor geometry with uniform conductance. Furthermore, the spatially resolved model is capable of being utilized for a more realistic CCP reactor geometry and non homogeneous plasma provided the conductance distribution is known. For this purpose, we use the CFD-ACE+ tool. The results show that the proposed multi-mode model provides a significant improvement. The authors gratefully acknowledge the financial support by the ESI Group and the SFB- TR 87.

  3. Observation of Quartz Cathode-Luminescence in a Low Pressure Plasma Discharge

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Intense, steady-state cathode-luminescence has been observed from exposure of quartz powder to a low pressure rf-excited argon plasma discharge. The emission spectra (400 to 850 nm) associated with the powder luminescence were documented as a function of bias voltage using a spectrometer. The emission was broad-band, essentially washing out the line spectra features of the argon plasma discharge.

  4. Growth Enhancement of Radish Sprouts Induced by Low Pressure O2 Radio Frequency Discharge Plasma Irradiation

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Koga, Kazunori; Shiratani, Masaharu; Hayashi, Nobuya

    2012-01-01

    We studied growth enhancement of radish sprouts (Raphanus sativus L.) induced by low pressure O2 radio frequency (RF) discharge plasma irradiation. The average length of radish sprouts cultivated for 7 days after O2 plasma irradiation is 30-60% greater than that without irradiation. O2 plasma irradiation does not affect seed germination. The experimental results reveal that oxygen related radicals strongly enhance growth, whereas ions and photons do not.

  5. Microwave discharges at low pressures and peculiarities of the processes in strongly non-uniform plasma

    NASA Astrophysics Data System (ADS)

    Lebedev, Yu A.

    2015-10-01

    Microwave discharges (MD) are widely used as a source of non-equilibrium low pressure plasma for different applications. This paper reviews the methods of microwave plasma generation at pressures from 10-2 approximately to 30 kPa with centimeter-millimeter wavelength microwaves on the basis of scientific publications since 1950 up to the present. The review consists of 16 sections. A general look at MDs and their application is given in the introduction, together with a description of a typical block-schema of the microwave plasma generator, classification of MD, and attractive features of MD. Sections 2-12 describe the different methods of microwave plasma generators on the basis of cavity and waveguide discharges, surface and slow wave discharges, discharges with distributed energy input, initiated and surface discharges, discharges in wave beams, discharges with stochastically jumping phases of microwaves, discharges in an external magnetic field and discharges with a combination of microwave field and dc and RF fields. These methods provide the possibility of producing nonequilibriun high density plasma in small and large chambers for many applications. Plasma chemical activity of nonequilibrium microwave plasma is analyzed in section 13. A short consideration of the history and status of the problem is given. The main areas of microwave plasma application are briefly described in section 14. Non-uniformity is the inherent property of the majority of electrical discharges and MDs are no exception. Peculiarities of physical-chemical processes in strongly non-uniform MDs are demonstrated placing high emphasis on the influence of small noble gas additions to the main plasma gas (section 15). The review is illustrated by 80 figures. The list of references contains 350 scientific publications.

  6. Low pressure plasma discharges for the sterilization and decontamination of surfaces

    NASA Astrophysics Data System (ADS)

    Rossi, F.; Kylián, O.; Rauscher, H.; Hasiwa, M.; Gilliland, D.

    2009-11-01

    The mechanisms of sterilization and decontamination of surfaces are compared in direct and post discharge plasma treatments in two low-pressure reactors, microwave and inductively coupled plasma. It is shown that the removal of various biomolecules, such as proteins, pyrogens or peptides, can be obtained at high rates and low temperatures in the inductively coupled plasma (ICP) by using Ar/O2 mixtures. Similar efficiency is obtained for bacterial spores. Analysis of the discharge conditions illustrates the role of ion bombardment associated with O radicals, leading to a fast etching of organic matter. By contrast, the conditions obtained in the post discharge lead to much lower etching rates but also to a chemical modification of pyrogens, leading to their de-activation. The advantages of the two processes are discussed for the application to the practical case of decontamination of medical devices and reduction of hospital infections, illustrating the advantages and drawbacks of the two approaches.

  7. An expression for the h l factor in low-pressure electronegative plasma discharges

    NASA Astrophysics Data System (ADS)

    Chabert, P.

    2016-04-01

    The positive ion flux exiting a low-pressure plasma discharge is a crucial quantity in global (volume-averaged) models. In discharges containing only electrons and positive ions (electropositive discharges), it is common to write this flux {Γ\\text{wall}}={{h}\\text{l}}{{n}\\text{i0}}{{u}\\text{B}} , where {{n}\\text{i0}} is the central positive ion density, {{u}\\text{B}} is the positive ion fluid speed at the sheath edge (the Bohm speed), and {{h}\\text{l}} is the positive ion edge-to-centre density ratio. There are well established formulae for {{h}\\text{l}} in electropositive discharges, but for discharges containing negative ions (electronegative discharges), the analysis is more complicated. The purpose of this paper is to propose a formula for the {{h}\\text{l}} factor in low-pressure electronegative discharges. We use the numerical solution of fluid equations with Boltzmann negative ions, including Poisson’s equation, as a guide to derive an analytical expression that can easily be incorporated in global models. The parameter space in which the derived expression is valid is discussed at the end of the paper.

  8. Energetic Ion Beam Production by a Low-Pressure Plasma Focus Discharge

    SciTech Connect

    Lim, L. K.; Yap, S. L.; Wong, C. S.

    2011-03-30

    Energetic ion beam emissions in a 3 kJ Mather type plasma focus operating at low-pressure regime are investigated. Deuterium gas is used and the discharge is operated in a low-pressure regime of below 1 mbar. Formation of the current sheath during the breakdown phase at the back wall is assisted by a set delayed trigger pulse. Energetic and intense ion beams with good reproducibility have been obtained for the operating pressure ranging from 0.05 mbar to 0.5 mbar. Deuteron beam is determined by time resolved measurement by making use of three biased ion collectors placed at the end on direction. The average energies of deuteron beams are resolved by using time-of flight method. Correlation between the ion emissions and the current sheath dynamics is also discussed.

  9. Particle modelling of magnetically confined oxygen plasma in low pressure radio frequency discharge

    SciTech Connect

    Benyoucef, Djilali; Yousfi, Mohammed

    2015-01-15

    The main objective of this paper is the modelling and simulation of a radio frequency (RF) discharge in oxygen at low pressure and at room temperature, including the effect of crossed electric and magnetic fields for generation and confinement of oxygen plasma. The particle model takes into account one axial dimension along the electric field axis and three velocity components during the Monte Carlo treatment of the collisions between charged particles and background gas. The simulation by this developed code allows us not only to determine the electrodynamics characteristics of the RF discharge, but also to obtain kinetics and energetic description of reactive oxygen plasma at low pressure. These information are very important for the control of the deep reactive-ion etching technology of the silicon to manufacture capacitors with high density and for the deposition thick insulating films or thick metal to manufacture micro-coils. The simulation conditions are as follows: RF peak voltage of 200 V, frequency of 13.56 MHz, crossed magnetic field varying from 0 to 50 Gauss, and oxygen pressure of 13.8 Pa. In the presence of magnetic field, the results show an increase of the plasma density, a decrease of the electron mean energy, and also a reduction of the ratio between electron density and positive ion density. Finally in order to validate, the results are successfully compared with measurements already carried out in the literature. The conditions of comparison are from 100 to 300 V of the peak voltage at 13.56 MHz under a pressure of 13.8 Pa and a gap distance of 2.5 cm.

  10. Plasma-chemical reactor based on a low-pressure pulsed arc discharge for synthesis of nanopowders

    NASA Astrophysics Data System (ADS)

    Karpov, I. V.; Ushakov, A. V.; Lepeshev, A. A.; Fedorov, L. Yu.

    2017-01-01

    A reactor for producing nanopowders in the plasma of a low-pressure arc discharge has been developed. As a plasma source, a pulsed cold-cathode arc evaporator has been applied. The design and operating principle of the reactor have been described. Experimental data on how the movement of a gaseous mixture in the reactor influences the properties of nanopowders have been presented.

  11. Production and Study of Titan's Aerosols Analogues with A RF Low Pressure Plasma Discharge

    SciTech Connect

    Szopa, C.; Cernogora, G.; Correia, J.J.; Boufendi, L.; Jolly, A.

    2005-10-31

    The atmosphere of Titan, the biggest satellite of Saturn, contains aerosols produced by the organic chemistry induced by the photochemistry of N2 and CH4, the major gaseous atmospheric compounds. In spite of their importance for the properties of the Titan's atmosphere, and for organic chemistry, only few direct information are available about them because of the limitations of the observational techniques, and their processes of formation and growth are not understood. In order to bring answers to these questions, we developed a new type of laboratory simulation to produce analogues of Titan's aerosols (known as tholins) with a low pressure Radio Frequency plasma discharge. The main originality of this experiment (named PAMPRE) comes from its ability to produce particles in volume, as they are maintained in levitation by electrostatic forces compensating gravity, whereas the other experiments produce tholins on the reactors walls or a substrate. We initiated our investigations by a study of the properties of the produced particles as a function of the plasma operating conditions (i.e. amount of CH4 in N2, injected RF power, pressure, and gas flow). We here present the results of this study.

  12. Glow Discharge Plasma Demonstrated for Separation Control in the Low-Pressure Turbine

    NASA Technical Reports Server (NTRS)

    Ashpis, David e.; Hultgren, Lennart S.

    2004-01-01

    Flow separation in the low-pressure turbine (LPT) is a major barrier that limits further improvements of aerodynamic designs of turbine airfoils. The separation is responsible for performance degradation, and it prevents the design of highly loaded airfoils. The separation can be delayed, reduced, or eliminated completely if flow control techniques are used. Successful flow control technology will enable breakthrough improvements in gas turbine performance and design. The focus of this research project was the development and experimental demonstration of active separation control using glow discharge plasma (GDP) actuators in flow conditions simulating the LPT. The separation delay was shown to be successful, laying the foundation for further development of the technologies to practical application in the LPT. In a fluid mechanics context, the term "flow control" means a technology by which a very small input results in a very large effect on the flow. In this project, the interest is to eliminate or delay flow separation on LPT airfoils by using an active flow control approach, in which disturbances are dynamically inserted into the flow, they interact with the flow, and they delay separation. The disturbances can be inserted using a localized, externally powered, actuating device, examples are acoustic, pneumatic, or mechanical devices that generate vibrations, flow oscillations, or pulses. A variety of flow control devices have been demonstrated in recent years in the context of the external aerodynamics of aircraft wings and airframes, where the incoming flow is quiescent or of a very low turbulence level. However, the flow conditions in the LPT are significantly different because there are high levels of disturbances in the incoming flow that are characterized by high free-stream turbulence intensity. In addition, the Reynolds number, which characterizes the viscous forces in the flow and is related to the flow speed, is very low in the LPT passages.

  13. Electron beam injection experiments - The beam-plasma discharge at low pressures and magnetic field strengths

    NASA Technical Reports Server (NTRS)

    Bernstein, W.; Leinbach, H.; Kellogg, P.; Monson, S.; Hallinan, T.; Garriott, O. K.; Konradi, A.; Mccoy, J.; Daly, P.; Baker, B.

    1978-01-01

    The paper describes electron beam injection experiments which clarify observational results obtained in rocket flights. A column of enhanced density plasma, exceeding the density expected from ionization by primary beam electrons, was observed in a large vacuum system at low magnetic fields (1 to 1.5 G) and low ambient pressures (10 to the minus 6 to 10 to the minus 5 torr). The peak luminosity of the discharge was about 10 times that of the beam alone, and the radius increased by a factor of three. In the absence of the discharge, RF emission is observed at 1.1 to 1.2 times the cyclotron frequency, and a strong band of RF noise with upper frequency cutoff at about the cyclotron frequency is observed in the discharge mode, along with higher frequency noise at or near the plasma frequency. The onset of the plasma discharge is critically dependent on beam current. The described results agree with observations obtained at much higher densities and magnetic fields in fusion research studies.

  14. Removal of model proteins by means of low-pressure inductively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Kylián, O.; Rauscher, H.; Gilliland, D.; Brétagnol, F.; Rossi, F.

    2008-05-01

    Surgical instruments are intended to come into direct contact with the patients' tissues and thus interact with their first immune defence system. Therefore they have to be cleaned, sterilized and decontaminated, in order to prevent any kind of infections and inflammations or to exclude the possibility of transmission of diseases. From this perspective, the removal of protein residues from their surfaces constitutes new challenges, since certain proteins exhibit high resistance to commonly used sterilization and decontamination techniques and hence are difficult to remove without inducing major damages to the object treated. Therefore new approaches must be developed for that purpose and the application of non-equilibrium plasma discharges represents an interesting option. The possibility to effectively remove model proteins (bovine serum albumin, lysozyme and ubiquitin) from surfaces of different materials (Si wafer, glass, polystyrene and gold) by means of inductively coupled plasma discharges sustained in different argon containing mixtures is demonstrated and discussed in this paper.

  15. Beams of fast neutral atoms and molecules in low-pressure gas-discharge plasma

    SciTech Connect

    Metel, A. S.

    2012-03-15

    Fast neutral atom and molecule beams have been studied, the beams being produced in a vacuum chamber at nitrogen, argon, or helium pressure of 0.1-10 Pa due to charge-exchange collisions of ions accelerated in the sheath between the glow discharge plasma and a negative grid immersed therein. From a flat grid, two broad beams of molecules with continuous distribution of their energy from zero up to e(U + U{sub c}) (where U is voltage between the grid and the vacuum chamber and U{sub c} is cathode fall of the discharge) are propagating in opposite directions. The beam propagating from the concave surface of a 0.2-m-diameter grid is focused within a 10-mm-diameter spot on the target surface. When a 0.2-m-diameter 0.2-m-high cylindrical grid covered by end disks and composed of parallel 1.5-mm-diameter knitting needles spaced by 4.5 mm is immersed in the plasma, the accelerated ions pass through the gaps between the needles, turn inside the grid into fast atoms or molecules, and escape from the grid through the gaps on its opposite side. The Doppler shift of spectral lines allows for measuring the fast atom energy, which corresponds to the potential difference between the plasma inside the chamber and the plasma produced as a result of charge-exchange collisions inside the cylindrical grid.

  16. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  17. Impact of low-pressure glow-discharge-pulsed plasma polymerization on properties of polyaniline thin films

    NASA Astrophysics Data System (ADS)

    Jatratkar, Aviraj A.; Yadav, Jyotiprakash B.; Deshmukh, R. R.; Barshilia, Harish C.; Puri, Vijaya; Puri, R. K.

    2016-12-01

    This study reports on polyaniline thin films deposited on a glass substrate using a low-pressure glow-discharge-pulsed plasma polymerization method. The polyaniline thin film obtained by pulsed plasma polymerization has been successfully demonstrated as an optical waveguide with a transmission loss of 3.93 dB cm-1, and has the potential to be employed in integrated optics. An attempt has been made to investigate the effect of plasma OFF-time on the structural, optical as well as surface properties of polyaniline thin film. The plasma ON-time has been kept constant and the plasma OFF-time has been varied throughout the work. The plasma OFF-time strongly influenced the properties of the polyaniline thin film, and a nanostructured and compact surface was revealed in the morphological studies. The plasma OFF-time was found to enhance film thickness, roughness, refractive index and optical transmission loss, whereas it reduced the optical band gap of the polyaniline thin films. Retention in the aromatic structure was confirmed by FTIR results. Optical studies revealed a π-π* electronic transition at about 317 nm as well as the formation of a branched structure. As compared with continuous wave plasma, pulsed plasma polymerization shows better properties. Pulsed plasma polymerization reduced the roughness of the film from 1.2 nm to 0.42 nm and the optical transmission loss from 6.56 dB cm-1 to 3.39 dB cm-1.

  18. Plasma discharge in N2 + CH4 at low pressures - Experimental results and applications to Titan

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Henry, Todd J.; Schwartz, Joel M.; Khare, B. N.; Sagan, Carl

    1991-01-01

    Results are reported from laboratory continuous-flow plasma-discharge experiments designed to simulate the formation of hydrocarbons and nitriles from N2 and CH4 in the atmosphere of Titan. Gas-chromatography and mass-spectrometry data were obtained in experiments lasting up to 100 h at temperature 295 K and pressure 17 or 0.24 mbar, modeling (1) cosmic-ray-induced processes in the Titan troposphere and (2) processes related to stratospheric aurorae excited by energetic electrons and ions from the Saturn magnetosphere, respectively. The results are presented in extensive tables and graphs, and the 0.24-mbar yields are incorporated into an eddy-mixing model to give stratospheric column abundances and mole fractions in good agreement with Voyager IRIS observations.

  19. Tailoring surface properties of polyethylene separator by low pressure 13.56 MHz RF oxygen plasma glow discharge

    NASA Astrophysics Data System (ADS)

    Li, Chun; Liang, Chia-Han; Huang, Chun

    2016-01-01

    Low-pressure plasma surface modification in a radio-frequency capacitively coupled glow discharge of oxygen gas was carried out to induce polar functional groups onto polyethylene membrane separator surfaces to enhance its hydrophilicity. The surface changes in surface free energy were monitored by static contact angle measurement. A significant increase in the surface energy of polyethylene membrane separators caused by the oxygen gas plasma modifications was observed. The static water contact angle of the plasma-modified membrane separator significantly decreased with the increase in treatment duration and plasma power. An obvious increase in the surface energy of the membrane separators owing to the oxidative effect of oxygen-gas-plasma modifications was also observed. Optical emission spectroscopy was carried out to analyze the chemical species generated by oxygen gas plasma surface modification. The variations in the surface morphology and chemical structure of the separators were confirmed by scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). XPS showed significantly higher surface concentrations of oxygen functional groups in the oxygen-gas-plasma-modified polymeric separator surfaces than in the unmodified polymeric separator surface. The experimental results show the important role of chemical species in the interaction between oxygen gas plasmas and the separator surface, which can be controlled by surface modification to tailor the hydrophilicity of the separator.

  20. Structure and properties of commercially pure titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu F.; Akhmadeev, Yu H.; Lopatin, I. V.; Petrikova, E. A.; Krysina, V.; Koval, N. N.

    2015-11-01

    The paper analyzes the surface structure and properties of commercially pure VT1-0 titanium nitrided in the plasma of a low-pressure gas discharge produced by a PINK plasma generator. The analysis demonstrates that the friction coefficient of the nitrided material decreases more than four times and its wear resistance and microhardness increases more than eight and three times, respectively. The physical mechanisms responsible for the enhancement of strength and tribological properties of the material are discussed.

  1. Boundary-Layer Separation Control under Low-Pressure Turbine Airfoil Conditions using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    transition. Gad-el-Hak provides a review of various techniques for flow control in general and Volino discusses recent studies on separation control under low-pressure-turbine conditions utilizing passive as well as active devices. As pointed out by Volino, passive devices optimized for separation control at low Reynolds numbers tend to increase losses at high Reynolds numbers, Active devices have the attractive feature that they can be utilized only in operational regimes where they are needed and when turned off would not affect the flow. The focus in the present paper is an experimental Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil ('Pak-B'). The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) Gee-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface- flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control. of active separation control using glow discharge plasma actuators.

  2. Inactivation of Bacteria using Combined Effects of Magnetic Field, Low Pressure and Ultra Low Frequency Plasma Discharges (ULFP)

    NASA Astrophysics Data System (ADS)

    Galaly, A. R.; Zahran, H. H.

    2013-04-01

    Inactivating viable cells at very short application times has been studied using Ultra Low Frequency Plasma (ULFP) at one Kilo Hertz, using an RF source. The targeted fashion is to inactivate Escherichia coli (E. coli) in the absence and in the presence of magnetic field. Adding oxygen (O2) to argon (Ar) in the discharge leads to a complete bacterial inactivation, where the inactivation rate increased as the concentration of O2 increases. Analyses of the experimental data of the initial and final densities of viable cells, using survival curves, showed a dramatic inhibitory effect of plasma discharge to the residual survival of microbial ratio due to the influence of the magnetic field.

  3. The physical nature of the phenomenon of positive column plasma constriction in low-pressure noble gas direct current discharges

    SciTech Connect

    Kurbatov, P. F.

    2014-02-15

    The essence of the positive-column plasma constriction for static (the diffusion mode) and dynamic ionization equilibrium (the stratificated and constricted modes) is analyzed. Two physical parameters, namely, the effective ionization rate of gas atoms and the ambipolar diffusion coefficient of electrons and ions, determine the transverse distribution of discharge species and affect the current states of plasma. Transverse constriction of the positive column takes place as the gas ionization level (discharge current) and pressure increase. The stratified mode (including the constricted one) is observed between the two adjacent types of self-sustained discharge phases when they coexist together at the same time or in the same place as a coherent binary mixture. In the case, a occurrence of the discharge phase with more high electron density presently involve a great decrease in the cross-section of the current channel for d.c. discharges. Additional physical factors, such as cataphoresis and electrophoresis phenomena and spatial gas density inhomogeneity correlated with a circulatory flow in d.c. discharges, are mainly responsible for the current hysteresis and partially constricted discharge.

  4. Dissociation degree of nitrogen molecule in low-pressure microwave-discharge nitrogen plasma with various rare-gas admixtures

    NASA Astrophysics Data System (ADS)

    Kuwano, Kei; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2016-08-01

    The dissociation degree of nitrogen molecules is examined in a microwave discharge nitrogen-rare gas mixture plasma with a total discharge pressure of 1 Torr, by actinometry measurement. Although the spectral line from the excited nitrogen atoms is overlapped by the band spectrum of the N2 first positive system (1PS), the subtraction of the 1PS spectrum fitted theoretically can successfully extract the atomic nitrogen line, which enables actinometry measurement. The nitrogen dissociation degree decreases with increasing mixture ratio of Ar to Kr, whereas it increases with He, which is attributed to the variations in the electron temperature and density. When we dilute the nitrogen with neon, however, we find an anomalous increase in the nitrogen dissociation degree by several orders of magnitude even at a downstream region in the discharge tube. The reason for the dissociation enhancement upon adding neon is discussed in terms of atomic and molecular processes in the plasma.

  5. A role of low pressure plasma discharge on etch rate of SiO2 dummy wafer

    NASA Astrophysics Data System (ADS)

    Milosavljevic, Vladimir; Zekic, Andrjana; Popovic, Dusan; Macgearailt, Niall; Daniels, Stephen

    2009-10-01

    Plasma has become indispensable for advanced materials processing, also low--k materials as SiO2 play important role in semiconductor industry. In this work a treatment of SiO2 single crystal by DC plasma discharge is studied in details. There are many effects occurred during plasma--surface interactions. Our work is focused on interaction between ions and dielectric surface. The etch rates, surface morphology and chemical composition of modified surface layer obtained by DC plasma etching are reported. Influence of plasma chemistry (SF6, O2, N2, Ar and He), discharge voltage (up to 1.2 kV), gas flow (up to 25 sccm, for each gas) and electrode--wafer geometry on etch rate of SiO2 wafer have been studied. Offline metrology is conducted for SiO2 wafer by SEM/EDAX technique and Raman scattering. Broad Raman peak at around 2800 cm-1 is observed for both, treated and original, investigated SiO2 wafers. Effects of plasma treatment conditions on integrated intensity of this peak are reported in the paper. An analysis of this correlation could be a framework for creating virtual etches rate sensors, which might be of importance in managing of plasma etching processes.

  6. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    SciTech Connect

    Todorov, D.; Shivarova, A. Paunska, Ts.; Tarnev, Kh.

    2015-03-15

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations for electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.

  7. Low-pressure hydrogen discharge maintenance in a large-size plasma source with localized high radio-frequency power deposition

    NASA Astrophysics Data System (ADS)

    Todorov, D.; Shivarova, A.; Paunska, Ts.; Tarnev, Kh.

    2015-03-01

    The development of the two-dimensional fluid-plasma model of a low-pressure hydrogen discharge, presented in the study, is regarding description of the plasma maintenance in a discharge vessel with the configuration of the SPIDER source. The SPIDER source, planned for the neutral-beam-injection plasma-heating system of ITER, is with localized high RF power deposition to its eight drivers (cylindrical-coil inductive discharges) and a large-area second chamber, common for all the drivers. The continuity equations for the charged particles (electrons and the three types of positive ions) and for the neutral species (atoms and molecules), their momentum equations, the energy balance equations for electrons, atoms and molecules and the Poisson equations are involved in the discharge description. In addition to the local processes in the plasma volume, the surface processes of particle reflection and conversion on the walls as well as for a heat exchange with the walls are included in the model. The analysis of the results stresses on the role of the fluxes (particle and energy fluxes) in the formation of the discharge structure. The conclusion is that the discharge behavior is completely obeyed to non-locality. The latter is displayed by: (i) maximum values of plasma parameters (charged particle densities and temperatures of the neutral species) outside the region of the RF power deposition, (ii) shifted maxima of the electron density and temperature, of the plasma potential and of the electron production, (iii) an electron flux, with a vortex structure, strongly exceeding the total ion flux which gives evidence of a discharge regime of non-ambipolarity and (iv) a spatial distribution of the densities of the neutral species resulting from their fluxes.

  8. Spatial distribution of the electron component parameters in the nitrogen plasma of a low-pressure electrode microwave Discharge

    SciTech Connect

    Lebedev, Yu. A. Krashevskaya, G. V. Gogoleva, M. A.

    2016-01-15

    Spatial distributions of charged particle concentration, electron temperature, and DC potential in an electrode microwave discharge in nitrogen at a pressure of 1 Torr have been measured using the double electric probe method. It has been shown that, near the electrode/antenna, the charged particle concentration exceeds a critical value. The concentration and heterogeneity of the discharge increase with increasing microwave power.

  9. "Politically-Incorrect" Electron Behavior in Low Pressure RF Discharges

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Kolobov, Vladimir

    1996-10-01

    The main interaction of plasma electrons with electromagnetic fields for bounded plasma of an rf discharge occurs in the vicinity of its boundaries (in the rf sheath of a capacitive rf discharge and in the skin layer of an inductive one). On the other hand, due to plasma inhomogeneity, a dc ambipolar field is always present in the bounded plasma. in low pressure discharges the ambipolar potential well captures low energy electrons within the discharge center while high energy electrons freely overcome the ambipolar potential and reach the plasma boundaries where heating takes place. Being segregated in space, low energy electrons are discriminated from participation in the heating process. When Coulomb interaction between low and high energy electron groups is weak, their temperatures appear to be essentially different ( a low energy peak on the EEDF). In this presentation we present theoretical and experimental evidence of such an apartheid in the low and high energy electron populations of the EEDF in rf discharge and we outline discharge conditions where such abnormal EEDF behavior is possible.

  10. Efficiency of plasma density control with dc discharge and magnetic field for different surface types in low pressure hypersonic flow

    NASA Astrophysics Data System (ADS)

    Schweigert, Irina

    2013-09-01

    Recently the problem of communication blackout during reentrant flight still remains unsolved. The spacecrafts enter the upper atmospheric layers with a hypersonic speed and the shock heated air around them becomes weakly ionized. The gas ionization behind the shock front is associative in nature and occurs through chemical reactions between fragments of molecules. The formation of a plasma layer near the surfaces of spacecraft causes serious problems related to the blocking of communication channels with the Earth and other spacecrafts. A promising way of restoring the radio communications is the application of electrical and magnetic fields for controlling the plasma layer parameters. Nevertheless the flux of electrons and ions on the surface charges it that essentially decrease the effect of electro-magnetic control of local plasma density. In Ref. it is shown that there is the way to remove the surface charge using the lateral diode string structures. Based on two dimensional kinetic Particle in cell Monte Carlo collision simulations, we study the possibility of local control the plasma layer parameters near a flat surface of two different types. The gas velocity distribution is set with a model profile. We apply DC voltage up to 4 kV and magnetic field B up to 200 G.

  11. Statistical Physics of Electron Temperature of Low-Pressure Discharge Nitrogen Plasma with Non-Maxwellian EEDF

    NASA Astrophysics Data System (ADS)

    Akatsuka, Hiroshi; Tanaka, Yoshinori

    2016-09-01

    We reconsider electron temperature of non-equilibrium plasmas on the basis of thermodynamics and statistical physics. Following our previous study on the oxygen plasma in GEC 2015, we discuss the common issue for the nitrogen plasma. First, we solve the Boltzmann equation to obtain the electron energy distribution function (EEDF) F(ɛ) of the nitrogen plasma as a function of the reduced electric field E / N . We also simultaneously solve the chemical kinetic equations of some essential excite species of nitrogen molecules and atoms, including vibrational distribution function (VDF). Next, we calculate the electron mean energy as U = < ɛ > =∫0∞ɛF(ɛ) dɛ and entropy S = - k∫0∞F(ɛ) ln [ F(ɛ) ] dɛ for each value of E / N . Then, we can obtain the electron temperature as Testat =[ ∂S / ∂U ] - 1 . After that, we discuss the difference between Testat and the kinetic temperature Tekin ≡(2 / 3) < ɛ > , as well as the temperature given as a slope of the calculated EEDF for each value of E / N . We found Testat is close to the slope at ɛ 4 eV in the EEPF.

  12. Rotating spoke phenomena in low pressure E x B discharges

    NASA Astrophysics Data System (ADS)

    Raitses, Yevgeny

    2012-10-01

    The rotating spoke is azimuthal plasma non-uniformity which has been observed in a variety of low pressure cross-field discharges of cylindrical geometry [1-3]. The spoke can appear in different modes ranging from m=1 to higher order modes which propagate in the direction perpendicular to electric and magnetic fields with velocities of much lower than ExB velocity [2,3]. Although spoke phenomena is known for more than four decades, physical mechanism responsible for triggering of the spoke is still not understood. Recent studies of Hall thrusters and Penning-type magnetized plasma discharges demonstrated that the spoke is directly responsible for the enhancement of the electron cross-field transport in these devices [1,4]. A combination of time-resolving plasma measurements, including high speed imaging and probes suggest that for partially ionized magnetized plasma discharges, the spoke instability is triggered by ionization mechanism [4]. These experimental results are supported by recent particle-in-cell simulations. The advancement in understanding of the spoke mechanism enabled us to develop and demonstrate effective methods of spoke control, including mode, velocity and direction of the spoke, and spoke suppression [5]. Among practical implications of these results is the ability to develop more effective methods of plasma confinement and uniformity for magnetically-enhanced discharges and more efficient magnetized plasma thrusters. In collaboration with M. Griswold, L. Ellison, N. J. Fisch, K. Matyash, R. Schneider and A. Smolyakov.[4pt] [1] S. Jaeger, Th. Pierre, C. Rebont, Phys. Plasmas 16, 022304 (2009)[0pt] [2] J. B. Parker, Y. Raitses, N. J. Fisch, Appl. Phys. Lett. 97, 091501 (2010)[0pt] [3] M. S. McDonald, A. D. Gallimore, IEEE Trans. Plasma Sci. 39, 2952 (2011)[0pt] [4] C. L. Ellison, Y. Raitses, N. J. Fisch, Phys. Plasmas 19, 013503 (2012)[0pt] [5] M. E. Griswold, C. L. Ellison, Y. Raitses, N. J. Fisch, Phys. Plasmas 19, 053506 (2012).

  13. Ion optical effects in a low pressure rf plasma

    SciTech Connect

    Oechsner, Hans; Paulus, Hubert

    2013-11-15

    Ion optical effects in low pressure gas discharges are introduced as a novel input into low pressure plasma technology. They are based on appropriate geometrical plasma confinements which enable a control of the shape of internal density and potential distributions and, hence, the ion motion in the plasma bulk. Such effects are exemplified for an electron cyclotron wave resonance plasma in Ar at 1–5 × 10{sup −3} millibars. The geometry of the plasma chamber is modified by a conical and a cylindrical insert. Computer simulations display spherical plasma density contours to be formed around the conical confinement. This effects an increase of the ratio of the ion currents into the conical and the cylindrical inserts which depends on the fourth power of the plasma electron temperature. A quantitative understanding of this behavior is presented. As another essential result, the shape of the internal plasma contours is found to be independent of the pressure controlled plasma parameters.

  14. Extreme ultraviolet spectroscopy of low pressure helium microwave driven discharges

    NASA Astrophysics Data System (ADS)

    Espinho, Susana; Felizardo, Edgar; Tatarova, Elena; Alves, Luis Lemos

    2016-09-01

    Surface wave driven discharges are reliable plasma sources that can produce high levels of vacuum and extreme ultraviolet radiation (VUV and EUV). The richness of the emission spectrum makes this type of discharge a possible alternative source in EUV/VUV radiation assisted applications. However, due to challenging experimental requirements, publications concerning EUV radiation emitted by microwave plasmas are scarce and a deeper understanding of the main mechanisms governing the emission of radiation in this spectral range is required. To this end, the EUV radiation emitted by helium microwave driven plasmas operating at 2.45 GHz has been studied for low pressure conditions. Spectral lines from excited helium atoms and ions were detected via emission spectroscopy in the EUV/VUV regions. Novel data concerning the spectral lines observed in the 23 - 33 nm wavelength range and their intensity behaviour with variation of the discharge operational conditions are presented. The intensity of all the spectral emissions strongly increases with the microwave power delivered to the plasma up to 400 W. Furthermore, the intensity of all the ion spectral emissions in the EUV range decreases by nearly one order of magnitude as the pressure was raised from 0.2 to 0.5 mbar. Work funded by FCT - Fundacao para a Ciencia e a Tecnologia, under Project UID/FIS/50010/2013 and grant SFRH/BD/52412/2013 (PD-F APPLAuSE).

  15. A DSMC Study of Low Pressure Argon Discharge

    NASA Technical Reports Server (NTRS)

    Hash, David B.; Meyyappan, Meyya; Arnold, James O. (Technical Monitor)

    1997-01-01

    Work toward a self-consistent plasma simulation using the DSMC (Direct Simulation Monte Carlo) method for examination of the flowfields of low-pressure high density plasma reactors is presented. Presently, DSMC simulations for these applications involve either treating the electrons as a fluid or imposing experimentally determined values for the electron number density profile. In either approach, the electrons themselves are not physically simulated. Self-consistent plasma DSMC simulations have been conducted for aerospace applications but at a severe computational cost due in part to the scalar architectures on which the codes were employed. The present work attempts to conduct such simulations at a more reasonable cost using a plasma version of the object-oriented parallel Cornell DSMC code, MONACO, on an IBM SP-2. Due to availability of experimental data, the GEC reference cell is chosen to conduct preliminary investigations. An argon discharge is chosen to conduct preliminary investigations. An argon discharge is examined thus affording a simple chemistry set with eight gas-phase reactions and five species: Ar, Ar(+), Ar(*), Ar(sub 2), and e where Ar(*) is a metastable.

  16. Magnetic Control of Low Pressure Discharges.

    DTIC Science & Technology

    1987-08-01

    electrodes. The discharge is driven by a 50 Ohm, 10 microsecond pulse forming network (PFN) through a spark gap switch. A matching load resistance of 50...controlled discharge with transient current- voltage curve that follows the load line of the dis- charge system. 19 -- v 0 -) 0~0 -o a c D 4 C) - c C CL 4-C...of magnetically controlled opening switch can be defined as the ratio of power delivered by the switch to the load divided by the magnetic power

  17. Ozone kinetics in low-pressure discharges

    NASA Astrophysics Data System (ADS)

    Guerra, Vasco; Marinov, Daniil; Guaitella, Olivier; Rousseau, Antoine

    2012-10-01

    Ozone kinetics is quite well established at atmospheric pressure, due to the importance of ozone in atmospheric chemistry and to the development of industrial ozone reactors. However, as the pressure is decreased and the dominant three-body reactions lose importance, the main mechanisms involved in the creation and destruction of ozone are still surrounded by important uncertainties. In this work we develop a self-consistent model for a pulsed discharge and its afterglow operating in a Pyrex reactor with inner radius 1 cm, at pressures in the range 1-5 Torr and discharge currents of 40-120 mA. The model couples the electron Boltzmann equation with a system of equations for the time evolution of the heavy particles. The calculations are compared with time-dependent measurements of ozone and atomic oxygen. Parametric studies are performed in order to clarify the role of vibrationally excited ozone in the overall kinetics and to establish the conditions where ozone production on the surface may become important. It is shown that vibrationally excited ozone does play a significant role, by increasing the time constants of ozone formation. Moreover, an upper limit for the ozone formation at the wall in these conditions is set at 10(-4).

  18. Influence of the oxygen concentration on the formation of crystalline phases of TiO2 during the low-pressure arc-discharge plasma synthesis

    NASA Astrophysics Data System (ADS)

    Ushakov, A. V.; Karpov, I. V.; Lepeshev, A. A.

    2016-02-01

    The synthesis of titanium dioxide (TiO2) nanoparticles with different percentage of anatase and rutile phases is investigated. The synthesis is performed by controlling the oxygen percentage in the gas mixture in the plasmachemical evaporation-condensation process employing a low-pressure arc discharge. In all our experiments, the pressure in the plasmachemical reactor and the average size of particles remain constant and are 60 Pa and 6 nm, respectively. The crystal structure of synthesized TiO2 is studied using X-ray diffraction; the morphology of the particles is analyzed employing transmission electron microscopy. Using X-ray phase analysis, it is established that the concentration of the TiO2 anatase phase decreases upon a decrease in the oxygen concentration in the gas mixture. It is shown that the TiO2 anatase phase is more efficient for photocatalytic decomposition of methylene blue than the rutile phase.

  19. Final Report DE-FG02-00ER54583: "Physics of Atmospheric Pressure Glow Discharges" and "Nanoparticle Nucleation and Dynamics in Low-Pressure Plasmas"

    SciTech Connect

    Uwe Kortshagen; Joachim Heberlein; Steven L. Girshick

    2009-06-01

    This project was funded over two periods of three years each, with an additional year of no-cost extension. Research in the first funding period focused on the physics of uniform atmospheric pressure glow discharges, the second funding period was devoted to the study of the dynamics of nanometer-sized particles in plasmas.

  20. The effect of the driving frequency on the confinement of beam electrons and plasma density in low-pressure capacitive discharges

    NASA Astrophysics Data System (ADS)

    Wilczek, S.; Trieschmann, J.; Schulze, J.; Schuengel, E.; Brinkmann, R. P.; Derzsi, A.; Korolov, I.; Donkó, Z.; Mussenbrock, T.

    2015-04-01

    The effect of changing the driving frequency on the plasma density and the electron dynamics in a capacitive radio-frequency argon plasma operated at low pressures of a few Pa is investigated by particle-in-cell/Monte-Carlo collision simulations and analytical modeling. In contrast to previous assumptions, the plasma density does not follow a quadratic dependence on the driving frequency in this non-local collisionless regime. Instead, a step-like increase at a distinct driving frequency is observed. Based on an analytical power balance model, in combination with a detailed analysis of the electron kinetics, the density jump is found to be caused by an electron heating mode transition from the classical α-mode into a low-density resonant heating mode characterized by the generation of two energetic electron beams at each electrode per sheath expansion phase. These electron beams propagate through the bulk without collisions and interact with the opposing sheath. In the low-density mode, the second beam is found to hit the opposing sheath during its collapse. Consequently, a large number of energetic electrons is lost at the electrodes resulting in a poor confinement of beam electrons in contrast to the classical α-mode observed at higher driving frequencies. Based on the analytical model this modulated confinement quality and the related modulation of the energy lost per electron lost at the electrodes is demonstrated to cause the step-like change of the plasma density. The effects of a variation of the electrode gap, the neutral gas pressure, the electron sticking and secondary electron emission coefficients of the electrodes on this step-like increase of the plasma density are analyzed based on the simulation results.

  1. Comparison between low-pressure laboratory discharges and atmospheric sprites

    NASA Astrophysics Data System (ADS)

    Robledo-Martinez, A.; Garcia-Villarreal, A.; Sobral, H.

    2017-01-01

    The discharge of a charged dielectric in low-pressure air has characteristics that resemble some of the features of mesospheric discharges. The dielectric discharges in steps when the pressure of the surrounding air is gradually reduced from nearly atmospheric to 0.01 torr. The setup employed here decouples the discharge from the power supply, and, thanks to that, unique properties of the discharge manifest themselves. For example, in the pressure interval 10-100 torr streamers are emitted from the surface of the dielectric but when the pressure decreases to 2-16 torr these are replaced by spherically symmetrical discharges that we call peonies. These have interesting properties, like (a) they do not produce electrical field, (b) they remain static, and (c) their size increases with decreasing pressure. The peonies are a type of discharge that has not been reported before. They resemble sprite beads and are assumed to consist of large avalanches that do not lead to the formation of a streamer. At further lower pressures, in the interval 0.01-0.1 torr, diffuse volume discharges were observed that have some morphological similarities with sprite halos and the top of columnar sprites. The spectrographic measurements carried out show that the discharges have bands from the first and second positive systems in N2 as well as lines of N2+. Quenching of the first negative system of N2 was observed at 3 torr. In this work it was also observed how a cosmic ray can go on to trigger a discharge inside the experimentation chamber.

  2. Electron heating in low pressure capacitive discharges revisited

    NASA Astrophysics Data System (ADS)

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-01

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  3. Electron heating in low pressure capacitive discharges revisited

    SciTech Connect

    Kawamura, E.; Lieberman, M. A.; Lichtenberg, A. J.

    2014-12-15

    The electrons in capacitively coupled plasmas (CCPs) absorb energy via ohmic heating due to electron-neutral collisions and stochastic heating due to momentum transfer from high voltage moving sheaths. We use Particle-in-Cell (PIC) simulations to explore these heating mechanisms and to compare the PIC results with available theories on ohmic and stochastic heating. The PIC results for ohmic heating show good agreement with the ohmic heating calculation of Lafleur et al. [Phys. Plasmas 20, 124503 (2013)]. The PIC results for stochastic heating in low pressure CCPs with collisionless sheaths show good agreement with the stochastic heating model of Kaganovich et al. [IEEE Trans. Plasma Sci. 34, 696 (2006)], which revises the hard wall asymptotic model of Lieberman [IEEE Trans. Plasma Sci. 16, 638 (1988)] by taking current continuity and bulk oscillation into account.

  4. Electrical Properties for Capacitively Coupled Radio Frequency Discharges of Helium and Neon at Low Pressure

    NASA Astrophysics Data System (ADS)

    Tanisli, Murat; Sahin, Neslihan; Demir, Suleyman

    2016-10-01

    In this study, the symmetric radio frequency (RF) electrode discharge is formed between the two electrodes placing symmetric parallel. The electrical properties of symmetric capacitive RF discharge of pure neon and pure helium have been obtained from current and voltage waveforms. Calculations are done according to the homogeneous discharge model of capacitively coupled radio frequency (CCRF) using with the data in detail. Electrical properties of bulk plasma and sheath capacitance are also investigated at low pressure with this model. This study compares the electrical characteristics and sheath capacitance changes with RF power and pressure for helium and neon discharges. Also, the aim of the study is to see the differences between helium and neon discharges' current and voltage values. Their root-mean-square voltages and currents are obtained from Tektronix 3052C oscilloscope. Modified homogeneous discharge model of CCRF is used for low pressure discharges and the calculations are done using experimental results. It is seen that homogeneous discharge model of CCRF is usable with modification and then helium and neon discharge's electrical properties are investigated and presented with a comparison. Helium discharge's voltage and current characteristic have smaller values than neon's. It may be said that neon discharge is a better conductor than helium discharge. It is seen that the sheath capacitance is inversely correlation with sheath resistance.

  5. Theory of instabilities in crossed-field discharges at low pressures

    SciTech Connect

    Abolmasov, Sergey N.; Samukawa, Seiji; Bizyukov, Alexander A.

    2007-09-15

    Anode layer thruster, Penning, cylindrical magnetron, and inverted-magnetron discharges all behave, at pressures below about 10{sup -4} Torr, as crossed-field discharges. At such low pressures, a crossed-field discharge is pure electron plasma and most of the discharge voltage appears across an electron sheath so that the electric field is orthogonal to the magnetic field. The principal difficulties in the practical use of these discharges in this pressure range arise from instabilities in the discharge, which are commonly attributed to diocotron instabilities in the electron sheath. On the contrary, this paper describes a theory of the electron sheath based on the classical expression for the cross-field mobility of electrons. The theory predicts that the observed instabilities, accompanied by appearance of pulses of excess energy electrons at the cathode(s) and nonlinearity in the discharge characteristics, are simply the result of periodic travel of the electron sheath through the discharge gap.

  6. CH3 and CFx Detection in Low Pressure RF Discharges by Broadband Ultraviolet Absorption Spectroscopy

    NASA Astrophysics Data System (ADS)

    Cappelli, M. A.; Kim, J. S.; Sharma, S. P.

    1998-10-01

    The detection of reactive radicals in low-pressure radio-frequency (RF) discharges is of importance to the understanding of the chemical processes involved in discharge applications such as reactive ion etching (RIE) and plasma-enhanced chemical vapor deposition (PECVD). Furthermore, the quantitative measurement of radical concentrations and their spatial distributions provide a test of theoretical models that describe the kinetics of such discharges and their ability to predict the overall reactor-scale performance. In this presentation, we describe preliminary studies of the quantitative detection of CH3 and CF2, which are the products of electron collisional dissociation of methane (CH4) and tetrafluoromethane (CF4), respectively, in low-pressure RF plasma discharges. The discharge studied is an inductively (transformer) coupled plasma (ICP) source, operating on either pure methane or pure tetrafluoromethane, in some cases, with argon dilution. Such discharges are commonly employed in RIE and PECVD applications, and these data contribute to the growing database on properties of such discharges, for which sophisticated models of their operation are presently under development at many laboratories. The detection method employed in these experiments relies on the relatively well studied, X -> B uv-absorption band of CH3 near 216 nm, and the A(0,2,0) -> X(0,0,0) uv-absorption band of CF2 at 234.3 nm.

  7. Partial discharge detection and analysis in low pressure environments

    NASA Astrophysics Data System (ADS)

    Liu, Xin

    Typical aerospace vehicles (aircraft and spacecraft) experience a wide range of operating pressures during ascending and returning to earth. Compared to the sea-level atmospheric pressure (760 Torr), the pressure at about 60 km altitude is 2 Torr. The performance of the electric power system components of the aerospace vehicles must remain reliable even under such sub-atmospheric operating conditions. It is well known that the dielectric strength of gaseous insulators, while the electrode arrangement remains unchanged, is pressure dependent. Therefore, characterization of the performance and behavior of the electrical insulation in flight vehicles in low-pressure environments is extremely important. Partial discharge testing is one of the practical methods for evaluating the integrity of electrical insulation in aerospace vehicles. This dissertation describes partial discharge (PD) measurements performed mainly with 60 Hz ac energization in air, argon and helium, for pressures between 2 and 760 Torr. Two main electrode arrangements were used. One was a needle-plane electrode arrangement with a Teflon insulating barrier. The other one was a twisted pair of insulated conductors taken from a standard aircraft wiring harness. The measurement results are presented in terms of typical PD current pulse waveforms and waveform analysis for both main electrode arrangements. The evaluation criteria are the waveform polarity, magnitude, shape, rise time, and phase angle (temporal location) relative to the source voltage. Two-variable histograms and statistical averages of the PD parameters are presented. The PD physical mechanisms are analyzed. For PD pattern recognition, both statistical methods (such as discharge parameter dot pattern representation, discharge parameter phase distribution, statistical operator calculations, and PD fingerprint development) and wavelet transform applications are investigated. The main conclusions of the dissertation include: (1) The PD current

  8. Nanodiamonds in dusty low-pressure plasmas

    SciTech Connect

    Vandenbulcke, L.; Gries, T.; Rouzaud, J. N.

    2009-01-26

    Dusty plasmas composed of carbon, hydrogen, and oxygen have been evidenced by optical emission spectroscopy and microwave interferometry, due to the increase in electron energy and the decrease in electron density. These plasmas allow homogeneous synthesis of nanodiamond grains composed of either pure diamond nanocrystals only (2-10 nm in size) or of diamond nanocrystals and some sp{sup 2}-hybridized carbon entities. The control of their size and their microstructure could open ways for a wide range of fields. Their formation from a plasma-activated gaseous phase is also attractive because the formation of nanodiamonds in the universe is still a matter of controversy.

  9. Longitudinal discharge pumped low-pressure XeCl laser

    SciTech Connect

    Fedorov, A I

    2013-10-31

    We have studied output parameters of a XeCl and a N{sub 2} laser pumped by a longitudinal discharge with automatic spark UV preionisation. The output parameters of a low-pressure (30 Torr) XeCl laser operating with Ar, Ne and He as buffer gases or with no buffer gas have been optimised for the first time. The laser generated 5-ns FWHM pulses with an average power of 0.5 mW and output energy of 0.15 mJ. Under longitudinal discharge pumping, an output energy per unit volume of 1.8 J L{sup -1} atm{sup -1} was reached using helium as a buffer gas. With argon-containing and buffer-free mixtures, it was 1.5 J L{sup -1} atm{sup -1}. The N{sub 2} laser generated 2.5-ns FWHM pulses with an average power of 0.35 mW and output energy of 0.05 mJ. (lasers)

  10. Longitudinal discharge pumped low-pressure XeCl laser

    NASA Astrophysics Data System (ADS)

    Fedorov, A. I.

    2013-10-01

    We have studied output parameters of a XeCl and a N2 laser pumped by a longitudinal discharge with automatic spark UV preionisation. The output parameters of a low-pressure (30 Torr) XeCl laser operating with Ar, Ne and He as buffer gases or with no buffer gas have been optimised for the first time. The laser generated 5-ns FWHM pulses with an average power of 0.5 mW and output energy of 0.15 mJ. Under longitudinal discharge pumping, an output energy per unit volume of 1.8 J L-1 atm-1 was reached using helium as a buffer gas. With argon-containing and buffer-free mixtures, it was 1.5 J L-1 atm-1. The N2 laser generated 2.5-ns FWHM pulses with an average power of 0.35 mW and output energy of 0.05 mJ.

  11. In situ CF3 Detection in Low Pressure Inductive Discharges by Fourier Transform Infrared Spectroscopy

    NASA Technical Reports Server (NTRS)

    Kim, J. S.; Cappelli, M. A.; Sharma, S. P.; Arnold, J. O. (Technical Monitor)

    1998-01-01

    The detection of CF(x) (x=1-3) radicals in low pressure discharges using source gases such as CF4 and CHF3 is of importance to the understanding of their chemical structure and relevance in plasma based etching processes. These radicals are known to contribute to the formation of fluorocarbon polymer films, which affect the selectivity and anisotropy of etching. In this study, we present preliminary results of the quantitative measurement of trifluoromethyl radicals, CF3, in low pressure discharges. The discharge studied here is an inductively (transformer) coupled plasma (ICP) source in the GEC reference cell, operating on pure CF4 at pressures ranging from 10 - 100 mTorr, This plasma source generates higher electron number densities at lower operating pressures than obtainable with the parallel-plate capacitively coupled version of the GEC reference cell. Also, this expanded operating regime is more relevant to new generations of industrial plasma reactors being used by the microelectronics industry. Fourier transform infrared (FTIR) spectroscopy is employed to observe the absorption band of CF3 radicals in the electronic ground state X2Al in the region of 1233-1270/cm. The spectrometer is equipped with a high sensitivity HgCdTe (MCT) detector and has a fixed resolution of 0.125/cm. The CF3 concentrations are measured for a range of operating pressures and discharge power levels.

  12. Probe diagnostics in low pressure dc discharge. Does the Langmuir Paradox exist?

    NASA Astrophysics Data System (ADS)

    Godyak, Valery; Alexandrovich, Ben; Rahman, Abdur

    2006-10-01

    Maxwellian electron energy distributions in a highly non-equilibrium plasma of low pressure dc discharges is one the oldest and fascinating mysteries of gas discharge physics. There is extensive literature and many hypotheses attempting to explain this paradox, but the problem still remains unsolved. In this report we present results on the EEDF measurement in the positive column of a dc discharge in mercury vapor with differently oriented probes placed along the positive column over a wide range of discharge current showed that: a) - the EEDF is not Maxwellian, b) - is essentially anisotropic, c) - is not in equilibrium with discharge current (i.e. EEDF changes along the positive column), d) - the electron temperature inferred from the measured EEDF and that determined by the slope of the probe characteristic in semi-log scale are essentially different, e) - the linearity of the probe characteristic in semi-log scale (the sign of a Maxwellian EEDF) may occurs at essentially nonlinear dependence of the second derivative of the probe characteristic on the probe voltage in semi-log scale. The main conclusions of this study are: a) - the absence of Maxwellian EEDF in the low pressure dc discharge and b) - the Druyvesteyn method is not applicable for measurement of highly anisotropic EEDF typical for the Langmuir Paradox condition.

  13. Reconsideration of basic concepts for the low-pressure discharge maintenance

    NASA Astrophysics Data System (ADS)

    Shivarova, Antonia

    2016-09-01

    The Schottky condition and the concept for the ambipolar field known as bases of the low-pressure discharge maintenance are reconsidered. Whereas the Schottky condition results in a value of the electron temperature independent of the plasma density, the discussed generalized form of the Schottky condition relates - due to the nonlinear processes in the charged particle balance - the electron temperature to the plasma density, thus, ensuring self-consistency of the plasma description. The concept for equality of the electron and ion fluxes resulting into the ambipolar field is the second issue discussed. Localization of the power input outside the high plasma-density region, a common case in many rf plasma sources, breaks it down by transforming the ambipolar field into a vortex, non-conservative, field. Since the dc field in the discharge should be a potential (conservative) field, it appears to be composed by two vortex field: the ambipolar field and a field related to a vortex dc current, the latter driven by a deviation from the Boltzmann distribution of the electron density. In addition, due to the steady-state magnetic field self-induced by the vortex current in the discharge, the plasma appears magnetized without having an external magnetic field applied.

  14. Discharge parameters and dominant electron conductivity mechanism in a low-pressure planar magnetron discharge

    SciTech Connect

    Baranov, O.; Romanov, M.; Ostrikov, Kostya

    2009-06-15

    Parameters of a discharge sustained in a planar magnetron configuration with crossed electric and magnetic fields are studied experimentally and numerically. By comparing the data obtained in the experiment with the results of calculations made using the proposed theoretical model, conclusion was made about the leading role of the turbulence-driven Bohm electron conductivity in the low-pressure operation mode (up to 1 Pa) of the discharge in crossed electric and magnetic fields. A strong dependence of the width of the cathode sputter trench, associated with the ionization region of the magnetron discharge, on the discharge parameters was observed in the experiments. The experimental data were used as input parameters in the discharge model that describes the motion of secondary electrons across the magnetic field in the ionization region and takes into account the classical, near-wall, and Bohm mechanisms of electron conductivity.

  15. Low-pressure glow discharge with a hollow cathode

    NASA Astrophysics Data System (ADS)

    Lisovskiy, Valeriy; Bogodielnyi, Illia

    2011-10-01

    We measured the breakdown curves of a dc glow discharge with hollow cathode and flat electrodes in the gap between the electrodes L = 100 mm. At low gas pressure, the left branches of the breakdown curves for the hollow cathode and the flat electrodes are identical. At high gas pressures, the right branch of the breakdown curve of the discharge with a hollow cathode is close to the breakdown curve for the distance between the plane electrodes, equal to the gap between the edge of the plates of the hollow cathode and flat anode. Current-voltage characteristics of the hollow cathode discharge were measured. At low gas pressure discharge is in the high-voltage (electron beam) form with ascending CVC. In the gas pressure range p > 0.1 Torr the discharge first burns in the glow mode. At higher current the discharge goes into the hollow cathode mode, filling the space between the plates, and it has an almost vertical CVC. The transition from a glow discharge mode into a hollow one possesses a hysteresis. At gas pressures p ~ 1 Torr the hollow cathode effect disappears, since the thickness of the cathode layer is small compared with the gap between the plates of the cathode.

  16. Seed disinfection effect of atmospheric pressure plasma and low pressure plasma on Rhizoctonia solani.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Kawaradani, Mitsuo; Okada, Kiyotsugu; Tanimoto, Hideo; Misawa, Tatsuya; Kusakari, Shinichi

    2014-01-01

    Gas plasma generated and applied under two different systems, atmospheric pressure plasma and low pressure plasma, was used to investigate the inactivation efficacy on the seedborne pathogenic fungus, Rhizoctonia solani, which had been artificially introduced to brassicaceous seeds. Treatment with atmospheric plasma for 10 min markedly reduced the R. solani survival rate from 100% to 3% but delayed seed germination. The low pressure plasma treatment reduced the fungal survival rate from 83% to 1.7% after 10 min and the inactivation effect was dependent on the treatment time. The seed germination rate after treatment with the low pressure plasma was not significantly different from that of untreated seeds. The air temperature around the seeds in the low pressure system was lower than that of the atmospheric system. These results suggested that gas plasma treatment under low pressure could be effective in disinfecting the seeds without damaging them.

  17. Characteristics of Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Park, Seungil; Youn, S.; Kim, S. B.; Yoo, S. J.

    2016-10-01

    A microwave plasma source with a cylindrical resonance cavity has been proposed to generate the plasma at low pressure. This plasma source consists of magnetron, waveguide, antenna, and cavity. The microwave generating device is a commercial magnetron with 1 kW output power at the frequency of 2.45 GHz. The microwave is transmitted through the rectangular waveguide with the whistle shape, and coupled to the cavity by the slot antenna. The resonant mode of the cylindrical cavity is the TE111 mode. The operating pressure is between 0.1 Torr and 0.3 Torr with the Argon and nitrogen gas. The electron temperature and electron number density of argon plasma were measured with the optical emission spectroscopy measurement. And Ar1s5 metastable density was measured using tunable diode laser absorption spectroscopy (TDLAS). The plasma diagnostic results of a cylindrical microwave plasma source would be described in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  18. Numerical study of effect of secondary electron emission on discharge characteristics in low pressure capacitive RF argon discharge

    SciTech Connect

    Liu, Qian; Liu, Yue Samir, Tagra; Ma, Zhaoshuai

    2014-08-15

    Based on the drift and diffusion approximation theory, a 1D fluid model on capacitively coupled RF argon glow discharge at low pressure is established to study the effect of secondary electron emission (SEE) on the discharge characteristics. The model is numerically solved by using a finite difference method and the numerical results are obtained. The numerical results indicate that when the SEE coefficient is larger, the plasma density is higher and the time of reaching steady state is longer. It is also found that the cycle-averaged electric field, electric potential, and electron temperature change a little as the SEE coefficient is increased. Moreover, the discharge characteristics in some nonequilibrium discharge processes with different SEE coefficients have been compared. The analysis shows that when the SEE coefficient is varied from 0.01 to 0.3, the cycle-averaged electron net power absorption, electron heating rate, thermal convective term, electron energy dissipation, and ionization all have different degrees of growth. While the electron energy dissipation and ionization are quite special, there appear two peaks near each sheath region in the discharge with a relatively larger SEE coefficient. In this case, the discharge is certainly operated in a hybrid α-γ-mode.

  19. A comparative study on continuous and pulsed RF argon capacitive glow discharges at low pressure by fluid modeling

    NASA Astrophysics Data System (ADS)

    Liu, Ruiqiang; Liu, Yue; Jia, Wenzhu; Zhou, Yanwen

    2017-01-01

    Based on the plasma fluid theory and using the drift-diffusion approximation, a mathematical model for continuous and pulsed radial frequency (RF) argon capacitive glow discharges at low pressure is established. The model is solved by a finite difference method and the numerical results are reported. Based on the systematic analysis of the results, plasma characteristics of the continuous and pulsed RF discharges are comparatively investigated. It is shown that, under the same condition for the peak value of the driving potential, the cycle-averaged electron density, the current density, and other essential physical quantities in the continuous RF discharge are higher than those from the pulsed RF discharge. On the other hand, similar plasma characteristics are obtained with two types of discharges, by assuming the same deposited power. Consequently, higher driving potential is needed in pulsed discharges in order to maintain the same effective plasma current. Furthermore, it is shown that, in the bulk plasma region, the peak value of the bipolar electric field from the continuous RF discharge is greater than that from the pulsed RF discharge. In the sheath region, the ionization rate has the shape of double-peaking and the explanation is given. Because the plasma input power depends on the driving potential and the plasma current phase, the phase differences between the driving potential and the plasma current are compared between the continuous and the pulsed RF discharges. It is found that this phase difference is smaller in the pulsed RF discharge compared to that of the continuous RF discharge. This means that the input energy coupling in the pulsed RF discharge is less efficient than the continuous counterpart. This comparative study, carried out also under other conditions, thus can provide instructive ideas in applications using the continuous and pulsed RF capacitive glow discharges.

  20. Nucleation in plasmas at high and low pressures

    SciTech Connect

    Kumar, A.S.; Garscadden, A.

    1994-12-31

    The nucleation processes occurring under both high-pressure and low-pressure plasma conditions have been studied and the significance of different processes for particle formation will be presented in detail. Particle nucleation and growth phenomena in plasmas are extremely important to a wide range of processes occurring under laboratory, atmospheric and astrophysical conditions. These include plasma-enhanced processing, cluster-growth mechanisms, synthesis of powders in plasma reactors, aerosol and cloud formation in planetary atmospheres, and formation of interstellar dust grains. Under most circumstances, particle formation occurs as a homogeneous nucleation process. However, at lower pressures in plasma or charged particle environments, the ions can act as condensation nuclei, and ion-induced nucleation becomes highly favored. The nucleation processes occurring under different plasma and laser vaporization conditions may be classified as in Table 1. Laser and arc vaporization processes result in high-pressure vapor sources depending mostly on the energy density striking the surface. Particle nucleation under these conditions occurs from the adiabatic expansion and cooling of the ejected vapor. The very high saturation ratios for materials like carbon and silicon under such conditions makes homogeneous nucleation the dominant mechanism for cluster and particle formations.

  1. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOEpatents

    Grossman, M.W.; George, W.A.; Maya, J.

    1987-10-06

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25 C. 3 figs.

  2. Low pressure arc discharge lamp apparatus with magnetic field generating means

    DOEpatents

    Grossman, Mark W.; George, William A.; Maya, Jakob

    1987-01-01

    A low-pressure arc discharge apparatus having a magnetic field generating means for increasing the output of a discharge lamp is disclosed. The magnetic field generating means, which in one embodiment includes a plurality of permanent magnets, is disposed along the lamp for applying a constant transverse magnetic field over at least a portion of the positive discharge column produced in the arc discharge lamp operating at an ambient temperature greater than about 25.degree. C.

  3. Kinetic analysis of negative power deposition in inductive low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Trieschmann, Jan; Mussenbrock, Thomas

    2017-02-01

    Negative power deposition in low pressure inductively coupled plasmas (ICPs) is investigated by means of an analytical model which couples Boltzmann’s equation and the quasi-stationary Maxwell’s equations. Exploiting standard Hilbert space methods an explicit solution for both, the electric field and the distribution function of the electrons for a bounded discharge configuration subject to an unsymmetrical excitation is found for the first time. The model is applied to a low pressure ICP discharge. In this context particularly the anomalous skin effect and the effect of phase mixing is discussed. The analytical solution is compared with results from electromagnetic full wave particle in cell simulations. Excellent agreement between the analytical and the numerical results is found.

  4. Low Pressure Experimental Simulation of Electrical Discharges Above and Inside a Cloud

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana

    1996-01-01

    A low pressure laboratory experiment to generate sporadic electrical discharges in either a particulate dielectric or air, representing a competing path of preferred electrical breakdown, was investigated. At high pressures, discharges occurred inside the dielectric particulate; at low pressures, discharges occurred outside the dielectric particulate; at a transition pressure regime, which depends on conductivity of the dielectric particulate, discharges were simultaneously generated in both particulate dielectric and air. Unique use of a particulate dielectric was critical for sporadic discharges at lower pressures which were not identical in character to discharges without the particulate dielectric. Application of these experimental results to the field of atmospheric electricity and simulation of the above-cloud type discharges that have recently been documented, called jets and sprites, are discussed.

  5. On the optimal chamber length and electron heating mechanism in low pressure inductive discharges

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Ju; Kim, Kyung-Hyun; Lee, Ho-Won; Park, Il-Seo; Chung, Chin-Wook

    2016-09-01

    Plasma resistance with the chamber length was measured at different plasma densities in low pressure inductively coupled plasmas. It was found that the plasma resistance has a maximum at specific chamber length, Lopt, and the Lopt is changed with the plasma density. It is related to the maximum collisionless electron heating, which simultaneously satisfies the conditions of both the bounce resonance and the transit time resonance. Therefore, Lopt is an optimal chamber size for the power transfer to the plasma.

  6. The effect of discharge chamber geometry on the ignition of low-pressure rf capacitive discharges

    SciTech Connect

    Lisovskiy, V.; Martins, S.; Landry, K.; Douai, D.; Booth, J.-P.; Cassagne, V.; Yegorenkov, V.

    2005-09-15

    This paper reports measured and calculated breakdown curves in several gases of rf capacitive discharges excited at 13.56 MHz in chambers of three different geometries: parallel plates surrounded by a dielectric cylinder ('symmetric parallel plate'), parallel plates surrounded by a grounded metallic cylinder ('asymmetric parallel plate'), and parallel plates inside a much larger grounded metallic chamber ('large chamber'). The breakdown curves for the symmetric chamber have a multivalued section at low pressure. For the asymmetric chamber the breakdown curves are shifted to lower pressures and rf voltages, but the multivalued feature is still present. At higher pressures the breakdown voltages are much lower than for the symmetric geometry. For the large chamber geometry the multivalued behavior is not observed. The breakdown curves were also calculated using a numerical model based on fluid equations, giving results that are in satisfactory agreement with the measurements.

  7. Radiation properties of low-pressure discharges in rare-gas mixtures containing xenon

    NASA Astrophysics Data System (ADS)

    Gortchakov, S.; Uhrlandt, D.

    2005-02-01

    Glow discharges in mixtures of xenon with other rare gases can be used as alternatives to mercury-containing UV/VUV radiation sources and fluorescent lamps. The advantages of such sources are environmental compatibility, instant light output after switching on, and less pronounced temperature dependence. However, the optimum choice of the gas composition with respect to the maximum efficiency and power of the xenon resonance radiation as well as to a stable discharge operation still remains an open question. The dc cylindrical positive column of low-pressure discharges in rare-gas mixtures is studied by a detailed self-consistent kinetic description. The influence of the buffer gases helium, neon and argon as well as the appropriate choice of the xenon admixture are revealed by analysing different triple-gas mixtures. Changes in the global power budget and the radial structure of the plasma are discussed. A mixture of He and about 1-2% Xe arises as an optimum composition.

  8. Diamond film deposition using microwave plasmas under low pressures

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1991-01-01

    Microwave plasma depositions of diamond films have been investigated under low pressures of 10 mTorr to 10 Torr, at low substrate temperatures of 400 to 750 C, using high methane concentrations of 5 to 15 percent and oxygen concentrations of 5 to 10 percent in hydrogen plasmas. The deposition system consists of a microwave plasma chamber, a downstream deposition chamber, and a RF induction-heated sample stage. The deposition system can be operated in either high-pressure microwave or electron cyclotron resonance (ECR) modes by varying the sample stage position. Cathodoluminescence (CL) studies on diamond films deposited at 10 Torr pressure show that CL emissions at 430, 480, 510, 530, 560, 570 and 740 nm can be employed to characterize the quality of diamond films. High-quality, well-faceted diamond films have been deposited at 10 Torr and 600 C using 5 percent CH4 and 5 percent O2 in H2 plasmas; CL measurements on these films show very low N impurities and no detectable Si impurities. Diamond nucleation on SiC has been demonstrated by depositing well-faceted diamond crystallites on SiC-coated Si substrates.

  9. Modeling electronegative plasma discharge

    SciTech Connect

    Lichtenberg, A.J.; Lieberman, M.A.

    1995-12-31

    Macroscopic analytic models for a three-component electronegative gas discharge are developed. Assuming the negative ions to be in Boltzmann equilibrium, a positive ion ambipolar diffusion equation is derived. The discharge consists of an electronegative core and electropositive edges. The electron density in the core is nearly uniform, allowing a parabolic approximation to the plasma profile to be employed. The resulting equilibrium equations are solved analytically and matched to a constant mobility transport model of an electropositive edge plasma. The solutions are compared to a simulation of a parallel-plane r.f. driven oxygen plasma for p = 50 mTorr and n{sub eo}= 2.4 x 10{sup 15} m{sup -3}. The ratio {alpha}{sub o} of central negative ion density to electron density, and the electron temperature T{sub e}, found in the simulation, are in reasonable agreement with the values calculated from the model. The model is extended to: (1) low pressures, where a variable mobility model is used in the electropositive edge region; and (2) high {alpha}{sub o} in which the edge region disappears. The inclusion of a second positive ion species, which can be very important in describing electronegative discharges used for materials processing, is a possible extension of the model.

  10. Flow control in low pressure turbine blades using plasma actuators

    NASA Astrophysics Data System (ADS)

    Ramakumar, Karthik

    2005-11-01

    An experimental study of plasma flow control actuators for flow separation control in low pressure turbine (LPT) blades is presented. The actuator arrangement consists of two copper strips separated by a dielectric medium with an input voltage of approximately 5kV and a frequency input varying from 3-5 kHz, creating a region of plasma used for boundary layer flow control. The effect of varying waveform on control efficacy is investigated using sine, square and saw tooth waveforms. The impact of duty cycle and forcing frequency on both displacement and momentum thickness are also examined. Boundary layer measurements are carried out using PIV while measurements of the wake downstream are performed using a 7-hole probe for Reynolds number ranging from 30,000 to 50,000. Separation is fully controlled in most configurations and boundary layer parameters reveal that the actuator entrains the free-stream flow at the actuator location and creates a region of high turbulence, essentially behaving similar to an active boundary layer trip. A small region of reversed flow near the surface indicates the presence of cross-stream vortical structures. The use of plasma synthetic jet actuators flow LPT flow control is also discussed.

  11. Microwave techniques for electron density measurements in low pressure RF plasmas

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gafarov, Ildar; Shemakhin, Alexander

    2016-09-01

    Results of the experimental studying of RF plasma jet at low pressure in the range of 10 - 300 Pa is presented. The electron density distribution both in inductive and in capacitive coupled RF discharges was measured at 1.76 MHz and 13.56 MHz consequently. We used three independent microwave diagnostic techniques such as free space (the ``two-frequency'' and ``on the cut-off signal'') and a resonator. It is found that the electron density in the RF plasma jets is by 1-2 orders of magnitude greater than in the decaying plasma jet, and by 1-2 orders of magnitude less than in the RF plasma torch. Thus the RF plasma jet is similar to the additional discharge between the electrodes or the coil and the vacuum chamber walls. As a consequence, the formation of the positive charge sheath near the specimen placed in plasma stream is observed. It is found that the maximum of ionization degree as well as more uniform electron density distribution across the stream is observed in the range of the gas flow rate Gg = 0 . 06 - 0 . 12 g/s and the discharge power Pd = 0 . 5 - 2 . 5 kW. The work was funded by RFBR, according to the research projects No. 16-31-60081 mol_a_dk.

  12. Measurements of helium 23S metastable atom density in low-pressure glow discharge plasmas by self-absorption spectroscopy of HeI 23S-23P transition

    NASA Astrophysics Data System (ADS)

    Shikama, Taiichi; Ogane, Shuhei; Ishii, Hidekazu; Iida, Yohei; Hasuo, Masahiro

    2014-08-01

    The helium 23S metastable atom densities are experimentally evaluated by self-absorption spectroscopy of the HeI 23S-23P transition spectra in two kinds of cylindrical glow discharge plasmas, which have different radii and are operated under different pressures of 300 and 20 Pa. The spectra are measured by using an interference spectroscopy system with a wavelength resolution of about 60 pm, and the relative intensities of the fine structure transitions are analyzed. It is found that the method is in principle applicable to plasmas with the pressure up to about the atmospheric pressure and electron density on the order of up to 1022 m-3. For a plasma with an absorption length of 10 mm and a spatially uniform temperature of 300 K, the method is sensitive to the metastable atom density roughly from 1016 to 1019 m-3.

  13. Analysis based on global model of nitrogen plasma produced by pulsed microwave at low pressure

    SciTech Connect

    Qiu, Feng; Yan, Eryan Meng, Fanbao; Ma, Hongge; Liu, Minghai

    2015-07-15

    This paper analyzes certain evolution processes in nitrogen plasmas discharged using pulsed microwaves at low pressure. Comparing the results obtained from the global model incorporating diffusion and the microwave transmission method, the temporal variation of the electron density is analyzed. With a discharge pressure of 300 Pa, the results obtained from experiments and the global model calculation show that when the discharge begins the electron density in the plasma rises quickly, to a level above the critical density corresponding to the discharge microwave frequency, but falls slowly when the discharge microwave pulse is turned off. The results from the global model also show that the electron temperature increases rapidly to a peak, then decays after the electron density reaches the critical density, and finally decreases quickly to room temperature when the discharge microwave pulse is turned off. In the global model, the electron density increases because the high electron temperature induces a high ionization rate. The decay of the electron density mainly comes from diffusion effect.

  14. Evaluation of Low-Pressure Cold Plasma for Disinfection of ISS Grown Produce and Metal Instruments

    NASA Technical Reports Server (NTRS)

    Hummerick, Mary E.; Hintze, Paul E.; Maloney, Philip R.; Spencer, Lashelle E.; Coutts, Janelle L.; Franco, Carolina

    2016-01-01

    Low pressure cold plasma, using breathing air as the plasma gas, has been shown to be effective at precision cleaning aerospace hardware at Kennedy Space Center.Both atmospheric and low pressure plasmas are relatively new technologies being investigated for disinfecting agricultural commodities and medical instruments.

  15. Variation of antioxidative activity and growth enhancement of Brassicaceae induced by low-pressure oxygen plasma

    NASA Astrophysics Data System (ADS)

    Ono, Reoto; Hayashi, Nobuya

    2015-06-01

    The mechanism of growth enhancement induced by active oxygen species generated in an oxygen plasma is investigated. The plant growth enhancement induced by the active oxygen species would relate to an antioxidative activity, which is one of the biological responses. The amount of generated active oxygen species is varied by the oxygen gas pressure in a low-pressure RF glow discharge plasma. The antioxidative activity of sprouts of Brassicaceae induced by the oxygen plasma is maximized at pressures between 30 and 40 Pa, whereas the antioxidative activity becomes small at around 60 and 80 Pa. The pressure dependence of the antioxidative activity of sprout stems is opposite to that of the stem length of the sprouts. The growth enhancement would be induced by the increase in the concentration of active oxygen species in plants owing to the decrease in the amount of antioxidative substances.

  16. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media

    DOEpatents

    McLellan, Edward J.

    1983-01-01

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode (1) and cathode (2) to below breakdown voltage using a dc voltage source (3). An array of resistors (4) or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit (5) producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO.sub.2 laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  17. Effects of low pressure radio frequency discharge on the physical and mechanical characteristics and chemical composition of diffusion coating on a surface of complex configuration details

    NASA Astrophysics Data System (ADS)

    Ladianov, V. I.; Gilmutdinov, F. Z.; Nikonova, R. M.; Kashapov, N. F.; Shaekhov, M. F.; Khristoliubova, V. I.

    2017-01-01

    The work deals with the influence of low-pressure radio frequency (RF) discharge on the surface properties of metals and their alloys. As objects of research to study the interaction of the jet low pressure RF discharge into the surface of the material the following materials were chosen: tungsten cobalt alloy, high speed steel, structural steel. In the presence of the materials energy parameters of low pressure RF discharge flows in the discharge chamber and the electrode gap were studied. A quantitative assessment of the gas composition inside the chamber to determine the characteristics of the plasma flow, making the major contribution to the modification of the surface was carried out. The influence of the input parameters of the plasma unit on the discharge characteristics was held. Identification of the main processes responsible for the modification of the surface of metals and alloys with the metal sample in the plasma jet and the effect of samples of products complex configuration on its properties is determined. The results of studies of physical and mechanical characteristics and chemical composition of the surface layers of high-speed steels, alloys and steel before and after treatment by low pressure radio frequency discharges with the instrumental indentation methods and X-ray photo-electron spectroscopy. With the help of the quality control system of the inner surfaces tubular products were studied.

  18. Low-pressure water vapour plasma treatment of surfaces for biomolecules decontamination

    NASA Astrophysics Data System (ADS)

    Fumagalli, F.; Kylián, O.; Amato, L.; Hanuš, J.; Rossi, F.

    2012-04-01

    Decontamination treatments of surfaces are performed on bacterial spores, albumin and brain homogenate used as models of biological contaminations in a low-pressure, inductively coupled plasma reactor operated with water-vapour-based gas mixtures. It is shown that removal of contamination can be achieved using pure H2O or Ar/H2O mixtures at low temperatures with removal rates comparable to oxygen-based mixtures. Particle fluxes (Ar+ ions, O and H atomic radicals and OH molecular radicals) from water vapour discharge are measured by optical emission spectroscopy and Langmuir probe under several operating conditions. Analysis of particle fluxes and removal rates measurements illustrates the role of ion bombardment associated with O radicals, governing the removal rates of organic matter. Auxiliary role of hydroxyl radicals is discussed on the basis of experimental data. The advantages of a water vapour plasma process are discussed for practical applications in medical devices decontamination.

  19. Spectroscopic study of unique line broadening and inversion in low-pressure microwave generated water plasmas

    NASA Astrophysics Data System (ADS)

    Mills, R. L.; Ray, P. C.; Mayo, R. M.; Nansteel, M.; Dhandapani, B.; Phillips, J.

    2005-12-01

    It was demonstrated that low pressure (˜0.2 torr) water vapor plasmas generated in a 10 mm inner diameter quartz tube with an Evenson microwave cavity show at least two features that are not explained by conventional plasma models. First, significant (gt2.5Å) hydrogen Balmer alpha line broadening, of constant width, up to 5 cm from the microwave coupler was recorded. Only hydrogen, and not oxygen, showed significant line broadening. This feature, observed previously in hydrogen-containing mixed gas plasmas generated with high voltage dc and rf discharges, was explained by some researchers as resulting from acceleration of hydrogen ions near the cathode. This explanation cannot apply to the line broadening observed in the (electrodeless) microwave plasmas generated in this work, particularly at distances as great as 5 cm from the microwave coupler. Second, inversion of the line intensities of both the Lyman and Balmer series, again at distances up to 5 cm from the coupler, were observed. The line inversion suggests the existence of a hitherto unknown source of pumping of the optical power in plasmas. Finally, it is notable that other aspects of the plasma including the OH* rotational temperature and low electron concentrations are quite typical of plasmas of this type.

  20. Electron ranaway and ion-ion plasma formation in afterglow low-pressure plasma of oxygen-containing gas mixtures

    NASA Astrophysics Data System (ADS)

    Kudryavtsev, Anatoly; Bogdanov, Eugene; Kosykh, Nikolay; Gutsev, Sergey

    2012-10-01

    Experimental investigation of temporal evolution of charged plasma species in afterglow plasma of oxygen-containing mixtures have been investigated. The probe VAC and the time dependence of the saturation positive and negative particles currents to a probe in a fixed bias voltage were performed. The decay of afterglow low-pressure electronegative gas plasmas take place in two distinct stages (the electron-ion stage, and the ion-ion stage) as it was shown in [1] for pure oxygen. In the first stage, the negative ions are locked within a discharge volume and plasma is depleted of electrons and positive ions. The electron density decay is faster, than exponential, and practically all electrons leave plasma volume during finite time followed by the ion--ion (electron-free) plasma formation. The decay of the ion-ion plasma depends on the presence of detachment. With a large content of electronegative gas (oxygen) in a mixture, when there is a ``detachment particles,'' a small fraction of the electrons appearing as a result of the detachment continue to hold all negative ions in the discharge volume. In this case, the densities of all charged plasma components decay according to the same exponential law with a characteristic detachment time. At a low oxygen content in the gas mixture there is no detachment and plasma decays by an ion--ion ambipolar diffusion mechanism.[4pt][1]. S.A.Gutsev, A.A.Kudryavtsev, V.A.Romanenko. Tech.Phys. 40, 1131, (1995).

  1. A collisional-radiative model for low-pressure weakly magnetized Ar plasmas

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr

    2016-09-01

    Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.

  2. Power supply improvements for ballasts-low pressure mercury/argon discharge lamp for water purification

    NASA Astrophysics Data System (ADS)

    Bokhtache, A. Aissa; Zegaoui, A.; Djahbar, A.; Allouache, H.; Hemici, K.; Kessaissia, F. Z.; Bouchrit, M. S.; Aillerie, M.

    2017-02-01

    The low-pressure electrical discharges established in the mercury rare gas mixtures are the basis of many applications both in the field of lighting and for industrial applications. In order to select an efficient high frequency power supply (ECG -based PWM inverter), we present and discuss results obtained in the simulation of three kinds of power supplies delivering a 0.65 A - 50KHz sinusoidal current dedicated to power low pressure UV Mercury - Argon lamp used for effect germicide on water treatment thus allowing maximum UVC radiation at 253.7 nm. Three ballasts half-bridge configurations were compared with criteria based on resulting germicide efficiency, electrical yield and reliability, for example the quality of the sinusoidal current with reduced THD, and finally, we also considered in this analysis the final economic aspect.

  3. Characteristics of a Plasma Torch Designed for Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Gao, Yang; Yang, De Ming; Gao, Jianyi

    2012-06-01

    Unlike atmosphere plasma spraying (APS), very low pressure plasma spraying (VLPPS) can only weakly heat the feed materials at the plasma-free region exit of the nozzle. Most current VLPPS methods have adopted a high power plasma gun, which operates at high arc currents up to 2500 A to remedy the lower heating ability, causing a series of problems for both the plasma torch and the associated facility. According to the Kundsen number and pressures distribution inside of the nozzle in a low-pressure environment, a plasma torch was designed with a separated anode and nozzle, and with the powder feed to the plasma jets inside the nozzle intake. In this study, the pressures in the plasma gas intake, in the nozzle intake and outside the plasma torch were measured using an enthalpy probe. For practice, SUS 316 stainless steel coatings were prepared at the plasma currents of 500-600 A, an arc voltage of 50 V and a chamber pressure of 1000 Pa; the results indicated that coatings with an equiaxed microstructure could be deposited in proper conditions.

  4. Advanced Research on the Electrode Area of a Low Pressure Hg-Ar Discharge Lamp

    NASA Astrophysics Data System (ADS)

    Shi, Jianou

    The phenomenon of electrical discharge in low pressure Hg-Ar vapor has been under continuous investigation since it was first discovered. Because much work has been done in the positive column, it is, therefore, that the electrode area of the lamp is the main focus of this thesis. To simulate the interface phenomena on a electrode surface, samples, with optically smooth tungsten-barium interfaces were fired in a high vacuum furnace at different temperatures. Measurements were made using surface characterization techniques. It is found that no Ba_3WO _6 is formed on the surface as previously reported in the powder mixing experiments, and the interface consists mainly of BaWO_4. It was discovered in the early 1950's that vaporization of the barium from the cathode in a fluorescent lamp could be reduced tremendously with the addition of 5% of ZrO _2 to the coating mix. However, the reason for this is poorly understood. A possible explanation has been found, and number of tests have been completed to simulate the formation of BaZO_3 under different lamp operating conditions. The measurements and simulation of barium atom and ion number densities are presented. Barium emitted from the electrode surface has a strong interaction with the local plasma. The number density distributions depend mainly on the discharge conditions. A Monte Carlo computer simulation for the barium ion number density is described and the results from the simulation compared to the experimental results obtained by absorption method. It is clear that the ion distribution and phosphor contamination in the electrode area are two closely related issues. XPS is used to measure the chemical composition on the phosphor surface of the lamp. A discussion of calibration methods and the possible compounds forming on the phosphors is then presented. A number of questions have been raised concerning the safety of the lamp and its affects on health related to radiation generated in the electrode area. Typically

  5. Active Oxygen Species Generator by Low Pressure Silent Discharge and its Application to Water Treatment

    NASA Astrophysics Data System (ADS)

    Tanaka, Masaaki; Ikeda, Akira; Tanimura, Yasuhiro; Ohta, Koji; Yoshiyasu, Hajimu

    We have proposed the new water treatment using the active oxygen species such as an atomic oxygen with the oxidation power that is stronger than ozone. Based on the results of simulations we designed the silent discharge type active oxygen generator with a water ejector, which is operated on the discharge conditions of low pressure of 6.6kPa. and high temperature of about 200°C. The experimental results are as follows. (1) The yield of the active oxygen increases with the increase of the discharge tube temperature and the decrease of the gas pressure. (2) The life time of active oxygen is tens msec. (3) The active oxygen oxidizes efficiently the formic acid compared with ozone. It is assumed from these results that the active oxygen species having a strong oxidation power is generated.

  6. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-01

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10-4 millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (˜pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  7. Effect of confining wall potential on charged collimated dust beam in low-pressure plasma

    SciTech Connect

    Kausik, S. S.; Kakati, B.; Saikia, B. K.

    2013-05-15

    The effect of confining wall potential on charged collimated dust beam in low-pressure plasma has been studied in a dusty plasma experimental setup by applying electrostatic field to each channel of a multicusp magnetic cage. Argon plasma is produced by hot cathode discharge method at a pressure of 5×10{sup −4} millibars and is confined by a full line cusped magnetic field confinement system. Silver dust grains are produced by gas-evaporation technique and move upward in the form of a collimated dust beam due to differential pressure maintained between the dust and plasma chambers. The charged grains in the beam after coming out from the plasma column enter into the diagnostic chamber and are deflected by a dc field applied across a pair of deflector plates at different confining potentials. Both from the amount of deflection and the floating potential, the number of charges collected by the dust grains is calculated. Furthermore, the collimated dust beam strikes the Faraday cup, which is placed above the deflector plates, and the current (∼pA) so produced is measured by an electrometer at different confining potentials. The experimental results demonstrate the significant effect of confining wall potential on charging of dust grains.

  8. Plasma diagnostics of low pressure high power impulse magnetron sputtering assisted by electron cyclotron wave resonance plasma

    SciTech Connect

    Stranak, Vitezslav; Herrendorf, Ann-Pierra; Drache, Steffen; Bogdanowicz, Robert; Hippler, Rainer; Cada, Martin; Hubicka, Zdenek; Tichy, Milan

    2012-11-01

    This paper reports on an investigation of the hybrid pulsed sputtering source based on the combination of electron cyclotron wave resonance (ECWR) inductively coupled plasma and high power impulse magnetron sputtering (HiPIMS) of a Ti target. The plasma source, operated in an Ar atmosphere at a very low pressure of 0.03 Pa, provides plasma where the major fraction of sputtered particles is ionized. It was found that ECWR assistance increases the electron temperature during the HiPIMS pulse. The discharge current and electron density can achieve their stable maximum 10 {mu}s after the onset of the HiPIMS pulse. Further, a high concentration of double charged Ti{sup ++} with energies of up to 160 eV was detected. All of these facts were verified experimentally by time-resolved emission spectroscopy, retarding field analyzer measurement, Langmuir probe, and energy-resolved mass spectrometry.

  9. Characterization of low-pressure microwave and radio frequency discharges in oxygen applying optical emission spectroscopy and multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Steves, Simon; Styrnoll, Tim; Mitschker, Felix; Bienholz, Stefan; Nikita, Bibinov; Awakowicz, Peter

    2013-11-01

    Optical emission spectroscopy (OES) and multipole resonance probe (MRP) are adopted to characterize low-pressure microwave (MW) and radio frequency (RF) discharges in oxygen. In this context, both discharges are usually applied for the deposition of permeation barrier SiOx films on plastic foils or the inner surface of plastic bottles. For technological reasons the MW excitation is modulated and a continuous wave (cw) RF bias is used. The RF voltage produces a stationary low-density plasma, whereas the high-density MW discharge is pulsed. For the optimization of deposition process and the quality of the deposited barrier films, plasma conditions are characterized using OES and MRP. To simplify the comparison of applied diagnostics, both MW and RF discharges are studied separately in cw mode. The OES and MRP diagnostic methods complement each other and provide reliable information about electron density and electron temperature. In the MW case, electron density amounts to ne = (1.25 ± 0.26) × 1017 m-3, and kTe to 1.93 ± 0.20 eV, in the RF case ne = (6.8 ± 1.8)×1015 m-3 and kTe = 2.6 ± 0.35 eV. The corresponding gas temperatures are 760±40 K and 440±20 K.

  10. Kinetic theory of the positive column of a low-pressure discharge in a transverse magnetic field

    SciTech Connect

    Londer, Ya. I.; Ul'yanov, K. N.

    2011-10-15

    The influence of a transverse magnetic field on the characteristics of the positive column of a planar low-pressure discharge is studied theoretically. The motion of magnetized electrons is described in the framework of a continuous-medium model, while the ion motion in the ambipolar electric field is described by means of a kinetic equation. Using mathematical transformations, the problem is reduced to a secondorder ordinary differential equation, from which the spatial distribution of the potential is found in an analytic form. The spatial distributions of the plasma density, mean plasma velocity, and electric potential are calculated, the ion velocity distribution function at the plasma boundary is found, and the electron energy as a function of the magnetic field is determined. It is shown that, as the magnetic field rises, the electron energy increases, the distributions of the plasma density and mean plasma velocity become asymmetric, the maximum of the plasma density is displaced in the direction of the Ampere force, and the ion flux in this direction becomes substantially larger than the counter-directed ion flux.

  11. Characterization of the large area plane-symmetric low-pressure DC glow discharge

    NASA Astrophysics Data System (ADS)

    Avtaeva, S.; Gorokhovsky, V.; Myers, S.; Robertson, S.; Shunko, E.; Zembower, Z.

    2016-10-01

    Electron density and temperature as well as nitrogen dissociation degree in the low-pressure (10-50 mTorr) large area plane-symmetric DC glow discharge in Ar-N2 mixtures are studied by probes and spectral methods. Electron density measured by a hairpin probe is in good agreement with that derived from the intensity ratio of the N2 2nd positive system bands IC , 1 - 3/IC , 0 - 2 and from the intensity ratio of argon ions and atom lines IArII/IArI, while Langmuir probe data provides slightly higher values of electron density. Electron density in the low-pressure DC glow discharge varies with the discharge conditions in the limits of 108-1010 cm- 3. The concept of electron temperature can be used in low-pressure glow discharges with reservations. The intensity ratio of (0-0) vibrational bands of N2 1st negative and 2nd positive systems I391.4/I337.1 exhibits the electron temperature of 1.5-2.5 eV when argon fraction in the mixture is higher than nitrogen fraction and this ratio quickly increases with nitrogen fraction up to 10 eV in pure nitrogen. The electron temperature calculated from Langmuir probe I-V characteristics assuming a Maxwellian EEDF, gives Te 0.3-0.4 eV. In-depth analysis of the EEDF using the second derivative of Langmuir probe I-V characteristics shows that in a low-pressure glow discharge the EEDF is non-Maxwellian. The EEDF has two populations of electrons: the main background non-Maxwellian population of ;cold; electrons with the mean electron energy of 0.3-0.4 eV and the small Maxwellian population of ;hot; electrons with the mean electron energy of 1.0-2.5 eV. Estimations show that with electron temperature lower than 1 eV the rate of the direct electron impact ionization of N2 is low and the main mechanism of N2 ionization becomes most likely Penning and associative ionization. In this case, assumptions of the intensity ratio IN2+ , 391/IN2 , 337 method are violated. In the glow discharge, N2 dissociation degree reaches about 7% with the argon

  12. Atomic and molecular hydrogen gas temperatures in a low-pressure helicon plasma

    NASA Astrophysics Data System (ADS)

    Samuell, Cameron M.; Corr, Cormac S.

    2015-08-01

    Neutral gas temperatures in hydrogen plasmas are important for experimental and modelling efforts in fusion technology, plasma processing, and surface modification applications. To provide values relevant to these application areas, neutral gas temperatures were measured in a low pressure (< 10 mTorr) radiofrequency helicon discharge using spectroscopic techniques. The atomic and molecular species were not found to be in thermal equilibrium with the atomic temperature being mostly larger then the molecular temperature. In low power operation (< 1 kW), the molecular hydrogen temperature was observed to be linearly proportional to the pressure while the atomic hydrogen temperature was inversely proportional. Both temperatures were observed to rise linearly with input power. For high power operation (5-20 kW), the molecular temperature was found to rise with both power and pressure up to a maximum of approximately 1200 K. Spatially resolved measurements near a graphite target demonstrated localised cooling near the sample surface. The temporal evolution of the molecular gas temperature during a high power 1.1 ms plasma pulse was also investigated and found to vary considerably as a function of pressure.

  13. Study of flow fields induced by surface dielectric barrier discharge actuator in low-pressure air

    SciTech Connect

    Che, Xueke E-mail: st@mail.iee.ac.cn; Nie, Wansheng; Tian, Xihui; Hou, Zhiyong; He, Haobo; Zhou, Penghui; Zhou, Siyin; Yang, Chao; Shao, Tao E-mail: st@mail.iee.ac.cn

    2014-04-15

    Surface dielectric barrier discharge (SDBD) is a promising method for a flow control. Flow fields induced by a SDBD actuator driven by the ac voltage in static air at low pressures varying from 1.0 to 27.7 kPa are measured by the particle image velocimetry method. The influence of the applied ac voltage frequency and magnitude on the induced flow fields is studied. The results show that three different classes of flow fields (wall jet flow field, complex flow field, and vortex-shape flow field) can be induced by the SDBD actuator in the low-pressure air. Among them, the wall jet flow field is the same as the tangential jet at atmospheric pressure, which is, together with the vertical jet, the complex flow field. The vortex-shape flow field is composed of one vertical jet which points towards the wall and two opposite tangential jets. The complex and the vortex-shape flow fields can be transformed to the wall jet flow field when the applied ac voltage frequency and magnitude are changed. It is found that the discharge power consumption increases initially, decreases, and then increases again at the same applied ac voltage magnitude when the air pressure decreases. The tangential velocity of the wall jet flow field increases when the air pressure decreases. It is however opposite for the complex flow field. The variation of the applied ac voltage frequency influences differently three different flow fields. When the applied ac voltage magnitude increases at the same applied ac voltage frequency, the maximal jet velocity increases, while the power efficiency increases only initially and then decreases again. The discharge power shows either linear or exponential dependences on the applied ac voltage magnitude.

  14. Low-pressure planar magnetron discharge for surface deposition and nanofabrication

    SciTech Connect

    Baranov, Oleg; Romanov, Maxim; Wolter, Matthias; Kumar, Shailesh; Zhong Xiaoxia; Ostrikov, Kostya

    2010-05-15

    Current-voltage characteristics of the planar magnetron are studied experimentally and by numerical simulation. Based on the measured current-voltage characteristics, a model of the planar magnetron discharge is developed with the background gas pressure and magnetic field used as parameters. The discharge pressure was varied in a range of 0.7-1.7 Pa, the magnetic field of the magnetron was of 0.033-0.12 T near the cathode surface, the discharge current was from 1 to 25 A, and the magnetic field lines were tangential to the substrate surface in the region of the magnetron discharge ignition. The discharge model describes the motion of energetic secondary electrons that gain energy by passing the cathode sheath across the magnetic field, and the power required to sustain the plasma generation in the bulk. The plasma electrons, in turn, are accelerated in the electric field and ionize effectively the background gas species. The model is based on the assumption about the prevailing Bohm mechanism of electron conductivity across the magnetic field. A criterion of the self-sustained discharge ignition is used to establish the dependence of the discharge voltage on the discharge current. The dependence of the background gas density on the current is also observed from the experiment. The model is consistent with the experimental results.

  15. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, C.J.; Warner, D.K.

    1984-02-16

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an rf induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the rf heating coil is disposed around the outer tube above and adjacent to the water inlet.

  16. Low-pressure water-cooled inductively coupled plasma torch

    DOEpatents

    Seliskar, Carl J.; Warner, David K.

    1988-12-27

    An inductively coupled plasma torch is provided which comprises an inner tube, including a sample injection port to which the sample to be tested is supplied and comprising an enlarged central portion in which the plasma flame is confined; an outer tube surrounding the inner tube and containing water therein for cooling the inner tube, the outer tube including a water inlet port to which water is supplied and a water outlet port spaced from the water inlet port and from which water is removed after flowing through the outer tube; and an r.f. induction coil for inducing the plasma in the gas passing into the tube through the sample injection port. The sample injection port comprises a capillary tube including a reduced diameter orifice, projecting into the lower end of the inner tube. The water inlet is located at the lower end of the outer tube and the r.f. heating coil is disposed around the outer tube above and adjacent to the water inlet.

  17. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-10-15

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  18. The effects of plasma inhomogeneity on the nanoparticle coating in a low pressure plasma reactor

    NASA Astrophysics Data System (ADS)

    Pourali, N.; Foroutan, G.

    2015-10-01

    A self-consistent model is used to study the surface coating of a collection of charged nanoparticles trapped in the sheath region of a low pressure plasma reactor. The model consists of multi-fluid plasma sheath module, including nanoparticle dynamics, as well as the surface deposition and particle heating modules. The simulation results show that the mean particle radius increases with time and the nanoparticle size distribution is broadened. The mean radius is a linear function of time, while the variance exhibits a quadratic dependence. The broadening in size distribution is attributed to the spatial inhomogeneity of the deposition rate which in turn depends on the plasma inhomogeneity. The spatial inhomogeneity of the ions has strong impact on the broadening of the size distribution, as the ions contribute both in the nanoparticle charging and in direct film deposition. The distribution width also increases with increasing of the pressure, gas temperature, and the ambient temperature gradient.

  19. Progress in Development of Low Pressure High Density Plasmas on a Small Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Lopez, M.; Nolan, S.; Page, E. L.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Zuniga, J.

    2012-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (10^13 cm-3 and higher) at low pressure (.01 T) [1], for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range and employs an electromagnet to provide the external energy in the plasma's magnetic field to transition from the H-Mode to the Helicon Mode. An acceleration coil, currently under construction, will place the plasma in the vacuum chamber for optical and particle probing. With the initial construction phase complete and first plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel DAQ system capable 12 bits of sampling precision at 2 MS/s for plasma property investigations. Progress on the development of the RF coupling system, magnetic coils, and qualitative observations from the optical and electric diagnostics are to be reported. [4pt] [1] K. Toki, et al., Thin Solid Films 506-507 (2005).

  20. An improved process for high nutrition of germinated brown rice production: Low-pressure plasma.

    PubMed

    Chen, Hua Han; Chang, Hung Chia; Chen, Yu Kuo; Hung, Chien Lun; Lin, Su Yi; Chen, Yi Sheng

    2016-01-15

    Brown rice was exposed to low-pressure plasma ranging from 1 to 3kV for 10min. Treatment of brown rice in low-pressure plasma increases the germination percentage, seedling length, and water uptake in laboratory germination tests. Of the various treatments, 3-kV plasma exposure for 10min yielded the best results. In germinating brown rice, α-amylase activity was significantly higher in treated groups than in controls. The higher enzyme activity in plasma-treated brown rice likely triggers the rapid germination and earlier vigor of the seedlings. Low-pressure plasma also increased gamma-aminobutyric acid (GABA) levels from ∼19 to ∼28mg/100g. In addition, a marked increase in the antioxidant activity of brown rice was observed with plasma treatments compared to controls. The main finding of this study indicates that low-pressure plasma is effective at enhancing the growth and GABA accumulation of germinated brown rice, which can supply high nutrition to consumer.

  1. Low-Pressure Plasma Application for the Inactivation of the Seed-borne Pathogen Xanthomonas campestris.

    PubMed

    Nishioka, Terumi; Takai, Yuichiro; Mishima, Tomoko; Kawaradani, Mitsuo; Tanimoto, Hideo; Okada, Kiyotsugu; Misawa, Tatsuya; Kusakari, Shinichi

    2016-01-01

    The aim of this study was to investigate the effect of low-pressure plasma treatment on seed disinfection and the possible mechanisms underlying this effect. Seed-borne disease refers to plant diseases that are transmitted by seeds; seed disinfection is an important technique for prevention of such diseases. In this study, the effectiveness of low-pressure plasma treatment in the inactivation of the seed-borne plant pathogenic bacterium, Xanthomonas campestris, inoculated on cruciferous seeds, was evaluated. The highest inactivation effect was observed when the treatment voltage and argon gas flow rate were 5.5 kV and 0.5 L/min, respectively. The viable cell number of X. campestris was 6.6 log cfu/seed before plasma treatment, and decreased by 3.9 log after 5 min of treatment and by 6.6 log after 40 min. Ethidium monoazide treatment and quantitative real-time PCR results indicated that both the cell membrane and target DNA region were damaged following 5 min of plasma treatment. Although both heat and ozone were generated during the plasma treatment, the contribution of both factors to the inactivation of X. campestris was small by itself in our low-pressure plasma system. Overall, we have shown that our low-pressure plasma system has great applicability to controlling plant pathogenic bacterium contamination of seeds.

  2. Characterization of Dust-Plasma Interactions In Non-Thermal Plasmas Under Low Pressure and the Atmospheric Pressure

    NASA Astrophysics Data System (ADS)

    Bilik, Narula

    This dissertation research focuses on the experimental characterization of dust-plasma interactions at both low and atmospheric pressure. Its goal is to fill the knowledge gaps in (1) the fundamental research of low pressure dusty plasma electrons, which mainly relied on models with few experimental results; and (2) the nanoparticle synthesis process in atmospheric pressure uniform glow plasmas (APGDs), which is largely unexplored in spite of the economical advantage of APGDs in nanotechnology. The low pressure part of the dissertation research involves the development of a complete diagnostic process for an argon-siline capacitively-coupled RF plasma. The central part of the diagnostic process is the Langmuir probe measurement of the electron energy probability function (EEPF) in a dusty plasma, which has never been measured before. This is because the dust particles in the plasma cause severe probe surface contamination and consequently distort the measurement. This problem is solved by adding a solenoid-actuated shield structure to the Langmuir probe, which physically protects the Langmuir probe from the dust particle deposition to ensure reliable EEPF measurements. The dusty plasma EEPFs are characterized by lower electron density and higher electron temperature accompanied by a drop in the low energy electron population. The Langmuir probe measurement is complemented with other characterizations including the capacitive probe measurement, power measurement, and dust particle collection. The complete diagnostic process then gives a set of local plasma parameters as well as the details of the dust-electron interactions reflected in the EEPFs. This set of data serves as input for an analytical model of nanoparticle charging to yield the time evolution of nanoparticle size and charge in the dusty plasma. The atmospheric pressure part of the dissertation focuses on the design and development of an APGD for zinc oxide nanocrystal synthesis. One of the main

  3. Understanding of the importance of the spore coat structure and pigmentation in the Bacillus subtilis spore resistance to low-pressure plasma sterilization

    NASA Astrophysics Data System (ADS)

    Raguse, Marina; Fiebrandt, Marcel; Denis, Benjamin; Stapelmann, Katharina; Eichenberger, Patrick; Driks, Adam; Eaton, Peter; Awakowicz, Peter; Moeller, Ralf

    2016-07-01

    Low-pressure plasmas have been evaluated for their potential in biomedical and defense purposes. The sterilizing effect of plasma can be attributed to several active agents, including (V)UV radiation, charged particles, radical species, neutral and excited atoms and molecules, and the electric field. Spores of Bacillus subtilis were used as a bioindicator and a genetic model system to study the sporicidal effects of low-pressure plasma decontamination. Wild-type spores, spores lacking the major protective coat layers (inner, outer, and crust), pigmentation-deficient spores or spore impaired in encasement (a late step in coat assembly) were systematically tested for their resistance to low-pressure argon, hydrogen, and oxygen plasmas with and without admixtures. We demonstrate that low-pressure plasma discharges of argon and oxygen discharges cause significant physical damage to spore surface structures as visualized by atomic force microscopy. Spore resistance to low-pressure plasma was primarily dependent on the presence of the inner, and outer spore coat layers as well as spore encasement, with minor or less importance of the crust and spore pigmentation, whereas spore inactivation itself was strongly influenced by the gas composition and operational settings.

  4. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, R. W.; Duke-Tinson, O.; Nolan, S.; Page, E. J.; Lopez, M.; Karama, J.; Paolino, R. N.; Schlank, C.; Sherman, J.; Stutzman, B. S.; Crilly, P. B.

    2013-10-01

    At the Coast Guard Academy Plasma Lab (CGAPL), a small Helicon Plasma Experiment (HPX) is being developed to utilize the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T), for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. With the initial construction phase complete and repeatable plasmas attained, HPX is constructing triple and mach particle probes, magnetic probes, and a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY12.

  5. Physical and chemical properties of low-pressure argon-chlorine dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Barjasteh, Azadeh; Eslami, Esmaeil

    2016-03-01

    The influence of adding chlorine on the characteristics of a dielectric barrier discharge in Argon is investigated on the basis of a one-dimensional fluid model. The spatio-temporal characteristics of the discharge are obtained by applying a sinusoidal voltage with a frequency and amplitude of 7 kHz and 350 V, respectively. The study shows that the discharge has a homogeneous feature across the electrodes and has only one current pulse per half cycle of the applied voltage. The calculated electric field and electric potential as well as species number densities indicated that the discharge is in glow mode, and adding chlorine as electronegative gas up to 50% does not change its mode. It is observed that the most abundant negative species are C l - ions even in low additive chlorine. As a result, the maximum of plasma electronegativity takes place at 30% amounts of chlorine additive. The study of plasma radiations on the discharge gap shows that the main spontaneous emissions are observed at the wavelengths of 128.5 nm and 258 nm due to de-excitation of A r C l * and C l2 * molecules, respectively. Between different Ar/Cl2 mixtures, 0.99 A r - 0.01 C l 2 has the nearly uniform radiation in the positive column region.

  6. Investigation of the DSMC Approach for Ion/neutral Species in Modeling Low Pressure Plasma Reactor

    SciTech Connect

    Deng Hao; Li, Z.; Levin, D.; Gochberg, L.

    2011-05-20

    Low pressure plasma reactors are important tools for ionized metal physical vapor deposition (IMPVD), a semiconductor plasma processing technology that is increasingly being applied to deposit Cu seed layers on semiconductor surfaces of trenches and vias with the high aspect ratio (e.g., >5:1). A large fraction of ionized atoms produced by the IMPVD process leads to an anisotropic deposition flux towards the substrate, a feature which is critical for attaining a void-free and uniform fill. Modeling such devices is challenging due to their high plasma density, reactive environment, but low gas pressure. A modular code developed by the Computational Optical and Discharge Physics Group, the Hybrid Plasma Equipment Model (HPEM), has been successfully applied to the numerical investigations of IMPVD by modeling a hollow cathode magnetron (HCM) device. However, as the development of semiconductor devices progresses towards the lower pressure regime (e.g., <5 mTorr), the breakdown of the continuum assumption limits the application of the fluid model in HPEM and suggests the incorporation of the kinetic method, such as the direct simulation Monte Carlo (DSMC), in the plasma simulation.The DSMC method, which solves the Boltzmann equation of transport, has been successfully applied in modeling micro-fluidic flows in MEMS devices with low Reynolds numbers, a feature shared with the HCM. Modeling of the basic physical and chemical processes for ion/neutral species in plasma have been developed and implemented in DSMC, which include ion particle motion due to the Lorentz force, electron impact reactions, charge exchange reactions, and charge recombination at the surface. The heating of neutrals due to collisions with ions and the heating of ions due to the electrostatic field will be shown to be captured by the DSMC simulations. In this work, DSMC calculations were coupled with the modules from HPEM so that the plasma can be self-consistently solved. Differences in the Ar

  7. "Virtual IED sensor" at an rf-biased electrode in low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bogdanova, M. A.; Lopaev, D. V.; Zyryanov, S. M.; Rakhimov, A. T.

    2016-07-01

    Energy distribution and the flux of the ions coming on a surface are considered as the key-parameters in anisotropic plasma etching. Since direct ion energy distribution (IED) measurements at the treated surface during plasma processing are often hardly possible, there is an opportunity for virtual ones. This work is devoted to the possibility of such indirect IED and ion flux measurements at an rf-biased electrode in low-pressure rf plasma by using a "virtual IED sensor" which represents "in-situ" IED calculations on the absolute scale in accordance with a plasma sheath model containing a set of measurable external parameters. The "virtual IED sensor" should also involve some external calibration procedure. Applicability and accuracy of the "virtual IED sensor" are validated for a dual-frequency reactive ion etching (RIE) inductively coupled plasma (ICP) reactor with a capacitively coupled rf-biased electrode. The validation is carried out for heavy (Ar) and light (H2) gases under different discharge conditions (different ICP powers, rf-bias frequencies, and voltages). An EQP mass-spectrometer and an rf-compensated Langmuir probe (LP) are used to characterize plasma, while an rf-compensated retarded field energy analyzer (RFEA) is applied to measure IED and ion flux at the rf-biased electrode. Besides, the pulsed selfbias method is used as an external calibration procedure for ion flux estimating at the rf-biased electrode. It is shown that pulsed selfbias method allows calibrating the IED absolute scale quite accurately. It is also shown that the "virtual IED sensor" based on the simplest collisionless sheath model allows reproducing well enough the experimental IEDs at the pressures when the sheath thickness s is less than the ion mean free path λi (s < λi). At higher pressure (when s > λi), the difference between calculated and experimental IEDs due to ion collisions in the sheath is observed in the low energy range. The effect of electron impact ionization

  8. Study of the low-pressure plasma effect on polypropylene nonwovens

    SciTech Connect

    Lopez, R.; Pascual, M.; Calvo, O.

    2010-06-02

    In this work we have used low-pressure plasma with a gas based on methane and oxygen mixture to improve wettability and durability of a PP nonwoven fabrics. The obtained results show good durability with the use of methane-oxygen plasma mixture gas. The effects of the plasma are similar to a plasmapolymerization process but in this case we obtain hydrophilic properties with high durability. The surface does not suffer important changes and the roughness of the material remains constant.

  9. Progress on Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Duke-Tinson, Omar; Frank, John; Karama, Jackson; Hopson, Jordan; Paolino, Richard; Sandri, Eva; Sherman, Justin; Wright, Erin; Turk, Jeremy

    2015-11-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas (~ 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15.

  10. Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phillip; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin

    2014-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (10 cm-3 and higher) at low pressure (.01 T) of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas induced by an RF frequency in the 10 to 70 MHz range. We employ a 400 to 1000 Gauss electromagnet that promotes energy conservation in the plasma via external energy production in the magnetic field facilitated by decreased inertial effects, in order to reach the Helicon Mode. HPX is completing construction of triple and mach particle probes, magnetic probes, and is designing a single point 300 W Thompson Scattering system backed by a 32-channel Data Acquisition (DAQ) system capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations. Progress on the development of the RF coupling system, Helicon Mode development, magnetic coils, and observations from the optical, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY13.

  11. Updates to the Development of Low Pressure High Density Plasmas on the Helicon Plasma Experiment (HPX)

    NASA Astrophysics Data System (ADS)

    James, Royce; Azzari, Phil; Crilly, Paul; Duke-Tinson, Omar; Karama, Jackson; Paolino, Richard; Schlank, Carter; Sherman, Justin; Emami, Tooran; Turk, Jeremy

    2016-10-01

    The small Helicon Plasma Experiment (HPX) at the Coast Guard Academy Plasma Lab (CGAPL), continues to progress toward utilizing the reputed high densities (1013 cm-3 and higher) at low pressure (.01 T) [1] of helicons, for eventual high temperature and density diagnostic development in future laboratory investigations. HPX is designed to create repeatedly stable plasmas ( 20 - 30 ns) induced by an RF frequency in the 10 to 70 MHz range. HPX is constructing RF field corrected Langmuir probe raw data will be collected and used to measure the plasma's density, temperature, and potentially the structure and behavior during experiments. Our 2.5 J YAG laser Thomson Scattering system backed by a 32-channel Data Acquisition (DAQ) system is capable 12 bits of sampling precision at 2 MS/s for HPX plasma property investigations are being developed and tested. Progress on the construction of the RF coupling system, Helicon Mode development, and magnetic coils, along with observations from the Thomson Scattering, particle, and electromagnetic scattering diagnostics will be reported. Supported by U.S. DEPS Grant [HEL-JTO] PRWJFY15-16.

  12. 2D laser-collision induced fluorescence in low-pressure argon discharges

    SciTech Connect

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Td to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.

  13. 2D laser-collision induced fluorescence in low-pressure argon discharges

    DOE PAGES

    Barnat, E. V.; Weatherford, B. R.

    2015-09-25

    Development and application of laser-collision induced fluorescence (LCIF) diagnostic technique is presented for the use of interrogating argon plasma discharges. Key atomic states of argon utilized for the LCIF method are identified. A simplified two-state collisional radiative model is then used to establish scaling relations between the LCIF, electron density, and reduced electric fields (E/N). The procedure used to generate, detect and calibrate the LCIF in controlled plasma environments is discussed in detail. LCIF emanating from an argon discharge is then presented for electron densities spanning 109 e cm–3 to 1012 e cm–3 and reduced electric fields spanning 0.1 Tdmore » to 40 Td. Lastly, application of the LCIF technique for measuring the spatial distribution of both electron densities and reduced electric field is demonstrated.« less

  14. Low-pressure microwave plasma ultraviolet lamp for water purification and ozone applications

    NASA Astrophysics Data System (ADS)

    Al-Shamma'a, A. I.; Pandithas, I.; Lucas, J.

    2001-09-01

    Low-pressure mercury lamps are commonly used for germicidal applications. The germicidal effect is due to the emission of light at 254 nm, which leads to the destruction of the most waterborne bacteria and viruses. The microwave plasma ultraviolet (UV) lamp (MPUVL) is a new technology for generating a high-intensity UV light and that can be also controlled to operate at 185 nm irradiation is in air at this wavelength produces ozone. The microwave power is injected into a resonant cavity and the surface wave excitation takes place within the cavity through that part of the discharge tube (fused silica) protruding inside it. The MPUVL has many advantages over conventional lamps, which are limited to an output power in the region of 30 W m-1, while MPUVL can deliver any amount of power per unit length and the tube can be of any shape, length or diameter. This paper describes the design of the MPUVL and compares its efficiency with that of conventional lamps through spectral analysis. Other results, which include the effects of temperature and different power inputs, are also discussed.

  15. Experimental investigations of driving frequency effect in low-pressure capacitively coupled oxygen discharges

    SciTech Connect

    Liu, Jia; Liu, Yong-Xin; Liu, Gang-Hu; Gao, Fei; Wang, You-Nian

    2015-04-14

    The effect of driving frequency on the electron density is investigated in low-pressure capacitively coupled oxygen plasmas by utilizing a floating hairpin probe. The power absorbed by the plasma is investigated and it is found that the power lost in the matching network can reach 50% or higher under certain conditions. The effect of driving frequency on the electron density is studied from two aspects, i.e., constant absorbed power and electrode voltage. In the former case, the electron density increases with the driving frequency increasing from 13.56 to 40.68 MHz and slightly changes depending on the gas pressures with the frequency further increasing to 100 MHz. In the latter case, the electron density rapidly increases when the driving frequency increases from 13.56 to 40.68 MHz, and then decreases with the frequency further increasing to 100 MHz. The electron series resonance is observed at 40.68 MHz and can be attributed to the higher electron density. And the standing wave effect also plays an important role in increasing electron density at 100 MHz and 2.6 Pa.

  16. Generation of ion-acoustic waves in an inductively coupled, low-pressure discharge lamp

    SciTech Connect

    Camparo, J. C.; Klimcak, C. M.

    2006-04-15

    For a number of years it has been known that the alkali rf-discharge lamps used in atomic clocks can exhibit large amplitude intensity oscillations. These oscillations arise from ion-acoustic plasma waves and have typically been associated with erratic clock behavior. Though large amplitude ion-acoustic plasma waves are clearly deleterious for atomic clock operation, it does not follow that small amplitude oscillations have no utility. Here, we demonstrate two easily implemented methods for generating small amplitude ion-acoustic plasma waves in alkali rf-discharge lamps. Furthermore, we demonstrate that the frequency of these waves is proportional to the square root of the rf power driving the lamp and therefore that their examination can provide an easily accessible parameter for monitoring and controlling the lamp's plasma conditions. This has important consequences for precise timekeeping, since the atomic ground-state hyperfine transition, which is the heart of the atomic clock signal, can be significantly perturbed by changes in the lamp's output via the ac-Stark shift.

  17. Mass spectrometry of positive ions in capacitively coupled low pressure RF discharges in oxygen with water impurities

    NASA Astrophysics Data System (ADS)

    Stefanović, Ilija; Stojanović, Vladimir; Boulmer-Leborgne, Chantal; Lecas, Thomas; Kovacevic, Eva; Berndt, Johannes

    2016-07-01

    A capacitively coupled RF oxygen discharge is studied by means of mass spectroscopy. Mass spectra of neutral and positive species are measured in the mid plane between the electrodes at different distances between plasma and mass-spectrometer orifice. In the case of positive ions, as expected, the largest flux originates from \\text{O}2+ . However, a significant number of impurities are detected, especially for low input powers and larger distances. The most abundant positive ions (besides \\text{O}2+ ) are \\text{N}{{\\text{O}}+}, \\text{NO}2+ , {{\\text{H}}+}≤ft({{\\text{H}}2}\\text{O}\\right) , and {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}2} . In particular, for the case of hydrated hydronium ions {{\\text{H}}+}{{≤ft({{\\text{H}}2}\\text{O}\\right)}n} (n  =  1, 2) a surprisingly large flux (for low pressure plasma conditions) is detected. Another interesting fact concerns the {{\\text{H}}2}{{\\text{O}}+} ions. Despite the relatively high ammount of water impurities {{\\text{H}}2}{{\\text{O}}+} ions are present only in traces. The reaction mechanisms leading to the production of the observed ions, especially the hydrated hydronium ions are discussed.

  18. Modelling Of Generation And Growth Of Nanoparticles In Low-Pressure Plasmas

    SciTech Connect

    Gordiets, B. F.

    2008-09-07

    Theoretical kinetic models of generation and growth of clusters and nanoparticles in low-pressure plasma are briefly rewired. The relatively simple kinetic model is discussed more detail. Simple formulas and equations are given for monomer density; cluster dimension distribution; critical cluster dimension; rate of particle production; particle density and average dimension as well as plasma characteristics. The analytical formula is also obtained for the time delay of the measured LIPEE signal in the 'Laser Induced Particle Explosive Evaporation' experimental method.

  19. Life modeling of atmospheric and low pressure plasma-sprayed thermal-barrier coating

    NASA Technical Reports Server (NTRS)

    Miller, R. A.; Argarwal, P.; Duderstadt, E. C.

    1984-01-01

    The cycles-to-failure vs cycle duration data for three different thermal barrier coating systems, which consist of atmospheric pressure plasma-sprayed ZrO2-8 percent Y2O3 over similarly deposited or low pressure plasma sprayed Ni-base alloys, are presently analyzed by means of the Miller (1980) oxidation-based life model. Specimens were tested at 1100 C for heating cycle lengths of 1, 6, and 20 h, yielding results supporting the model's value.

  20. Characterization of Low Pressure Cold Plasma in the Cleaning of Contaminated Surfaces

    NASA Technical Reports Server (NTRS)

    Lanz, Devin Garrett; Hintze, Paul E.

    2016-01-01

    The characterization of low pressure cold plasma is a broad topic which would benefit many different applications involving such plasma. The characterization described in this paper focuses on cold plasma used as a medium in cleaning and disinfection applications. Optical Emission Spectroscopy (OES) and Mass Spectrometry (MS) are the two analytical methods used in this paper to characterize the plasma. OES analyzes molecules in the plasma phase by displaying the light emitted by the plasma molecules on a graph of wavelength vs. intensity. OES was most useful in identifying species which may interact with other molecules in the plasma, such as atomic oxygen or hydroxide radicals. Extracting useful data from the MS is done by filtering out the peaks generated by expected molecules and looking for peaks caused by foreign ones leaving the plasma chamber. This paper describes the efforts at setting up and testing these methods in order to accurately and effectively characterize the plasma.

  1. Linear electromagnetic excitation of an asymmetric low pressure capacitive discharge with unequal sheath widths

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.; Lichtenberg, A. J.; Kawamura, E.; Chabert, P.

    2016-01-01

    It is well-known that standing waves having radially center-high radio frequency (rf) voltage profiles exist in high frequency capacitive discharges. In this work, we determine the symmetric and antisymmetric radially propagating waves in a cylindrical capacitive discharge that is asymmetrically driven at the lower electrode by an rf voltage source. The discharge is modeled as a uniform bulk plasma which at lower frequencies has a thicker sheath at the smaller area powered electrode and a thinner sheath at the larger area grounded electrode. These are self-consistently determined at a specified density using the Child law to calculate sheath widths and the electron power balance to calculate the rf voltage. The fields and the system resonant frequencies are determined. The center-to-edge voltage ratio on the powered electrode is calculated versus frequency, and central highs are found near the resonances. The results are compared with simulations in a similar geometry using a two-dimensional hybrid fluid-analytical code, giving mainly a reasonable agreement. The analytic model may be useful for finding good operating frequencies for a given discharge geometry and power.

  2. Linear electromagnetic excitation of an asymmetric low pressure capacitive discharge with unequal sheath widths

    SciTech Connect

    Lieberman, M. A. Lichtenberg, A. J.; Kawamura, E.; Chabert, P.

    2016-01-15

    It is well-known that standing waves having radially center-high radio frequency (rf) voltage profiles exist in high frequency capacitive discharges. In this work, we determine the symmetric and antisymmetric radially propagating waves in a cylindrical capacitive discharge that is asymmetrically driven at the lower electrode by an rf voltage source. The discharge is modeled as a uniform bulk plasma which at lower frequencies has a thicker sheath at the smaller area powered electrode and a thinner sheath at the larger area grounded electrode. These are self-consistently determined at a specified density using the Child law to calculate sheath widths and the electron power balance to calculate the rf voltage. The fields and the system resonant frequencies are determined. The center-to-edge voltage ratio on the powered electrode is calculated versus frequency, and central highs are found near the resonances. The results are compared with simulations in a similar geometry using a two-dimensional hybrid fluid-analytical code, giving mainly a reasonable agreement. The analytic model may be useful for finding good operating frequencies for a given discharge geometry and power.

  3. Experimental observation of standing wave effect in low-pressure very-high-frequency capacitive discharges

    SciTech Connect

    Liu, Yong-Xin; Gao, Fei; Liu, Jia; Wang, You-Nian

    2014-07-28

    Radial uniformity measurements of plasma density were carried out by using a floating double probe in a cylindrical (21 cm in electrode diameter) capacitive discharge reactor driven over a wide range of frequencies (27–220 MHz). At low rf power, a multiple-node structure of standing wave effect was observed at 130 MHz. The secondary density peak caused by the standing wave effect became pronounced and shifts toward the axis as the driving frequency further to increase, indicative of a much more shortened standing-wave wavelength. With increasing rf power, the secondary density peak shift toward the radial edge, namely, the standing-wave wavelength was increased, in good qualitative agreement with the previous theory and simulation results. At higher pressures and high frequencies, the rf power was primarily deposited at the periphery of the electrode, due to the fact that the waves were strongly damped as they propagated from the discharge edge into the center.

  4. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Pustylnik, M. Y.; Fink, M. A.; Morfill, G. E.

    2016-06-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud.

  5. The role of thermal energy accommodation and atomic recombination probabilities in low pressure oxygen plasmas

    NASA Astrophysics Data System (ADS)

    Gibson, Andrew Robert; Foucher, Mickaël; Marinov, Daniil; Chabert, Pascal; Gans, Timo; Kushner, Mark J.; Booth, Jean-Paul

    2017-02-01

    Surface interaction probabilities are critical parameters that determine the behaviour of low pressure plasmas and so are crucial input parameters for plasma simulations that play a key role in determining their accuracy. However, these parameters are difficult to estimate without in situ measurements. In this work, the role of two prominent surface interaction probabilities, the atomic oxygen recombination coefficient γ O and the thermal energy accommodation coefficient α E in determining the plasma properties of low pressure inductively coupled oxygen plasmas are investigated using two-dimensional fluid-kinetic simulations. These plasmas are the type used for semiconductor processing. It was found that α E plays a crucial role in determining the neutral gas temperature and neutral gas density. Through this dependency, the value of α E also determines a range of other plasma properties such as the atomic oxygen density, the plasma potential, the electron temperature, and ion bombardment energy and neutral-to-ion flux ratio at the wafer holder. The main role of γ O is in determining the atomic oxygen density and flux to the wafer holder along with the neutral-to-ion flux ratio. It was found that the plasma properties are most sensitive to each coefficient when the value of the coefficient is small causing the losses of atomic oxygen and thermal energy to be surface interaction limited rather than transport limited.

  6. Determination of the Electron Temperature in a Low Pressure Dusty Radiofrequency Methane Plasma

    SciTech Connect

    Massereau-Guilbaud, Veronique; Geraud-Grenier, Isabelle; Plain, Andre

    2011-11-29

    The particles are obtained by PECVD in radiofrequency (13.56 MHz) low pressure plasmas (90%CH4-10%Ar). During the particle growth, the particles trap electrons and modify the EEDF, and the electrical and optical characteristics of the plasma. The plasma is analyzed by Optical Emission Spectroscopy. The excitation temperature and the electron temperature are calculated from the H{sub {alpha}}, H{sub {beta}}, H{sub {gamma}} Balmer hydrogen line intensities and from Ar ones. The temporal evolutions of the temperatures during the particle formation are compared and discussed.

  7. Diagnostics of plasma-biological surface interactions in low pressure and atmospheric pressure plasmas

    NASA Astrophysics Data System (ADS)

    Ishikawa, Kenji; Hori, Masaru

    2014-08-01

    Mechanisms of plasma-surface interaction are required to understand in order to control the reactions precisely. Recent progress in atmospheric pressure plasma provides to apply as a tool of sterilization of contaminated foodstuffs. To use the plasma with safety and optimization, the real time in situ detection of free radicals - in particular dangling bonds by using the electron-spin-resonance (ESR) technique has been developed because the free radical plays important roles for dominantly biological reactions. First, the kinetic analysis of free radicals on biological specimens such as fungal spores of Penicillium digitatum interacted with atomic oxygen generated plasma electric discharge. We have obtained information that the in situ real time ESR signal from the spores was observed and assignable to semiquinone radical with a g-value of around 2.004 and a line width of approximately 5G. The decay of the signal was correlated with a link to the inactivation of the fungal spore. Second, we have studied to detect chemical modification of edible meat after the irradiation. Using matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy (MALDI-TOF-MS) and ESR, signals give qualification results for chemical changes on edible liver meat. The in situ real-time measurements have proven to be a useful method to elucidate plasma-induced surface reactions on biological specimens.

  8. Utilization of Low-Pressure Plasma to Inactivate Bacterial Spores on Stainless Steel Screws

    PubMed Central

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther

    2013-01-01

    Abstract A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes. Key Words: Bacillus spores—Contamination—Spacecraft hardware—Plasma sterilization—Planetary protection. Astrobiology 13, 597–606. PMID:23768085

  9. Simulation of rarefied low pressure RF plasma flow around the sample

    NASA Astrophysics Data System (ADS)

    Zheltukhin, V. S.; Shemakhin, A. Yu

    2017-01-01

    The paper describes a mathematical model of the flow of radio frequency plasma at low pressure. The hybrid mathematical model includes the Boltzmann equation for the neutral component of the RF plasma, the continuity and the thermal equations for the charged component. Initial and boundary conditions for the corresponding equations are described. The electron temperature in the calculations is 1-4 eV, atoms temperature in the plasma clot is (3-4) • 103 K, in the plasma jet is (3.2-10) • 102 K, the degree of ionization is 10-7-10-5, electron density is 1015-1019 m-3. For calculations plasma parameters is developed soft package on C++ program language, that uses the OpenFOAM library package. Simulations for the vacuum chamber in the presence of a sample and the free jet flow were carried out.

  10. Direct current-self-sustained non-ambipolar plasma at low pressure

    SciTech Connect

    Chen, Zhiying; Chen, Lee; Funk, Merritt

    2013-12-16

    For decades, non-ambipolar diffusion has been observed and studied in laboratory plasmas that contain a double layer. However, self-sustained non-ambipolar plasma has yet to be demonstrated. This article reports the method and results for achieving such a condition at low pressure, with a wide power range (as low as 6 W). The findings reveal that to achieve self-sustained non-ambipolar plasma, both the balance between electron and ion heating and the space-potential gradient are critical. The plasma reactor developed in this work has potential applications that include microelectronic surface processing and space propulsion, via space-charge-neutral plasma-beam thruster, when operated in the high power regime.

  11. Low-pressure microwave plasma nucleation and deposition of diamond films

    NASA Technical Reports Server (NTRS)

    Shing, Y. H.; Pool, F. S.; Rich, D. H.

    1992-01-01

    Low-pressure microwave plasma nucleation and deposition of diamond films were investigated in the pressure range 10-mtorr to 10 torr, at substrate temperatures 400-750 C and with CH4 and O2 concentrations in H2 plasma of 2-15 percent and 2-10 percent, respectively. The experiments were performed in a microwave plasma system consisting of a microwave plasma chamber, a downstream deposition chamber, and an RF induction heated sample stage. Scanning electron microscopy of diamond films deposited at 600 C with 5 percent CH4 and 5 percent O2 in H2 plasmas showed high-quality well faceted crystallites of 1/2 micron size. Cathodoluminescence measurements of these films showed very few nitrogen impurities and no detectable silicon impurities.

  12. Separation control in low pressure turbines using plasma actuators with passing wakes

    NASA Astrophysics Data System (ADS)

    Burman, Debashish

    A Dielectric Barrier Discharge (DBD) plasma actuator is operated in flow over the suction surface of a Pack-B Low Pressure Turbine (LPT) airfoil at a Reynolds number of 50,000 (based on exit velocity and suction surface length) and inlet free-stream turbulence intensity of 2.5%. Preliminary characterization studies were made of the effect of varying actuator pulsing frequency and duty cycle, actuator edge effects, and orientation of the actuator with the flow. Flow control was demonstrated with the actuator imparting momentum opposite to the stream-wise flow direction, showing that it is possible to use disturbances alone to destabilize the flow and effect transition. No frequencies of strong influence were found over the range tested, indicating that a broad band of effective frequencies exists. Edge effects were found to considerably enhance separation control. Total pressure measurements of the flow without passing wakes were taken using a glass total-pressure tube. Corrections for streamline displacement due to shear and wall effects were made, and comparisons with previous hot-wire measurements were used to validate data. Performance features of conventional two-electrode and a novel three-electrode actuator configuration were compared. Hot-wire anemometry was used to take time-varying ensemble-averaged near-wall velocity measurements of the flow with periodic passing wakes. Corrections were made for near-wall effects, temperature effects, and interference of the electric field. The wakes were generated by a wake generator mechanism located upstream of the airfoil passage. The near-suction-surface total pressure field (flow without wakes) and velocity field (flow with wakes) in the trailing part of the airfoil passage, and the wall-normal gradient of these quantities, were used to demonstrate effective prevention of flow separation using the plasma actuator. Both flows (with and without passing wakes) showed fully attached flow (or very thin separation zones

  13. Utilization of low-pressure plasma to inactivate bacterial spores on stainless steel screws.

    PubMed

    Stapelmann, Katharina; Fiebrandt, Marcel; Raguse, Marina; Awakowicz, Peter; Reitz, Günther; Moeller, Ralf

    2013-07-01

    A special focus area of planetary protection is the monitoring, control, and reduction of microbial contaminations that are detected on spacecraft components and hardware during and after assembly. In this study, wild-type spores of Bacillus pumilus SAFR-032 (a persistent spacecraft assembly facility isolate) and the laboratory model organism B. subtilis 168 were used to study the effects of low-pressure plasma, with hydrogen alone and in combination with oxygen and evaporated hydrogen peroxide as a process gas, on spore survival, which was determined by a colony formation assay. Spores of B. pumilus SAFR-032 and B. subtilis 168 were deposited with an aseptic technique onto the surface of stainless steel screws to simulate a spore-contaminated spacecraft hardware component, and were subsequently exposed to different plasmas and hydrogen peroxide conditions in a very high frequency capacitively coupled plasma reactor (VHF-CCP) to reduce the spore burden. Spores of the spacecraft isolate B. pumilus SAFR-032 were significantly more resistant to plasma treatment than spores of B. subtilis 168. The use of low-pressure plasma with an additional treatment of evaporated hydrogen peroxide also led to an enhanced spore inactivation that surpassed either single treatment when applied alone, which indicates the potential application of this method as a fast and suitable way to reduce spore-contaminated spacecraft hardware components for planetary protection purposes.

  14. Transport Equations Resolution By N-BEE Anti-Dissipative Scheme In 2D Model Of Low Pressure Glow Discharge

    SciTech Connect

    Kraloua, B.; Hennad, A.

    2008-09-23

    The aim of this paper is to determine electric and physical properties by 2D modelling of glow discharge low pressure in continuous regime maintained by term constant source. This electric discharge is confined in reactor plan-parallel geometry. This reactor is filled by Argon monatomic gas. Our continuum model the order two is composed the first three moments the Boltzmann's equations coupled with Poisson's equation by self consistent method. These transport equations are discretized by the finite volumes method. The equations system is resolved by a new technique, it is about the N-BEE explicit scheme using the time splitting method.

  15. A 2-D Self-Consistent DSMC Model for Chemically Reacting Low Pressure Plasma Reactors

    SciTech Connect

    Bartel, Timothy J.; Economou, Demetre; Johannes, Justine E.

    1999-06-17

    This paper will focus on the methodology of using a 2D plasma Direct Simulation Monte Carlo technique to simulate the species transport in an inductively coupled, low pressure, chemically reacting plasma system. The pressure in these systems is typically less than 20 mtorr with plasma densities of approximately 10{sup 17} {number_sign}/m{sup 3} and an ionization level of only 0.1%. This low ionization level tightly couples the neutral, ion, and electron chemistries and interactions in a system where the flow is subsonic. We present our strategy and compare simulation results to experimental data for Cl{sub 2} in a Gaseous Electronics Conference (GEC) reference cell modified with an inductive coil.

  16. Sterilization of beehive material with a double inductively coupled low pressure plasma

    NASA Astrophysics Data System (ADS)

    Priehn, M.; Denis, B.; Aumeier, P.; Kirchner, W. H.; Awakowicz, P.; Leichert, L. I.

    2016-09-01

    American Foulbrood is a severe, notifiable disease of the honey bee. It is caused by infection of bee larvae with spores of the gram-positive bacterium Paenibacillus larvae. Spores of this organism are found in high numbers in an infected hive and are highly resistant to physical and chemical inactivation methods. The procedures to rehabilitate affected apiaries often result in the destruction of beehive material. In this study we assess the suitability of a double inductively coupled low pressure plasma as a non-destructive, yet effective alternative inactivation method for bacterial spores of the model organism Bacillus subtilis on beehive material. Plasma treatment was able to effectively remove spores from wax, which, under protocols currently established in veterinary practice, normally is destroyed by ignition or autoclaved for sterilization. Spores were removed from wooden surfaces with efficacies significantly higher than methods currently used in veterinary practice, such as scorching by flame treatment. In addition, we were able to non-destructively remove spores from the highly delicate honeycomb wax structures, potentially making treatment of beehive material with double inductively coupled low pressure plasma part of a fast and reliable method to rehabilitate infected bee colonies with the potential to re-use honeycombs.

  17. The surface chemistry resulting from low-pressure plasma treatment of polystyrene: The effect of residual vessel bound oxygen

    NASA Astrophysics Data System (ADS)

    Dhayal, Marshal; Alexander, Morgan R.; Bradley, James W.

    2006-09-01

    The surface chemistry of plasma treated polystyrene samples has been studied in a specially designed low-pressure argon discharge system incorporating in situ XPS analysis. By using an electrostatic grid biasing technique, the plasma source can also be used in a mode preventing ion interactions with the sample. The system, which utilizes a vacuum transfer chamber between plasma and XPS analysis has allowed us to differentiate between the level of oxygen incorporated at the polystyrene surface from residual gas during treatment and that from the exposure of the treated sample to the laboratory atmosphere. Using typical base pressures of about 5 × 10 -3 Pa (4 × 10 -5 Torr) the XPS results show that significant oxygen surface incorporation resulted from oxygen containing species in the plasma itself (i.e. water vapour with 2 × 10 -3 Pa partial pressure). The surface concentration of O was measured at 7.6 at.%. Subsequent atmospheric exposure of the treated samples resulted in only a small increase (of 0.6 at.%) in oxygen incorporation in the form of acid anhydride functionalities. XPS measurements of PS samples exposed to plasmas with no ion-surface component (i.e. exposure from VUV, UV and excited neutral species only) showed no appreciable change in oxygen incorporation compared to those with low-energy ion bombardment from the plasma (<20 eV). Given the energetics of the remaining bombarding species, it indicates that VUV radiation may be chiefly responsible for the production of free radical sites in this discharge regime.

  18. Diagnostics of surface wave driven low pressure plasmas based on indium monoiodide-argon system

    NASA Astrophysics Data System (ADS)

    Ögün, C. M.; Kaiser, C.; Kling, R.; Heering, W.

    2015-06-01

    Indium monoiodide is proposed as a suitable alternative to hazardous mercury, i.e. the emitting component inside the compact fluorescent lamps (CFL), with comparable luminous efficacy. Indium monoiodide-argon low pressure lamps are electrodelessly driven with surface waves, which are launched and coupled into the lamp by the ‘surfatron’, a microwave coupler optimized for an efficient operation at a frequency of 2.45 GHz. A non intrusive diagnostic method based on spatially resolved optical emission spectroscopy is employed to characterize the plasma parameters. The line emission coefficients of the plasma are derived by means of Abel’s inversion from the measured spectral radiance data. The characteristic plasma parameters, e.g. electron temperature and density are determined by comparing the experimentally obtained line emission coefficients with simulated ones from a collisional-radiative model. Additionally, a method to determine the absolute plasma efficiency via irradiance measurements without any goniometric setup is presented. In this way, the relationship between the plasma efficiency and the plasma parameters can be investigated systematically for different operating configurations, e.g. electrical input power, buffer gas pressure and cold spot temperature. The performance of indium monoiodide-argon plasma is compared with that of conventional CFLs.

  19. One-dimensional Ar-SF{sub 6} hydromodel at low-pressure in e-beam generated plasmas

    SciTech Connect

    Petrov, George M. Boris, David R.; Petrova, Tzvetelina B.; Walton, Scott G.

    2016-03-15

    A one-dimensional steady-state hydrodynamic model of electron beam generated plasmas produced in Ar-SF{sub 6} mixtures at low pressure in a constant magnetic field was developed. Simulations were performed for a range of SF{sub 6} partial pressures at constant 30 mTorr total gas pressure to determine the spatial distribution of species densities and fluxes. With the addition of small amount of SF{sub 6} (∼1%), the confining electrostatic field sharply decreases with respect to the pure argon case. This effect is due to the applied magnetic field inhibiting electron diffusion. The hallmark of electronegative discharge plasmas, positive ion—negative ion core and positive ion—electron edge, was not observed. Instead, a plasma with large electronegativity (∼100) is formed throughout the volume, and only a small fraction (≈30%) of the parent SF{sub 6} molecules were dissociated to F{sub 2}, SF{sub 2}, and SF{sub 4}. Importantly, F radical densities were found to be very low, on the order of the ion density. Model predictions for the electron density, ion density, and plasma electronegativity are in good agreement with experimental data over the entire range of SF{sub 6} concentrations investigated.

  20. Low-pressure electrical discharge experiment to simulate high-altitude lightning above thunderclouds

    NASA Technical Reports Server (NTRS)

    Jarzembski, M. A.; Srivastava, V.

    1995-01-01

    Recently, extremely interesting high-altitude cloud-ionosphere electrical discharges, like lightning above thunderstorms, have been observed from NASA's space shuttle missions and during airborne and ground-based experiments. To understand these discharges, a new experiment was conceived to simulate a thundercloud in a vacuum chamber using a dielectric in particulate form into which electrodes were inserted to create charge centers analogous to those in an electrified cloud. To represent the ionosphere, a conducting medium (metallic plate) was introduced at the top of the chamber. It was found that for different pressures between approximately 1 and 300 mb, corresponding to various upper atmospheric altitudes, different discharges occurred above the simulated thundercloud, and these bore a remarkable similarity to the observed atmospheric phenomena. At pressures greater than 300 mb, these discharges were rare and only discharges within the simulated thundercloud were observed. Use of a particulate dielectric was critical for the successful simulation of the high-altitude lightning.

  1. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  2. Formation processes of nanometer sized particles in low pressure Ar/CH{sub 4} rf plasmas

    SciTech Connect

    Beckers, J.; Vacaresse, G. D. G. J.; Stoffels, W. W.

    2008-09-07

    In this paper, formation and growth processes of nanometer and micrometer sized dust particles in low pressure Ar/CH{sub 4} rf (13.56 MHz) plasmas are investigated as function of temperature in the range 25-100 deg. C. During experiments the pressure was typically 0.8 mbar and the forward power to the plasma was {approx}70 Watt. Measuring the fundamental voltage, current and phase angle together with their harmonics (up to the fourth) gives a good method to monitor the creation and growth of these dust particles in time. Furthermore, laser light scattering measurements are performed to give information about the dust particle density. It has been shown that dust particle formation in these conditions depends greatly on temperature.

  3. Very low pressure plasma sprayed yttria-stabilized zirconia coating using a low-energy plasma gun

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Planche, Marie-Pierre; Liao, Hanlin; Coddet, Christian

    2011-12-01

    In the present study, a more economical low-energy plasma source was used to perform a very low pressure plasma-spray (VLPPS) process. The plasma-jet properties were analyzed by means of optical emission spectroscopy (OES). Moreover, yttria-stabilized zirconia coating (YSZ) was elaborated by a F100 low-power plasma gun under working pressure of 1 mbar, and the substrate specimens were partially shadowed by a baffle-plate during plasma spraying for obtaining different coating microstructures. Based on the SEM observation, a column-like grain coating was deposited by pure vapor deposition at the shadowed region, whereas, in the unshadowed region, the coating exhibited a binary microstructure which was formed by a mixed deposition of melted particles and evaporated particles. The mechanical properties of the coating were also well under investigation.

  4. Vapors and Droplets Mixture Deposition of Metallic Coatings by Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Vautherin, B.; Planche, M.-P.; Bolot, R.; Quet, A.; Bianchi, L.; Montavon, G.

    2014-04-01

    In recent years, the very low pressure plasma-spraying (VLPPS) process has been intensely developed and implemented to manufacture thin, dense and finely structured ceramic coatings for various applications, such as Y2O3 for diffusion barriers, among other examples. This paper aims at presenting developments carried out on metallic coatings. Aluminum was chosen as a demonstrative material due to its "moderate" vaporization enthalpy (i.e., 38.23 KJ cm-3) compared to the one of copper (i.e., 55.33 KJ cm-3), cobalt (i.e., 75.03 KJ cm-3), or even tantalum (i.e., 87.18 KJ cm-3). The objective of this work is primarily to better understand the behavior of a solid precursor injected into the plasma jet leading to the formation of vapors and to better control the factors affecting the coating structure. Nearly dense aluminum coatings were successfully deposited by VLPPS at 100 Pa with an intermediate power plasma torch (i.e., Sulzer Metco F4 type gun with maximum power of 45 kW). Optical emission spectroscopy (OES) was implemented to study and analyze the vapor behavior into the plasma jet. Simplified CFD modeling allowed better understanding of some of the thermo-physical mechanisms. The effect of powder-size distribution, substrate temperature and spray distance were studied. The phase composition and microstructural features of the coatings were characterized by XRD and SEM. Moreover, Vickers microhardness measurements were implemented.

  5. Nanostructure protein repellant amphiphilic copolymer coatings with optimized surface energy by Inductively Excited Low Pressure Plasma.

    PubMed

    Bhatt, Sudhir; Pulpytel, Jérome; Ceccone, Giacomo; Lisboa, Patricia; Rossi, François; Kumar, Virendra; Arefi-Khonsari, Farzaneh

    2011-12-06

    Statistically designed amphiphilic copolymer coatings were deposited onto Thermanox, Si wafer, and quartz crystal microbalance (QCM) substrates via Plasma Enhanced Chemical Vapor Deposition of 1H,1H,2H,2H-perfluorodecyl acrylate and diethylene glycol vinyl ether in an Inductively Excited Low Pressure Plasma reactor. Plasma deposited amphiphilic coatings were characterized by Field Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy, Atomic Force Microscopy, and Water Contact Angle techniques. The surface energy of the coatings can be adjusted between 12 and 70 mJ/m(2). The roughness of the coatings can be tailored depending on the plasma mode used. A very smooth coating was deposited with a CW (continuous wave) power, whereas a rougher surface with R(a) in the range of 2 to 12 nm was deposited with the PW (pulsed wave) mode. The nanometer scale roughness of amphiphilic PFDA-co-DEGVE coatings was found to be in the range of the size of the two proteins namely BSA and lysozyme used to examine for the antifouling properties of the surfaces. The results show that the statistically designed surfaces, presenting a surface energy around 25 mJ/m(2), present no adhesion with respect to both proteins measured by QCM.

  6. Amine Enrichment of Thin-Film Composite Membranes via Low Pressure Plasma Polymerization for Antimicrobial Adhesion.

    PubMed

    Reis, Rackel; Dumée, Ludovic F; He, Li; She, Fenghua; Orbell, John D; Winther-Jensen, Bjorn; Duke, Mikel C

    2015-07-15

    Thin-film composite membranes, primarily based on poly(amide) (PA) semipermeable materials, are nowadays the dominant technology used in pressure driven water desalination systems. Despite offering superior water permeation and salt selectivity, their surface properties, such as their charge and roughness, cannot be extensively tuned due to the intrinsic fabrication process of the membranes by interfacial polymerization. The alteration of these properties would lead to a better control of the materials surface zeta potential, which is critical to finely tune selectivity and enhance the membrane materials stability when exposed to complex industrial waste streams. Low pressure plasma was employed to introduce amine functionalities onto the PA surface of commercially available thin-film composite (TFC) membranes. Morphological changes after plasma polymerization were analyzed by SEM and AFM, and average surface roughness decreased by 29%. Amine enrichment provided isoelectric point changes from pH 3.7 to 5.2 for 5 to 15 min of plasma polymerization time. Synchrotron FTIR mappings of the amine-modified surface indicated the addition of a discrete 60 nm film to the PA layer. Furthermore, metal affinity was confirmed by the enhanced binding of silver to the modified surface, supported by an increased antimicrobial functionality with demonstrable elimination of E. coli growth. Essential salt rejection was shown minimally compromised for faster polymerization processes. Plasma polymerization is therefore a viable route to producing functional amine enriched thin-film composite PA membrane surfaces.

  7. Treatment Characteristics of Second Order Structure of Proteins Using Low-Pressure Oxygen RF Plasma

    NASA Astrophysics Data System (ADS)

    Hayashi, Nobuya; Nakahigashi, Akari; Kawaguchi, Ryutaro; Goto, Masaaki

    2010-10-01

    Removal of proteins from the surface of medical equipments is attempted using oxygen plasma produced by RF discharge. FTIR spectra indicate that the bonding of C-H and N-H in the casein protein is reduced after irradiation of oxygen plasma. Also, the second order structure of a protein such as α-helix and β-sheet are modified by the oxygen plasma. Complete removal of casein protein with the concentration of 0.016 mg/cm2 that is equivalent to remnants on the medical equipment requires two hours avoiding the damage to medical equipments.

  8. Instability of a Low-Pressure Hollow-Cathode Discharge in a Magnetic Field

    SciTech Connect

    Oks, E.M.; Anders, A.; Brown, I.G.; Soloshenko, I.A.; Shchedrin, A.I.

    2005-11-15

    Mechanisms responsible for current oscillations at the ion branch of the probe characteristic are investigated experimentally and theoretically. A comparison between experiment and theory shows that the oscillations in a hollow-cathode discharge in a longitudinal magnetic field are most likely related to the onset of helical instabili0008.

  9. Dynamics of cathode spots in low-pressure arc plasma removing oxide layer on steel surfaces

    NASA Astrophysics Data System (ADS)

    Tang, Z. L.; Yang, K.; Liu, H. X.; Zhang, Y. C.; Li, H.; Zhu, X. D.

    2016-03-01

    The dynamics of cathode spots has been investigated in low-pressure arc plasma for removing oxide layer on low carbon steel surfaces. The motion of cathode spots was observed with a high speed camera, and the arc voltage was analyzed by fast Fourier transform. The spots move on clean steel surface as a random walk, and the low-frequency components dominated the voltage waveform. However, the spots on steel surfaces with oxide layer tend to burn on the rim of the eroded area formed in the previous arcing, and the low-frequency components decrease correspondingly. The "color" of the colored random noise for arc voltage varies from the approximate brown noise for clean steel surface to pink noise for thick oxide layer, where the edge effect of boundary is considered to play a significant role.

  10. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80-130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700-1000 K), the vibrational temperature of N2(C,v) (7000-10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm-3 for the electron density; its axial variation (4  ×  1011-6  ×  1012 cm-3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron-neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation temperatures at least

  11. Operation of a Solid-Rod Cathode in a Low-Pressure Discharge

    NASA Technical Reports Server (NTRS)

    Goodfellow, K. D.

    1996-01-01

    Cathode erosion is one of the life-limiting mechanisms in several classes of electric thrusters. Since cathode erosion depends strongly on the cathode temperature, a quantitative understanding of the effects of cathode operation in the cathode temperature is required. A pure tungsten cathode was sucessfully operated in an argon discharge at pressures of 1.5 and 3.0 kPa and current levels of 600, 1000 and 1400 A.

  12. Ozone kinetics in low-pressure discharges: vibrationally excited ozone and molecule formation on surfaces

    NASA Astrophysics Data System (ADS)

    Marinov, Daniil; Guerra, Vasco; Guaitella, Olivier; Booth, Jean-Paul; Rousseau, Antoine

    2013-10-01

    A combined experimental and modeling investigation of the ozone kinetics in the afterglow of pulsed direct current discharges in oxygen is carried out. The discharge is generated in a cylindrical silica tube of radius 1 cm, with short pulse durations between 0.5 and 2 ms, pressures in the range 1-5 Torr and discharge currents ˜40-120 mA. Time-resolved absolute concentrations of ground-state atoms and ozone molecules were measured simultaneously in situ, by two-photon absorption laser-induced fluorescence and ultraviolet absorption, respectively. The experiments were complemented by a self-consistent model developed to interpret the results and, in particular, to evaluate the roles of vibrationally excited ozone and of ozone formation on surfaces. It is found that vibrationally excited ozone, O_3^{*} , plays an important role in the ozone kinetics, leading to a decrease in the ozone concentration and an increase in its formation time. In turn, the kinetics of O_3^{*} is strongly coupled with those of atomic oxygen and O2(a 1Δg) metastables. Ozone formation at the wall does not contribute significantly to the total ozone production under the present conditions. Upper limits for the effective heterogeneous recombination probability of O atoms into ozone are established.

  13. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    SciTech Connect

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing; Wang, Xinxin

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observed that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.

  14. Hybrid simulations of solenoidal radio-frequency inductively coupled hydrogen discharges at low pressures

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Li, Hong; Gao, Fei; Wang, You-Nian

    2016-12-01

    In this article, we have described a radio-frequency (RF) inductively coupled H2 plasma using a hybrid computational model, incorporating the Maxwell equations and the linear part of the electron Boltzmann equation into global model equations. This report focuses on the effects of RF frequency, gas pressure, and coil current on the spatial profiles of the induced electric field and plasma absorption power density. The plasma parameters, i.e., plasma density, electron temperature, density of negative ion, electronegativity, densities of neutral species, and dissociation degree of H2, as a function of absorption power, are evaluated at different gas pressures. The simulation results show that the utilization efficiency of the RF source characterized by the coupling efficiency of the RF electric field and power to the plasma can be significantly improved at the low RF frequency, gas pressure, and coil current, due to a low plasma density in these cases. The densities of vibrational states of H2 first rapidly increase with increasing absorption power and then tend to saturate. This is because the rapidly increased dissociation degree of H2 with increasing absorption power somewhat suppresses the increase of the vibrational states of H2, thus inhibiting the increase of the H-. The effects of absorption power on the utilization efficiency of the RF source and the production of the vibrational states of H2 should be considered when setting a value of the coil current. To validate the model simulations, the calculated electron density and temperature are compared with experimental measurements, and a reasonable agreement is achieved.

  15. Simulation study of nanoparticle coating in a low pressure plasma reactor

    SciTech Connect

    Pourali, N.; Foroutan, G.

    2015-02-15

    A self-consistent combination of plasma fluid model, nanoparticle heating model, and surface deposition model is used to investigate the coating of nanosize particles by amorphous carbon layers in a low pressure plasma reactor. The numerical results show that, owing to the net heat release in the surface reactions, the particle temperature increases and its equilibrium value remains always 50 K above the background gas temperature. The deposition rate decreases with increasing of the particle temperature and the corresponding time scale is of the order of 10 ms. The deposition rate is also strongly affected by the change in plasma parameters. When the electron temperature is increased, the deposition rate first increases due to the enhanced ion and radical generation, shows a maximum and then declines as the particle temperature rises above the gas temperature. An enhancement in the background gas pressure and/or temperature leads to a reduction in the deposition rate, which can be explained in terms of the enhanced etching by atomic hydrogen and particle heating by the background gas.

  16. Vibrational kinetics in Cl2 and O2 low-pressure inductively-coupled plasmas

    NASA Astrophysics Data System (ADS)

    Booth, Jean-Paul; Foucher, Mickael; Marinov, Daniil; Chabert, Pascal; Annusova, Anna; Guerra, Vasco; Agarwal, Ankur; Rauf, Shahid

    2015-09-01

    Low energy electron interactions with molecules via resonances can cause vibrational excitation (affecting chemical kinetics), electron energy loss and modification of the EEDF. However, with the exception of N2 and H2 plasmas, very little attention has been paid to this subject. We have implemented a novel high-sensitivity ultra-broadband UV absorption bench, allowing spectra to be recorded with noise as low as 2×10-5 over a 250 nm wavelength range, and recording of complete vibronic bands. We applied this to radiofrequency inductively-coupled plasmas in low pressure (5-50 mTorr) pure O2 and pure Cl2. In O2 plasmas we surprisingly observe highly vibrationally excited O2 (v'' up to 18) via B-X Schumann-Runge bands. Cl2 molecules show a broad UV absorption spectrum in the region 250-400 nm, with distinctly different absorption spectra for vibrationally excited molecules. However, only a small fraction of the Cl2 molecules were observed in vibrationally excited states and the vibrational temperature is close to equilibrium with the local gas translational temperature (up to 1000 K), in contrast to O2. We are currently working on global models with vibrational kinetics to explain these results. Work supported by LABEX Plas@par (ANR-11-IDEX-0004-02), and Applied Materials.

  17. Growth dynamics of copper oxide nanowires in plasma at low pressures

    SciTech Connect

    Filipič, Gregor; Mozetič, Miran; Cvelbar, Uroš; Baranov, Oleg

    2015-01-28

    The growth time dynamics of the copper oxide nanowires (NWs) in radiofrequency plasma discharge were investigated. Grounded copper samples were treated in argon-oxygen plasma with the discharge power of 150 W for sequenced times up to 20 min. After the treatment, the samples were analysed with scanning electron microscopy and image processing to obtain the length and aspect ratio of the NWs. A growth mode with the saturation was observed in dependence to NW length, where the maximal length of 5 μm was achieved in 20 min. However, the best NW aspect ratio had maximum of about 40 after 10 min of plasma treatment. To describe and understand nanowire growth mechanism, a theoretical model was developed and it is in agreement with the experiment. The model results indicate that different densities of the ion current to the side and top area of NW modify the NW growth in height and width. The NW growth is enhanced by presence of ions, and thus this implies that it can be controlled by discharge power. This explains much faster growth of copper oxide nanowires in plasma environment compared to prolonged thermal treatments.

  18. Solid oxide fuel cell electrolytes produced via very low pressure suspension plasma spray and electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Fleetwood, James D.

    Solid oxide fuel cells (SOFCs) are a promising element of comprehensive energy policies due to their direct mechanism for converting the oxidization of fuel, such as hydrogen, into electrical energy. Both very low pressure plasma spray and electrophoretic deposition allow working with high melting temperature SOFC suspension based feedstock on complex surfaces, such as in non-planar SOFC designs. Dense, thin electrolytes of ideal composition for SOFCs can be fabricated with each of these processes, while compositional control is achieved with dissolved dopant compounds that are incorporated into the coating during deposition. In the work reported, sub-micron 8 mole % Y2O3-ZrO2 (YSZ) and gadolinia-doped ceria (GDC), powders, including those in suspension with scandium-nitrate dopants, were deposited on NiO-YSZ anodes, via very low pressure suspension plasma spray (VLPSPS) at Sandia National Laboratories' Thermal Spray Research Laboratory and electrophoretic deposition (EPD) at Purdue University. Plasma spray was carried out in a chamber held at 320 - 1300 Pa, with the plasma composed of argon, hydrogen, and helium. EPD was characterized utilizing constant current deposition at 10 mm electrode separation, with deposits sintered from 1300 -- 1500 °C for 2 hours. The role of suspension constituents in EPD was analyzed based on a parametric study of powder loading, powder specific surface area, polyvinyl butyral (PVB) content, polyethyleneimine (PEI) content, and acetic acid content. Increasing PVB content and reduction of particle specific surface area were found to eliminate the formation of cracks when drying. PEI and acetic acid content were used to control suspension stability and the adhesion of deposits. Additionally, EPD was used to fabricate YSZ/GDC bilayer electrolyte systems. The resultant YSZ electrolytes were 2-27 microns thick and up to 97% dense. Electrolyte performance as part of a SOFC system with screen printed LSCF cathodes was evaluated with peak

  19. Advanced fluid modeling and PIC/MCC simulations of low-pressure ccrf discharges

    NASA Astrophysics Data System (ADS)

    Becker, M. M.; Kählert, H.; Sun, A.; Bonitz, M.; Loffhagen, D.

    2017-04-01

    Comparative studies of capacitively coupled radio-frequency discharges in helium and argon at pressures between 10 and 80 Pa are presented applying two different fluid modeling approaches as well as two independently developed particle-in-cell/Monte Carlo collision (PIC/MCC) codes. The focus is on the analysis of the range of applicability of a recently proposed fluid model including an improved drift-diffusion approximation for the electron component as well as its comparison with fluid modeling results using the classical drift-diffusion approximation and benchmark results obtained by PIC/MCC simulations. Main features of this time- and space-dependent fluid model are given. It is found that the novel approach shows generally quite good agreement with the macroscopic properties derived by the kinetic simulations and is largely able to characterize qualitatively and quantitatively the discharge behavior even at conditions when the classical fluid modeling approach fails. Furthermore, the excellent agreement between the two PIC/MCC simulation codes using the velocity Verlet method for the integration of the equations of motion verifies their accuracy and applicability.

  20. Homogeneous reactions of hydrocarbons, silane, and chlorosilanes in radiofrequency plasmas at low pressures

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and radical-molecule mechanisms are responsible for the dissociation of hydrocarbon, silane, and chlorosilane monomers and the formation of polymerized species, respectively, in an RF plasma discharge. In a plasma containing a mixture of monomer and argon the rate-determining step for both dissociation and polymerization is governed by an ion-molecule type of interaction. Adding hydrogen or ammonia to the monomer-argon mixture transforms the rate-determining step from an ion-molecule interaction to a radical-molecule interaction for both monomer dissociation and polymerization.

  1. Polydiagnostic calibration performed on a low pressure surface wave sustained argon plasma

    NASA Astrophysics Data System (ADS)

    de Vries, N.; Palomares, J. M.; Iordanova, E. I.; van Veldhuizen, E. M.; van der Mullen, J. J. A. M.

    2008-10-01

    The electron density and electron temperature of a low pressure surface wave sustained argon plasma have been determined using passive and active (laser) spectroscopic methods simultaneously. In this way the validity of the various techniques is established while the plasma properties are determined more precisely. The electron density, ne, is determined with Thomson scattering (TS), absolute continuum measurements, Stark broadening and an extrapolation of the atomic state distribution function (ASDF). The electron temperature, Te, is obtained using TS and absolute line intensity (ALI) measurements combined with a collisional-radiative (CR) model for argon. At an argon pressure of 15 mbar, the ne values obtained with TS and Stark broadening agree with each other within the error bars and are equal to (4 ± 0.5) × 1019 m-3, whereas the ne value (2 ± 0.5) × 1019 m-3 obtained from the continuum is about 30% lower. This suggests that the used formula and cross-section values for the continuum method have to be reconsidered. The electron density determined by means of extrapolation of the ASDF to the continuum is too high (~1020 m-3). This is most probably related to the fact that the plasma is strongly ionizing so that the extrapolation method is not justified. At 15 mbar, the Te values obtained with TS are equal to 13 400 ± 1100 K while the ALI/CR-model yields an electron temperature that is about 10% lower. It can be concluded that the passive results are in good or fair agreement with the active results. Therefore, the calibrated passive methods can be applied to other plasmas in a similar regime for which active diagnostic techniques cannot be used.

  2. Reproducing continuous radio blackout using glow discharge plasma

    SciTech Connect

    Xie, Kai; Li, Xiaoping; Liu, Donglin; Shao, Mingxu; Zhang, Hanlu

    2013-10-15

    A novel plasma generator is described that offers large-scale, continuous, non-magnetized plasma with a 30-cm-diameter hollow structure, which provides a path for an electromagnetic wave. The plasma is excited by a low-pressure glow discharge, with varying electron densities ranging from 10{sup 9} to 2.5 × 10{sup 11} cm{sup −3}. An electromagnetic wave propagation experiment reproduced a continuous radio blackout in UHF-, L-, and S-bands. The results are consistent with theoretical expectations. The proposed method is suitable in simulating a plasma sheath, and in researching communications, navigation, electromagnetic mitigations, and antenna compensation in plasma sheaths.

  3. Effect of the gas temperature and pressure on the nucleation time of particles in low pressure Ar-C2H2 rf plasmas

    NASA Astrophysics Data System (ADS)

    Lin, Jiashu; Henault, Marie; Orazbayev, Sagi; Boufendi, Laïa; Takahashi, Kazuo; Al Farabi Kazakh National University Collaboration; Kyoto Institute Of Technology Team; Gremi Team

    2016-09-01

    Particle formation in low pressure plasmas is a 3-step process. The first one corresponds to the nucleation and growth of nano-crystallites by ion-molecular reactions, the agglomeration phase to form large particles, and the growth by radical deposition on the particle surface. The nucleation phase was demonstrated to be sensitive to gas temperature and pressure. In this work, time of nucleation phase of particles formation in low pressure cold rf C2H2/Ar plasmas studied by varying gas temperature from 265 K to 375 K, gas pressure from 0.4 mbar to 0.8 mbar and rf power from 6 W to 20 W. The ratio of C2H2/Ar is fixed to 2/98 in terms of pressure. Several previous works reported that particle formation takes a few sec at room temperature in C2 H2 plasmas and the time is much shorter than 0.1 s in SiH4 plasmas. Time evolution of self-bias voltage was mainly used to determine nucleation time. The self-bias voltage was modified by phase transition between the steps from nucleation to coagulation. The experimental results showed that the nucleation time increased with gas temperature, decreased with gas pressure and discharge power. At constant gas pressure of 0.4 mbar and discharge power of 6 W, for example, the nucleation time increased from 5 sec to 30 sec with increas

  4. Anomalous memory effect in the breakdown of low-pressure argon in a long discharge tube

    SciTech Connect

    Meshchanov, A. V.; Korshunov, A. N.; Ionikh, Yu. Z.; Dyatko, N. A.

    2015-08-15

    The characteristics of breakdown of argon in a long tube (with a gap length of 75 cm and diameter of 2.8 cm) at pressures of 1 and 5 Torr and stationary discharge currents of 5–40 mA were studied experimentally. The breakdown was initiated by paired positive voltage pulses with a rise rate of ∼10{sup 8}–10{sup 9} V/s and duration of ∼1–10 ms. The time interval between pairs was varied in the range of Τ ∼ 0.1–1 s, and that between pulses in a pair was varied from τ = 0.4 ms to ≈Τ/2. The aim of this work was to detect and study the so-called “anomalous memory effect” earlier observed in breakdown in nitrogen. The effect consists in the dynamic breakdown voltage in the second pulse in a pair being higher than in the first pulse (in contrast to the “normal” memory effect, in which the relation between the breakdown voltages is opposite). It is found that this effect is observed when the time interval between pairs of pulses is such that the first pulse in a pair is in the range of the normal memory effect of the preceding pair (under the given conditions, Τ ≈ 0.1–0.4 s). In this case, at τ ∼ 10 ms, the breakdown voltage of the second pulse is higher than the reduced breakdown voltage of the first pulse. Optical observations of the ionization wave preceding breakdown in a long tube show that, in the range of the anomalous memory effect and at smaller values of τ, no ionization wave is detected before breakdown in the second pulse. A qualitative interpretation of the experimental results is given.

  5. Plasma instabilities in electronegative inductive discharges

    NASA Astrophysics Data System (ADS)

    Marakhtanov, Alexei Mikhail

    Plasma instabilities have been observed in low-pressure inductive discharges, in the transition between low density capacitive mode and high density inductive mode of the discharge when attaching gases such as SF6 and Ar/SF 6 mixtures are used. Oscillations of charged particles, plasma potential and light emitted from the plasma with the frequencies from a few hertz to tens of kilohertz are seen for gas pressures between 1 and 100 mTorr and the discharge power in the range of 75--1200 W. The region of instability increases as the plasma becomes more electronegative and the frequency of plasma oscillations increases as the power, pressure, and gas flow rate increase. The instability frequencies may also depend on the settings of a matching network. A volume-averaged (global) model of the instability has been developed, for a discharge containing time varying densities of electrons, positive ions, and negative ions, and time invariant excited states and neutral densities. The particle and energy balance equations are integrated to produce the dynamical behavior. As pressure or power is varied to cross a threshold, the instability goes through a series of oscillatory states to large scale relaxation oscillations between higher and lower density states. The model qualitatively agrees with experimental observations, and also shows a significant influence of the matching network. A stability analysis of an electronegative discharge has been performed, using a Hurwitz criterion, for a system of linearized particle and power balance differential equations. Capacitive coupling plays a crucial role in the instability process. A variable electrostatic (Faraday) shield has been used to control the capacitive coupling from the excitation coil to the plasma. The plasma instability disappears when the shielded area exceeds 65% of the total area of the coil. The global model of instability gives a slightly higher value of 85% for instability suppression with the same discharge

  6. Microwave ECR plasma electron flood for low pressure wafer charge neutralization

    SciTech Connect

    Vanderberg, Bo; Nakatsugawa, Tomoya; Divergilio, William

    2012-11-06

    Modern ion implanters typically use dc arc discharge Plasma Electron Floods (PEFs) to neutralize wafer charge. The arc discharge requires using at least some refractory metal hardware, e.g. a thermionically emitting filament, which can be undesirable in applications where no metallic contamination is critical. rf discharge PEFs have been proposed to mitigate contamination risks but the gas flows required can result in high process chamber pressures. Axcelis has developed a microwave electron cyclotron resonance (ECR) PEF to provide refractory metals contamination-free wafer neutralization with low gas flow requirement. Our PEF uses a custom, reentrant cusp magnet field providing ECR and superior electron confinement. Stable PEF operation with extraction slits sized for 300 mm wafers can be attained at Xe gas flows lower than 0.2 sccm. Electron extraction currents can be as high as 20 mA at absorbed microwave powers < 70 W. On Axcelis' new medium current implanter, plasma generation has proven robust against pressure transients caused by, for example, photoresist outgassing by high power ion beams. Charge monitor and floating potential measurements along the wafer surface corroborate adequate wafer charge neutralization for low energy, high current ion beams.

  7. Helicon plasma thruster discharge model

    SciTech Connect

    Lafleur, T.

    2014-04-15

    By considering particle, momentum, and energy balance equations, we develop a semi-empirical quasi one-dimensional analytical discharge model of radio-frequency and helicon plasma thrusters. The model, which includes both the upstream plasma source region as well as the downstream diverging magnetic nozzle region, is compared with experimental measurements and confirms current performance levels. Analysis of the discharge model identifies plasma power losses on the radial and back wall of the thruster as the major performance reduction factors. These losses serve as sinks for the input power which do not contribute to the thrust, and which reduce the maximum plasma density and hence propellant utilization. With significant radial plasma losses eliminated, the discharge model (with argon) predicts specific impulses in excess of 3000 s, propellant utilizations above 90%, and thruster efficiencies of about 30%.

  8. Surface modification of chromatography adsorbents by low temperature low pressure plasma.

    PubMed

    Arpanaei, A; Winther-Jensen, B; Theodosiou, E; Kingshott, P; Hobley, T J; Thomas, O R T

    2010-10-29

    In this study we show how low temperature glow discharge plasma can be used to prepare bi-layered chromatography adsorbents with non-adsorptive exteriors. The commercial strong anion exchange expanded bed chromatography matrix, Q HyperZ, was treated with plasmas in one of two general ways. Using a purpose-designed rotating reactor, plasmas were employed to either: (i) remove anion exchange ligands at or close to the exterior surface of Q HyperZ, and replace them with polar oxygen containing functions ('plasma etching and oxidation'); or (ii) bury the same surface exposed ligands beneath thin polymer coatings ('plasma polymerization coating') using appropriate monomers (vinyl acetate, vinyl pyrrolidone, safrole) and argon as the carrier gas. X-ray photoelectron spectroscopy analysis (first ∼10 nm depth) of Q HyperZ before and after the various plasma treatments confirmed that substantial changes to the elemental composition of Q HyperZ's exterior had been inflicted in all cases. The atomic percent changes in carbon, nitrogen, oxygen, yttrium and zirconium observed after being exposed to air plasma etching were entirely consistent with: the removal of pendant Q (trimethylammonium) functions; increased exposure of the underlying yttrium-stabilised zirconia shell; and introduction of hydroxyl and carbonyl functions. Following plasma polymerization treatments (with all three monomers tested), the increased atomic percent levels of carbon and parallel drops in nitrogen, yttrium and zirconium provided clear evidence that thin polymer coats had been created at the exteriors of Q HyperZ adsorbent particles. No changes in adsorbent size and surface morphology, nor any evidence of plasma-induced damage could be discerned from scanning electron micrographs, light micrographs and measurements of particle size distributions following 3 h exposure to air (220 V; 35.8 W L(-1)) or 'vinyl acetate/argon' (170 V; 16.5 W L(-1)) plasmas. Losses in bulk chloride exchange capacity

  9. Effects of the nozzle design on the properties of plasma jet and formation of YSZ coatings under low pressure conditions

    NASA Astrophysics Data System (ADS)

    Sun, Chengqi; Gao, Yang; Yang, Deming; Fu, Yingqing

    2016-09-01

    How to control the quality of the coatings has become a major problem during the plasma spraying. Because nozzle contour has a great influence on the characteristic of the plasma jet, two kinds of plasma torches equipped with a standard cylindrical nozzle and a converging-diverging nozzle are designed for low pressure plasma spraying(LPPS) and very low pressure plasma spraying(VLPPS). Yttria stabilized zirconia(YSZ) coatings are obtained in the reducing pressure environment. The properties of the plasma jet without or with powder injection are analyzed by optical emission spectroscopy, and the electron temperature is calculated based on the ratio of the relative intensity of two Ar I spectral lines. The results show that some of the YSZ powder can be vaporized in the low pressure enlarged plasma jet, and the long anode nozzle may improve the characteristics of the plasma jet. The coatings deposited by LPPS are mainly composed of the equiaxed grains and while the unmelted powder particles and large scalar pores appear in the coatings made by VLPPS. The long anode nozzle could improve the melting of the powders and deposition efficiency, and enhance the coatings' hardness. At the same time, the long anode nozzle could lead to a decrease in the overspray phenomenon. Through the comparison of the two different size's nozzle, the long anode is much more suitable for making the YSZ coatings.

  10. Quantification of the VUV radiation in low pressure hydrogen and nitrogen plasmas

    NASA Astrophysics Data System (ADS)

    Fantz, U.; Briefi, S.; Rauner, D.; Wünderlich, D.

    2016-08-01

    Hydrogen and nitrogen containing discharges emit intense radiation in a broad wavelength region in the VUV. The measured radiant power of individual molecular transitions and atomic lines between 117 nm and 280 nm are compared to those obtained in the visible spectral range and moreover to the RF power supplied to the ICP discharge. In hydrogen plasmas driven at 540 W of RF power up to 110 W are radiated in the VUV, whereas less than 2 W is emitted in the VIS. In nitrogen plasmas the power level of about 25 W is emitted both in the VUV and in the VIS. In hydrogen-nitrogen mixtures, the NH radiation increases the VUV amount. The analysis of molecular and atomic hydrogen emission supported by a collisional radiative model allowed determining plasma parameters and particle densities and thus particle fluxes. A comparison of the fluxes showed that the photon fluxes determined from the measured emission are similar to the ion fluxes, whereas the atomic hydrogen fluxes are by far dominant. Photon fluxes up to 5  ×  1020 m-2 s-1 are obtained, demonstrating that the VUV radiation should not be neglected in surface modifications processes, whereas the radiant power converted to VUV photons is to be considered in power balances. Varying the admixture of nitrogen to hydrogen offers a possibility to tune photon fluxes in the respective wavelength intervals.

  11. Particle energy distributions and metastable atoms in transient low pressure interpulse microwave plasma

    NASA Astrophysics Data System (ADS)

    Pandey, Shail; Nath Patel, Dudh; Ram Baitha, Anuj; Bhattacharjee, Sudeep

    2015-12-01

    The electron energies and its distribution function are measured in non-equilibrium transient pulsed microwave plasmas in the interpulse regime using a retarding field electron energy analyzer. The plasmas are driven to different initial conditions by varying the electromagnetic (EM) wave pulse duration, peak power, or the wave frequency. Two cases of wave excitation are investigated: (i) short-pulse (pulse duration, t w ~ 1 μs), high-power (~60 kW) waves of 9.45 GHz and (ii) medium-pulse (t w ~ 20 μs), and moderate power waves of ~3 kW at 2.45 GHz. It is found that high-power, short-duration pulses lead to a significantly different electron energy probability function (EEPF) in the interpulse phase—a Maxwellian with a bump on the tail, although the average energy per pulse (~60 mJ) is maintained the same in the two modes of wave excitation. Electrons with energies  >250 eV are found to exist in the discharge in the both cases. Another subset of experiments is performed to delineate the effect of the wave frequency and the peak power on EEPF. A traveling wave tube (TWT) amplifier based microwave source for generating pulsed plasma (t w  =  230 μs) in a wide frequency range (6-18 GHz) is employed for this purpose. Further experiments on measurements of metastable density using optical emission spectroscopy and ion energy analyzer have been carried out. By tailoring the EEPF of the transient plasma and metastable densities, new applications in plasma processing, chemistry and biology can be realized in the interpulse phase of the discharge.

  12. Deuterium analysis in zircaloy using ps laser-induced low pressure plasma

    SciTech Connect

    Marpaung, Alion Mangasi; Lie, Zener Sukra; Niki, Hideaki; Kagawa, Kiichiro; Fukumoto, Ken-ichi; Ramli, Muliadi; Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Hedwig, Rinda; Tjia, May On; Pardede, Marincan; Suliyanti, Maria Margaretha; Jobiliong, Eric; Kurniawan, Koo Hendrik

    2011-09-15

    An experimental study on picosecond laser induced plasma spectroscopy of a zircaloy sample with low-pressure surrounding helium gas has been carried out to demonstrate its potential applicability to three-dimensional quantitative micro-analysis of deuterium impurities in zircaloy. This was achieved by adopting the optimal experimental condition ascertained in this study, which is specified as 7 mJ laser energy, 1.3 kPa helium pressure, and 50 {mu}s measurement window, and which was found to result in consistent D emission enhancement. Employing these operational parameters, a linear calibration line exhibiting a zero intercept was obtained from zircaloy-4 samples doped with various concentrations of D impurity, regarded as surrogates for H impurity. An additional measurement also yielded a detection limit of about 10 {mu}g/g for D impurity, well below the acceptable threshold of damaging H concentration in zircaloy. Each of these measurements was found to produce a crater size of only 25 {mu}m in diameter, promising its application for performing less-destructive measurements. The result of this study has thus paved the way for conducting a further experiment with hydrogen-doped zircaloy samples and the further technical development of a three-dimensional quantitative micro-analysis of detrimental hydrogen impurity in zircaloy vessels used in nuclear power plants.

  13. Gain and loss mechanisms for neutral species in low pressure fluorocarbon plasmas by infrared spectroscopy

    SciTech Connect

    Nelson, Caleb T.; Overzet, Lawrence J.; Goeckner, Matthew J.

    2012-09-15

    This article examines the chemical reaction pathways of stable neutral species in fluorocarbon plasmas. Octafluorocyclobutane (c-C{sub 4}F{sub 8}) inductively coupled plasma discharges were found to primarily produce stable and metastable products downstream from the discharge, including c-C{sub 4}F{sub 8}, C{sub 2}F{sub 4}, C{sub 2}F{sub 6}, CF{sub 4}, C{sub 3}F{sub 8}, C{sub 4}F{sub 10}, C{sub 3}F{sub 6}, and CF{sub 2}. A novel analysis technique allows the estimation of gain and loss rates for neutral species in the steady state as functions of residence time, pressure, and discharge power. The gain and loss rates show that CF{sub 4}, C{sub 2}F{sub 6}, C{sub 3}F{sub 8}, and C{sub 4}F{sub 10} share related gain mechanisms, speculated to occur at the surface. Further analysis confirms that CF{sub 2} is predominantly produced at the chamber walls through electron impact dissociation of C{sub 2}F{sub 4} and lost through gas-phase addition reactions to form C{sub 2}F{sub 4}. Additionally, time-resolved FTIR spectra provide a second-order rate coefficient of 1.8 Multiplication-Sign 10{sup -14} cm{sup 3}/s for the gas-phase addition of CF{sub 2} to form C{sub 2}F{sub 4}. Finally, C{sub 2}F{sub 4,} which is much more abundant than CF{sub 2} in the discharge, is shown to be dominantly produced through electron impact dissociation of c-C{sub 4}F{sub 8} and lost through either surface or gas-phase addition reactions.

  14. Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2015-08-01

    Yttria-stabilized zirconia (YSZ) coatings have been frequently used as a thermal protective layer on the metal or alloy component surfaces. In the present study, ZrO2-7%Y2O3 thermal barrier coatings (TBCs) were successfully deposited by DC (direct current) plasma spray process under very low pressure conditions (less than 1 mbar) using low-energy plasma guns F4-VB and F100. The experiments were performed to evaluate the thermal shock resistance of different TBC specimens which were heated to 1373 K at a high-temperature cycling furnace and held for 0.5 h, followed by air cooling at room temperature for 0.2 h. For comparison, a corresponding atmospheric plasma spray (APS) counterpart was also elaborated to carry out the similar experiments. The results indicated that the very low pressure plasma spray (VLPPS) coatings displayed better thermal shock resistance. Moreover, the failure mechanism of the coatings was elucidated.

  15. Plasma Discharge Process in a Pulsed Diaphragm Discharge System

    NASA Astrophysics Data System (ADS)

    Duan, Jianjin; Hu, Jue; Zhang, Chao; Wen, Yuanbin; Meng, Yuedong; Zhang, Chengxu

    2014-12-01

    As one of the most important steps in wastewater treatment, limited study on plasma discharge process is a key challenge in the development of plasma applications. In this study, we focus on the plasma discharge process of a pulsed diaphragm discharge system. According to the analysis, the pulsed diaphragm discharge proceeds in seven stages: (1) Joule heating and heat exchange stage; (2) nucleated site formation; (3) plasma generation (initiation of the breakdown stage); (4) avalanche growth and plasma expansion; (5) plasma contraction; (6) termination of the plasma discharge; and (7) heat exchange stage. From this analysis, a critical voltage criterion for breakdown is obtained. We anticipate this finding will provide guidance for a better application of plasma discharges, especially diaphragm plasma discharges.

  16. Constricted glow discharge plasma source

    DOEpatents

    Anders, Andre; Anders, Simone; Dickinson, Michael; Rubin, Michael; Newman, Nathan

    2000-01-01

    A constricted glow discharge chamber and method are disclosed. The polarity and geometry of the constricted glow discharge plasma source is set so that the contamination and energy of the ions discharged from the source are minimized. The several sources can be mounted in parallel and in series to provide a sustained ultra low source of ions in a plasma with contamination below practical detection limits. The source is suitable for applying films of nitrides such as gallium nitride and oxides such as tungsten oxide and for enriching other substances in material surfaces such as oxygen and water vapor, which are difficult process as plasma in any known devices and methods. The source can also be used to assist the deposition of films such as metal films by providing low-energy ions such as argon ions.

  17. Effect of excited nitrogen atoms on inactivation of spore-forming microorganisms in low pressure N2/O2 surface-wave plasma

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoli; Chang, Xijiang; Tei, Reitou; Nagatsu, Masaaki

    2016-06-01

    Using a vacuum ultraviolet (VUV) absorption spectroscopy with a compact low pressure plasma light source, the absolute nitrogen atom density was measured to study its role in the spore inactivation with low pressure N2/O2 gas mixture surface-wave plasmas (SWPs). Self-absorption effect of the resonance emission lines of nitrogen atoms near 120 nm was minimized by optimizing its discharge conditions of the plasma light source. Experimental results showed that excited nitrogen atom densities monotonically decreased with the decrease of N2 gas percentage in N2/O2 gas mixture SWPs, concomitantly with similar decrease of VUV/UV emission intensities of nitrogen atoms and molecules. In the pure N2 gas SWPs, it was confirmed that a dominant lethal factor was VUV/UV emission generated by N2 plasma, while spore etching occurred via physical and chemical interactions with nitrogen species. With an addition of O2 gas, significant spore etching by excited oxygen atoms made it much easier for the VUV/UV photons emitted by nitrogen atoms, N2 and NO molecules to penetrate through the etched spore coats to the core and cause the fatal DNA damage of the microorganisms. As a result, more rapid inactivation was achieved in the middle region of N2/O2 gas mixture ratio, such as 30-80% O2 gas addition, in the present N2/O2 gas mixture SWPs.

  18. Effect of low-pressure plasma treatment on the color and oxidative stability of raw pork during refrigerated storage.

    PubMed

    Ulbin-Figlewicz, Natalia; Jarmoluk, Andrzej

    2016-06-01

    The effect of low-pressure plasma on quality attributes of meat is an important aspect, which must be considered before application in food. The aim of this study was to determine the color, fatty acid composition, lipid oxidation expressed as thiobarbituric acid reactive substances and total antioxidant capacity of raw pork samples exposed to helium low-pressure plasma treatment (20 kPa) for 0, 2, 5, and 10 min during the storage period. The thiobarbituric acid reactive substance concentrations of all plasma-treated samples during storage were in the range from 0.26 to 0.61 mg malondialdehyde/kg. Exposure time caused significant changes only in total color difference, hue angle, and chroma after 10 min of treatment. Ferric reducing ability of plasma values of meat samples decreased from 1.93 to 1.40 mmol Trolox Eq/kg after 14 days of storage. The storage period significantly affected proportion of polyunsaturated fatty acids, with an increase about 3% after 14 days of refrigeration storage while the content of saturated fatty acids was at the same level. Helium low-pressure plasma does not induce oxidative processes. Application of this decontamination technique while maintaining product quality is possible in food industry.

  19. Characterization a low pressure of plasma of methanol (CH4O) alcohol

    NASA Astrophysics Data System (ADS)

    Villa, M.; Torres, C.; Reyes, P. G.; Osorio, D.; Castillo, F.; Martínez, H.

    2014-05-01

    The aim of this work is to explore the emission spectroscopy of Methanol alcohol plasma in some regions, also is determine the result elements of the glow discharge, the spectrums were observed in a range of 200 at 1100 nm in the different zones inside of the tube at different distances of 20 and 30 cm. The elements are: in anode region: C7H7 (451.06nm), C6H5 (483.02nm), CHO (519.56nm), H2 (560.46nm), C (607.02nm), H2 (661.46nm); cathode region: O2 (391.04nm), CHOCHO (428.00nm), H2 (656.52nm); to 20 and 30 cm region: O2+ (297.00nm), CO2+ (315.52nm), O+ (357.48nm), C+ (388.00nm).

  20. Modification of carbon fabrics by radio-frequency capacitive discharge at low pressure to regulate mechanical properties of carbon fiber reinforced plastics based on it

    NASA Astrophysics Data System (ADS)

    Garifullin, A. R.; Krasina, I. V.; Skidchenko, E. A.; Shaekhov, M. F.; Tikhonova, N. V.

    2017-01-01

    To increase the values of mechanical properties of carbon fiber (CF) composite materials used in sports equipment production the method of radio-frequency capacitive (RFC) low-pressure plasma treatment in air was proposed. Previously it was found that this type of modification allows to effectively regulate the surface properties of fibers of different nature. This treatment method differs from the traditional ones by efficiency and environmental friendliness as it does not require the use of aggressive, environmentally hazardous chemicals. In this paper it was established that RFC low-pressure air plasma treatment of carbon fabrics enhances the interlaminar shear strength (ILSS) of carbon fiber reinforced plastic (CFRP). As a result of experimental studies of CF by Fourier Transform Infrared (FTIR) spectroscopy method it was proved that after radio-frequency capacitive plasma treatment at low pressure in air the oxygen-containing functional groups is grafted on the surface. These groups improve adhesion at the interface “matrix-fiber”.

  1. Experimental investigation of supersonic low pressure air plasma flows obtained with different arc-jet operating conditions

    SciTech Connect

    Lago, Viviana; Ndiaye, Abdoul-Aziz

    2012-11-27

    A stationary arc-jet plasma flow at low pressure is used to simulate some properties of the gas flow surrounding a vehicle during its entry into celestial body's atmospheres. This paper presents an experimental study concerning plasmas simulating a re-entry into our planet. Optical measurements have been carried out for several operating plasma conditions in the free stream, and in the shock layer formed in front of a flat cylindrical plate, placed in the plasma jet. The analysis of the spectral radiation enabled the identification of the emitting species, the determination of the rotational and vibrational temperatures in the free-stream and in the shock layer and the determination of the distance of the shock to the flat plate face. Some plasma fluid parameters like, stagnation pressure, specific enthalpy and heat flux have been determined experimentally along the plasma-jet axis.

  2. Simulation of the A-X and B-X transition emission spectra of the InBr molecule for diagnostics in low-pressure plasmas

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2011-04-01

    Inductively coupled low-pressure discharges containing InBr have been investigated spectroscopically. In order to obtain plasma parameters such as the vibrational and rotational temperature of the InBr molecule, the emission spectra of the A\\,^3\\!\\Pi_{0^+}\\rightarrow X\\,^1\\!\\Sigma_{0}^+ and the B\\,^3\\! \\Pi_{1}\\rightarrow X\\,^1\\!\\Sigma_{0}^+ transitions have been simulated. The program is based on the molecular constants and takes into account vibrational states up to v = 24. The required Franck-Condon factors and vibrationally resolved transition probabilities have been computed solving the Schrödinger equation using the Born-Oppenheimer approximation. The ground state density of the InBr molecule in the plasma has been determined from absorption spectra using effective transition probabilities for the A-X and B-X transition according to the vibrational population. The obtained densities agree well with densities derived from an Arrhenius type vapour pressure equation.

  3. High-frequency data observations from space shuttle main engine low pressure fuel turbopump discharge duct flex joint tripod failure investigation

    NASA Technical Reports Server (NTRS)

    Zoladz, T. F.; Farr, R. A.

    1991-01-01

    Observations made by Marshall Space Flight Center (MSFC) engineers during their participation in the Space Shuttle Main Engine (SSME) low pressure fuel turbopump discharge duct flex joint tripod failure investigation are summarized. New signal processing techniques used by the Component Assessment Branch and the Induced Environments Branch during the failure investigation are described in detail. Moreover, nonlinear correlations between frequently encountered anomalous frequencies found in SSME dynamic data are discussed. A recommendation is made to continue low pressure fuel (LPF) duct testing through laboratory flow simulations and MSFC-managed technology test bed SSME testing.

  4. Competitive Low Pressure Oxygen Plasma Interactions with Different= Carbon-Carbon Double Bonds

    NASA Astrophysics Data System (ADS)

    Patiño, P.; Sifontes, A.; Gambús, G.

    1999-10-01

    Recently we have shown advances from reactions of O(^3P) with both, l ong-chain hydrocarbons and refinery residuum. The oxidation products of t he process, a mixture of alcohols, epoxides and carbonyl compounds, might have potential properties as additives in formulating fuels. This work s hows the results of the interactions of an oxygen plasma with double bond s, both olefin and aromatic, in the same compound. The reactions have bee n carried out by making the plasma, created by a high voltage glow discha rge, reach the low vapor pressure surface of liquid 4-phenyl-1-butene. Th is (3 mL) was cooled down to -45 ^oC in a glass reactor, applied power was 24 W, at an oxygen pressure of 20 Pa. Products were analyzed by IR, N MR and mass spectroscopies. Conversions were studied as a function of the reaction time, this ranging from 5 to 120 minutes. At short times the O( ^3P) atoms produced in the discharge only reacted with the alkene fra ction of the hydrocarbon, 4-phenyl-1,2-epoxibutane (52%) and 4-phenyl-bu tanal (48%) being the products. Reactions on the benzene ring were obser ved from about 30 minutes on, the corresponding phenols having being prod uced at ratios ortho:para:meta :: 4:1:0.7. At 120 minutes, the ol efin have been completely oxidized and a low fraction of the non-equivale nt two methylene groups have reacted to produce alcohols and ketones.

  5. Three-electrode low pressure discharge apparatus and method for uniform ionization of gaseous media. [CO/sub 2/ laser oscillator and pulse smoother

    DOEpatents

    McLellan, E.J.

    1980-10-17

    Uniform, transverse electrical discharges are produced in gaseous media without the necessity of switching the main discharge voltage with an external device which carries the entire discharge current. A three-electrode low pressure discharge tube is charged across its anode and cathode to below breakdown voltage using a dc voltage source. An array of resistors or capacitors can be made to discharge to the wire screen anode by means of a low energy high voltage pulse circuit producing sufficient preionization in the region between the anode and cathode to initiate and control the main discharge. The invention has been demonstrated to be useful as a CO/sub 2/ laser oscillator and pulse-smoother. It can be reliably operated in the sealed-off mode.

  6. Scaling of the beam plasma discharge for low magnetic fields

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1986-01-01

    A theoretical analysis of the scaling law and the value of the threshold current for beam plasma discharge (BPD) is presented, based on the requirement for an absolute instability near the plasma frequency. It is shown that both the scaling law as well as the numerical values of Ic are consistent with the experimental data, in the low pressure regimes and for weak magnetic field experiments if the dominant particle loss mechanism is due to Bohm diffusion. The implications of the findings to electron injection in space are discussed.

  7. Characterization of magnetically confined low-pressure plasmas produced by an electromagnetic field in argon-acetylene mixtures

    NASA Astrophysics Data System (ADS)

    Makdessi, G. Al; Margot, J.; Clergereaux, R.

    2016-10-01

    Dust particles formation was investigated in magnetically confined low-pressure plasma produced in argon-acetylene mixtures. The plasma characteristics were measured in order to identify the species involved in the dust particles formation. Their dependence on the operating conditions including magnetic field intensity, acetylene fraction in the gas mixture and operating pressure was examined. In contrast with noble gases, in the presence of acetylene, the electron temperature increases with the magnetic field intensity, indicating additional charged particles losses in the plasma. Indeed, in these conditions, larger hydrocarbon ions are produced leading to the formation of dust particles in the plasma volume. The observed dependence of positive ion mass distribution and density and relative negative ion density on the operating parameters suggests that the dust particles are formed through different pathways, where negative and positive ions are both involved in the nucleation.

  8. Theory of beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Papadopoulos, K.

    1982-01-01

    The general theory of beam plasma discharge (BPD) is discussed in relation to space and laboratory beam injection situations. An important concept introduced is that even when beam plasma instabilities are excited, there are two regime of BPD with radically different observational properties. They are described here as BPD with either classical or anomalous energy depositions. For high pressures or low altitudes, the classical is expected to dominate. For high altitudes and laboratory experiments, where the axial system size is less than lambda sub en, no BPD will be triggered unless the unstable waves are near the ambient plasma frequency and their amplitudes at saturation are large enough to create suprathermal tails by collapsing.

  9. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    SciTech Connect

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Ramli, Muliadi; Jobiliong, Eric; Suyanto, Hery; Marpaung, Alion Mangasi; Suliyanti, Maria Margaretha; Tjia, May On

    2015-03-21

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N{sub 2} ambient gases. The results obtained with N{sub 2} ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO{sub 2} ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  10. Quantitative and sensitive analysis of CN molecules using laser induced low pressure He plasma

    NASA Astrophysics Data System (ADS)

    Pardede, Marincan; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Lahna, Kurnia; Idris, Nasrullah; Jobiliong, Eric; Suyanto, Hery; Marpaung, Alion Mangasi; Suliyanti, Maria Margaretha; Ramli, Muliadi; Tjia, May On; Lie, Tjung Jie; Lie, Zener Sukra; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-03-01

    We report the results of experimental study on CN 388.3 nm and C I 247.8 nm emission characteristics using 40 mJ laser irradiation with He and N2 ambient gases. The results obtained with N2 ambient gas show undesirable interference effect between the native CN emission and the emission of CN molecules arising from the recombination of native C ablated from the sample with the N dissociated from the ambient gas. This problem is overcome by the use of He ambient gas at low pressure of 2 kPa, which also offers the additional advantages of cleaner and stronger emission lines. The result of applying this favorable experimental condition to emission spectrochemical measurement of milk sample having various protein concentrations is shown to yield a close to linear calibration curve with near zero extrapolated intercept. Additionally, a low detection limit of 5 μg/g is found in this experiment, making it potentially applicable for quantitative and sensitive CN analysis. The visibility of laser induced breakdown spectroscopy with low pressure He gas is also demonstrated by the result of its application to spectrochemical analysis of fossil samples. Furthermore, with the use of CO2 ambient gas at 600 Pa mimicking the Mars atmosphere, this technique also shows promising applications to exploration in Mars.

  11. Synthesis of highly transparent ultrananocrystalline diamond films from a low-pressure, low-temperature focused microwave plasma jet.

    PubMed

    Liao, Wen-Hsiang; Wei, Da-Hua; Lin, Chii-Ruey

    2012-01-19

    This paper describes a new low-temperature process underlying the synthesis of highly transparent ultrananocrystalline diamond [UNCD] films by low-pressure and unheated microwave plasma jet-enhanced chemical vapor deposition with Ar-1%CH4-10%H2 gas chemistry. The unique low-pressure/low-temperature [LPLT] plasma jet-enhanced growth even with added H2 and unheated substrates yields UNCD films similar to those prepared by plasma-enhanced growth without addition of H2 and heating procedure. This is due to the focused plasma jet which effectively compensated for the sluggish kinetics associated with LPLT growth. The effects of pressure on UNCD film synthesis from the microwave plasma jet were systematically investigated. The results indicated that the substrate temperature, grain size, surface roughness, and sp3 carbon content in the films decreased with decreasing pressure. The reason is due to the great reduction of Hα emission to lower the etching of sp2 carbon phase, resulting from the increase of mean free path with decreasing pressure. We have demonstrated that the transition from nanocrystalline (80 nm) to ultrananocrystalline (3 to 5 nm) diamond films grown via microwave Ar-1%CH4-10%H2 plasma jets could be controlled by changing the pressure from 100 to 30 Torr. The 250-nm-thick UNCD film was synthesized on glass substrates (glass transition temperature [Tg] 557°C) using the unique LPLT (30 Torr/460°C) microwave plasma jet, which produced UNCD films with a high sp3 carbon content (95.65%) and offered high optical transmittance (approximately 86% at 700 nm).

  12. Nonlocal control of electron temperature in short direct current glow discharge plasma

    SciTech Connect

    Demidov, V. I.; Kudryavtsev, A. A.; Stepanova, O. M.; Kurlyandskaya, I. P.

    2014-09-15

    To demonstrate controlling the electron temperature in nonlocal plasma, experiments have been performed on a short (without positive column) dc glow discharge with a cold cathode by applying different voltages to the conducting discharge wall. The experiments have been performed for low-pressure noble gas discharges. The applied voltage can modify trapping the energetic electrons emitted from the cathode sheath and arising from the atomic and molecular processes in the plasma within the device volume. This phenomenon results in the energetic electrons heating the slow plasma electrons, which consequently modifies the electron temperature. Furthermore, a numerical model of the discharge has demonstrated the electron temperature modification for the above case.

  13. Study of metallic powder behavior in very low pressure plasma spraying (VLPPS) — Application to the manufacturing of titanium–aluminum coatings

    SciTech Connect

    Vautherin, B.; Planche, M.-P.; Montavon, G.; Lapostolle, F.; Quet, A.; Bianchi, L.

    2015-08-28

    In this study, metallic materials made of aluminum and titanium were manufactured implementing very low pressure plasma spraying (VLPPS). Aluminum was selected at first as a demonstrative material due to its rather low vaporization enthalpy (i.e., 381.9 kJ·mol⁻¹). Developments were then carried out with titanium which exhibits a higher vaporization enthalpy (i.e., 563.6 kJ·mol⁻¹). Optical emission spectroscopy (OES) was implemented to analyze the behavior of each solid precursor (metallic powders) when it is injected into the plasma jet under very low pressure (i.e., in the 150 Pa range). Besides, aluminum, titanium and titanium–aluminum coatings were deposited in the same conditions implementing a stick-cathode plasma torch operated at 50 kW, maximum power. Coating phase compositions were identified by X-Ray Diffraction (XRD). Coating elementary compositions were quantified by Glow Discharge Optical Emission Spectroscopy (GDOES) and Energy Dispersive Spectroscopy (EDS) analyses. The coating structures were observed by Scanning Electron Microscopy (SEM). The coating void content was determined by Ultra-Small Angle X-ray Scattering (USAXS). The coatings exhibit a two-scale structure corresponding to condensed vapors (smaller scale) and solidified areas (larger scale). Titanium–aluminum sprayed coatings, with various Ti/Al atomic ratios, are constituted of three phases: metastable α-Ti, Al and metastable α₂-Ti₃Al. This latter is formed at elevated temperature in the plasma flow, before being condensed. Its rather small fraction, impeded by the rather small amount of vaporized Ti, does not allow modifying however the coating hardness.

  14. Low-pressure plasma enhanced immobilization of chitosan on low-density polyethylene for bio-medical applications

    NASA Astrophysics Data System (ADS)

    Pandiyaraj, K. Navaneetha; Ferraria, Ana Maria; Rego, Ana Maria Botelho do; Deshmukh, Rajendra. R.; Su, Pi-Guey; Halleluyah Mercy, Jr.; Halim, Ahmad Sukari

    2015-02-01

    With the aim of improving blood compatibility of low density polyethylene (LDPE) films, an effective low-pressure plasma technology was employed to functionalize the LDPE film surfaces through in-situ grafting of acrylic acid (AAc). Subsequently, the molecules of poly(ethylene glycol) (PEG) and chitosan (CHI) were immobilized on the surface of grafted LDPE films. The unmodified and modified LDPE films were analyzed using various characterization techniques such as contact angle, atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR) and X-ray photo electron spectroscopy (XPS) to understand the changes in surface properties such as hydrophilicity, surface topography and chemical composition, respectively. Furthermore, LDPE films have been subjected to an ageing process to determine the durability of the plasma assisted surface modification. The blood compatibility of the surface modified LDPE films was confirmed by in vitro tests. It was found that surface modified LDPE films show better hydrophilic behavior compared with the unmodified one. FTIR and XPS results confirm the successful immobilization of CHI on the surface of LDPE films. LDPE films showed marked morphological changes after grafting of AAc, PEG and CHI which were confirmed through AFM imaging. The in vitro blood compatibility tests have clearly demonstrated that CHI immobilized LDPE films exhibit remarkable anti thrombogenic nature compared with other modified films. Surface modified LDPE films through low-pressure plasma technique could be adequate for biomedical implants such as artificial skin substrates, urethral catheters or cardiac stents, among others.

  15. Abatement of Perfluorinated Compounds Using Cylindrical Microwave Plasma Source at Low Pressure

    NASA Astrophysics Data System (ADS)

    Kim, Seong Bong; Park, S.; Park, Y.; Youn, S.; Yoo, S. J.

    2016-10-01

    Microwave plasma source with a cylindrical cavity has been proposed to abate the perfluorinated compounds (PFCs). This plasma source was designed to generate microwave plasma with the cylindrical shape and to be easily installed in existing exhaust line. The microwave frequency is 2.45 GHz and the operating pressure range is 0.1 Torr to 0.3 Torr. The plasma characteristic of the cylindrical microwave plasma source was measured using the optical spectrometer, and tunable diode laser absorption spectroscopy (TDLAS). The destruction and removal efficiency (DRE) of CF4 and CHF3 were measured by a quadrupole mass spectroscopy (QMS) with the various operation conditions. The effect of the addition of the oxygen gas were tested and also the correlation between the plasma parameters and the DRE are presented in this study. This work was supported by R&D Program of ``Plasma Advanced Technology for Agriculture and Food (Plasma Farming)'' through the National Fusion Research Institute of Korea (NFRI) funded by the Government funds.

  16. Surface Modification of Poly Vinyl Chloride (PVC) Using Low Pressure Argon and Oxygen Plasma

    NASA Astrophysics Data System (ADS)

    Mahmood, Ghoranneviss; Sheila, Shahidi; Jakub, Wiener

    2010-04-01

    In this study, commercial poly vinyl chloride (PVC) films were treated by oxygen and argon plasmas in a cylindrical glass tube which was surrounded by a DC variable magnetic field, with different sample positions in the plasma reactor and also different exposure durations. Effects of the plasma treatment on the hydrophilic properties of the films were studied by measuring the water drop contact angle on the surface of the samples. The surface topography of the untreated and plasma treated films was analyzed and compared by atomic force microscopy (AFM). The optical characteristic changes in treated samples were investigated using reflective spectrophotometry. Also, the chemical changes which appeared on the surface of the samples were investigated using Fourier transform infrared spectroscopy (FTIR). The results show that the plasma treated PVC becomes more hydrophilic with an enhanced wettability. A sharp decrease in the water contact angle may also be a consequence of the surface texturization. The aging effect on wettability of the samples was also investigated. The results show that the effect of oxygen plasma on the surface properties of the samples is more pronounced compared with that of argon plasma.

  17. An Assessment of the Residual Stresses in Low Pressure Plasma Sprayed Coatings on an Advanced Copper Alloy

    NASA Technical Reports Server (NTRS)

    Raj, S. V.; Ghosn, L. J.; Agarwal, A.; Lachtrupp, T. P.

    2002-01-01

    Modeling studies were conducted on low pressure plasma sprayed (LPPS) NiAl top coat applied to an advanced Cu-8(at.%)Cr-4%Nb alloy (GRCop-84) substrate using Ni as a bond coat. A thermal analysis suggested that the NiAl and Ni top and bond coats, respectively, would provide adequate thermal protection to the GRCop-84 substrate in a rocket engine operating under high heat flux conditions. Residual stress measurements were conducted at different depths from the free surface on coated and uncoated GRCop-84 specimens by x-ray diffraction. These data are compared with theoretically estimated values assessed by a finite element analysis simulating the development of these stresses as the coated substrate cools down from the plasma spraying temperature to room temperature.

  18. Thermalization of electrons in decaying extreme ultraviolet photons induced low pressure argon plasma

    NASA Astrophysics Data System (ADS)

    Beckers, J.; van der Horst, R. M.; Osorio, E. A.; Kroesen, G. M. W.; Banine, V. Y.

    2016-06-01

    We monitored—in the pressure range: 0.5-15 Pa—the electron temperature in decaying plasmas induced in argon gas by pulsed irradiation with extreme ultraviolet (EUV) photons with wavelengths closely around 13.5 nm. For this purpose, temporal measurements of the space-averaged and electric field weighted electron density after pulsed EUV irradiation are combined with an ambipolar diffusion model of the plasma. Results demonstrate that electrons are thermalized to room temperature before the plasma has fully expanded to the chamber walls for pressures of 3 Pa and higher. At pressures below 3 Pa, the electron temperature was found to be up to 0.1 eV above room temperature which is explained by the fact that plasma expansion is too quick for the electrons to fully thermalize. The comparison between plasma expansion duration towards a surface, plasma decay at a surface and time needed for thermalization and cooling of electrons is essential for designers of EUV lithography tools and EUV sources since the temperature of electrons dictates many fundamental physical processes.

  19. Effect of gas composition on spore mortality and etching during low-pressure plasma sterilization.

    PubMed

    Lerouge, S; Wertheimer, M R; Marchand, R; Tabrizian, M; Yahia, L

    2000-07-01

    The aim of this work was to investigate possible mechanisms of sterilization by low-temperature gas plasma: spore destruction by plasma is compared with etching of synthetic polymers. Bacillus subtilis spores were inoculated at the bottom of glass vials and subjected to different plasma gas compositions (O(2), O(2)/Ar, O(2)/H(2), CO(2), and O(2)/CF(4)), all known to etch polymers. O(2)/CF(4) plasma exhibited much higher efficacy than all other gases or gas mixtures tested, with a more than 5 log decrease in 7.5 min, compared with a 2 log decrease with pure oxygen. Examination by scanning electron microscopy showed that spores were significantly etched after 30 min of plasma exposure, but not completely. We speculate about their etch resistance compared with that of synthetic polymers on the basis of their morphology and complex coating structure. In contrast to so-called in-house plasma, sterilization by Sterrad(R) tended to increase the observed spores' size; chemical modification (oxidation), rather than etching, is believed to be the sterilization mechanism of Sterrad(R).

  20. An Upwarming Effect in Rarefied RF Plasma Stream at Low Pressure

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Shemakhin, Alexander; Khubatkhusin, Albert

    2016-09-01

    A mathematical model of the RF plasma flow at 13.3-133 Pa in transition regime at Knudsen 8 ×10-3 <= Kn <= 7 ×10-2 and the nozzle pressure ratio n = 10 for the carrier gas is described. The model based on both the statistical approach to the neutral component of the RF plasma and the continuum model for electron and ion components. The results of plasma flow calculations performed both for the free flowing and for the sample overflowing at a prescribed electric field are described. The effect of a warming up of a stream in a mixture zone confirmed by comparison of numerical results with experimental ones is found. The work was funded by RFBR, according to the research projects No. 15-41-0276 (setting of the problem), No. 16-31-00482 (writing the code), and the Russian Ministry of Education, Project No. 2196 (experiments).

  1. Deactivation of lipopolysaccharide by Ar and H2 inductively coupled low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Bartis, E. A. J.; Barrett, C.; Chung, T.-Y.; Ning, N.; Chu, J.-W.; Graves, D. B.; Seog, J.; Oehrlein, G. S.

    2014-01-01

    Using an inductively coupled plasma system, we study the effects of direct plasma, plasma-generated high-energy photons in the ultraviolet and vacuum ultraviolet (UV/VUV), and radical treatments on lipopolysaccharide (LPS). LPS is a biomolecule found in the outer membrane of Gram-negative bacteria and a potent stimulator of the immune system composed of polysaccharide and lipid A, which contains six aliphatic chains. LPS film thickness spun on silicon was monitored by ellipsometry while the surface chemistry was characterized before and after treatments by x-ray photoelectron spectroscopy (XPS). Additionally, biological activity was measured using an enzyme-linked immunosorbent assay under (a) a sensitive regime (sub-µM concentrations of LPS) and (b) a bulk regime (above µM concentrations of LPS) after plasma treatments. Direct plasma treatment causes rapid etching and deactivation of LPS in both Ar and H2 feed gases. To examine the effect of UV/VUV photons, a long-pass filter with a cut-off wavelength of 112 nm was placed over the sample. H2 UV/VUV treatment causes material removal and deactivation due to atomic and molecular UV/VUV emission while Ar UV/VUV treatment shows minimal effects as Ar plasma does not emit UV/VUV photons in the transmitted wavelength range explored. Interestingly, radical treatments remove negligible material but cause deactivation. Based on the amphiphilic structure of LPS, we expect a lipid A rich surface layer to form at the air-water interface during sample preparation with polysaccharide layers underneath. XPS shows that H2 plasma treatment under direct and UV/VUV conditions causes oxygen depletion through removal of C-O and O-C = O bonds in the films, which does not occur in Ar treatments. Damage to these groups can remove aliphatic chains that contribute to the pyrogenicity of LPS. Radical treatments from both Ar and H2 plasmas remove aliphatic carbon from the near-surface, demonstrating the important role of neutral species.

  2. A study of the influence of Hg(6(3)P2) population in a low-pressure discharge on mercury ion emission at 194.2 nm

    NASA Technical Reports Server (NTRS)

    Maleki, L.; Blasenheim, B. J.; Janik, G. R.

    1990-01-01

    A low-pressure mercury-argon discharge, similar to the type existing in the mercury lamp for the trapped-ion standard, is probed with a new technique of laser spectroscopy to determine the influence of the Hg(6 3P(sub 2)) population on discharge emission. The discharge is excited with inductively coupled rf power. Variations in the intensity of emission lines in the discharge were examined as lambda = 546.1 nm light from a continuous wave (CW) laser excited the Hg(6 3P(sub 2)) to (7 3S (sub 1)) transition. The spectrum of the discharge viewed in the region of laser irradiation showed increased emission in lambda = 546.1, 435.8, 404.7, 253.7, and 194.2 nm lines. Other lines in Hg I exhibited a decrease in emission. When the discharge was viewed outside the region of laser irradiation, all lines exhibited an increased emission. Based on these results, it is concluded that the dominant mechanism for the excitation of higher lying levels of mercury is the the electron-impact excitation via the 3P(sub 2) level. The depopulation of this metastable is also responsible for the observed increase in the electron temperature when the laser irradiates the discharge. It is also concluded that the 3P(sub 2) metastable level of mercury does not play a significant role in the excitation of the 3P(sub 1/2) level of mercury ion.

  3. Spherical carbon liquids generated in a low pressure CH{sub 4}/Ar plasma

    SciTech Connect

    Feng Zongbao; Kono, Akihiko; Nagai, Tatsuzo; Shoji, Fumiya

    2007-05-28

    The authors present a study on spherical carbon particles of micron sizes grown in the plasma sheath as spherical liquids that can be agglomerated by capillary force based on the Laplace pressure. In addition, it is suggested that those spherical carbon liquids with negative charges that are levitating in the sheath region begin to display a collective behavior of Coulomb crystals.

  4. Direct Simulation Monte Carlo Simulations of Low Pressure Semiconductor Plasma Processing

    SciTech Connect

    Gochberg, L. A.; Ozawa, T.; Deng, H.; Levin, D. A.

    2008-12-31

    The two widely used plasma deposition tools for semiconductor processing are Ionized Metal Physical Vapor Deposition (IMPVD) of metals using either planar or hollow cathode magnetrons (HCM), and inductively-coupled plasma (ICP) deposition of dielectrics in High Density Plasma Chemical Vapor Deposition (HDP-CVD) reactors. In these systems, the injected neutral gas flows are generally in the transonic to supersonic flow regime. The Hybrid Plasma Equipment Model (HPEM) has been developed and is strategically and beneficially applied to the design of these tools and their processes. For the most part, the model uses continuum-based techniques, and thus, as pressures decrease below 10 mTorr, the continuum approaches in the model become questionable. Modifications have been previously made to the HPEM to significantly improve its accuracy in this pressure regime. In particular, the Ion Monte Carlo Simulation (IMCS) was added, wherein a Monte Carlo simulation is used to obtain ion and neutral velocity distributions in much the same way as in direct simulation Monte Carlo (DSMC). As a further refinement, this work presents the first steps towards the adaptation of full DSMC calculations to replace part of the flow module within the HPEM. Six species (Ar, Cu, Ar*, Cu*, Ar{sup +}, and Cu{sup +}) are modeled in DSMC. To couple SMILE as a module to the HPEM, source functions for species, momentum and energy from plasma sources will be provided by the HPEM. The DSMC module will then compute a quasi-converged flow field that will provide neutral and ion species densities, momenta and temperatures. In this work, the HPEM results for a hollow cathode magnetron (HCM) IMPVD process using the Boltzmann distribution are compared with DSMC results using portions of those HPEM computations as an initial condition.

  5. Modification of polypropylene foils by low pressure oxygen plasma and its influence on the formation of titanium dioxide films

    NASA Astrophysics Data System (ADS)

    Sadowski, Rafal; Macyk, Wojciech

    2014-10-01

    Commercially available polypropylene foils were pre-treated with low pressure, room temperature radio frequency (RF) oxygen plasma at constant power and pressure. Various durations of pre-treatment process were applied. Afterwards the samples were covered with titanium dioxide thin film by dip-coating technique and photosensitized by titanium(IV) surface complexes formed upon impregnation with catechol-like ligands. Optical emission spectroscopy (OES) measurements were used for determining plasma species. The surface properties before and after plasma treatment were characterized by contact angle measurements, FTIR-ATR, UV-Vis, and X-ray photoelectron spectroscopy (XPS). Titanium dioxide thin films were characterized by scanning electron microscopy (SEM) and UV-Vis spectroscopy. The photoactivity of TiO2 films was tested by photocurrent measurements. It was shown that plasma pre-treatment is essential for oxygen groups formation which contribute to titanium dioxide binding to polymer surface. The support from National Science Centre within the DEC-2012/05/N/ST5/01497 grant is highly acknowledged.

  6. Raman and Eels Studies on Nanocrystalline Diamond Prepared in a Low Pressure Inductively Coupled Plasma

    DTIC Science & Technology

    2001-04-01

    plasma (ICP).6 The resultant deposits were found to be nanocrystalline diamond and diamond-like carbon ( DLC ) W 12.7.1 films as characterized by scanning...paper, we first review the previous Raman and HREELS results, then report the high resolution TEM ( HRTEM ) observations and the EELS measurements of the...elsewhere.6 The nanocrystalline diamond and DLC were grown in an ICP at 1 kW, 900 VC of the substrate (silicon wafer) temperature, 2 hours of the

  7. Numerical Simulations of Flow Separation Control in Low-Pressure Turbines using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Suzen, Y. B.; Huang, P. G.; Ashpis, D. E.

    2007-01-01

    A recently introduced phenomenological model to simulate flow control applications using plasma actuators has been further developed and improved in order to expand its use to complicated actuator geometries. The new modeling approach eliminates the requirement of an empirical charge density distribution shape by using the embedded electrode as a source for the charge density. The resulting model is validated against a flat plate experiment with quiescent environment. The modeling approach incorporates the effect of the plasma actuators on the external flow into Navier Stokes computations as a body force vector which is obtained as a product of the net charge density and the electric field. The model solves the Maxwell equation to obtain the electric field due to the applied AC voltage at the electrodes and an additional equation for the charge density distribution representing the plasma density. The new modeling approach solves the charge density equation in the computational domain assuming the embedded electrode as a source therefore automatically generating a charge density distribution on the surface exposed to the flow similar to that observed in the experiments without explicitly specifying an empirical distribution. The model is validated against a flat plate experiment with quiescent environment.

  8. Evaluation of tungsten shaped-charge liners spray-formed using the low-pressure plasma spray process

    SciTech Connect

    Buchanan, E.R.; Sickinger, A.

    1994-12-31

    This paper documents the results of a DARPA Phase 1 SBIR program which was awarded following a solicitation to develop new technologies for the forming of refractory metal shaped-charge liners. Holtgren had proposed to manufacture liners by spraying refractory metal powder onto a rapidly-rotating mandrel inside the chamber of a low-pressure plasma spray system. A total of nine tungsten shaped-charge liners were sprayed during the course of the program. Metallographic evaluation of the liners revealed that the as-sprayed microstructure was dense, averaging 98.5% density. The grain structure is equiaxed and fine, averaging five microns in diameter. The sprayed shapes were then processed to the final liner configuration by cylindrical grinding. The liners were ductile enough to withstand the strains of grinding and normal handling.

  9. Measurement of effective sheath width around cutoff probe in low-pressure plasmas

    SciTech Connect

    Kim, D. W.; Oh, W. Y.; You, S. J. Kim, J. H.; Chang, H. Y.

    2014-05-15

    Previous studies indicated that the measurement results of microwave probes can be improved by applying the adequate sheath width to their measurement models, and consequently the sheath width around the microwave probe tips has become very important information for microwave probe diagnostics. In this paper, we propose a method for measuring the argon plasma sheath width around the cutoff probe tips by applying the circuit model to the cutoff probe phase spectrum. The measured sheath width of the cutoff probe was found to be in good agreement with the floated sheath width calculated from the Child-Langmuir sheath law. The physical reasons for a discrepancy between the two measurements are also discussed.

  10. Effect of driving frequency on the electron-sheath interaction and electron energy distribution function in a low pressure capacitively coupled plasmas

    NASA Astrophysics Data System (ADS)

    Sharma, Sarveshwar; Sirse, Nishant; Kaw, Predhiman; Turner, Miles; Ellingboe, Albert R.; InstitutePlasma Research, Gandhinagar, Gujarat Team; School Of Physical Sciences; Ncpst, Dublin City University, Dublin 9, Ireland Collaboration

    2016-09-01

    The effect of driving frequency (27.12-70 MHz) on the electron-sheath interaction and electron energy distribution function (EEDF) is investigated in a low pressure capacitive discharges using a self-consistent particle-in-cell simulation. At a fixed discharge voltage the EEDF evolves from a strongly bi-Maxwellian at low frequency, 27.12 MHz, to a convex type distribution at an intermediate frequency, 50 MHz, and finally becomes a weak biMaxwellian above 50 MHz. The EEDF evolution leads to a two-fold increase in the effective electron temperature up to 50 MHz, whereas the electron density remains constant in this range. After 50MHz, the electron density increases rapidly and the electron temperature decreases. The transition is caused by the transient electric field excited by bursts of high energy electrons interacting strongly with the sheath edge. Above the transition frequency, high energy electrons are confined between two sheaths which increase the ionization probability and thus the plasma density increases.

  11. Electron energy distribution functions in low-pressure oxygen plasma columns sustained by propagating surface waves

    SciTech Connect

    Stafford, L.; Margot, J.; Moisan, M.; Khare, R.; Donnelly, V. M.

    2009-01-12

    Electron energy distribution functions (EEDFs) were measured in a 50 mTorr oxygen plasma column sustained by propagating surface waves. Trace-rare-gas-optical-emission spectroscopy was used to derive EEDFs by selecting lines to extract ''electron temperature''(T{sub e}) corresponding to either lower energy electrons that excite high-lying levels through stepwise excitation via metastable states or higher energy electrons that excite emission directly from the ground state. Lower energy T{sub e}'s decreased from 8 to 5.5 eV with distance from the wave launcher, while T{sub e}{approx_equal}6 eV for higher energy electrons and T{sub e}>20 eV for a high-energy tail. Mechanisms for such EEDFs are discussed.

  12. High pressure laser plasma studies. [energy pathways in He-Ar gas mixtures at low pressure

    NASA Technical Reports Server (NTRS)

    Wells, W. E.

    1980-01-01

    The operation of a nuclear pumped laser, operating at a wavelength of 1.79 micron m on the 3d(1/2-4p(3/2) transition in argon with helium-3 as the majority gas is discussed. The energy pathways in He-Ar gas were investigated by observing the effects of varying partial pressures on the emissions of levels lying above the 4p level in argon during a pulsed afterglow. An attempt is made to determine the population mechanisms of the 3d level in pure argon by observing emission from the same transition in a high pressure plasma excited by a high energy electron beam. Both collisional radiative and dissociative recombination are discussed.

  13. Plasma discharge self-cleaning filtration system

    SciTech Connect

    Cho, Young I.; Fridman, Alexander; Gutsol, Alexander F.; Yang, Yong

    2014-07-22

    The present invention is directed to a novel method for cleaning a filter surface using a plasma discharge self-cleaning filtration system. The method involves utilizing plasma discharges to induce short electric pulses of nanoseconds duration at high voltages. These electrical pulses generate strong Shockwaves that disintegrate and dislodge particulate matter located on the surface of the filter.

  14. Plasma in a Pulsed Discharge Environment

    NASA Technical Reports Server (NTRS)

    Remy, J.; Bienier, L.; Salama, F.

    2005-01-01

    The plasma generated in a pulsed slit discharge nozzle is used to form molecular ions in an astrophysically relevant environment. The plasma has been characterized as a glow discharge in the abnormal regime. Laboratory studies help understand the formation processes of polycyclic aromatic hydrocarbon (PAH) ions that are thought to be the source of the ubiquitous unidentified infrared bands.

  15. Plasma Processing with a One Atmosphere Uniform Glow Discharge Plasma (OAUGDP)

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2000-10-01

    The vast majority of all industrial plasma processing is conducted with glow discharges at pressures below 10 torr. This has limited applications to high value workpieces as a result of the large capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharges would play a much larger industrial role if they could be operated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) has been developed at the University of Tennessee Plasma Sciences Laboratory. The OAUGDP is non-thermal RF plasma with the time-resolved characteristics of a classical low pressure DC normal glow discharge. An interdisciplinary team was formed to conduct exploratory investigations of the physics and applications of the OAUGDP. This team includes collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC) and the Departments of Electrical and Computer Engineering, Microbiology, Food Science and Technology, and Mechanical and Aerospace Engineering and Engineering Science. Exploratory tests were conducted on a variety of potential plasma processing and other applications. These include the use of OAUGDP to sterilize medical and dental equipment and air filters; diesel soot removal; plasma aerodynamic effects; electrohydrodynamic (EDH) flow control of the neutral working gas; increasing the surface energy of materials; increasing the wettability and wickability of fabrics; and plasma deposition and directional etching. A general overview of these topics will be presented.

  16. Investigation of effect of excitation frequency on electron energy distribution functions in low pressure radio frequency bounded plasmas

    SciTech Connect

    Bhattacharjee, Sudeep; Lafleur, Trevor; Charles, Christine; Boswell, Rod

    2011-07-15

    Particle in cell (PIC) simulations are employed to investigate the effect of excitation frequency {omega} on electron energy distribution functions (EEDFs) in a low pressure radio frequency (rf) discharge. The discharge is maintained over a length of 0.10 m, bounded by two infinite parallel plates, with the coherent heating field localized at the center of the discharge over a distance of 0.05 m and applied perpendicularly along the y and z directions. On varying the excitation frequency f (={omega}/2{pi}) in the range 0.01-50 MHz, it is observed that for f {<=} 5 MHz the EEDF shows a trend toward a convex (Druyvesteyn-like) distribution. For f > 5 MHz, the distribution resembles more like a Maxwellian with the familiar break energy visible in most of the distributions. A prominent ''hot tail'' is observed at f{>=} 20 MHz and the temperature of the tail is seen to decrease with further increase in frequency (e.g., at 30 MHz and 50 MHz). The mechanism for the generation of the ''hot tail'' is considered to be due to preferential transit time heating of energetic electrons as a function of {omega}, in the antenna heating field. There exists an optimum frequency for which high energy electrons are maximally heated. The occurrence of the Druyvesteyn-like distributions at lower {omega} may be explained by a balance between the heating of the electrons in the effective electric field and elastic cooling due to electron neutral collision frequency {nu}{sub en}; the transition being dictated by {omega} {approx} 2{pi}{nu}{sub en}.

  17. Transition Control with Dielectric Barrier Discharge Plasmas

    DTIC Science & Technology

    2013-01-01

    AFRL-AFOSR-UK-TR-2013-0007 Transition Control with Dielectric Barrier Discharge Plasmas Professor Cameron Tropea...Discharge Plasmas 5a. CONTRACT NUMBER FA8655-11-1-3067 5b. GRANT NUMBER Grant 11-3067 5c. PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S...15. SUBJECT TERMS EOARD, Plasma Aerodynamic, transition control, Dielectric Barrier 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF

  18. Global model analysis of negative ion generation in low-pressure inductively coupled hydrogen plasmas with bi-Maxwellian electron energy distributions

    SciTech Connect

    Huh, Sung-Ryul; Kim, Nam-Kyun; Jung, Bong-Ki; Chung, Kyoung-Jae; Hwang, Yong-Seok; Kim, Gon-Ho

    2015-03-15

    A global model was developed to investigate the densities of negative ions and the other species in a low-pressure inductively coupled hydrogen plasma with a bi-Maxwellian electron energy distribution. Compared to a Maxwellian plasma, bi-Maxwellian plasmas have higher populations of low-energy electrons and highly vibrationally excited hydrogen molecules that are generated efficiently by high-energy electrons. This leads to a higher reaction rate of the dissociative electron attachment responsible for negative ion production. The model indicated that the bi-Maxwellian electron energy distribution at low pressures is favorable for the creation of negative ions. In addition, the electron temperature, electron density, and negative ion density calculated using the model were compared with the experimental data. In the low-pressure regime, the model results of the bi-Maxwellian electron energy distributions agreed well quantitatively with the experimental measurements, unlike those of the assumed Maxwellian electron energy distributions that had discrepancies.

  19. Documentation and Control of Flow Separation on a Low Pressure Turbine Linear Cascade of Pak-B Blades Using Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Corke, Thomas c.; Thomas, FLint, O.; Huang, Junhui

    2007-01-01

    This work involved the documentation and control of flow separation that occurs over low pressure turbine (LPT) blades at low Reynolds numbers. A specially constructed linear cascade was utilized to study the flow field over a generic LPT cascade consisting of Pratt & Whitney "Pak-B" shaped blades. Flow visualization, surface pressure measurements, LDV measurements, and hot-wire anemometry were conducted to examine the flow fields with and without separation control. Experimental conditions were chosen to give a range of chord Reynolds numbers (based on axial chord and inlet velocity) from 10,000 to 100,000, and a range of freestream turbulence intensities from u'/U(infinity) = 0.08 to 2.85 percent. The blade pressure distributions were measured and used to identify the region of separation that depends on Reynolds number and the turbulence intensity. Separation control was performed using dielectric barrier discharge (DBD) plasma actuators. Both steady and unsteady actuation were implemented and found to work well. The comparison between the steady and unsteady actuators showed that the unsteady actuators worked better than the steady ones. For the steady actuators, it was found that the separated region is significantly reduced. For the unsteady actuators, where the signal was pulsed, the separation was eliminated. The total pressure losses (a low Reynolds number) was reduced by approximately a factor of two. It was also found that lowest plasma duty cycle (10 percent in this work) was as effective as the highest plasma duty cycle (50 percent in this work). The mechanisms of the steady and unsteady plasma actuators were studied. It was suggested by the experimental results that the mechanism for the steady actuators is turbulence tripping, while the mechanism for the unsteady actuators is to generate a train of spanwise structures that promote mixing.

  20. End-boundary sheath potential, electron and ion energy distribution in the low-pressure non-ambipolar electron plasma

    NASA Astrophysics Data System (ADS)

    Chen, Lee; Chen, Zhiying; Funk, Merritt

    2013-12-01

    The end-boundary floating-surface sheath potential, electron and ion energy distribution functions (EEDf, IEDf) in the low-pressure non-ambipolar electron plasma (NEP) are investigated. The NEP is heated by an electron beam extracted from an inductively coupled electron-source plasma (ICP) through a dielectric injector by an accelerator located inside the NEP. This plasma's EEDf has a Maxwellian bulk followed by a broad energy continuum connecting to the most energetic group with energies around the beam energy. The NEP pressure is 1-3 mTorr of N2 and the ICP pressure is 5-15 mTorr of Ar. The accelerator is biased positively from 80 to 600 V and the ICP power range is 200-300 W. The NEP EEDf and IEDf are determined using a retarding field energy analyser. The EEDf and IEDf are measured at various NEP pressures, ICP pressures and powers as a function of accelerator voltage. The accelerator current and sheath potential are also measured. The IEDf reveals mono-energetic ions with adjustable energy and it is proportionally controlled by the sheath potential. The NEP end-boundary floating surface is bombarded by a mono-energetic, space-charge-neutral plasma beam. When the injected energetic electron beam is adequately damped by the NEP, the sheath potential is linearly controlled at almost a 1 : 1 ratio by the accelerator voltage. If the NEP parameters cannot damp the electron beam sufficiently, leaving an excess amount of electron-beam power deposited on the floating surface, the sheath potential will collapse and become unresponsive to the accelerator voltage.

  1. The effects of process parameters on yield and properties of iron nanoparticles from ferrocene in a low-pressure plasma

    NASA Astrophysics Data System (ADS)

    Panchal, V.; Lahoti, G.; Bhandarkar, U.; Neergat, M.

    2011-08-01

    The effects of process parameters on iron nanoparticle formation and properties while using ferrocene as a precursor in a low-pressure capacitively coupled plasma are investigated. The L18 array of the Taguchi method, followed by the L4 array, is used with the notional objective of increasing the yield of nanoparticles. A study of the size, shape and composition of the particles (using transmission electron microscopy, high-resolution transmission electron microscopy, Raman spectroscopy, x-ray diffraction, CHON and inductively coupled plasma-atomic emission spectroscopy analysis) gives an insight into the role played by various process parameters. Pressure is the most critical parameter in increasing nanoparticle yield, whereas hydrogen flow plays a key role in determining the nanoparticle size and composition. Atomic hydrogen helps in removing amorphous carbon and reducing the nanoparticle size. RF power plays an important role in the dissociation of ferrocene thus also affecting the composition. Nanoparticles obtained using optimized conditions are a mixture of Fe3O4 and Fe2O3 with cluster size 25-40 nm in diameter that are further made up of 2-4 nm crystallites. Magnetic property measurements indicate that the nanoparticles are super-paramagnetic in nature.

  2. Measurements of the total energy lost per electron-ion pair lost in low-pressure inductive argon, helium, oxygen and nitrogen discharge

    NASA Astrophysics Data System (ADS)

    Lee, Young-Kwang; Ku, Ju-Hwan; Chung, Chin-Wook

    2011-02-01

    Experimental measurements of the total energy lost per electron-ion pair lost, ɛT, were performed in a low-pressure inductive atomic gases (Ar, He) and molecular gases (O2, N2) discharge. The value of ɛT was determined from a power balance based on the electropositive global (volume-averaged) model. A floating harmonic method was employed to measure ion fluxes and electron temperatures at the discharge wall. In the pressure range 5-50 mTorr, it was found that the measured ɛT ranged from about 70 to 150 V for atomic gases, but from about 180 to 1300 V for molecular gases. This difference between atomic and molecular discharge is caused by additional collisional energy losses of molecular gases. For argon discharge, the stepwise ionization effect on ɛT was observed at relatively high pressures. For different gases, the measured ɛT was evaluated with respect to the electron temperature, and then compared with the calculation results, which were derived from collisional and kinetic energy loss. The measured ɛT and their calculations showed reasonable agreement.

  3. Plasma quiescence in a reflex discharge

    SciTech Connect

    Jerde, L.; Friedman, S.; Carr, W.; Seidl, M.

    1980-02-01

    A thermionic cathode reflex discharge and the plasma it produces are studied. It is found that extremely quiescent plasmas can be produced when the electron-loss rate due to classical diffusion is equal to the ion-loss rate. Particle and power balances for the quiescent plasma are obtained, and the average electron energy loss per ion produced is determined.

  4. Sound wave propagation through glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Stepaniuk, Vadim P.

    This work investigates the use of glow discharge plasma for acoustic wave manipulation. The broader goal is the suppression of aerodynamic noise using atmospheric glow discharge plasma as a sound barrier. Part of the effort was devoted to the development of a system for the generation of a large volume stable DC glow discharge in air both at atmospheric and at reduced pressures. The single tone sound wave propagation through the plasma was systematically studied. Attenuation of the acoustic wave passing through the glow discharge was measured for a range of experimental conditions including different discharge currents, electrode configurations, air pressures and sound frequencies including audible sound and ultrasound. Sound attenuation by glow discharge plasma as high as -28 dB was recorded in the experiments. Two types of possible mechanisms were considered that can potentially cause the observed sound attenuation. One is a global mechanism and the other is a local mechanism. The global mechanism considered is based on the reflection and refraction of acoustic wave due to the gas temperature gradients that form around the plasma. The local mechanism, on the other hand, is essentially the interaction of the acoustic wave with the plasma as it propagates inside the discharge and it can be viewed as a feedback system. Detailed temperature measurements, using laser-induced Rayleigh scattering technique, were carried out in the glow discharge plasma in order to evaluate the role of global mechanism in the observed attenuation. These measurements were made for a range of conditions in the atmospheric glow discharge. Theoretical analysis of the sound attenuation was carried out to identify the physical mechanism for the observed sound attenuation by plasma. It was demonstrated that the global mechanism is the dominant mechanism of sound attenuation. As a result of this study, the potentials and limitations of the plasma noise suppression technology were determined and

  5. Low Pressure Radio-Frequency Oxygen Plasma Induced Oxidation of Titanium – Surface Characteristics and Biological Effects

    PubMed Central

    Tseng, Wan-Yu; Hsu, Sheng-Hao; Huang, Chieh-Hsiun; Tu, Yu-Chieh; Tseng, Shao-Chin; Chen, Hsuen-Li; Chen, Min-Huey; Su, Wei-Fang; Lin, Li-Deh

    2013-01-01

    Objective This research was designed to investigate the effects of low pressure radio-frequency (RF) oxygen plasma treatment (OPT) on the surface of commercially pure titanium (CP-Ti) and Ti6Al4V. Surface topography, elemental composition, water contact angle, cell viability, and cell morphology were surveyed to evaluate the biocompatibility of titanium samples with different lengths of OP treating time. Materials and Methods CP-Ti and Ti6Al4V discs were both classified into 4 groups: untreated, treated with OP generated by using oxygen (99.98%) for 5, 10, and 30 min, respectively. After OPT on CP-Ti and Ti6Al4V samples, scanning probe microscopy, X-ray photoelectron spectrometry (XPS), and contact angle tests were conducted to determine the surface topography, elemental composition and hydrophilicity, respectively. The change of surface morphology was further studied using sputtered titanium on silicon wafers. 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assay and F-actin immunofluorescence stain were performed to investigate the viability and spreading behavior of cultivated MG-63 cells on the samples. Results The surface roughness was most prominent after 5 min OPT in both CP-Ti and Ti6Al4V, and the surface morphology of sputtered Ti sharpened after the 5 min treatment. From the XPS results, the intensity of Ti°, Ti2+, and Ti3+ of the samples’ surface decreased indicating the oxidation of titanium after OPT. The water contact angles of both CP-Ti and Ti6Al4V were increased after 5 min OPT. The results of MTT assay demonstrated MG-63 cells proliferated best on the 5 min OP treated titanium sample. The F-actin immunofluorescence stain revealed the cultivated cell number of 5 min treated CP-Ti/Ti6Al4V was greater than other groups and most of the cultivated cells were spindle-shaped. Conclusions Low pressure RF oxygen plasma modified both the composition and the morphology of titanium samples’ surface. The CP-Ti/Ti6Al4V treated with 5 min

  6. Sensitive analysis of carbon, chromium and silicon in steel using picosecond laser induced low pressure helium plasma

    NASA Astrophysics Data System (ADS)

    Abdulmadjid, Syahrun Nur; Idris, Nasrullah; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Suyanto, Hery; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-12-01

    An experimental study has been performed on the gas pressure and laser energy dependent variations of plasma emission intensities in Ar, He and N2 ambient gases induced by picosecond (ps) Nd-YAG laser irradiation on low alloy steel (JSS) samples. The study is aimed to demonstrate distinct advantage of using low pressure He ambient gas in combination with ps laser for the sensitive ppm level detection of C, Si and Cr emission lines in the UV-VIS spectral region. The much shorter pulses of ps laser are chosen for the effective ablation at much lower energy and for the benefit of reducing the undesirable long heating of the sample surface. It is found that the C I 247.8 nm, Fe I 253.5 nm, and Si I 251.4 nm emission lines induced by the ps laser at 15 mJ are readily detected with He ambient gas of 2.6 kPA, featuring generally sharp spectral signals with very low background. The following experimental results using samples with various concentrations of C, Si and Cr impurities are shown to produce for each of those elements a linear calibration line with extrapolated zero intercept, demonstrating the applicability for their quantitative analyses, with a preliminary estimated detection limits of 20 μg/g, 15 μg/g, and 5 μg/g, for C, Si, and Cr, respectively. The possibility of applying the same setup for concentration depth profiling is also demonstrated.

  7. Thermal barrier coating life and isothermal oxidation of low-pressure plasma-sprayed bond coat alloys

    NASA Technical Reports Server (NTRS)

    Brindley, W. J.; Miller, R. A.

    1990-01-01

    The paper investigates the isothermal oxidation kinetics of Ni-35Cr-6Al-0.95Y, Ni-18Cr-12Al-0.3Y, and Ni-16Cr-6Al-0.3Y low-pressure plasma-sprayed bond coat alloys and examines the effect of these alloys on the thermal barrier coating (TBC) cyclic life. TBC life was examined by cycling substrates coated with the different bond coats and a ZrO2-7 wt pct Y2O3 TBC in an air-rich burner rig flame between 1150 C and room temperature. The oxidation kinetics of the three bond coat alloys was examined by isothermal oxidation of monolithic NJiCrAlY coupons at 1083 C. The Ni-35Cr-6Al-0.95Y alloy exhibits comparatively high isothermal oxidation weight gains and provides the longest TBC life, whereas the Ni-16Cr-6Al-0.3Y alloy had the lowest weight gains and provided the shortest TBC life. The results show that, although bond coat oxidation is known to have a strong detrimental effect on TBC life, it is not the only bond coat factor that determines TBC life.

  8. Recombinative plasma in electron runaway discharge

    SciTech Connect

    Kuznetsov, Yu.K.; Galvao, R.M.O.; Usuriaga, O.C.; Krasheninnikov, S.I.; Soboleva, T.K.; Tsypin, V.S.; Fonseca, A.M.M.; Ruchko, L.F.; Sanada, E.K.

    2005-07-15

    Cold recombinative plasma is the basic feature of the new regime of runaway discharges recently discovered in the Tokamak Chauffage Alfven Bresilien tokamak [R. M. O. Galvao et al., Plasma Phys. Controlled Fusion 43, 1181 (2001)]. With low plasma temperature, the resistive plasma current and primary Dreicer process of runaway generation are strongly suppressed at the stationary phase of the discharge. In this case, the runaway avalanche, which has been recently recognized as a novel important mechanism for runaway electron generation in large tokamaks, such as International Thermonuclear Experimental Reactor, during disruptions, and for electric breakdown in matter, is the only mechanism responsible for toroidal current generation and can be easily observed. The measurement of plasma temperature by the usual methods is a difficult task in fully runaway discharges. In the present work, various indirect evidences for low-temperature recombinative plasma are presented. The direct observation of recombinative plasma is obtained as plasma detachment from the limiter. The model of cold recombinative plasma is also supported by measurements of plasma density and H{sub {alpha}} emission radial profiles, analysis of time variations of these parameters due to the relaxation instability, estimations of plasma resistivity from voltage spikes, and energy and particle balance calculations.

  9. Plasma variables and tribological properties of coatings in low pressure (0.1 - 10.0 torr) plasma systems

    NASA Technical Reports Server (NTRS)

    Avni, R.; Spalvins, T.

    1984-01-01

    A detailed treatment is presented of the dialog known as plasma surface interactions (PSI) with respect to the coating process and its tribological behavior. Adsorption, morphological changes, defect formation, sputtering, chemical etching, and secondary electron emission are all discussed as promoting and enhancing the surface chemistry, thus influencing the tribological properties of the deposited flux. Phenomenological correlations of rate of deposition, flux composition, microhardness, and wear with the plasma layer variables give an insight to the formation of chemical bonding between the deposited flux and the substrate surface.

  10. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, Devendra; McGlynn, Sean P.

    1992-01-01

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition.

  11. Analysis of radiofrequency discharges in plasma

    DOEpatents

    Kumar, D.; McGlynn, S.P.

    1992-08-04

    Separation of laser optogalvanic signals in plasma into two components: (1) an ionization rate change component, and (2) a photoacoustic mediated component. This separation of components may be performed even when the two components overlap in time, by measuring time-resolved laser optogalvanic signals in an rf discharge plasma as the rf frequency is varied near the electrical resonance peak of the plasma and associated driving/detecting circuits. A novel spectrometer may be constructed to make these measurements. Such a spectrometer would be useful in better understanding and controlling such processes as plasma etching and plasma deposition. 15 figs.

  12. Demonstration of Separation Control Using Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2003-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modem low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2%) and high (2.5%) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  13. Demonstration of Separation Delay with Glow-Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Ashpis, David E.

    2004-01-01

    Active flow control of boundary-layer separation using glow-discharge plasma actuators is studied experimentally. Separation is induced on a flat plate installed in a closed-circuit wind tunnel by a shaped insert on the opposite wall. The flow conditions represent flow over the suction surface of a modern low-pressure-turbine airfoil. The Reynolds number, based on wetted plate length and nominal exit velocity, is varied from 50,000 to 300,000, covering cruise to takeoff conditions. Low (0.2 percent) and high (2.5 percent) free-stream turbulence intensities are set using passive grids. A spanwise-oriented phased-plasma-array actuator, fabricated on a printed circuit board, is surface-flush-mounted upstream of the separation point and can provide forcing in a wide frequency range. Static surface pressure measurements and hot-wire anemometry of the base and controlled flows are performed and indicate that the glow-discharge plasma actuator is an effective device for separation control.

  14. High-power, low-pressure, inductively coupled RF plasma source using a FET-based inverter power supply

    NASA Astrophysics Data System (ADS)

    Komizunai, Shota; Oikawa, Kohei; Saito, Yuta; Takahashi, Kazunori; Ando, Akira

    2015-01-01

    A high-density plasma of density greater than 1019 m-3 is successfully produced in 1.5 Pa argon by an inductively coupled RF discharge with a 70-mm-diameter source cavity, where a 10-turn water-cooled RF loop antenna is wound onto the source tube and an axial magnetic field of ˜70 G is applied by two solenoids to reduce plasma loss onto the source cavity. The RF antenna is powered from a frequency-tunable field-effect-transistor-based inverter power supply, which does not require variable capacitors to match the impedance, at a frequency of ˜350 kHz and the RF power can be increased up to ˜8 kW. It is also demonstrated that the source is operational with an axial magnetic field provided by permanent magnet (PM) arrays; then the density in the case of the PM arrays is higher than that in the case of the solenoids. The role of the magnetic filter downstream of the source tube is demonstrated; a radially uniform plasma density exceeding 1018 m-3 and an electron temperature of ˜1-2 eV are obtained at ˜100 mm downstream of the open exit of the source tube.

  15. Inactivation of Gram-Negative Bacteria by Low-Pressure RF Remote Plasma Excited in N2-O2 Mixture and SF6 Gases.

    PubMed

    Al-Mariri, Ayman; Saloum, Saker; Mrad, Omar; Swied, Ghayath; Alkhaled, Bashar

    2013-12-01

    The role of low-pressure RF plasma in the inactivation of Escherichia coli O157, Klebsiella pneumoniae, Proteus mirabilis, and Enterobacter sakazakii using N2-O2 and SF6 gases was assessed. 1×10(9) colony-forming units (CFUs) of each bacterial isolate were placed on three polymer foils. The effects of pressure, power, distance from the source, and exposure time to plasma gases were optimized. The best conditions to inactivate the four bacteria were a 91%N2-9%O2 mixture and a 30-minute exposure time. SF6 gas was more efficient for all the tested isolates in as much as the treatment time was reduced to only three minutes. Therefore, low-pressure plasma could be used to sterilize heat and/or moisture-sensitive medical instruments.

  16. Spatial evolution of the electron energy distribution function in a low-pressure capacitively coupled plasma containing argon and krypton

    NASA Astrophysics Data System (ADS)

    Zhu, Xi-Ming; Chen, Wen-Cong; Li, Jiang; Cheng, Zhi-Wen; Pu, Yi-Kang

    2012-08-01

    The spatial evolution of the electron energy distribution function (EEDF) in the axial direction of a capacitively coupled plasma with two parallel plate electrodes is investigated using an optical emission line-ratio method for Ar/Kr discharges. When the rf power is increased from 25 to 400 W at a pressure of 400 mTorr, we observe a transition from convex EEDFs to concave ones and a sharp increase in electron density, due to an α-γ mode transition, which is believed to be caused by the high-energy electrons originating in the high-voltage sheath. We also investigate the spatial evolution of the EEDF when the pressure is increased from 45 to 500 mTorr at a power of 100 W. The EEDF is uniform at pressures below 180 mTorr and becomes non-uniform at higher pressures, owing to the decrease in the energy relaxation length of the high-energy electrons.

  17. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    NASA Astrophysics Data System (ADS)

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-01

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne≳ 5 ×1019 m-3 ) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z ,t ) and temperature Te(z ,t ) , and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pA r=30 -60 mTorr . We present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency antenna.

  18. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    SciTech Connect

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne~ > 5x1019 m–3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated in order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.

  19. One-dimensional time-dependent fluid model of a very high density low-pressure inductively coupled plasma

    DOE PAGES

    Chaplin, Vernon H.; Bellan, Paul M.

    2015-12-28

    A time-dependent two-fluid model has been developed to understand axial variations in the plasma parameters in a very high density (peak ne~ > 5x1019 m–3) argon inductively coupled discharge in a long 1.1 cm radius tube. The model equations are written in 1D, with radial losses to the tube walls accounted for by the inclusion of effective particle and energy sink terms. The ambipolar diffusion equation and electron energy equation are solved to find the electron density ne(z,t) and temperature Te(z,t), and the populations of the neutral argon 4s metastable, 4s resonant, and 4p excited state manifolds are calculated inmore » order to determine the stepwise ionization rate and calculate radiative energy losses. The model has been validated through comparisons with Langmuir probe ion saturation current measurements; close agreement between the simulated and measured axial plasma density profiles and the initial density rise rate at each location was obtained at pAr = 30-60 mTorr. Lastly, we present detailed results from calculations at 60 mTorr, including the time-dependent electron temperature, excited state populations, and energy budget within and downstream of the radiofrequency (RF) antenna.« less

  20. Plasma sterilization using the RF glow discharge

    NASA Astrophysics Data System (ADS)

    Yang, Liqing; Chen, Jierong; Gao, Junling; Guo, Yafei

    2009-08-01

    In the present work, glow discharge oxygen plasma was used to sterilize the Pseudomonas aeruginosa on the polyethylene terephthalate (PET) sheets. In a self-designed plasma reaction equipment, active species (electron, ion, radical, UV light, etc.) were separated effectively, and the discharge area, afterglow area and remote area were plotted out in the plasma field. Before and after plasma treatment the cell morphology was studied by scanning electron microscopy (SEM). The results showed that after treatment of 30 s the germicidal effect is 4.26, 3. 84, 2.61, respectively in the three areas on the following conditions: discharge power was 40 W and gas flux was 20 cm 3/min. SEM results revealed the cell morphology before and after plasma treatment. The walls or cell membrane cracking was testified by determining the content of protein using coomassie light blue technique. The results from electron spin resonance spectroscopy (ESR) and double Langmuir electron probe showed that electron, ion and oxygen free radical played important roles in sterilization in the discharge area, but only oxygen radicals acted to sterilize the bacteria in the afterglow area and the remote area.

  1. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  2. Discharge produced plasma source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Borisov, V.; Eltzov, A.; Ivanov, A.; Khristoforov, O.; Kirykhin, Yu.; Vinokhodov, A.; Vodchits, V.; Mishhenko, V.; Prokofiev, A.

    2007-04-01

    Extreme ultraviolet (EUV) radiation is seen as the most promising candidate for the next generation of lithography and semiconductor chip manufacturing for the 32 nm node and below. The paper describes experimental results obtained with discharge produced plasma (DPP) sources based on pinch effect in a Xe and Sn vapour as potential tool for the EUV lithography. Problems of DPP source development are discussed.

  3. Wide-pressure-range coplanar dielectric barrier discharge: Operational characterisation of a versatile plasma source

    NASA Astrophysics Data System (ADS)

    Čech, J.; Bonaventura, Z.; SÅ¥ahel, P.; Zemánek, M.; Dvořáková, H.; Černák, M.

    2017-01-01

    Many plasma applications could benefit from the versatile plasma source operable at a wide-pressure-range, e.g., from the fraction of Pa to the super-atmospheric conditions. In this paper, the basic characteristics of wide-pressure-range plasma source based on the coplanar dielectric barrier discharge is given. The operational characteristics of this plasma source were measured in nitrogen at pressures ranging from 101 Pa (resp. 10-4 Pa) to 105 Pa. Measurements of the plasma geometry, breakdown voltage, and micro-discharges' behaviour revealed three operational regimes of this plasma source: "high pressure," "transitional" and "low-pressure" with vague boundaries at the pressures of approx. 10 kPa and 1 kPa. It was found that the plasma layer of coplanar dielectric barrier discharge could be expanded up to several centimetres to the half-space above the planar dielectric barrier when the gas pressure is reduced below 1 kPa, which provides an outstanding space to tailor the source for the specific applications. The proposed model of an effective gap distance in the Paschen breakdown criterion enabled us to explain the discharge behaviour fitting the experimental breakdown voltage data in the whole studied pressure range. Under the filament-forming conditions, i.e., at the pressure range from approx. 1-100 kPa, the active plasma volume could be varied through the micro-discharges' lateral thickness scaling with the inverse of the square-root of the gas pressure.

  4. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma.

    PubMed

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  5. Double flush-mounted probe diagnostics and data analysis technique for argon glow discharge plasma

    NASA Astrophysics Data System (ADS)

    Yu, Pengcheng; Liu, Yu; Cao, Jinxiang; Xu, Liang; Zhang, Xiao; Zhang, Zhongkai; Wang, Pi

    2017-01-01

    In this work, a double flush-mounted probe for measuring plasma parameters was designed and fabricated. The method to determine the plasma density and electron temperature using a floating double flush-mounted probe was characterized. To validate this method, the measurement results in an argon glow discharge plasma, including the electron density and temperature measurements, were compared with those obtained using a single probe and a double probe. Results indicate that the electron density measured using the double flush-mounted probe agrees well with those measured using other probes; the effective electron temperature values are also consistent within the admissible error range. These results suggest that the double flush-mounted probe can be used for accurate measurements at low pressure DC plasma discharges and also can be applied to other complex plasmas such as tokamaks, in the boundary-layer region without a reference electrode.

  6. Application of low pressure capacitively coupled rf hydrogen plasma for low temperature reduction of iron clusters in structure of fe-pillared materials

    NASA Astrophysics Data System (ADS)

    Starshinova, V. L.; Gorelysheva, V. E.; Shinka Jr., A. A., rev; Gnevashev, S. G.; Kulevtsov, G. N.; Shinkarev, A. A.

    2017-01-01

    The unique properties of pillared materials determine their use in catalysis, purification and separation. The paper studies the reduction of composite catalysts, Fe-pillared materials. The authors compare their reduction in low temperature capacitively coupled RF hydrogen discharge of low pressure to their conventional direct hydrogen reduction in a tubular muffle furnace. X-ray diffraction analysis was used to characterize the iron-bearing phases. The results show that the reduction of iron hydro/oxide clusters associated with an aluminosilicate matrix to metallic iron is very challenging due to the degree of the pore space availability for hydrogen.

  7. How does a probe inserted into the discharge influence the plasma structure?

    NASA Astrophysics Data System (ADS)

    Yordanov, D.; Lishev, St.; Shivarova, A.

    2016-05-01

    Shielding the bias applied to the probe by the sheath formed around it and determination of parameters of unperturbed plasmas are in the basis of the probe diagnostics. The results from a two-dimensional model of a discharge with a probe inserted in it show that the probe influences the spatial distribution of the plasma parameters in the entire discharge. The increase (although slight) in the electron temperature, due to the increased losses of charged particles on the additional wall in the discharge (mainly the probe holder), leads to redistribution of the plasma density and plasma potential, as shown by the results obtained at the floating potential of the probe. The deviations due to the bias applied to the probe tip are stronger in the ion saturation region of the probe characteristics. The pattern of the spatial redistribution of the plasma parameters advances together with the movement of the probe deeper in the discharge. Although probe sheaths and probe characteristics resulting from the model are shown, the study does not aim at discussions on the theories for determination of the plasma density from the ion saturation current. Regardless of the modifications in the plasma behavior in the entire discharge, the deviations of the plasma parameters at the position of the probe tip and, respectively, the uncertainty which should be added as an error when the accuracy of the probe diagnostics is estimated do not exceed 10%. Consequently, the electron density and temperature obtained, respectively, at the position of the plasma potential on the probe characteristics and from its transition region are in reasonable agreement with the results from the model of the discharge without a probe. Being in the scope of research on a source of negative hydrogen ions with the design of a matrix of small radius inductive discharges, the model is specified for a low-pressure hydrogen discharge sustained in a small-radius tube.

  8. Combustion Enhancement with a Silent Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Rosocha, Louis

    2003-10-01

    It is well known that the application of an external electric field to a flame can affect its propagation speed, stability, and combustion chemistry (Lawton & Weinberg 1969). External electrodes, arc discharges, and plasma jets have been employed to allow combustible gas mixtures to operate outside their flammability limits by gas heating, injection of free radicals, and field-promoted flame stabilization (Yagodnikov & Voronetskii 1994). Other investigators have carried out experiments with silent electrical discharges applied to propagating flames (Inomata et al 1983, Kim et al 2003). These have demonstrated that the flame propagation velocity is actually decreased (combustion retarded) when a silent discharge is applied directly to the flame region, but that the flame propagation velocity is increased (combustion promoted) when a silent discharge is applied to the unburned gas mixture upstream of a flame. Two other recent works have considered the possibility of combustion enhancement in aircraft gas turbine engine combustor mixers by using a plasma-generating fuel nozzle, that employs an electric-arc or microwave plasma generator, to produce dissociated fuel or ionized fuel (Johnson et al 2001); and pulsed corona-enhanced detonation of fuel-air mixtures in jet engines (Wang et al 2003). In contrast to these prior works, we have employed a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals or other active species in a gas stream before the fuel is mixed with an oxidizer and combusted. In experiments reported here, a cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks are observed (e.g., propane fragments decrease and water and carbon dioxide increase). This indicates that the combustion process is

  9. Numerical simulations of electrical asymmetry effect on electronegative plasmas in capacitively coupled rf discharge

    SciTech Connect

    Zhang Quanzhi; Jiang Wei; Wang Younian; Hou Lujing

    2011-01-01

    Recently a so-called electrical asymmetry effect (EAE), which could achieve high-degree separate control of ion flux and energy in dual-frequency capacitively coupled radio-frequency (CCRF) discharges, was discovered theoretically by Heil et al. [J. Phys. D: Appl. Phys. 41, 165202 (2008)] and was confirmed by experiments and theory/numerical simulations later on for electropositive argon discharges. In this work simulations based on particle-in-cell/Monte Carlo collision are performed to study the EAE on electronegative oxygen plasmas in geometrically symmetric CCRF discharges. Dual frequency discharges operating at 13.56 and 27.12 MHz are simulated for different pressures and the results are compared with those of electropositive argon discharges at the same conditions. It is found that in general the EAE on oxygen discharges has similar behavior as on argon discharge: The self-bias voltage {eta} increases monotonically and almost linearly with the increase in the phase angle {theta} between the two driving voltages in the range 0<{theta}<90 deg. , and the maximum ion energy varies by a factor of 3 by adjusting {theta}. However, the ion flux varies with {theta} by {+-}12% for low pressure and by {+-}15% for higher pressure, due primarily to an enhanced plasma series resonance, which then leads to dramatic changes in plasma density, power absorption and consequently the electronegativity. This may place a limitation for achieving separate control of ion energy and flux for electronegative plasma via the EAE.

  10. Nonuniform discharge currents in active plasma lenses

    NASA Astrophysics Data System (ADS)

    van Tilborg, J.; Barber, S. K.; Tsai, H.-E.; Swanson, K. K.; Steinke, S.; Geddes, C. G. R.; Gonsalves, A. J.; Schroeder, C. B.; Esarey, E.; Bulanov, S. S.; Bobrova, N. A.; Sasorov, P. V.; Leemans, W. P.

    2017-03-01

    Active plasma lenses have attracted interest in novel accelerator applications due to their ability to provide large-field-gradient (short focal length), tunable, and radially symmetric focusing for charged particle beams. However, if the discharge current is not flowing uniformly as a function of radius, one can expect a radially varying field gradient as well as potential emittance degradation. We have investigated this experimentally for a 1-mm-diameter active plasma lens. The measured near-axis field gradient is approximately 35% larger than expected for a uniform current distribution, and at overfocusing currents ring-shaped electron beams are observed. These observations are explained by simulations.

  11. Effect of Low Pressure Nitrogen DC Plasma on Optical Properties of Biaxial-Oriented Polypropylene (BOPP), Poly Methyl Methacrylate (PMMA) and Poly Vinyl Chloride (PVC) Films

    NASA Astrophysics Data System (ADS)

    Mortazavi, S. H.; Ghoranneviss, M.; Faryadras, S.

    2012-06-01

    In this paper properties of Biaxial-Oriented Polypropylene, Poly Vinyl Chloride and Poly Methyl Methacrylate samples treated by DC glow discharge of N2 plasma have been investigated by UV-Vis_NIR spectrophotometer. It was found that plasma treatment change chemical structure of polymer surfaces. In addition, absorption coefficient, refractive index and extinction coefficient of all treated samples have been slightly changed.

  12. Investigating the electron density of multi-MeV X-ray-induced air plasmas at low pressures based on electromagnetic resonant cavity analysis

    NASA Astrophysics Data System (ADS)

    Ribière, M.; d'Almeida, T.; Cessenat, O.; Maulois, M.; Pouzalgues, R.; Crabos, B.; Delbos, C.; Garrigues, A.; Azaïs, B.

    2016-12-01

    We investigate air plasmas generated by multi-MeV pulsed X-rays at pressures ranging from 10-5 to 10-1 mbar. The experimental approach used for these studies is based on measurements of resonant frequencies damping and shift for different electromagnetic modes within a cylindrical cavity. Time-integrated electron densities in X-ray-induced air plasmas are inferred from the damping rate of the measured magnetic fields and their corresponding frequency shifts. In the present study, electron densities ranging from 108 to 109 cm-3 at pressures ranging from 10-3 to 10-1 mbar have been measured. Experimental results were confronted to 3D Maxwell-Vlasov Particle-In-Cell simulations incorporating a radiation-induced electric conductivity model. The method used in this work enables determining microscopic and macroscopic physical quantities within low pressure air plasmas generated by pulsed X-ray.

  13. Effect of surface modification of poly(lactic acid) by low-pressure ammonia plasma on adsorption of human serum albumin

    NASA Astrophysics Data System (ADS)

    Sarapirom, S.; Yu, L. D.; Boonyawan, D.; Chaiwong, C.

    2014-08-01

    The final goal of the study was to promote understanding of mechanisms involved in cell attachment on biomedical polymer poly(lactic acid) (PLA). As the cell attachment on the material surface was preceded by blood protein adsorption which would critically affect subsequent cell adhesion, for the clinic application purpose, human serum albumin (HSA) was used in the investigation on its adsorption on PLA, which was however treated by low-pressure ammonia (NH3) plasma. The NH3-plasma-treated PLA was found to adsorb less HSA than the untreated PLA. The PLA was characterized using various techniques such as atomic force microscopy, contact angle and surface energy analysis and x-ray photoelectron spectroscopy. All of the characterization results indicated that due to NH3-plasma-induced polar groups the PLA enhanced its hydrophilicity which in turn inhibited the HSA adsorption. The decreased HSA adsorption would consequently increase the cell attachment because of the cell adhesion barrier reduced.

  14. Feasibility of atomic layer etching of polymer material based on sequential O{sub 2} exposure and Ar low-pressure plasma-etching

    SciTech Connect

    Vogli, Evelina; Metzler, Dominik; Oehrlein, Gottlieb S.

    2013-06-24

    We describe controlled, self-limited etching of a polystyrene polymer using a composite etching cycle consisting of sequential deposition of a thin reactive layer from precursors produced from a polymer-coated electrode within the etching chamber, modification using O{sub 2} exposure, and subsequent low-pressure Ar plasma etching, which removes the oxygen-modified deposited reactive layer along with Almost-Equal-To 0.1 nm unmodified polymer. Deposition prevents net etching of the unmodified polymer during the etching step and enables self-limited etch rates of 0.1 nm/cycle.

  15. Scaling of the beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Rowland, H. L.; Papadopoulos, K.; Chang, C. L.

    1981-01-01

    A theoretical analysis is presented of the scaling of the critical beam current required for ignition and the narrow band emissions observed for beam currents less than critical in a beam plasma discharge experiment. The theory of the two-stream interaction between a nonrelativistic cold electron beam and a plasma in the presence of a magnetic field is developed, and conditions for the two-stream instability and the resulting amplification are derived. It is shown that the experimentally observed scaling is consistent with the assumption that the ignition triggering occurs when an instability near the electron plasma frequency is excited. Finally, it is shown that the wave emissions observed in the subthreshold range can be explained by the excitation of the kinetic instability of the upper branch and convective saturation.

  16. Spectroscopic study of low pressure, low temperature H2-CH4-CO2 microwave plasmas used for large area deposition of nanocrystalline diamond films. Part II: on plasma chemical processes

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Baudrillart, B.; Hamann, S.; Bénédic, F.; Lombardi, G.; Gicquel, A.; van Helden, J. H.; Röpcke, J.

    2016-12-01

    In a distributed antenna array (DAA) reactor, microwave H2 plasmas with admixtures of 2.5% CH4 and 1% CO2 used for the deposition of nanocrystalline diamond films have been studied by infrared laser absorption and optical emission spectroscopy (OES) techniques. The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and pressure at relatively low pressures, up to 0.55 mbar, and power values, up to 3 kW. The evolution of the concentration of the methyl radical, CH3, of five stable molecules, CH4, CO2, CO, C2H2 and C2H6, and of vibrationally excited CO in the first and second hot band was monitored in the plasma processes by in situ infrared laser absorption spectroscopy using tunable lead salt diode lasers (TDL) and an external-cavity quantum cascade laser (EC-QCL) as radiation sources. OES was applied simultaneously to obtain complementary information about the degree of dissociation of the H2 precursor and of its gas temperature. The experimental results are presented in two separate parts. In Part I, the first paper in a two-part series, the measurement of the gas (T gas), rotational (T rot) and vibrational (T vib) temperatures of the various species in the complex plasma was the main focus of interest. Depending on the different plasma zones the gas temperature was found to range between about 360 and 1000 K inside the DAA reactor (Nave et al 2016 Plasma Sources Sci. Technol. 25 065002). In Part II, the present paper, taking into account the temperatures determined in the first paper, the concentrations of the various species, which were found to be in a range between 1011 and 1015 cm-3, are the focus of interest. The influence of the discharge parameters power and pressure on the molecular concentrations has been studied. To achieve further insight into general plasma chemical aspects the dissociation of the carbon precursor gases including their fragmentation and conversion to the reaction products has been

  17. Influence of power on the surface loss reaction of F radicals in a low pressure CF4:O2 ICP discharge

    NASA Astrophysics Data System (ADS)

    Setareh, Mahsa; Farnia, Morteza; Maghari, Ali; University of Tehran Team

    2014-10-01

    A zero dimensional modeling code Global_kin, developed by Kushner is applied to model the CF4/O2 radio frequency inductively coupled plasma at applied powers of 80-300 W, pressure of 25 mTorr and temperature of 400 K. The calculated results indicated that the Fluorine (F) is the dominant radical produced in CF4:O2 discharge which is lost mostly at the walls rather than in formation of F2 molecules. We calculated the time integrated rate of F loss at the wall together with the relative contribution of wall reactions on the total loss of F corresponding to the sticking probabilities. The model predicts that although the absolute time integrated loss rates at the walls increase with power, but the relative contribution of the wall loss process decreases slightly upon higher powers. Furthermore, at lower O2 contents (or high CF4 contents), the relative contribution of the wall loss process is much lower because F radicals can also get lost in reactions with other plasma species such as CF3 to form again CF4. At equal contents of O2 and CF4, 35-45% of the F radicals are lost at the walls, depending on the power. The numerical modeling results for CF4 decomposition into new products are validated based on experimental data from literature.

  18. An analytical theory of corona discharge plasmas

    SciTech Connect

    Uhm, H.S.; Lee, W.M.

    1997-09-01

    In this paper we describe an analytical investigation of corona discharge systems. Electrical charge and the energy transfer mechanism are investigated based on the circuit analysis. Efficient delivery of electrical energy from the external circuit to the reactor chamber is a major issue in design studies. The optimum condition obtained in this paper ensures 100{percent} energy transfer. Second-order coupled differential equations are numerically solved. All the analytical results agree remarkably well with numerical data. The reactor capacitor plays a pivotal role in circuit performance. The voltage profile is dominated by the reactor capacitor. Corona discharge properties in the reactor chamber are also investigated, assuming that a specified voltage profile V(t) is fed through the inner conductor. The analytical description is based on the electron moment equation. Defining the plasma breakdown parameter u=V/R{sub c}p, plasma is generated for a high-voltage pulse satisfying u{gt}u{sub c}, where u{sub c} is the critical breakdown parameter defined by geometrical configuration. Here, u is in units of a million volts per m per atm, and R{sub c} is the outer conductor radius. It is found that the plasma density profile generated inside the reactor chamber depends very sensitively on the system parameters. A small change of a physical parameter can easily lead to a density change in one order of magnitude.

  19. Battling Bacterial Biofilms with Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Zelaya, Anna; Vandervoort, Kurt; Brelles-Mariño, Graciela

    Most studies dealing with growth and physiology of bacteria have been carried out using free-living cells. However, most bacteria live in communities referred to as biofilms where cooperative interactions among their members make conventional methods of controlling microbial growth often ineffective. The use of gas discharge plasmas represents an alternative to traditional decontamination/sterilization methods. We studied biofilms using two organisms, Chromobacterium violaceum and Pseudomonas aeruginosa. With the first organism we demonstrated almost complete loss of cell culturability after a 5-min plasma treatment. However, additional determinations showed that non-culturable cells were still alive after short exposure times. We have recently reported the effect of plasma on P. aeruginosa biofilms grown on borosilicate coupons. In this paper, we present results for plasma treatments of 1-, 3-, and 7-day old P. aeruginosa biofilms grown on polycarbonate or stainless-steel coupons. Results indicate nearly 100% of ­biofilm inactivation after 5 min of exposure with similar inactivation kinetics for 1-, 3-, and 7-day-old biofilms, and for both materials used. The inactivation kinetics is similar for both organisms, suggesting that the method is useful regardless of the type of biofilm. AFM images show changes in biofilm structure for various plasma exposure times.

  20. Film analysis employing subtarget effect using 355 nm Nd-YAG laser-induced plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Hedwig, Rinda; Budi, Wahyu Setia; Abdulmadjid, Syahrun Nur; Pardede, Marincan; Suliyanti, Maria Margaretha; Lie, Tjung Jie; Kurniawan, Davy Putra; Kurniawan, Koo Hendrik; Kagawa, Kiichiro; Tjia, May On

    2006-12-01

    The applicability of spectrochemical analysis for liquid and powder samples of minute amount in the form of thin film was investigated using ultraviolet Nd-YAG laser (355 nm) and low-pressure ambient air. A variety of organic samples such as commercial black ink usually used for stamp pad, ginseng extract, human blood, liquid milk and ginseng powder was prepared as film deposited on the surface of an appropriate hard substrate such as copper plate or glass slide. It was demonstrated that in all cases studied, good quality spectra were obtained with very low background and free from undesirable contamination by the substrate elements, featuring ppm or even sub-ppm sensitivity and worthy of application for quantitative analysis of organic samples. The proper preparation of the films was found to be crucial in achieving the high quality spectra. It was further shown that much inferior results were obtained when the atmospheric-pressure (101 kPa) operating condition of laser-induced breakdown spectroscopy or the fundamental wavelength of the Nd-YAG laser was employed due to the excessive or improper laser ablation process.

  1. Spectral signature of the beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Hallinan, T. J.; Deehr, C. S.; Hoch, E.; Viereck, R.; Bernstein, W.; Konradi, A.

    1988-01-01

    The effect of the beam current on the spectrum of a beam plasma discharge (BPD) in N2 at 50, 100, or 400 microtorr is investigated experimentally in the 2.6-m chamber described by Bernstein et al. (1983). The results are presented graphically and discussed in detail. An increase in the ratio of first positive N2 emissions to first negative N2(+) emissions at BPD onset is shown to disappear at currents above the BPD threshold and is attributed to a large population of suprathermal electrons.

  2. An experimental study on sub-cooled flow boiling CHF of R134a at low pressure condition with atmospheric pressure (AP) plasma assisted surface modification

    SciTech Connect

    Kim, Seung Jun; Zou, Ling; Jones, Barclay G.

    2015-02-01

    In this study, sub-cooled flow boiling critical heat flux tests at low pressure were conducted in a rectangular flow channel with one uniformly heated surface, using simulant fluid R-134a as coolant. The experiments were conducted under the following conditions: (1) inlet pressure (P) of 400-800 kPa, (2) mass flux (G) of 124-248 kg/m2s, (3) inlet sub-cooling enthalpy (ΔHi) of 12~ 26 kJ/kg. Parametric trends of macroscopic system parameters (G, P, Hi) were examined by changing inlet conditions. Those trends were found to be generally consistent with previous understandings of CHF behavior at low pressure condition (i.e. reduced pressure less than 0.2). A fluid-to-fluid scaling model was utilized to convert the test data obtained with the simulant fluid (R-134a) into the prototypical fluid (water). The comparison between the converted CHF of equivalent water and CHF look-up table with same operation conditions were conducted, which showed good agreement. Furthermore, the effect of surface wettability on CHF was also investigated by applying atmospheric pressure plasma (AP-Plasma) treatment to modify the surface characteristic. With AP-Plasma treatment, the change of microscopic surface characteristic was measured in terms of static contact angle. The static contact angle was reduced from 80° on original non-treated surface to 15° on treated surface. An enhancement of 18% on CHF values under flow boiling conditions were observed on AP-Plasma treated surfaces compared to those on non-treated heating surfaces.

  3. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    NASA Astrophysics Data System (ADS)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  4. Quantitative measurement of VUV radiation related to polymer pre-treatment in a microwave driven low pressure plasma

    NASA Astrophysics Data System (ADS)

    Mitschker, Felix; Iglesias, Enrique; Fiebrandt, Marcel; Bibinov, Nikita; Awakowicz, Peter; InstituteElectrical Engineering; Plasma Technology Team

    2016-09-01

    Plasma pre-treatment of polymers is used for a wide range of applications, e.g. prior to deposition of thin SiOx barrier films. At this, plasma generated particles and vacuum ultraviolet (VUV) radiation can reach the polymer surface. Both have a severe impact on the polymer interface, resulting in the production of e.g. dangling bonds. These modifications govern subsequent thin film growth. For understanding of pre-treatment processes, VUV radiation has to be quantified. Absolute VUV photon fluences are determined in situ, at the substrate holder, applying sodium salicylate (NaSal) as a scintillator. Therefore, VUV photons are quantified from 50 nm to 325 nm, due to constant quantum efficiency of NaSal, as integrals over defined wavelength ranges (50-110, 110-170, 170-200 and 200-325 nm). The set up allows for measurement with three scintillators. Each is equipped with optical filters. Observation of the fluorescence band is performed by means of optical fibers and a photomultiplier. Quantification is achieved by simultaneous measurement with an absolutely calibrated echelle spectrometer in the spectral range from 200 nm to 325 nm, taking into account observed plasma volumes. VUV photons are quantified for argon and oxygen plasmas as well as mixtures of both. Support by the German Research Foundation (DFG) within the framework of the SFB TRR 87/1 is acknowledged.

  5. Measurement of Electron Density Using the Multipole Resonance Probe, Langmuir Probe and Optical Emission Spectroscopy in Low Pressure Plasmas with Different Electron Energy Distribution Functions

    NASA Astrophysics Data System (ADS)

    Oberberg, Moritz; Bibinov, Nikita; Ries, Stefan; Awakowicz, Peter; Institute of Electrical Engineering; Plasma Technology Team

    2016-09-01

    In recently publication, the young diagnostic tool Multipole Resonance Probe (MRP) for electron density measurements was introduced. It is based on active plasma resonance spectroscopy (APRS). The probe was simulated und evaluated for different devices. The geometrical and electrical symmetry simplifies the APRS model, so that the electron density can be easily calculated from the measured resonance. In this work, low pressure nitrogen mixture plasmas with different electron energy distribution functions (EEDF) are investigated. The results of the MRP measurement are compared with measurements of a Langmuir Probe (LP) and Optical Emission Spectroscopy (OES). Probes and OES measure in different regimes of kinetic electron energy. Both probes measure electrons with low kinetic energy (<10 eV), whereas the OES is influenced by electrons with high kinetic energy which are needed for transitions of molecule bands. By the determination of the absolute intensity of N2(C-B) and N2+(B-X)electron temperature and density can be calculated. In a non-maxwellian plasma, all plasma diagnostics need to be combined.

  6. Kinetic modeling of evolution of 3 + 1:Resonance enhanced multiphoton ionization plasma in argon at low pressures

    SciTech Connect

    Tholeti, Siva Sashank; Alexeenko, Alina A.; Shneider, Mikhail N.

    2014-06-15

    We present numerical kinetic modeling of generation and evolution of the plasma produced as a result of resonance enhanced multiphoton ionization (REMPI) in Argon gas. The particle-in-cell/Monte Carlo collision (PIC/MCC) simulations capture non-equilibrium effects in REMPI plasma expansion by considering the major collisional processes at the microscopic level: elastic scattering, electron impact ionization, ion charge exchange, and recombination and quenching for metastable excited atoms. The conditions in one-dimensional (1D) and two-dimensional (2D) formulations correspond to known experiments in Argon at a pressure of 5 Torr. The 1D PIC/MCC calculations are compared with the published results of local drift-diffusion model, obtained for the same conditions. It is shown that the PIC/MCC and diffusion-drift models are in qualitative and in reasonable quantitative agreement during the ambipolar expansion stage, whereas significant non-equilibrium exists during the first few 10 s of nanoseconds. 2D effects are important in the REMPI plasma expansion. The 2D PIC/MCC calculations produce significantly lower peak electron densities as compared to 1D and show a better agreement with experimentally measured microwave radiation scattering.

  7. Experimental investigations of the plasma radial uniformity in single and dual frequency capacitively coupled argon discharges

    NASA Astrophysics Data System (ADS)

    Zhao, Kai; Liu, Yong-Xin; Gao, Fei; Liu, Gang-Hu; Han, Dao-Man; Wang, You-Nian

    2016-12-01

    In the current work, the radial plasma density has been measured by utilizing a floating double probe in single and dual frequency capacitively coupled argon discharges operated in a cylindrical reactor, aiming at a better understanding of electromagnetic effects and exploring a method of improving the radial uniformity. The experimental results indicate that for single-frequency plasma sustained at low pressure, the plasma density radial profile exhibits a parabolic distribution at 90 MHz, whereas at 180 MHz, the profile evolves into a bimodal distribution, and both cases indicate poor uniformities. With increasing the pressure, the plasma radial uniformity becomes better for both driving frequency cases. By contrast, when discharges are excited by two frequencies (i.e., 90 + 180 MHz), the plasma radial profile is simultaneously influenced by both sources. It is found that by adjusting the low-frequency to high-frequency voltage amplitude ratio β, the radial profile of plasma density could be controlled and optimized for a wide pressure range. To gain a better plasma uniformity, it is necessary to consider the balance between the standing wave effect, which leads to a maximum plasma density at the reactor center, and the edge field effect, which is responsible for a maximum density near the radial electrode edge. This balance can be controlled either by selecting a proper gas pressure or by adjusting the ratio β.

  8. Influence of a magnetic field on the formation of carbon dust particles in very low-pressure high-density plasmas

    NASA Astrophysics Data System (ADS)

    Makdessi, G. Al; Glad, X.; Dap, S.; Rojo, M.; Clergereaux, R.; Margot, J.

    2017-04-01

    Carbon dust particles with radius of a few hundreds of nanometers are formed in a steady-state plasma produced by an electromagnetic surface wave at 200 MHz in very low-pressure conditions. The influence of an applied magnetic field is evidenced by ex situ methods (scanning and transmission electron microscopy, Raman spectroscopy). The observed spherical dust particles are formed of aggregates of graphite nanocrystals embedded in amorphous carbon shells. In addition, the size of the dust particles increases with the magnetic field intensity. Growth occurs as the particles are confined near the sheath edge and their confinement is improved by applying a magnetic field as the corresponding electric field increases in this region. As a consequence, the average dust particle radius is directly related to the magnetic field intensity.

  9. Mass spectrometry study of decomposition of exo-tetrahydrodicyclopentadiene by low-power, low-pressure rf plasma

    SciTech Connect

    Jiao, Charles Q.; Ganguly, Biswa N.; Garscadden, Alan

    2009-02-01

    The plasma cracking of exo-tetrahydrodicyclopentadiene (JP-10) (C{sub 10}H{sub 16}) is investigated using a quadrupole mass spectrometer. The relative densities of the JP-10 molecule and its principal decomposition products, including H{sub 2}, are determined for varying rf powers in the range of 3-30 W, using the measured ion intensities combined with ionization cross section data from the literature. The extent of the cracking of JP-10 and the formation of H{sub 2} as functions of the rf power are discussed.

  10. Autonomous Method and System for Minimizing the Magnitude of Plasma Discharge Current Oscillations in a Hall Effect Plasma Device

    NASA Technical Reports Server (NTRS)

    Hruby, Vladimir (Inventor); Demmons, Nathaniel (Inventor); Ehrbar, Eric (Inventor); Pote, Bruce (Inventor); Rosenblad, Nathan (Inventor)

    2014-01-01

    An autonomous method for minimizing the magnitude of plasma discharge current oscillations in a Hall effect plasma device includes iteratively measuring plasma discharge current oscillations of the plasma device and iteratively adjusting the magnet current delivered to the plasma device in response to measured plasma discharge current oscillations to reduce the magnitude of the plasma discharge current oscillations.

  11. Rotating plasma structures in the cross-field discharge of Hall thrusters

    NASA Astrophysics Data System (ADS)

    Mazouffre, Stephane; Grimaud, Lou; Tsikata, Sedina; Matyash, Konstantin

    2016-09-01

    Rotating plasma structures, also termed rotating spokes, are observed in various types of low-pressure discharges with crossed electric and magnetic field configurations, such as Penning sources, magnetron discharges, negative ion sources and Hall thrusters. Such structures correspond to large-scale high-density plasma blocks that rotate in the E×B drift direction with a typical frequency on the order of a few kHz. Although such structures have been extensively studied in many communities, the mechanism at their origin and their role in electron transport across the magnetic field remain unknown. Here, we will present insights into the nature of spokes, gained from a combination of experiments and advanced particle-in-cell numerical simulations that aim at better understanding the physics and the impact of rotating plasma structures in the ExB discharge of the Hall thruster. As rotating spokes appear in the ionization region of such thrusters, and are therefore difficult to probe with diagnostics, experiments have been performed with a wall-less Hall thruster. In this configuration, the entire plasma discharge is pushed outside the dielectric cavity, through which the gas is injected, using the combination of specific magnetic field topology with appropriate anode geometry.

  12. Influence of dust-particle concentration on gas-discharge plasma

    SciTech Connect

    Sukhinin, G. I.; Fedoseev, A. V.

    2010-01-15

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N{sub d} on gas discharge and dust particles parameters was investigated. It is shown that the increase of N{sub d} leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10{sup 2}-10{sup 8} cm{sup -3}, discharge current density 10{sup -1}-10{sup 1} mA/cm{sup 2}, and dust particles radius 1, 2, and 5 mum. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  13. Influence of dust-particle concentration on gas-discharge plasma.

    PubMed

    Sukhinin, G I; Fedoseev, A V

    2010-01-01

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N(d) on gas discharge and dust particles parameters was investigated. It is shown that the increase of N(d) leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10(2)-10(8) cm(-3), discharge current density 10(-1)-10(1) mA/cm(2), and dust particles radius 1, 2, and 5 microm. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  14. Threshold criterion for a space simulation beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Szuszczewicz, E. P.; Walker, D. N.; Papadopoulos, K.; Bernstein, W.; Lin, C. S.

    1982-01-01

    An experimental and theoretical study of the threshold characteristics of a space simulation beam-plasma discharge with emphasis on density profiles and a density-dependent ignition criterion. The study included various beam-plasma conditions covering beam currents from 8 to 85 mA, beam energies from 0.8 to 2.0 keV, and magnetic fields at 0.9 and 1.5 G. The study included experimental determinations of radial profiles of electron density for each of the selected conditions extending from a low-density, pre-beam-plasma discharge state to a strong beam-plasma discharge condition. The experimental results are shown to agree with detailed model calculations, which consider the beam-plasma discharge to be produced by large-amplitude electron plasma waves resulting from the beam-plasma interaction.

  15. Radical and ion molecule mechanisms in the polymerization of hydrocarbons and chlorosilanes in RF plasmas at low pressures ( 1.0 torr)

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Inspektor, A.; Rosenthal, I.

    1984-01-01

    The ion-molecule and the radical-molecule mechanisms are responsible for the dissociation of hydrocarbons, and chlorosilane monomers and the formation of polymerized species, respectively, in the plasma state of a RF discharge. In the plasma, of a mixture of monomer with Ar, the rate determining step for both dissociation and polymerization is governed by an ion-molecular type interaction. Additions of H2 or NH3 to the monomer Ar(+) mixture transforms the rate determining step from an ion-molecular interaction to a radical-molecule type interaction for both monomer dissociation and polymerization processes.

  16. A comparative study of emission efficiencies in low-pressure argon plasmas induced by picosecond and nanosecond Nd:YAG lasers

    NASA Astrophysics Data System (ADS)

    Mangasi Marpaung, Alion; Ramli, Muliadi; Idroes, Rinaldi; Suyanto, Hery; Lahna, Kurnia; Nur Abdulmadjid, Syahrun; Idris, Nasrullah; Pardede, Marincan; Hedwig, Rinda; Sukra Lie, Zener; Putra Kurniawan, Davy; Hendrik Kurniawan, Koo; Jie Lie, Tjung; Tjia, May On; Kagawa, Kiichiro

    2016-11-01

    An experimental study is performed on the comparative advantages of nanosecond (ns) and picosecond (ps) lasers in laser-induced breakdown spectroscopy (LIBS) analysis. The experiment focused on the relative efficiencies of the plasma emission induced by the two lasers in low-pressure Ar ambient gas for samples of various hardnesses. It is shown that the emission intensities are consistenly reduced when the ns laser is replaced by the ps laser. This is explained as the consequence of the increased power density delivered by the ps laser, which results in a time mismatch between the passage of the ablated atoms and the formation of the shock wave. The time mismatch in turn leads to less effective thermal excitation by the shock wave plasma and the hence reduced emission intensity. Furthermore, this adverse effect is found to worsen for softer samples due to the slower formation of the shock wave. These results are obtained with the same volumes of craters produced by the two lasers on the same sample, which implies that ns laser irradiation has higher emission efficiency than ps laser irradiation.

  17. Toughness of dense MoSi sub 2 and MoSi sub 2 /tantalum composites produced by low pressure plasma deposition

    SciTech Connect

    Castro, R.G.; Rollett, A.D.; Stanek, P.W. ); Smith, R.W. )

    1992-01-15

    The thrust to develop new high temperature materials for advanced aircraft turbine engines has focused on composite systems based on metal-matrix, ceramic-matrix, intermetallic matrix and carbon-carbon composites. For the case of intermetallic matrix composites, candidate materials such as aluminides and silicides have been identified as potential materials due to their excellent oxidation resistance at high temperatures. More specific to the class of silicides, is molybdenum disilicide (NoSi{sub 2}), which has been used as a high melting intermetallic (2030 {degrees} C) for more than eighty years. One of the properties which has discouraged the application of MoSi{sub 2}, as well as other intermetallic compounds, is the inherent lack of ductility at low to intermediate temperatures. Plasma spraying as a means of fabricating composite structures of metals has been addressed recently by a number of researchers. In this paper the use of low pressure plasma deposition (LPPD) for producing spray deposits of MoSi{sub 2} and MoSi{sub 2} with a 20 volume fraction of tantalum is investigated. Initial results focusing on the as-deposited densities and fracture toughness of the spray deposited material are compared to those properties measured on conventionally hot pressed MoSi{sub 2}. Effects of post consolidation on fracture toughness of the spray deposits are also addressed.

  18. Plasma emission induced by an Nd-YAG laser at low pressure on solid organic sample, its mechanism, and analytical application

    SciTech Connect

    Suliyanti, Maria Margaretha; Sardy, Sar; Kusnowo, Anung; Hedwig, Rinda; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Lie, T.J.; Pardede, Marincan; Kagawa, Kiichiro; Tjia, M.O.

    2005-03-01

    An Nd-YAG laser (1064 nm, 120 mJ, 8 ns) was focused on various types of solid organic samples such as a black acrylic plate, a black polyvinyl chloride plastic sheet, and a methoxy polyaniline film coated on the surface of a glass substrate, under a surrounding air pressure of 2 Torr. A modulated plasma technique was used to study the mechanism of excitation of the emission of the organic material. As a result, we conclude that ablated atoms and molecules are excited by a shock-wave mechanism, similar to the case of hard samples such as metal. The ablation speed of hydrogen emission (H I 656.2 nm) was examined and the results show that the release speed of the ablated atoms is relatively low (less than Mach 10) and persists for a longer period of time (around 1 {mu}s); this phenomenon can be understood by assuming that the soft target absorbs recoil energy, causing a low release speed of ablated atoms which would form the shock wave. This was overcome by placing a subtarget on the back of the soft sample so as to enhance the repelling force, thus increasing the release speed of the atoms. A possible application of the low-pressure plasma on an organic solid was demonstrated in the detection of chlorine in a black polyvinyl chloride plastic sheet.

  19. Simulation of the A-X and B-X transition emission spectra of the InCl molecule in low pressure plasmas

    NASA Astrophysics Data System (ADS)

    Briefi, S.; Fantz, U.

    2014-01-01

    Low pressure plasmas containing indium halides as radiators are discussed for lighting applications as an efficient alternative to mercury-containing fluorescent lamps. To gain insight into plasma parameters like the vibrational and rotational temperature of the molecule, the near UV emission spectra of the indium halides arising from the A0+ 3Π → XΣ1+ and the BΠ31 → XΣ1+ transitions are simulated. Such a simulation requires Franck-Condon factors and vibrationally resolved transition probabilities which are not available in the literature for InCl. Therefore, they have been calculated by solving the Schrödinger equation using the Born-Oppenheimer approximation. The values of the Franck-Condon factors and the transition probabilities are presented. For the A-X transition a good match of the simulated and measured spectra could be achieved but for the B-X transition neither the relative intensity nor the wavelength could be reproduced. This indicates that for the B state the values of the molecular constants, the potential curve and/or the electronic dipole transition moment of the B-X transition are inaccurate. Despite this mismatch the rotational and vibrational temperatures of the molecule can still be determined using the A-X transition.

  20. FAST TRACK COMMUNICATION: On the application of inductively coupled plasma discharges sustained in Ar/O2/N2 ternary mixture for sterilization and decontamination of medical instruments

    NASA Astrophysics Data System (ADS)

    Stapelmann, K.; Kylián, O.; Denis, B.; Rossi, F.

    2008-10-01

    Non-equilibrium low pressure-plasma discharges are extensively studied for their high potential in the field of sterilization and decontamination of medical devices. This increased interest in plasma discharges arises from, among other reasons, their capability not only to inactivate bacterial spores but also to eliminate, destroy or remove pathogenic biomolecules and thus to provide a one-step process assuring safety of treated instruments. However, recent studies have shown that optimal conditions leading to inactivation of spores and physical removal of pathogens differ significantly—the efficiency of spores sterilization is above all dependent on the UV radiation intensity, whereas high etching rates are connected with the presence of the etching agent, typically atomic oxygen. The aim of this contribution is to discuss and demonstrate the feasibility of Ar/N2/O2 low-pressure inductively coupled plasma discharges as an option to provide intense UV radiation while maintaining the high etching rates of biomolecules.

  1. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  2. Parameters influencing plasma column potential in a reflex discharge

    NASA Astrophysics Data System (ADS)

    Liziakin, G. D.; Gavrikov, A. V.; Murzaev, Y. A.; Usmanov, R. A.; Smirnov, V. P.

    2016-12-01

    Distribution of electrostatic potential in direct current reflex discharge plasma has been studied experimentally. Measurements have been conducted by the single floating probe method. The influence of 0-0.2 T magnetic field, 1-200 mTorr pressure, 0-2 kV discharge voltage, and electrodes geometry on plasma column electrostatic potential was investigated. The possibility for the formation of a preset potential profile required for the realization of plasma separation of spent nuclear fuel was demonstrated.

  3. Enhancement of laser-induced breakdown spectroscopy (LIBS) Detection limit using a low-pressure and short-pulse laser-induced plasma process.

    PubMed

    Wang, Zhen Zhen; Deguchi, Yoshihiro; Kuwahara, Masakazu; Yan, Jun Jie; Liu, Ji Ping

    2013-11-01

    Laser-induced breakdown spectroscopy (LIBS) technology is an appealing technique compared with many other types of elemental analysis because of the fast response, high sensitivity, real-time, and noncontact features. One of the challenging targets of LIBS is the enhancement of the detection limit. In this study, the detection limit of gas-phase LIBS analysis has been improved by controlling the pressure and laser pulse width. In order to verify this method, low-pressure gas plasma was induced using nanosecond and picosecond lasers. The method was applied to the detection of Hg. The emission intensity ratio of the Hg atom to NO (IHg/INO) was analyzed to evaluate the LIBS detection limit because the NO emission (interference signal) was formed during the plasma generation and cooling process of N2 and O2 in the air. It was demonstrated that the enhancement of IHg/INO arose by decreasing the pressure to a few kilopascals, and the IHg/INO of the picosecond breakdown was always much higher than that of the nanosecond breakdown at low buffer gas pressure. Enhancement of IHg/INO increased more than 10 times at 700 Pa using picosecond laser with 35 ps pulse width. The detection limit was enhanced to 0.03 ppm (parts per million). We also saw that the spectra from the center and edge parts of plasma showed different features. Comparing the central spectra with the edge spectra, IHg/INO of the edge spectra was higher than that of the central spectra using the picosecond laser breakdown process.

  4. Hardware and software systems for the determination of charged particle parameters in low pressure plasmas using impedance-tuned Langmuir probes

    NASA Astrophysics Data System (ADS)

    Ye, Yuancai; Marcus, R. Kenneth

    1997-12-01

    A computer-controlled, impedance-tuned Langmuir probe data acquisition system and processing software package have been designed for the diagnostic study of low pressure plasmas. The combination of impedance-tuning and a wide range of applied potentials (± 100 V) provides a versatile system, applicable to a variety of analytical plasmas without significant modification. The automated probe system can be used to produce complete and undistorted current-voltage (i-V) curves with extremely low noise over the wide potential range. Based on these hardware and software systems, it is possible to determine all of the important charged particle parameters in a plasma; electron number density ( ne), ion number density ( ni), electron temperature ( Te), electron energy distribution function (EEDF), and average electron energy (<ɛ>). The complete data acquisition system and evaluation software are described in detail. A LabView (National Instruments Corporation, Austin, TX) application program has been developed for the Apple Macintosh line of microcomputers to control all of the operational aspects of the Langmuir probe experiments. The description here is mainly focused on the design aspects of the acquisition system with the targets of extremely low noise and reduction of the influence of measurement noise in the calculation procedures. This is particularly important in the case of electron energy distribution functions where multiple derivatives are calculated from the obtained i-V curves. A separate C-language data processing program has been developed and is included here to allow the reader to evaluate data obtained with the described hardware, or any i-V data imported in tab separated variable format. Both of the software systems are included on a Macintosh formatted disk for their use in other laboratories desiring these capabilities.

  5. Excitation mechanisms in 1 mJ picosecond laser induced low pressure He plasma and the resulting spectral quality enhancement

    SciTech Connect

    Idris, Nasrullah; Lahna, Kurnia; Abdulmadjid, Syahrun Nur; Ramli, Muliadi; Suyanto, Hery; Marpaung, Alion Mangasi; Pardede, Marincan; Jobiliong, Eric; Hedwig, Rinda; Lie, Zener Sukra; Lie, Tjung Jie; Kurniawan, Koo Hendrik; Tjia, May On

    2015-06-14

    We report in this paper the results of an experimental study on the spectral and dynamical characteristics of plasma emission induced by 1 mJ picoseconds (ps) Nd-YAG laser using spatially resolved imaging and time resolved measurement of the emission intensities of copper sample. This study has provided the experimental evidence concerning the dynamical characteristics of the excitation mechanisms in various stages of the plasma formation, which largely consolidate the basic scenarios of excitation processes commonly accepted so far. However, it is also clearly shown that the duration of the shock wave excitation process induced by ps laser pulses is much shorter than those observed in laser induced breakdown spectroscopy employing nanosecond laser at higher output energy. This allows the detection of atomic emission due exclusively to He assisted excitation in low pressure He plasma by proper gating of the detection time. Furthermore, the triplet excited state associated with He I 587.6 nm is shown to be the one most likely involved in the process responsible for the excellent spectral quality as evidenced by its application to spectrochemical analysis of a number of samples. The use of very low energy laser pulses also leads to minimal destructive effect marked by the resulted craters of merely about 10 μm diameter and only 10 nm deep. It is especially noteworthy that the excellent emission spectrum of deuterium detected from D-doped titanium sample is free of spectral interference from the undesirable ubiquitous water molecules without a precleaning procedure as applied previously and yielding an impressive detection limit of less than 10 μg/g. Finally, the result of this study also shows a promising application to depth profiling of impurity distribution in the sample investigated.

  6. Simulation of DBD plasma actuators, and nanoparticle-plasma interactions in argon-hydrogen CCP RF discharges

    NASA Astrophysics Data System (ADS)

    Mamunuru, Meenakshi

    The focus of this work is modeling and simulation of low temperature plasma discharges (LTPs). The first part of the thesis consists of the study of dielectric barrier (DBD) plasma actuators. Use of DBD plasma actuators on airfoil surfaces is a promising method for increasing airfoil efficiency. Actuators produce a surface discharge that causes time averaged thrust in the neutral gas. The thrust modifies the boundary layer properties of the flow and prevents the occurrence of separation bubbles. In simulating the working of an actuator, the focus is on the spatial characteristics of the thrust produced by the discharge over very short time and space scales. The results provide an understanding of the causes of thrust, and the basic principles behind the actuator operation. The second part of this work focusses on low pressure plasma discharges used for silicon nanoparticle synthesis. When reactive semiconductor precursor gases are passed through capacitively coupled plasma (CCP) radio frequency (RF) reactors, nano sized particles are formed. When the reactors are operated at high enough powers, a very high fraction of the nanoparticles are crystallized in the chamber. Nanoparticle crystallization in plasma is a very complex process and not yet fully understood. It can be inferred from experiments that bulk and surface processes initiated due to energetic ion impaction of the nanoparticles are responsible for reordering of silicon atoms, causing crystallization. Therefore, study of plasma-particle interactions is the first step towards understanding how particles are crystallized. The specific focus of this work is to investigate the experimental evidence that hydrogen gas presence in argon discharges used for silicon nanocrystal synthesis, leads to a superior quality of nanocrystals. Influence of hydrogen gas on plasma composition and discharge characteristics is studied. Via Monte Carlo simulation, distribution of ion energy impacting particles surface is studied

  7. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    SciTech Connect

    Vasilyak, L. M.; Drozdov, L. A. Kostyuchenko, S. V.; Sokolov, D. V.; Kudryavtsev, N. N.; Sobur, D. A.

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  8. Correlations between plasma variables and the deposition process of Si films from chlorosilanes in low pressure RF plasma of argon and hydrogen

    NASA Technical Reports Server (NTRS)

    Avni, R.; Carmi, U.; Grill, A.; Manory, R.; Grossman, E.

    1984-01-01

    The dissociation of chlorosilanes to silicon and its deposition on a solid substrate in a RF plasma of mixtures of argon and hydrogen were investigated as a function of the macrovariables of the plasma. The dissociation mechanism of chlorosilanes and HCl as well as the formation of Si in the plasma state were studied by sampling the plasma with a quadrupole mass spectrometer. Macrovariables such as pressure, net RF power input and locations in the plasma reactor strongly influence the kinetics of dissociation. The deposition process of microcrystalline silicon films and its chlorine contamination were correlated to the dissociation mechanism of chlorosilanes and HCl.

  9. Sterilization characteristics of dental instruments using oxygen plasma produced by narrow gap RF discharge

    NASA Astrophysics Data System (ADS)

    Sakai, Yasuhiro; Liu, Zhen; Goto, Masaaki; Hayashi, Nobuya

    2016-07-01

    Sterilization characteristics and material compatibility of low-pressure RF oxygen plasma sterilization method for dental instruments are investigated. Regarding the characteristics of the plasma sterilizer for dental instruments, it is small and can rapidly sterilize owing to a narrow gap discharge. Sterilization of vial-type biological indicators is achieved for the shortest treatment period of 40 min at an RF power of 80 W at a temperature of 70 °C. At a temperature lower than 60 °C, a sterilization period of 90 min is required using a water-cooled electrode. No surface modifications of dental instruments such as chemical composition and deterioration of fine crystals of a diamond bar were observed under a scanning electron microscope.

  10. Indirect determination of the electric field in plasma discharges using laser-induced fluorescence spectroscopy

    SciTech Connect

    Vaudolon, J. Mazouffre, S.

    2014-09-15

    The evaluation of electric fields is of prime interest for the description of plasma characteristics. In this work, different methods for determining the electric field profile in low-pressure discharges using one- and two-dimensional Laser-Induced Fluorescence (LIF) measurements are presented and discussed. The energy conservation, fluid, and kinetic approaches appear to be well-suited for the electric field evaluation in this region of the plasma flow. However, the numerical complexity of a two-dimensional kinetic model is penalizing due to the limited signal-to-noise ratio that can be achieved, making the computation of the electric field subject to large error bars. The ionization contribution which appears in the fluid model makes it unattractive on an experimental viewpoint. The energy conservation and 1D1V kinetic approaches should therefore be preferred for the determination of the electric field when LIF data are used.

  11. Beam-plasma instabilities and the beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Boswell, R. W.

    1986-01-01

    Using a new waves on magnetized beams and turbulence (WOMBAT) 0-450 eV electron gun, measurements bearing on the generation of beam-plasma discharge (BPD) are made. The new gun has a narrower divergence angle than the old, and the BPD ignition current is found to be proportional to the cross-sectional area of the plasma. The high-frequency instabilities are identified with the two Trivelpiece-Gould modes, (1959). The upper frequency is identified as a Cerenkov resonance with the upper Trivelpiece-Gould mode, and the lower frequency with a cyclotron resonance with the lower mode, in agreement with theoretical expectations. Convective growth rates are found to be small. A mechanism involving the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves, is suggested for the low-frequency wave control of the onset of the high frequency precursors to the BPD.

  12. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  13. Low-pressure

    SciTech Connect

    Baker, Richard; Kniep, Jay; Hao, Pingjiao; Chan, Chi Cheng; Nguyen, Vincent; Huang, Ivy; Amo, Karl; Freeman, Brice; Fulton, Don; Ly, Jennifer; Lipscomb, Glenn; Lou, Yuecun; Gogar, Ravikumar

    2015-01-29

    This final technical progress report describes work conducted by Membrane Technology and Research, Inc. (MTR) for the Department of Energy (DOE NETL) on development of low-pressure membrane contactors for carbon dioxide (CO2) capture from power plant flue gas (award number DE-FE0007553). The work was conducted from October 1, 2011 through September 30, 2014. The overall goal of this three-year project was to build and operate a prototype 500 m2 low-pressure sweep membrane module specifically designed to separate CO2 from coal-fired power plant flue gas. MTR was assisted in this project by a research group at the University of Toledo, which contributed to the computational fluid dynamics (CFD) analysis of module design and process simulation. This report details the work conducted to develop a new type of membrane contactor specifically designed for the high-gas-flow, low-pressure, countercurrent sweep operation required for affordable membrane-based CO2 capture at coal power plants. Work for this project included module development and testing, design and assembly of a large membrane module test unit at MTR, CFD comparative analysis of cross-flow, countercurrent, and novel partial-countercurrent sweep membrane module designs, CFD analysis of membrane spacers, design and fabrication of a 500 m2 membrane module skid for field tests, a detailed performance and cost analysis of the MTR CO2 capture process with low-pressure sweep modules, and a process design analysis of a membrane-hybrid separation process for CO2 removal from coal-fired flue gas. Key results for each major task are discussed in the report.

  14. Direct current dielectric barrier assistant discharge to get homogeneous plasma in capacitive coupled discharge

    SciTech Connect

    Du, Yinchang; Li, Yangfang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Zheng, Zhe

    2014-06-15

    In this paper, we propose a method to get more homogeneous plasma in the geometrically asymmetric capacitive coupled plasma (CCP) discharge. The dielectric barrier discharge (DBD) is used for the auxiliary discharge system to improve the homogeneity of the geometrically asymmetric CCP discharge. The single Langmuir probe measurement shows that the DBD can increase the electron density in the low density volume, where the DBD electrodes are mounted, when the pressure is higher than 5 Pa. By this manner, we are able to improve the homogeneity of the plasma production and increase the overall density in the target volume. At last, the finite element simulation results show that the DC bias, applied to the DBD electrodes, can increase the homogeneity of the electron density in the CCP discharge. The simulation results show a good agreement with the experiment results.

  15. Potential Industrial Applications of the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP) Operating in Ambient Air

    NASA Astrophysics Data System (ADS)

    Reece Roth, J.

    2004-11-01

    The majority of industrial plasma processing with glow discharges has been conducted at pressures below 10 torr. This tends to limit applications to high value workpieces as a result of the high capital cost of vacuum systems and the production constraints of batch processing. It has long been recognized that glow discharge plasmas would play a much larger industrial role if they could be generated at one atmosphere. The One Atmosphere Uniform Glow Discharge Plasma (OAUGDP), developed at the University of Tennessee's Plasma Sciences Laboratory, is a non-thermal RF plasma operating on displacement currents with the time-resolved characteristics of a classical low pressure DC normal glow discharge. As a glow discharge, the OAUGDP operates with maximum electrical efficiency at the Stoletow point, where the energy input per ion-electron pair is a minimum [1, 2]. Several interdisciplinary teams have investigated potential applications of the OAUGDP. These teams included collaborators from the UTK Textiles and Nonwovens Development Center (TANDEC), and the Departments of Electrical and Computer Engineering, Microbiology, and Food Science and Technology, as well as the NASA Langley Research Center. The potential applications of the OAUGDP have all been at one atmosphere and room temperature, using air as the working gas. These applications include sterilizing medical and dental equipment; sterilizable air filters to deal with the "sick building syndrome"; removal of soot from Diesel engine exhaust; subsonic plasma aerodynamic effects, including flow re-attachment to airfoils and boundary layer modification; electrohydrodynamic (EDH) flow control of working gases; increasing the surface energy of materials; improving the adhesion of paints and electroplated layers: improving the wettability and wickability of fabrics; stripping of photoresist; and plasma deposition and directional etching of potential microelectronic relevance. [1] J. R. Roth, Industrial Plasma Engineering

  16. Synthesis and characterization of SiC:H ultrafine powder generated in an argon-silane-methane low-pressure radio-frequency discharge

    NASA Astrophysics Data System (ADS)

    Vivet, F.; Bouchoule, A.; Boufendi, L.

    1998-06-01

    The peculiarity of dusty plasma reactors offers a convenient way to obtain processed particles at submicronic levels, with successive layers of different materials grown by using pulsed gas flows, and different plasma chemistries in succession. This concept is applied to the synthesis of silicon carbide (SiC) particles. In this paper two significant situations are reported showing that particles can be synthesized with different properties by varying the process parameters (gas-flow handling, radio-frequency power level). These properties include broad or narrow size dispersion, almost crystalline or amorphous structure, and widely varying Si/C stoichiometry. Monosized particles with high specific surfaces have been obtained by a two-step growth process by using limited radio-frequency power.

  17. Characterization of a low-pressure chlorine plasma column sustained by propagating surface waves using phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy

    SciTech Connect

    Mattei, S.; Boudreault, O.; Stafford, L.; Khare, R.; Donnelly, V. M.

    2011-06-01

    Phase-sensitive microwave interferometry and trace-rare-gas optical emission spectroscopy were used to measure the line-integrated electron density, n{sub e}, and electron temperature, T{sub e}, in a high-density chlorine plasma sustained in a quartz discharge tube (inner diameter = 6 mm) by an electromagnetic surface wave at 2.45 GHz. For pressures in the 0.1-1 Torr range, n{sub e} decreased nearly linearly along the tube's z-axis down to the critical density for surface wave propagation, where the plasma decayed abruptly. At lower pressures (< 50 mTorr), however, the plasma extended well beyond this critical point, after which n{sub e} decreased quasiexponentially toward the end of the plasma column. The length of this expansion region increased with decreasing pressure, going from {approx}8 cm at 5 mTorr to {approx}1 cm at 50 mTorr. T{sub e} was nearly independent of the axial position in the main plasma region and strongly decreased in the expansion region at lower pressures. The Cl{sub 2} percent dissociation, {tau}{sub D}, obtained from the calibrated Cl{sub 2} (306 nm)-to-Xe (828 nm) emission ratio, displayed behavior similar to that of n{sub e} and T{sub e}. For example, at 5 mTorr, {tau}{sub D} was close to 100% near the wave launcher and {approx}70% at 0.5 cm from the end of the plasma column.

  18. Magnetic tearing of plasma discharges due to nonuniform resistivity

    NASA Technical Reports Server (NTRS)

    Hassam, A. B.

    1988-01-01

    The rearrangement of current in a plasma discharge in response to resistivity nonuniformities within a magnetic surface is studied. It is shown that macroscopic magnetic islands develop about those surfaces where the nonuniformity is aligned with the magnetic field. If the nonuniformity and the field are not aligned anywhere, there is no current rearrangement; instead, relatively large plasma flows are set up. Such resistivity inhomogeneities can obtain in solar coronal loops and, in some circumstances, in tokamak discharges.

  19. Numerical investigation of the effect of driving voltage pulse shapes on the characteristics of low-pressure argon dielectric barrier discharge

    SciTech Connect

    Eslami, E. Barjasteh, A.; Morshedian, N.

    2015-06-15

    In this work, we numerically compare the effect of a sinusoidal, triangular, and rectangular pulsed voltage profile on the calculated particle production, electric current, and gas voltage in a dielectric barrier discharge. The total argon gas pressure of 400 Pa, the distance between dielectrics of 5 mm, the dielectric thickness of 0.7 mm, and the temperature of T = 300 K were considered as input parameters. The different driving voltage pulse shapes (triangular, rectangular, and sinusoidal) are considered as applied voltage with a frequency of 7 kHz and an amplitude of 700 V peak to peak. It is shown that applying a rectangular voltage, as compared with a sinusoidal or triangle voltage, increases the current peak, while the peak width is decreased. Higher current density is related to high production of charged particles, which leads to the generation of some highly active species, such as Ar* (4s level), and Ar** (4p level) in the gap.

  20. [Study of plasma temperature measurements for oxygen discharge].

    PubMed

    Li, Liu-Cheng; Wang, Zeng-Qiang; Li, Gu-Fu; Duo, Li-Ping

    2011-10-01

    A radio-frequency discharge setup was constructed by two shell-shaped copper electrodes and a 30 cm long pyrex glass tube (i. d. = 1.65 cm) to examine the gas temperature of oxygen plasma in electric discharge oxygen iodine laser. The discharge was supplied by a 500 watt, 13.56 MHz radio-frequency power. The gas pressure in the discharge cavity was 1 330 Pa. The temperature of oxygen discharge plasma was measured by using the P branch of O2 (b, v = 0) rotational emission spectrum. Two methods were used to deduce the oxygen gas temperature. They are Boltzman plotting method and computer simulating spectrum method, respectively. Gauss fitting method was used to distinguish spectrum peaks for lower resolution spectrum. The spectrum peak area was used to characterize the optical emission intensity. The gas temperature of oxygen discharge plasma was obtained by Boltzmann plotting method. Alternatively, the optical emission spectrum was simulated by computer modeling with spectrometer slit function which was obtained by He-Ne laser. Consequently, the gas temperature of oxygen plasma was obtained by comparing the computer simulating spectrum and the experimentally observed spectrum according to the least square fitting rule. The measurement results with the two methods agree well. It was concluded that the simple optical technique can be used conveniently in the temperature diagnostics of oxygen radio-frequency discharge plasma.

  1. Characteristics of the Plasma Environment and Discharge Process in a High-Pressure Pulsed Arc Discharge

    NASA Astrophysics Data System (ADS)

    Tang, Ricky; Hopkins, Matthew; Barnat, Edward

    2016-09-01

    The characteristics and properties of a plasma generated in a pulsed arc discharge are investigated. Arc discharge plasmas are prevalent in the production and treatment of materials. Photodetectors and optical emission spectroscopy (OES) are used to probe the plasmas and characterize their spectral responses. OES allows for species identification and provides information about the state of the plasma, such as the electron temperature. Discharges generated with inert gas such as argon, as well as with nitrogen and air, are studied and compared. In the case of reactive gases, OES also provides information on the possible reactions that took place. Microwave interferometry is used to measure the electron density to provide spatial information on the discharges. In addition, the measurement is synchronized with the discharge pulse to obtain temporal information, for instance, during the pulse initialization phase to investigate the arc discharge process prior to plasma generation, where optical information is absent. Together, this allows for the characterization of the pre-, during, and post-discharge processes.

  2. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    SciTech Connect

    Jayapalan, Kanesh K. Chin, Oi-Hoong

    2014-04-15

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  3. Effect of neutral gas heating on the wave magnetic fields of a low pressure 13.56 MHz planar coil inductively coupled argon discharge

    NASA Astrophysics Data System (ADS)

    Jayapalan, Kanesh K.; Chin, Oi-Hoong

    2014-04-01

    The axial and radial magnetic field profiles in a 13.56 MHz (radio frequency) laboratory 6 turn planar coil inductively coupled plasma reactor are simulated with the consideration of the effect of neutral gas heating. Spatially resolved electron densities, electron temperatures, and neutral gas temperatures were obtained for simulation using empirically fitted electron density and electron temperature and heuristically determined neutral gas temperature. Comparison between simulated results and measured fields indicates that neutral gas heating plays an important role in determining the skin depth of the magnetic fields.

  4. Plasma Flow During RF Discharges in VASIMR

    NASA Technical Reports Server (NTRS)

    Jacobson, V. T.; Chang Diaz, F. R.; Squire, J. P.; Ilin, A. V.; Bengtson, R. D.; Carter, M. D.; Goulding, R. H.

    1999-01-01

    The Variable Specific Impulse Magnetoplasma Rocket (VASIMR) plasma source consists of a helical antenna, driven at frequencies of 4 to 19 MHz with powers up to 1 kW, in a magnetic field up to 3 kG. Helium is the current test gas, and future experiments with hydrogen are planned. Plasma density and temperature profiles were measured by a reciprocating Langmuir probe, and plasma flow profiles were measured with a reciprocating Mach probe. Both probes were located about 0.5 m downstream from the helical antenna. The plasma source operated in capacitive and inductive modes in addition to a helicon mode. During capacitive and inductive modes, densities were low and plasma flow was < 0.5 Cs. When the plasma operated in a helicon mode, the densities measured downstream from the source were higher [10(exp 12) / cubic cm ] and plasma flow along the magnetic field was of the order Mach 1. Details of the measurements will be shown.

  5. Plasma Acceleration from RF Discharge in Dielectric Capillary

    SciTech Connect

    A. Dunaevsky; Y. Raitses; N. J. Fisch

    2005-08-09

    Plasma acceleration from rf discharge in dielectric capillary was demonstrated. Observed plasma flow had ion energies of approximately 100 eV and electron energies of approximately 20 eV. The discharge was powered by a MHz-range rf generator and fed by Ar. Experimental results indicate possible validity of assumptions about formation of a potential difference at the open end of the capillary and presence of hot electron fraction in the capillary discharge. Simplicity and small dimensions of the source are attractive for micro-propulsion applications.

  6. Numerical simulation of capacitively-coupled, radio-frequency plasma discharges

    NASA Astrophysics Data System (ADS)

    Hammond, Edward Percy, IV

    This research develops a novel, non-dissipative discretization for the drift-diffusion expression of electron flux in capacitively-coupled, radio-frequency plasma discharges. The new discretization is more robust and accurate than commonly used numerical techniques when applied to the solution of the plasma fluid equations. On a relatively coarse grid, the method provides results within a few percent of the grid-converged solution. Low-order upwinding, a common method for discretization of the electron flux; introduces significant robustness. However, on the same coarse grid, the plasma density can differ from the grid-converged result by nearly a factor of two. Another popular discretization of the electron flux is the Scharfetter-Gummel method. Although it is accurate on coarse grids, it is more expensive computationally due to its non-linear nature, and it introduces an additional approximation. It neglects the electron temperature gradient in the flux expression; this can affect the plasma density as much as 20%. A formal method for accelerating the solution towards the periodic, steady-state solution in one and multiple dimensions is also described. Direct integration of the governing equations in time will lead to the harmonic steady-state, but this may require tens or hundreds of thousands of radio-frequency periods when the plasma discharge contains significant neutral species that develop on a time-scale much longer than a radio-frequency period. In contrast, the acceleration scheme can reach the periodic steady-state in a few hundred to a few thousand radio-frequency periods. Previous efforts that used formal acceleration schemes were limited to one dimension. Finally, a fluid model of an argon plasma is developed and compared to experimental data at conditions relevant to low-pressure, capacitively-coupled plasma discharges. The computed results agree reasonably well with the experiments both quantitatively and qualitatively. This model is then used to

  7. Process Performances of 2 ns Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takao; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori

    2011-08-01

    Pulsed discharge plasmas have been used to treat exhaust gases. Since pulse duration and the rise time of applied voltage to the discharge electrode has a strong influence on the energy efficiency of pollutant removal, the development of a short-pulse generator is of paramount importance for practical applications. In this work, it is demonstrated that the non thermal plasma produced by the 2 ns pulsed discharge has a higher energy efficiency than the 5 ns pulsed discharge plasma for NO removal and ozone generation. Typically, the NO removal efficiency was 1.0 mol kW-1 h-1 for 70% NO removal (initial NO concentration = 200 ppm, gas flow = 10 L/min). Meanwhile, the ozone yield was 500 g kW-1 h-1 for 20 g/m3 ozone concentration in the case of oxygen feeding. These energy efficiencies are the highest in the literature.

  8. Underwater plasma discharge and its water treatment applications

    NASA Astrophysics Data System (ADS)

    Ma, Sukhwal; Huh, Jin Young; Kim, Kangil; Hong, Yong Cheol; National Fusion Research Institute Team; Chonbuk National University Team; Kwangwoon University Team; NPAC Team

    2016-09-01

    In recent, the quality of water has been exacerbated by the influx of wastewater and water pollutants. There have been frequent occurrences of water blooms due to the eutrophication of river. Therefore, the needs for water treatment are increased through effective and environment-friendly method. In this work, we propose the plasma system to overcome the problems mentioned above using underwater discharge plasma. The underwater discharges are generated by capillary electrode, and have the advantages of low cost, high efficiency and eco-friendly processing. The proposed technologies can be suitable for eliminating cyanobacteria, decreasing the concentration of oil dissolved in water, and purifying wastewater. Cyanobacteria is killed directly by the underwater discharge and water-dissolved oil and heavy-metal wastewater are purified by coagulation effect, which may result from the chemical reactions of underwater plasma. Consequently, these technologies using underwater discharge can be alternative methods to replace the existing technologies.

  9. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  10. Enhanced magnetic ionization in hydrogen reflex discharge plasma source

    SciTech Connect

    Toader, E.I.; Covlea, V.N.

    2005-03-01

    The effect of enhanced magnetic ionization on the external and internal parameters of a high-density, low pressure reflex plasma source operating in hydrogen is studied. The Langmuir probe method and Druyvesteyn procedure coupled with suitable software are used to measure the internal parameters. The bulk plasma region is free of an electric field and presents a high degree of uniformity. The electron energy distribution function is bi-Maxwellian with a dip/shoulder structure around 5.5 eV, independent of external parameters and radial position. Due to the enhanced hollow cathode effect by the magnetic trapping of electrons, the electron density n{sub e} is as high as 10{sup 18} m{sup -3}, and the electron temperature T{sub e} is as low as a few tens of an electron volt, for dissipated energy of tens of Watts. The bulk plasma density scales with the dissipated power.

  11. Flush-mounted probe diagnostics for argon glow discharge plasma

    SciTech Connect

    Xu, Liang Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-15

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  12. Flush-mounted probe diagnostics for argon glow discharge plasma.

    PubMed

    Xu, Liang; Cao, Jinxiang; Liu, Yu; Wang, Jian; Du, Yinchang; Zheng, Zhe; Zhang, Xiao; Wang, Pi; Zhang, Jin; Li, Xiao; Qin, Yongqiang; Zhao, Liang

    2014-09-01

    A comparison is made between plasma parameters measured by a flush-mounted probe (FP) and a cylindrical probe (CP) in argon glow discharge plasma. Parameters compared include the space potential, the plasma density, and the effective electron temperature. It is found that the ion density determined by the FP agrees well with the electron density determined by the CP in the quasi-neutral plasma to better than 10%. Moreover, the space potential and effective electron temperature calculated from electron energy distribution function measured by the FP is consistent with that measured by the CP over the operated discharge current and pressure ranges. These results present the FP can be used as a reliable diagnostic tool in the stable laboratory plasma and also be anticipated to be applied in other complicated plasmas, such as tokamaks, the region of boundary-layer, and so on.

  13. Long-pulse plasma discharge on the Large Helical Device

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Mutoh, T.; Saito, K.; Seki, T.; Nakamura, Y.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Ohkubo, K.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Kobayashi, M.; Ogawa, H.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Watari, T.; Watanabe, T.; Sakamoto, M.; Ichimura, M.; Takase, Y.; Notake, T.; Takeuchi, N.; Torii, Y.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Y.; Kwak, J. G.; Yoon, J. S.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD experiment Group

    2006-03-01

    A long-pulse plasma discharge of more than 30 min duration was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8 × 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. The total injected heating energy was 1.3 GJ. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by sweeping the magnetic axis inward and outward. Causes limiting the long pulse plasma discharge are discussed. An ion impurity penetration limited further long-pulse discharge in the 8th experimental campaign (2004).

  14. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    A new plasma accelerator concept that employs electrodeless plasma preionization and pulsed inductive acceleration is presented. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those found in other pulsed inductive accelerators. The location of an electron cyclotron resonance discharge can be controlled through the design of the applied magnetic field in the thruster. A finite-element model of the magnetic field was used as a design tool, allowing for the implementation of an arrangement of permanent magnets that yields a small volume of preionized propellant at the coil face. This allows for current sheet formation at the face of the inductive coil, minimizing the initial inductance of the pulse circuit and maximizing the potential efficiency of the new accelerator.

  15. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, A.; Prelec, K.

    1980-12-12

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface is described. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  16. Negative ion source with hollow cathode discharge plasma

    DOEpatents

    Hershcovitch, Ady; Prelec, Krsto

    1983-01-01

    A negative ion source of the type where negative ions are formed by bombarding a low-work-function surface with positive ions and neutral particles from a plasma, wherein a highly ionized plasma is injected into an anode space containing the low-work-function surface. The plasma is formed by hollow cathode discharge and injected into the anode space along the magnetic field lines. Preferably, the negative ion source is of the magnetron type.

  17. The Plasma Physics of Processing Discharges

    DTIC Science & Technology

    1992-02-28

    Karachevtsev, Ref. 6, Chapter 12 82 52. H. Furth, J Killeen, and M Rosenbluth, Physics Fluids, 6, 459, (1963) 53. W. Manheimer and C. Lashmore - Davies, MHD and Microinstabilities in Confined Plasmas, Adam Hilger, (1989) 83

  18. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  19. Bacterial Inactivation by Atmospheric Pressure Dielectric Barrier Discharge Plasma Jet

    NASA Astrophysics Data System (ADS)

    Deng, Sanxi; Cheng, Cheng; Ni, Guohua; Meng, Yuedong; Chen, Hua

    2008-08-01

    Bacillus subtilis and Escherichia coli seeded in two media (agar and filter papers) were exposed to after-glow plasma emitted from a atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator in open air with a temperature of about 30-80 °C. In order to estimate the inactivation of microorganism using DBD plasma jet, various plasma conditions (such as treatment time and feed-gas composition of plasma jet) were changed. The results shown that the effective area of inactivation increased with the plasma treatment time as the bacteria seeded in Agar medium. The effective area of inactivation was much bigger than plasma jet treatment area after 5 min treatment. With the use of filter papers as the supporting media, the addition of reactive gases (oxygen, hydrogen peroxide vapor) into the plasma jet system, compared with only pure noble gas, led to a significant improvement in the bacterial Inactivation efficacy.

  20. Low-pressure ion source

    SciTech Connect

    Bacon, F.M.; Brainard, J.P.; O'Hagan, J.B.; Walko, R.J.

    1982-10-27

    A low pressure ion source for a neutron source comprises a filament cathode and an anode ring. Approximately 150V is applied between the cathode and the anode. Other electrodes, including a heat shield, a reflector and an aperture plate with a focus electrode, are placed at intermediate potentials. Electrons from the filament drawn out by the plasma and eventually removed by the anode are contained in a magnetic field created by a magnet ring. Ions are formed by electron impact with deuterium or tritium and are extracted at the aperture in the focus electrode. The ion source will typically generate a 200 mA beam through a 1.25 cm/sup 2/ aperture for an arc current of 10A. For deuterium gas, the ion beam is over 50 percent D/sup +/ with less than 1% impurity. The current density profile across the aperture will typically be uniform to within 20%.

  1. Plasma instability in fast spherical discharge induced by a preionization

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-07

    As it was shown earlier, fast discharge (dI/dt ∼ 10{sup 12 }A/s and I{sub max} ≈ 40 kA) in a spherical cavity (Al{sub 2}O{sub 3}, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  2. Plasma instability in fast spherical discharge induced by a preionization

    NASA Astrophysics Data System (ADS)

    Antsiferov, P. S.; Dorokhin, L. A.

    2015-04-01

    As it was shown earlier, fast discharge (dI/dt ˜ 1012 A/s and Imax ≈ 40 kA) in a spherical cavity (Al2O3, inner diameter 11 mm, 4 mm apertures for the current supply) filled with working gas (Ar and Xe, pressure 80 Pa), results in the formation of a plasma with the form close to spherical. The physical mechanism can be the cumulation of a convergent shock wave, which was originated near the inner surface of the discharge cavity. It was also shown for the cylindrical fast discharge that the preionization influences the dynamics of the cylindrical convergent shock wave, its evolutions becomes faster. The present work is devoted to the study of the influence of the preionization on the plasma formation in the fast discharge with spherical geometry (Ar, 80 Pa). The inductive storage with plasma erosion opening switch was used as a current driver. The spatial structure of the discharge plasma was studied by means of a pin-hole camera with the microchannel plate (MCP) detector with time gate of 5 ns. The extreme ultra violet spectra were studied by means of the grazing incidence spectrometer with the same MCP detector with time gate of 20 ns. Beside the expected effects (reduction of the spherical plasma formation time and some increase of the electron temperature), the preionization of the discharge by the current 500 A results also in the development of the plasma instabilities and destruction of the compact plasma ball in several tens of nanoseconds. Possible mechanism of the instability is discussed.

  3. Dust structurization observed in a dc glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Heinrich, Jonathon R.; Kim, Su-Hyun; Merlino, Robert L.

    2010-11-01

    Dusty plasmas, which are inherently open systems which require an ionization source to replenish the plasma absorbed on the grains, tend to exhibit self-organization. Various structures have been observed in dusty plasmas such as dust crystals, voids, and vortices. Due to the presence of drifting ions in dc discharge plasmas, spontaneously excited dust acoustic waves are also a common occurrence. By adjusting the discharge parameters we have observed a new phenomenon in dusty plasmas -- the spontaneous formation of three-dimensional stationary dust density structures. These structures appear as an ordered pattern consisting of alternating regions of high and low dust density arranged in a nested bowl-type configuration The stationary structure evolves from dust density waves that slow down as their wavelength decreases and eventually stop moving when the wavelength reaches some minimum size.

  4. Plasma assisted ignition with nanosecond surface dielectric barrier discharge. Two modes of nanosecond surface discharge

    NASA Astrophysics Data System (ADS)

    Shcherbanev, Sergey; Popov, Nikolay; Starikovskaia, Svetlana; LPP Team; LIA France-Russia Collaboration

    2016-09-01

    Nanosecond surface dielectric barrier discharge (nSDBD) is an efficient tool for a multi-point plasma-assisted ignition of combustible mixtures at elevated pressures. In combustible mixtures, nSDBD initiates numerous combustion waves propagating from the electrode. This work presents a comparative experimental study of the surface dielectric barrier discharge initiated by high voltage pulses (U =+/-(20-60) kV) of different polarities in air at elevated pressures (P =1 -12 bar). Discharge morphology, deposited energy, and spectroscopy of the discharges are analyzed. Differences between the discharges of the different polarity, as well as the changes in the discharge morphology with changing of a gas mixture composition, are discussed. The initiation of combustion with nSDBD was studied experimentally at high initial pressures up to 6 bar on the example of lean H2/Air. The ignition is initiated with two different discharge modes: streamer and filamentary. The influence of the discharge structure and energy deposition on the ignition is demonstrated. Three regimes of multi-point ignition were observed: ignition with a few kernels, quasi-uniform ignition along the edge of high voltage electrodes and ignition along the plasma channels.

  5. Low pass filter for plasma discharge

    DOEpatents

    Miller, Paul A.

    1994-01-01

    An isolator is disposed between a plasma reactor and its electrical energy source in order to isolate the reactor from the electrical energy source. The isolator operates as a filter to attenuate the transmission of harmonics of a fundamental frequency of the electrical energy source generated by the reactor from interacting with the energy source. By preventing harmonic interaction with the energy source, plasma conditions can be readily reproduced independent of the electrical characteristics of the electrical energy source and/or its associated coupling network.

  6. Jet noise control using the dielectric barrier discharge plasma actuators

    NASA Astrophysics Data System (ADS)

    Kopiev, V. F.; Bityurin, V. A.; Belyaev, I. V.; Godin, S. M.; Zaitsev, M. Yu.; Klimov, A. I.; Kopiev, V. A.; Moralev, I. A.; Ostrikov, N. N.

    2012-07-01

    We study experimentally how plasma actuators operating on the basis of surface barrier high-frequency discharge affect jet noise characteristics. The results of investigations of air jets (100-200 m/s) have demonstrated that the studied plasma actuators have control authority over the noise characteristics of these jets. An actuator's effect on the jet in the applied configuration is related to acoustic discharge excitation and to a large extent is similar to the well-known Vlasov-Ginevsky effect. It has been shown that jet excitation in the case of St ˜ 0.5 using the barrier-discharge plasma actuator leads to broadband amplification of jet sound radiation. The jet excitation in the case of St > 2 leads to broadband noise reduction if the action is sufficiently intensive.

  7. High-frequency underwater plasma discharge application in antibacterial activity

    NASA Astrophysics Data System (ADS)

    Ahmed, M. W.; Choi, S.; Lyakhov, K.; Shaislamov, U.; Mongre, R. K.; Jeong, D. K.; Suresh, R.; Lee, H. J.

    2017-03-01

    Plasma discharge is a novel disinfection and effectual inactivation approach to treat microorganisms in aqueous systems. Inactivation of Gram-negative Escherichia coli (E. coli) by generating high-frequency, high-voltage, oxygen (O2) injected and hydrogen peroxide (H2O2) added discharge in water was achieved. The effect of H2O2 dose and oxygen injection rate on electrical characteristics of discharge and E. coli disinfection has been reported. Microbial log reduction dependent on H2O2 addition with O2 injection was observed. The time variation of the inactivation efficiency quantified by the log reduction of the initial E. coli population on the basis of optical density measurement was reported. The analysis of emission spectrum recorded after discharge occurrence illustrated the formation of oxidant species (OH•, H, and O). Interestingly, the results demonstrated that O2 injected and H2O2 added, underwater plasma discharge had fabulous impact on the E. coli sterilization. The oxygen injection notably reduced the voltage needed for generating breakdown in flowing water and escalated the power of discharge pulses. No impact of hydrogen peroxide addition on breakdown voltage was observed. A significant role of oxidant species in bacterial inactivation also has been identified. Furthermore the E. coli survivability in plasma treated water with oxygen injection and hydrogen peroxide addition drastically reduced to zero. The time course study also showed that the retardant effect on E. coli colony multiplication in plasma treated water was favorable, observed after long time. High-frequency underwater plasma discharge based biological applications is technically relevant and would act as baseline data for the development of novel antibacterial processing strategies.

  8. Electric discharge processes in the ISS plasma environment

    NASA Astrophysics Data System (ADS)

    Tverdokhlebova, E. M.; Korsun, A. G.; Gabdullin, F. F.; Karabadzhak, G. F.

    We consider the behaviour of the electric discharges which can be initiated between constructional elements of the International Space Station (ISS) due to the electric field of high-voltaic solar arrays (HVSA). The characteristics of the ISS plasma environment are evaluated taking into account the influence of space ionizing fluxes, the Earth's magnetic field, and the HVSA's electric field. We offer the statement of the space experiment "Plasma-ISS", the aim of which is to investigate, using optical emission characteristics, parameters of the ISS plasma environment formed at operation of both the onboard engines and other plasma sources.

  9. Characteristics of 2-heptanone decomposition using nanosecond pulsed discharge plasma

    NASA Astrophysics Data System (ADS)

    Nakase, Yuki; Fukuchi, Yuichi; Wang, Douyan; Namihira, Takao; Akiyama, Hidenori; Kumamoto University Collaboration

    2015-09-01

    Volatile organic compounds (VOC) evaporate at room temperature. VOCs typically consist of toluene, benzene and ethyl acetate, which are used in cosmetics, dry cleaning products and paints. Exposure to elevated levels of VOCs may cause headaches, dizziness and irritation to the eyes, nose, and throat; they may also cause environmental problems such as air pollution, acid rain and photochemical smog. As such, they require prompt removal. Nanosecond pulsed discharge is a kind of non-thermal plasma consisting of a streamer discharge. Several advantages of nanosecond pulsed discharge plasma have been demonstrated by studies of our research group, including low heat loss, highly energetic electron generation, and the production of highly active radicals. These advantages have shown ns pulsed discharge plasma capable of higher energy efficiency for processes, such as air purification, wastewater treatment and ozone generation. In this research, nanosecond pulsed discharge plasma was employed to treat 2-heptanone, which is a volatile organic compound type and presents several harmful effects. Characteristics of treatment dependent on applied voltage, gas flow rate and input energy density were investigated. Furthermore, byproducts generated by treatment were also investigated.

  10. Temporal modulation of plasma species in atmospheric dielectric barrier discharges

    SciTech Connect

    Yang, Aijun; Wang, Xiaohua E-mail: mzrong@mail.xjtu.edu.cn; Liu, Dingxin; Rong, Mingzhe E-mail: mzrong@mail.xjtu.edu.cn; Kong, Michael G.

    2014-07-15

    The atmospheric pressure dielectric barrier discharge in helium is a pulsed discharge in nature and the moment of maximum species densities is almost consistent with peak discharge current density. In this paper, a one-dimensional fluid model is used to investigate the temporal structure of plasma species in an atmospheric He-N{sub 2} dielectric barrier discharge (DBD). It is demonstrated that there exist microsecond delays of the moments of the maximum electron and ion densities from the peak of discharge current density. These time delays are caused by a competition between the electron impact and Penning ionizations, modulated by the N{sub 2} level in the plasma-forming gas. Besides, significant electron wall losses lead to the DBD being more positively charged and, with a distinct temporal separation in the peak electron and cation densities, the plasma is characterized with repetitive bursts of net positive charges. The temporal details of ionic and reactive plasma species may provide a new idea for some biological processes.

  11. Plasma density in discharge sustained in inhomogeneous gas flow by high-power radiation in the terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Vodopyanov, A. V.; Glyavin, M. Yu.; Golubev, S. V.; Luchinin, A. G.; Razin, S. V.; Safronova, M. I.; Sidorov, A. V.; Fokin, A. P.

    2017-02-01

    We have measured the density of plasma (electron concentration) in discharge maintained in inhomogeneous argon flow under the action of high-power pulsed radiation of gyrotron (frequency, 0.67 THz; power 40 kW; pulse duration, 20-30 μs) in a range of background gas pressures in the discharge chamber from 10-3 to 300 Torr. The electron concentration at low pressures (10-3 to 7 Torr) was determined using Starkeffect induced broadening of the Hα atomic emission line (656.3 nm) of hydrogen present in discharge as a small impurity in residual gases. The maximum observed Stark broadening of the Hα line corresponded to a plasma density on the order of 2 × 1016 cm-3, which exceeded the critical value for the given frequency of radiation sustaining the discharge. At background pressures above 7 Torr, the plasma density was estimated from analysis of the spatiotemporal patterns and waveforms of discharge glow in the visible spectral range. These estimations gave electron concentrations on the level of (1-2) × 1015 cm-3.

  12. Plasma mixing glow discharge device for analytical applications

    DOEpatents

    Pinnaduwage, L.A.

    1999-04-20

    An instrument for analyzing a sample has an enclosure that forms a chamber containing an anode which divides the chamber into a discharge region and an analysis region. A gas inlet and outlet are provided to introduce and exhaust a rare gas into the discharge region. A cathode within the discharge region has a plurality of pins projecting in a geometric pattern toward the anode for exciting the gas and producing a plasma discharge between the cathode and the anode. Low energy electrons (e.g. <0.5 eV) pass into the analysis region through an aperture. The sample to be analyzed is placed into the analysis region and bombarded by the metastable rare gas atoms and the low energy electrons extracted into from the discharge region. A mass or optical spectrometer can be coupled to a port of the analysis region to analyze the resulting ions and light emission. 3 figs.

  13. Formation of nanostructures in a plasma focus discharge

    SciTech Connect

    Krauz, V. I.; Khimchenko, L. N.; Myalton, V. V.; Vinogradov, V. P.; Vinogradova, Yu. V.; Gureev, V. M.; Koidan, V. S.; Smirnov, V. P.; Fortov, V. E.

    2013-04-15

    A new method for creating nanostructures in a plasma focus discharge is proposed. It is shown that the material of a micron-size dust target produced at the discharge axis efficiently evaporates and is then involved in the pinching process. After the pinch decays, the plasma expands with the thermal velocity and the evaporated dust material is deposited on the collectors in the form of fractal particles or nanoclusters organized into various structures. Such structures have a well-developed surface, which is important for various technological applications.

  14. On the self-excitation mechanisms of plasma series resonance oscillations in single- and multi-frequency capacitive discharges

    SciTech Connect

    Schüngel, Edmund; Brandt, Steven; Schulze, Julian; Korolov, Ihor; Derzsi, Aranka; Donkó, Zoltán

    2015-04-15

    The self-excitation of plasma series resonance (PSR) oscillations is a prominent feature in the current of low pressure capacitive radio frequency discharges. This resonance leads to high frequency oscillations of the charge in the sheaths and enhances electron heating. Up to now, the phenomenon has only been observed in asymmetric discharges. There, the nonlinearity in the voltage balance, which is necessary for the self-excitation of resonance oscillations with frequencies above the applied frequencies, is caused predominantly by the quadratic contribution to the charge-voltage relation of the plasma sheaths. Using Particle In Cell/Monte Carlo collision simulations of single- and multi-frequency capacitive discharges and an equivalent circuit model, we demonstrate that other mechanisms, such as a cubic contribution to the charge-voltage relation of the plasma sheaths and the time dependent bulk electron plasma frequency, can cause the self-excitation of PSR oscillations, as well. These mechanisms have been neglected in previous models, but are important for the theoretical description of the current in symmetric or weakly asymmetric discharges.

  15. N2O Decomposed by Discharge Plasma with Catalysts

    NASA Astrophysics Data System (ADS)

    Hu, Hui; Huang, Hao; Xu, Jie; Yang, Qi; Tao, Gongkai

    2015-12-01

    A great deal of attention has been focused on discharge plasma as it can rapidly decompose N2O without additives, which is not only a kind of greenhouse gas but also a kind of damages to the ozone layer. The thermal equilibrium plasma is chosen to combine with catalysts to decompose N2O, and its characteristics are analyzed in the present paper. The results indicate that NO and NO2 were formed besides N2 and O2 during N2O decomposition when N2O was treated merely by discharge plasma. Concentration of NO declined greatly when the discharge plasma was combined with catalysts. Results of Raman spectra analysis on CeO2, Ce0.75Zr0.25O2 and Ce0.5Zr0.5O2 imply that the products selectivity has been obviously improved in discharge plasma decomposing N2O because of the existence of massive oxygen vacancies over the composite oxide catalysts. supported by National Natural Science Foundation of China (No. 50677026) and the Applied Basic Research Program of Wuhan, China (No. 2015060101010068)

  16. Optical emission spectroscopy observations of fast pulsed capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Avaria, G.; Ruiz, M.; Guzmán, F.; Favre, M.; Wyndham, E. S.; Chuaqui, H.; Bhuyan, H.

    2014-05-01

    We present time resolved optical emission spectroscopic (OES) observations of a low energy, pulsed capillary discharage (PCD). The optical emission from the capillary plasma and plasma jets emitted from the capillary volume was recorded with with a SpectraPro 275 spectrograph, fitted with a MCP gated OMA system, with 15 ns time resolution. The discharge was operated with different gases, including argon, nitrogen, hydrogen and methane, in a repetitive pulsed discharge mode at 10-50 Hz, with, 10-12 kV pulses applied at the cathode side. The time evolution of the electron density was measured using Stark broadening of the Hβ line. Several features of the capillary plasma dynamics, such as ionization growth, wall effects and plasma jet evolution, are inferred from the time evolution of the optical emission.

  17. Observation and numerical analysis of plasma parameters in a capillary discharge-produced plasma channel waveguide

    SciTech Connect

    Terauchi, Hiromitsu; Bobrova, Nadezhda; Sasorov, Pavel; Kikuchi, Takashi; Sasaki, Toru; Higashiguchi, Takeshi; Yugami, Noboru; Kodama, Ryosuke

    2011-03-01

    We observed the parameters of the discharge-produced plasma in cylindrical capillary. Plasma parameters of the waveguide were investigated by use of both a Normarski laser interferometer and a hydrogen plasma line spectrum. A space-averaged maximum temperature of 3.3 eV with electron densities of the order of 10{sup 17} cm{sup -3} was observed at a discharge time of 150 ns and a maximum discharge current of 200 A. One-dimensional dissipative magnetohydrodynamic (MHD) code was used to analyze the discharge dynamics in the gas-filled capillary discharge waveguide for high-intensity laser pulses. Simulations were performed for the conditions of the experiment. We compared the temporal behavior of the electron temperature and the radial electron density profiles, measured in the experiment with the results of the numerical simulations. They occurred to be in a good agreement. An ultrashort, intense laser pulse was guided by use of this plasma channel.

  18. Discharge regime of non-ambipolarity with a self-induced steady-state magnetic field in plasma sources with localized radio-frequency power deposition

    SciTech Connect

    Shivarova, A. Lishev, St.; Todorov, D.; Paunska, Ts.

    2015-10-15

    Involving the idea for the Biermann effect known from space physics as well as recent discussions on non-ambipolarity of the electron and ion fluxes in low-pressure discharges, the study builds the discharge pattern in a source with localized RF power deposition outside the region of high electron density. A vortex dc current flowing in an RF discharge and a steady-state magnetic field induced by this current govern the discharge behavior. Owing to a shift in the positions of the electron-density and plasma-potential maxima, the dc current is driven with the purpose of keeping the conservativity of the dc field in the discharge. The results present the spatial structure of a discharge in a regime of non-ambipolarity of the electron and ion fluxes, including its modifications by the magnetic field.

  19. Control of plasma properties in a short direct-current glow discharge with active boundaries

    SciTech Connect

    Adams, S. F.; Demidov, V. I.; Bogdanov, E. A.; Kudryavtsev, A. A.; Koepke, M. E.; Kurlyandskaya, I. P.

    2016-02-15

    To demonstrate controlling electron/metastable density ratio and electron temperature by applying negative voltages to the active (conducting) discharge wall in a low-pressure plasma with nonlocal electron energy distribution function, modeling has been performed in a short (lacking the positive-column region) direct-current glow discharge with a cold cathode. The applied negative voltage can modify the trapping of the low-energy part of the energetic electrons that are emitted from the cathode sheath and that arise from the atomic and molecular processes in the plasma within the device volume. These electrons are responsible for heating the slow, thermal electrons, while production of slow electrons (ions) and metastable atoms is mostly due to the energetic electrons with higher energies. Increasing electron temperature results in increasing decay rate of slow, thermal electrons (ions), while decay rate of metastable atoms and production rates of slow electrons (ions) and metastable atoms practically are unchanged. The result is in the variation of electron/metastable density ratio and electron temperature with the variation of the wall negative voltage.

  20. An investigation of Ar metastable state density in low pressure dual-frequency capacitively coupled argon and argon-diluted plasmas

    SciTech Connect

    Liu, Wen-Yao; Xu, Yong Peng, Fei; Guo, Qian; Li, Xiao-Song; Zhu, Ai-Min; Liu, Yong-Xin; Wang, You-Nian

    2015-01-14

    An tunable diode laser absorption spectroscopy has been used to determine the Ar*({sup 3}P{sub 2}) and Ar*({sup 3}P{sub 0}) metastable atoms densities in dual-frequency capacitively coupled plasmas. The effects of different control parameters, such as high-frequency power, gas pressure and content of Ar, on the densities of two metastable atoms and electron density were discussed in single-frequency and dual-frequency Ar discharges, respectively. Particularly, the effects of the pressure on the axial profile of the electron and Ar metastable state densities were also discussed. Furthermore, a simple rate model was employed and its results were compared with experiments to analyze the main production and loss processes of Ar metastable states. It is found that Ar metastable state is mainly produced by electron impact excitation from the ground state, and decayed by diffusion and collision quenching with electrons and neutral molecules. Besides, the addition of CF{sub 4} was found to significantly increase the metastable destruction rate by the CF{sub 4} quenching, especially for large CF{sub 4} content and high pressure, it becomes the dominant depopulation process.

  1. Applications of atmospheric plasmas

    NASA Astrophysics Data System (ADS)

    Oldham, Christopher John

    Surface modification techniques using plasmas have historically been completed in a low pressure environment due to Pd (pressure x gap distance) considerations influencing the behavior of plasma generation. Generally, plasmas produced in a low pressure environment are of a non-thermal or cold nature. The basic feature of non-thermal plasmas is the majority of electrical energy used to generate the plasma is primarily used to produce energetic electrons for generating chemical species. Low pressure plasmas serve many purposes for materials processing. Since the plasma environment is contained within a closed vessel, the plasma can be controlled very easily. Low pressure plasmas have been used in many industries but the complexity associated with the large pumping stations and limitation to batch processing has motivated new work in the area of atmospheric plasmas. Atmospheric plasmas offer both economic and technical justification for use over low pressure plasmas. Since atmospheric plasmas can be operated at ambient conditions, lower costs associated with continuous processing and a decrease in the complexity of equipment validate atmospheric plasma processing as a next generation plasma-aided manufacturing process. In an effort to advance acceptance of atmospheric plasma processing into industry, a process was developed, the dielectric barrier discharge (DBD), in order to generate a homogeneous and non-thermal plasma discharge at ambient conditions. The discharge was applied to the reduction of known food borne pathogens, deposition of thin film materials, and modification of lignocellulosic biomass.

  2. SXR optical diagnostics of capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Pina, L.; Jancarek, A.; Vrbova, M.; Tamas, M.; Blazej, J.; Havlikova, R.; Vrba, P.; Tomassetti, G.; Ritucci, A.

    2006-08-01

    Pinching capillary discharge in nitrogen is investigated for the purpose of development of laser recombination pumping. An apparatus, previously realized for argon capillary laser pumping, was used to understand details of pinching mechanism and emission characteristics for capillary filled by nitrogen. Time dependences of radiation intensities emitted in the wavelength range 1.9 - 2.5 nm and time integrated in the spectral range 10 - 20 nm were measured under various pressures. A computer model is used to describe the pinch dynamics and to estimate the radiation characteristics. EUV reflection grating spectrometer coupled to BI CCD camera and filtered PIN diode were used for time integrated and time resolved spectral measurements respectively. The measured profiles of radiation intensities are compared with the computer simulations of time dependences of selected energy level populations that correspond to the hydrogen- and helium- like ion line emission in the detected spectral range. Complex method for spectral image restoration was developed.

  3. Mode transition of a Hall thruster discharge plasma

    SciTech Connect

    Hara, Kentaro Sekerak, Michael J. Boyd, Iain D.; Gallimore, Alec D.

    2014-05-28

    A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulation that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.

  4. Sterilization of Turmeric by Atmospheric Pressure Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Setareh, Salarieh; Davoud, Dorranian

    2013-11-01

    In this study atmospheric pressure dielectric barrier discharge (DBD) plasma has been employed for sterilizing dry turmeric powders. A 6 kV, 6 kHz frequency generator was used to generate plasma with Ar, Ar/O2, He, and He/O2 gases between the 5 mm gap of two quartz covered electrodes. The complete sterilization time of samples due to plasma treatment was measured. The most important contaminant of turmeric is bacillus subtilis. The results show that the shortest sterilization time of 15 min is achieved by exposing the samples to Ar/O2 plasma. Survival curves of samples are exponential functions of time and the addition of oxygen to plasma leads to a significant increase of the absolute value of time constant of the curves. Magnitudes of protein and DNA in treated samples were increased to a similar value for all samples. Taste, color, and solubility of samples were not changed after the plasma treatment.

  5. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  6. Dynamics of the plasma current sheath in plasma focus discharges in different gases

    NASA Astrophysics Data System (ADS)

    Vinogradov, V. P.; Krauz, V. I.; Mokeev, A. N.; Myalton, V. V.; Kharrasov, A. M.

    2016-12-01

    The shape of the plasma current sheath (PCS) in the final stage of its radial compression, the dynamics of pinching, and the subsequent pinch decay in plasma focus (PF) discharges in different gases are studied using an improved multichannel system of electron-optical plasma photography and a newly elaborated synchronization system. The PCS structure in discharges in heavy gases (Ne, Ar) is found to differ significantly from that in discharges in hydrogen and deuterium. The influence of a heavy gas (Xe) additive to hydrogen and deuterium on the structure and compression dynamics of the PCS is investigated.

  7. Low pressure characteristics of the multipole resonance probe

    NASA Astrophysics Data System (ADS)

    Brinkmann, Ralf Peter; Oberrath, Jens

    2014-10-01

    The term ``Active plasma resonance spectroscopy'' (APRS) denotes a class of related techniques which utilize, for diagnostic purposes, the natural ability of plasmas to resonate on or near the electron plasma frequency ωpe. The basic idea dates back to the early days of discharge physics but has recently found renewed interest as an approach to industry-compatible plasma diagnostics: A radio frequent signal (in the GHz range) is coupled into the plasma via an antenna or probe, the spectral response is recorded (with the same or another antenna or probe), and a mathematical model is used to determine plasma parameters like the electron density or the electron temperature. When the method is applied to low pressure plasmas (of a few Pa and lower), kinetic effects must be accounted for in the mathematical model. This contribution studies a particular realization of the APRS scheme, the geometrically and electrically symmetric Multipole Resonance Probe (MRP). It is shown that the resonances of the MRP exhibit a residual damping in the limit p --> 0 which cannot be explained by Ohmic dissipation but only by kinetic effects. Supported by the German Federal Ministry of Education and Research (BMBF) in the framework of the PluTO project.

  8. Modelling the interaction between the plasma and the neutral gas in a pulsed glow discharge in nitrogen

    SciTech Connect

    Guiberteau, E.; Bonhomme, G.; Zoheir, C.

    1995-12-31

    We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.

  9. Synchronization between two coupled direct current glow discharge plasma sources

    SciTech Connect

    Chaubey, Neeraj; Mukherjee, S.; Sen, A.; Sekar Iyengar, A. N.

    2015-02-15

    Experimental results on the nonlinear dynamics of two coupled glow discharge plasma sources are presented. A variety of nonlinear phenomena including frequency synchronization and frequency pulling are observed as the coupling strength is varied. Numerical solutions of a model representation of the experiment consisting of two coupled asymmetric Van der Pol type equations are found to be in good agreement with the observed results.

  10. Experimental investigations of silicon tetrafluoride decomposition in ECR discharge plasma

    SciTech Connect

    Vodopyanov, A. V.; Golubev, S. V.; Mansfeld, D. A.; Sennikov, P. G.; Drozdov, Yu. N.

    2011-06-15

    The results of first experiments on the investigation of plasma of electron cyclotron resonance (ECR) discharge, sustained by CW radiation of technological gyrotron with frequency 24 GHz are considered. The parameters of nitrogen plasma of ECR discharge in magnetic field up to 1 T were investigated by Langmuir probe in the pressure range 10{sup -4}-10{sup -2} mbar under different values of microwave power. Depending on gas pressure and power of microwave radiation, the typical temperature and density of electrons could attain values of 1-5 eV and 10{sup 11}-10{sup 12} cm{sup -3}, respectively. The prospects for using of ECR discharge for plasma chemical decomposition of silicon tetrafluoride (SiF{sub 4}) have been experimentally demonstrated. Plasma was created from SiF{sub 4} and hydrogen (H{sub 2}) gas mixture and heated by microwave radiation in ECR conditions. Using the method of mass-spectrometry analysis of the gas at the outlet from the reactor and the weighting method, the content of the resultants of SiF{sub 4} decomposition as a function of process parameters was investigated. It was shown that SiF{sub 4} decomposition degree strongly depends on the microwave power, gas pressure in the reactor, gas flow rates, and can attain the value of 50%. The possible applications of PECVD method based on ECR discharge for production of isotopically pure elements with high deposition rate are discussed.

  11. A Novel Sterilization Method Using Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Xi-lu; Akira, Mizuno; Shijin, Katsura

    1998-01-01

    Pulsed discharge plasma(PDP) has been used to kill bacteria and the curves of the survival rate of bacteria against treatment time are obtained. Irreversible structural change in the cell membrane is caused by PDP and the cell is thus killed. The sterilization mechanism is analyzed.

  12. A capillary discharge plasma source of intense VUV radiation

    SciTech Connect

    Sobel'man, Igor I; Shevelko, A P; Yakushev, O F; Knight, L V; Turley, R S

    2003-01-31

    The results of investigation of a capillary discharge plasma, used as a source of intense VUV radiation and soft X-rays, are presented. The plasma was generated during the discharge of low-inductance condensers in a gas-filled ceramic capillary. Intense line radiation was observed in a broad spectral range (30-400 A) in various gases (CO{sub 2}, Ne, Ar, Kr, Xe). The absolute radiation yield for the xenon discharge was {approx}5 mJ (2{pi} sr){sup -1} pulse{sup -1} within a spectral band of width 9 A at 135 A. Such a radiation source can be used for various practical applications, such as EUV projection lithography, microscopy of biological objects in a 'water window', reflectometry, etc. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  13. Dusty Plasma in He-Ar Glow Discharge

    SciTech Connect

    Maiorov, S. A.; Ramazanov, T. S.; Dzhumagulova, K. N.; Dosbolayev, M. K.; Jumabekov, A. N.

    2008-09-07

    The paper reports on the first experiments with plasma-dust formations in dc gas discharge plasma for He-Ar mixture. It is shown that under the conventional conditions of the experiments with dusty structures in plasma, the choice of light and heavy gases for the mixture suppresses electron heating in electric field and results in a supersonic jet with high Mach numbers. Distribution functions for drifting ions in the gas mixture are calculated for various mixture concentrations, electric field strengths and gas pressures.

  14. ICRF Heated Long-Pulse Plasma Discharges in LHD

    NASA Astrophysics Data System (ADS)

    Kumazawa, R.; Seki, T.; Mutoh, T.; Saito, K.; Watari, T.; Nakamura, Y.; Sakamoto, M.; Watanabe, T.; Kubo, S.; Shimozuma, T.; Yoshimura, Y.; Igami, H.; Takeiri, Y.; Oka, Y.; Tsumori, K.; Osakabe, M.; Ikeda, K.; Nagaoka, K.; Kaneko, O.; Miyazawa, J.; Morita, S.; Narihara, K.; Shoji, M.; Masuzaki, S.; Goto, M.; Morisaki, T.; Peterson, B. J.; Sato, K.; Tokuzawa, T.; Ashikawa, N.; Nishimura, K.; Funaba, H.; Chikaraishi, H.; Notake, T.; Torii, Y.; Okada, H.; Ichimura, M.; Higaki, H.; Takase, Y.; Kasahara, H.; Shimpo, F.; Nomura, G.; Takahashi, C.; Yokota, M.; Kato, A.; Zhao, Yanping; Yoon, J. S.; Kwak, J. G.; Yamada, H.; Kawahata, K.; Ohyabu, N.; Ida, K.; Nagayama, Y.; Noda, N.; Komori, A.; Sudo, S.; Motojima, O.; LHD Experimental Group

    2006-01-01

    A long-pulse plasma discharge for more than 30 min. was achieved on the Large Helical Device (LHD). A plasma of ne = 0.8× 1019 m-3 and Ti0 = 2.0 keV was sustained with PICH = 0.52 MW, PECH = 0.1 MW and averaged PNBI = 0.067 MW. Total injected heating energy was 1.3 GJ, which was a quarter of the prepared RF heating energy. One of the keys to the success of the experiment was a dispersion of the local plasma heat load to divertors, accomplished by shifting the magnetic axis inward and outward.

  15. Instability of plasma plume of micro-hollow cathode discharge

    SciTech Connect

    Levko, D.; Bliokh, Y. P.; Gurovich, V. Tz.; Krasik, Ya. E.

    2015-11-15

    The micro-hollow cathode gas discharge driven by thermionic emission is studied using the two-dimensional particle-in-cell Monte Carlo collisions simulation. The electron current is extracted from the plasma plume penetrating into the keeper–anode space through a small keeper orifice from the cathode-keeper space. The results of simulations and a simplified analytical model showed that the plasma density and extracted current can exhibit deep modulation in the range of frequencies of tens of MHz. This modulation appears when the space-charge limited current between the plume boundary and the anode exceeds the plasma thermal electron current through the orifice.

  16. Combustion Enhancement Using a Silent Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Rosocha, Louis; Platts, David; Coates, Don; Stange, Sy

    2003-10-01

    Electric fields affect flame propagation speed, stability, and combustion chemistry. External electrodes, arc discharges, and plasma jets have been used to combust gas mixtures outside their flammability limits. Experiments with silent electrical discharges (SEDs) and propagating flames have shown that flame propagation velocity is actually decreased (combustion retarded) when an SED is applied directly to the flame region, but velocity is increased (combustion promoted) when applied to the unburned gas mixture upstream of a flame. More recent work has proposed electric arc/microwave-driven plasma-generating fuel nozzles to produce dissociated fuel or ionized fuel for aircraft gas turbine engine combustor mixers. In contrast to prior works, we have used a silent discharge plasma (SDP) reactor to break up large fuel molecules into smaller molecules and create free radicals/active species in a gas stream before the fuel is mixed with an oxidizer and combusted. A cylindrical SDP reactor was used to 'activate' propane before mixing it with air and igniting the combustible gas mixture. With the plasma, the physical appearance of the flame changes and substantial changes in mass spectrometer fragmentation peaks for fuel and combustion products are observed (i.e., combustion is enhanced). Results of changes in the degree of combustion will be discussed in terms of variations in the plasma specific energy.

  17. Self-consistent discharge growing model of helicon plasma

    NASA Astrophysics Data System (ADS)

    Isayama, Shogo; Hada, Tohru; Shinohara, Shunjiro; Tanikawa, Takao

    2015-11-01

    Helicon plasma is a high-density and low-temperature plasma generated by the electromagnetic (Helicon) wave excited in the plasma. It is thought to be useful for various applications including electric thrusters. Physics of helicon plasma production involves such fundamental processes as the wave propagation (dispersion relation), collisional and non-collisional wave damping, plasma heating, ionization/recombination of neutral particles, and modification of the dispersion relation by newly ionized plasma. There remain a number of unsolved physical issues such as, how the Helicon and the TG modes influence the plasma density, electron temperature and their spatial profiles. While the Helicon mode is absorbed in the bulk plasma, the TG mode is mostly absorbed near the edge of the plasma. The local power deposition in the helicon plasma is mostly balanced by collisional loss. This local power balance can give rise to the inhomogeneous electron temperature profile that leads to time evolution of density profile and dispersion relation. In our study, we construct a self-consistent model of the discharge evolution that includes the wave excitation, electron heat transfer, and diffusion of charged particles.

  18. Sterilization of Materials with a One Atmosphere Uniform Glow Discharge Plasma.*

    NASA Astrophysics Data System (ADS)

    Ku, Yongmin; Brickman, C.; Tosh, K.; Kelly-Wintenberg, K.; Montie, T. C.; Tsai, P.; Wadsworth, L.; Roth, J. Reece

    1996-11-01

    The relatively recent development of the One Atmosphere Uniform Glow Discharge Plasma sterilization technique at the UTK Plasma Science Laboratory has produced initial results which indicate that the technique may have commercial potential. We have shown that active species in a OAUGDP can be applied to the sterilization of fabrics, films, solid materials, and microbiological culture media. With a OAUGDP, we can eliminate the vacuum system which enforces batch processing and requires a continuous input of electrical power. With a OAUGDP, the exposure time is as little as 15 seconds. Sterilization of microorganisms with a kill ratio of 10E6 or higher, can be achieved with minimal unwanted byproducts and at less expense, compared to such conventional sterilization methods as autoclaving, ethylene oxide, or low pressure plasma treatment. This paper discusses the sterilization mechanisms of this new technique, and compares its advantages and disadvantages with other widely used techniques. ^1 Department of Microbiology, UTK ^2 UTK Textiles and Nonwovens Development Center (TANDEC) Research supported in part by the UTK Textiles and Nonwovens Development Center and UTK Center for Materials Processing.

  19. The layered structure of the carbon arc discharge plasma

    NASA Astrophysics Data System (ADS)

    Vekselman, Vladislav; Stratton, Brentley; Raitses, Yevgeny; LaboratoryPlasma Nanosynthesis Team

    2016-10-01

    The arc discharge with a consumed anode is commonly used for synthesis of nanomaterials such as fullerenes, nanotubes and, more recently, graphene. The role of the arc plasma in nanosynthesis processes, including ablation of the graphite anode, nucleation and growth of nanostructures remains unclear. Our recent fast frame camera measurements revealed arc oscillations associated with the ablation processes at the anode. More sophisticated measurements using optical emission spectroscopy and spectrally resolved fast framing imaging revealed the complex, layered structure of plasma species distribution, which is dynamically changing. The results of this research include time- and space- resolved distributions of plasma species, plasma electron density and temperature. The obtained experimental data suggest a strong correlation between arc plasma parameters and nanosynthesis processes. This work was supported by US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division.

  20. Coal Liquefaction by Using Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Wu, Peng; Gu, Fan

    2013-07-01

    An innovative method for coal liquefaction by using dielectric barrier discharge (DBD) plasma in a short reaction time was developed. Using tetralin as the reaction medium, DBD plasma as the energy source, and a reaction time of 10 min at 140°C, up to 10% of coal was converted to liquid material. The results showed the feasibility of coal's liquefaction by DBD plasma under relatively moderate conditions. Simultaneously, it was clarified that the effect of DBD plasma treatment was opposed to the thermal effect of heating. An acid plasma sheath could be formed on the coal powder surface in DBD conditions, liquefied reactions could be carried out in the absence of inorganic acid, and the products were nearly neutral and with low causticity.

  1. Nonsputtering impulse magnetron discharge

    SciTech Connect

    Khodachenko, G. V.; Mozgrin, D. V.; Fetisov, I. K.; Stepanova, T. V.

    2012-01-15

    Experiments with quasi-steady high-current discharges in crossed E Multiplication-Sign B fields in various gases (Ar, N{sub 2}, H{sub 2}, and SF{sub 6}) and gas mixtures (Ar/SF{sub 6} and Ar/O{sub 2}) at pressures from 10{sup -3} to 5 Torr in discharge systems with different configurations of electric and magnetic fields revealed a specific type of stable low-voltage discharge that does not transform into an arc. This type of discharge came to be known as a high-current diffuse discharge and, later, a nonsputtering impulse magnetron discharge. This paper presents results from experimental studies of the plasma parameters (the electron temperature, the plasma density, and the temperature of ions and atoms of the plasma-forming gas) of a high-current low-pressure diffuse discharge in crossed E Multiplication-Sign B fields.

  2. Effect of the radio frequency discharge on the dust charging process in a weakly collisional and fully ionized plasma

    SciTech Connect

    Motie, Iman; Bokaeeyan, Mahyar

    2015-02-15

    A close analysis of dust charging process in the presence of radio frequency (RF) discharge on low pressure and fully ionized plasma for both weak and strong discharge's electric field is considered. When the electromagnetic waves pass throughout fully ionized plasma, the collision frequency of the plasma is derived. Moreover, the disturbed distribution function of plasma particles in the presence of the RF discharge is obtained. In this article, by using the Krook model, we separate the distribution function in two parts, the Maxwellian part and the perturbed part. The perturbed part of distribution can make an extra current, so-called the accretion rate of electron (or ion) current, towards a dust particle as a function of the average electron-ion collision frequency. It is proven that when the potential of dust grains increases, the accretion rate of electron current experiences an exponential reduction. Furthermore, the accretion rate of electron current for a strong electric field is relatively smaller than that for a weak electric field. The reasons are elaborated.

  3. Plasma Catalysis of Methane Decomposition in Pulse Microwave Discharge

    NASA Astrophysics Data System (ADS)

    Potapkin, B.; Rusanov, V.; Jivotov, V.; Babaritski, A.; Potechin, S.; Etievant, C.

    1997-10-01

    Investigation of plasma catalysis effects in various chemical reactions, such as SO2 and hydrocarbons oxidation, ammonia and nitrogen oxides synthesis, has been of interest for many decades. Present work describes the first experimental observation and theoretical analysis of plasma catalysis effects in the case of endothermic methane decomposition into molecular hydrogen and carbon black. Process energy requirements are coverd mainly by low potential gas thermal energy while plasma is used for acceleration of chemical reactions via active species generation. The experiments were done as follows: (i) methane was preheated in a conventional heat exchanger up to about 40-65 ^oC where thermal methane decomposition is limited by process kinetics, (ii) methane was passed through a non-equilibrium pulse microwave discharge (9.04 GHz, pulse duration 1 μs). Experiments have shown a strong catalytic effect of plasma on methane decomposition. The degree of conversion after discharge increased drastically, despite gas cooling, because of heat absorption in the methane decomposition reaction. Theoretical analysis of process kinetics and energy balance gave clear evidence of the catalytic effect of plasma under experimental conditions. The estimated chain length was about 300. The possible mechanism of plasma catalysis, the ion-molecular chain Winchester mechanism, is proposed and described.

  4. Doppler spectroscopy on plasma discharges produced in Proto-MPEX

    NASA Astrophysics Data System (ADS)

    Dhaliwal, Runpal; Biewer, Theodore; Klepper, Chris; Martin, Elijah; Rapp, Juergen

    2015-11-01

    The Prototype Material Plasma Exposure eXperiment (Proto-MPEX) is a linear machine that produces pulsed plasma discharges, and is intended to study plasma-material interactions in conditions similar to those found in future fusion reactors. A high-resolution McPherson Czerny-Turner visible range spectrometer has been installed to study the behavior of ions in the plasma. Together with a Princeton Instruments EMCCD camera and an external trigger box, this system provides excellent spectral and temporal resolution for viewing the emission spectra of the discharges. Around 100 lines of sight have been established for use by this and other diagnostics in the lab. Initial data from recent experiments validate the utility of this setup. Analysis of spectral lines in helium and deuterium plasmas yields valuable information regarding the temperature and density of plasma ions at various locations in the machine as the various RF heating sources are implemented. Differentiating the thermal width of lines from other sources of broadening is an ongoing process. In addition to He I lines, data indicates the presence of the He II line at 468.5 nm, which corresponds to emission from singly ionized atoms at higher temperatures.

  5. Design of a plasma discharge circuit for particle wakefield acceleration

    NASA Astrophysics Data System (ADS)

    Anania, M. P.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Ferrario, M.; Flora, F.; Gallerano, G. P.; Ghigo, A.; Marocchino, A.; Massimo, F.; Mostacci, A.; Mezi, L.; Musumeci, P.; Serio, M.

    2014-03-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV m-1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10-100 MV m-1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of short bunches, we have started to study the requirements in terms of plasma for SPARC-LAB [1,2]. In particular, here we focus on the ionization process; we show a simplified model to study the evolution of plasma induced by discharge, very useful to design the discharge circuit able to fully ionize the gas and bring the plasma at the needed temperature and density.

  6. Modeling of inductively coupled plasma SF{sub 6}/O{sub 2}/Ar plasma discharge: Effect of O{sub 2} on the plasma kinetic properties

    SciTech Connect

    Pateau, Amand; Rhallabi, Ahmed Fernandez, Marie-Claude; Boufnichel, Mohamed; Roqueta, Fabrice

    2014-03-15

    A global model has been developed for low-pressure, inductively coupled plasma (ICP) SF{sub 6}/O{sub 2}/Ar mixtures. This model is based on a set of mass balance equations for all the considered species, coupled with the discharge power balance equation and the charge neutrality condition. The present study is an extension of the kinetic global model previously developed for SF{sub 6}/Ar ICP plasma discharges [Lallement et al., Plasma Sources Sci. Technol. 18, 025001 (2009)]. It is focused on the study of the impact of the O{sub 2} addition to the SF{sub 6}/Ar gas mixture on the plasma kinetic properties. The simulation results show that the electron density increases with the %O{sub 2}, which is due to the decrease of the plasma electronegativity, while the electron temperature is almost constant in our pressure range. The density evolutions of atomic fluorine and oxygen versus %O{sub 2} have been analyzed. Those atomic radicals play an important role in the silicon etching process. The atomic fluorine density increases from 0 up to 40% O{sub 2} where it reaches a maximum. This is due to the enhancement of the SF{sub 6} dissociation processes and the production of fluorine through the reactions between SF{sub x} and O. This trend is experimentally confirmed. On the other hand, the simulation results show that O(3p) is the preponderant atomic oxygen. Its density increases with %O{sub 2} until reaching a maximum at almost 40% O{sub 2}. Over this value, its diminution with O{sub 2}% can be justified by the high increase in the loss frequency of O(3p) by electronic impact in comparison to its production frequency by electronic impact with O{sub 2}.

  7. Collisional and Radiative Processes in High-Pressure Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt

    2001-10-01

    High-pressure discharge plasmas (HPDPs) with operating pressures up to and exceeding atmospheric pressure have gained prominence in many areas of application such as EM absorbers and reflectors, remediation of waste streams, deposition and surface modification, surface cleaning and sterilization, and light source development. In particular, HPDPs are widely used as sources for the generation of non-coherent UV and VUV light such as excimer emissions in the spectral range from 50 nm to 300 nm using rare gases or rare gas admixed with other gases as the operating medium. In this talk we will discuss several common types of HPDPs (e.g. microhollow cathode discharge plasmas, dielectric barrier discharge plasmas, capillary dielectrode discharge plasmas) that are commonly used for the generation of non-coherent excimer emissions. The main focus of this talk will be on the elucidation of the underlying microscopic collisional and radiative processes in these plasmas that lead to the photon emission and that determine the efficiency and spectral characteristics of various sources. Processes of particular interest are the generation of intense, monochromatic atomic line emissions in the 90 - 130 nm range, in particular the H Lyman-alpha emission at 121.6 nm, from HPDPs in gas mixtures containing high-pressure He, Ne, or Ar with trace amounts (1which may have great potential in photolithography and related applications. The mechanism for the emission of these intense atomic VUV lines are near-resonant energy transfer processes from the excimer molecule to the diatomic gas (H2, O2, N2). This work was supported by the NSF and by DARPA/ARO and carried out in collaboration with P. Kurunczi, K.H. Schoenbach, M. Laroussi, M. Gupta, and N. Masoud. Helpful discussions with U. Kogelschatz and E. Kunhardt are gratefully acknowledged.

  8. Numerical analysis of plasma evolution on dielectric barrier discharge plasma actuator

    SciTech Connect

    Nishida, Hiroyuki; Abe, Takashi

    2011-07-01

    Time evolution of the discharge plasma in the dielectric barrier discharge (DBD) plasma actuator was simulated by the simple fluid model in which the electron and single positive ion species were considered. The characteristics of the discharge plasma evolution were investigated in detail, and the following results were obtained. When the positive-going voltage is applied, the streamer discharge is formed periodically. The periodically formed streamer expands from the exposed electrode, and its length becomes longer than the previous one. Periodic breakdown of the gas and step-by-step plasma expansion are also observed during the negative-going voltage; however, the streamer is not formed and the breakdown frequency is much higher. The simulation results with a triangular applied voltage waveform show the same characteristics as observed in the experiment; large discharge current spikes are observed during both the positive- and negative-going voltage phase, and the plasma in the negative-going voltage phase expands more smoothly than that in the positive phase because of its higher breakdown frequency. It was shown that even the simple numerical model could provide valuable insights into the physics of DBD plasma actuator; this indicates that the positive ions and electrons play a prominent role in determining the general characteristics of the plasma evolution.

  9. Properties Influencing Plasma Discharges in Packed Bed Reactors

    NASA Astrophysics Data System (ADS)

    Kruszelnicki, Juliusz; Engeling, Kenneth W.; Foster, John E.; Kushner, Mark J.

    2016-09-01

    Atmospheric pressure dielectric barrier discharges (DBDs) sustained in packed bed reactors (PBRs) are being investigated for CO2 removal and conversion of waste gases into higher value compounds. We report on results of a computational investigation of PBR-DBD properties using the plasma hydrodynamics simulator nonPDPSIM with a comparison to experiments. Dielectric beads (rods in 2D) were inserted between two coplanar electrodes, 1 cm apart filled by humid air. A step-pulse of -30 kV was applied to the top electrode. Material properties of the beads (dielectric constant, secondary emission coefficient) and gas properties (photoionization and photo-absorption cross-sections, temperature) were varied. We found that photoionization plays a critical role in the propagation of the discharge through the PBR, as it serves to seed charges in regions of high electric field. Increasing rates of photo-ionization enable increases in the discharge propagation velocity, ionization rates and production of radicals. A transition between DBD-like and arc-like discharges occurs as the radiation mean free path decreases. Increasing the dielectric constant of the beads increased electric fields in the gas, which translated to increased discharge propagation velocity and charge density until ɛ/ɛ0 100. Secondary electron emission coefficient and gas temperature have minimal impacts on the discharge propagation though the latter did affect the production of reactive species. Work supported by US DOE Office of Fusion Energy Science and the National Science Foundation.

  10. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexander

    2014-01-01

    Traditional approaches for active flow separation control using dielectric barrier discharge (DBD) plasma actuators are limited to relatively low speed flows and atmospheric conditions. This results in low feasibility of the DBDs for aerospace applications. For active flow control at turbine blades, fixed wings, and rotary wings and on hypersonic vehicles, DBD plasma actuators must perform at a wide range of conditions, including rarified flows and combustion mixtures. An efficient, comprehensive, physically based DBD simulation tool can optimize DBD plasma actuators for different operation conditions. Researchers are developing a DBD plasma actuator simulation tool for a wide range of ambient gas pressures. The tool will treat DBD using either kinetic, fluid, or hybrid models, depending on the DBD operational condition.

  11. Dielectric barrier discharge plasma pretreatment on hydrolysis of microcrystalline cellulose

    NASA Astrophysics Data System (ADS)

    Fangmin, HUANG; Zhouyang, LONG; Sa, LIU; Zhenglong, Qin

    2017-04-01

    Dielectric barrier discharge (DBD) plasma was used as a pretreatment method for downstream hydrolysis of microcrystalline cellulose (MCC). The degree of polymerization (DP) of MCC decreased after it was pretreated by DBD plasma under a carrier gas of air/argon. The effectiveness of depolymerization was found to be influenced by the crystallinity of MCC when under the pretreatment of DBD plasma. With the addition of tert-butyl alcohol in the treated MCC water suspension solution, depolymerization effectiveness of MCC was inhibited. When MCC was pretreated by DBD plasma for 30 min, the total reducing sugar concentration (TRSC) and liquefaction yield (LY) of pretreated-MCC (PMCC) increased by 82.98% and 34.18% respectively compared with those for raw MCC.

  12. MHD Simulation of the Inverse Pinch Plasma Discharge

    SciTech Connect

    Esaulov, A; Bauer, B; Lindemuth, I; Makhin, V; Presura, R; Ryutov, D

    2004-07-01

    A wall confined plasma in an inverse pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as the simple geometry to study wall-confined plasma. An experiment is planned to study the inverse pinch configuration using the Nevada Terawatt Facility (NTF) at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two dimensional MHD simulations show Rayleigh-Taylor and Richtmyer-Meshkov -like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.

  13. Plasma chemistry in electron-beam sustained discharges

    NASA Astrophysics Data System (ADS)

    Turner, Miles

    2016-09-01

    There are many emerging applications that exploit the exotic chemical characteristics of plasmas. Some of these applications, if deployed on an industrial scale, involve processing much larger volumes of gas than seems reasonable using any atmospheric pressure plasma source in wide use today. We note that an electron-beam sustained discharge permits the creation of a atmospheric pressure plasma with reasonable uniformity, large volme, and widely controllable electron temperature. Robust and durable electron beam sources now exist that would facilitate such applications. In this paper we discuss the general advantages of this approach, and we present a modelling study concerned with the production of NO in mixtures of N2 and O2, looking towards plasma aided manufacturing of fertilizers.

  14. Delay time for the onset of beam plasma discharge

    NASA Technical Reports Server (NTRS)

    Parish, J. L.; Denig, W. F.; Raitt, W. J.

    1987-01-01

    The interaction of a nonrelativistic electron beam with a neutral gas in a large chamber is considered, and the time interval before ignition of beam plasma discharge (BPD) is studied. A new theoretical expression for the time delay before BPD ignition is found as a function of the critical current necessary for BPD to be established. There are two parameters in the theoretical expression, and both are derived from two different experiments. These parameters are used to write the time evolution equation for plasma density as a function of time.

  15. Suprathermal electrons produced by beam-plasma-discharge

    NASA Technical Reports Server (NTRS)

    Sharp, W. E.

    1982-01-01

    Experiments conducted with a low energy plasma lens, HARP, in the electron beam of the large vacuum chamber at Johnson Space Center indicate that an enhanced population of 50 to 300 volt electrons appear when the beam goes into the Beam-Plasma Discharge (BPD) mode. Below the BPD instability the electron distribution appears to be characterized as non-energized single particle scattering and energy loss. At 100 cm from the beam core in the BPD mode the fluxes parallel to the beam are reduced by a factor of 20 with respect to the fluxes at 25 cm. Some evidence for isotropy near the beam core is presented.

  16. Plasma physics issues in gas discharge laser development

    SciTech Connect

    Garscadden, A. ); Kushner, M.J.; Eden, J.G. . Dept. of Electrical and Computer Engineering)

    1991-12-01

    In this paper an account is given of the interplay between partially ionized plasma physics and the development of gas discharge lasers. Gas discharge excitation has provided a wide array of laser devices extending from the soft X-ray region to the far infrared. The scaling of gas discharge lasers in power and energy also covers many orders of magnitude. The particular features of three regimes are discussed: short wavelength lasers (deep UV to soft X-ray); visible and near UV lasers; and infrared molecular gas lasers. The current status (Fall 1990) of these areas is reviewed, and an assessment is made of future research topics that are perceived to be important.

  17. Effects of discharge voltage waveform on the discharge characteristics in a helium atmospheric plasma jet

    SciTech Connect

    Uchida, Giichiro Takenaka, Kosuke; Setsuhara, Yuichi

    2015-04-21

    We present here an analysis of the discharge characteristics of a He plasma jet operating under three different types of applied voltage waveform: (a) a μs-pulse voltage waveform with a slow voltage rise time, (b) ns-pulse, and (c) rectangular voltage waveforms with fast voltage rise time. Optical emission measurements show that the application of a voltage with a fast voltage rise time induces rapid discharge growth and, consequently, produces an abundance of energetic electrons, which in turn leads to high optical emission from the O atoms. We also estimate the optical emission efficiency of the O atom (η{sub o}), which corresponds roughly to the production efficiency of the reactive O species. η{sub o} increases with increasing applied voltage, and the highest value of η{sub o} is obtained in the shortest pulse discharge, which was ignited by a ns-pulse voltage waveform with a fast voltage rise time and short pulse width.

  18. Low-pressure plasma-etching of bulk polymer materials using gas mixture of CF{sub 4} and O{sub 2}

    SciTech Connect

    Nabesawa, Hirofumi; Hiruma, Takaharu; Seki, Minoru; Hitobo, Takeshi; Wakabayashi, Suguru; Asaji, Toyohisa; Abe, Takashi

    2013-11-15

    In this study, we have proposed a low-pressure reactive ion etching of bulk polymer materials with a gas mixture of CF{sub 4} and O{sub 2}, and have achieved precise fabrication of poly(methyl methacrylate) (PMMA) and perfluoroalkoxy (PFA) bulk polymer plates with high-aspect-ratio and narrow gap array structures, such as, pillar, frustum, or cone, on a nano/micro scale. The effects of the etching conditions on the shape and size of each pillar were evaluated by changing etching duration and the size/material of etching mask. The fabricated PMMA array structures indicate possibilities of optical waveguide and nanofiber array. PFA cone array structures showed super-hydrophobicity without any chemical treatments. Also, polystyrene-coated silica spheres were used as an etching mask for the pillar array structure formation to control the gap between pillars.

  19. Modelling of plasma aerodynamic actuation driven by nanosecond SDBD discharge

    NASA Astrophysics Data System (ADS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-09-01

    A two-dimensional air plasma kinetics model (16 species and 44 processes) for nanosecond discharge under atmospheric pressure was developed to reveal the spatial and temporal distribution of discharge characteristics of a surface dielectric barrier discharge (SDBD) actuator. An energy transfer model, including two channels for energy release from external power source to gas, was developed to couple plasma with hydrodynamics directly in the same dimension. The governing equations included the Poisson equation for the electric potential, continuity equations for each species, electron energy equations for electrons taking part in reactions, and Navier-Stokes equations for non-isothermal fluid. The model was validated through current-voltage profile and electron temperature obtained from experiments. Calculations for discharge characteristics as well as the responses of fluid field from tens of nanoseconds to tens of seconds were performed. Results have shown that local air is heated to 1170 K within tens of nanoseconds and then decreases to 310 K at the end of a discharge period. 30% of the total power is transferred from electric field to electrons while only 20% of this energy is then released to gas through quenching processes. 9% of the total energy is released through ion collision. A micro-shock wave is formed and propagates at the speed of sound. High local density gradient and dynamic viscosity induces vortexes which whirl the heated air downstream. The combined effects of heating convection and vortexes in repetitive pulse discharges lead to the formation of a steady jet, in agreement with experimental results.

  20. Synthesis of nano ZnO thin film on Al foil by rf glow discharge plasma and its effect on E. coli and P. aeruginosa

    NASA Astrophysics Data System (ADS)

    Panigrahi, Jagannath; Nayak, Bijan B.; Behera, Debadhyan; Subudhi, Umakanta; Acharya, Bhabani S.

    2012-09-01

    Nano ZnO thin films were deposited on thin Al foils by a rf glow discharge plasma method in which sublimed zinc acetate vapor (precursor) reacted with oxygen plasma inside a low-pressure reactor. The films were microstructurally characterized using XRD, TEM, FESEM, optical reflectance and micro-Raman spectroscopy methods. In view of the good scope of ZnO coating in food packaging, the antibacterial activity in the ZnO thin films was studied by exposing the films to E. coli and P. aeruginosa for up to 8 h. Bacterial cell inhibition of up to 98-99 % was observed in the thin films.

  1. Chemical waste disposal in space by plasma discharge

    NASA Technical Reports Server (NTRS)

    Baird, James K.

    1991-01-01

    An inductively coupled plasma discharge apparatus operating at 13.56 MHz and with electrical power up to 2.5 kW was constructed. The efficiency of this device to destroy various gases expected to be carried aboard the Space Station was tested. By expressing the efficiency of the device in terms of G-value (the number of molecules decomposed per 100 eV of energy absorbed), the results are compared with known efficiencies of ionizing radiation to destroy these same gases. In the case of ammonia, it was found that in the inductively coupled device, the destruction efficiency, G(-NH3) varied from 6.0 to 32.0 molecules/100 eV, depending on conditions. It was also found that capacitatively coupled discharges were less efficient in destroying NH2 than the inductively coupled discharge. In the case NH2 destruction, it was found that the G(-NH3) was a qualitative guide to the efficiencies of plasmas. The plasma device was also used to destroy nitrous oxide and methane. It is shown how the G-value for the destruction of any gas can be computed theoretically from a knowledge of the electron velocity distribution, the various electron molecule scattering cross sections, and the rate constants for the reactions of secondary species.

  2. Design of a Microwave Assisted Discharge Inductive Plasma Accelerator

    NASA Technical Reports Server (NTRS)

    Hallock, Ashley K.; Polzin, Kurt A.

    2010-01-01

    The design and construction of a thruster that employs electrodeless plasma preionization and pulsed inductive acceleration is described. Preionization is achieved through an electron cyclotron resonance discharge that produces a weakly-ionized plasma at the face of a conical theta pinch-shaped inductive coil. The presence of the preionized plasma allows for current sheet formation at lower discharge voltages than those employed in other pulsed inductive accelerators that do not employ preionization. The location of the electron cyclotron resonance discharge is controlled through the design of the applied magnetic field in the thruster. Finite element analysis shows that there is an arrangement of permanent magnets that yields a small volume of resonant magnetic field at the coil face. Preionization in the resonant zone leads to current sheet formation at the coil face, which minimizes the initial inductance of the pulse circuit and maximizes the potential electrical efficiency of the accelerator. A magnet assembly was constructed around an inductive coil to provide structural support to the selected arrangement of neodymium magnets. Measured values of the resulting magnetic field compare favorably with the finite element model.

  3. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  4. Performance of a green propellant thruster with discharge plasma

    NASA Astrophysics Data System (ADS)

    Shindo, Takahiro; Wada, Asato; Maeda, Hiroshi; Watanabe, Hiroki; Takegahara, Haruki

    2017-02-01

    A discharge plasma was applied to initiate the combustion of a hydroxylammonium nitrate-based propellant as a substitute for the catalysts that are typically employed. The resulting thrust and thrust-to-power ratio during short interval firing tests as well as the chamber pressure with a single pulse discharge were evaluated. A 1.5-s firing test generated a maximum thrust of 322 mN along with a thrust-to-power ratio of 0.95 mN/W. During the single-pulse discharge trials, pulsed discharge capacitor energies of 5.4, 10.8, and 16.4 J were assessed, and the maximum chamber pressure was found to increase as the energy was raised. The maximum chamber pressures varied widely between experimental trials, and a 16.4-J energy value resulted in the highest chamber pressure of over 1 MPaG. The time spans between the pulsed discharge and the peak chamber pressure were in the range of 1-2 ms, representing a chamber pressure increase rate much higher than those obtained with standard catalysts.

  5. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  6. Generation and Diagnostics of Microwave Discharge Expanding Nitrogen Plasma

    NASA Astrophysics Data System (ADS)

    Shibata, Tomohiko; Yoshida, Kazuyuki; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2008-10-01

    We examine a microwave discharge expanding nitrogen plasma on its vibrational and rotational temperatures (Tv, Tr) by using optical emission spectroscopy (OES), and on its electron density and temperature by using a double probe. In the present study, we generated microwave discharge plasma in a cylindrical quartz tube (26 mm i.d.) and the plasma flowed and expanded rapidly into a rarefied gas wind tunnel with its pressure 2.6x10-3 torr. The microwave output power was set at 300 W. The gas flow rate was set at 300 ml/min. In OES measurement, we measured the band spectra of 1stPS and 2ndPS. We compare the experimentally measured spectrum with the calculate one to determine Tv and Tr of the generated plasma. Electron temperature did not reduce monotonically, which is due to complicated energy relaxation process contributed by metastables or vibrational levels. Intensity of 2ndPS decreased more rapidly than that of 1stPS, which is considered to be mainly due to the lowering of Te. We found different way of variation in Tv of 1stPS and that of 2ndPS.

  7. Fast discharge in a plasma gun with hemispherical insulator

    SciTech Connect

    Antsiferov, P. S.; Dorokhin, L. A.; Sidelnikov, Yu. V.; Koshelev, K. N.

    2009-05-15

    A method of creation of hot dense plasma is proposed. It is based on cumulation of a shockwave, which originates on a hemispherical surface of insulator of plasma gun. The results of first experiments are presented. The shock wave is driven by fast electrical discharge (dI/dt>10{sup 12} A/s). The inductive storage with semiconductor opening switch is used as a current driver. Time resolved pin-hole images and vacuum ultraviolet (vuv) spectra are studied. Shockwaves from hemispherical insulator with 4 mm radius create plasma with a form of column about 1 mm diameter and 3-4 mm length. vuv spectra contain the lines of Ar ions that corresponds to the electron temperature about 20 eV. Possible practical application is discussed.

  8. RF wave observations in beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Bernstein, W.

    1986-01-01

    The Beam Plasma Discharge (BPD) was produced in the large vacuum chamber at Johnson Space Center (20 x 30 m) using an energetic electron beam of moderately high perveance. A more complete expression of the threshold current I sub c taking into account the pitch angle injection dependence is given. Ambient plasma density inferred from wave measurements under various beam conditions are reported. Maximum frequency of the excited RF band behaves differently than the frequency of the peak amplitude. The latter shows signs of parabolic saturation consistent with the light data. Beam plasma state (pre-BPD or BPD) does not affect the pitch angle dependence. Unexpected strong modulation of the RF spectrum at half odd integer of the electron cyclotron frequency (n + 1/2)f sub ce is reported (5 n 10). Another new feature, the presence of wave emission around 3/2 f sub ce for I sub b is approximate I sub c is reported.

  9. Mass dependency of turbulent parameters in stationary glow discharge plasmas

    SciTech Connect

    Titus, J. B.; Alexander, A. B.; Wiggins, D. L.; Johnson, J. A. III

    2013-05-15

    A direct current glow discharge tube is used to determine how mass changes the effects of certain turbulence characteristics in a weakly ionized gas. Helium, neon, argon, and krypton plasmas were created, and an axial magnetic field, varied from 0.0 to 550.0 Gauss, was used to enhance mass dependent properties of turbulence. From the power spectra of light emission variations associated with velocity fluctuations, determination of mass dependency on turbulent characteristic unstable modes, energy associated with turbulence, and the rate at which energy is transferred from scale to scale are measured. The magnetic field strength is found to be too weak to overcome particle diffusion to the walls to affect the turbulence in all four types of plasmas, though mass dependency is still detected. Though the total energy and the rate at which the energy moves between scales are mass invariant, the amplitude of the instability modes that characterize each plasma are dependent on mass.

  10. Dielectric barrier discharge plasma induced degradation of aqueous atrazine.

    PubMed

    Feng, Jingwei; Jiang, Lin; Zhu, Dan; Su, Kuizu; Zhao, Dayong; Zhang, Jibiao; Zheng, Zheng

    2016-05-01

    Degradation of herbicide atrazine in aqueous solution was investigated using a plate type dielectric barrier discharge (DBD) plasma reactor. DBD plasma was generated at the gas-liquid interface of the formed water film. At discharge time of 14 min, atrazine was degradated effectively with a degradation rate of 99 % at the discharge power of 200 W. The experimental data fitted well with first-order kinetics and the energy efficiency for 90 % degradation of atrazine (G value) was calculated, obtaining a rate constant of 0.35 min(-1) and a G value of 1.27 × 10(-10) mol J(-1) (98.76 mg kW(-1) h(-1)) at a discharge power of 200 W, respectively. The addition of Fe(2+) increased the rate constant and G value dramatically, and a significant decrease of the rate constant and G value was observed with the addition of radical scavengers (tert-butyl alcohol, isopropyl alcohol, or Na2CO3). The generated aqueous O3 and H2O2 were determined, which promoted the degradation of herbicide atrazine. Dechlorination was observed and the experimentally detected Cl(-) was 1.52 mg L(-1) at a discharge time of 14 min. The degradation intermediates of atrazine were detected by means of liquid chromatography-mass spectrometry; dechlorination, hydroxylation, dealkylation, and alkyl oxidation processes were involved in the degradation pathways of atrazine.

  11. Velocimetry of cathode particles in a magnetoplasmadynamic thruster discharge plasma.

    PubMed

    Walker, J; Langendorf, S; Walker, M; Polzin, K; Kimberlin, A

    2015-07-01

    With high-speed imaging, it is possible to directly observe the time-evolution of the macroscopic behavior of the discharge plasma in a magnetoplasmadynamic thruster (MPDT). By utilizing direct high-speed imaging capable of capturing many images over the course of a single discharge, the velocity of the cathode erosion particles can be measured, opening the possibility of a novel, noninvasive technique for discharge plasma flow field velocimetry. In this work, an 8 kA argon MPDT discharge is imaged at 26 173 fps utilizing a 0.9 neutral density filter. The camera is aligned with thruster centerline 4 m downstream of the thruster exit plane. By tracking visible particles appearing in the multiple images, the particle motion in the radial and azimuthal directions is directly imaged. Through the use of traditional techniques in digital particle image velocimetry, the cathode particles emanating from the discharge are measured to have a mean radial velocity of 44.6 ± 6.0 m/s with a 95% confidence interval and a statistically insignificant azimuthal velocity. The setup and analysis employed permits measurement of the particle velocity in orthogonal direction to the image sensor plane using a single camera. By combining a background removal subtraction technique and knowledge of the optical focal plane, the estimated mean axial velocity of the particles is 1.59 km/s. This investigation ends with a discussion of important factors to consider for future MPDT high-speed imaging particle velocimetry, such as frame-rate, image size, spatial resolution, optics, and data handling selections.

  12. Scaled-Up Nonequilibrium Air Plasmas Generated by DC and Pulsed Discharges

    DTIC Science & Technology

    2010-09-08

    scalability of nonequilibrium plasmas produced by electrical discharges in atmospheric pressure air. Both DC and repetitively pulsed discharges ...Key results demonstrate that both DC glow discharge and pulsed transient spark generate air plasmas of required parameters. Glow discharge is easier...Corona discharge as a temperature probe was developed to diagnose the microwave torch preheated air. A new concept of the DC-driven pulsed

  13. Plasma Parameter of a Capillary Discharge-Produced Plasma Channel to Guide an Ultrashort Laser Pulse

    SciTech Connect

    Higashiguchi, Takeshi; Terauchi, Hiromitsu; Bai, Jin-xiang; Yugami, Noboru

    2009-01-22

    We have observed the optical guiding of a 100-fs laser pulse with the laser intensity in the range of 10{sup 16} W/cm{sup 2} using a 1.5-cm long capillary discharge-produced plasma channel for compact electron acceleration applications. The optical pulse propagation using the plasma channel is achieved with the electron densities of 10{sup 17}-10{sup 18} cm{sup -3} and the electron temperatures of 0.5-4 eV at a discharge time delay of around 150 ns and a discharge current of 500 A with a pulse duration of 100-150 ns. An energy spectrum of the accelerated electrons from a laser-plasma acceleration scheme showed a peak at 1.3 MeV with a maximum energy tail of 1.6 MeV.

  14. Effect of Low-Pressure Nitrogen DC Plasma Treatment on the Surface Properties of Biaxially Oriented Polypropylene, Poly (Methyl Methacrylate) and Polyvinyl Chloride Films

    NASA Astrophysics Data System (ADS)

    S. Hamideh, Mortazavi; Mahmood, Ghoranneviss; Soheil, Pilehvar; Sina, Esmaeili; Shamim, Zargham; S. Ebrahim, Hashemi; Hamzeh, Jodat

    2013-04-01

    In this study, commercial biaxially oriented polypropylene (BOPP), polyvinyl chloride (PVC) and poly (methyl methacrylate) (PMMA) films were treated with nitrogen plasma over different exposure times in a Pyrex tube surrounded by a DC variable magnetic field. The chemical changes that appeared on the surface of the samples were investigated using Fourier transform infrared (FT-IR) spectroscopy and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy after treatment for 2 min, 4 min and 6 min in a nitrogen plasma chamber. Effects of the plasma treatment on the surface topographies and contact angles of the untreated and plasma treated films were also analyzed by atomic force microscopy (AFM) and a contact angle measuring system. The results show that the plasma treated films become more hydrophilic with an enhanced wettability due to the formation of some new polar groups on the surface of the treated films. Moreover, at higher exposure times, the total surface energy in all treated films increased while a reduction in contact angle occurred. The behavior of surface roughness in each sample was completely different at higher exposure times.

  15. Collisional and radiative processes in high-pressure discharge plasmas

    NASA Astrophysics Data System (ADS)

    Becker, Kurt H.; Kurunczi, Peter F.; Schoenbach, Karl H.

    2002-05-01

    Discharge plasmas at high pressures (up to and exceeding atmospheric pressure), where single collision conditions no longer prevail, provide a fertile environment for the experimental study of collisions and radiative processes dominated by (i) step-wise processes, i.e., the excitation of an already excited atomic/molecular state and by (ii) three-body collisions leading, for instance, to the formation of excimers. The dominance of collisional and radiative processes beyond binary collisions involving ground-state atoms and molecules in such environments allows for many interesting applications of high-pressure plasmas such as high power lasers, opening switches, novel plasma processing applications and sputtering, absorbers and reflectors for electromagnetic waves, remediation of pollutants and waste streams, and excimer lamps and other noncoherent vacuum-ultraviolet light sources. Here recent progress is summarized in the use of hollow cathode discharge devices with hole dimensions in the range 0.1-0.5 mm for the generation of vacuum-ultraviolet light.

  16. Killing Microorganisms with the One Atmosphere Uniform Glow Discharge Plasma

    NASA Astrophysics Data System (ADS)

    South, Suzanne; Kelly-Wintenberg, Kimberly; Montie, T. C.; Reece Roth, J.; Sherman, Daniel; Morrison, Jim; Chen, Zhiyu; Karakaya, Fuat

    2000-10-01

    There is an urgent need for the development of new technologies for sterilization and decontamination in the fields of healthcare and industrial and food processing that are safe, cost-effective, broad-spectrum, and not deleterious to samples. One technology that meets these criteria is the One Atmosphere Uniform Glow Discharge Plasma (OAUGDP). The OAUGDP operates in air and produces uniform plasma without filamentary discharges at room temperature, making this technology advantageous for sterilization of heat sensitive materials. The OAUGDP operates in a frequency band determined by the ion trapping mechanisms provided that, for air, the electric field is above 8.5kV/cm. The OAUGDP efficiently generates plasma reactive oxygen species (ROS) including atomic oxygen and oxygen free radicals without the requirement of a vacuum system. We have demonstrated the efficacy of the OAUGDP in killing microorganisms including bacteria, yeast, viruses, and spores in seconds to minutes on a variety of surfaces such as glass, films and fabrics, stainless steel, paper, and agar.

  17. [Study on Chemical Kinetic Effect of Dielectric Barrier Discharge Plasma].

    PubMed

    Zrang, Peng; Hong, Yan-ji; Shen, Shuang-yan; Ding, Xiao-yu; Ma, Di

    2015-03-01

    To reveal the mechanism of plasma (assisted the ignition process of methane/air further, schematic of dielectric barrier discharge plasma system with atmospheric air was designed and set up, the emission spectrum of dielectric barrier discharge plasma with atmospheric air was measured, and the active particles produced by the interaction of dielectric barrier discharge plasma with atmospheric air were analyzed with the spectrum technology, the ignition model and calculation methods of sensitivity analysis and reaction path analysis were given, effects of NO and O3 on the ignition delay time were simulated, and the chemical kinetics mechanism of NO and O3 assisted ignition was revealed via sensitivity analysis and reaction path analysis. The results show that main excited particles of N2 and O3 are generated via effect of plasma on the atmospheric air, which are converted into active particles of NO(ξ) and O3 in the end, the life of which are longer than any other active particles, effects of plasma on the ignition is simplified as effects of NO(ξ) and O3 on the ignition; NO and O3 could reduce the ignition delay time significantly, but the amplitude decrease with increase of the initial temperature, this is because the rate of ignition is decided by the oxidation rate of CH3, the oxidized pathway of CH3 is R155 and R156 for auto-ignition and their rates are slower when temperature is low, so the ignition delay time of methane/air is longer; NO could reduce the ignition delay time significantly because of the oxidized pathway of CH3 is changed to R327 CH3O2 + NO = CH3O + NO2, R328 CH3 + NO2 = CH3O + NO for NO(ξ) (assisted ignition process from R155 and R156 for auto-ignition; and the chemical kinetic effect is the dominating factor of O3 on the ignition and which change the reaction path.

  18. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    SciTech Connect

    Zhao Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-09

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H{sub 2}O and CO{sub 2} were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 10{sup 6} spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  19. Mass spectrometric study on inactivation mechanism of spore-forming bacteria by low-pressure surface-wave excited oxygen plasma

    NASA Astrophysics Data System (ADS)

    Zhao, Ying; Ogino, Akihisa; Nagatsu, Masaaki

    2011-05-01

    In this letter, the etching phenomena of the spore-forming bacteria by oxygen plasma were investigated by using quadrupole mass spectrometry. The etching by-products of H2O and CO2 were obviously detected during the oxygen plasma irradiation by the multiple ion detection measurement. Inactivation of roughly 106 spores population was achieved under almost the same reduced spore shapes for three different incident microwave powers. It is considered from the present results that the oxygen radical etching could cause damage to the germinant receptors located in the inner membrane inevitable for germination of spores, without any damage of the DNA in the cores.

  20. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah N.; Foster, John E.; Garcia, Maria C.

    2015-10-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L-1). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date.

  1. Radial Distributions of Dusty Plasma Parameters in a Glow Discharge

    SciTech Connect

    Fedoseev, A. V.; Sukhinin, G. I.

    2011-11-29

    A self-consistent model for radial distributions of dusty plasma parameters in a DC glow discharge based on the non-local Boltzmann equation for EEDF, the drift-diffusion equation for ions, and the Poisson equation for self-consistent electric field is presented. The results show that for the case of high dust particles density when the recombination of electrons and ions exceeds the ionization near the tube axis, radial electron and ion fluxes change their direction toward the center of the tube, and the radial electric field is reversed.

  2. Role of Plasma Discharge in Division of Prostatic Tissue

    NASA Astrophysics Data System (ADS)

    Ward, Arlen; Almgren, Carl; Yu, Zeng-Qi; Sartor, Joe; Collins, George

    2009-10-01

    During the treatment of benign prostatic hyperplasia electrical energy is used to separate prostatic tissue and remove it as a urinary obstruction. This surgical procedure is often performed in a saline environment, and current paths change as the tissue and fluid are heated. This study shows that a plasma discharge at the electrode is necessary to provide the current densities necessary to vaporize portions of the prostatic tissue in order to facilitate removal. This behavior is predicted in finite element simulations, and verified with color schlieren imaging and ex vivo bovine prostate tests.

  3. Electron energy distribution produced by beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Anderson, H. R.; Gordeuk, J.; Jost, R. J.

    1982-01-01

    In an investigation of a beam-plasma discharge (BPD), the electron energy distribution of an electron beam moving through a partially ionized gas is analyzed. Among other results, it is found that the occurrence of BPD heats the initially cold electron beam from the accelerator. The directional intensity of electrons measured outside the beam core indicates that most particles suffer a single scattering in energy and pitch angle. At low currents this result is expected as beam particles collide with the neutral atmosphere, while in BPD the majority of particles is determined to still undergo a single scattering near the original beam core. The extended energy spectra at various beam currents show two rather distinct plasma populations, one centered at the initial beam energy (approximately 1500 eV) and the other at approximately 150 eV.

  4. Coagulation of Dust Particles in Argon Plasma of RF Discharge

    SciTech Connect

    Mankelevich, Yu. A.; Olevanov, M. A.; Pal, A. F.; Rakhimova, T. V.; Ryabinkin, A. N.; Serov, A. O.; Filippov, A. V.

    2008-09-07

    The experiments on coagulation of poly-disperse particles with various size distributions injected into the argon plasma of the magnetron radio-frequency discharge are discussed. The experiments were carried out under the conditions similar to those using dusty plasma for technology applications. Within the created theory the threshold behavior of the coagulation process was explained for the first time, the estimation of the critical particle size for onset of a fast coagulation was made, and the analytical calculation of the coagulation rate of dust particles was performed. The proposed coagulation mechanism makes it possible to describe the typical features of coagulation processes observed in experiments and to explain the effects of attraction and coalescence of highly negatively charged microns size particles.

  5. Dielectric Barrier Discharge Plasma Actuator for Flow Control

    NASA Technical Reports Server (NTRS)

    Opaits, Dmitry, F.

    2012-01-01

    This report is Part II of the final report of NASA Cooperative Agreement contract no. NNX07AC02A. It includes a Ph.D. dissertation. The period of performance was January 1, 2007 to December 31, 2010. Part I of the final report is the overview published as NASA/CR-2012- 217654. Asymmetric dielectric barrier discharge (DBD) plasma actuators driven by nanosecond pulses superimposed on dc bias voltage are studied experimentally. This produces non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. The approach consisted of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low voltages. In view of practical applications certain questions have been also addressed, such as electrodynamic effects which accompany scaling of the actuators to real size models, and environmental effects of ozone production by the plasma actuators.

  6. Formation and emission characteristics of CN molecules in laser induced low pressure He plasma and its applications to N analysis in coal and fossilization study.

    PubMed

    Lahna, Kurnia; Idroes, Rinaldi; Idris, Nasrullah; Abdulmadjid, Syahrun Nur; Kurniawan, Koo Hendrik; Tjia, May On; Pardede, Marincan; Kagawa, Kiichiro

    2016-03-01

    Presented in this paper are the results of an experimental study on the laser induced plasma emission of a number of CN free samples (urea, sucrose) with 40 mJ pulse energy using He and N₂ ambient gases. It is shown that the CN emission has its exclusive sources in the molecules produced as the result of chemical bonding either between the ablated C and N ions in the He plasma or between the ablated C and dissociated N from the N₂ ambient gas. The emission intensities in both cases are found to have the highest values at the low gas pressure of 2 kPa. The emission in He gas is shown to exhibit the typical characteristics related to a shockwave generated excitation mechanism. The experiments using He ambient gas further demonstrate the feasible laser-induced breakdown spectroscopy application to quantitative and sensitive N analysis of coal and promising application for practical in situ carbon dating of fossils.

  7. Cyclic evolution of the electron temperature and density in dusty low-pressure radio frequency plasmas with pulsed injection of hexamethyldisiloxane

    SciTech Connect

    Garofano, V.; Stafford, L. E-mail: kremena.makasheva@laplace.univ-tlse.fr; Despax, B.; Clergereaux, R.; Makasheva, K. E-mail: kremena.makasheva@laplace.univ-tlse.fr

    2015-11-02

    Optical emission spectroscopy was used to analyze the very-low-frequency cyclic evolution of the electron energy and density caused by repetitive formation and loss of dust nanoparticles in argon plasmas with pulsed injection of hexamethyldisiloxane (HMDSO, [CH{sub 3}]{sub 6}Si{sub 2}O). After elaborating a Boltzmann diagram for Ar high-lying levels and a collisional-radiative model for Ar 2p (Paschen notation) states, temperatures characterizing the low- and high-energy parts of the electron population were calculated. Relative electron densities were also estimated from relative line emission intensities. Both temperatures increase when the dust occupation increases, and then decrease when dust is lost. The opposite trend was observed for the electron density. Such cyclic behaviors of the electron energy and electron density in the HMDSO-containing plasmas are in good agreement with the evolution processes in dusty plasmas, in which the formation of negative ions followed by an electron attachment on the surfaces of the nanoparticles is a critical phenomenon driving dust growth.

  8. Examination of Ion Beam Acceleration in A High Power-Low Pressure and Gas Flow Rates Argon Plasma Created in the MadHeX Helicon Source

    NASA Astrophysics Data System (ADS)

    Sung, Yung-Ta; Devinney, Michael; Scharer, John

    2012-10-01

    The modified MadHeX experimental system consists of a Pyrex tube connected to a stainless steel chamber with an axial magnetic nozzle field, variable up to 1 kG at the source region that has been upgraded to minimize neutral reflux and reduce neutral concentrations in the chamber. A half-turn double-helix antenna is used to excite helicon waves in the source. An ion beam of energy, E = 160 eV at 500 W RF power, has been observed in a low flowing argon plasma formed in the expanding region with a 340 G magnetic field. The role of plasma positive ``self-bias'' and the effects of boundary conditions are discussed. The measured density decrease factor of 18 at 100 W RF power across the expansion region yields a higher ion acceleration and agrees with a conservation-of-flux calculation. The effect of lower flow rates and pressures, higher RF powers and magnetic field strength dependence on the ion beam acceleration, plasma potential, electron density and temperature are further explored. The axial ion velocity distribution function and temperatures at higher powers are observed by argon 668 nm laser induced fluorescence with density measurements by interferometry. The electron energy distribution and its possible non-Maxwellian tail are examined using optical emission spectroscopy (ADAS and Vlcek models).

  9. Time resolved EUV spectra from Zpinching capillary discharge plasma

    NASA Astrophysics Data System (ADS)

    Jancarek, Alexandr; Nevrkla, Michal; Nawaz, Fahad

    2015-09-01

    We developed symmetrically charged driver to obtain high voltage, high current Z-pinching capillary discharge. Plasma is created by up to 70 kA, 29 ns risetime current pulse passing through a 5 mm inner diameter, 224 mm long capillary filled with gas to initial pressure in the range of 1 kPa. Due to the low inductance design of the driver, the pinch is observable directly from the measured current curve. Time-integrated and time-resolved spectra of discharge plasma radiation are recorded together with the capillary current and analyzed. The most encouraging spectra were captured in the wavelength range 8.3 ÷ 14 nm. This spectral region contains nitrogen Balmer series lines including potentially lasing NVII 2 - 3 transition. Spectral lines are identified in the NIST database using the FLY kinetic code. The line of 13.38 nm wavelength, transition NVII 2 - 3, was observed in gated, and also in time-integrated spectra for currents >60 kA. This work has been supported by the Ministry of Education, Youth and Sports of the Czech Republic grants LG13029.

  10. Hydrogen production from dimethyl ether using corona discharge plasma

    NASA Astrophysics Data System (ADS)

    Zou, Ji-Jun; Zhang, Yue-Ping; Liu, Chang-Jun

    Dimethyl ether (DME), with its non-toxic character, high H/C ratio and high-energy volumetric density, is an ideal resource for hydrogen production. In this work, hydrogen production from the decomposition of DME using corona discharge has been studied. The corona discharge plasma decomposition was conducted at ambient conditions. The effects of dilution gas (argon), flow rate, frequency and waveforms on the DME decomposition were investigated. The addition of dilution gas can significantly increase the hydrogen production rate. The highest hydrogen production rate with the lowest energy consumption presents at the flow rate of 27.5 Nml min -1. AC voltage is more favored than DC voltage for the production of hydrogen with less energy input. The optimal frequency is 2.0 kHz. The hydrogen production rate is also affected by the input waveform and decreases as following: sinusoid triangular > sinusoid > ramp > square, whereas the sinusoid waveform shows the highest energy efficiency. The corona discharge decomposition of DME is leading to a simple, easy and convenient hydrogen production with no needs of catalyst and external heating.

  11. Use of statistical design of experiments in the optimization of Ar-O2 low-pressure plasma treatment conditions of polydimethylsiloxane (PDMS) for increasing polarity and adhesion, and inhibiting hydrophobic recovery

    NASA Astrophysics Data System (ADS)

    Butrón-García, María Isabel; Jofre-Reche, José Antonio; Martín-Martínez, José Miguel

    2015-03-01

    Polydimethylsiloxane (PDMS) film was treated with RF low-pressure plasmas (LPPs) made of mixtures of oxygen and argon for increasing surface polarity, minimizing hydrophobic recovery (i.e. retard ageing) and increasing adhesion to acrylic adhesive tape for medical use. Statistical design of experiments has been used for determining the most influencing experimental parameters of the LPP treatment of PDMS. Water contact angle values (measured 24 h after treatment) and the O/C ratio obtained from XPS experiments were used as response variables. Working pressure was the most influencing parameter in LPP treatment of PDMS, and the duration of the treatment, the power and the oxygen-argon mixture composition determined noticeably its effectiveness. The optimal surface properties in PDMS and inhibited hydrophobic recovery were achieved by treatment with 93 vol% oxygen + 7 vol% argon LLP at low working pressure (300 mTorr), low power (25 W) and long duration of treatment (120 s).

  12. keV-energy x-rays from a low-pressure, low-power, low-field, capacitively coupled 27-MHz hydrogen plasma source

    NASA Astrophysics Data System (ADS)

    Jandovitz, Peter; Swanson, Charles; Matteucci, Jackson; Cohen, S. A.

    2015-11-01

    We report on the unexpected observation of 0.9-5 keV x-rays coming from a cool (bulk Te ~ 4 eV), tenuous (ne ~1010 cm-3) 5-cm-diameter hydrogen plasma column generated in a tandem high-mirror-ratio mirror machine by an external, capacitively-coupled RF (27 MHz) antenna operating at low power, 20-500 W. The x-rays, measured with an Amptek XR-100CR detector, are evidence of energetic electrons that have not been seen previously in experiment or theory in similar plasmas. In the neutral H2 gas pressure range of 0.4 to 1.5 mT, the x-ray emissivity increased with decreasing pressure. No x-rays were observed when operating with argon (or 30/70 argon/hydrogen mixtures) at similar powers and pressures in either capacitively-coupled or helicon modes. X-ray count rate smoothly increased as mirror ratio increased and reached a broad maximum near 80 G, central field. Time-dependent emissivity with pulsed RF power and spatial profiles over a limited axial range have been measured. Possible heating mechanisms, including Fermi acceleration, cyclotron resonance, double layers, and sheaths, are being considered. This work was supported by DOE contract DE-AC02-09CH11466.

  13. Highly vibrationally excited O2 molecules in low-pressure inductively-coupled plasmas detected by high sensitivity ultra-broad-band optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Foucher, Mickaël; Marinov, Daniil; Carbone, Emile; Chabert, Pascal; Booth, Jean-Paul

    2015-08-01

    Inductively-coupled plasmas in pure O2 (at pressures of 5-80 mTorr and radiofrequency power up to 500 W) were studied by optical absorption spectroscopy over the spectral range 200-450 nm, showing the presence of highly vibrationally excited O2 molecules (up to vʺ = 18) by Schumann-Runge band absorption. Analysis of the relative band intensities indicates a vibrational temperature up to 10,000 K, but these hot molecules only represent a fraction of the total O2 density. By analysing the (11-0) band at higher spectral resolution the O2 rotational temperature was also determined, and was found to increase with both pressure and power, reaching 900 K at 80 mTorr 500 W. These measurements were achieved using a new high-sensitivity ultra-broad-band absorption spectroscopy setup, based on a laser-plasma light source, achromatic optics and an aberration-corrected spectrograph. This setup allows the measurement of weak broadband absorbances due to a baseline variability lower than 2   ×   10-5 across a spectral range of 250 nm.

  14. Plasma potential mapping of high power impulse magnetron sputtering discharges

    SciTech Connect

    Rauch, Albert; Mendelsberg, Rueben J.; Sanders, Jason M.; Anders, Andre

    2011-12-20

    Pulsed emissive probe techniques have been used to determine the plasma potential distribution of high power impulse magnetron sputtering (HiPIMS) discharges. An unbalanced magnetron with a niobium target in argon was investigated for pulse length of 100 μs at a pulse repetition rate of 100 Hz, giving a peak current of 170 A. The probe data were taken with a time resolution of 20 ns and a spatial resolution of 1 mm. It is shown that the local plasma potential varies greatly in space and time. The lowest potential was found over the target’s racetrack, gradually reaching anode potential (ground) several centimeters away from the target. The magnetic pre-sheath exhibits a funnel-shaped plasma potential resulting in an electric field which accelerates ions toward the racetrack. In certain regions and times, the potential exhibits weak local maxima which allow for ion acceleration to the substrate. Knowledge of the local E and static B fields lets us derive the electrons’ E×B drift velocity, which is about 105 m/s and shows structures in space and time.

  15. Simulation of Dual-Electrode Capacitively Coupled Plasma Discharges

    NASA Astrophysics Data System (ADS)

    Lu, Yijia; Ji, Linhong; Cheng, Jia

    2016-12-01

    Dual-electrode capacitively coupled plasma discharges are investigated here to lower the non-uniformity of plasma density. The dual-electrode structure proposed by Jung splits the electrode region and increases the flexibility of fine tuning non-uniformity. Different RF voltages, frequencies, phase-shifts and electrode areas are simulated and the influences are discussed. RF voltage and electrode area have a non-monotonic effect on non-uniformity, while frequency has a monotonic effect. Phase-shift has a cyclical influence on non-uniformity. A special combination of 224 V voltage and 11% area ratio with 10 MHz lowers the non-uniformity of the original set (200 V voltage and 0% area ratio with 10 MHz) by 46.5%. The position of the plasma density peak at the probe line has been tracked and properly tuning the phase-shift can obtain the same trace as tuning frequency or voltage. supported by National Natural Science Foundation of China (No. 51405261)

  16. MERCURY OXIDIZATION IN NON-THERMAL PLASMA BARRIER DISCHARGE SYSTEM

    SciTech Connect

    V.K. Mathur

    2003-02-01

    In the past decade, the emission of toxic elements from human activities has become a matter of great public concern. Hg, As, Se and Cd typically volatilize during a combustion process and are not easily caught with conventional air pollution control techniques. In addition, there is no pollution prevention technique available now or likely be available in the foreseeable future that can prevent the emission of these trace elements. These trace elements pose additional scientific challenge as they are present at only ppb levels in large gas streams. Mercury, in particular, has attracted significant attention due to its high volatility, toxicity and potential threat to human health. In the present research work, a non-thermal plasma dielectric barrier discharge technique has been used to oxidize Hg{sup 0}(g) to HgO. The basic premise of this approach is that Hg{sup 0} in vapor form cannot be easily removed in an absorption tower whereas HgO as a particulate is amiable to water scrubbing. The work presented in this report consists of three steps: (1) setting-up of an experimental apparatus to generate mercury vapors at a constant rate and modifying the existing non-thermal plasma reactor system, (2) solving the analytical challenge for measuring mercury vapor concentration at ppb level, and (3) conducting experiments on mercury oxidation under plasma conditions to establish proof of concept.

  17. Continuous emission of keV x-rays from low-pressure, low-field, low-power-RF plasma columns and significance to mirror confinement

    NASA Astrophysics Data System (ADS)

    Jandovitz, P.; Swanson, C.; Glasser, A.; Cohen, S. A.

    2016-10-01

    We report on observations of a continuous stream of 0.8-6.0 keV x-rays emitted from cool (bulk Te 4 eV), tenuous (ne 1010 cm-3), 4-cm-diameter hydrogen or argon plasma columns generated in an axisymmetric, high-mirror-ratio, tandem mirror machine heated in one end cell by an external RF (27 MHz) antenna operating at low power, 20-600 W. The continuous emission of x-rays is evidence of the steady production of energetic electrons. The source appears to be ion-induced secondary electron emission from a floating carbon cup in the vacuum system about 2 cm from the RF antenna. The cup is charged to a high negative potential, perhaps by other secondary electrons emitted from the self-biased Pyrex vessel under the antenna. X-ray emission in the central cell increases as the mirror ratio increases, an effect we attribute to increased trapping of passing particles due to non-adiabatic scattering at the midplane of the central cell. This work was supported, in part, by DOE Contract Number DE-AC02-09CH11466.

  18. Abatement of CF{sub 4} and CHF{sub 3} byproducts using low-pressure plasmas generated by annular-shaped electrodes

    SciTech Connect

    Hur, Min; Lee, Jae O. K.; Hoon Song, Young; Yoo, Hoon A.

    2012-03-15

    Three different driving schemes are tested for a plasma reactor designed to abate the greenhouse gases emitted by the semiconductor industry. The reactor and electrodes all have a concentric annular shape, which allows them to be easily connected to pre-existing pipelines without any disturbance to the exhaust stream. The destruction and removal efficiencies are measured for CF{sub 4} by varying the O{sub 2}/CF{sub 4} ratio and pressure. The influences of adding O{sub 2} and H{sub 2}O to the byproducts of the CHF{sub 3} abatement process are investigated by analyzing the spectra resulting from Fourier transform infrared spectroscopy measurements. Based on the experimental results we suggest an appropriate combination of driving scheme and reactant gas species for efficient and economical abatement of a mixture of CHF{sub 3} and CF{sub 4}. Then, the optimal flow rate of the reactant gas is presented. Finally, the reduction rates for global warming emissions are estimated to demonstrate the feasibility of using our device for abatement of greenhouse gases emitted by the semiconductor industry.

  19. Spectroscopic study of low pressure, low temperature H2-CH4-CO2 microwave plasmas used for large area deposition of nanocrystalline diamond films. Part I: on temperature determination and energetic aspects

    NASA Astrophysics Data System (ADS)

    Nave, A. S. C.; Baudrillart, B.; Hamann, S.; Bénédic, F.; Lombardi, G.; Gicquel, A.; van Helden, J. H.; Röpcke, J.

    2016-12-01

    In a distributed antenna array (DAA) reactor, microwave H2 plasmas with admixtures of 2.5% CH4 and 1% CO2 used for the deposition of nanocrystalline diamond films have been studied by infrared absorption and optical emission spectroscopy (OES) techniques. The experiments were carried out in order to analyze the dependence of plasma chemical phenomena on power and pressure at relatively low pressures, up to 0.55 mbar, and power values, up to 3 kW. The evolution of the concentration of the methyl radical, CH3, and of five stable molecules, CH4, CO2, CO, C2H2 and C2H6, was monitored in the plasma processes by in situ infrared laser absorption spectroscopy using lead salt diode lasers (TDL) and external-cavity quantum cascade lasers (EC-QCL) as radiation sources. OES was applied simultaneously to obtain complementary information about the degree of dissociation of the H2 precursor gas and of its gas temperature. The experimental results are presented in two separate parts. In Part I, the present paper, the measurement of the gas (T gas), rotational (T rot) and vibrational (T vib) temperatures of the various species in the complex plasma was the main focus of interest. To achieve reliable values for the gas temperature inside and outside the plasma bulk as well as for the rotational and vibrational temperatures in the plasma hot zones, which are of great importance for calculation of species concentrations, five different methods based on the emission and absorption spectroscopy data of H2, CH4, CH3 and CO have been used. In these, line profile analysis has been combined with Boltzmann plot methods. Based on the wide tuning range of the EC-QCL, a variety of CO lines in the ground and three excited states was measured enabling extensive temperature analysis providing new insight into the energetic aspects of this multi-component plasma. Depending on the different plasma zones the gas temperature was found to range between about 360 and 1000 K inside the DAA reactor

  20. Simulation Tool for Dielectric Barrier Discharge Plasma Actuators at Atmospheric and Sub-Atmospheric Pressures: SBIR Phase I Final Report

    NASA Technical Reports Server (NTRS)

    Likhanskii, Alexandre

    2012-01-01

    This report is the final report of a SBIR Phase I project. It is identical to the final report submitted, after some proprietary information of administrative nature has been removed. The development of a numerical simulation tool for dielectric barrier discharge (DBD) plasma actuator is reported. The objectives of the project were to analyze and predict DBD operation at wide range of ambient gas pressures. It overcomes the limitations of traditional DBD codes which are limited to low-speed applications and have weak prediction capabilities. The software tool allows DBD actuator analysis and prediction for subsonic to hypersonic flow regime. The simulation tool is based on the VORPAL code developed by Tech-X Corporation. VORPAL's capability of modeling DBD plasma actuator at low pressures (0.1 to 10 torr) using kinetic plasma modeling approach, and at moderate to atmospheric pressures (1 to 10 atm) using hydrodynamic plasma modeling approach, were demonstrated. In addition, results of experiments with pulsed+bias DBD configuration that were performed for validation purposes are reported.

  1. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO2 ambient gas for spectrochemical application on Mars

    NASA Astrophysics Data System (ADS)

    Lie, Zener Sukra; Pardede, Marincan; Tjia, May On; Kurniawan, Koo Hendrik; Kagawa, Kiichiro

    2015-08-01

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO2 ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO2 ambient gas. Meanwhile the considerably weaker carbon emission from the CO2 gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO2 gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO2 ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  2. Nanosecond Nd-YAG laser induced plasma emission characteristics in low pressure CO{sub 2} ambient gas for spectrochemical application on Mars

    SciTech Connect

    Lie, Zener Sukra; Kurniawan, Koo Hendrik; Tjia, May On; Kagawa, Kiichiro

    2015-08-28

    An experimental study is conducted on the possibility and viability of performing spectrochemical analysis of carbon and other elements in trace amount in Mars, in particular, the clean detection of C, which is indispensible for tracking the sign of life in Mars. For this study, a nanosecond Nd-YAG laser is employed to generate plasma emission from a pure copper target in CO{sub 2} ambient gas of reduced pressure simulating the atmospheric condition of Mars. It is shown that the same shock wave excitation mechanism also works this case while exhibiting remarkably long cooling stage. The highest Cu emission intensities induced by 4 mJ laser ablation energy is attained in 600 Pa CO{sub 2} ambient gas. Meanwhile the considerably weaker carbon emission from the CO{sub 2} gas appears relatively featureless over the entire range of pressure variation, posing a serious problem for sensitive trace analysis of C contained in a solid sample. Our time resolved intensity measurement nevertheless reveals earlier appearance of C emission from the CO{sub 2} gas with a limited duration from 50 ns to 400 ns after the laser irradiation, well before the initial appearance of the long lasting C emission from the solid target at about 1 μs, due to the different C-releasing processes from their different host materials. The unwanted C emission from the ambient gas can thus be eliminated from the detected spectrum by a proper time gated detection window. The excellent spectra of carbon, aluminum, calcium, sodium, hydrogen, and oxygen obtained from an agate sample are presented to further demonstrate and verify merit of this special time gated LIBS using CO{sub 2} ambient gas and suggesting its viability for broad ranging in-situ applications in Mars.

  3. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Boris M.

    2009-06-01

    The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

  4. Polarity functions' characterization and the mechanism of starch modification by DC glow discharge plasma.

    PubMed

    Khorram, S; Zakerhamidi, M S; Karimzadeh, Z

    2015-01-01

    The wheat starch was investigated, before and after exposure to the argon and oxygen glow discharge plasma, without any added chemical reagents, using a novel media polarity functions method. The mechanisms of modification of starch in plasma discharge irradiation were explained using some methods such as; NMR, IR spectroscopy, Kamlet-Abboud-Taft polarity functions (specific and nonspecific interaction) of modified starch. The starch modification, by plasma treatment, shows valuable changes with plasma gas and relative ionized or active species. Characterizations indicate that argon glow discharge plasma increases crosslink in C-2 site of starch. Also, oxygen plasma discharge irradiation tends to oxidize the OH group in C-6 site of carbonyl group. Furthermore, the reported mechanisms show the highest efficiency, because of the stereo-chemical orientation of active sites of starch and plasma potential of wall in plasma media.

  5. Use of Atmospheric Glow Discharge Plasma to Modify Spaceport Materials

    NASA Technical Reports Server (NTRS)

    Trigwell, S.; Shuerger, A. C.; Buhler, C. R.; Calle, C. J.

    2006-01-01

    Numerous materials used in spaceport operations require stringent evaluation before they can be utilized. It is critical for insulative polymeric materials that any surface charge be dissipated as rapidly as possible to avoid Electrostatic Discharges (ESD) that could present a danger. All materials must pass the Kennedy Space Center (KSC) standard electrostatic test [1]; however several materials that are considered favorable for Space Shuttle and International Space Station use have failed. Moreover, to minimize contamination of Mars spacecraft, spacecraft are assembled under cleanroom conditions and specific cleaning and sterilizing procedures are required for all materials. However, surface characteristics of these materials may allow microbes to survive by protecting them from sterilization and cleaning techniques. In this study, an Atmospheric Pressure Glow Discharge Plasma (APGD) [2] was used to modify the surface of several materials. This allowed the materials surface to be modified in terms of hydrophilicity, roughness, and conductivity without affecting the bulk properties. The objectives of this study were to alter the surface properties of polymers for improved electrostatic dissipation characteristics, and to determine whether the consequent surface modification on spaceport materials enhanced or diminished microbial survival.

  6. Plasmas in Multiphase Media: Bubble Enhanced Discharges in Liquids and Plasma/Liquid Phase Boundaries

    SciTech Connect

    Kushner, Mark Jay

    2014-07-10

    In this research project, the interaction of atmospheric pressure plasmas with multi-phase media was computationally investigated. Multi-phase media includes liquids, particles, complex materials and porous surfaces. Although this investigation addressed fundamental plasma transport and chemical processes, the outcomes directly and beneficially affected applications including biotechnology, medicine and environmental remediation (e.g., water purification). During this project, we made advances in our understanding of the interaction of atmospheric pressure plasmas in the form of dielectric barrier discharges and plasma jets with organic materials and liquids. We also made advances in our ability to use computer modeling to represent these complex processes. We determined the method that atmospheric pressure plasmas flow along solid and liquid surfaces, and through endoscopic like tubes, deliver optical and high energy ion activation energy to organic and liquid surfaces, and produce reactivity in thin liquid layers, as might cover a wound. We determined the mechanisms whereby plasmas can deliver activation energy to the inside of liquids by sustaining plasmas in bubbles. These findings are important to the advancement of new technology areas such as plasma medicine

  7. Effect of radio frequency discharge power on dusty plasma parameters

    SciTech Connect

    Sheridan, T. E.

    2009-08-01

    The parameters of a two-dimensional dusty plasma consisting of six, 9 mum diameter particles trapped inside a radio frequency (rf) plasma sheath have been measured as a function of rf power in a 13.5 mtorr (1.8 Pa) argon discharge. The center-of-mass and breathing frequencies are found by projecting the cluster's Brownian motion onto the associated normal mode. The center-of-mass frequency (i.e., radial confinement) is insensitive to rf power. The Debye shielding parameter kappa, as found from the breathing frequency, increases from approx =0.5 to 2 as the square root of rf power. The Debye length decreases from approx =2.7 to 0.7 mm as the inverse of the square root of rf power. The average particle charge qapprox =-17 000e is effectively independent of rf power. These results are consistent with an electron temperature that is independent of rf power and an ion density that is directly proportional to rf power, where the Debye length is determined by the ion density in combination with the electron temperature.

  8. Investigation of microscale dielectric barrier discharge plasma devices

    NASA Astrophysics Data System (ADS)

    Zito, Justin C.

    This dissertation presents research performed on reduced-scale dielectric barrier discharge (DBD) plasma actuators. A first generation of microscale DBD actuators are designed and manufactured using polymeric dielectric layers, and successfully demonstrate operation at reduced scales. The actuators are 1 cm long and vary in width from tens of microns to several millimeters. A thin-film polymer or ceramic material is used as the dielectric barrier with thicknesses from 5 to 20 microns. The devices are characterized for their electrical, fluidic and mechanical performance. With electrical input of 5 kVpp, 1 kHz, the microscale DBD actuators induce a wall jet with velocity reaching up to 2 m/s and produce 3.5 mN/m of thrust, while consuming an average power of 20 W/m. A 5 mN/m plasma body force was observed, acting on the surrounding air. Failure of the microscale DBD actuators is investigated using thermal measurements of the dielectric surface in addition to both optical and scanning electron microscopy. The cause of device failure is identified as erosion of the dielectric surface due to collisions with ions from the discharge. A second generation of microscale actuators is then designed and manufactured using a more reliable dielectric material, namely silicon dioxide. These actuators demonstrate a significant improvement in device lifetime compared with first-generation microscale DBD actuators. The increase in actuator lifetime allowed the electrical, fluidic and mechanical characterization to be repeated over several input voltages and frequencies. At 7 kVpp, 1 kHz, the actuators with SiO2 dielectric induced velocities up to 1.5 m/s and demonstrated 1.4 mN/m of thrust while consuming an average power of 41 W/m. The plasma body force reached up to 2.5 mN/m. Depending on electrical input, the induced velocity and thrust span an order of magnitude in range. Comparisons are made with macroscale DBD actuators which relate the actuator's output performance and power

  9. Comparative study of NO removal in surface-plasma and volume-plasma reactors based on pulsed corona discharges.

    PubMed

    Malik, Muhammad Arif; Kolb, Juergen F; Sun, Yaohong; Schoenbach, Karl H

    2011-12-15

    Nitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule. A smaller difference in energy cost, but a higher efficiency for removal of NO was obtained in a pure nitrogen atmosphere, where NO formation is restricted due to the lack of oxygen. For the volume plasma, EC(50) in this case was measured at 50 eV/molecule, and for the surface plasma it was 40 eV/molecule. Besides the higher NO removal efficiency of surface plasmas compared to volume plasmas, the energy efficiency of surface-plasmas was found to be almost independent of the amount of electrical energy deposited in the discharge, whereas the efficiency for volume plasmas decreases considerably with increasing energy. This indicates the possibility of operating surface plasma discharges at high energy densities and in more compact reactors than conventional volume discharges.

  10. Plasma temperature measurement in a hybrid discharge by using optical diagnostics

    NASA Astrophysics Data System (ADS)

    Parada-Becerra, F.; Cabanzo, R.; Dugar-Zhabon, V.; Tsygankov, P.; Mejía-Ospino, E.; Niño, E. D. V.

    2012-06-01

    Of the plasma methods used to improve the tribological properties of the solid surface [1-3], the treatment of metal pieces in the hybrid discharge, which is a combination of high voltage and electric arc discharges, seems very promising [4,5]. This method is developed in the Plasma Physics and Technology Laboratory at the Universidad Industrial de Santander (Colombia). In our work, the hybrid discharge is ignited in tungsten vapor. The plasma temperature and atomic composition of the discharge are measured through its optical spectrum.

  11. Optical emission characteristics of medium- to high-pressure N{sub 2} dielectric barrier discharge plasmas during surface modification of polymers

    SciTech Connect

    Liu Dongping; Niu Jinhai; Yu Naisen

    2011-11-15

    The authors measured the band spectra (first and second positive systems) of the nitrogen molecule by optical emission spectroscopy with an aim to understand the mechanism of surface processing by medium- to high-pressure dielectric barrier discharge (DBD) plasmas. The experimentally measured and calculated spectra were compared to determine the vibrational and rotational temperatures of the N{sub 2} (C{sup 3}{Pi}{sub u}) state in the generated plasmas. The authors generated the N{sub 2} DBD plasmas at a driving frequency of 1-7 kHz and a discharge pressure of 20-10{sup 5} Pa for the surface modification of a polyethylene terephthalate (PET) sample. It was found that the vibrational temperature was greatly affected by the N{sub 2} pressure while the rotational temperature remained constant in the N{sub 2} pressure range of 20-10{sup 5} Pa. The emission intensity of N{sub 2} first positive system (B{sup 3}{Pi}{yields}A{sup 3}{Sigma}) rapidly decreased at an increasing N{sub 2} pressure due to the collisional relaxation process of the B{sup 3}{Pi} state with N{sub 2} molecules. The N{sub 2}{sup +}(B{sup 2}{Sigma}{sub u}{sup +}{yields}X{sup 2}{Sigma}{sub g}{sup +}) radiative transition was observed in the low-pressure DBD plasmas, which was attributed to the direct electron impact ionization of N{sub 2} molecules. The surface characterizations of treated PET samples by contact angle measurement and atomic force microscopy indicate that the low-pressure N{sub 2} DBD plasma is an effective method for the surface modification of polymers. Analysis indicates the plasma characteristics such as electron temperature and ion energy are mainly dependent on the N{sub 2} pressure, which turn to determine the surface properties of treated PET samples.

  12. Relationship between the discharge mode and the spatial oxygen plasma distribution in a large size ferrite inductively coupled plasmas

    SciTech Connect

    Kim, Hyun Jun; Hwang, Hye Ju; Cho, Jeong Hee; Chae, Hee Sun; Kim, Dong Hwan; Chung, Chin-Wook

    2015-04-15

    The electrical characteristics and the spatial distribution of oxygen plasma according to the number of turns in ferrite inductively coupled plasmas (ferrite ICPs) are investigated. Through a new ICP model, which includes the capacitive coupling and the power loss of the ferrite material with the conventional ICP model, the variation of the oxygen discharge characteristics depending on the number of turns is simply understood by the electrical measurement, such as the antenna voltages and the currents. As the number of the turns increases, the capacitive coupling dominantly affects the spatial plasma distribution. This capacitive coupling results in a center focused density profile along the radial direction. In spite of the same discharge conditions (discharge chamber, neutral gas, and pressure), the spatial plasma distribution over 450 mm has drastic changes by increasing number of the turns. In addition, the effect of the negative species to the density profile is compared with the argon discharge characteristics at the same discharge configuration.

  13. Effect of dielectric and liquid on plasma sterilization using dielectric barrier discharge plasma.

    PubMed

    Mastanaiah, Navya; Johnson, Judith A; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥ 6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥ 6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C-66 °C (for FR4) and 20 °C-49 °C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves.

  14. Effect of Dielectric and Liquid on Plasma Sterilization Using Dielectric Barrier Discharge Plasma

    PubMed Central

    Mastanaiah, Navya; Johnson, Judith A.; Roy, Subrata

    2013-01-01

    Plasma sterilization offers a faster, less toxic and versatile alternative to conventional sterilization methods. Using a relatively small, low temperature, atmospheric, dielectric barrier discharge surface plasma generator, we achieved ≥6 log reduction in concentration of vegetative bacterial and yeast cells within 4 minutes and ≥6 log reduction of Geobacillus stearothermophilus spores within 20 minutes. Plasma sterilization is influenced by a wide variety of factors. Two factors studied in this particular paper are the effect of using different dielectric substrates and the significance of the amount of liquid on the dielectric surface. Of the two dielectric substrates tested (FR4 and semi-ceramic (SC)), it is noted that the FR4 is more efficient in terms of time taken for complete inactivation. FR4 is more efficient at generating plasma as shown by the intensity of spectral peaks, amount of ozone generated, the power used and the speed of killing vegetative cells. The surface temperature during plasma generation is also higher in the case of FR4. An inoculated FR4 or SC device produces less ozone than the respective clean devices. Temperature studies show that the surface temperatures reached during plasma generation are in the range of 30°C–66°C (for FR4) and 20°C–49°C (for SC). Surface temperatures during plasma generation of inoculated devices are lower than the corresponding temperatures of clean devices. pH studies indicate a slight reduction in pH value due to plasma generation, which implies that while temperature and acidification may play a minor role in DBD plasma sterilization, the presence of the liquid on the dielectric surface hampers sterilization and as the liquid evaporates, sterilization improves. PMID:23951023

  15. Transient Shock Formation of Pulsed Electrothermal Plasma Discharge Confined in an Extended Bore

    NASA Astrophysics Data System (ADS)

    Kim, Kyoungjin; Kwak, Ho Sang; Park, Joong-Youn

    An electrothermal gun possesses a great potential to be an efficient source of pulsed plasma discharge for nanomaterials production or thermal plasma spray coatings. A plasma discharge by intense pulsed power is numerically studied utilizing time-dependent gas dynamics equations which are solved by FCT (flux-corrected transport) algorithm in two-dimensional domain of the interior capillary bore region and the external region of extended bore. Plasma conditions at the bore exit, mass ablation of polycarbonate bore wall, and degree of ionization are determined at different levels of transient arc current profile. As a way to controlling the plasma discharge, the extended bore at the capillary exit is considered and the flow pattern of pulsed plasma discharge in the extended bore exhibit complex shock structure from slightly to highly underexpanded jet depending on the level of arc current profiles. Flow instability of oscillating Mach disk is found at higher level of arc current profile cases.

  16. Influence of Space Propulsions and Plasma Sources on Electric-Discharge Phenomena on the ISS

    NASA Astrophysics Data System (ADS)

    Tverdokhlebova, E. M.; Korsun, A. G.; Garkusha, V. I.; Strashinsky, V. A.; Gabdullin, F. F.; Tverdokhlebov, S. O.

    2004-10-01

    The electric field generated by the high voltage solar array of the International Space Station (ISS) induces electric discharges between constructions of the Station. The intensity of these discharges is affected by the plasma environment resulting from the activity of space propulsions and other onboard plasma sources. Parameters of the plasma environment are calculated taking into account the effect of the geomagnetic field and ionizing fluxes in space.

  17. On the streamer propagation in methane plasma discharges

    SciTech Connect

    Ferrara, Carlo; Preda, Marco; Cavallotti, Carlo

    2012-12-01

    The initial stages of formation and propagation of a streamer in methane at atmospheric pressure were studied using a 2-dimensional axial symmetric hydrodynamic model. The model is based on the drift diffusion approximation and exploits electron transport parameters determined using an external Boltzmann equation solver. The resulting system of equations was solved using the finite element methods and integrated in time with an Euler backward algorithm. An approach useful to alleviate the numerical difficulties determined by the steep gradients that appear on the streamer front was developed. It is based on a proper choice of the adaptation algorithm of the integration time step. Three phases in the streamer development could be identified, in agreement with analytical and numerical models reported in the literature: ionization avalanche, streamer, and shielded plasma. The properties of the three phases have been characterized analyzing the evolution in time of the most important variables characterizing the system (ion and electron densities, potential, and electric field). Finally, the influence of some operative parameters, such as inter-electrodic gap, seed electron density, and applied potential, has been investigated in order to determine how it affects the evolution of the micro-discharge, and in particular, the transition from ionization avalanche to streamer.

  18. Study of the Characteristics of DC and ICP Hybrid Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    WANG, Zhan; GAO, Wei; ZHANG, Peng; YAN, Huijie; REN, Chunsheng

    2015-03-01

    In this paper, the double-discharge plasma generated by radio frequency (RF) and direct current (DC) has been investigated. In comparison with their single-frequency counterpart, the interaction between the two excitations is significant and beneficial. The results show that the RF discharge can effectively increase the DC discharge current and decrease the DC voltage; meanwhile the DC discharge is favorable to feed abundant high energy seed electrons to the ICP discharge sustaining at 13.56 MHz for the latter to acquire higher plasma density and lower plasma potential by increasing the ionization rate. The innovative design has been demonstrated to facilitate more homogeneous performance with higher plasma density. supported by National Natural Science Foundation of China (No. 11475038)

  19. Atomic Force Microscope Investigations of Biofilm-Forming Bacterial Cells Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Renshaw, Andrew; Abramzon, Nina; Brelles-Marino, Graciela

    2009-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). After 5 min. plasma treatment, 90% of cells were inactivated, that is, transformed to non-culturable cells. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  20. Discharge processes and an electrical model of atmospheric pressure plasma jets in argon

    NASA Astrophysics Data System (ADS)

    Fang, Zhi; Shao, Tao; Yang, Jing; Zhang, Cheng

    2016-01-01

    In this paper, an atmospheric pressure plasma discharge in argon was generated using a needle-to-ring electrode configuration driven by a sinusoidal excitation voltage. The electric discharge processes and discharge characteristics were investigated by inspecting the voltage-current waveforms, Lissajous curves and lighting emission images. The change in discharge mode with applied voltage amplitude was studied and characterised, and three modes of corona discharge, dielectric barrier discharge (DBD) and jet discharge were identified, which appeared in turn with increasing applied voltage and can be distinguished clearly from the measured voltage-current waveforms, light-emission images and the changing gradient of discharge power with applied voltage. Based on the experimental results and discharge mechanism analysis, an equivalent electrical model and the corresponding equivalent circuit for characterising the whole discharge processes accurately was proposed, and the three discharge stages were characterised separately. A voltage-controlled current source (VCCS) associated with a resistance and a capacitance were used to represent the DBD stage, and the plasma plume and corona discharge were modelled by a variable capacitor in series with a variable resistor. Other factors that can influence the discharge, such as lead and stray capacitance values of the circuit, were also considered in the proposed model. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  1. Is the negative glow plasma of a direct current glow discharge negatively charged?

    SciTech Connect

    Bogdanov, E. A.; Saifutdinov, A. I.; Demidov, V. I.; Kudryavtsev, A. A.

    2015-02-15

    A classic problem in gas discharge physics is discussed: what is the sign of charge density in the negative glow region of a glow discharge? It is shown that traditional interpretations in text-books on gas discharge physics that states a negative charge of the negative glow plasma are based on analogies with a simple one-dimensional model of discharge. Because the real glow discharges with a positive column are always two-dimensional, the transversal (radial) term in divergence with the electric field can provide a non-monotonic axial profile of charge density in the plasma, while maintaining a positive sign. The numerical calculation of glow discharge is presented, showing a positive space charge in the negative glow under conditions, where a one-dimensional model of the discharge would predict a negative space charge.

  2. Dependence of MnOx Catalyst Position on Toluene Decomposition using Nanosecond Pulsed Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Han, Junkai; Ogasawara, Akihiko; Wang, Jinlong; Wang, Douyan; Namihira, Takao; Sasaki, Mitsuru; Akiyama, Hidenori; Zhang, Pengyi; Kumamoto University Collaboration; Tsinghua University Collaboration

    2015-09-01

    Plasma catalysis, which combines advantages of high selectivity due to the catalysis and with fast ignition and response due to plasma technique, appears to be a promising technology to simultaneously resolve both efficiency and workability issues. In practice, a catalyst can be combined with NTP in two ways: by introducing the catalyst in the discharge zone (in-plasma catalytic reactor) or by placing the catalyst after the discharge zone (post-plasma catalytic reactor). This work aims to clarify combined effects by coupling MnOx catalyst with ns pulsed discharge system for decomposition of 100 ppm toluene utilizing three methods: plasma alone, in-plasma catalytic and post-plasma catalytic methods, in atmospheric pressure at room temperature. As the results, toluene removal ratio reached 100% at approximately 50 J/L under the in-plasma catalytic and post-plasma catalytic methods, while it was 70% under the plasma alone method. The concentrations of O3, HCOOH, and CO under the plasma alone method were higher compared with the in-plasma catalytic or post-plasma catalytic methods. CO2 selectivity under the post-plasma catalytic method was the highest of these three methods when toluene removal ratio exceeded 80%.

  3. Efficiency of surface cleaning by a glow discharge for plasma spraying coating

    NASA Astrophysics Data System (ADS)

    Kadyrmetov, A. M.; Kashapov, N. F.; Sharifullin, S. N.; Saifutdinov, A. I.; Fadeev, S. A.

    2016-06-01

    The article presents the results of experimental studies of the quality of cleaning steel surfaces by a glow discharge for plasma spraying. Shows the results of measurements of the angle of surface wetting and bond strength of the plasma coating to the surface treated. The dependence of the influence of the glow discharge power, chamber pressure, distance between the electrodes and the processing time of the surface on cleaning efficiency. Optimal fields of factors is found. It is shown increase joint strength coating and base by 30-80% as a result of cleaning the substrate surface by a glow discharge plasma spraying.

  4. Optical observations of the beam-plasma discharge phenomenon

    NASA Technical Reports Server (NTRS)

    Sivjee, G. G.; Hamwey, R. M.; Hallinan, T. J.

    1993-01-01

    Spectroscopic observations of optical emissions from the beam-plasma discharge (BPD) phenomenon were made with NASA's vacuum chamber facility, at the Johnson Space Center, configured to simulate the physical conditions of magnetospheric electron beam injection into the ionospheric/upper-atmospheric environment. Nonlinear N2 and N2(+) optical emission growth rates (with respect to incremental electron beam current values) were observed from the chamber gas during transition to the BPD state. For electron-beam currents (I) near the BPD transition value (I(sub c)), the band emissions from the chamber gas produced by relatively low energy (less than or equal to 50 eV) electrons interacting with N2 were anomalously more intense than those requiring higher energy (greater than 100 eV) electrons to excite them. For I more greater than I(sub c), the optical emissions increased linearly with I (as was the case for I less than I(sub c)) and their ratios decreased significantly from the peak values attained when I approximately equals I(sub c). These observations suggest that during BPD some of the energy of the primary electron beam is efficiently transferred, via wave-particle interactions, to local electrons produced through ionization of the chamber gas; the resulting suprathermal electrons provide an additional source of excitation for the relatively low energy states (A, B and C) of N2. Such nonlinear excitation of upper atmospheric gas may occur in certain auroral events wherein the current due to the precipitating electrons approaches a value close to I(sub c).

  5. Study of the LTE departure in a low pressure supersonic plasma jet in Ar-H{sub 2} and in Ar-N{sub 2}-H{sub 2} mixture

    SciTech Connect

    Rajabian, M.; Vacquie, S.; Gravelle, D.V.

    1999-07-01

    Plasma torches at low pressure and controlled atmosphere are used in major applications for the production and processing of materials due to their potential for high performance, and low contamination. A good knowledge of the plasma parameters is necessary, particularly for the design of high-performance mathematical models that avoid the building of expensive prototypes for performance assessment. The present work is undertaken on a DC plasma torch operating over a wide pressure range (8 kPa to 100 kPa) at an arc power fixed at 17.5 kW. Emission spectroscopy diagnostics was carried out for determining temperature, electron and particle density profiles in two gas mixtures: Ar-N{sub 2}-H{sub 2} with flow rates of 40, 10, and 1 slpm respectively, and Ar-H{sub 2} with input flow rates of 35 and 7 slpm respectively. For the gas mixtures used, the supersonic shock occurs at a distance from the nozzle exit growing when the pressure decreases (8, 10, and 13 mm for pressures of 13, 20 and 26 kPa). For pressures of 100 kPa and 53 kPa, they observe a good agreement between the values of electron density Ne experimentally measured independently of local thermodynamic equilibrium (LTE) and the values obtained by calculation using the temperature obtained with Boltzmann diagram. Local thermodynamic equilibrium conditions prevail at these values of pressure. For the lower values of the pressure, the experimental value of N{sub 2}{sup {minus}} ion density are higher than the calculated values, using the rotational temperature T{sub h}, or the Boltzmann temperature T{sub e}. The discrepancy is lower with the use of T{sub e}. That shows the importance of the collisions between electrons and heavy particles, due to the high values of the electron density (4.10{sup 16} cm{sup {minus}3} in the supersonic shock wave for 13 kPa). For pressure lower than 26 kPa important deviation from LTE conditions are observed.

  6. Effect of Electric Discharge on Properties of Nano-Particulate Catalyst for Plasma-Catalysis.

    PubMed

    Lee, Chung Jun; Kim, Jip; Kim, Taegyu

    2016-02-01

    Heterogeneous catalytic processes have been used to produce hydrogen from hydrocarbons. However, high reforming temperature caused serious catalyst deteriorations and low energy efficiency. Recently, a plasma-catalyst hybrid process was used to reduce the reforming temperature and to improve the stability and durability of reforming catalysts. Effect of electric discharges on properties of nanoparticulate catalysts for plasma-catalysis was investigated in the present study. Catalyst-bed porosity was varied by packing catalyst beads with the different size in a reactor. Discharge power and onset voltage of the plasma were measured as the catalyst-bed porosity was varied. The effect of discharge voltage, frequency and voltage waveforms such as the sine, pulse and square was investigated. We found that the optimal porosity of the catalyst-bed exists to maximize the electric discharge. At a low porosity, the electric discharge was unstable to be sustained because the space between catalysts got narrow nearly close to the sheath region. On the other hand, at a high porosity, the electric discharge became weak because the plasma was not sufficient to interact with the surface of catalysts. The discharge power increased as the discharge voltage and frequency increased. The square waveform was more efficient than the sine and pulse one. At a high porosity, however, the effect of the voltage waveform was not considerable because the space between catalysts was too large for plasma to interact with the surface of catalysts.

  7. Removal of floating dust in glow discharge using plasma jet

    SciTech Connect

    Ticos, C. M.; Jepu, I.; Lungu, C. P.; Chiru, P.; Zaroschi, V.; Lungu, A. M.

    2010-07-05

    Dust can be an inconvenient source of impurities in plasma processing reactors and in many cases it can cause damage to the plasma-treated surfaces. A technique for dust expulsion out of the trapping region in plasma is presented here, based on the wind force exerted on dust particles by a pulsed plasma jet. Its applicability is demonstrated by removing floating dust in the sheath of parallel-plate capacitive radio-frequency plasma.

  8. Attenuation of single-tone ultrasound by an atmospheric glow discharge plasma barrier

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2010-09-15

    Propagation of 143 kHz ultrasound through an atmospheric pressure glow discharge in air was studied experimentally. The plasma was a continuous dc discharge formed by a multipin electrode system. Distributions of the gas temperature were also obtained in and around the plasma using laser-induced Rayleigh scattering technique. Results show significant attenuation of the ultrasound by the glow discharge plasma barrier (up to -24 dB). The results indicate that sound attenuation does not depend on the thickness of the plasma and attenuation is caused primarily by reflection of the sound waves from the plasma due to the sharp gas temperatures gradients that form at the plasma boundary. These gradients can be as high as 80 K/mm.

  9. Comparative characteristics of electron energy spectrum in PIG and arc type discharge plasmas

    NASA Technical Reports Server (NTRS)

    Romanyuk, L. I.; Suavilnyy, N. Y.

    1978-01-01

    The electron distribution functions relative to the velocity component directed along the magnetic field are compared for PIG and arc type discharges. The identity of these functions for the plasma region pierced by the primary electron beam and their difference in the peripheral part of the discharge are shown. It is concluded that the electron distribution function in the PIG type discharge is formed during one transit of the primary electron through the discharge gap. The mechanisms of electron energy spectrum formation in both the axis region and the peripheral region of the discharge are discussed.

  10. New Plasma Discharge Development Tools for the DIII-D Plasma Control System

    NASA Astrophysics Data System (ADS)

    Welander, A. S.; Eidietis, N. W.; Humphreys, D. A.; Hyatt, A. W.; Leuer, J. A.; Walker, M. L.

    2011-10-01

    A new set of discharge design tools has been implemented under the GA Tokamak System Toolbox (TokSys). A new equilibrium design tool enables development of target equilibria, and upgraded simulation tools enhance testing of new control algorithms for devices that share the DIII-D Plasma Control System (including DIII-D, NSTX, EAST, KSTAR and others). Such tools will be needed for high power devices such as ITER, which require extensive commissioning of discharges to minimize disruptions and maximize the scientific return. Control verification by simulation will enable ITER to focus on exploring the unknown while minimizing risks from the known. The DIII-D simulation simserver is a comprehensive simulation of the tokamak including power supplies, conductors, plasma, diagnostics, and actuators, which can be connected to the actual control system. It has been used extensively to test implementations and study multi-algorithm integrated control performance in DIII-D and other devices. Work supported by the US DOE under DE-FC02-04ER54698.

  11. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  12. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    Contaminants remaining on implantable medical devices, even following sterilization, include dangerous fever-causing residues of the outer lipopolysaccharide-rich membranes of Gram-negative bacteria such as the common gut microorganism E. coli. The conventional method for endotoxin removal is by Food & Drug Administration (FDA)-recommended dry-heat depyrogenation at 250°C for at least 45 minutes, an excessively time-consuming high-temperature technique not suitable for low-melting or heat-distortable biomaterials. This investigation evaluated the mechanism by which E. coli endotoxin contamination can be eliminated from surfaces during ambient temperature single 3-minute to cumulative 15-minute exposures to radio-frequency glow discharge (RFGD)-generated residual room air plasmas activated at 0.1-0.2 torr in a 35MHz electrodeless chamber. The main analytical technique for retained pyrogenic bio-activity was the Kinetic Chromogenic Limulus Amebocyte Lysate (LAL) Assay, sufficiently sensitive to document compliance with FDA-required Endotoxin Unit (EU) titers less than 20 EU per medical device by optical detection of enzymatic color development corresponding to < 0.5 EU/ml in sterile water extracts of each device. The main analytical technique for identification of chemical compositions, amounts, and changes during sequential reference Endotoxin additions and subsequent RFGD-treatment removals from infrared (IR)-transparent germanium (Ge) prisms was Multiple Attenuated Internal Reflection (MAIR) infrared spectroscopy sensitive to even monolayer amounts of retained bio-contaminant. KimaxRTM 60 mm x 15 mm and 50mm x 15mm laboratory glass dishes and germanium internal reflection prisms were inoculated with E. coli bacterial endotoxin water suspensions at increments of 0.005, 0.05, 0.5, and 5 EU, and characterized by MAIR-IR spectroscopy of the dried residues on the Ge prisms and LAL Assay of sterile water extracts from both glass and Ge specimens. The Ge prism MAIR

  13. A second kind of Beam-Plasma Discharge (BPD): Rocket and laboratory results

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Monson, S. J.

    1983-01-01

    It is shown that there are two types of beam plasma discharge observed in rocket shots. The second BPD transition (BPD2) is characterized by a very broad featureless emission extending from much less than the cyclotron frequency to several times the plasma frequency. The characteristic spectra observed close to the beam plasma discharge region are deformed by the intervening plasma when observations are made at a distance from the injection field line and lead to spectra which must be interpreted with care. In one case, the Bernstein mode at 2 fce seems to be a remnant of the broad, featureless spectrum of BPD2.

  14. Atomic Force Microscope Investigations of Bacterial Biofilms Treated with Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, Kurt; Zelaya, Anna; Brelles-Marino, Graciela

    2012-02-01

    We present investigations of bacterial biofilms before and after treatment with gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve biofilm communities, where bacteria grow embedded in an exopolysaccharide matrix, and cooperative interactions between cells make organisms less susceptible to standard inactivation methods. In this study, biofilms formed by the opportunistic bacterium Pseudomonas aeruginosa were imaged before and after plasma treatment using an atomic force microscope (AFM). Through AFM images and micromechanical measurements we observed bacterial morphological damage and reduced AFM tip-sample surface adhesion following plasma treatment.

  15. Synthesis of Single-Walled Carbon Nanotubes in a Glow Discharge Fine Particle Plasma

    SciTech Connect

    Imazato, N.; Imano, M.; Hayashi, Y.

    2008-09-07

    Carbon fine particles were synthesized being negatively charged and confined in a glow discharge plasma. The deposited fine particles were analyzed by Raman spectroscopy and transmission electron microscopy (TEM) and were confirmed to include single-walled carbon nanotubes.

  16. Characterization of a copper spark discharge plasma in argon atmosphere used for nanoparticle generation

    NASA Astrophysics Data System (ADS)

    Kohut, Attila; Galbács, Gábor; Márton, Zsuzsanna; Geretovszky, Zsolt

    2017-04-01

    Spark discharge nanoparticle generation is a dynamically developing application of discharge plasmas. In the present study a spark plasma used for nanoparticle generation is characterized by means of spatially and temporally resolved optical emission spectroscopy (OES) supplemented by fast imaging. The data acquired during the generation of copper nanoparticles in argon ambient is used to describe the spatial and temporal evolution of the species in the spark gap and to derive plasma parameters such as excitation temperature and electron concentration on one hand, and the concentration of the Cu species eroded by a single spark on the other. It is shown that temporally and spatially resolved OES together with a simple equilibrium model are efficient tools to estimate the characteristics of the spark discharge plasma that typically exists in spark discharge nanoparticle generators.

  17. Simple method of determining plasma impedance of streamer discharge in atmospheric air.

    PubMed

    Okano, Daisuke

    2011-12-01

    For atmospheric streamer discharges using a lightning impulse generator, we demonstrate a method of determining the plasma impedance in a streamer region by analyzing the periodic attenuated discharge waveforms having high-frequency components. When the streamer region in the plasma can be treated as an equivalent series circuit model including resistance and inductance elements, the regression waveforms obtained by reducing and smoothing the discharge waveforms are analyzed in the equivalent circuit. We found that the streamer resistance increased exponentially with time after the discharge, whereas the streamer inductance and series impedance were constant at 4.0 Ω for longer than the first period of the discharge waveforms. Moreover, the slope of the regression curve increases more rapidly for the positive streamer resistance than for the negative resistance. Finally, the absolute values of the streamer impedance versus time were 3.3-19 Ω and 3.5-9.0 Ω for positive and negative discharges, respectively.

  18. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  19. Etching of UO2 in NF3 RF Plasma Glow Discharge

    SciTech Connect

    Veilleux, John M.

    1999-08-01

    A series of room temperature, low pressure (10.8 to 40 Pa), low power (25 to 210 W) RF plasma glow discharge experiments with UO2 were conducted to demonstrate that plasma treatment is a viable method for decontaminating UO2 from stainless steel substrates. Experiments were conducted using NF3 gas to decontaminate depleted uranium dioxide from stainless-steel substrates. Depleted UO2 samples each containing 129.4 Bq were prepared from 100 microliter solutions of uranyl nitrate hexahydrate solution. The amorphous UO2 in the samples had a relatively low density of 4.8 gm/cm3. Counting of the depleted UO2 on the substrate following plasma immersion was performed using liquid scintillation counting with alpha/beta discrimination due to the presence of confounding beta emitting daughter products, 234Th and 234Pa. The alpha emission peak from each sample was integrated using a gaussian and first order polynomial fit to improve quantification. The uncertainties in the experimental measurement of the etched material were estimated at about ± 2%. Results demonstrated that UO2 can be completely removed from stainless-steel substrates after several minutes processing at under 200 W. At 180 W and 32.7 Pa gas pressure, over 99% of all UO2 in the samples was removed in just 17 minutes. The initial etch rate in the experiments ranged from 0.2 to 7.4 μm/min. Etching increased with the plasma absorbed power and feed gas pressure in the range of 10.8 to 40 Pa. A different pressure effect on UO2 etching was also noted below 50 W in which etching increased up to a maximum pressure, ~23 Pa, then decreased with further increases in pressure.

  20. [Investigation on the Spectral Characteristics of a Plasma Jet in Atmospheric Argon Glow Discharge].

    PubMed

    Li, Xue-chen; Zhang, Chun-yan; Li, Ji-yuan; Bao, Wen-ting

    2015-12-01

    Plasma jet is a kind of important plasma source at atmospheric pressure. In recent years, it becomes an important hot topic in the field of low temperature plasma. In this paper, using a tungsten needle and a tungsten wire mesh, a direct-current excited jet is developed to operate in argon at atmospheric pressure. In the atmospheric pressure argon, the plasma jet can produce a stable plasma plume. By using the method of emission spectroscopy, the parameters of the plasma plume are investigated. The discharge emits dazzling white light from the area between the tungsten needle electrode and the wire mesh electrode. A plasma plume with a flame shape appears outside the tungsten wire mesh electrode. For a constant value of voltage (U = 13.5 kV), the length of the plasma plume increases with the gas flow rate. For a constant value of the gas flow rate(10 L · min⁻¹), the length of the plasma plume increases with the voltage. The voltage is inversely proportional to the current under the constant gas flow rate. In other words, the voltage decreases with the discharge current, which indicates that a glow discharge is formed in the plasma jet. Optical emission spectrum in 300 to 800 nm is collected from the direct-current excited plasma jet. By Boltzmann plot method, the excited electron temperature of the plasma plume is investigated as a function of the applied voltage or the gas flow rate. Results show that the excited electron temperature increases with decreasing applied voltage under the constant gas flow. Moreover, it increases with decreasing the gas flow under the constant voltage. Based on the discharge theory, these experimental phenomena are explained qualitatively. These results are of great importance to the development of atmospheric pressure uniform discharge plasma source and its application in industrial field.

  1. Low temperature plasma RF capacitive discharge in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Fayrushin, I.; Kashapov, N.

    2016-01-01

    The paper describes Low temperature plasma RF capacitive discharge in helium at atmospheric pressure. The circuit has been done, to obtain output currentabout 90mA,and the maximum power was 100W, The frequency of the discharging was f = 40MHz.Twolamps (DУ-50) were used in power supply. Helium consumption was about 1.5l/m.

  2. Critical particle circulation caused by high-performance steady-state plasma discharge

    NASA Astrophysics Data System (ADS)

    Kasahara, Hiroshi

    2015-11-01

    Steady-state operation focused on the fusion reactor has been investigated in magnetic confined fusion devices, and plasma performance and duration time are steadily extended by the improvement of the quality of plasma heating and sophisticating plasma operation using the understanding of long-pulse plasma experiments. When higher-performance helium steady-state plasma discharges with duration time over 40 min, electron density of 1.2x1019 m-3, ion and electron temperatures over 2 keV and heating power of 1.2MW were repeatedly achieved in LHD, time-evolution of the wall-pumping and increasing frequency of impurity contaminations around the plasma edge clearly occurred. These are strongly related to the increasing mixed-material layer caused by continuous divertor erosion around geometrical dense divertor plates, which consists of carbon (> 90%) and iron (< a few %) with amorphous structure, that can retain the helium particles and affect the particle balance in long-pulse discharges. The mixed-material layer is easily exfoliated by the thermal stress and helium explosion in the layer, and small pieces of exfoliation enter the plasma edge in all toroidal sections. Uncontrolled flake contamination was one of the causes of plasma termination in long-pulse experiments. Increased plasma performance using higher heating power (~ 3.3 MW) with high quality makes robust plasma against impurity contaminations, and then a small amount of contamination of mixed-material does not terminate the helium plasma. Carbon impurity was circulated from the divertor plates and around the plates to the plasma edge in long-pulse plasma discharges, and the circulation was increased by the plasma duration and performance. The eroded material plays an important role in degrading the plasma performance as an impurity source and in the controllability of particle fueling in long-pulse discharges.

  3. Numerical Simulation of Non-Equilibrium Plasma Discharge for High Speed Flow Control

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Ramakrishnan; Anandhanarayanan, Karupannasamy; Krishnamurthy, Rajah; Chakraborty, Debasis

    2016-06-01

    Numerical simulation of hypersonic flow control using plasma discharge technique is carried out using an in-house developed code CERANS-TCNEQ. The study is aimed at demonstrating a proof of concept futuristic aerodynamic flow control device. The Kashiwa Hypersonic and High Temperature wind tunnel study of plasma discharge over a flat plate had been considered for numerical investigation. The 7-species, 18-reaction thermo-chemical non-equilibrium, two-temperature air-chemistry model due Park is used to model the weakly ionized flow. Plasma discharge is modeled as Joule heating source terms in both the translation-rotational and vibrational energy equations. Comparison of results for plasma discharge at Mach 7 over a flat plate with the reference data reveals that the present study is able to mimic the exact physics of complex flow such as formation of oblique shock wave ahead of the plasma discharge region with a resultant rise in surface pressure and vibrational temperature up to 7000 K demonstrating the use of non-equilibrium plasma discharge for flow control at hypersonic speeds.

  4. Investigation of the Plasma Properties of Surface Discharges.

    DTIC Science & Technology

    1985-09-30

    rare gases at high pressure under similar discharge conditions. Andreev’s model shows that the radiation flux can significantly alter the shock-wave...capacitance of the substrate, the gas atmosphere and pressures and the ablation mode of the substrate. an UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE...D = 7(3) x 104 cm/sec for discharges in ArCXe) gas at 1 atm pressure and a discharge power density of G - 5 x 105 W/cm2. Spectroscopic studies were

  5. Application of Langmuir Probe Method to the Atmospheric Pressure Discharge Plasma

    SciTech Connect

    Matsuura, Hiroto; Matsumura, Yasuhiro; Nakano, Ken

    2008-12-31

    The heat balance model in the probe tip applied to atmospheric pressure plasma is constructed. Considering the natural convective heat loss, the limitation of plasma density for probe application to such a plasma is estimated. The rough limit is about n{sub e} = 10{sup 18} m{sup -3}. Four kind of materials (Cu, SUS, W, Al) are used for probe tips, and are tested in DC atmospheric pressure discharge. Heat conductivity is found to be a more important property than melting point in design of probes in high pressure discharge. DC atmospheric pressure discharge plasma parameters are obtained with our test probes. Obtained density is the order of 10{sup 17} m{sup -3} and does not contradict with the above density limitation. Change of space potential in air/Ar plasma is also confirmed.

  6. A study on improvement of discharge characteristic by using a transformer in a capacitively coupled plasma

    SciTech Connect

    Kim, Young-Cheol; Kim, Hyun-Jun; Lee, Hyo-Chang; Chung, Chin-Wook

    2015-12-15

    In a plasma discharge system, the power loss at powered line, matching network, and other transmission line can affect the discharge characteristics such as the power transfer efficiency, voltage and current at powered electrode, and plasma density. In this paper, we propose a method to reduce power loss by using a step down transformer mounted between the matching network and the powered electrode in a capacitively coupled argon plasma. This step down transformer decreases the power loss by reducing the current flowing through the matching network and transmission line. As a result, the power transfer efficiency was increased about 5%–10% by using a step down transformer. However, the plasma density was dramatically increased compared to no transformer. This can be understood by the increase in ohmic heating and the decrease in dc-self bias. By simply mounting a transformer, improvement of discharge efficiency can be achieved in capacitively coupled plasmas.

  7. The hairline plasma: An intermittent negative dc-corona discharge at atmospheric pressure for plasma medical applications

    SciTech Connect

    Bussiahn, R.; Brandenburg, R.; Gerling, T.; Kindel, E.; Lange, H.; Lembke, N.; Weltmann, K.-D.; Woedtke, Th. von; Kocher, T.

    2010-04-05

    A cold atmospheric pressure plasma source, called hairline plasma, for biological and medical applications has been developed. Using the physical effect of the negative dc corona discharge, a nanosecond pulsed microplasma has been created. The device produces a very thin (dapprox30 mum) plasma filament with a length of up to 1.5 cm. Due to this geometrical parameters this plasma is particularly suitable for the treatment of microscopic cavities. The low plasma temperature allows to treat the human skin without any heating or painful irritation.

  8. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  9. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling.

    PubMed

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-10-20

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics.

  10. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    PubMed Central

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-01-01

    Hysteresis, which is the history dependence of physical systems, is one of the most important topics in physics. Interestingly, bi-stability of plasma with a huge hysteresis loop has been observed in inductive plasma discharges. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. PMID:26482650

  11. Current evolution and plasma density space distribution in the reflex discharge with ring cathodes

    NASA Astrophysics Data System (ADS)

    Samokhin, A. A.; Liziakin, G. D.; Gavrikov, A. V.; Usmanov, R. A.; Smirnov, V. P.

    2016-11-01

    In this paper the numerical model of direct current gas discharge in drift-diffusion approximation is considered. For two-component plasma the processes of the gas discharge development in the reflex geometry with ring cathodes at a helium pressure of 35 mTorr are studied. We investigate the influence of: (a) the boundary conditions on the dielectric, (b) the electron temperature and (c) the coefficient of the secondary ion-electron emission on the I-U curve of the discharge. In a magnetic field of 50 Gauss the impact of the discharge voltage U = 300-700 V on the evolutionary process of the discharge is examined. The effect of diffusion on maintaining steady state discharge is researched. The parameters of the existence of a high-current (tens of μA) and low voltage (tens of mA) discharge modes are defined.

  12. Determination of the plasma parameters of a glow discharge in long tubes

    NASA Astrophysics Data System (ADS)

    Kiselev, A. S.; Kostrin, D. K.; Lisenkov, A. A.; Smirnov, E. A.

    2017-01-01

    In this work experimental current-voltage characteristics of a glow discharge occurring in long tubes for a wide range of discharge conditions (pressure, diameter of the discharge tube, nature of the gas) were obtained. On the basis of the current-voltage characteristics was calculated the longitudinal potential gradient in the positive column. With the help of the developed computer program was calculated the electron temperature for discharge conditions corresponding to the experiment. The technique is based on the use of the balance equations of ionization in gas discharges occurring in long narrow tubes, and provides the possibility for calculation of the discharge plasma parameters, both in pure gases and in multicomponent mixtures. Based on the experimental values of the longitudinal potential gradient in the positive column and the calculated values of the electron temperature was calculated the dependence of accommodation coefficient for the electrons from the discharge conditions. The compliance between the experimental and reference data was obtained.

  13. Experimental analysis on the nonlinear behavior of DC barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Dogan, Mansuroglu; Ilker Umit, Uzun-Kaymak

    2017-01-01

    Nonlinear behavior of glow discharge plasmas is experimentally investigated. The glow is generated between a barrier semiconductor electrode, Chromium doped namely Gallium Arsenide (GaAs:Cr), as a cathode and an Indium-Tin Oxide (ITO) coated glass electrode as an anode, in reverse bias. The planar nature of electrodes provides symmetry in spatial geometry. The discharge behaves oscillatory in the time domain, with single and sometimes multi-periodicities in plasma current and voltage characteristics. In this paper, harmonic frequency generation and transition to chaotic behavior is investigated. The observed current-voltage characteristics of the discharge are discussed in detail.

  14. Improved model for window breakdown at low pressure

    SciTech Connect

    Chang, C.; Chen, H. B.; Liu, G. Z.; Zhu, X. X.; Fang, J. Y.

    2009-03-15

    An improved global model is proposed to analyze high power microwave dielectric window breakdown at low pressure. The effect of ionization on the average momentum and energy of electrons is taken into account and a Maxwellian electron energy distribution function is adopted. The plasma energy flow and density loss to dielectric, and partially secondary electrons returning plasma to compensate the density loss, have been analytically considered. Space charge potential drop and the generalized Bohm criterion are deduced analytically. After considering the energy and density loss as well as the secondary electron compensation, the breakdown time by using numerical calculation under low pressure gets shorter compared with that under no wall loss condition. In other words, the dielectric surface breakdown time is lower than plasma volume breakdown time.

  15. Temperature and Nitric Oxide Generation in a Pulsed Arc Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Namihira, T.; Sakai, S.; Matsuda, M.; D., Wang; Kiyan, T.; Akiyama, H.; Okamoto, K.; Toda, K.

    2007-12-01

    Nitric oxide (NO) is increasingly being used in medical treatments of high blood pressure, acute respiratory distress syndrome and other illnesses related to the lungs. Currently a NO inhalation system consists of a gas cylinder of N2 mixed with a high concentration of NO. This arrangement is potentially risky due to the possibility of an accidental leak of NO from the cylinder. The presence of NO in the air leads to the formation of nitric dioxide (NO2), which is toxic to the lungs. Therefore, an on-site generator of NO would be highly desirable for medical doctors to use with patients with lung disease. To develop the NO inhalation system without a gas cylinder, which would include a high concentration of NO, NAMIHIRA et al have recently reported on the production of NO from room air using a pulsed arc discharge. In the present work, the temperature of the pulsed arc discharge plasma used to generate NO was measured to optimize the discharge condition. The results of the temperature measurements showed the temperature of the pulsed arc discharge plasma reached about 10,000 K immediately after discharge initiation and gradually decreased over tens of microseconds. In addition, it was found that NO was formed in a discharge plasma having temperatures higher than 9,000 K and a smaller input energy into the discharge plasma generates NO more efficiently than a larger one.

  16. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  17. Influence of oxygen traces on an atmospheric-pressure radio-frequency capacitive argon plasma discharge

    SciTech Connect

    Li Shouzhe; Wu Qi; Yan Wen; Wang Dezhen; Uhm, Han S.

    2011-10-15

    An atmospheric-pressure capacitive discharge source driven by radio-frequency power supply at 13.56 MHz has been developed experimentally that is capable of producing a homogeneous and cold glow discharge in O{sub 2}/Ar. With respect to the influence of oxygen component when diluted into argon plasma discharge on the discharge characteristics, the measurements of the electrical parameters (impedance, phase angle, resistance, and reactance) are made systematically and the densities of the metastable and resonant state of argon are determined by means of optical emission spectroscopy (OES). It is shown that the admixture of oxygen into argon plasma not only changes the electric characteristics but also alters the optical emission spectra greatly due to strong interaction between the oxygen content and the argon in the plasma environment.

  18. Mechanism of Synthesis of Ultra-Long Single Wall Carbon Nanotubes in Arc Discharge Plasma

    SciTech Connect

    Keidar, Michael

    2013-06-23

    In this project fundamental issues related to synthesis of single wall carbon nanotubes (SWNTs), which is relationship between plasma parameters and SWNT characteristics were investigated. Given that among plasma-based techniques arc discharge stands out as very advantageous in several ways (fewer defects, high flexibility, longer lifetime) this techniques warrants attention from the plasma physics and plasma technology standpoint. Both experimental and theoretical investigations of the plasma and SWNTs synthesis were conducted. Experimental efforts focused on plasma diagnostics, measurements of nanostructures parameters, and nanoparticle characterization. Theoretical efforts focused to focus on multi-dimensional modeling of the arc discharge and single wall nanotube synthesis in arc plasmas. It was demonstrated in experiment and theoretically that controlling plasma parameters can affect nanostucture synthesis altering SWNT properties (length and diameter) and leading to synthesis of new structures such as a few-layer graphene. Among clearly identified parameters affecting synthesis are magnetic and electric fields. Knowledge of the plasma parameters and discharge characteristics is crucial for ability to control synthesis process by virtue of both magnetic and electric fields. New graduate course on plasma engineering was introduced into curriculum. 3 undergraduate students were attracted to the project and 3 graduate students (two are female) were involved in the project. Undergraduate student from Historically Black University was attracted and participated in the project during Summer 2010.

  19. Discharge and optical characterizations of nanosecond pulse sliding dielectric barrier discharge plasma for volatile organic compound degradation

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Guo, Lianjie; Shang, Kefeng; Lu, Na; Li, Jie; Wu, Yan

    2017-04-01

    In this work, a nanosecond bipolar pulsed voltage coupled with a negative DC component is employed to generate sliding dielectric barrier discharge (DBD) plasma in a three-electrode geometry reactor and improve volatile organic compound (VOC) degradation at room temperature. The effects of the bipolar pulsed voltage (U ±pulse) and negative DC voltage (U ‑DC) on the discharge characteristic, optical characteristic, plasma gas temperature (T gas), and vibrational temperature (T vib) are discussed. The horizontal distribution characteristics of the N2(C3Πu  →  B3Πg) emission intensity, T gas, and T vib are also investigated to understand the propagation mechanism of sliding DBD along the dielectric surface. The experimental results reveal that a negative DC component applied to a third electrode can extend the plasma extension region, indicating that the gas ionization is ignited by the nanosecond high-voltage pulse, while charge drift is forced by the surface potential difference caused by the negative high-voltage DC. The T gas is measured by optical emission spectroscopy related to the rotational bands of N2(C3 Πu  →  B3Πg), and is approximately 375  ±  5 K under the condition of U ±pulse  =  20 kV and U ‑DC  =  ‑20 kV. Compared with typical surface DBD plasma, sliding DBD plasma is quasi-diffusive and distributed more uniformly within the whole discharge gap. Furthermore, both surface DBD and sliding DBD are used for removing toluene from flowing air. It is found that sliding DBD has higher toluene degradation efficiency and energy yield than surface DBD when they are excited by the positive pulsed voltage (U +pulse).

  20. Study of the operational properties of the Capillary Plasma Electrode (CPE) discharges

    NASA Astrophysics Data System (ADS)

    Lopez, Jose; Jacome, David; Zhu, Wei-Dong; Figus, Margaret; Becker, Kurt H.

    2009-03-01

    Various approaches have been pursued to create stable atmospheric pressure discharges by extending the lifetime of the diffuse phase of the discharge to hundreds of microseconds. Previous research showed that the stability of the diffuse mode is dependent on the frequency (in the kHz range), gas type power, mode of the excitation, and geometrical confinement. Some of the most promising approaches are based on the recognition of the arc formation in high-pressure plasmas can be avoided and stable high-pressure plasma can be generated and maintained when the plasma are spatially constricted to the dimensions of tens to hundreds of microns. The Capillary Plasma Electrode (CPE) discharge is stable to produce stable atmospheric pressure nonequilibrium plasma. The CPE is similar in design to the Barrier Electrode Discharge, but has perforated dielectrics. The configuration, aside from exhibiting a diffuse mode of operation, also exhibits the so-called ``capillary jet'' mode, in which the capillaries “turn on” and a bright plasma jet emerges from the capillaries. The capillary jets from adjacent capillaries overlap so that the discharge appears uniform when the electrode contains an array of holes. There appears to be a threshold frequency for the capillary jet formation, which is strongly dependent on the L/D ratio of the capillaries, where D is diameter of the capillary and L its length. However, the operating principles and basic properties of this behavior are not well understood. The current work explores these modes of operations of the CPE by characterizing the electrical and optical emission properties of this discharge by examining a multi-hole discharge as well as a single capillary discharge reactor.

  1. Bacterial Inactivation of Wound Infection in a Human Skin Model by Liquid-Phase Discharge Plasma

    PubMed Central

    Kim, Paul Y.; Kim, Yoon-Sun; Koo, Il Gyo; Jung, Jae Chul; Kim, Gon Jun; Choi, Myeong Yeol; Yu, Zengqi; Collins, George J.

    2011-01-01

    Background We investigate disinfection of a reconstructed human skin model contaminated with biofilm-formative Staphylococcus aureus employing plasma discharge in liquid. Principal Findings We observed statistically significant 3.83-log10 (p<0.001) and 1.59-log10 (p<0.05) decreases in colony forming units of adherent S. aureus bacteria and 24 h S. aureus biofilm culture with plasma treatment. Plasma treatment was associated with minimal changes in histological morphology and tissue viability determined by means of MTT assay. Spectral analysis of the plasma discharge indicated the presence of highly reactive atomic oxygen radicals (777 nm and 844 nm) and OH bands in the UV region. The contribution of these and other plasma-generated agents and physical conditions to the reduction in bacterial load are discussed. Conclusions These findings demonstrate the potential of liquid plasma treatment as a potential adjunct therapy for chronic wounds. PMID:21897870

  2. Formation of positive ions in hydrocarbon containing dielectric barrier discharge plasmas

    NASA Astrophysics Data System (ADS)

    Mihaila, Ilarion; Pohoata, Valentin; Jijie, Roxana; Nastuta, Andrei Vasile; Rusu, Ioana Alexandra; Topala, Ionut

    2016-12-01

    Low temperature atmospheric pressure plasma devices are suitable experimental solutions to generate transitory molecular environments with various applications. In this study we present experimental results regarding the plasma chemistry of dielectric barrier discharges (DBD) in helium - hydrogen (0.1%) - hydrocarbons (1.2%) mixtures. Four types of hydrocarbon gases were studied: methane (CH4), ethane (C2H6), propane (C3H8), and butane (C4H10). Discharge diagnosis and monitoring was assured by electrical measurements and optical emission spectroscopy. Molecular beam mass spectrometry is engaged to sample positive ions populations from two different plasma sources. Dissociation and generation of higher-chain and cyclic (aromatic) hydrocarbons were discussed as a function of feed gas and discharge geometry. We found a strong influence of these parameters on both molecular mass distribution and recombination processes in the plasma volume.

  3. Temporal evolution of electron density and temperature in capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Oh, Seong Y.; Uhm, Han S.; Kang, Hoonsoo; Lee, In W.; Suk, Hyyong

    2010-05-01

    Time-resolved spectroscopic measurements of a capillary discharge plasma of helium gas were carried out to obtain detailed information about dynamics of the discharge plasma column, where the fast plasma dynamics is determined by the electron density and temperature. Our measurements show that the electron density of the capillary plasma column increases sharply after gas breakdown and reaches its peak of the order of 1018 cm-3 within less than 100 ns, and then it decreases as time goes by. The result indicates that a peak electron density of 2.3×1018 cm-3 occurs about 65 ns after formation of the discharge current, which is ideal for laser wakefield acceleration experiments reported by Karsch et al. [New J. Phys. 9, 415 (2007)].

  4. Experimental study of low-temperature plasma of electrical discharges with liquid electrodes

    NASA Astrophysics Data System (ADS)

    Zheltukhin, Viktor; Gaisin, Almaz

    2016-09-01

    Results of the experimental research of discharge between the liquid jet cathode (LJC) and the metal anode are presented. The discharge was studied over the voltage range U = 100 - 600 V, discharge current range I = 0 . 1 - 0 . 25 A, external pressure range P =105 Pa, discharge power Pd = 10 - 150 W. We used the techniques of infrared thermography and spectral measurements. Schlieren's photography is applied for describing the processes in liquid and gas phase. Results of the experimental researches of discharge current-voltage characteristic (CVC), the surface temperature distribution both on the LJC and the metal anode, a spectral measurements are showed. Effects of action both of breakdown and discharge on the jet flow as well as on the air flow near the discharge are described. It is found that the discharge CVC has an ascending behavior due to increase of plasma current density. The discharge is generated on the borders between the LJC and the metal anode as well as along the LJC misshaping this one. It is established that both the convection streams and an electrolyte drops are formed during the discharge burn. It is found that the discharge temperature in the vicinity of electrode surface reaches T 348 K. The work was funded by RFBR, according to the research projects No.,14-01-0755.

  5. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    NASA Astrophysics Data System (ADS)

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-01

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  6. Treatment Characteristics of Polysaccharides and Endotoxin Using Oxygen Plasma Produced by RF Discharge

    SciTech Connect

    Kitazaki, Satoshi; Hayashi, Nobuya; Goto, Masaaki

    2010-10-13

    Treatment of polysaccharides and endotoxin were attempted using oxygen plasma produced by RF discharge. Oxygen radicals observed by optical light emission spectra are factors of decomposition of polysaccharides and endotoxin. Fourier transform infrared spectra indicate that most of chemical bonds in the polysaccharides are dissociated after irradiation of the oxygen plasma. Also, the decomposition rate of endotoxin was approximately 90% after irradiation of the oxygen plasma for 180 min.

  7. Thermal behavior of bovine serum albumin after exposure to barrier discharge helium plasma jet

    NASA Astrophysics Data System (ADS)

    Jijie, R.; Pohoata, V.; Topala, I.

    2012-10-01

    Non-thermal plasma jets at atmospheric pressure are useful tools nowadays in plasma medicine. Various applications are tested such as cauterization, coagulation, wound healing, natural and artificial surfaces decontamination, and sterilization. In order to know more about the effects of gas plasma on biological supramolecules, we exposed protein powders to a barrier discharge helium plasma jet. Then, spectroscopic investigations were carried out in order to obtain information on protein secondary, tertiary, and quaternary structures. We obtained a reduction of the protein alpha-helix content after the plasma exposure and a different behavior, for both thermal denaturation/renaturation kinetics and thermal aggregation process.

  8. Effect of Electron Energy Distribution on the Hysteresis of Plasma Discharge: Theory, Experiment, and Modeling

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2016-09-01

    Hysteresis, which is the history dependence of physical systems, indicates that there are more-than-two stable points in a given condition, and it has been considered to one of the most important topics in fundamental physics. Recently, the hysteresis of plasma has become a focus of research because stable plasma operation is very important for fusion reactors, bio-medical plasmas, and industrial plasmas for nano-device fabrication process. Interestingly, the bi-stability characteristics of plasma with a huge hysteresis loop have been observed in inductive discharge plasmas Because hysteresis study in such plasmas can provide a universal understanding of plasma physics, many researchers have attempted experimental and theoretical studies. Despite long plasma research, how this plasma hysteresis occurs remains an unresolved question in plasma physics. Here, we report theory, experiment, and modeling of the hysteresis. It was found experimentally and theoretically that evolution of the electron energy distribution (EED) makes a strong plasma hysteresis. In Ramsauer and non-Ramsauer gas experiments, it was revealed that the plasma hysteresis is observed only at high pressure Ramsauer gas where the EED deviates considerably from a Maxwellian shape. This hysteresis was presented in the plasma balance model where the EED is considered. Because electrons in plasmas are usually not in a thermal equilibrium, this EED-effect can be regarded as a universal phenomenon in plasma physics. This research was partially supported by Korea Research Institute of Standard and Science.

  9. Magnetron cathodes in plasma electrode Pockels cells

    DOEpatents

    Rhodes, M.A.

    1995-04-25

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal. 5 figs.

  10. Magnetron cathodes in plasma electrode pockels cells

    DOEpatents

    Rhodes, Mark A.

    1995-01-01

    Magnetron cathodes, which produce high current discharges, form greatly improved plasma electrodes on each side of an electro-optic crystal. The plasma electrode has a low pressure gas region on both sides of the crystal. When the gas is ionized, e.g., by a glow discharge in the low pressure gas, the plasma formed is a good conductor. The gas electrode acts as a highly uniform conducting electrode. Since the plasma is transparent to a high energy laser beam passing through the crystal, the plasma is transparent. A crystal exposed from two sides to such a plasma can be charged up uniformly to any desired voltage. A typical configuration utilizes helium at 50 millitorr operating. pressure and 2 kA discharge current. The magnetron cathode produces a more uniform plasma and allows a reduced operating pressure which leads to lower plasma resistivity and a more uniform charge on the crystal.

  11. Dust particle circulation and vortices in a dc glow discharge dusty plasma

    NASA Astrophysics Data System (ADS)

    Kish, Ayden; Thomas, Edward

    2016-10-01

    Complex, or dusty, plasmas introduce a new charged species - dust grains of up to a few microns in diameter - to the dynamics of a background plasma discharge. While the size of these dust grains allow us to observe many plasma phenomena macroscopically, their presence also results in the generation of other processes that are unique to dusty plasmas. This presentation reports the observations of a recent study of toroidally-shaped dust clouds in a direct-current Argon plasma discharge. These dusty plasma clouds are formed by placing a conducting ring on a lower electrode while generating the plasma using an upper, biased electrode. Dust particles become suspended in the plasma between the two electrodes and, under the correct pressure and discharge conditions, the toroidally-shaped cloud is formed. This work reports on a variety of experimental configurations used to generate the clouds, measurements of particle flow and rotation using particle image velocimetry (PIV), and initial characterization of the plasma conditions that lead to the formation of these structures. Auburn University Undergraduate Research Fellowship and U.S. Department of Energy Grant Number DE-SC0010485.

  12. Experimental study of a very high frequency, 162 MHz, segmented electrode, capacitively coupled plasma discharge

    NASA Astrophysics Data System (ADS)

    Sirse, Nishant; Harvey, Cleo; Gaman, Cezar; Ellingboe, Bert

    2016-09-01

    Radio-frequency capacitively coupled plasma (CCP) discharge operating at a very high frequency, 30-300 MHz, offers many advantages over standard 13.56 MHz CCP. However, there is a limited flexibility on the choice of driving frequency and substrate size due to plasma non-uniformity caused by the standing wave effect and edge effect. To overcome this issue segmented electrode CCP's are proposed and researched. Despite its numerous advantages the power coupling mechanism and plasma chemistry in this type of discharge are not fully understood due to lack of experimental data. In this paper, we present the experimental study of a segmented electrode, 3x4 tile array (10x10 cm square tile with 1 cm tile-to-tile separation), CCP discharge driven at 162 MHz. We measured plasma uniformity and gas temperature using hairpin probe and optical emission spectroscopy respectively. A homemade RF compensated Langmuir probe is employed to measure the Electron Energy Distribution Function (EEDF) by second harmonic technique. Energy resolved quadrupole mass spectrometer is utilized to measure the ion energy distribution. Discharge/plasma properties are investigated for several operating conditions and for power coupling mode in both washer board and checker board configuration. The experimental results show that the uniform plasma density can be maintained over a large area along with highly non-equilibrium condition to produce unique gas phase plasma chemistry.

  13. Stable plasma configurations in a cylindrical magnetron discharge

    SciTech Connect

    Levchenko, I.; Romanov, M.; Keidar, M.; Beilis, I. I.

    2004-09-20

    Transition between different plasma configurations is studied in a system with negative biased cylindrical target in crossed ExB fields. It was found that the diffuse plasma torus formed around the cylindrical target in relatively small magnetic field (0.02 T on target surface) changes the shape with magnetic field to form a thin disk with a width lower than 1 cm when target voltage is less than -400 V. The target current decreases sharply when the magnetic field reaches some critical value. When the target voltage exceeds 400 V, the target current increases with the magnetic field and the plasma has always toroidal shape. The plasma behavior can be understood taking in account the interaction of the drift currents and the magnetic field.

  14. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  15. Measurements and Simulations of Surface Dielectric Barrier Discharges Used as Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.

    2012-01-01

    This report is a Ph.D. dissertation performed under NRA cooperative agreement and submitted as part of the final report. Asymmetric surface dielectric barrier discharges (DBDs) have shown promise for use as aerodynamic actuators for active flow control. In this project we studied DBD actuators experimentally and numerically. Our DBDs used a symmetric triangular high voltage waveform to generate plasma in atmospheric pressure air. Time-averaged measurements indicated that the induced force of a single barrier actuator design (one electrode insulated from the plasma) can be increased exponentially above the results of previous studies by decreasing both the length and thickness of the electrode exposed to the plasma. This increased force may allow these devices to control flow separation in a wider range of flow environments. Experiments using an intensified digital camera to examine the plasma on time scales of a few nanoseconds showed that, in addition to the previously-observed filamentary and jet-like plasma structures, discharges with very thin exposed electrodes exhibited a weak but constant plasma immediately adjacent to those electrodes. In double-barrier actuators (both electrodes insulated), decreasing the diameter of the narrower electrode lead to increasing forces, and recorded images showed the simultaneous existence of both filamentary and jet-like plasma structures. The development and application of a time-dependent, two-dimensional computational fluid plasma model has aided in understanding the detailed physics of surface DBDs at all-time scales. For simulated single-barrier discharges, the model qualitatively reproduced the filamentary and jet-like micro-discharge structures. The model was somewhat successful in reproducing the observed characteristics of double-barrier actuators. For both actuator geometries, the model indicated that the majority of the forces induced on the neutral gas occur in between micro-discharges as the plasmas decay.

  16. Research on soft x-rays in high-current plasma-focus discharges and estimation of plasma electron temperature

    NASA Astrophysics Data System (ADS)

    Skladnik-Sadowska, E.; Zaloga, D.; Sadowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Miklaszewski, R.; Paduch, M.; Surala, W.; Zielinska, E.; Tomaszewski, K.

    2016-09-01

    The paper presents results of experimental studies of dense and high-temperature plasmas, which were produced by pulsed high-current discharges within a modernised PF-1000U facility operated at different initial gas conditions, and supplied from a condenser bank which delivered energy of about 350 kJ. The investigated discharges were performed at the initial deuterium filling under pressure of 1.6-2.0 hPa, with or without an additional puffing of pure deuterium (1 cm3, under pressure 0.15 MPa, at instants 1.5-2 ms before the main discharge initiation). For a comparison discharges were also performed at the initial neon filling under pressure of 1.1-1.3 hPa, with or without the addition of deuterium puffing. The recorded discharge current waveforms, laser interferometric images, signals of hard x-rays and fusion neutrons, as well as time-integrated x-ray pinhole images and time-resolved x-ray signals were compared. From a ratio of the x-ray signals recorded behind beryllium filters of different thickness there were estimated values of a plasma electron temperature (T e) in a region at the electrode outlets. For pure deuterium discharges an averaged T e value amounted to 150-170 eV, while for neon discharges with the deuterium puffing it reached 330-880 eV (with accuracy of  ±20%).

  17. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma.

    PubMed

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection.

  18. Low power gas discharge plasma mediated inactivation and removal of biofilms formed on biomaterials.

    PubMed

    Traba, Christian; Chen, Long; Liang, Jun F

    2013-03-20

    The antibacterial activity of gas discharge plasma has been studied for quiet some time. However, high biofilm inactivation activity of plasma was only recently reported. Studies indicate that the etching effect associated with plasmas generated represent an undesired effect, which may cause live bacteria relocation and thus contamination spreading. Meanwhile, the strong etching effects from these high power plasmas may also alter the surface chemistry and affect the biocompatibility of biomaterials. In this study, we examined the efficiency and effectiveness of low power gas discharge plasma for biofilm inactivation and removal. Among the three tested gases, oxygen, nitrogen, and argon, discharge oxygen demonstrated the best anti-biofilm activity because of its excellent ability in killing bacteria in biofilms and mild etching effects. Low power discharge oxygen completely killed and then removed the dead bacteria from attached surface but had negligible effects on the biocompatibility of materials. DNA left on the regenerated surface after removal of biofilms did not have any negative impact on tissue cell growth. On the contrary, dramatically increased growth was found for these cells seeded on regenerated surfaces. These results demonstrate the potential applications of low power discharge oxygen in biofilm treatments of biomaterials and indwelling device decontaminations.

  19. Development of large volume double ring penning plasma discharge source for efficient light emissions.

    PubMed

    Prakash, Ram; Vyas, Gheesa Lal; Jain, Jalaj; Prajapati, Jitendra; Pal, Udit Narayan; Chowdhuri, Malay Bikas; Manchanda, Ranjana

    2012-12-01

    In this paper, the development of large volume double ring Penning plasma discharge source for efficient light emissions is reported. The developed Penning discharge source consists of two cylindrical end cathodes of stainless steel having radius 6 cm and a gap 5.5 cm between them, which are fitted in the top and bottom flanges of the vacuum chamber. Two stainless steel anode rings with thickness 0.4 cm and inner diameters 6.45 cm having separation 2 cm are kept at the discharge centre. Neodymium (Nd(2)Fe(14)B) permanent magnets are physically inserted behind the cathodes for producing nearly uniform magnetic field of ~0.1 T at the center. Experiments and simulations have been performed for single and double anode ring configurations using helium gas discharge, which infer that double ring configuration gives better light emissions in the large volume Penning plasma discharge arrangement. The optical emission spectroscopy measurements are used to complement the observations. The spectral line-ratio technique is utilized to determine the electron plasma density. The estimated electron plasma density in double ring plasma configuration is ~2 × 10(11) cm(-3), which is around one order of magnitude larger than that of single ring arrangement.

  20. Differential Inactivation of Fungal Spores in Water and on Seeds by Ozone and Arc Discharge Plasma

    PubMed Central

    Kang, Min Ho; Pengkit, Anchalee; Choi, Kihong; Jeon, Seong Sil; Choi, Hyo Won; Shin, Dong Bum; Choi, Eun Ha; Uhm, Han Sup; Park, Gyungsoon

    2015-01-01

    Seed sterilization is essential for preventing seed borne fungal diseases. Sterilization tools based on physical technologies have recently received much attention. However, available information is very limited in terms of efficiency, safety, and mode of action. In this study, we have examined antifungal activity of ozone and arc discharge plasma, potential tools for seed sterilization. In our results, ozone and arc discharge plasma have shown differential antifungal effects, depending on the environment associated with fungal spores (freely submerged in water or infected seeds). Ozone inactivates Fusarium fujikuroi (fungus causing rice bakanae disease) spores submerged in water more efficiently than arc discharge plasma. However, fungal spores associated with or infecting rice seeds are more effectively deactivated by arc discharge plasma. ROS generated in water by ozone may function as a powerful fungicidal factor. On the other hand, shockwave generated from arc discharge plasma may have greatly contributed to antifungal effects on fungus associated with rice seeds. In support of this notion, addition of ultrasonic wave in ozone generating water has greatly increased the efficiency of seed disinfection. PMID:26406468