Science.gov

Sample records for low-temperature atomic force

  1. Low temperature corneal laser welding investigated by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-02-01

    The structural modifications in the stromal matrix induced by low-temperature corneal laser welding were investigated by atomic force microscopy (AFM). This procedure consists of staining the wound with Indocyanine Green (ICG), followed by irradiation with a near-infrared laser operated at low-power densities. This induces a local heating in the 55-65 °C range. In welded tissue, extracellular components undergo heat-induced structural modifications, resulting in a joining effect between the cut edges. However, the exact mechanism generating the welding, to date, is not completely understood. Full-thickness cuts, 3.5 mm in length, were made in fresh porcine cornea samples, and these were then subjected to laser welding operated at 16.7 W/cm2 power density. AFM imaging was performed on resin-embedded semi-thin slices once they had been cleared by chemical etching, in order to expose the stromal bulk of the tissue within the section. We then carried out a morphological analysis of characteristic fibrillar features in the laser-treated and control samples. AFM images of control stromal regions highlighted well-organized collagen fibrils (36.2 +/- 8.7 nm in size) running parallel to each other as in a typical lamellar domain. The fibrils exhibited a beaded pattern with a 22-39 nm axial periodicity. Laser-treated corneal regions were characterized by a significant disorganization of the intralamellar architecture. At the weld site, groups of interwoven fibrils joined the cut edges, showing structural properties that were fully comparable with those of control regions. This suggested that fibrillar collagen is not denatured by low-temperature laser welding, confirming previous transmission electron microscopy (TEM) observations, and thus it is probably not involved in the closure mechanism of corneal cuts. The loss of fibrillar organization may be related to some structural modifications in some interfibrillar substance as proteoglycans or collagen VI. Furthermore, AFM

  2. Revealing the hidden atom in graphite by low-temperature atomic force microscopy

    PubMed Central

    Hembacher, Stefan; Giessibl, Franz J.; Mannhart, Jochen; Quate, Calvin F.

    2003-01-01

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for “seeing atoms.” Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom. PMID:14504395

  3. Revealing the hidden atom in graphite by low-temperature atomic force microscopy.

    PubMed

    Hembacher, Stefan; Giessibl, Franz J; Mannhart, Jochen; Quate, Calvin F

    2003-10-28

    Carbon, the backbone material of life on Earth, comes in three modifications: diamond, graphite, and fullerenes. Diamond develops tetrahedral sp3 bonds, forming a cubic crystal structure, whereas graphite and fullerenes are characterized by planar sp2 bonds. Polycrystalline graphite is the basis for many products of everyday life: pencils, lubricants, batteries, arc lamps, and brushes for electric motors. In crystalline form, highly oriented pyrolytic graphite is used as a diffracting element in monochromators for x-ray and neutron scattering and as a calibration standard for scanning tunneling microscopy (STM). The graphite surface is easily prepared as a clean atomically flat surface by cleavage. This feature is attractive and is used in many laboratories as the surface of choice for "seeing atoms." Despite the proverbial ease of imaging graphite by STM with atomic resolution, every second atom in the hexagonal surface unit cell remains hidden, and STM images show only a single atom in the unit cell. Here we present measurements with a low-temperature atomic force microscope with pico-Newton force sensitivity that reveal the hidden surface atom.

  4. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy

    SciTech Connect

    Schwarz, Udo; Albers, Boris J.; Liebmann, Marcus; Schwendemann, Todd C.; Baykara, Mehmet Z.; Heyde, Markus; Salmeron, Miquel; Altman, Eric I.; Schwarz, Udo D.

    2008-02-27

    The authors present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  5. Combined low-temperature scanning tunneling/atomic force microscope for atomic resolution imaging and site-specific force spectroscopy.

    PubMed

    Albers, Boris J; Liebmann, Marcus; Schwendemann, Todd C; Baykara, Mehmet Z; Heyde, Markus; Salmeron, Miquel; Altman, Eric I; Schwarz, Udo D

    2008-03-01

    We present the design and first results of a low-temperature, ultrahigh vacuum scanning probe microscope enabling atomic resolution imaging in both scanning tunneling microscopy (STM) and noncontact atomic force microscopy (NC-AFM) modes. A tuning-fork-based sensor provides flexibility in selecting probe tip materials, which can be either metallic or nonmetallic. When choosing a conducting tip and sample, simultaneous STM/NC-AFM data acquisition is possible. Noticeable characteristics that distinguish this setup from similar systems providing simultaneous STM/NC-AFM capabilities are its combination of relative compactness (on-top bath cryostat needs no pit), in situ exchange of tip and sample at low temperatures, short turnaround times, modest helium consumption, and unrestricted access from dedicated flanges. The latter permits not only the optical surveillance of the tip during approach but also the direct deposition of molecules or atoms on either tip or sample while they remain cold. Atomic corrugations as low as 1 pm could successfully be resolved. In addition, lateral drifts rates of below 15 pm/h allow long-term data acquisition series and the recording of site-specific spectroscopy maps. Results obtained on Cu(111) and graphite illustrate the microscope's performance.

  6. A portable microevaporator for low temperature single atom studies by scanning tunneling and dynamic force microscopy

    NASA Astrophysics Data System (ADS)

    Rust, H.-P.; König, T.; Simon, G. H.; Nowicki, M.; Simic-Milosevic, V.; Thielsch, G.; Heyde, M.; Freund, H.-J.

    2009-11-01

    Here, we present a microevaporator setup for single adatom deposition at low temperature, which is a prerequisite for most single atom studies with scanning probe techniques. The construction of the microevaporator is based on the tungsten filament of a modified halogen lamp, covered with the required adsorbate. Very stable evaporation conditions were obtained, which were controlled by the filament current. The installation of this microevaporator on a manipulator enabled its transportation directly to the sample at the microscope kept at 5 K. In this way, the controlled deposition of Li onto Ag(100), Li, Pd, and Au onto MgO/Ag(001) as well as Au onto alumina/NiAl(110) at low temperature has been performed. The obtained images recorded after the deposition show the presence of single Li/Au atoms on the sample surfaces as a prove for successful dispersion of single atoms onto the sample surface using this technique.

  7. Low temperature ultrahigh vacuum noncontact atomic force microscope in the pendulum geometry.

    PubMed

    Gysin, U; Rast, S; Kisiel, M; Werle, C; Meyer, E

    2011-02-01

    A noncontact atomic force microscope (nc-AFM) operating in magnetic fields up to ±7 T and liquid helium temperatures is presented in this article. In many common AFM experiments the cantilever is mounted parallel to the sample surface, while in our system the cantilever is assembled perpendicular to it; the so called pendulum mode of AFM operation. In this mode measurements employing very soft and, therefore, ultrasensitive cantilevers can be performed. The ultrahigh vacuum conditions allow to prepare and transfer cantilevers and samples in a requested manner avoiding surface contamination. We demonstrate the possibility of nc-AFM and Kelvin force probe microscopy imaging in the pendulum mode. Ultrasensitive experiments on small spin ensembles are presented as well.

  8. Atomic force microscopy and transmission electron microscopy analyses of low-temperature laser welding of the cornea.

    PubMed

    Matteini, Paolo; Sbrana, Francesca; Tiribilli, Bruno; Pini, Roberto

    2009-07-01

    Low-temperature laser welding of the cornea is a technique used to facilitate the closure of corneal cuts. The procedure consists of staining the wound with a chromophore (indocyanine green), followed by continuous wave irradiation with an 810 nm diode laser operated at low power densities (12-16 W/cm(2)), which induces local heating in the 55-65 degrees C range. In this study, we aimed to investigate the ultrastructural modifications in the extracellular matrix following laser welding of corneal wounds by means of atomic force microscopy and transmission electron microscopy. The results evidenced marked disorganization of the normal fibrillar assembly, although collagen appeared not to be denatured under the operating conditions we employed. The mechanism of low-temperature laser welding may be related to some structural modifications of the nonfibrillar extracellular components of the corneal stroma.

  9. A variable-temperature nanostencil compatible with a low-temperature scanning tunneling microscope/atomic force microscope

    SciTech Connect

    Steurer, Wolfram Gross, Leo; Schlittler, Reto R.; Meyer, Gerhard

    2014-02-15

    We describe a nanostencil lithography tool capable of operating at variable temperatures down to 30 K. The setup is compatible with a combined low-temperature scanning tunneling microscope/atomic force microscope located within the same ultra-high-vacuum apparatus. The lateral movement capability of the mask allows the patterning of complex structures. To demonstrate operational functionality of the tool and estimate temperature drift and blurring, we fabricated LiF and NaCl nanostructures on Cu(111) at 77 K.

  10. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces.

    PubMed

    Arima, Eiji; Wen, Huanfei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2016-09-01

    The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

  11. Development of low temperature atomic force microscopy with an optical beam deflection system capable of simultaneously detecting the lateral and vertical forces

    NASA Astrophysics Data System (ADS)

    Arima, Eiji; Wen, Huanfei; Naitoh, Yoshitaka; Li, Yan Jun; Sugawara, Yasuhiro

    2016-09-01

    The atomic force microscopy (AFM) is a very important tool for imaging and investigating the complex force interactions on sample surfaces with high spatial resolution. In the AFM, two types of detection systems of the tip-sample interaction forces have been used: an optical detection system and an electrical detection system. In optical detection systems, such as optical beam deflection system or optical fiber interferometer system, both the lateral and the vertical tip-sample forces can be measured simultaneously. In electrical detection systems, such as qPlus or Kolibri sensors, either the lateral or vertical forces can be measured. Simultaneous measurement of the lateral and vertical interaction forces effectively allows investigation of force interactions because the force is a vector with magnitude and direction. In this study, we developed a low-temperature, frequency-modulation AFM using an optical beam deflection system to simultaneously measure the vertical and lateral forces. In this system, the heat sources, such as a laser diode and a current-to-voltage converter, for measuring the photocurrent of the four-segmented photodiode are located outside the observation chamber to avoid a temperature increase of the AFM unit. The focused optical beam is three-dimensionally adjustable on the back side of the cantilever. We demonstrate low-noise displacement measurement of the cantilever and successful atomic resolution imaging using the vertical and lateral forces at low temperatures.

  12. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range

    NASA Astrophysics Data System (ADS)

    Ćelik, Ümit; Karcı, Özgür; Uysallı, Yiǧit; Özer, H. Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ˜500 μW, and ˜141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  13. Radiation pressure excitation of a low temperature atomic force/magnetic force microscope for imaging in 4-300 K temperature range.

    PubMed

    Çelik, Ümit; Karcı, Özgür; Uysallı, Yiğit; Özer, H Özgür; Oral, Ahmet

    2017-01-01

    We describe a novel radiation pressure based cantilever excitation method for imaging in dynamic mode atomic force microscopy (AFM) for the first time. Piezo-excitation is the most common method for cantilever excitation, however it may cause spurious resonance peaks. Therefore, the direct excitation of the cantilever plays a crucial role in AFM imaging. A fiber optic interferometer with a 1310 nm laser was used both for the excitation of the cantilever at the resonance and the deflection measurement of the cantilever in a commercial low temperature atomic force microscope/magnetic force microscope (AFM/MFM) from NanoMagnetics Instruments. The laser power was modulated at the cantilever's resonance frequency by a digital Phase Locked Loop (PLL). The laser beam is typically modulated by ∼500 μW, and ∼141.8 nmpp oscillation amplitude is obtained in moderate vacuum levels between 4 and 300 K. We have demonstrated the performance of the radiation pressure excitation in AFM/MFM by imaging atomic steps in graphite, magnetic domains in CoPt multilayers between 4 and 300 K and Abrikosov vortex lattice in BSCCO(2212) single crystal at 4 K for the first time.

  14. Attempts to test an alternative electrodynamic theory of superconductors by low-temperature scanning tunneling and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Peronio, Angelo; Giessibl, Franz J.

    2016-09-01

    We perform an experiment to test between two theories of the electrodynamics of superconductors: the standard London theory and an alternative proposed by J. E. Hirsch [Phys. Rev. B 69, 214515 (2004), 10.1103/PhysRevB.69.214515]. The two alternatives give different predictions with respect to the screening of an electric field by a superconductor, and we try to detect this effect using atomic force microscopy on a niobium sample. We also perform the reverse experiment, where we demonstrate a superconductive tip mounted on a qPlus force sensor. Due to limited accuracy, we are able neither to prove nor to disprove Hirsch's hypothesis. Within our accuracy of 0.17 N/m, the superconductive transition does not alter the atomic-scale interaction between tip and sample.

  15. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    NASA Astrophysics Data System (ADS)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.

  16. Low noise current preamplifier for qPlus sensor deflection signal detection in atomic force microscopy at room and low temperatures

    NASA Astrophysics Data System (ADS)

    Huber, Ferdinand; Giessibl, Franz J.

    2017-07-01

    The resolution of frequency modulation atomic force microscopy is limited by instrumental noise. When using a qPlus sensor, the deflection detector noise is the dominant noise contribution. It can be reduced by improving the preamplifier used to amplify the sensor deflection signal. We present a simple single-stage differential preamplifier which outperforms previous designs known to us by at least a factor of two in the deflection noise density. We show specific versions of this preamplifier to use in ambient conditions, in ultra-high vacuum at room temperature, and at 4.2 K. Furthermore, we compare the thermal peak analysis and the frequency shift noise density method as a means to determine the deflection noise density. We note that this preamplifier can also be used for any current-generating sensors such as other piezoelectric sensors and photodiodes, but, in this paper, we restrict our analysis to qPlus sensors.

  17. Low-temperature forced-air drying of Appalachian hardwoods

    Treesearch

    Donald G. Cuppett; E. Paul Craft

    1975-01-01

    Low-temperature forced-air drying involves drying green lumber in heated buildings with forced-air circulation and partial control of temperature and humidity conditions. The lumber is dried to about 20 percent moisture content at dry-bulb temperatures of 70º to 110ºF and with air velocities of 300 to 600 feet per minute. Equipment, methods, and...

  18. Matrix Isolation of H Atoms at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Khmelenko, V. V.; Lee, D. M.; Vasiliev, S.

    2011-02-01

    The recent history of the matrix isolation of atomic free radicals at low temperatures started with a research program at the US National Bureau of Standards and continued with the important breakthrough at Chernogolovka in Russia where a jet containing atomic free radicals was directed onto the surface of superfluid 4He. The samples collected consisted of gel-like substances made up of molecular nanoclusters, allowing the atomic free radicals to be isolated from one another and studied at 1.3 K. More recently, techniques were developed at Turku University which have been made the region T<1 K accessible for studies of H atoms entrapped in H2 films. Very high concentrations of H atomic free radicals (˜1018-1019 cm-3) have been attained using both the Turku and Chernogolovka methods. A discussion of the most recent experiments at Cornell and Turku will be given. Microwave and mm wave electron paramagnetic resonance techniques have been employed in these experiments. These techniques permitted studies of the exchange tunneling chemical reaction D+HD→H+D2. Diffusion of H atoms through solid H2 proceeds via the reaction H+H2→H2+H, leading to recombination (H+H→H2). Quantum overlap of H atoms is thought to be responsible for exotic behavior of H atoms in solid H2 films below 1 K, including a significant departure from the Boltzmann distribution of the relative populations of the two lowest hyperfine levels of atomic H.

  19. Implementation of Akiyama probe in low temperature magnetic force microscope

    NASA Astrophysics Data System (ADS)

    Sass, Paul; Wu, Weida

    Exotic phenomena often call for high sensitivity scanning probe microscopic techniques working at extremely low temperatures. Specifically, it is of great fundamental interest to detect the weak magnetic signals in a range of interesting systems such as, quantum anomalous Hall, skyrmion, heavy-fermion, and multiferroic systems. To this end, we are developing low temperature magnetic force microscope (MFM) using a self-sensing cantilever called Akiyama-probe (A-probe). The main advantage of this specific probe is its extremely low power-dissipation compared to other self-sensing (e.g. piezoresistive) cantilevers for low temperature application. We will present progress of the implementation of A-probe and preliminary results under various conditions. This work is supported by DOE BES under Award DE-SC0008147.

  20. Thermo-voltage measurements of atomic contacts at low temperature

    PubMed Central

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul

    2016-01-01

    Summary We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = −ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature. PMID:27335765

  1. Thermo-voltage measurements of atomic contacts at low temperature.

    PubMed

    Ofarim, Ayelet; Kopp, Bastian; Möller, Thomas; Martin, León; Boneberg, Johannes; Leiderer, Paul; Scheer, Elke

    2016-01-01

    We report the development of a novel method to determine the thermopower of atomic-sized gold contacts at low temperature. For these measurements a mechanically controllable break junction (MCBJ) system is used and a laser source generates a temperature difference of a few kelvins across the junction to create a thermo-voltage. Since the temperature difference enters directly into the Seebeck coefficient S = -ΔV/ΔT, the determination of the temperature plays an important role. We present a method for the determination of the temperature difference using a combination of a finite element simulation, which reveals the temperature distribution of the sample, and the measurement of the resistance change due to laser heating of sensor leads on both sides next to the junction. Our results for the measured thermopower are in agreement with recent reports in the literature.

  2. Atomic layer deposition of GaN at low temperatures

    SciTech Connect

    Ozgit, Cagla; Donmez, Inci; Alevli, Mustafa; Biyikli, Necmi

    2012-01-15

    The authors report on the self-limiting growth of GaN thin films at low temperatures. Films were deposited on Si substrates by plasma-enhanced atomic layer deposition using trimethylgallium (TMG) and ammonia (NH{sub 3}) as the group-III and -V precursors, respectively. GaN deposition rate saturated at 185 deg. C for NH{sub 3} doses starting from 90 s. Atomic layer deposition temperature window was observed from 185 to {approx}385 deg. C. Deposition rate, which is constant at {approx}0.51 A/cycle within the temperature range of 250 - 350 deg. C, increased slightly as the temperature decreased to 185 deg. C. In the bulk film, concentrations of Ga, N, and O were constant at {approx}36.6, {approx}43.9, and {approx}19.5 at. %, respectively. C was detected only at the surface and no C impurities were found in the bulk film. High oxygen concentration in films was attributed to the oxygen impurities present in group-V precursor. High-resolution transmission electron microscopy studies revealed a microstructure consisting of small crystallites dispersed in an amorphous matrix.

  3. Understanding Atomic-Scale Features of Low Temperature-Relaxation Dynamics in Metallic Glasses.

    PubMed

    Wang, B; Shang, B S; Gao, X Q; Wang, W H; Bai, H Y; Pan, M X; Guan, P F

    2016-12-01

    Being a key feature of a glassy state, low temperature relaxation has important implications on the mechanical behavior of glasses; however, the mechanism of low temperature relaxation is still an open issue, which has been debated for decades. By systematically investigating the influences of cooling rate and pressure on low temperature relaxation in the Zr50Cu50 metallic glasses, it is found that even though pressure does induce pronounced local structural change, the low temperature-relaxation behavior of the metallic glass is affected mainly by cooling rate, not by pressure. According to the atomic displacement and connection mode analysis, we further demonstrate that the low temperature relaxation is dominated by the dispersion degree of fast dynamic atoms rather than the most probable atomic nonaffine displacement. Our finding provides the direct atomic-level evidence that the intrinsic heterogeneity is the key factor that determines the low temperature-relaxation behavior of the metallic glasses.

  4. Low-temperature atomic layer deposition of copper(II) oxide thin films

    SciTech Connect

    Iivonen, Tomi Hämäläinen, Jani; Mattinen, Miika; Popov, Georgi; Leskelä, Markku; Marchand, Benoît; Mizohata, Kenichiro; Kim, Jiyeon; Fischer, Roland A.

    2016-01-15

    Copper(II) oxide thin films were grown by atomic layer deposition (ALD) using bis-(dimethylamino-2-propoxide)copper [Cu(dmap){sub 2}] and ozone in a temperature window of 80–140 °C. A thorough characterization of the films was performed using x-ray diffraction, x-ray reflectivity, UV‐Vis spectrophotometry, atomic force microscopy, field emission scanning electron microscopy, x-ray photoelectron spectroscopy, and time-of-flight elastic recoil detection analysis techniques. The process was found to produce polycrystalline copper(II) oxide films with a growth rate of 0.2–0.3 Å per cycle. Impurity content in the films was relatively small for a low temperature ALD process.

  5. Atomic species recognition on oxide surfaces using low temperature scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Ma, Zong Min; Shi, Yun Bo; Mu, Ji Liang; Qu, Zhang; Zhang, Xiao Ming; Qin, Li; Liu, Jun

    2017-02-01

    In scanning probe microscopy (SPM), the chemical properties and sharpness of the tips of the cantilever greatly influence the scanning of a sample surface. Variation in the chemical properties of the sharp tip apex can induce transformation of the SPM images. In this research, we explore the relationship between the tip and the structure of a sample surface using dynamic atomic force microscopy (AFM) on a Cu(110)-O surface under ultra-high vacuum (UHV) at low temperature (78 K). We observed two different c(6 × 2) phase types in which super-Cu atoms show as a bright spot when the tip apex is of O atoms and O atoms show as a bright spot when the tip apex is of Cu atoms. We also found that the electronic state of the tip has a serious effect on the resolution and stability of the sample surface, and provide an explanation for these phenomena. This technique can be used to identify atom species on sample surfaces, and represents an important development in the SPM technique.

  6. Nanostructure templating using low temperature atomic layer deposition

    DOEpatents

    Grubbs, Robert K [Albuquerque, NM; Bogart, Gregory R [Corrales, NM; Rogers, John A [Champaign, IL

    2011-12-20

    Methods are described for making nanostructures that are mechanically, chemically and thermally stable at desired elevated temperatures, from nanostructure templates having a stability temperature that is less than the desired elevated temperature. The methods comprise depositing by atomic layer deposition (ALD) structural layers that are stable at the desired elevated temperatures, onto a template employing a graded temperature deposition scheme. At least one structural layer is deposited at an initial temperature that is less than or equal to the stability temperature of the template, and subsequent depositions made at incrementally increased deposition temperatures until the desired elevated temperature stability is achieved. Nanostructure templates include three dimensional (3D) polymeric templates having features on the order of 100 nm fabricated by proximity field nanopatterning (PnP) methods.

  7. Investigation of low temperature atomic hydrogen spin-exchange collisions using a cryogenic hydrogen maser

    SciTech Connect

    Walsworth, R.L.; Mattison, E.M.; Vessot, R.F.C.; Silvera, I.F.

    1993-05-01

    We have used a cryogenic hydrogen maser to study ground state atomic hydrogen spin-exchange collisions at temperatures near 0.5 K. Recent quantum-mechanical treatments of low energy atomic collisions predict that hyperfine-induced spin-exchange frequency shifts will become large at low temperatures, and will affect the performance of new atomic frequency standards such as the cryogenic hydrogen maser and the cesium fountain. We have measured the effects of low temperature spin-exchange collisions on maser line-broadening and frequency, and in particular the hyperfine-induced frequency shift.

  8. Low-temperature linear thermal rectifiers based on Coriolis forces.

    PubMed

    Suwunnarat, Suwun; Li, Huanan; Fleischmann, Ragnar; Kottos, Tsampikos

    2016-04-01

    We demonstrate that a three-terminal harmonic symmetric chain in the presence of a Coriolis force, produced by a rotating platform that is used to place the chain, can produce thermal rectification. The direction of heat flow is reconfigurable and controlled by the angular velocity Ω of the rotating platform. A simple three-terminal triangular lattice is used to demonstrate the proposed principle.

  9. Low-temperature study of the magnetic properties of finite atomic chains

    NASA Astrophysics Data System (ADS)

    Kolesnikov, S. V.

    2016-05-01

    A simple method for the calculation of the spontaneous remagnetization time and magnetization curves of atomic finite-length ferromagnetic chains at a low temperature within the Heisenberg model has been proposed. The applicability limits of the method have been studied. It has been shown that the proposed method gives results being in good agreement with the kinetic Monte Carlo simulation results. Formulas obtained within our model can also be used to determine the lower bound for the Curie temperature.

  10. Atomic and Molecular Collisional Radiative Modeling for Spectroscopy of Low Temperature and Magnetic Fusion Plasmas

    SciTech Connect

    Fantz, U.; Wuenderlich, D.

    2011-05-11

    The quantitative analysis of spectroscopic data from low temperature plasmas is strongly supported from collisional radiative (CR) modeling. Low pressure plasmas for basic research in the lab and for industrial use have several aspects in common with the cold edge of magnetic fusion plasmas. On the basis of applications of CR modeling for atomic and molecular hydrogen, molecular nitrogen, and diatomic radicals such as CH and C{sub 2}, the relevance of individual processes for data interpretation is demonstrated for ionizing and recombining plasmas. Examples of such processes are opacity, dissociative excitation, dissociative recombination, mutual neutralization, and energy pooling. It is shown that the benchmark of CR modeling with experimental data can be used to identify problems in the ingoing data set of cross sections and rate coefficients. Using the flexible solver Yacora, the capability of CR modeling of low temperature plasmas is highlighted.

  11. Low-Temperature Atomic Layer Deposition of MoS2 Films.

    PubMed

    Jurca, Titel; Moody, Michael J; Henning, Alex; Emery, Jonathan D; Wang, Binghao; Tan, Jeffrey M; Lohr, Tracy L; Lauhon, Lincoln J; Marks, Tobin J

    2017-04-03

    Wet chemical screening reveals the very high reactivity of Mo(NMe2 )4 with H2 S for the low-temperature synthesis of MoS2 . This observation motivated an investigation of Mo(NMe2 )4 as a volatile precursor for the atomic layer deposition (ALD) of MoS2 thin films. Herein we report that Mo(NMe2 )4 enables MoS2 film growth at record low temperatures-as low as 60 °C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures.

  12. Atomic structure considerations for the low-temperature opacity of Sn

    DOE PAGES

    Colgan, J.; Kilcrease, D. P.; Abdallah, J.; ...

    2017-03-31

    Here, we have begun a preliminary investigation into the opacity of Sn at low temperatures (< 50 eV). The emissivity and opacity of Sn is a crucial factor in determining the utility of Sn in EUV lithography, with numerous industrial implications. To this end, we have been exploring the accuracy of some approximations used in opacity models for the relevant ion stages of Sn (neutral through ~ 18 times ionized). We also find that the use of intermediate-coupling, as compared to full configuration-interaction, is not adequate to obtain accurate line positions of the important bound-bound transitions in Sn. One requiresmore » full configuration-interaction to properly describe the strong mixing between the various n=4 sub-shells that give rise to the Δn= 0 transitions that dominate the opacity spectrum at low temperatures. Furthermore, since calculations that include full configuration-interaction for large numbers of configurations quickly become computationally prohibitive, we have explored hybrid calculations, in which full configuration-interaction is retained for the most important transitions, while intermediate-coupling is employed for all other transitions. After extensive exploration of the atomic structure properties, local-thermodynamic-equilibrium (LTE) opacities are generated using the ATOMIC code at selected temperatures and densities and compared to experiment.« less

  13. Atomic structure considerations for the low-temperature opacity of Sn

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Kilcrease, D. P.; Abdallah, J.; Sherrill, M. E.; Fontes, C. J.; Hakel, P.; Armstrong, G. S. J.

    2017-06-01

    We have begun a preliminary investigation into the opacity of Sn at low temperatures (< 50 eV). The emissivity and opacity of Sn is a crucial factor in determining the utility of Sn in EUV lithography, with numerous industrial implications. To this end, we have been exploring the accuracy of some approximations used in opacity models for the relevant ion stages of Sn (neutral through ∼ 18 times ionized). We find that the use of intermediate-coupling, as compared to full configuration-interaction, is not adequate to obtain accurate line positions of the important bound-bound transitions in Sn. One requires full configuration-interaction to properly describe the strong mixing between the various n = 4 sub-shells that give rise to the Δ n = 0 transitions that dominate the opacity spectrum at low temperatures. Since calculations that include full configuration-interaction for large numbers of configurations quickly become computationally prohibitive, we have explored hybrid calculations, in which full configuration-interaction is retained for the most important transitions, while intermediate-coupling is employed for all other transitions. After extensive exploration of the atomic structure properties, local-thermodynamic-equilibrium (LTE) opacities are generated using the ATOMIC code at selected temperatures and densities and compared to experiment.

  14. An atomically controlled Si film formation process at low temperatures using atmospheric-pressure VHF plasma

    NASA Astrophysics Data System (ADS)

    Yasutake, K.; Kakiuchi, H.; Ohmi, H.; Inagaki, K.; Oshikane, Y.; Nakano, M.

    2011-10-01

    To grow epitaxial Si films with atomic- and electronic-level perfection, a high-temperature chemical vapor deposition (CVD) process (>1000 °C) has been generally employed. To reduce the growth temperature below 600 °C but keeping a high deposition rate, other energy sources than thermal heating are required. Atmospheric pressure plasma CVD (AP-PCVD) is considered to be suitable for fabricating high-quality films at high deposition rates due both to the high radical density and to the low ion bombardment against the film surface, because the collision frequency among ions and neutral atoms is high. The present study focuses on the low-temperature growth of epitaxial Si, and experimentally demonstrates that AP-PCVD is capable of growing epitaxial Si films with high perfection applicable for semiconductor devices. It is found that the pre-growth cleaning of the Si surface by H2 AP plasma is effective to grow high-purity Si films, and that the exposure of a film-growing surface to AP plasma during growth is important to form particle-free and defect-free Si films. From the experimental results and the first-principles molecular dynamics simulations of surface atomic reactions, it can be mentioned that both H atoms in the AP plasma and high-density He atoms having thermal kinetic energy contribute to the reduction of growth temperature by supplying considerable energy to the surface.

  15. Atomistic study of xenon crystal growth via low-temperature atom beam deposition

    NASA Astrophysics Data System (ADS)

    Totò, Nicola; Schön, Christian; Jansen, M.

    2010-09-01

    We studied theoretically the deposition of Xe atoms on a sapphire substrate and the subsequent growth of ordered Xe phases via the low-temperature atom beam deposition method. This chemical synthesis method [D. Fischer and M. Jansen, J. Am. Chem. Soc. 41, 1755 (2002)10.1002/1521-3773(20020517)41:10<1755::AID-ANIE1755>3.0.CO;2-C] is particularly suitable for synthesizing metastable solid compounds. The modeling procedure consisted of several steps, where we used empirical potentials to model the interactions within the substrate, the Xe-Xe interactions in the gas phase and the solid, and the interactions between the Xe atoms and the substrate. In a first step, we established that under the experimental conditions, no Xe clusters formed in the gas phase, and thus the deposition could be described by the adsorption of single Xe atoms on the substrate at low temperatures. Next, we simulated the Xe deposition process and we studied the growth mode depending on various synthesis parameters such as the deposition rate and the temperature of the substrate. Finally, the deposited Xe layers were tempered and the structure of the resulting compound was analyzed. We studied the establishment of locally ordered regions as a function of time, both during the deposition and the tempering. We observed that the final configuration was always crystalline, although defects such as stacking faults and dislocations were likely to form. The occurrence of different growth modes and the formation of defects were explained by studying diffusion and adsorption processes on the surface of both the substrate and the depositing phase.

  16. Efficient diffusive mechanisms of O atoms at very low temperatures on surfaces of astrophysical interest.

    PubMed

    Congiu, Emanuele; Minissale, Marco; Baouche, Saoud; Chaabouni, Henda; Moudens, Audrey; Cazaux, Stephanie; Manicò, Giulio; Pirronello, Valerio; Dulieu, François

    2014-01-01

    At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier than hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules. In this paper we investigate O-atom diffusion and reactivity on a variety of astrophysically relevant surfaces (water ice of three different morphologies, silicate, and graphite) in the 6.5-25 K temperature range. Experimental values were used to derive a diffusion law that emphasizes that O atoms diffuse by quantum mechanical tunnelling at temperatures as low as 6.5 K. The rates of diffusion on each surface, based on modelling results, were calculated and an empirical law is given as a function of the surface temperature. The relative diffusion rates are k(H2Oice) > k(sil) > k(graph) > k(expected). The implications of efficient O-atom diffusion over astrophysically relevant time-scales are discussed. Our findings show that O atoms can scan any available reaction partners (e.g., either another H atom, if available, or a surface radical like O or OH) at a faster rate than that of accretion. Also, as dense clouds mature, H2 becomes far more abundant than H and the O : H ratio grows, and the reactivity of O atoms on grains is such that O becomes one of the dominant reactive partners together with H.

  17. A low temperature scanning tunneling microscope for electronic and force spectroscopy.

    PubMed

    Smit, R H M; Grande, R; Lasanta, B; Riquelme, J J; Rubio-Bollinger, G; Agraït, N

    2007-11-01

    In this article, we describe and test a novel way to extend a low temperature scanning tunneling microscope with the capability to measure forces. The tuning fork that we use for this is optimized to have a high quality factor and frequency resolution. Moreover, as this technique is fully compatible with the use of bulk tips, it is possible to combine the force measurements with the use of superconductive or magnetic tips, advantageous for electronic spectroscopy. It also allows us to calibrate both the amplitude and the spring constant of the tuning fork easily, in situ and with high precision.

  18. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina

    SciTech Connect

    Peterson, Eric J.; DelaRiva, Andrew T.; Lin, Sen; Johnson, Ryan S.; Guo, Hua; Miller, Jeffrey T.; Kwak, Ja Hun; Peden, Charles H.F.; Kiefer, Boris; Allard, Lawrence F.; Ribeiro, Fabio H.; Datye, Abhaya K.

    2014-09-15

    Catalysis by single isolated atoms of precious metals has attracted much recent interest since it promises the ultimate economy in atom efficiency. Previous reports have been confined to reducible oxide supports such as FeOx, TiO₂ or CeO₂. Here we show that isolated Pd atoms can be stabilized on industrially relevant gamma-alumina supports. At low Pd loadings (≤0.5 wt%) these catalysts contain exclusively atomically dispersed Pd species. The addition of lanthanum-oxide to the alumina, long known for its ability to improve alumina stability, is found to also help in the stabilization of isolated Pd atoms. Aberration-corrected scanning transmission electron microscopy (AC-STEM) confirms the presence of intermingled Pd and La on the gamma-alumina surface. Operando X-ray absorption spectroscopy, performed on Pd/La-alumina and Pd/gamma-alumina (0.5 wt% Pd) demonstrates the presence of catalytically active atomically dispersed ionic Pd in the Pd/La-doped gamma-alumina system. CO oxidation reactivity measurements show onset of catalytic activity at 40 °C, indicating that the ionic Pd species are not poisoned by CO. The reaction order in CO and O₂ is positive, suggesting a reaction mechanism that is different from that on metallic Pd. The catalyst activity is lost if the Pd species are reduced to their metallic form, but the activity can be regenerated by oxidation at 700 °C in air. The high-temperature stability of these ionic Pd species on commercial alumina supports makes this catalyst system of potential interest for low-temperature exhaust treatment catalysts.

  19. Low temperature platinum atomic layer deposition on nylon-6 for highly conductive and catalytic fiber mats

    SciTech Connect

    Mundy, J. Zachary; Shafiefarhood, Arya; Li, Fanxing; Khan, Saad A.; Parsons, Gregory N.

    2016-01-15

    Low temperature platinum atomic layer deposition (Pt-ALD) via (methylcyclopentadienyl)trimethyl platinum and ozone (O{sub 3}) is used to produce highly conductive nonwoven nylon-6 (polyamide-6, PA-6) fiber mats, having effective conductivities as high as ∼5500–6000 S/cm with only a 6% fractional increase in mass. The authors show that an alumina ALD nucleation layer deposited at high temperature is required to promote Pt film nucleation and growth on the polymeric substrate. Fractional mass gain scales linearly with Pt-ALD cycle number while effective conductivity exhibits a nonlinear trend with cycle number, corresponding to film coalescence. Field-emission scanning electron microscopy reveals island growth mode of the Pt film at low cycle number with a coalesced film observed after 200 cycles. The metallic coating also exhibits exceptional resistance to mechanical flexing, maintaining up to 93% of unstressed conductivity after bending around cylinders with radii as small as 0.3 cm. Catalytic activity of the as-deposited Pt film is demonstrated via carbon monoxide oxidation to carbon dioxide. This novel low temperature processing allows for the inclusion of highly conductive catalytic material on a number of temperature-sensitive substrates with minimal mass gain for use in such areas as smart textiles and flexible electronics.

  20. Atomistic modeling of the low-temperature atom-beam deposition of magnesium fluoride.

    PubMed

    Neelamraju, Sridhar; Schön, Johann Christian; Jansen, Martin

    2015-02-02

    We model the deposition and growth of MgF(2) on a sapphire substrate as it occurs in a low-temperature atom-beam-deposition experiment. In the experiment, an (X-ray) amorphous film of MgF(2) is obtained at low temperatures of 170-180 K, and upon heating, this transforms to the expected rutile phase via the CaCl(2)-type structure. We confirm this from our simulations and propose a mechanism for this transformation. The growth process is analyzed as a function of the synthesis parameters, which include the substrate temperature, deposition rate of clusters, and types of clusters deposited. Upon annealing an initially amorphous deposit, we observe the formation of two competing nanocrystalline modifications during this process, which exhibit the CaCl(2) and CdI(2) structure types, respectively. We argue that this joint growth of the two nanocrystalline polymorphs stabilizes the kinetically unstable CaCl(2)-type structure on the macroscopic level long enough to be observed in the experiment.

  1. Atomic Force Microscope

    SciTech Connect

    Day, R.D.; Russell, P.E.

    1988-12-01

    The Atomic Force Microscope (AFM) is a recently developed instrument that has achieved atomic resolution imaging of both conducting and non- conducting surfaces. Because the AFM is in the early stages of development, and because of the difficulty of building the instrument, it is currently in use in fewer than ten laboratories worldwide. It promises to be a valuable tool for obtaining information about engineering surfaces and aiding the .study of precision fabrication processes. This paper gives an overview of AFM technology and presents plans to build an instrument designed to look at engineering surfaces.

  2. Tunnelling in low-temperature hydrogen-atom and proton transfers

    NASA Astrophysics Data System (ADS)

    Arnaut, Luis G.; Formosinho, Sebastião J.; Barroso, Monica

    2006-04-01

    The reaction path of the interacting-state model with the Lippincott-Schroeder potential for hydrogen bonds, is used in transition-state theory calculations with the semiclassical correction for tunnelling (LS-ISM/scTST) to estimate proton and hydrogen-atom transfer rates at low temperatures. Down to 100 K, the semiclassical correction leads to semi-empirical rates and isotope effects that are in good agreement with the thermal tautomerism of porphine, and the excited-state tautomerisms of salicylideneanilines and 2-(2'-hydroxyphenyl)benzoxazole. For lower temperatures, the tunnelling corrections become extremely high and unreliable. It is shown that the permeability of an Eckart barrier fitted to the curvature of the LS-ISM reaction path leads to good estimates of these reaction rates down to 2 K.

  3. Tunneling stabilized magnetic force microscopy; Prospects for low temperature applications to superconductors

    SciTech Connect

    Moreland, J.; Rice, P. , Boulder, CO . Electromagnetic Technology Div.)

    1991-03-01

    The authors of this paper demonstrate an imaging technique referred to as tunneling stabilized magnetic force microscopy or TSMFM. TSMFM is performed using a scanning tunneling microscope (STM) with a flexible magnetic, tunneling tip in place of the usual rigid tunneling tip. TSMFM images are therefore combinations of topography and the magnetic forces between the tip and the sample. Room temperature TSMFM images of magnetic bit tracks on a hard disk have 100 nm resolution and are comparable to Bitter patterns made using a ferrofluid. We have built a low temperature STM with the hope of getting TSMFM images of the flux lattice in superconductors. Preliminary TSMFM images of a YBa{sub 2}Cu{sub c}O{sub x} (YBCO) film (T{sub c} {minus} 88 K) in a 5Q mT field show that relatively large magnetic forces are acting on the flexible tip while scanning at 48 K.

  4. Low Temperature Plasma Surface Interactions: Atomic Layer Etching And Atmospheric Pressure Plasma Jet Modification Of Biomaterials

    NASA Astrophysics Data System (ADS)

    Oehrlein, Gottlieb

    2013-09-01

    Control of plasma-surface interactions is essential for successful application of low temperature plasma to materials processing. We review work performed in our laboratory in two areas: First, low pressure plasma surface interaction mechanisms aimed at achieving atomic precision in etching materials in the semiconductor industry. We discuss sequential reactions of surface passivation followed by directional low energy ion attack for ``volatile product'' removal to establish for what conditions self-limiting behavior required for Atomic Layer Etching (ALE) can be established using prototypical SiO2 -Si/fluorocarbon-Ar materials/etching systems. Second, studies of plasma-surface interactions related to application of a non-equilibrium atmospheric pressure plasma jet (APPJ) for modification of biomaterials are discussed. Changes in surface chemistry/biological activity of lipopolysaccharide (LPS) exposed to the APPJ plume/effluent in a controlled environment are reviewed. The results clarify how jet chemistry and interactions of plasma with the environment impact the consequences of APPJ-biomaterial-surface interactions. Based on collaborations with D. Metzler, S. Engelmann, R. Bruce, E. Joseph, E. Bartis, C. Hart, Q.-Y. Yang, J. Seog, T.-Y. Chung, H.-W. Chang, and D.B. Graves. We gratefully acknowledge funding from US Department of Energy (DE-SC0005105; DE-SC0001939) and National Science Foundation (CBET-1134273; PHY-1004256).

  5. Low temperature temporal and spatial atomic layer deposition of TiO{sub 2} films

    SciTech Connect

    Aghaee, Morteza Maydannik, Philipp S.; Johansson, Petri; Kuusipalo, Jurkka; Creatore, Mariadriana; Homola, Tomáš; Cameron, David C.

    2015-07-15

    Titanium dioxide films were grown by atomic layer deposition (ALD) using titanium tetraisopropoxide as a titanium precursor and water, ozone, or oxygen plasma as coreactants. Low temperatures (80–120 °C) were used to grow moisture barrier TiO{sub 2} films on polyethylene naphthalate. The maximum growth per cycle for water, ozone, and oxygen plasma processes were 0.33, 0.12, and 0.56 Å/cycle, respectively. X-ray photoelectron spectrometry was used to evaluate the chemical composition of the layers and the origin of the carbon contamination was studied by deconvoluting carbon C1s peaks. In plasma-assisted ALD, the film properties were dependent on the energy dose supplied by the plasma. TiO{sub 2} films were also successfully deposited by using a spatial ALD (SALD) system based on the results from the temporal ALD. Similar properties were measured compared to the temporal ALD deposited TiO{sub 2}, but the deposition time could be reduced using SALD. The TiO{sub 2} films deposited by plasma-assisted ALD showed better moisture barrier properties than the layers deposited by thermal processes. Water vapor transmission rate values lower than 5 × 10{sup −4} g day{sup −1} m{sup −2} (38 °C and 90% RH) was measured for 20 nm of TiO{sub 2} film deposited by plasma-assisted ALD.

  6. Native gallium adatoms discovered on atomically-smooth gallium nitride surfaces at low temperature.

    PubMed

    Alam, Khan; Foley, Andrew; Smith, Arthur R

    2015-03-11

    In advanced compound semiconductor devices, such as in quantum dot and quantum well systems, detailed atomic configurations at the growth surfaces are vital in determining the structural and electronic properties. Therefore, it is important to investigate the surface reconstructions in order to make further technological advancements. Usually, conventional semiconductor surfaces (e.g., arsenides, phosphides, and antimonides) are highly reactive due to the existence of a high density of group V (anion) surface dangling bonds. However, in the case of nitrides, group III rich growth conditions in molecular beam epitaxy are usually preferred leading to group III (Ga)-rich surfaces. Here, we use low-temperature scanning tunneling microscopy to reveal a uniform distribution of native gallium adatoms with a density of 0.3%-0.5% of a monolayer on the clean, as-grown surface of nitrogen polar GaN(0001̅) having the centered 6 × 12 reconstruction. Unseen at room temperature, these Ga adatoms are strongly bound to the surface but move with an extremely low surface diffusion barrier and a high density saturation coverage in thermodynamic equilibrium with Ga droplets. Furthermore, the Ga adatoms reveal an intrinsic surface chirality and an asymmetric site occupation. These observations can have important impacts in the understanding of gallium nitride surfaces.

  7. Low temperature removal of surface oxides and hydrocarbons from Ge(100) using atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Walker, M.; Tedder, M. S.; Palmer, J. D.; Mudd, J. J.; McConville, C. F.

    2016-08-01

    Germanium is a group IV semiconductor with many current and potential applications in the modern semiconductor industry. Key to expanding the use of Ge is a reliable method for the removal of surface contamination, including oxides which are naturally formed during the exposure of Ge thin films to atmospheric conditions. A process for achieving this task at lower temperatures would be highly advantageous, where the underlying device architecture will not diffuse through the Ge film while also avoiding electronic damage induced by ion irradiation. Atomic hydrogen cleaning (AHC) offers a low-temperature, damage-free alternative to the common ion bombardment and annealing (IBA) technique which is widely employed. In this work, we demonstrate with X-ray photoelectron spectroscopy (XPS) that the AHC method is effective in removing surface oxides and hydrocarbons, yielding an almost completely clean surface when the AHC is conducted at a temperature of 250 °C. We compare the post-AHC cleanliness and (2 × 1) low energy electron diffraction (LEED) pattern to that obtained via IBA, where the sample is annealed at 600 °C. We also demonstrate that the combination of a sample temperature of 250 °C and atomic H dosing is required to clean the surface. Lower temperatures prove less effective in removal of the oxide layer and hydrocarbons, whilst annealing in ultra-high vacuum conditions only removes weakly bound hydrocarbons. Finally, we examine the subsequent H-termination of an IBA-cleaned sample using XPS, LEED and ultraviolet photoelectron spectroscopy (UPS) in order to examine changes in the work function of Ge(100) upon hydrogenation.

  8. Low temperature diffusion of Li atoms into Si nanoparticles and surfaces

    NASA Astrophysics Data System (ADS)

    Nienhaus, Hermann; Karacuban, Hatice; Krix, David; Becker, Felix; Hagemann, Ulrich; Steeger, Doris; Bywalez, Robert; Schulz, Christof; Wiggers, Hartmut

    2013-07-01

    The diffusion of Li atoms deposited on hydrogen-passivated Si(001) surfaces, chemically oxidized Si(001) surfaces, Si nanoparticle films, and thick SiO2 layers is investigated with electron-beam induced Auger electron spectroscopy. The nanoparticles exhibit an average diameter of 24 nm. The Li metal film is evaporated at a sample temperature below 120 K. The reappearance of the Si substrate Auger signal as a function of time and temperature can be measured to study the Li diffusion into the bulk material. Values for the diffusion barrier of 0.5 eV for H:Si(001) and 0.3 eV for the ox-Si(001) and Si nanoparticle films are obtained. The diffusion of the Li atoms results in the disruption of the crystalline Si surfaces observed with atomic force microscopy. Contrasting to that, the Si nanoparticle films show less disruption by Li diffusion due to filling of the porous films detected with cross section electron microscopy. Silicon dioxide acts as a diffusion barrier for temperatures up to 300 K. However, the electron beam induces a reaction between Li and SiO2, leading to LiOx and elemental Si floating on the surface.

  9. Low-Temperature Plasma-Assisted Atomic Layer Deposition of Silicon Nitride Moisture Permeation Barrier Layers.

    PubMed

    Andringa, Anne-Marije; Perrotta, Alberto; de Peuter, Koen; Knoops, Harm C M; Kessels, Wilhelmus M M; Creatore, Mariadriana

    2015-10-14

    Encapsulation of organic (opto-)electronic devices, such as organic light-emitting diodes (OLEDs), photovoltaic cells, and field-effect transistors, is required to minimize device degradation induced by moisture and oxygen ingress. SiNx moisture permeation barriers have been fabricated using a very recently developed low-temperature plasma-assisted atomic layer deposition (ALD) approach, consisting of half-reactions of the substrate with the precursor SiH2(NH(t)Bu)2 and with N2-fed plasma. The deposited films have been characterized in terms of their refractive index and chemical composition by spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), and Fourier-transform infrared spectroscopy (FTIR). The SiNx thin-film refractive index ranges from 1.80 to 1.90 for films deposited at 80 °C up to 200 °C, respectively, and the C, O, and H impurity levels decrease when the deposition temperature increases. The relative open porosity content of the layers has been studied by means of multisolvent ellipsometric porosimetry (EP), adopting three solvents with different kinetic diameters: water (∼0.3 nm), ethanol (∼0.4 nm), and toluene (∼0.6 nm). Irrespective of the deposition temperature, and hence the impurity content in the SiNx films, no uptake of any adsorptive has been observed, pointing to the absence of open pores larger than 0.3 nm in diameter. Instead, multilayer development has been observed, leading to type II isotherms that, according to the IUPAC classification, are characteristic of nonporous layers. The calcium test has been performed in a climate chamber at 20 °C and 50% relative humidity to determine the intrinsic water vapor transmission rate (WVTR) of SiNx barriers deposited at 120 °C. Intrinsic WVTR values in the range of 10(-6) g/m2/day indicate excellent barrier properties for ALD SiNx layers as thin as 10 nm, competing with that of state-of-the-art plasma-enhanced chemical vapor-deposited SiNx layers of a few hundred

  10. Deep atomic force microscopy

    SciTech Connect

    Barnard, H.; Drake, B.; Randall, C.; Hansma, P. K.

    2013-12-15

    The Atomic Force Microscope (AFM) possesses several desirable imaging features including the ability to produce height profiles as well as two-dimensional images, in fluid or air, at high resolution. AFM has been used to study a vast selection of samples on the scale of angstroms to micrometers. However, current AFMs cannot access samples with vertical topography of the order of 100 μm or greater. Research efforts have produced AFM scanners capable of vertical motion greater than 100 μm, but commercially available probe tip lengths are still typically less than 10 μm high. Even the longest probe tips are below 100 μm and even at this range are problematic. In this paper, we present a method to hand-fabricate “Deep AFM” probes with tips of the order of 100 μm and longer so that AFM can be used to image samples with large scale vertical topography, such as fractured bone samples.

  11. Nucleation and growth of ZnO on PMMA by low-temperature atomic layer deposition

    SciTech Connect

    Napari, Mari Malm, Jari; Lehto, Roope; Julin, Jaakko; Arstila, Kai; Sajavaara, Timo; Lahtinen, Manu

    2015-01-15

    ZnO films were grown by atomic layer deposition at 35 °C on poly(methyl methacrylate) substrates using diethylzinc and water precursors. The film growth, morphology, and crystallinity were studied using Rutherford backscattering spectrometry, time-of-flight elastic recoil detection analysis, atomic force microscopy, scanning electron microscopy, and x-ray diffraction. The uniform film growth was reached after several hundreds of deposition cycles, preceded by the precursor penetration into the porous bulk and island-type growth. After the full surface coverage, the ZnO films were stoichiometric, and consisted of large grains (diameter 30 nm) with a film surface roughness up to 6 nm (RMS). The introduction of Al{sub 2}O{sub 3} seed layer enhanced the initial ZnO growth substantially and changed the surface morphology as well as the crystallinity of the deposited ZnO films. Furthermore, the water contact angles of the ZnO films were measured, and upon ultraviolet illumination, the ZnO films on all the substrates became hydrophilic, independent of the film crystallinity.

  12. Low-Temperature Magnetic Force Microscopy on Single Molecule Magnet-Based Microarrays.

    PubMed

    Serri, Michele; Mannini, Matteo; Poggini, Lorenzo; Vélez-Fort, Emilio; Cortigiani, Brunetto; Sainctavit, Philippe; Rovai, Donella; Caneschi, Andrea; Sessoli, Roberta

    2017-03-08

    The magnetic properties of some single molecule magnets (SMM) on surfaces can be strongly modified by the molecular packing in nanometric films/aggregates or by interactions with the substrate, which affect the molecular orientation and geometry. Detailed investigations of the magnetism of thin SMM films and nanostructures are necessary for the development of spin-based molecular devices, however this task is challenged by the limited sensitivity of laboratory-based magnetometric techniques and often requires access to synchrotron light sources to perform surface sensitive X-ray magnetic circular dichroism (XMCD) investigations. Here we show that low-temperature magnetic force microscopy is an alternative powerful laboratory tool able to extract the field dependence of the magnetization and to identify areas of in-plane and perpendicular magnetic anisotropy in microarrays of the SMM terbium(III) bis-phthalocyaninato (TbPc2) neutral complex grown as nanosized films on SiO2 and perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), and this is in agreement with data extracted from nonlocal XMCD measurements performed on homogeneous TbPc2/PTCDA films.

  13. Atomic Force Microscope Operation

    NASA Technical Reports Server (NTRS)

    2008-01-01

    [figure removed for brevity, see original site] Click on image for animation (large file)

    This animation is a scientific illustration of the operation of NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The AFM is used to image the smallest Martian particles using a very sharp tip at the end of one of eight beams.

    The beam of the AFM is set into vibration and brought up to the surface of a micromachined silicon substrate. The substrate has etched in it a series of pits, 5 micrometers deep, designed to hold the Martian dust particles.

    The microscope then maps the shape of particles in three dimensions by scanning them with the tip.

    At the end of the animation is a 3D representation of the AFM image of a particle that was part of a sample informally called 'Sorceress.' The sample was delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  14. Low-temperature one-atom-layer √{ 7} ×√{ 7}-In phase on Si(111)

    NASA Astrophysics Data System (ADS)

    Mihalyuk, A. N.; Alekseev, A. A.; Hsing, C. R.; Wei, C. M.; Gruznev, D. V.; Bondarenko, L. V.; Matetskiy, A. V.; Tupchaya, A. Y.; Zotov, A. V.; Saranin, A. A.

    2016-07-01

    The Si(111)-hex-√{ 7} ×√{ 3}-In reconstruction has been attracted considerable attention due to its superconducting properties occurring in the one-atom-layer metal film. However, the √{ 7} ×√{ 3} periodicity is a characteristic feature of this surface only at room temperature. Upon cooling to low temperatures the √{ 7} ×√{ 3} structure transforms reversibly to the √{ 7} ×√{ 7} one that should not be ignored while considering superconductivity in this system. In the present study, atomic structure of the low-temperature one-atom-layer Si(111)√{ 7} ×√{ 7}-In phase has been evaluated using scanning tunneling microscopy (STM), low-energy electron diffraction (LEED) and ab initio random structure searching (AIRSS) technique. Basing on the LEED observations, it has been found that the √{ 7} ×√{ 7}-In surface incorporates plausibly eight In atoms per √{ 7} ×√{ 7} unit cell (i.e., 1.14 ML In). AIRSS demonstrates occurrence of a set of various surface structures with very close formation energies. Some of their counterparts can be found in the experimental STM images.

  15. ZnS thin films grown by atomic layer deposition on GaAs and HgCdTe substrates at very low temperature

    NASA Astrophysics Data System (ADS)

    Sun, C. H.; Zhang, P.; Zhang, T. N.; Chen, X.; Chen, Y. Y.; Ye, Z. H.

    2017-09-01

    ZnS films grown on GaAs and HgCdTe substrates by atomic layer deposition (ALD) under very low temperature were investigated in this work. ZnS films were grown under several temperatures lower than 140 °C. The properties of the films were investigated with high-resolution X-ray diffraction (HRXRD), scanning electron microscope (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The results showed the ZnS films were polycrystalline. The growth rate monotonically decreased with temperature, as well as the root mean square (r.m.s) roughness measured by AFM. XPS measurement revealed the films were stoichiometric in Zn and S.

  16. Role of the van der Waals interaction in atom-diatom reaction dynamics at low temperatures

    NASA Astrophysics Data System (ADS)

    Weck, Philippe F.; Balakrishnan, Naduvalath; Brandao, Joao; Rosa, Carla; Wang, Wenli

    2006-03-01

    Quantum-mechanical scattering calculations are reported for the O(^3P)+H2 collision at energies close to the reaction threshold with emphasis on the sensitivity of the reaction dynamics to the van der Waals interaction. The dynamics has been investigated using the lowest ^3 A'' GLDP potential energy surface developed by Rogers et al. [J. Phys. Chem. A 104, 2308 (2000)] and its recent BMS1 and BMS2 extensions by Brandão et al. [J. Chem. Phys. 121, 8861 (2004)] which explicitly include the van der Waals interaction. Quasiclassical trajectory calculations on all three potential energy surfaces are also reported to explore the validity of this method near the reaction threshold and to assess the importance of quantum effects at low temperatures.

  17. Influence of Pt atoms on the low temperature formation of epitaxial Pd monosilicide

    NASA Astrophysics Data System (ADS)

    Kawarada, H.; Mizugaki, K.; Ohdomari, I.

    1985-01-01

    The effect of Pt concentration in Pd thin films on the nucleation and growth of PdSi and PdxPt1-xSi (ternary monosilicide) has been investigated by transmission electron microscopy (TEM). Low concentration of Pt (10 at. %) in Pd film enhances PdSi formation at lower temperature than previously reported. It has been proposed that PdSi formation is governed by its slow nucleation. However, in our studies, the nucleation of PtSi, which is substituted for that of PdSi, triggers the subsequent PdSi growth at low temperatures. High concentration of Pt (55 at. %) in Pd-Pt alloy film lowers the temperature of the phase transformation from metal-rich silicide to monosilicide (PdxPt1-xSi). The temperature is the same as that of PtSi formation. In both cases, the monosilicide layers (about 20 nm) have an epitaxial relationship with (111) Si substrates.

  18. Behavior of 23S metastable state He atoms in low-temperature recombining plasmas

    NASA Astrophysics Data System (ADS)

    Kajita, Shin; Tsujihara, Tadashi; Aramaki, Mitsutoshi; van der Meiden, Hennie; Oshima, Hiroshi; Ohno, Noriyasu; Tanaka, Hirohiko; Yasuhara, Ryo; Akiyama, Tsuyoshi; Fujii, Keisuke; Shikama, Taiichi

    2017-07-01

    We measured the electron density and temperature using laser Thomson scattering and metastable state (23S) of He atoms by laser absorption spectroscopy in the detached recombining plasmas in the divertor simulator NAGDIS-II. Using the measured electron density and temperature combined with the particle trajectory trace simulation, we discussed the behavior of the metastable state He atoms based on comparisons with the experimental results. It is shown that the metastable state atoms are mainly produced in the peripheral region of the plasma column, where the temperature is lower than the central part, and diffused in the vacuum vessel. It was shown that the 0D model is not valid and the transport of the metastable states is to be taken into account for the population distribution of He atoms in the detached plasmas.

  19. Low-temperature SiON films deposited by plasma-enhanced atomic layer deposition method using activated silicon precursor

    SciTech Connect

    Suh, Sungin; Kim, Jun-Rae; Kim, Seongkyung; Hwang, Cheol Seong; Kim, Hyeong Joon; Ryu, Seung Wook; Cho, Seongjae

    2016-01-15

    It has not been an easy task to deposit SiN at low temperature by conventional plasma-enhanced atomic layer deposition (PE-ALD) since Si organic precursors generally have high activation energy for adsorption of the Si atoms on the Si-N networks. In this work, in order to achieve successful deposition of SiN film at low temperature, the plasma processing steps in the PE-ALD have been modified for easier activation of Si precursors. In this modification, the efficiency of chemisorption of Si precursor has been improved by additional plasma steps after purging of the Si precursor. As the result, the SiN films prepared by the modified PE-ALD processes demonstrated higher purity of Si and N atoms with unwanted impurities such as C and O having below 10 at. % and Si-rich films could be formed consequently. Also, a very high step coverage ratio of 97% was obtained. Furthermore, the process-optimized SiN film showed a permissible charge-trapping capability with a wide memory window of 3.1 V when a capacitor structure was fabricated and measured with an insertion of the SiN film as the charge-trap layer. The modified PE-ALD process using the activated Si precursor would be one of the most practical and promising solutions for SiN deposition with lower thermal budget and higher cost-effectiveness.

  20. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices.

    PubMed

    Li, Hui-Ying; Liu, Yun-Fei; Duan, Yu; Yang, Yong-Qiang; Lu, Yi-Nan

    2015-02-10

    Preparation of dense alumina (Al₂O₃) thin film through atomic layer deposition (ALD) provides a pathway to achieve the encapsulation of organic light emitting devices (OLED). Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10(-4) g/(m²·day) under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  1. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    PubMed Central

    Li, Hui-Ying; Liu, Yun-Fei; Duan, Yu; Yang, Yong-Qiang; Lu, Yi-Nan

    2015-01-01

    Preparation of dense alumina (Al2O3) thin film through atomic layer deposition (ALD) provides a pathway to achieve the encapsulation of organic light emitting devices (OLED). Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day) under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED. PMID:28787960

  2. Development of inverted organic solar cells with TiO₂ interface layer by using low-temperature atomic layer deposition.

    PubMed

    Lin, Zhenhua; Jiang, Changyun; Zhu, Chunxiang; Zhang, Jie

    2013-02-01

    Organic solar cells (OSCs) with inverted structure have attracted much attention in recent years because of their improved device air stability due to the use of stable materials for electrodes and interface layers. In this work, TiO(2) films, fabricated using low temperature (e.g., 130-170 °C) atomic layer deposition (ALD) on ITO substrates, are used as electron selective interface layers to investigate inverted OSCs. It is found that though the as-deposited TiO(2) films are high resistive due to the presence of oxygen defects, the defects can be significantly reduced by light soaking. PV cells with 15-nm-thick amorphous-TiO(2) layers fabricated at low temperature show better performance than those with poly crystal TiO(2) with same thickness deposited at 250 °C. The low temperature ALD-grown TiO(2) films are dense, stable and robust with capability of conformal coating on nanostructural surfaces, showing a promising interface layer for achieving air-stable plastic OSCs with roll-to-roll mass production potential.

  3. Vacuum low-temperature superconductivity is the essence of superconductivity - Atomic New Theory

    NASA Astrophysics Data System (ADS)

    Yongquan, Han

    2010-10-01

    The universe when the temperature closest to the Big Bang the temperature should be nuclear. Because, after the big bang, instant formation of atoms, nuclei and electrons between the absolute vacuum, the nucleus can not emit energy. (Radioactive elements, except in fact, radiation Yuan Su limited power emitted) which causes atomic nuclei and external temperature difference are so enormous that a large temperature difference reasons, all external particles became closer to the nucleus, affect the motion of electrons. When the conductor conductivity and thus affect the conductivity, the formation of resistance. Assumption that no particles affect the motion of electrons (except outside the nucleus) to form a potential difference will not change after the vector form, is now talking about the phenomenon of superconductivity, and then to introduce general, the gap between atoms in molecules or between small, valence electron number of high temperature superconducting conductors. This theory of atomic nuclei, but also explain the atomic and hydrogen bombs can remain after an explosion Why can release enormous energy reasons. Can also explain the ``super flow'' phenomenon. natural world. Tel 13241375685

  4. Luminescence of atomic magnesium in inert low temperature solids. I. Argon and krypton

    NASA Astrophysics Data System (ADS)

    McCaffrey, John G.; Ozin, Geoffrey A.

    1994-12-01

    Absorption and luminescence spectra have been recorded in the 200-700 nm range for atomic magnesium isolated in solid Ar and Kr at 12 K. Strong absorptions occurring in the near UV at 285 nm, showing a threefold splitting, are identified as the solid phase equivalent of the gas phase 3p 1P1←3s 1S0 Mg atom transition. Evidence of multiple site trapping of Mg atoms in Ar and Kr matrices formed at 12 K has been obtained from annealing studies in absorption, but especially in luminescence spectroscopy. The single emission band of Mg/Ar, centered at 297.6 nm, exhibits a radiative lifetime of 1.12 ns and is thereby assigned as singlet 3p 1P1→3s 1S0 Mg atom fluorescence. The luminescence exhibited by the Mg/Kr system is more complex than the Mg/Ar system in that a weak visible band at 472 nm occurs as well as several bands in the UV having nanosecond lifetimes. The richness of the Mg/Kr UV spectra has been examined with annealing and time-resolved measurements and identified as arising from multiple trapping site effects, with at least three spectrally distinct sites identified. Efficient resonant radiative energy transfer is demonstrated to be occurring between two of these sites and an average separation between the sensitizor and activator sites is calculated to be 60 nm at a Mg:Ar dilution ratio of 3:104. Annealing of Mg/Kr samples to 45 K was found to remove all but one site which exhibits emission at 297.6 nm and a very weak band at 472.6 nm. The former, having a radiative lifetime of 1.25 ns, is assigned as 3p 1P1→3s 1S0 Mg atom fluorescence; the latter with a radiative lifetime of 8.9 ms, is assigned as 3p 3P1→3s 1S0 Mg atom phosphorescence.

  5. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition

    PubMed Central

    2013-01-01

    We demonstrated a flexible resistive random access memory device through a low-temperature atomic layer deposition process. The device is composed of an HfO2/Al2O3-based functional stack on an indium tin oxide-coated polyethylene terephthalate substrate. After the initial reset operation, the device exhibits a typical bipolar, reliable, and reproducible resistive switching behavior. After a 104-s retention time, the memory window of the device is still in accordance with excellent thermal stability, and a 10-year usage is still possible with the resistance ratio larger than 10 at room temperature and at 85°C. In addition, the operation speed of the device was estimated to be 500 ns for the reset operation and 800 ns for the set operation, which is fast enough for the usage of the memories in flexible circuits. Considering the excellent performance of the device fabricated by low-temperature atomic layer deposition, the process may promote the potential applications of oxide-based resistive random access memory in flexible integrated circuits. PMID:23421424

  6. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2006-08-22

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  7. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V.; Wang, Chengpu

    2004-11-16

    An atomic force microscope is described having a cantilever comprising a base and a probe tip on an end opposite the base; a cantilever drive device connected to the base; a magnetic material coupled to the probe tip, such that when an incrementally increasing magnetic field is applied to the magnetic material an incrementally increasing force will be applied to the probe tip; a moveable specimen base; and a controller constructed to obtain a profile height of a specimen at a point based upon a contact between the probe tip and a specimen, and measure an adhesion force between the probe tip and the specimen by, under control of a program, incrementally increasing an amount of a magnetic field until a release force, sufficient to break the contact, is applied. An imaging method for atomic force microscopy involving measuring a specimen profile height and adhesion force at multiple points within an area and concurrently displaying the profile and adhesion force for each of the points is also described. A microscope controller is also described and is constructed to, for a group of points, calculate a specimen height at a point based upon a cantilever deflection, a cantilever base position and a specimen piezo position; calculate an adhesion force between a probe tip and a specimen at the point by causing an incrementally increasing force to be applied to the probe tip until the probe tip separates from a specimen; and move the probe tip to a new point in the group.

  8. THERMAL REACTIONS OF OXYGEN ATOMS WITH ALKENES AT LOW TEMPERATURES ON INTERSTELLAR DUST

    SciTech Connect

    Ward, Michael D.; Price, Stephen D. E-mail: s.d.price@ucl.ac.uk

    2011-11-10

    Laboratory experiments show that the thermal heterogeneous reactions of oxygen atoms may contribute to the synthesis of epoxides in interstellar clouds. The data set also indicates that the contribution of these pathways to epoxide formation, in comparison to non-thermal routes, is likely to be strongly temperature dependent. Our results indicate that an increased abundance of epoxides, relative to the corresponding aldehydes, could be an observational signature of a significant contribution to molecular oxidation via thermal O atom reactions with alkenes. Specifically surface science experiments show that both C{sub 2}H{sub 4}O and C{sub 3}H{sub 6}O are readily formed from reactions of ethene and propene molecules with thermalized oxygen atoms at temperatures in the range of 12-90 K. It is clear from our experiments that these reactions, on a graphite surface, proceed with significantly reduced reaction barriers compared with those operating in the gas phase. For both the C{sub 2}H{sub 4} + O and the C{sub 3}H{sub 6} + O reactions, the surface reaction barriers we determine are reduced by approximately an order of magnitude compared with the barriers in the gas phase. The modeling of our experimental results, which determines these reaction barriers, also extracts desorption energies and rate coefficients for the title reactions. Our results clearly show that the major product from the O + C{sub 2}H{sub 4} reaction is ethylene oxide, an epoxide.

  9. Low temperature atomic layer deposition of α-Fe2O3

    NASA Astrophysics Data System (ADS)

    Klug, Jeffrey; Proslier, Thomas; Becker, Nicholas; Elam, Jeffrey; Pellin, Michael

    2012-02-01

    There is significant interest in the use of α-Fe2O3 (hematite) as a semiconducting thin film in a variety of applications including solar energy conversion, water oxidation, and gas sensing. In many such applications, devices may depend on non-planar geometries where traditional thin film deposition techniques are limited by line-of-sight constraints. Atomic layer deposition (ALD) is a gas-phase synthesis technique utilizing sequential self-saturating surface chemical reactions to produce uniform coatings with atomic scale control on substrates with arbitrary shape. However, ALD processes explored for Fe2O3 to date generally suffer from either extremely low growth rates, narrow temperature windows for self-saturating growth, or precursors with limited reactivity. In this respect, we will present a detailed study of a new, previously unexplored process for ALD of α-Fe2O3 at technologically relevant temperatures between 200-300^oC. Self-limiting growth at ˜0.7 å/cycle was confirmed via situ quartz crystal microbalance. The results of in situ process characterization and ex situ analysis of film structure, morphology, composition, and electrical properties will be presented.

  10. State-to-state modeling of non equilibrium low-temperature atomic plasmas

    NASA Astrophysics Data System (ADS)

    Bultel, Arnaud; Morel, Vincent; Annaloro, Julien; Druguet, Marie-Claude

    2017-03-01

    The most relevant approach leading to a thorough understanding of the behavior of non equilibrium atomic plasmas is to elaborate state-to-state models in which the mass conservation equation is applied directly to atoms or ions on their excited states. The present communication reports the elaboration of such models and the results obtained. Two situations close to each other are considered. First, the plasmas produced behind shock fronts obtained in ground test facilities (shock tubes) or during planetary atmospheric entries of spacecrafts are discussed. We focused our attention on the nitrogen case for which a complete implementation of the CoRaM-N2 collisional-radiative model has been performed in a steady one-dimensional computation code based on the Rankine-Hugoniot assumptions. Second, the plasmas produced by the interaction between an ultra short laser pulse and a tungsten sample are discussed in the framework of the elaboration of the Laser-Induced Breakdown Spectroscopy (LIBS) technique. In the present case, tungsten has been chosen in the purpose of validating an in situ experimental method able to provide the elemental composition of the divertor wall of a tokamak like WEST or ITER undergoing high energetic deuterium and tritium nuclei fluxes.

  11. Coffee Cup Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  12. Coffee Cup Atomic Force Microscopy

    ERIC Educational Resources Information Center

    Ashkenaz, David E.; Hall, W. Paige; Haynes, Christy L.; Hicks, Erin M.; McFarland, Adam D.; Sherry, Leif J.; Stuart, Douglas A.; Wheeler, Korin E.; Yonzon, Chanda R.; Zhao, Jing; Godwin, Hilary A.; Van Duyne, Richard P.

    2010-01-01

    In this activity, students use a model created from a coffee cup or cardstock cutout to explore the working principle of an atomic force microscope (AFM). Students manipulate a model of an AFM, using it to examine various objects to retrieve topographic data and then graph and interpret results. The students observe that movement of the AFM…

  13. Growing aluminum nitride films by Plasma-Enhanced Atomic Layer Deposition at low temperatures

    NASA Astrophysics Data System (ADS)

    Tarala, V. A.; Altakhov, A. S.; Martens, V. Ya; Lisitsyn, S. V.

    2015-11-01

    Aluminum nitride films have been grown by Plasma-Enhanced Atomic Layer Deposition method. It was found that at temperatures of 250 °C and 280 °C increase of the plasma exposure step duration over 6 s, as well as increase of reactor purge step duration over 1 s does not affect the growth rate, however, it affects the microstructure of the films. It was found that crystalline aluminum nitride films deposit with plasma exposure duration over 10 s and the reactor purging over 10 s. When the temperature drops the increase of reactor purge step duration and plasma exposure step duration over 20 s is required for crystalline AlN film growth.

  14. Improved electrical properties of atomic layer deposited tin disulfide at low temperatures using ZrO2 layer

    NASA Astrophysics Data System (ADS)

    Lee, Juhyun; Lee, Jeongsu; Ham, Giyul; Shin, Seokyoon; Park, Joohyun; Choi, Hyeongsu; Lee, Seungjin; Kim, Juyoung; Sul, Onejae; Lee, Seungbeck; Jeon, Hyeongtag

    2017-02-01

    We report the effect of zirconium oxide (ZrO2) layers on the electrical characteristics of multilayered tin disulfide (SnS2) formed by atomic layer deposition (ALD) at low temperatures. SnS2 is a two-dimensional (2D) layered material which exhibits a promising electrical characteristics as a channel material for field-effect transistors (FETs) because of its high mobility, good on/off ratio and low temperature processability. In order to apply these 2D materials to large-scale and flexible electronics, it is essential to develop processes that are compatible with current electronic device manufacturing technology which should be conducted at low temperatures. Here, we deposited a crystalline SnS2 at 150 °C using ALD, and we then annealed at 300 °C. X-ray diffraction (XRD) and Raman spectroscopy measurements before and after the annealing showed that SnS2 had a hexagonal (001) peak at 14.9° and A1g mode at 313 cm-1. The annealed SnS2 exhibited clearly a layered structure confirmed by the high resolution transmission electron microscope (HRTEM) images. Back-gate FETs with SnS2 channel sandwiched by top and bottom ZrO2 on p++Si/SiO2 substrate were suggested to improve electrical characteristics. We used a bottom ZrO2 layer to increase adhesion between the channel and the substrate and a top ZrO2 layer to improve contact property, passivate surface, and protect from process-induced damages to the channel. ZTZ (ZrO2/SnS2/ZrO2) FETs showed improved electrical characteristics with an on/off ratio of from 0.39×103 to 6.39×103 and a mobility of from 0.0076 cm2/Vs to 0.06 cm2/Vs.

  15. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    SciTech Connect

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  16. Low-temperature roll-to-roll atmospheric atomic layer deposition of Al₂O₃ thin films.

    PubMed

    Ali, Kamran; Choi, Kyung-Hyun

    2014-12-02

    The Al2O3 thin films deposition through conventional ALD systems is a well-established process. The process under low temperatures has been studied by few research groups. In this paper, we report on the detailed study of low-temperature Al2O3 thin films deposited via a unique in-house built system of roll-to-roll atmospheric atomic layer deposition (R2R-AALD) using a multiple-slit gas source head. Al2O3 thin films have been grown on polyethylene terephthalate substrates under a very low-temperature zone of room temperature to 50 °C and working pressure of 750 Torr, which is very near to atmospheric pressure (760 Torr). Al2O3 thin films with superior properties were achieved in the temperature range of the ALD window. An appreciable growth rate of 0.97 Å/cycle was observed for the films deposited at 40 °C. The films have good morphological features with a very low average arithmetic roughness (Ra) of 0.90 nm. The films also showed good chemical, electrical, and optical characteristics. It was observed that the film characteristics improve with the increase in deposition temperature to the range of the ALD window. The fabrication of Al2O3 films was confirmed by X-ray photoelectron spectroscopy (XPS) analysis with the appearance of Al 2p, Al 2s, and O 1s peaks at the binding energies of 74, 119, and 531 eV, respectively. The chemical composition was also supported by the Fourier transform infrared spectroscopy (FTIR). The fabricated Al2O3 films demonstrate good insulating properties and optical transmittance of more than 85% in the visible region. The results state that Al2O3 thin films can be effectively fabricated through the R2R-AALD system at temperatures as low as 40 °C.

  17. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    NASA Astrophysics Data System (ADS)

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Chi, Dongzhi; Bhatia, Charanjit S.

    2014-06-01

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiOx) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiOx films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiOx films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiOx films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiOx has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiOx in the field of high-efficiency silicon wafer solar cells.

  18. Low temperature atomic layer deposited ZnO photo thin film transistors

    SciTech Connect

    Oruc, Feyza B.; Aygun, Levent E.; Donmez, Inci; Biyikli, Necmi; Okyay, Ali K.; Yu, Hyun Yong

    2015-01-01

    ZnO thin film transistors (TFTs) are fabricated on Si substrates using atomic layer deposition technique. The growth temperature of ZnO channel layers are selected as 80, 100, 120, 130, and 250 °C. Material characteristics of ZnO films are examined using x-ray photoelectron spectroscopy and x-ray diffraction methods. Stoichiometry analyses showed that the amount of both oxygen vacancies and interstitial zinc decrease with decreasing growth temperature. Electrical characteristics improve with decreasing growth temperature. Best results are obtained with ZnO channels deposited at 80 °C; I{sub on}/I{sub off} ratio is extracted as 7.8 × 10{sup 9} and subthreshold slope is extracted as 0.116 V/dec. Flexible ZnO TFT devices are also fabricated using films grown at 80 °C. I{sub D}–V{sub GS} characterization results showed that devices fabricated on different substrates (Si and polyethylene terephthalate) show similar electrical characteristics. Sub-bandgap photo sensing properties of ZnO based TFTs are investigated; it is shown that visible light absorption of ZnO based TFTs can be actively controlled by external gate bias.

  19. Excellent c-Si surface passivation by low-temperature atomic layer deposited titanium oxide

    SciTech Connect

    Liao, Baochen; Hoex, Bram; Aberle, Armin G.; Bhatia, Charanjit S.; Chi, Dongzhi

    2014-06-23

    In this work, we demonstrate that thermal atomic layer deposited (ALD) titanium oxide (TiO{sub x}) films are able to provide a—up to now unprecedented—level of surface passivation on undiffused low-resistivity crystalline silicon (c-Si). The surface passivation provided by the ALD TiO{sub x} films is activated by a post-deposition anneal and subsequent light soaking treatment. Ultralow effective surface recombination velocities down to 2.8 cm/s and 8.3 cm/s, respectively, are achieved on n-type and p-type float-zone c-Si wafers. Detailed analysis confirms that the TiO{sub x} films are nearly stoichiometric, have no significant level of contaminants, and are of amorphous nature. The passivation is found to be stable after storage in the dark for eight months. These results demonstrate that TiO{sub x} films are also capable of providing excellent passivation of undiffused c-Si surfaces on a comparable level to thermal silicon oxide, silicon nitride, and aluminum oxide. In addition, it is well known that TiO{sub x} has an optimal refractive index of 2.4 in the visible range for glass encapsulated solar cells, as well as a low extinction coefficient. Thus, the results presented in this work could facilitate the re-emergence of TiO{sub x} in the field of high-efficiency silicon wafer solar cells.

  20. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tseng, Ming-Hung; Yu, Hui-Huan; Chou, Kun-Yi; Jou, Jwo-Huei; Lin, Kung-Liang; Wang, Chin-Chiun; Tsai, Feng-Yu

    2016-07-01

    Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ˜ 10-6 g m-2 d-1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

  1. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.

    PubMed

    Lee, Bo Ram; Sum, Amadeu K

    2015-04-07

    To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

  2. Atomic layer deposition of ultrathin blocking layer for low-temperature solid oxide fuel cell on nanoporous substrate

    SciTech Connect

    Yu, Wonjong; Cho, Gu Young; Noh, Seungtak; Tanveer, Waqas Hassan; Cha, Suk Won; Ji, Sanghoon; An, Jihwan

    2015-01-15

    An ultrathin yttria-stabilized zirconia (YSZ) blocking layer deposited by atomic layer deposition (ALD) was utilized for improving the performance and reliability of low-temperature solid oxide fuel cells (SOFCs) supported by an anodic aluminum oxide substrate. Physical vapor-deposited YSZ and gadolinia-doped ceria (GDC) electrolyte layers were deposited by a sputtering method. The ultrathin ALD YSZ blocking layer was inserted between the YSZ and GDC sputtered layers. To investigate the effects of an inserted ultrathin ALD blocking layer, SOFCs with and without an ultrathin ALD blocking layer were electrochemically characterized. The open circuit voltage (1.14 V) of the ALD blocking-layered SOFC was visibly higher than that (1.05 V) of the other cell. Furthermore, the ALD blocking layer augmented the power density and improved the reproducibility.

  3. Sensing mode atomic force microscope

    DOEpatents

    Hough, Paul V. C.; Wang, Chengpu

    2003-01-01

    An atomic force microscope utilizes a pulse release system and improved method of operation to minimize contact forces between a probe tip affixed to a flexible cantilever and a specimen being measured. The pulse release system includes a magnetic particle affixed proximate the probe tip and an electromagnetic coil. When energized, the electromagnetic coil generates a magnetic field which applies a driving force on the magnetic particle sufficient to overcome adhesive forces exhibited between the probe tip and specimen. The atomic force microscope includes two independently displaceable piezo elements operable along a Z-axis. A controller drives the first Z-axis piezo element to provide a controlled approach between the probe tip and specimen up to a point of contact between the probe tip and specimen. The controller then drives the first Z-axis piezo element to withdraw the cantilever from the specimen. The controller also activates the pulse release system which drives the probe tip away from the specimen during withdrawal. Following withdrawal, the controller adjusts the height of the second Z-axis piezo element to maintain a substantially constant approach distance between successive samples.

  4. Quantum state atomic force microscopy

    DOE PAGES

    Passian, Ali; Siopsis, George

    2017-04-10

    New classical modalities of atomic force microscopy continue to emerge to achieve higher spatial, spectral, and temporal resolution for nanometrology of materials. Here, we introduce the concept of a quantum mechanical modality that capitalizes on squeezed states of probe displacement. We show that such squeezing is enabled nanomechanically when the probe enters the van der Waals regime of interaction with a sample. The effect is studied in the non-contact mode, where we consider the parameter domains characterizing the attractive regime of the probe-sample interaction force.

  5. Atomically resolved force microscopy at room temperature

    SciTech Connect

    Morita, Seizo

    2014-04-24

    Atomic force microscopy (AFM) can now not only image individual atoms but also construct atom letters using atom manipulation method even at room temperature (RT). Therefore, the AFM is the second generation atomic tool following the scanning tunneling microscopy (STM). However the AFM can image even insulating atoms, and also directly measure/map the atomic force and potential at the atomic scale. Noting these advantages, we have been developing a bottom-up nanostructuring system at RT based on the AFM. It can identify chemical species of individual atoms and then manipulate selected atom species to the predesigned site one-by-one to assemble complex nanostructures consisted of multi atom species at RT. Here we introduce our results toward atom-by-atom assembly of composite nanostructures based on the AFM at RT including the latest result on atom gating of nano-space for atom-by-atom creation of atom clusters at RT for semiconductor surfaces.

  6. Rotational scanning atomic force microscopy.

    PubMed

    Ulčinas, A; Vaitekonis, Š

    2017-03-10

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  7. Rotational scanning atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ulčinas, A.; Vaitekonis, Š.

    2017-03-01

    A non-raster scanning technique for atomic force microscopy (AFM) imaging which combines rotational and translational motion is presented. The use of rotational motion for the fast scan axis allows us to significantly increase the scanning speed while imaging a large area (diameter > 30 μm). An image reconstruction algorithm and the factors influencing the resolution of the technique are discussed. The experimental results show the potential of the rotational scanning technique for high-throughput large area AFM investigation.

  8. Low Temperature Atomic Force Microscopy: the Electrostatic Casimir Force Across the Superconducting Phase Transition

    NASA Astrophysics Data System (ADS)

    Dunckle, Christopher Gregory

    Time Reversal can be used to time reverse and propagate the measured scattered wave- forms to a point in both time and space, ideally to a delta function delta( r⃗ )delta(t). This is commonly referred to as time reversal focusing and has led to time reversal being applied in a wide variety of fields such as medicine, communications, nondestructive evaluation (NDE), and seismology. In practice, time reversal is not optimal for generating a delta function focus if certain conditions are not upheld. For time reversal to work perfectly, the following four conditions must be present: (1) one must record for an infinitely long period of time; (2) Green's functions must be assumed to contain infinite bandwidth; (3) attenuation must be absent within the medium; and (4) one must have full coverage of the wavefield. Due to the need for these conditions, much research is being carried out in order to enhance the time reversal process in practice. We introduce deconvolution, a simple and robust approach, in order to calculate an optimal signal for back propagation designed to give an improved focus. We demonstrate experimentally that deconvolution is able to dramatically improve the temporal focus com- pared to time reversal. Through a joint project with Los Alamos National Laboratory, we compared time reversal to deconvolution. The results showed that deconvolution was able to dramatically improve the temporal focus for a source and a receiver which were both located on the surface of our object. We then continued our experimental studies of deconvolution by doing a joint project with researcher Dr. Ernst Niederleithinger from the Federal Institute for Materials Research and Testing (BAM). For this experiment, we placed multiple sources within a concrete block and recorded the source wavefields on the surface with a single re- ceiver. This experiment was designed to further test the robust nature of deconvolution and compare its temporal focusing capability to that of time reversal. All of these experimental studies show that deconvolution was able to improve the temporal focus compared to time reversal. We continued our comparison study between time reversal and deconvolution and demon- strated theoretically, experimentally, and numerically that deconvolution also improves spa- tial focusing. We give a proof explaining why one would expect improved spatial focusing when there is improved temporal focusing for both a acoustic and elastic media. We then demonstrate in our experiments the improved spatial focus achieved using deconvolution by scanning around the source location with a laser vibrometer at the time of focus for an acoustic case. Finally, we use deconvolution to locate synthetic microseismic events to prove numerically that improved temporal focusing leads to improved spatial focusing for both acoustic and elastic media.

  9. Atomic hydrogen for low temperature atomic hydrogen masers and in-vacuum dissociators for VLG-11 series masers

    NASA Technical Reports Server (NTRS)

    Vessot, R. F. C.

    1984-01-01

    The operation of a cryogenically-cooled hydrogen maser using an RF plasma dissociator operating at liquid nitrogen temperature (77K) in confunction with a state selector magnet whose dimensions are suitable for slow atoms is studied. The focusing characteristics for a hexapole state selector magnet with maximum fields at the pole tips, provide a maximum acceptance angle for atoms at the most probable velocity in the beam. By thermally isolating the RF circuitry from the dissociator glassware, only dielectric losses in the glass and the energy coupled to the plasma will result in the boil-off of liquid nitrogen. It is estimated that this is about one watt and thus a loss rate of approximately .022 liters pr hour is anticipated.

  10. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    PubMed Central

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future. PMID:28045075

  11. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing

    NASA Astrophysics Data System (ADS)

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-01

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  12. Low-temperature atomic layer epitaxy of AlN ultrathin films by layer-by-layer, in-situ atomic layer annealing.

    PubMed

    Shih, Huan-Yu; Lee, Wei-Hao; Kao, Wei-Chung; Chuang, Yung-Chuan; Lin, Ray-Ming; Lin, Hsin-Chih; Shiojiri, Makoto; Chen, Miin-Jang

    2017-01-03

    Low-temperature epitaxial growth of AlN ultrathin films was realized by atomic layer deposition (ALD) together with the layer-by-layer, in-situ atomic layer annealing (ALA), instead of a high growth temperature which is needed in conventional epitaxial growth techniques. By applying the ALA with the Ar plasma treatment in each ALD cycle, the AlN thin film was converted dramatically from the amorphous phase to a single-crystalline epitaxial layer, at a low deposition temperature of 300 °C. The energy transferred from plasma not only provides the crystallization energy but also enhances the migration of adatoms and the removal of ligands, which significantly improve the crystallinity of the epitaxial layer. The X-ray diffraction reveals that the full width at half-maximum of the AlN (0002) rocking curve is only 144 arcsec in the AlN ultrathin epilayer with a thickness of only a few tens of nm. The high-resolution transmission electron microscopy also indicates the high-quality single-crystal hexagonal phase of the AlN epitaxial layer on the sapphire substrate. The result opens a window for further extension of the ALD applications from amorphous thin films to the high-quality low-temperature atomic layer epitaxy, which can be exploited in a variety of fields and applications in the near future.

  13. Large-scale soil remediation using low temperature thermal volatilization technology at the Chanute Air Force Base

    SciTech Connect

    Davis, H.A.; Silkebakken, D.M.; Ghosh, S.B.; Beardsley, G.P.

    1995-12-31

    Chanute Air Force Base (AFB) in Rantoul, Illinois, was selected for closure by the Round 1 Base Closure Commission, pursuant to the Base Realignment and Closure (BRAC) Act of 1988. As part of the requirements for base closure, Parsons Engineering Science, Inc. was retained by the Air Force Center for Environmental Excellence (AFCEE) to treat petroleum-contaminated soil using low temperature thermal volatilization (LTTV). Using this technology, over 40,000 tons of fuel contaminated soils were successfully treated using one of the largest transportable LTTV treatment units in the world. The soil treatment system, soil management procedures, cost-effectiveness, and limitations of the use of this system are described in this paper.

  14. Influence of inelastic Rydberg atom-atom collisional process on kinetic and optical properties of low-temperature laboratory and astrophysical plasmas

    NASA Astrophysics Data System (ADS)

    Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatović, Lj M.

    2010-11-01

    Elementary processes in plasma phenomena traditionally attract physicist's attention. The channel of charged-particle formation in Rydberg atom-atom thermal and sub-thermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI). atomic ions - Penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H-, H+, H2, He,He+). Hydrogen-like alkali-metal Lithium (Li, Li+,Li-) and combinations (HeH+, LiH-, LiH+). There is a wide range of plasma parameters in which the Rydberg atoms of the elements mentioned above make the dominant contribution to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg atom-atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modelled as diffusion within the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum. This may lead to anomalies of Rydberg atom spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed Rydberg atom closed to the primary selected one. The Rydberg atoms ionisation theory today makes a valuable contribution in the deterministic and stochastic approaches correlation in atomic physic.

  15. Low-Temperature Atomic Layer Deposition of Crystalline and Photoactive Ultrathin Hematite Films for Solar Water Splitting.

    PubMed

    Steier, Ludmilla; Luo, Jingshan; Schreier, Marcel; Mayer, Matthew T; Sajavaara, Timo; Grätzel, Michael

    2015-12-22

    We developed a low-temperature atomic layer deposition route to deposit phase pure and crystalline hematite (α-Fe2O3) films at 230 °C without the need for postannealing. Homogenous and conformal deposition with good aspect ratio coverage was demonstrated on a nanostructured substrate and analyzed by transmission electron microscopy. These as-deposited α-Fe2O3 films were investigated as photoanodes for photoelectrochemical water oxidation and found to be highly photoactive. Combined with a TiO2 underlayer and a low-cost Ni(OH)2 catalyst, hematite films of less than 10 nm in thickness reached photocurrent densities of 0.3 mA cm(-2) at 1.23 V vs RHE and a photocurrent onset potential of less than 0.9 V vs RHE, previously unseen for films this thin and without high temperature annealing. In a thickness-dependent photoelectrochemical analysis, we identified a hematite thickness of only 10 nm to yield the highest internal quantum efficiency when using a suitable underlayer such as TiO2 that induces doping of the hematite film and reduces electron/hole recombination at the back contact. We find that, at high bias potentials, photocurrent density and quantum efficiency proportionally increase with light absorption in films thinner than 10 nm and are limited by the space charge layer width in thicker films. Thus, we propose to apply hematite films of 10 nm in thickness for future developments on suitable nanostructured conductive scaffolds that can now be extended to organic scaffolds due to our low-temperature process.

  16. Low-temperature atomic layer deposition of TiO{sub 2} thin layers for the processing of memristive devices

    SciTech Connect

    Porro, Samuele Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-15

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO{sub 2} thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO{sub 2} thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO{sub 2} thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications.

  17. Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature

    NASA Astrophysics Data System (ADS)

    Peng, Jinbo; Guo, Jing; Ma, Runze; Meng, Xiangzhi; Jiang, Ying

    2017-03-01

    The dissolution of sodium chloride (NaCl) in water is a frequently encountered process in our daily lives. While the NaCl dissolution process in liquid water has been extensively studied, whether and how the dissolution occurs below the freezing point is still not clear. Using a low-temperature scanning tunneling microscope (STM), here we were able to directly visualize the dissolution of Au-supported NaCl (0 0 1) bilayer islands by water at atomic level. We found that the single water molecule on the STM tip can assist the extraction of single Na+ from the NaCl surface even at 5 K, while leaving the Cl‑ intact. When covered with a full water monolayer, the NaCl islands started to dissolve from the step edges and also showed evidence of dissolution inside the terraces as the temperature was raised up to 145 K. At 155 K, the water molecules completely desorbed from the surface, which was accompanied with the decomposition and restructuring of the bilayer NaCl islands. Those results suggest that the dissolution of NaCl may occur well below the freezing point at the ice/NaCl interfaces and is mainly driven by the interaction between the water molecules and the Na+, which is in clear contrast with the NaCl dissolution in liquid water.

  18. Bimetallic Nickel/Ruthenium Catalysts Synthesized by Atomic Layer Deposition for Low-Temperature Direct Methanol Solid Oxide Fuel Cells.

    PubMed

    Jeong, Heonjae; Kim, Jun Woo; Park, Joonsuk; An, Jihwan; Lee, Tonghun; Prinz, Fritz B; Shim, Joon Hyung

    2016-11-09

    Nickel and ruthenium bimetallic catalysts were heterogeneously synthesized via atomic layer deposition (ALD) for use as the anode of direct methanol solid oxide fuel cells (DMSOFCs) operating in a low-temperature range. The presence of highly dispersed ALD Ru islands over a porous Ni mesh was confirmed, and the Ni/ALD Ru anode microstructure was observed. Fuel cell tests were conducted using Ni-only and Ni/ALD Ru anodes with approximately 350 μm thick gadolinium-doped ceria electrolytes and platinum cathodes. The performance of fuel cells was assessed using pure methanol at operating temperatures of 300-400 °C. Micromorphological changes of the anode after cell operation were investigated, and the content of adsorbed carbon on the anode side of the operated samples was measured. The difference in the maximum power density between samples utilizing Ni/ALD Ru and Pt/ALD Ru, the latter being the best catalyst for direct methanol fuel cells, was observed to be less than 7% at 300 °C and 30% at 350 °C. The improved electrochemical activity of the Ni/ALD Ru anode compared to that of the Ni-only anode, along with the reduction of the number of catalytically active sites due to agglomeration of Ni and carbon formation on the Ni surface as compared to Pt, explains this decent performance.

  19. Atomic-scale imaging of the dissolution of NaCl islands by water at low temperature.

    PubMed

    Peng, Jinbo; Guo, Jing; Ma, Runze; Meng, Xiangzhi; Jiang, Ying

    2017-03-15

    The dissolution of sodium chloride (NaCl) in water is a frequently encountered process in our daily lives. While the NaCl dissolution process in liquid water has been extensively studied, whether and how the dissolution occurs below the freezing point is still not clear. Using a low-temperature scanning tunneling microscope (STM), here we were able to directly visualize the dissolution of Au-supported NaCl (0 0 1) bilayer islands by water at atomic level. We found that the single water molecule on the STM tip can assist the extraction of single Na(+) from the NaCl surface even at 5 K, while leaving the Cl(-) intact. When covered with a full water monolayer, the NaCl islands started to dissolve from the step edges and also showed evidence of dissolution inside the terraces as the temperature was raised up to 145 K. At 155 K, the water molecules completely desorbed from the surface, which was accompanied with the decomposition and restructuring of the bilayer NaCl islands. Those results suggest that the dissolution of NaCl may occur well below the freezing point at the ice/NaCl interfaces and is mainly driven by the interaction between the water molecules and the Na(+), which is in clear contrast with the NaCl dissolution in liquid water.

  20. Low-Temperature Atomic Layer Deposition of CuSbS2 for Thin-Film Photovoltaics.

    PubMed

    Riha, Shannon C; Koegel, Alexandra A; Emery, Jonathan D; Pellin, Michael J; Martinson, Alex B F

    2017-02-08

    Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (∼1.5 eV), large absorption coefficient (>10(4) cm(-1)), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) postprocess anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >10(4) cm(-1), as well as a hole concentration of 10(15) cm(-3). Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. While far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.

  1. Low-temperature atomic layer deposition of CuSbS2 for thin-film photovoltaics

    DOE PAGES

    Riha, Shannon C.; Koegel, Alexandra A.; Emery, Jonathan D.; ...

    2017-01-24

    Copper antimony sulfide (CuSbS2) has been gaining traction as an earth-abundant absorber for thin-film photovoltaics given its near ideal band gap for solar energy conversion (~1.5 eV), large absorption coefficient (>104 cm–1), and elemental abundance. Through careful in situ analysis of the deposition conditions, a low-temperature route to CuSbS2 thin films via atomic layer deposition has been developed. After a short (15 min) post process anneal at 225 °C, the ALD-grown CuSbS2 films were crystalline with micron-sized grains, exhibited a band gap of 1.6 eV and an absorption coefficient >104 cm–1, as well as a hole concentration of 1015 cm–3.more » Finally, the ALD-grown CuSbS2 films were paired with ALD-grown TiO2 to form a photovoltaic device. This photovoltaic device architecture represents one of a very limited number of Cd-free CuSbS2 PV device stacks reported to date, and it is the first to demonstrate an open-circuit voltage on par with CuSbS2/CdS heterojunction PV devices. As a result, while far from optimized, this work demonstrates the potential for ALD-grown CuSbS2 thin films in environmentally benign photovoltaics.« less

  2. Influence Of Inelastic Ridberg Atom-Atom Collisional Process On Kinetic And Optical Properties Of Low-Temperature Laboratory And Astrophysical Plasmas

    NASA Astrophysics Data System (ADS)

    Klyucharev, A. N.; Bezuglov, N. N.; Mihajlov, A. A.; Ignjatovic, Lj. M.

    2010-07-01

    Elementary processes in plasma phenomena traditionally attract physicist`s attention. The channel of charged-particle formation in Rydberg Atom-Atom thermal and subthermal collisions (the low temperature plasmas conditions) leads to creation of the molecular ions - associative ionization (AI), atomic ions - penning-like ionization (PI) and the pair of the negative and positive ions. In our universe the chemical composition of the primordial gas consists mainly of Hydrogen and Helium (H, H- , H+, H2, He, He+ ), Hydrogen-like alkali-metal Litium (Li, Li+, Li-) and combinations (HeH+ , LiH- , LiH+). There is a wide range of plasma parameters in which the Rydberg Atoms of the elements called above make the dominant construction to ionization and that process may be regarded as a prototype of the elementary process of light excitation energy transformation into electric one. The first series of quantitative measurements of the rate constants for Rydberg Atoms starts in 1978 (Devdariani, Klyucharev et al.). The method of AI and PI calculations, so-called "dipole resonant" mechanism proposed in 1971 (Smirnov, Mihaylov) was used in semiclassical (Mihailov and Janev 1981) and quantum mechanical theories (Duman, Shmatov, 1980). The latest stochastic version of chemi-ionisation (AI+PI) on Rydberg Atom - Atom collisions extends the treatment of the "dipole resonant" model by taking into account redistribution of population over a range of Rydberg states prior to ionization. This redistribution is modeled as diffusion in the frame of stochastic dynamic of the Rydberg electron in the Rydberg energy spectrum (Bezuglov, Borodin, Klyucharev et al. 1997). Such approach makes it possible to operate on efficiently of inelastic collisional processes and sometimes to operate on time of Rydberg Atoms life. This may lead to anomalies of Rydberg Atoms spectra. Another result obtained in recent time is understanding that experimental results on chemi-ionization relate to the group of mixed

  3. Nanorheology by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  4. Nanorheology by atomic force microscopy

    SciTech Connect

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-15

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  5. Nanorheology by atomic force microscopy.

    PubMed

    Li, Tai-De; Chiu, Hsiang-Chih; Ortiz-Young, Deborah; Riedo, Elisa

    2014-12-01

    We present an Atomic Force Microscopy (AFM) based method to investigate the rheological properties of liquids confined within a nanosize gap formed by an AFM tip apex and a solid substrate. In this method, a conventional AFM cantilever is sheared parallel to a substrate surface by means of a lock-in amplifier while it is approaching and retracting from the substrate in liquid. The normal solvation forces and lateral viscoelastic shear forces experienced by the AFM tip in liquid can be simultaneously measured as a function of the tip-substrate distance with sub-nanometer vertical resolution. A new calibration method is applied to compensate for the linear drift of the piezo transducer and substrate system, leading to a more precise determination of the tip-substrate distance. By monitoring the phase lag between the driving signal and the cantilever response in liquid, the frequency dependent viscoelastic properties of the confined liquid can also be derived. Finally, we discuss the results obtained with this technique from different liquid-solid interfaces. Namely, octamethylcyclotetrasiloxane and water on mica and highly oriented pyrolytic graphite.

  6. Hyperbaric Hydrothermal Atomic Force Microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2003-07-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  7. Hyperbaric hydrothermal atomic force microscope

    DOEpatents

    Knauss, Kevin G.; Boro, Carl O.; Higgins, Steven R.; Eggleston, Carrick M.

    2002-01-01

    A hyperbaric hydrothermal atomic force microscope (AFM) is provided to image solid surfaces in fluids, either liquid or gas, at pressures greater than normal atmospheric pressure. The sample can be heated and its surface imaged in aqueous solution at temperatures greater than 100.degree. C. with less than 1 nm vertical resolution. A gas pressurized microscope base chamber houses the stepper motor and piezoelectric scanner. A chemically inert, flexible membrane separates this base chamber from the sample cell environment and constrains a high temperature, pressurized liquid or gas in the sample cell while allowing movement of the scanner. The sample cell is designed for continuous flow of liquid or gas through the sample environment.

  8. Feasibility studies for the detection of atomic oxygen exospheres of terrestrial planets in the habitable zone of a low-temperature star with a UV space telescope

    NASA Astrophysics Data System (ADS)

    Horikoshi, H.; Kameda, S.; Murakami, G.

    2016-12-01

    We present the results of simulations on the detectability of atomic oxygen exospheres with a UV space telescope, assuming an Earth twin, Venus twin or Mars twin exists in the habitable zone of a low-temperature star. The detection of many Earth-sized planets in the vicinity of low-temperature stars is expected in the near future. The habitable zone of a low-temperature star is close to the star because of the star's low luminosity. Stellar extreme ultraviolet (EUV) radiation (10-117 nm) plays an important role in the ionization, dissociation, and heating of the planetary upper atmospheres. However, stellar radiations between 40 and 91.2 nm cannot be measured because of the absorption of neutral hydrogen in an interstellar medium. We estimate the EUV intensity at the habitable zone of a low-temperature star using empirically derived relations between the total hydrogen Lyman alpha (122 nm) intensity and the EUV intensity presented by Linsky et al. (2014). Moreover, we simulated the oxygen column density on an Earth twin, Venus twin and Mars twin in the habitable zone of a low-temperature star using the results of Kulikov et al. (2007) and Tian et al. (2008). We found that when an Earth twin in the habitable zone of a low-temperature star transits its host star, the transit depth of the OI emission line at 130 nm becomes much deeper than that of a Venus twin or Mars twin. We conclude that even a small UV telescope ( 20 cm) enables us to distinguish an Earth twin from a Venus twin and Mars twin and detect atomic oxygen exospheres of an Earth twin in a habitable zone of a low temperature star within a few transits.

  9. Atomic force microscopy as nanorobot.

    PubMed

    Xi, Ning; Fung, Carmen Kar Man; Yang, Ruiguo; Lai, King Wai Chiu; Wang, Donna H; Seiffert-Sinha, Kristina; Sinha, Animesh A; Li, Guangyong; Liu, Lianqing

    2011-01-01

    Atomic force microscopy (AFM) is a powerful and widely used imaging technique that can visualize single molecules under physiological condition at the nanometer scale. In this chapter, an AFM-based nanorobot for biological studies is introduced. Using the AFM tip as an end effector, the AFM can be modified into a nanorobot that can manipulate biological objects at the single-molecule level. By functionalizing the AFM tip with specific antibodies, the nanorobot is able to identify specific types of receptors on the cell membrane. It is similar to the fluorescent optical microscopy but with higher resolution. By locally updating the AFM image based on interaction force information and objects' model during nanomanipulation, real-time visual feedback is obtained through the augmented reality interface. The development of the AFM-based nanorobotic system enables us to conduct in situ imaging, sensing, and manipulation simultaneously at the nanometer scale (e.g., protein and DNA levels). The AFM-based nanorobotic system offers several advantages and capabilities for studying structure-function relationships of biological specimens. As a result, many biomedical applications can be achieved by the AFM-based nanorobotic system.

  10. Atomic Force Microscopy in Liquids

    NASA Astrophysics Data System (ADS)

    Weisenhorn, Albrecht Ludwig

    The atomic force microscope (AFM) was invented by Binnig, Quate, and Gerber in 1986 as an offspring of the very successful scanning tunneling microscope (STM), which Binnig and Rohrer invented in 1982 and for which they shared the Nobel prize. While the STM can only image conducting surfaces, the AFM has overcome this limitation. An AFM creates a three-dimensional image of the sample surface by raster scanning this surface under a sharp tip that is attached to a cantilever. The tip moves the cantilever up and down while going over "hills" and through "valleys" of the surface. The vertical motion of the cantilever deflects a laser beam that is reflected off the back of the cantilever toward a two-segment photodiode. The difference of the intensity of the two segments is used as the deflection signal. A feedback loop is used to keep the deflection signal constant by moving the sample surface up and down accordingly. This vertical motion gives a direct measurement of the surface height. The forces involved in the imaging process have been studied in air and water. Due to adsorbed layers on tip and sample surface when scanning in air (capillary condensation) the imaging forces are >10 ^{-7} N. If the tip and sample surface are immersed in water the forces can be reduced to {~}10^{ -9} N. An AFM with a large scanner can image up to tens of micrometers like an optical microscope. Zooming in allows one to get resolution of a few nanometers, which makes the AFM a natural continuation of the optical microscope towards higher magnification. Integrated circuit chips, photographic film, bacteria, red and white blood cells, purple membrane, polymerized Langmuir-Blodgett (LB) films, and stoma have been imaged at low and high magnification. The AFM has shown its power by imaging "hard" and "soft" surfaces with atomic and (sub)molecular resolution respectively. The "hard" crystalline surfaces of mica, graphite, RuCl_3, Ge(111), Bi(111), and zeolites (clinoptilolite (010

  11. Atom world based on nano-forces: 25 years of atomic force microscopy.

    PubMed

    Morita, Seizo

    2011-01-01

    Scanning tunneling microscopy (STM) has opened up the new nanoworlds of scanning probe microscopy. STM is the first-generation atomic tool that can image, evaluate and manipulate individual atoms and consequently can create nanostructures by true bottom-up methods based on atom-by-atom manipulation. Atomic force microscopy is a second-generation atomic tool that has followed the footsteps of STM, and which is now opening doors to a new atom world based on using nanoscale forces.

  12. Can Atomic Force Microscopy Achieve Atomic Resolution in Contact Mode?

    NASA Astrophysics Data System (ADS)

    Jarvis, M. R.; Pérez, Rubén; Payne, M. C.

    2001-02-01

    Atomic force microscopy operating in the contact mode is studied using total-energy pseudopotential calculations. It is shown that, in the case of a diamond tip and a diamond surface, it is possible for a tip terminated by a single atom to sustain forces in excess of 30 nN. It is also shown that imaging at atomic resolution may be limited by blunting of the tip during lateral scanning.

  13. Atomic Force Microscope Mediated Chromatography

    NASA Technical Reports Server (NTRS)

    Anderson, Mark S.

    2013-01-01

    The atomic force microscope (AFM) is used to inject a sample, provide shear-driven liquid flow over a functionalized substrate, and detect separated components. This is demonstrated using lipophilic dyes and normal phase chromatography. A significant reduction in both size and separation time scales is achieved with a 25-micron-length column scale, and one-second separation times. The approach has general applications to trace chemical and microfluidic analysis. The AFM is now a common tool for ultra-microscopy and nanotechnology. It has also been demonstrated to provide a number of microfluidic functions necessary for miniaturized chromatography. These include injection of sub-femtoliter samples, fluidic switching, and sheardriven pumping. The AFM probe tip can be used to selectively remove surface layers for subsequent microchemical analysis using infrared and tip-enhanced Raman spectroscopy. With its ability to image individual atoms, the AFM is a remarkably sensitive detector that can be used to detect separated components. These diverse functional components of microfluidic manipulation have been combined in this work to demonstrate AFM mediated chromatography. AFM mediated chromatography uses channel-less, shear-driven pumping. This is demonstrated with a thin, aluminum oxide substrate and a non-polar solvent system to separate a mixture of lipophilic dyes. In conventional chromatographic terms, this is analogous to thin-layer chromatography using normal phase alumina substrate with sheardriven pumping provided by the AFM tip-cantilever mechanism. The AFM detection of separated components is accomplished by exploiting the variation in the localized friction of the separated components. The AFM tip-cantilever provides the mechanism for producing shear-induced flows and rapid pumping. Shear-driven chromatography (SDC) is a relatively new concept that overcomes the speed and miniaturization limitations of conventional liquid chromatography. SDC is based on a

  14. Low-temperature atomic layer deposition of Al{sub 2}O{sub 3} on blown polyethylene films with plasma-treated surfaces

    SciTech Connect

    Beom Lee, Gyeong; Sik Son, Kyung; Won Park, Suk; Hyung Shim, Joon; Choi, Byoung-Ho

    2013-01-15

    In this study, a layer of Al{sub 2}O{sub 3} was deposited on blown polyethylene films by atomic layer deposition (ALD) at low temperatures, and the surface characteristics of these Al{sub 2}O{sub 3}-coated blown polyethylene films were analyzed. In order to examine the effects of the plasma treatment of the surfaces of the blown polyethylene films on the properties of the films, both untreated and plasma-treated film samples were prepared under various processing conditions. The surface characteristics of the samples were determined by x-ray photoelectron spectroscopy, as well as by measuring their surface contact angles. It was confirmed that the surfaces of the plasma-treated samples contained a hydroxyl group, which helped the precursor and the polyethylene substrate to bind. ALD of Al{sub 2}O{sub 3} was performed through sequential exposures to trimethylaluminum and H{sub 2}O at 60 Degree-Sign C. The surface morphologies of the Al{sub 2}O{sub 3}-coated blown polyethylene films were observed using atomic force microscopy and scanning electron microscopy/energy-dispersive x-ray spectroscopy. Further, it was confirmed that after ALD, the surface of the plasma-treated film was covered with alumina grains more uniformly than was the case for the surface of the untreated polymer film. It was also confirmed via the focused ion beam technique that the layer Al{sub 2}O{sub 3} conformed to the surface of the blown polyethylene film.

  15. Atomic Force Controlled Capillary Electrophoresis

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Yeshua, Talia; Palchan, Mila; Lovsky, Yulia; Taha, Hesham

    2010-03-01

    Lithography based on scanning probe microscopic techniques has considerable potential for accurate & localized deposition of material on the nanometer scale. Controlled deposition of metallic features with high purity and spatial accuracy is of great interest for circuit edit applications in the semiconductor industry, for plasmonics & nanophotonics and for basic research in surface enhanced Raman scattering & nanobiophysics. Within the context of metal deposition we will review the development of fountain pen nanochemistry and its most recent emulation Atomic Force Controlled Capillary Electrophoresis (ACCE). Using this latter development we will demonstrate achievement of unprecedented control of nanoparticle deposition using a three-electrode geometry. Three electrodes are attached: one on the outside of a metal coated glass probe, one on the inside of a hollow probe in a solution containing Au nanoparticles in the capillary, and a third on the surface where the writing takes place. The three electrodes provide electrical pulses for accurate control of deposition and retraction of the liquid from the surface overcoming the lack of control seen in both dip pen lithography & fountain pen nanochemistry when the tip contacts the surface. With this development, we demonstrate depositing a single 1.3 nm Au nanoparticle onto surfaces such as semiconductors.

  16. Equilibrium capillary forces with atomic force microscopy.

    PubMed

    Sprakel, J; Besseling, N A M; Leermakers, F A M; Cohen Stuart, M A

    2007-09-07

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.

  17. Polynomial force approximations and multifrequency atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    We present polynomial force reconstruction from experimental intermodulation atomic force microscopy (ImAFM) data. We study the tip-surface force during a slow surface approach and compare the results with amplitude-dependence force spectroscopy (ADFS). Based on polynomial force reconstruction we generate high-resolution surface-property maps of polymer blend samples. The polynomial method is described as a special example of a more general approximative force reconstruction, where the aim is to determine model parameters that best approximate the measured force spectrum. This approximative approach is not limited to spectral data, and we demonstrate how it can be adapted to a force quadrature picture.

  18. Chemical identification of individual surface atoms by atomic force microscopy.

    PubMed

    Sugimoto, Yoshiaki; Pou, Pablo; Abe, Masayuki; Jelinek, Pavel; Pérez, Rubén; Morita, Seizo; Custance, Oscar

    2007-03-01

    Scanning probe microscopy is a versatile and powerful method that uses sharp tips to image, measure and manipulate matter at surfaces with atomic resolution. At cryogenic temperatures, scanning probe microscopy can even provide electron tunnelling spectra that serve as fingerprints of the vibrational properties of adsorbed molecules and of the electronic properties of magnetic impurity atoms, thereby allowing chemical identification. But in many instances, and particularly for insulating systems, determining the exact chemical composition of surfaces or nanostructures remains a considerable challenge. In principle, dynamic force microscopy should make it possible to overcome this problem: it can image insulator, semiconductor and metal surfaces with true atomic resolution, by detecting and precisely measuring the short-range forces that arise with the onset of chemical bonding between the tip and surface atoms and that depend sensitively on the chemical identity of the atoms involved. Here we report precise measurements of such short-range chemical forces, and show that their dependence on the force microscope tip used can be overcome through a normalization procedure. This allows us to use the chemical force measurements as the basis for atomic recognition, even at room temperature. We illustrate the performance of this approach by imaging the surface of a particularly challenging alloy system and successfully identifying the three constituent atomic species silicon, tin and lead, even though these exhibit very similar chemical properties and identical surface position preferences that render any discrimination attempt based on topographic measurements impossible.

  19. Heavy atomic-layer doping of B in low-temperature Si epitaxial growth on Si(1 0 0) by ultraclean low-pressure chemical vapor deposition

    NASA Astrophysics Data System (ADS)

    Tanno, Hiroki; Sakuraba, Masao; Tillack, Bernd; Murota, Junichi

    2008-07-01

    Electrical characteristics of B atomic-layer doped Si epitaxial films on Si(1 0 0) formed by B atomic-layer formation on Si(1 0 0) at 180 °C and subsequent capping Si deposition at 500 °C using ultraclean low-pressure chemical vapor deposition were investigated. From evaluation results of carrier concentration in the films, by low-temperature SiH 4 exposure at 180-300 °C before the capping Si deposition at 500 °C, 70% improvement of B electrical activity was confirmed, and it is suggested that lowering the temperatures for B atomic-layer formation on Si(1 0 0) as well as SiH 4 exposure before the capping Si deposition is effective to suppress B clustering and to achieve B atomic-layer doped Si films with extremely high carrier concentration.

  20. Low-temperature chemistry in helium droplets: reactions of aluminum atoms with O2 and H2O.

    PubMed

    Krasnokutski, Serge A; Huisken, Friedrich

    2011-06-30

    The doping of He droplets by Al atoms and their reactions with H(2)O and O(2) at T = 0.37 K was investigated. It was found that at high doping concentrations, the incorporated Al atoms do not aggregate to form clusters. They rather remain as separated atoms inside of the He droplets. Mass spectrometry and the recently developed depletion method have been applied to study the reactions. It was found that single Al atoms react with single O(2) molecules. The dominant product of this reaction occurring inside of the He droplets is AlO(2). The reaction between Al and O(2) clusters has also been detected. The Al clusters react with single H(2)O molecules or clusters. While single Al atoms react with H(2)O clusters, no reaction of single Al atoms with a single water molecule was found.

  1. Morphology of Vapor-Deposited Ice at Low Temperatures by Atomic Force Microscopy (AFM)

    NASA Astrophysics Data System (ADS)

    Fain, , Jr.; Donev, J. M. K.; Tait, B. R. Long, Jr.; Yu, Q.

    2002-03-01

    The morphology of multilayer films of ice on various substrates is measured by AFM as a function of vapor-deposition and annealing temperatures below 150K. The films are deposited in-situ in UHV from an effusive doser at 67 degrees from the surface normal. For depositions near 100K on clean Au(111), previous measurements by Donev et al. using needle-sensor AFM indicate that 3-D clustering starts near 120K for initially flat thin films of amorphous solid water (ASW). For depositions below 85K on clean Au(111), preliminary measurements using non-contact AFM (nc-AFM) indicate that clustering does not occur during annealing until bulk diffusion becomes operative at T>140K. Deposition at glancing angle at the lower temperatures is known to increase porosity and is also expected to decrease the number of crystalline nuclei in the ASW. For depositions near 100K on mica that had been annealed in UHV, preliminary measurements using ncAFM show clustering near 120K. Supported by U. W. Nanotechnology Fellowship (J.M.K.D.), Mary Gates Fellowship (B. R. L.), and M. J. Murdock Charitable Trust.

  2. Low-temperature study of array of dopant atoms on transport behaviors in silicon junctionless nanowire transistor

    SciTech Connect

    Wang, Hao; Han, Weihua Li, Xiaoming; Zhang, Yanbo; Yang, Fuhua

    2014-09-28

    We demonstrate temperature-dependent quantum transport characteristics in silicon junctionless nanowire transistor fabricated on Silicon-on-Insulator substrate by the femtosecond laser lithography. Clear drain-current oscillations originated from dopant-induced quantum dots are observed in the initial stage of the conduction for the silicon nanowire channel at low temperatures. Arrhenius plot of the conductance indicates the transition temperature of 30 K from variable-range hopping to nearest-neighbor hopping, which can be well explained under Mott formalism. The transition of electron hopping behavior is the interplay result between the thermal activation and the Coulomb interaction.

  3. Magnetic exchange force microscopy with atomic resolution.

    PubMed

    Kaiser, Uwe; Schwarz, Alexander; Wiesendanger, Roland

    2007-03-29

    The ordering of neighbouring atomic magnetic moments (spins) leads to important collective phenomena such as ferromagnetism and antiferromagnetism. A full understanding of magnetism on the nanometre scale therefore calls for information on the arrangement of spins in real space and with atomic resolution. Spin-polarized scanning tunnelling microscopy accomplishes this but can probe only conducting materials. Force microscopy can be used on any sample independent of its conductivity. In particular, magnetic force microscopy is well suited to exploring ferromagnetic domain structures. However, atomic resolution cannot be achieved because data acquisition involves the sensing of long-range magnetostatic forces between tip and sample. Magnetic exchange force microscopy has been proposed for overcoming this limitation: by using an atomic force microscope with a magnetic tip, it should be possible to detect the short-range magnetic exchange force between tip and sample spins. Here we show for a prototypical antiferromagnetic insulator, the (001) surface of nickel oxide, that magnetic exchange force microscopy can indeed reveal the arrangement of both surface atoms and their spins simultaneously. In contrast with previous attempts to implement this method, we use an external magnetic field to align the magnetic polarization at the tip apex so as to optimize the interaction between tip and sample spins. This allows us to observe the direct magnetic exchange coupling between the spins of the tip atom and sample atom that are closest to each other, and thereby demonstrate the potential of magnetic exchange force microscopy for investigations of inter-spin interactions at the atomic level.

  4. What is limiting low-temperature atomic layer deposition of Al{sub 2}O{sub 3}? A vibrational sum-frequency generation study

    SciTech Connect

    Vandalon, V. E-mail: w.m.m.kessels@tue.nl; Kessels, W. M. M. E-mail: w.m.m.kessels@tue.nl

    2016-01-04

    The surface reactions during atomic layer deposition (ALD) of Al{sub 2}O{sub 3} from Al(CH{sub 3}){sub 3} and H{sub 2}O have been studied with broadband sum-frequency generation to reveal what is limiting the growth at low temperatures. The –CH{sub 3} surface coverage was measured for temperatures between 100 and 300 °C and the absolute reaction cross sections, describing the reaction kinetics, were determined for both half-cycles. It was found that –CH{sub 3} groups persisted on the surface after saturation of the H{sub 2}O half-cycle. From a direct correlation with the growth per cycle, it was established that the reduced reactivity of H{sub 2}O towards –CH{sub 3} is the dominant factor limiting the ALD process at low temperatures.

  5. Electronegativity determination of individual surface atoms by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-04-01

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

  6. Electronegativity determination of individual surface atoms by atomic force microscopy

    PubMed Central

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-01-01

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale. PMID:28443645

  7. Electronegativity determination of individual surface atoms by atomic force microscopy.

    PubMed

    Onoda, Jo; Ondráček, Martin; Jelínek, Pavel; Sugimoto, Yoshiaki

    2017-04-26

    Electronegativity is a fundamental concept in chemistry. Despite its importance, the experimental determination has been limited only to ensemble-averaged techniques. Here, we report a methodology to evaluate the electronegativity of individual surface atoms by atomic force microscopy. By measuring bond energies on the surface atoms using different tips, we find characteristic linear relations between the bond energies of different chemical species. We show that the linear relation can be rationalized by Pauling's equation for polar covalent bonds. This opens the possibility to characterize the electronegativity of individual surface atoms. Moreover, we demonstrate that the method is sensitive to variation of the electronegativity of given atomic species on a surface due to different chemical environments. Our findings open up ways of analysing surface chemical reactivity at the atomic scale.

  8. Atomically Dispersed Au-(OH)x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria

    2013-03-27

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au–O–TiOx sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this “excess” gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  9. Hydrogen isotopic substitution of solid methylamine through atomic surface reactions at low temperatures: A potential contribution to the D/H ratio of methylamine in molecular clouds

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Chigai, Takeshi; Osamura, Yoshihiro; Watanabe, Naoki; Kouchi, Akira

    2014-01-01

    We experimentally studied hydrogen (H)-deuterium (D) substitution reactions of solid methylamine (CH3NH2) under astrophysically relevant conditions. We also calculated the potential energy surface for the H-D substitution reactions of methylamine isotopologues using quantum chemical methods. Despite the relatively large energy barrier of more than 18 kJ mol-1, CH3NH2 reacted with D atoms to yield deuterated methylamines at 10 K, suggesting that the H-D substitution reaction proceeds through quantum tunneling. Deuterated methylamines reacted with H atoms as well. On the basis of present results, we propose that methylamine has potential for D enrichment through atomic surface reactions on interstellar grains at very low temperatures in molecular clouds. D enrichment would occur in particular in the methyl group of methylamine.

  10. Electrostatic interaction in atomic force microscopy

    PubMed Central

    Butt, Hans-Jüurgen

    1991-01-01

    In atomic force microscopy, the stylus experiences an electrostatic force when imaging in aqueous medium above a charged surface. This force has been calculated numerically with continuum theory for a silicon nitrite or silicon oxide stylus. For comparison, the Van der Waals force was also calculated. In contrast to the Van der Waals attraction, the electrostatic force is repulsive. At a distance of 0.5 nm the electrostatic force is typically 10-12-10-10 N and thus comparable in strength to the Van der Waals force. The electrostatic force increases with increasing surface charge density and decreases roughly exponentially with distance. It can be reduced by imaging in high salt concentrations. Below surface potentials of ≈50 mV, a simple analytical approximation of the electrostatic force is described. PMID:19431803

  11. BROADENING OF H{sub 2}O ROTATIONAL LINES BY COLLISIONS WITH He ATOMS AT LOW TEMPERATURE

    SciTech Connect

    Hernández, M. I.; Fernández, J. M.; Tejeda, G.; Moreno, E.; Montero, S.

    2015-08-01

    We report pressure broadening (PB) coefficients for the 21 electric–dipole transitions between the eight lowest rotational levels of ortho-H{sub 2}O and para-H{sub 2}O molecules by collisions with He at temperatures from 20 to 120 K. These coefficients are derived from recently published experimental state-to-state rate coefficients for H{sub 2}O:He inelastic collisions, plus an elastic contribution from close coupling calculations. The resulting coefficients are compared to the available experimental data. Mostly due to the elastic contribution, the PB-coefficients differ much from line to line, and increase markedly at low temperature. The present results are meant as a guide for future experiments and astrophysical observations.

  12. Phase imaging with intermodulation atomic force microscopy.

    PubMed

    Platz, Daniel; Tholén, Erik A; Hutter, Carsten; von Bieren, Arndt C; Haviland, David B

    2010-05-01

    Intermodulation atomic force microscopy (IMAFM) is a dynamic mode of atomic force microscopy (AFM) with two-tone excitation. The oscillating AFM cantilever in close proximity to a surface experiences the nonlinear tip-sample force which mixes the drive tones and generates new frequency components in the cantilever response known as intermodulation products (IMPs). We present a procedure for extracting the phase at each IMP and demonstrate phase images made by recording this phase while scanning. Amplitude and phase images at intermodulation frequencies exhibit enhanced topographic and material contrast.

  13. Structure and low-temperature tribology of lubricious nanocrystalline zinc oxide/aluminium oxide nanolaminates and zirconium dioxide monofilms grown by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Romanes, Maia Castillo

    Currently available solid lubricants only perform well under a limited range of environmental conditions. Unlike them, oxides are thermodynamically stable and relatively inert over a broad range of temperatures and environments. However, conventional oxides are brittle at normal temperatures; exhibiting significant plasticity only at high temperatures (>0.5Tmelting). This prevents oxides' use in tribological applications at low temperatures. If oxides can be made lubricious at low temperatures, they would be excellent solid lubricants for a wide range of conditions. Atomic layer deposition (ALD) is a growth technique capable of depositing highly uniform and conformal films in challenging applications that have buried surfaces and high-aspect-ratio features such as microelectromechanical (MEMS) devices where the need for robust solid lubricants is sometimes necessary. This dissertation investigates the surface and subsurface characteristics of ALD-grown ZnO/Al2O 3 nanolaminates and ZrO2 monofilms before and after sliding at room temperature. Significant enhancement in friction and wear performance was observed for some films. HRSEM/FIB, HRTEM and ancillary techniques (i.e. SAED, EELS) were used to determine the mechanisms responsible for this enhancement. Contributory characteristics and energy dissipation modes were identified that promote low-temperature lubricity in both material systems.

  14. Creation evidence of the second non-dispersive Zakharenko wave by helium atomic beams in superfluid helium-II at low temperatures

    NASA Astrophysics Data System (ADS)

    Zakharenko, A. A.

    2007-10-01

    In this work, the experimental results of the creation of the second non-dispersive Zakharenko wave (C_{ph}=C_{g} ≠ 0) in the negative roton branch (the so-called second sound) of the bulk elementary excitations (BEEs) energy spectra are introduced. Several BEE signals detected by a bolometer situated in the isotopically pure liquid helium-II at low temperatures ˜100 mK are shown, which give evidence of negative roton creation in the liquid by helium atomic beams striking the liquid surface. The negative roton signals were clearly distinguished by the following ways: the negative roton signal created by helium atomic beams appeared earlier than the positive roton signal created by the beams, and presence of both positive and negative roton signals together. It is natural that the negative roton creation by the beams requires the ^{4}He-atom energies ˜12 K, while the positive roton creation by the atomic beams requires energies ˜35 K. Therefore, successive increase in the heater power resulting in an increase in the ^{4}He-atom energies gives solid evidence that the negative rotons are first created in the liquid by the helium atomic beams.

  15. Collision lifetimes of polyatomic molecules at low temperatures: Benzene-benzene vs benzene-rare gas atom collisions

    NASA Astrophysics Data System (ADS)

    Cui, Jie; Li, Zhiying; Krems, Roman V.

    2014-10-01

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  16. Collision lifetimes of polyatomic molecules at low temperatures: benzene-benzene vs benzene-rare gas atom collisions.

    PubMed

    Cui, Jie; Li, Zhiying; Krems, Roman V

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom-molecule interaction. We then compare the results of the atom-benzene calculations with those for benzene-benzene collisions. The comparison illustrates that the mean lifetimes of the benzene-benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene-benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  17. Low-temperature in situ large strain plasticity of ceramic SiC nanowires and its atomic-scale mechanism.

    PubMed

    Han, X D; Zhang, Y F; Zheng, K; Zhang, X N; Zhang, Z; Hao, Y J; Guo, X Y; Yuan, J; Wang, Z L

    2007-02-01

    Large strain plasticity is phenomenologically defined as the ability of a material to exhibit an exceptionally large deformation rate during mechanical deformation. It is a property that is well established for metals and alloys but is rarely observed for ceramic materials especially at low temperature ( approximately 300 K). With the reduction in dimensionality, however, unusual mechanical properties are shown by ceramic nanomaterials. In this Letter, we demonstrated unusually large strain plasticity of ceramic SiC nanowires (NWs) at temperatures close to room temperature that was directly observed in situ by a novel high-resolution transmission electron microscopy technique. The continuous plasticity of the SiC NWs is accompanied by a process of increased dislocation density at an early stage, followed by an obvious lattice distortion, and finally reaches an entire structure amorphization at the most strained region of the NW. These unusual phenomena for the SiC NWs are fundamentally important for understanding the nanoscale fracture and strain-induced band structure variation for high-temperature semiconductors. Our result may also provide useful information for further studying of nanoscale elastic-plastic and brittle-ductile transitions of ceramic materials with superplasticity.

  18. Ultra-low-temperature reactions of C(3P0) atoms with benzene molecules in helium droplets

    NASA Astrophysics Data System (ADS)

    Krasnokutski, Serge A.; Huisken, Friedrich

    2014-12-01

    The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol-1 were released in this reaction. This estimation is in line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol-1.

  19. Atomically resolved graphitic surfaces in air by atomic force microscopy.

    PubMed

    Wastl, Daniel S; Weymouth, Alfred J; Giessibl, Franz J

    2014-05-27

    Imaging at the atomic scale using atomic force microscopy in biocompatible environments is an ongoing challenge. We demonstrate atomic resolution of graphite and hydrogen-intercalated graphene on SiC in air. The main challenges arise from the overall surface cleanliness and the water layers which form on almost all surfaces. To further investigate the influence of the water layers, we compare data taken with a hydrophilic bulk-silicon tip to a hydrophobic bulk-sapphire tip. While atomic resolution can be achieved with both tip materials at moderate interaction forces, there are strong differences in force versus distance spectra which relate to the water layers on the tips and samples. Imaging at very low tip-sample interaction forces results in the observation of large terraces of a naturally occurring stripe structure on the hydrogen-intercalated graphene. This structure has been previously reported on graphitic surfaces that are not covered with disordered adsorbates in ambient conditions (i.e., on graphite and bilayer graphene on SiC, but not on monolayer graphene on SiC). Both these observations indicate that hydrogen-intercalated graphene is close to an ideal graphene sample in ambient environments.

  20. β relaxation and low-temperature aging in a Au-based bulk metallic glass: From elastic properties to atomic-scale structure

    NASA Astrophysics Data System (ADS)

    Evenson, Z.; Naleway, S. E.; Wei, S.; Gross, O.; Kruzic, J. J.; Gallino, I.; Possart, W.; Stommel, M.; Busch, R.

    2014-05-01

    The slow β relaxation is understood to be a universal feature of glassy dynamics. Its presence in bulk metallic glasses (BMGs) is evidence of a broad relaxation time spectrum that extends to deep within the glassy state. Despite the breadth of research devoted to this phenomenon, its microscopic origin is still not fully understood. The low-temperature aging behavior and atomic structural rearrangements of a Au49Cu26.9Si16.3Ag5.5Pd2.3 BMG are investigated in the regime of the slow β relaxation by employing an ensemble of experimental techniques such as high-intensity synchrotron x-ray scattering, modulated differential scanning calorimetry (MDSC), dynamic mechanical analysis (DMA), impulse excitation, and dilatometry. Evidence of a distinct slow β-relaxation regime is seen in the form of (1) an excess wing of the DMA loss modulus beginning at ˜50 ∘C, (2) a crossover effect of elastic modulus with isothermal aging at 50∘C, and (3) a broad, nonreversing and largely irreversible sub-Tg endotherm in the MDSC results. Atomic rearrangements occurring at the onset of the measured slow β-relaxation temperature regime were found to be confined mainly to the short-range order length scale while no significant atomic rearrangements occur on the length scale of the medium-range order. Furthermore, evidence is presented that suggests the crossover effect in Young's modulus is due to the evolution of chemical short-range order. These results support the emergent picture of a dynamically heterogeneous glassy structure, in which low-temperature relaxation occurs through atomic rearrangements confined mostly to the short-range order length scale.

  1. Tests of stratospheric models - The reactions of atomic chlorine with O3 and CH4 at low temperature

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1991-01-01

    The rate-constant ratio of the photochemical reactions of atomic chlorine with O3 and CH4 was determined using data from laboratory experiments on competitive chlorination of O3/CH4 mixtures at stratospheric temperatures (197-217 K). Two experimental approaches were used: (1) measuring the k1/k2 ratio for the reactions of atomic chlorine with ozone and methane and (2) testing for some of the ClO/CH3O2 chemistry. The chlorine and ozone concentrations were monitored by UV-Vis spectroscopy, and the CH3Cl concentration was measured by FTIR. The results on the k1/k2 ratio are in excellent agreement with the current NASA recommendation (DeMore et al., 1990), being only 12 percent higher. On the other hand, results on the ClO + CH3O2 reaction do not support the rate constant suggested by Simon et al. (1989).

  2. Tests of stratospheric models - The reactions of atomic chlorine with O3 and CH4 at low temperature

    NASA Technical Reports Server (NTRS)

    Demore, W. B.

    1991-01-01

    The rate-constant ratio of the photochemical reactions of atomic chlorine with O3 and CH4 was determined using data from laboratory experiments on competitive chlorination of O3/CH4 mixtures at stratospheric temperatures (197-217 K). Two experimental approaches were used: (1) measuring the k1/k2 ratio for the reactions of atomic chlorine with ozone and methane and (2) testing for some of the ClO/CH3O2 chemistry. The chlorine and ozone concentrations were monitored by UV-Vis spectroscopy, and the CH3Cl concentration was measured by FTIR. The results on the k1/k2 ratio are in excellent agreement with the current NASA recommendation (DeMore et al., 1990), being only 12 percent higher. On the other hand, results on the ClO + CH3O2 reaction do not support the rate constant suggested by Simon et al. (1989).

  3. Fidelity imaging for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ghosal, Sayan; Salapaka, Murti

    2015-01-01

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  4. Recognizing nitrogen dopant atoms in graphene using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    van der Heijden, Nadine J.; Smith, Daniël; Calogero, Gaetano; Koster, Rik S.; Vanmaekelbergh, Daniel; van Huis, Marijn A.; Swart, Ingmar

    2016-06-01

    Doping graphene by heteroatoms such as nitrogen presents an attractive route to control the position of the Fermi level in the material. We prepared N-doped graphene on Cu(111) and Ir(111) surfaces via chemical vapor deposition of two different molecules. Using scanning tunneling microscopy images as a benchmark, we show that the position of the dopant atoms can be determined using atomic force microscopy. Specifically, the frequency shift-distance curves Δ f (z ) acquired above a N atom are significantly different from the curves measured over a C atom. Similar behavior was found for N-doped graphene on Cu(111) and Ir(111). The results are corroborated by density functional theory calculations employing a van der Waals functional.

  5. Reconstructing the distributed force on an atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Wagner, Ryan; Killgore, Jason

    2017-03-01

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  6. Reconstructing the distributed force on an atomic force microscope cantilever.

    PubMed

    Wagner, Ryan; Killgore, Jason

    2017-03-10

    A methodology is developed to reconstruct the force applied to an atomic force microscopy (AFM) cantilever given the shape in which it vibrates. This is accomplished by rewriting Bernoulli-Euler beam theory such that the force on the cantilever is approximated as a linear superposition of the theoretical cantilever eigenmodes. The weighting factors in this summation are calculated from the amplitude and phase measured along the length of the cantilever. The accuracy of the force reconstruction is shown to depend on the frequency at which the measurement is performed, the number of discrete points measured along the length of the cantilever, and the signal-to-noise ratio of the measured signal. In contrast to other AFM force reconstruction techniques, this method can reconstruct the distribution of force applied over the length of the AFM cantilever. However, this method performs poorly for localized forces applied to the cantilever, such as is typical of most tip-sample interaction forces. Proof of concept experiments are performed on an electrostatically excited cantilever and the expected force distribution is recovered. This force reconstruction technique offers previously unavailable insight into the distributed forces experienced by an AFM cantilever.

  7. Interfacial forces between silica surfaces measured by atomic force microscopy.

    PubMed

    Duan, Jinming

    2009-01-01

    Colloidal particle stability and some other interfacial phenomena are governed by interfacial force interactions. The two well known forces are van der Waals force and electrostatic force, as documented by the classical Derjaguin, Landau, Verwey, and Overbeek (DLVO) theory. Moreover, advances in modern instrumentation and colloid science suggested that some short-ranged forces or structure forces are important for relevant colloidal systems. The interfacial and/or molecular forces can be measured as a resultant force as function of separation distance by atomic force microscopy (AFM) colloid probe. This article presents a discussion on AFM colloid probe measurement of silica particle and silica wafer surfaces in solutions with some technical notifications in measurement and data convolution mechanisms. The measured forces are then analyzed and discussed based on the 'constant charge' and 'constant potential' models of DLVO theory. The difference between the prediction of DLVO theory and the measured results indicates that there is a strong short-range structure force between the two hydrophilic surfaces, even at extremely low ionic concentration, such as Milli-Q water purity solution.

  8. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Ji, Sanghoon; Chang, Ikwhang; Lee, Yoon Ho; Park, Joonho; Paek, Jun Yeol; Lee, Min Hwan; Cha, Suk Won

    2013-01-01

    Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V).

  9. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition.

    PubMed

    Ji, Sanghoon; Chang, Ikwhang; Lee, Yoon Ho; Park, Joonho; Paek, Jun Yeol; Lee, Min Hwan; Cha, Suk Won

    2013-01-23

    Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V).

  10. Collision lifetimes of polyatomic molecules at low temperatures: Benzene–benzene vs benzene–rare gas atom collisions

    SciTech Connect

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  11. Low Temperature Spin-glass Behavior in Nonmagnetic Atom Disorder Compound Pr2CuIn3

    NASA Astrophysics Data System (ADS)

    Li, Dexin; Homma, Yoshiya; Honda, Fuminori; Yamamura, Tomoo; Aoki, Dai

    We present the experimental results of ac and dc susceptibility, magnetization, magnetic relaxation, specific heat and electrical resistivity for hexagonal CaIn2-type polycrystalline Pr2CuIn3. Spin-glass state is confirmed to form in this system with a spin freezing temperature Tf∼5.4 K. The frequency dependent cusp in ac susceptibility, the evident irreversible magnetism and long-time magnetic relaxation behavior, and the absence of visible anomaly in temperature dependences of specific heat and electrical resistivity are the typical features characteristic of the spin-glass behaviors. A dynamical analysis of the ac susceptibility data gives further evidence for the spin-glass state in Pr2CuIn3. Formation of spin-glass state in Pr2CuIn3 seems to originate from the continued site randomness of the non-magnetic elements, which introduce the random distribution of exchange interactions between Pr atoms.

  12. Reliable thin film encapsulation for organic light emitting diodes grown by low-temperature atomic layer deposition

    NASA Astrophysics Data System (ADS)

    Meyer, J.; Schneidenbach, D.; Winkler, T.; Hamwi, S.; Weimann, T.; Hinze, P.; Ammermann, S.; Johannes, H.-H.; Riedl, T.; Kowalsky, W.

    2009-06-01

    We report on highly efficient gas diffusion barriers for organic light emitting diodes (OLEDs). Nanolaminate (NL) structures composed of alternating Al2O3 and ZrO2 sublayers grown by atomic layer deposition at 80 °C are used to realize long-term stable OLED devices. While the brightness of phosphorescent p-i-n OLEDs sealed by a single Al2O3 layer drops to 85% of the initial luminance of 1000 cd/m2 after 1000 h of continuous operation, OLEDs encapsulated with the NL retain more than 95% of their brightness. An extrapolated device lifetime substantially in excess of 10 000 h can be achieved, clearly proving the suitability of the NLs as highly dense and reliable thin film encapsulation of sensitive organic electronic devices.

  13. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition

    SciTech Connect

    Zhang Jian; Yang Hui; Zhang Qilong; Dong Shurong; Luo, J. K.

    2013-01-07

    ZnO films deposited by plasma-enhanced atomic layer deposition (PEALD) have been used to investigate resistive memory behavior. The bipolar resistance switching properties were observed in the Al/PEALD-ZnO/Pt devices. The resistance ratio for the high and low resistance states (HRS/LRS) is more than 10{sup 3}, better than ZnO devices deposited by other methods. The dominant conduction mechanisms of HRS and LRS are trap-controlled space charge limited current and Ohmic behavior, respectively. The resistive switching behavior is induced upon the formation/disruption of conducting filaments. This study demonstrated that the PEALD-ZnO films have better properties for the application in 3D resistance random access memory.

  14. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    SciTech Connect

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe; Blasco, Nicolas

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  15. Growing c-axis oriented aluminum nitride films by Plasma-Enhanced Atomic Layer Deposition at low temperatures

    NASA Astrophysics Data System (ADS)

    Tarala, V.; Ambartsumov, M.; Altakhov, A.; Martens, V.; Shevchenko, M.

    2016-12-01

    The possibility of using plasma enhanced atomic layer deposition method for growing heteroepitaxial oriented AlN films on Si (100) and sapphire (001) substrates at temperatures less than 300 °C was investigated. The resulting samples were studied by X-ray diffraction analysis and ellipsometry. It has been shown that, ceteris paribus, AlN films grown on sapphire substrates have higher crystallinity than the samples grown on silicon wafers. With duration of plasma exposure of more than 20 s and at a temperature of 300 °C synthesized heteroepitaxial film had refractive index equal to 2.03±0.03. The X-ray diffraction scans feature (002) and (004) reflections at 2Θ equal to 35.7° and 75.9°, which are characteristic of hexagonal polytype of AlN. For the best sample, (002) reflection had full width on the half maximum of 162±11″

  16. Fabrication of low-temperature solid oxide fuel cells with a nanothin protective layer by atomic layer deposition

    PubMed Central

    2013-01-01

    Anode aluminum oxide-supported thin-film fuel cells having a sub-500-nm-thick bilayered electrolyte comprising a gadolinium-doped ceria (GDC) layer and an yttria-stabilized zirconia (YSZ) layer were fabricated and electrochemically characterized in order to investigate the effect of the YSZ protective layer. The highly dense and thin YSZ layer acted as a blockage against electron and oxygen permeation between the anode and GDC electrolyte. Dense GDC and YSZ thin films were fabricated using radio frequency sputtering and atomic layer deposition techniques, respectively. The resulting bilayered thin-film fuel cell generated a significantly higher open circuit voltage of approximately 1.07 V compared with a thin-film fuel cell with a single-layered GDC electrolyte (approximately 0.3 V). PMID:23342963

  17. Trapping atoms using nanoscale quantum vacuum forces

    PubMed Central

    Chang, D. E.; Sinha, K.; Taylor, J. M.; Kimble, H. J.

    2014-01-01

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement. PMID:25008119

  18. Trapping atoms using nanoscale quantum vacuum forces.

    PubMed

    Chang, D E; Sinha, K; Taylor, J M; Kimble, H J

    2014-07-10

    Quantum vacuum forces dictate the interaction between individual atoms and dielectric surfaces at nanoscale distances. For example, their large strengths typically overwhelm externally applied forces, which makes it challenging to controllably interface cold atoms with nearby nanophotonic systems. Here we theoretically show that it is possible to tailor the vacuum forces themselves to provide strong trapping potentials. Our proposed trapping scheme takes advantage of the attractive ground-state potential and adiabatic dressing with an excited state whose potential is engineered to be resonantly enhanced and repulsive. This procedure yields a strong metastable trap, with the fraction of excited-state population scaling inversely with the quality factor of the resonance of the dielectric structure. We analyse realistic limitations to the trap lifetime and discuss possible applications that might emerge from the large trap depths and nanoscale confinement.

  19. Low temperature thin film transistors with hollow cathode plasma-assisted atomic layer deposition based GaN channels

    SciTech Connect

    Bolat, S. E-mail: aokyay@ee.bilkent.edu.tr; Tekcan, B.; Ozgit-Akgun, C.; Biyikli, N.; Okyay, A. K. E-mail: aokyay@ee.bilkent.edu.tr

    2014-06-16

    We report GaN thin film transistors (TFT) with a thermal budget below 250 °C. GaN thin films are grown at 200 °C by hollow cathode plasma-assisted atomic layer deposition (HCPA-ALD). HCPA-ALD-based GaN thin films are found to have a polycrystalline wurtzite structure with an average crystallite size of 9.3 nm. TFTs with bottom gate configuration are fabricated with HCPA-ALD grown GaN channel layers. Fabricated TFTs exhibit n-type field effect characteristics. N-channel GaN TFTs demonstrated on-to-off ratios (I{sub ON}/I{sub OFF}) of 10{sup 3} and sub-threshold swing of 3.3 V/decade. The entire TFT device fabrication process temperature is below 250 °C, which is the lowest process temperature reported for GaN based transistors, so far.

  20. Atomic force microscopy reveals bistable configurations of dibenzo[a,h]thianthrene and their interconversion pathway.

    PubMed

    Pavliček, Niko; Fleury, Benoit; Neu, Mathias; Niedenführ, Judith; Herranz-Lancho, Coral; Ruben, Mario; Repp, Jascha

    2012-02-24

    We investigated dibenzo[a,h]thianthrene molecules adsorbed on ultrathin layers of NaCl using a combined low-temperature scanning tunneling and atomic force microscope. Two stable configurations exist corresponding to different isomers of free nonplanar molecules. By means of excitations from inelastic electron tunneling we can switch between both configurations. Atomic force microscopy with submolecular resolution allows unambiguous determination of the molecular geometry, and the pathway of the interconversion of the isomers. Our investigations also shed new light on contrast mechanisms in scanning tunneling microscopy.

  1. Negative catalytic effect of water on the reactivity of hydrogen abstraction from the C-H bond of dimethyl ether by deuterium atoms through tunneling at low temperatures

    NASA Astrophysics Data System (ADS)

    Oba, Yasuhiro; Watanabe, Naoki; Kouchi, Akira

    2016-10-01

    We report an experimental study on the catalytic effect of solid water on the reactivity of hydrogen abstraction (H-abstraction) from dimethyl ether (DME) in the low-temperature solid DME-H2O complex. When DME reacted with deuterium atoms on a surface at 15-25 K, it was efficiently deuterated via successive tunneling H-abstraction and deuterium (D)-addition reactions. The 'effective' rate constant for DME-H2O + D was found to be about 20 times smaller than that of pure DME + D. This provides the first evidence that the presence of solid water has a negative catalytic effect on tunneling H-abstraction reactions.

  2. Deposition of mass-selected clusters studied by thermal energy atom scattering and low-temperature scanning tunneling microscopy: An experimental setup

    NASA Astrophysics Data System (ADS)

    Jödicke, Harald; Schaub, Renald; Bhowmick, Ashok; Monot, René; Buttet, Jean; Harbich, Wolfgang

    2000-07-01

    We present an experimental setup for the investigation of the processes occurring during the deposition of mass-selected clusters on a well-defined surface. The sample is analyzed in situ by two complementary methods: thermal energy atom scattering (TEAS) and scanning tunneling microscopy (STM). TEAS is used to study the dynamical processes during the deposition and to gather statistical information about the resulting structures on the surface. Subsequent STM measurements allow us to investigate the collision outcome on an atomic scale. The setup is highly versatile and guarantees ultra-high-vacuum conditions and cryogenic temperatures (≈30 K) of the sample at all times even during sample transfer. Clusters are produced in a CORDIS-type cluster source. A new compact multichannel effusive He source in combination with a new Wien-filter-based He detector are used for TEAS measurements. The new low-temperature STM allows measurements in a temperature range between 8 and 450 K. Atomic resolution on the Pt(111) surface is regularly observed at Tsample=8 K. The performances of the setup are illustrated by STM images obtained after the deposition of Ag7+ clusters with Ekin=95 and 1000 eV on bare Pt(111) and by measurements made of the deposition of Ag7+ clusters with Ekin=20 eV in a Xe-rare-gas matrix adsorbed on Pt(111).

  3. Automated force controller for amplitude modulation atomic force microscopy

    SciTech Connect

    Miyagi, Atsushi E-mail: simon.scheuring@inserm.fr; Scheuring, Simon E-mail: simon.scheuring@inserm.fr

    2016-05-15

    Atomic Force Microscopy (AFM) is widely used in physics, chemistry, and biology to analyze the topography of a sample at nanometer resolution. Controlling precisely the force applied by the AFM tip to the sample is a prerequisite for faithful and reproducible imaging. In amplitude modulation (oscillating) mode AFM, the applied force depends on the free and the setpoint amplitudes of the cantilever oscillation. Therefore, for keeping the applied force constant, not only the setpoint amplitude but also the free amplitude must be kept constant. While the AFM user defines the setpoint amplitude, the free amplitude is typically subject to uncontrollable drift, and hence, unfortunately, the real applied force is permanently drifting during an experiment. This is particularly harmful in biological sciences where increased force destroys the soft biological matter. Here, we have developed a strategy and an electronic circuit that analyzes permanently the free amplitude of oscillation and readjusts the excitation to maintain the free amplitude constant. As a consequence, the real applied force is permanently and automatically controlled with picoNewton precision. With this circuit associated to a high-speed AFM, we illustrate the power of the development through imaging over long-duration and at various forces. The development is applicable for all AFMs and will widen the applicability of AFM to a larger range of samples and to a larger range of (non-specialist) users. Furthermore, from controlled force imaging experiments, the interaction strength between biomolecules can be analyzed.

  4. Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100)

    NASA Astrophysics Data System (ADS)

    Haider, Ali; Kizir, Seda; Biyikli, Necmi

    2016-04-01

    In this work, we report on self-limiting growth of InN thin films at substrate temperatures as low as 200 °C by hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD). The precursors used in growth experiments were trimethylindium (TMI) and N2 plasma. Process parameters including TMI pulse time, N2 plasma exposure time, purge time, and deposition temperature have been optimized for self-limiting growth of InN with in ALD window. With the increase in exposure time of N2 plasma from 40 s to 100 s at 200 °C, growth rate showed a significant decrease from 1.60 to 0.64 Å/cycle. At 200 °C, growth rate saturated as 0.64 Å/cycle for TMI dose starting from 0.07 s. Structural, optical, and morphological characterization of InN were carried out in detail. X-ray diffraction measurements revealed the hexagonal wurtzite crystalline structure of the grown InN films. Refractive index of the InN film deposited at 200 °C was found to be 2.66 at 650 nm. 48 nm-thick InN films exhibited relatively smooth surfaces with Rms surface roughness values of 0.98 nm, while the film density was extracted as 6.30 g/cm3. X-ray photoelectron spectroscopy (XPS) measurements depicted the peaks of indium, nitrogen, carbon, and oxygen on the film surface and quantitative information revealed that films are nearly stoichiometric with rather low impurity content. In3d and N1s high-resolution scans confirmed the presence of InN with peaks located at 443.5 and 396.8 eV, respectively. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) further confirmed the polycrystalline structure of InN thin films and elemental mapping revealed uniform distribution of indium and nitrogen along the scanned area of the InN film. Spectral absorption measurements exhibited an optical band edge around 1.9 eV. Our findings demonstrate that HCPA-ALD might be a promising technique to grow crystalline wurtzite InN thin films at low substrate temperatures.

  5. Low-temperature self-limiting atomic layer deposition of wurtzite InN on Si(100)

    SciTech Connect

    Haider, Ali E-mail: biyikli@unam.bilkent.edu.tr; Kizir, Seda; Biyikli, Necmi E-mail: biyikli@unam.bilkent.edu.tr

    2016-04-15

    In this work, we report on self-limiting growth of InN thin films at substrate temperatures as low as 200 °C by hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD). The precursors used in growth experiments were trimethylindium (TMI) and N{sub 2} plasma. Process parameters including TMI pulse time, N{sub 2} plasma exposure time, purge time, and deposition temperature have been optimized for self-limiting growth of InN with in ALD window. With the increase in exposure time of N{sub 2} plasma from 40 s to 100 s at 200 °C, growth rate showed a significant decrease from 1.60 to 0.64 Å/cycle. At 200 °C, growth rate saturated as 0.64 Å/cycle for TMI dose starting from 0.07 s. Structural, optical, and morphological characterization of InN were carried out in detail. X-ray diffraction measurements revealed the hexagonal wurtzite crystalline structure of the grown InN films. Refractive index of the InN film deposited at 200 °C was found to be 2.66 at 650 nm. 48 nm-thick InN films exhibited relatively smooth surfaces with Rms surface roughness values of 0.98 nm, while the film density was extracted as 6.30 g/cm{sup 3}. X-ray photoelectron spectroscopy (XPS) measurements depicted the peaks of indium, nitrogen, carbon, and oxygen on the film surface and quantitative information revealed that films are nearly stoichiometric with rather low impurity content. In3d and N1s high-resolution scans confirmed the presence of InN with peaks located at 443.5 and 396.8 eV, respectively. Transmission electron microscopy (TEM) and selected area electron diffraction (SAED) further confirmed the polycrystalline structure of InN thin films and elemental mapping revealed uniform distribution of indium and nitrogen along the scanned area of the InN film. Spectral absorption measurements exhibited an optical band edge around 1.9 eV. Our findings demonstrate that HCPA-ALD might be a promising technique to grow crystalline wurtzite InN thin films at low substrate

  6. Low temperature (100 °C) atomic layer deposited-ZrO2 for recessed gate GaN HEMTs on Si

    NASA Astrophysics Data System (ADS)

    Byun, Young-Chul; Lee, Jae-Gil; Meng, Xin; Lee, Joy S.; Lucero, Antonio T.; Kim, Si Joon; Young, Chadwin D.; Kim, Moon J.; Kim, Jiyoung

    2017-08-01

    In this paper, the effect of atomic layer deposited ZrO2 gate dielectrics, deposited at low temperature (100 °C), on the characteristics of recessed-gate High Electron Mobility Transistors (HEMTs) on Al0.25Ga0.75N/GaN/Si is investigated and compared with the characteristics of those with ZrO2 films deposited at typical atomic layer deposited (ALD) process temperatures (250 °C). Negligible hysteresis (ΔVth < 20 mV), low gate leakage current (Ig@2 V = 6.6 × 10-6 A/cm2), high breakdown voltage (>4 V), and low interfacial state density (Dit = 3.69 × 1011 eV-1 cm-2) were observed on recessed gate HEMTs with ˜5 nm ALD-ZrO2 films grown at 100 °C. The excellent properties of recessed gate HEMTs are due to the absence of an interfacial layer and an amorphous phase of the film. An interfacial layer between 250 °C-ZrO2 and GaN is observed via high-resolution transmission electron microscopy and X-ray photoelectron spectroscopy. However, 100 °C-ZrO2 and GaN shows no significant interfacial layer formation. Moreover, while 100 °C-ZrO2 films maintain an amorphous phase on either substrate (GaN and Si), 250 °C-ZrO2 films exhibit a polycrystalline-phase when deposited on GaN and an amorphous phase when deposited on Si. Contrary to popular belief, the low-temperature ALD process for ZrO2 results in excellent HEMT performance.

  7. Atomic structure study of the pyrochlore Y b2T i2O7 and its relationship with low-temperature magnetic order

    NASA Astrophysics Data System (ADS)

    Mostaed, Ali; Balakrishnan, Geetha; Lees, Martin Richard; Yasui, Yukio; Chang, Lieh-Jeng; Beanland, Richard

    2017-03-01

    There has been great interest in the magnetic behavior of pyrochlore oxides with the general formula A2B2O7 , in which rare-earth (A ) and transition metal (B ) cations are ordered on separate interpenetrating lattices of corner-sharing tetrahedra. Such materials exhibit behaviors including quantum spin-ice, (quantum) spin-liquid, and ordered magnetic ground states. Y b2T i2O7 lies on the boundary between a number of competing magnetic ground states. Features in the low-temperature specific heat capacity that vary in sharpness and temperature from sample to sample suggest that, in some cases, the magnetic moments order, while in others, the moments remain dynamic down to temperatures as low as ˜16 mK. In this paper, three different Y b2T i2O7 samples, all grown by the optical floating zone technique but exhibiting quite different heat capacity behavior, are studied by aberration-corrected scanning transmission microscopy (STEM). Atomic-scale energy-dispersive x-ray analysis shows that a crystal with no specific heat anomaly has substitution of Yb atoms on Ti sites (stuffing). We show that the detailed intensity distribution around the visible atomic columns in annular dark field STEM images is sensitive to the presence of nearby atoms of low atomic number (in this case oxygen) and find significant differences between the samples that correlate both with their magnetic behavior and measurements of Ti oxidation state using electron energy loss spectroscopy. These measurements support the view that the magnetic ground state of Y b2T i2O7 is extremely sensitive to disorder.

  8. Calibration of frictional forces in atomic force microscopy

    SciTech Connect

    Ogletree, D.F.; Carpick, R.W.; Salmeron, M.

    1996-09-01

    The atomic force microscope can provide information on the atomic-level frictional properties of surfaces, but reproducible quantitative measurements are difficult to obtain. Parameters that are either unknown or difficult to precisely measure include the normal and lateral cantilever force constants (particularly with microfabricated cantilevers), the tip height, the deflection sensor response, and the tip structure and composition at the tip-surface contact. We present an {ital in} {ital situ} experimental procedure to determine the response of a cantilever to lateral forces in terms of its normal force response. This procedure is quite general. It will work with any type of deflection sensor and does not require the knowledge or direct measurement of the lever dimensions or the tip height. In addition, the shape of the tip apex can be determined. We also discuss a number of specific issues related to force and friction measurements using optical lever deflection sensing. We present experimental results on the lateral force response of commercially available V-shaped cantilevers. Our results are consistent with estimates of lever mechanical properties using continuum elasticity theory. {copyright} {ital 1996 American Institute of Physics.}

  9. High-resolution noncontact atomic force microscopy.

    PubMed

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-07-01

    Progress in nanoscience and nanotechnology requires tools that enable the imaging and manipulation of matter at the atomic and molecular scale. During the last two decades or so, scanning probe-based techniques have proven to be particularly versatile in this regard. Among the various probe-based approaches, atomic force microscopy (AFM) stands out in many ways, including the total number of citations and the breadth of possible applications, ranging from materials characterization to nanofabrication and biological studies. However, while nanometer scale operation in different environments became routine, atomic resolution imaging remained elusive for a long time. The reason for this initial deficiency was that contact with the sample blunts atomically sharp tips, which are mandatory for successful atomic resolution imaging. This problem was overcome in the mid-1990s with the introduction of noncontact atomic force microscopy (NC-AFM), which represents a version of AFM where the cantilever is oscillated close to the sample surface without actually 'touching' it. This allows the preservation of the atomic sharpness of the tip while interaction-induced changes in the cantilever's resonance frequency are used to quantify the tip-sample distance. Since then, progress has been steady and includes the development of commercial instruments as well as the addition of many new capabilities beyond imaging, such as the identification and manipulation of individual atoms. A series of annual international conferences, starting in Osaka in 1998, have contributed significantly to this outstanding performance. The program of the most recent conference from this series, held in Madrid on 15-19 September 2008, reflects the maturity of this field, with an increasing number of groups developing strong activities that involve novel approaches and applications covering areas well beyond the original vacuum-based imaging. In this special issue of Nanotechnology we present a selection of

  10. Neuron Biomechanics Probed by Atomic Force Microscopy

    PubMed Central

    Spedden, Elise; Staii, Cristian

    2013-01-01

    Mechanical interactions play a key role in many processes associated with neuronal growth and development. Over the last few years there has been significant progress in our understanding of the role played by the substrate stiffness in neuronal growth, of the cell-substrate adhesion forces, of the generation of traction forces during axonal elongation, and of the relationships between the neuron soma elastic properties and its health. The particular capabilities of the Atomic Force Microscope (AFM), such as high spatial resolution, high degree of control over the magnitude and orientation of the applied forces, minimal sample damage, and the ability to image and interact with cells in physiologically relevant conditions make this technique particularly suitable for measuring mechanical properties of living neuronal cells. This article reviews recent advances on using the AFM for studying neuronal biomechanics, provides an overview about the state-of-the-art measurements, and suggests directions for future applications. PMID:23921683

  11. Atomic force microscopy on liquid crystals

    NASA Astrophysics Data System (ADS)

    Bahr, Christian; Schulz, Benjamin

    This chapter provides an introduction to the atomic force microscopy (AFM) on thermotropic liquid crystals. We first give a general introduction to the technique of AFM and then describe the special requirements that have to be met for the imaging of liquid-crystalline surfaces. We also discuss the relation between the quality or reliability of the imaging results and various parameters of the scanning conditions. We briey review the existing work on AFM on liquid crystals and finally describe applications beyond the imaging, such as molecular force spectroscopy or manipulation of surface structures.

  12. Atomic Force Microscopy of Biological Membranes

    PubMed Central

    Frederix, Patrick L.T.M.; Bosshart, Patrick D.; Engel, Andreas

    2009-01-01

    Abstract Atomic force microscopy (AFM) is an ideal method to study the surface topography of biological membranes. It allows membranes that are adsorbed to flat solid supports to be raster-scanned in physiological solutions with an atomically sharp tip. Therefore, AFM is capable of observing biological molecular machines at work. In addition, the tip can be tethered to the end of a single membrane protein, and forces acting on the tip upon its retraction indicate barriers that occur during the process of protein unfolding. Here we discuss the fundamental limitations of AFM determined by the properties of cantilevers, present aspects of sample preparation, and review results achieved on reconstituted and native biological membranes. PMID:19167286

  13. Spectroscopy and atomic force microscopy of biomass.

    PubMed

    Tetard, L; Passian, A; Farahi, R H; Kalluri, U C; Davison, B H; Thundat, T

    2010-05-01

    Scanning probe microscopy has emerged as a powerful approach to a broader understanding of the molecular architecture of cell walls, which may shed light on the challenge of efficient cellulosic ethanol production. We have obtained preliminary images of both Populus and switchgrass samples using atomic force microscopy (AFM). The results show distinctive features that are shared by switchgrass and Populus. These features may be attributable to the lignocellulosic cell wall composition, as the collected images exhibit the characteristic macromolecular globule structures attributable to the lignocellulosic systems. Using both AFM and a single case of mode synthesizing atomic force microscopy (MSAFM) to characterize Populus, we obtained images that clearly show the cell wall structure. The results are of importance in providing a better understanding of the characteristic features of both mature cells as well as developing plant cells. In addition, we present spectroscopic investigation of the same samples.

  14. Imaging DNA Structure by Atomic Force Microscopy.

    PubMed

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  15. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  16. Atomic Force Microscope for Imaging and Spectroscopy

    NASA Technical Reports Server (NTRS)

    Pike, W. T.; Hecht, M. H.; Anderson, M. S.; Akiyama, T.; Gautsch, S.; deRooij, N. F.; Staufer, U.; Niedermann, Ph.; Howald, L.; Mueller, D.

    2000-01-01

    We have developed, built, and tested an atomic force microscope (AFM) for extraterrestrial applications incorporating a micromachined tip array to allow for probe replacement. It is part of a microscopy station originally intended for NASA's 2001 Mars lander to identify the size, distribution, and shape of Martian dust and soil particles. As well as imaging topographically down to nanometer resolution, this instrument can be used to reveal chemical information and perform infrared and Raman spectroscopy at unprecedented resolution.

  17. Formation of closely packed Cu nanoparticle films by capillary immersion force for preparing low-resistivity Cu films at low temperature

    NASA Astrophysics Data System (ADS)

    Yokoyama, Shun; Motomiya, Kenichi; Takahashi, Hideyuki; Tohji, Kazuyuki

    2016-11-01

    Films made of closely packed Cu nanoparticles (NPs) were obtained by drop casting Cu NP inks. The capillary immersion force exerted during the drying of the inks caused the Cu NPs to attract each other, resulting in closely packed Cu NP films. The apparent density of the films was found to depend on the type of solvent in the ink because the capillary immersion force is affected by the solvent surface tension and dispersibility of Cu NPs in the solvent. The closely packed particulate structure facilitated the sintering of Cu NPs even at low temperature, leading to low-resistivity Cu films. The sintering was also enhanced with a decrease in the size of NPs used. We demonstrated that a closely packed particulate structure using Cu NPs with a mean diameter 61.7 nm showed lower resistivity (7.6 μΩ cm) than a traditionally made Cu NP film (162 μΩ cm) after heat treatment.

  18. Development of Low-Temperature Atomic Layer Deposition of Ultra-Thin RuCo Direct Plate Liners for Flexible Electronics Applications

    NASA Astrophysics Data System (ADS)

    Gregory, Dillon A.

    Low temperature plasma-assisted atomic layer deposition-grown metal nanocomposite layers based on mixtures of ruthenium and cobalt have been investigated as potential copper adhesion/barrier layers in flexible electronics applications. The success of adapting this process to flexible electronics depends on the candidate barriers meeting several necessary properties including sufficient electrical conductivity, compatibility with Cu electroplating, and ability to prevent Cu diffusion into the substrate. Preliminary testing has shown that atomic layer deposition (ALD) can be used as a technique for depositing alloyed metallic barrier layers at the lower thermal constraints dictated by the use of polymer substrates and still produce continuous and electrically conductive metallic thin films. This has been achieved by lowering ALD processing temperatures to below the glass transition temperatures of polymeric substrate materials used in flexible electronics, including polyimide (PI), polyethylene terephthalate (PET), and polyethylene naphthalate (PEN) in order to maintain their structural integrity. These liner films, processed at temperatures as low as 100°C, are observed to support direct (i.e. seedless) electrochemical deposition of copper, though they failed to effectively act as barriers preventing copper diffusion into the dielectric substrate material. Possible reasons for this behavior and additional studies to address it are also discussed.

  19. Heteroepitaxial growth of GaN on atomically flat LiTaO 3 (0 0 0 1) using low-temperature AIN buffer layers

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Y.; Kobayashi, A.; Ohta, J.; Fujioka, H.; Oshima, M.

    2006-07-01

    We have grown GaN films on atomically-flat LiTaO 3 substrates by using pulsed laser deposition (PLD), and we then investigated the effect of the use of low-temperature AlN (LT-AlN) buffer layers on the structural properties of GaN. The full-width at half-maximum (FWHM) values for the crystal orientation distribution of the GaN films in the tilt directions were reduced from 0.48° to 0.17°, and those in the twist directions were reduced from 0.40° to 0.17° by the incorporation of AlN buffer layers grown at 580 °C. The surface morphology of GaN has also been improved by the insertion of LT-AlN buffer layers. X-ray reflectivity measurements have revealed that the interfacial layer thickness between LT-AlN and LiTaO 3 is as thin as 1.7 nm, and that the increase in the interfacial layer thickness caused by annealing at up to 700 °C is quite small. These results indicate that the PLD growth of GaN on atomically flat substrates using LT-AlN buffer layers is quite promising for achieving GaN on LiTaO 3.

  20. High-speed atomic force microscopy: imaging and force spectroscopy.

    PubMed

    Eghiaian, Frédéric; Rico, Felix; Colom, Adai; Casuso, Ignacio; Scheuring, Simon

    2014-10-01

    Atomic force microscopy (AFM) is the type of scanning probe microscopy that is probably best adapted for imaging biological samples in physiological conditions with submolecular lateral and vertical resolution. In addition, AFM is a method of choice to study the mechanical unfolding of proteins or for cellular force spectroscopy. In spite of 28 years of successful use in biological sciences, AFM is far from enjoying the same popularity as electron and fluorescence microscopy. The advent of high-speed atomic force microscopy (HS-AFM), about 10 years ago, has provided unprecedented insights into the dynamics of membrane proteins and molecular machines from the single-molecule to the cellular level. HS-AFM imaging at nanometer-resolution and sub-second frame rate may open novel research fields depicting dynamic events at the single bio-molecule level. As such, HS-AFM is complementary to other structural and cellular biology techniques, and hopefully will gain acceptance from researchers from various fields. In this review we describe some of the most recent reports of dynamic bio-molecular imaging by HS-AFM, as well as the advent of high-speed force spectroscopy (HS-FS) for single protein unfolding.

  1. Low-temperature layer transfer of midair cavity silicon films to a poly(ethylene terephthalate) substrate by meniscus force

    NASA Astrophysics Data System (ADS)

    Sakaike, Kohei; Nakamura, Shogo; Akazawa, Muneki; Higashi, Seiichiro

    2014-01-01

    A single-crystalline-silicon (c-Si) layer (supported by columns on a starting Si-on-insulator wafer) and a counter-poly(ethylene terephthalate) (PET) substrate were placed in close face-to-face contact, and pure water was sandwiched in between the c-Si layer and the PET substrate. The samples formed in this manner were heated on a hot plate at 80 °C. By the meniscus force generated during the evaporation of the sandwiched water from the samples, the c-Si films were completely transferred to the PET substrate. A (100)-oriented c-Si thin film that shows good adhesion was successfully formed on PET substrates at low process temperatures.

  2. Low-temperature dynamics of ferroelectric domains in PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} epitaxial thin films studied by piezoresponse force microscopy

    SciTech Connect

    Andreeva, N. V.; Vakulenko, A. F.; Filimonov, A. V.; Rudskoy, A. I.; Petraru, A.; Soni, R.; Kohlstedt, H.; Vakhrushev, S. B.; Pertsev, N. A.

    2015-10-12

    Dynamics of domain boundaries is expected to change drastically at low absolute temperatures but direct experimental information for this temperature range is still lacking. To clarify the mechanism of low-temperature domain dynamics, we studied the growth of ferroelectric domains in the temperature range 4.2–295 K using the out-of-plane piezoresponse mode of a cryogenic atomic force microscope (AFM). Nanoscale 180° domains were created in epitaxial PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} films by applying short voltage pulses between the conductive AFM tip brought into contact with the bare film surface and the bottom LaSr{sub 0.7}Mn{sub 0.3}O{sub 3} electrode. A quantitative analysis of acquired piezoresponse images enabled us to determine the in-plane domain size as a function of the writing voltage and pulse duration. It is found that at all studied temperatures the dependence of this size on the pulse duration can be fitted by a logarithmic function, which indicates that the domain-wall velocity exponentially depends on the driving electric field. The theoretical analysis of experimental data shows that the observed low-temperature domain dynamics is consistent with the creep of domain boundaries occurring in the presence of defects and structural nanoheterogeneities.

  3. Chemical bond imaging using higher eigenmodes of tuning fork sensors in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ebeling, Daniel; Zhong, Qigang; Ahles, Sebastian; Chi, Lifeng; Wegner, Hermann A.; Schirmeisen, André

    2017-05-01

    We demonstrate the ability of resolving the chemical structure of single organic molecules using non-contact atomic force microscopy with higher normal eigenmodes of quartz tuning fork sensors. In order to achieve submolecular resolution, CO-functionalized tips at low temperatures are used. The tuning fork sensors are operated in ultrahigh vacuum in the frequency modulation mode by exciting either their first or second eigenmode. Despite the high effective spring constant of the second eigenmode (on the order of several tens of kN/m), the force sensitivity is sufficiently high to achieve atomic resolution above the organic molecules. This is observed for two different tuning fork sensors with different tip geometries (small tip vs. large tip). These results represent an important step towards resolving the chemical structure of single molecules with multifrequency atomic force microscopy techniques where two or more eigenmodes are driven simultaneously.

  4. First Atomic Force Microscope Image from Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles.

    The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep.

    This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing.

    Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  5. First Atomic Force Microscope Image from Mars

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This calibration image presents three-dimensional data from the atomic force microscope on NASA's Phoenix Mars Lander, showing surface details of a substrate on the microscope station's sample wheel. It will be used as an aid for interpreting later images that will show shapes of minuscule Martian soil particles.

    The area imaged by the microscope is 40 microns by 40 microns, small enough to fit on an eyelash. The grooves in this substrate are 14 microns (0.00055 inch) apart, from center to center. The vertical dimension is exaggerated in the image to make surface details more visible. The grooves are 300 nanometers (0.00001 inch) deep.

    This is the first atomic force microscope image recorded on another planet. It was taken on July 9, 2008, during the 44th Martian day, or sol, of the Phoenix mission since landing.

    Phoenix's Swiss-made atomic force microscope builds an image of the surface shape of a particle by sensing it with a sharp tip at the end of a spring, all microfabricated out of a silicon wafer. A strain gauge records how far the spring flexes to follow the contour of the surface. It can provide details of soil-particle shapes smaller than one-hundredth the width of a human hair. This is about 20 times smaller than what can be resolved with Phoenix's optical microscope, which has provided much higher-magnification imaging than anything seen on Mars previously. Both microscopes are part of Phoenix's Microscopy, Electrochemistry and Conductivity Analyzer.

  6. Periodicity in bimodal atomic force microscopy

    SciTech Connect

    Lai, Chia-Yun; Santos, Sergio Chiesa, Matteo; Barcons, Victor

    2015-07-28

    Periodicity is fundamental for quantification and the application of conservation principles of many important systems. Here, we discuss periodicity in the context of bimodal atomic force microscopy (AFM). The relationship between the excited frequencies is shown to affect and control both experimental observables and the main expressions quantified via these observables, i.e., virial and energy transfer expressions, which form the basis of the bimodal AFM theory. The presence of a fundamental frequency further simplifies the theory and leads to close form solutions. Predictions are verified via numerical integration of the equation of motion and experimentally on a mica surface.

  7. Friction forces on atoms after acceleration

    SciTech Connect

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; Scheel, Stefan; Dalvit, Diego A. R.; Henkel, Carsten

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contribution to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.

  8. Friction forces on atoms after acceleration

    DOE PAGES

    Intravaia, Francesco; Mkrtchian, Vanik E.; Buhmann, Stefan Yoshi; ...

    2015-05-12

    The aim of this study is to revisit the calculation of atom–surface quantum friction in the quantum field theory formulation put forward by Barton (2010 New J. Phys. 12 113045). We show that the power dissipated into field excitations and the associated friction force depend on how the atom is boosted from being initially at rest to a configuration in which it is moving at constant velocity (v) parallel to the planar interface. In addition, we point out that there is a subtle cancellation between the one-photon and part of the two-photon dissipating power, resulting in a leading order contributionmore » to the frictional power which goes as v4. These results are also confirmed by an alternative calculation of the average radiation force, which scales as v3.« less

  9. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes

    PubMed Central

    Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu

    2017-01-01

    Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10−5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime. PMID:28059160

  10. Low-Temperature Process for Atomic Layer Chemical Vapor Deposition of an Al2O3 Passivation Layer for Organic Photovoltaic Cells.

    PubMed

    Kim, Hoonbae; Lee, Jihye; Sohn, Sunyoung; Jung, Donggeun

    2016-05-01

    Flexible organic photovoltaic (OPV) cells have drawn extensive attention due to their light weight, cost efficiency, portability, and so on. However, OPV cells degrade quickly due to organic damage by water vapor or oxygen penetration when the devices are driven in the atmosphere without a passivation layer. In order to prevent damage due to water vapor or oxygen permeation into the devices, passivation layers have been introduced through methods such as sputtering, plasma enhanced chemical vapor deposition, and atomic layer chemical vapor deposition (ALCVD). In this work, the structural and chemical properties of Al2O3 films, deposited via ALCVD at relatively low temperatures of 109 degrees C, 200 degrees C, and 300 degrees C, are analyzed. In our experiment, trimethylaluminum (TMA) and H2O were used as precursors for Al2O3 film deposition via ALCVD. All of the Al2O3 films showed very smooth, featureless surfaces without notable defects. However, we found that the plastic flexible substrate of an OPV device passivated with 300 degrees C deposition temperature was partially bended and melted, indicating that passivation layers for OPV cells on plastic flexible substrates need to be formed at temperatures lower than 300 degrees C. The OPV cells on plastic flexible substrates were passivated by the Al2O3 film deposited at the temperature of 109 degrees C. Thereafter, the photovoltaic properties of passivated OPV cells were investigated as a function of exposure time under the atmosphere.

  11. Low sheet resistance titanium nitride films by low-temperature plasma-enhanced atomic layer deposition using design of experiments methodology

    SciTech Connect

    Burke, Micheal Blake, Alan; Povey, Ian M.; Schmidt, Michael; Petkov, Nikolay; Carolan, Patrick; Quinn, Aidan J.

    2014-05-15

    A design of experiments methodology was used to optimize the sheet resistance of titanium nitride (TiN) films produced by plasma-enhanced atomic layer deposition (PE-ALD) using a tetrakis(dimethylamino)titanium precursor in a N{sub 2}/H{sub 2} plasma at low temperature (250 °C). At fixed chamber pressure (300 mTorr) and plasma power (300 W), the plasma duration and N{sub 2} flow rate were the most significant factors. The lowest sheet resistance values (163 Ω/sq. for a 20 nm TiN film) were obtained using plasma durations ∼40 s, N{sub 2} flow rates >60 standard cubic centimeters per minute, and purge times ∼60 s. Time of flight secondary ion mass spectroscopy data revealed reduced levels of carbon contaminants in the TiN films with lowest sheet resistance (163 Ω/sq.), compared to films with higher sheet resistance (400–600 Ω/sq.) while transmission electron microscopy data showed a higher density of nanocrystallites in the low-resistance films. Further significant reductions in sheet resistance, from 163 Ω/sq. to 70 Ω/sq. for a 20 nm TiN film (corresponding resistivity ∼145 μΩ·cm), were achieved by addition of a postcycle Ar/N{sub 2} plasma step in the PE-ALD process.

  12. Low-temperature remote plasma enhanced atomic layer deposition of ZrO2/zircone nanolaminate film for efficient encapsulation of flexible organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Wang, Haoran; Wang, Xiao; Chen, Ping; Liu, Yunfei; Zhao, Hongyu; Zhao, Yi; Duan, Yu

    2017-01-01

    Encapsulation is essential to protect the air-sensitive components of organic light-emitting diodes (OLEDs) such as active layers and cathode electrodes. In this study, hybrid zirconium inorganic/organic nanolaminates were fabricated using remote plasma enhanced atomic layer deposition (PEALD) and molecular layer deposition at a low temperature. The nanolaminate serves as a thin-film encapsulation layer for OLEDs. The reaction mechanism of PEALD process was investigated using an in-situ quartz crystal microbalance (QCM) and in-situ quadrupole mass spectrometer (QMS). The bonds present in the films were determined by Fourier transform infrared spectroscopy. The primary reaction byproducts in PEALD, such as CO, CO2, NO, H2O, as well as the related fragments during the O2 plasma process were characterized using the QMS, indicating a combustion-like reaction process. The self-limiting nature and growth mechanisms of the ZrO2 during the complex surface chemical reaction of the ligand and O2 plasma were monitored using the QCM. The remote PEALD ZrO2/zircone nanolaminate structure prolonged the transmission path of water vapor and smooth surface morphology. Consequently, the water barrier properties were significantly improved (reaching 3.078 × 10‑5 g/m2/day). This study also shows that flexible OLEDs can be successfully encapsulated to achieve a significantly longer lifetime.

  13. Plasma etch characteristics of aluminum nitride mask layers grown by low-temperature plasma enhanced atomic layer deposition in SF{sub 6} based plasmas

    SciTech Connect

    Perros, Alexander; Bosund, Markus; Sajavaara, Timo; Laitinen, Mikko; Sainiemi, Lauri; Huhtio, Teppo; Lipsanen, Harri

    2012-01-15

    The plasma etch characteristics of aluminum nitride (AlN) deposited by low-temperature, 200 deg. C, plasma enhanced atomic layer deposition (PEALD) was investigated for reactive ion etch (RIE) and inductively coupled plasma-reactive ion etch (ICP-RIE) systems using various mixtures of SF{sub 6} and O{sub 2} under different etch conditions. During RIE, the film exhibits good mask properties with etch rates below 10r nm/min. For ICP-RIE processes, the film exhibits exceptionally low etch rates in the subnanometer region with lower platen power. The AlN film's removal occurred through physical mechanisms; consequently, rf power and chamber pressure were the most significant parameters in PEALD AlN film removal because the film was inert to the SF{sub x}{sup +} and O{sup +} chemistries. The etch experiments showed the film to be a resilient masking material. This makes it an attractive candidate for use as an etch mask in demanding SF{sub 6} based plasma etch applications, such as through-wafer etching, or when oxide films are not suitable.

  14. Low-temperature growth of high quality In{sub x}Ga{sub 1{minus}x}N by atomic layer epitaxy

    SciTech Connect

    Boutros, K.S.; Roberts, J.C.; McIntosh, F.G.; Piner, E.L.; El-Masry, N.A.; Bedair, S.M.

    1996-11-01

    The authors report on the low temperature epitaxial growth of In{sub x}Ga{sub 1{minus}x}N with 0 {le} x {le} 0.27 by Atomic Layer Epitaxy (ALE). GaN and InGaN single crystal films have been grown by ALE in the temperature range between 600 and 700 C using the rotating substrate approach. Films were deposited on sapphire substrates using TMG, EdMIn, and NH{sub 3} as precursors. Up to 27% indium content has been achieved in the InGaN films. The FWHM of the (0002) InGaN peak by double crystal X-ray diffraction of these films was a small as 5 minutes. Room-temperature photoluminescence (PL) from these films was dominated by band edge emission between 365 nm and 446 nm. AlGaN/InGaN double heterostructures were grown in a hybrid reactor, in which the AlGaN barrier layers were grown by MOCVD and the InGaN active layer by ALE. The structures showed good crystal quality, and sharp PL emission with peak intensity at 410 nm.

  15. Ultrastable Atomic Force Microscopy for Biophysics

    NASA Astrophysics Data System (ADS)

    Churnside, Allison B.

    Atomic force microscopy (AFM) is a multifunctional workhorse of nanoscience and molecular biophysics, but instrumental drift remains a critical issue that limits the precision and duration of experiments. We have significantly reduced the two most important types of drift: in position and in force. The first, position drift, is defined as uncontrolled motion between the tip and the sample, which occurs in all three dimensions. By scattering a laser off the apex of a commercial AFM tip, we locally measured and thereby actively controlled its three-dimensional position above a sample surface to <0.4 A (Deltaf = 0.01--10 Hz) in air at room temperature. With this enhanced stability, we demonstrated atomic-scale (˜1 A) tip-sample stability and registration over tens of minutes with a series of AFM images. The second type of drift is force drift. We found that the primary source of force drift for a popular class of soft cantilevers is their gold coating, even though they are coated on both sides to minimize drift. When the gold coating was removed through a simple chemical etch, this drift in deflection was reduced by more than an order of magnitude over the first 2 hours after wetting the tip. Removing the gold also led to ˜ 10-fold reduction in reflected light, yet short-term (0.1--10 s) force precision improved. With both position and force drift greatly reduced, the utility of the AFM is enhanced. These improvements led to several new AFM abilities, including a five-fold increase in the image signal-to-noise ratio; tip-registered, label-free optical imaging; registered tip return to a particular point on the sample; and dual-detection force spectroscopy, which enables a new extension clamp mode. We have applied these abilities to folding of both membrane and soluble proteins. In principle, the techniques we describe can be fully incorporated into many types of scanning probe microscopy, making this work a general improvement to scanning probe techniques.

  16. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    DOE PAGES

    Welz, Oliver; Savee, John D.; Osborn, David L.; ...

    2014-07-04

    The chlorine atom-initiated oxidation of two unsaturated primary C5 alcohols, prenol (3-methyl-2-buten-1-ol, (CH3)2CCHCH2OH) and isoprenol (3-methyl-3-buten-1-ol, CH2C(CH3)CH2CH2OH), is studied at 550 K and low pressure (8 Torr). The time- and isomer-resolved formation of products is probed with multiplexed photoionization mass spectrometry (MPIMS) using tunable vacuum ultraviolet ionizing synchrotron radiation. The peroxy radical chemistry of the unsaturated alcohols appears much less rich than that of saturated C4 and C5 alcohols. The main products observed are the corresponding unsaturated aldehydes – prenal (3-methyl-2-butenal) from prenol oxidation and isoprenal (3-methyl-3-butenal) from isoprenol oxidation. No significant products arising from QOOH chemistry are observed. Thesemore » results can be qualitatively explained by the formation of resonance stabilized allylic radicals via H-abstraction in the Cl + prenol and Cl + isoprenol initiation reactions. The loss of resonance stabilization upon O2 addition causes the energies of the intermediate wells, saddle points, and products to increase relative to the energy of the initial radicals and O2. These energetic shifts make most product channels observed in the peroxy radical chemistry of saturated alcohols inaccessible for these unsaturated alcohols. The experimental findings are underpinned by quantum-chemical calculations for stationary points on the potential energy surfaces for the reactions of the initial radicals with O2. Under our conditions, the dominant channels in prenol and isoprenol oxidation are the chain-terminating HO2-forming channels arising from radicals, in which the unpaired electron and the –OH group are on the same carbon atom, with stable prenal and isoprenal co-products, respectively. These results suggest that the presence of C=C double bonds in alcohols will reduce low-temperature reactivity during autoignition.« less

  17. Low Temperature Rosseland Opacities

    NASA Astrophysics Data System (ADS)

    Alexander, D. R.

    1994-05-01

    A new, comprehensive set of low temperature opacity data for atoms and molecules has been assembled. From this basic data set, Rosseland and Planck mean opacities have been computed for temperatures between 12,500 K and 700 K. In addition to the standard continuous absorbers, atomic line absorption (with more than 8 million lines), molecular line absorption (with nearly 60 million lines), and grain absorption and scattering (by silicates, iron, carbon, and SiC) have been included. The absorption due to lines is computed monochromatically and included in the mean with the Opacity Sampling technique. Grains are assumed to form in chemical equilibrium and to form into a continuous distribution of ellipsoids which are randomly oriented. Agreement of these opacities with other recent tabulations of opacities (including OP (M. J. Seaton 1994, MNRAS, 266, 805) and OPAL (F. J. Rogers & C. A. Iglesias 1992, ApJS, 79, 507)) for temperatures above 5,000 K is excellent. It is shown that opacities which neglect molecules become unreliable for temperatures below 5,000 K. Similarly, grains must be included in the computation for temperatures below 1,000 - 1,700 K, depending upon the density. Opacity tables can be prepared for a wide variety of chemical compositions, and will be provided upon request. This research is supported by NSF grant AST-9217946.

  18. Microfluidics, Chromatography, and Atomic-Force Microscopy

    NASA Technical Reports Server (NTRS)

    Anderson, Mark

    2008-01-01

    A Raman-and-atomic-force microscope (RAFM) has been shown to be capable of performing several liquid-transfer and sensory functions essential for the operation of a microfluidic laboratory on a chip that would be used to perform rapid, sensitive chromatographic and spectro-chemical analyses of unprecedentedly small quantities of liquids. The most novel aspect of this development lies in the exploitation of capillary and shear effects at the atomic-force-microscope (AFM) tip to produce shear-driven flow of liquids along open microchannels of a microfluidic device. The RAFM can also be used to perform such functions as imaging liquids in microchannels; removing liquid samples from channels for very sensitive, tip-localized spectrochemical analyses; measuring a quantity of liquid adhering to the tip; and dip-pen deposition from a chromatographic device. A commercial Raman-spectroscopy system and a commercial AFM were integrated to make the RAFM so as to be able to perform simultaneous topographical AFM imaging and surface-enhanced Raman spectroscopy (SERS) at the AFM tip. The Raman-spectroscopy system includes a Raman microprobe attached to an optical microscope, the translation stage of which is modified to accommodate the AFM head. The Raman laser excitation beam, which is aimed at the AFM tip, has a wavelength of 785 nm and a diameter of about 5 m, and its power is adjustable up to 10 mW. The AFM is coated with gold to enable tip-localized SERS.

  19. Applications of Atomic Resolution Atomic Force Microscopy to Nanoscience & Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rhodin, Thor

    2001-03-01

    New developments in nanophysical scanning probe microscopy in terms of its unique relatonship to nanoscience, together with specific applications to nanoelectronic and biotechnology, will be discussed(1).Innovative examples of chemical physics at interfaces are analyzed where state-of-the-art non contact atomic force microscopy(nc-AFM) measurement of a specific physical or chemical property is correlated with position, orientation and/or location with atomic resolution. Analysis of specific current as well as future applications of nc-AFM to the detection, manipulation and fabrication of nanostructures on the molecular scale will be presented.Design features of nano-instrumentation based on carbon nanotube technology, high frequency solid state micro-oscillators and variable temperature applications will be presented.Specific examples pertaining to, (1) chemical bonding interaction on a semiconductor,(2) surface structure of an ionic insulator,(3) structural features in a biological interface and (4) nanofabrication of a quantum electron device, will be reviewed in terms of their innovativeness and significance to nanoscience and nanotechnology. 1 ``Scanning Probe Microscopies,Nanoscience & Nanotechnology" T.N. Rhodin, Proceedings of nc-AFM Workshop, July 2000, Hamburg, Germany. Springer Verlag U. Schwarz, H. Hoelscher and M. Wiesendanger, guest editors.

  20. Investigating cell mechanics with atomic force microscopy

    PubMed Central

    Haase, Kristina; Pelling, Andrew E.

    2015-01-01

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells ‘feel’, we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved. PMID:25589563

  1. Atomic force microscopy of biological samples.

    PubMed

    Allison, David P; Mortensen, Ninell P; Sullivan, Claretta J; Doktycz, Mitchel J

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH). © 2010 John Wiley & Sons, Inc.

  2. Investigating cell mechanics with atomic force microscopy.

    PubMed

    Haase, Kristina; Pelling, Andrew E

    2015-03-06

    Transmission of mechanical force is crucial for normal cell development and functioning. However, the process of mechanotransduction cannot be studied in isolation from cell mechanics. Thus, in order to understand how cells 'feel', we must first understand how they deform and recover from physical perturbations. Owing to its versatility, atomic force microscopy (AFM) has become a popular tool to study intrinsic cellular mechanical properties. Used to directly manipulate and examine whole and subcellular reactions, AFM allows for top-down and reconstitutive approaches to mechanical characterization. These studies show that the responses of cells and their components are complex, and largely depend on the magnitude and time scale of loading. In this review, we generally describe the mechanotransductive process through discussion of well-known mechanosensors. We then focus on discussion of recent examples where AFM is used to specifically probe the elastic and inelastic responses of single cells undergoing deformation. We present a brief overview of classical and current models often used to characterize observed cellular phenomena in response to force. Both simple mechanistic models and complex nonlinear models have been used to describe the observed cellular behaviours, however a unifying description of cell mechanics has not yet been resolved.

  3. Atomic force microscopy of biological samples

    SciTech Connect

    Doktycz, Mitchel John

    2010-01-01

    The ability to evaluate structural-functional relationships in real time has allowed scanning probe microscopy (SPM) to assume a prominent role in post genomic biological research. In this mini-review, we highlight the development of imaging and ancillary techniques that have allowed SPM to permeate many key areas of contemporary research. We begin by examining the invention of the scanning tunneling microscope (STM) by Binnig and Rohrer in 1982 and discuss how it served to team biologists with physicists to integrate high-resolution microscopy into biological science. We point to the problems of imaging nonconductive biological samples with the STM and relate how this led to the evolution of the atomic force microscope (AFM) developed by Binnig, Quate, and Gerber, in 1986. Commercialization in the late 1980s established SPM as a powerful research tool in the biological research community. Contact mode AFM imaging was soon complemented by the development of non-contact imaging modes. These non-contact modes eventually became the primary focus for further new applications including the development of fast scanning methods. The extreme sensitivity of the AFM cantilever was recognized and has been developed into applications for measuring forces required for indenting biological surfaces and breaking bonds between biomolecules. Further functional augmentation to the cantilever tip allowed development of new and emerging techniques including scanning ion-conductance microscopy (SICM), scanning electrochemical microscope (SECM), Kelvin force microscopy (KFM) and scanning near field ultrasonic holography (SNFUH).

  4. Atomic Force Microscopy for Soil Analysis

    NASA Astrophysics Data System (ADS)

    gazze, andrea; doerr, stefan; dudley, ed; hallin, ingrid; matthews, peter; quinn, gerry; van keulen, geertje; francis, lewis

    2016-04-01

    Atomic Force Microscopy (AFM) is a high-resolution surface-sensitive technique, which provides 3-dimensional topographical information and material properties of both stiff and soft samples in their natural environments. Traditionally AFM has been applied to samples with low roughness: hence its use for soil analysis has been very limited so far. Here we report the optimization settings required for a standardization of high-resolution and artefact-free analysis of natural soil with AFM: soil immobilization, AFM probe selection, artefact recognition and minimization. Beyond topography, AFM can be used in a spectroscopic mode to evaluate nanomechanical properties, such as soil viscosity, stiffness, and deformation. In this regards, Bruker PeakForce-Quantitative NanoMechanical (QNM) AFM provides a fast and convenient way to extract physical properties from AFM force curves in real-time to obtain soil nanomechanical properties. Here we show for the first time the ability of AFM to describe the topography of natural soil at nanometre resolution, with observation of micro-components, such as clays, and of nano-structures, possibly of biotic origin, the visualization of which would prove difficult with other instrumentations. Finally, nanomechanical profiling has been applied to different wettability states in soil and the respective physical patterns are discussed.

  5. Investigation of Low Temperature, Atomic-Layer-Deposited Oxides on 4Hydrigen-Silicon Carbide and their Effect on the Silicon Carbide/Silicon Dioxide Interface

    NASA Astrophysics Data System (ADS)

    Haney, Sarah Kay

    Silicon carbide has long been considered an excellent substrate for high power, high temperature applications. Fabrication of conventional MOSFETs on silicon carbide (SiC) relies on thermal oxidation of the SiC for formation of the silicon dioxide (SiO2) gate oxide. Historically, direct oxidation was viewed favorably due to ease of fabrication. However, the resulting MOS devices have exhibited significant interface trap densities, Dit , which reduce effective inversion layer mobility by capturing free carriers and enhancing scattering. While nitridation has been shown to reduce Dit, the inversion layer electron mobility of these devices is still limited by the presence of carbon near the interface. Studies have suggested a low mobility transition region between the SiC and SiO2, on the SiC side, attributed to increased carbon concentration resulting from the thermal oxidation of the SiC. In this work, we have investigated the low temperature, atomic layer deposition (ALD) of SiO2 onto SiC compared to thermal oxidation of SiC for the fabrication of MOS devices. Avoiding the carbon out diffusion and subsequent carbon build-up resulting from thermal oxidation is expected to result in a superior, higher mobility MOSFET. A three-step ALD process using 3-aminopropyltriethoxysiliane (3-APTES), ozone and water was evaluated on silicon and SiC substrates. Ellipsometry and XPS were used to characterize blanket films, and showed good results. Capacitors fabricated on SiC showed the need for optimized post deposition anneals. The effect of post oxidation anneals in nitrogen, forming gas and nitric oxide were examined. The standard nitric oxide (NO) anneal that is used to improve Dit after thermal oxidation was also shown to be the best anneal for the low temperature deposited ALD oxides. Materials characterization of the nitrided ALD and nitrided thermal oxide samples was completed using STEM/EELS techniques in addition to the ellipsometry and XPS. STEM/EELS analysis of the

  6. Atomic Force Microscopy: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Gould, Scot A. C.

    When the scanning tunnelling microscope (STM) was invented in 1980, it was hoped that all scientists would benefit from a device that could image surfaces with atomic resolution. Unfortunately while conductors and semiconductors could be imaged with the STM, the vast number of non-conductors, for examples, most ceramics, proteins and cells were virtually unobservable. With the invention of a new device, the atomic force microscope (AFM) suddenly scientists could image the topography of all samples, including non-conductors. The basic construction and operation of the AFM consists of placing a small probe at the end of a spring and measuring the deflection of the spring. Along with the STM, the AFM has revolutionized the study of surfaces in air, water and vacuum. This dissertation reports some of the work I have been involved in. Specifically: (1) building an AFM that used an STM to measure the deflection of the cantilever, (2) building an improved AFM that used an optical level to measure the deflection of the cantilever, microfabricated tips and a water cell, (3) adding a force modulation imaging mode for imaging the surface elasticity, (4) the creation of a theoretical model to help explain atomic imaging, and (5) the creation of image processing techniques that filter out noise inherent in the system and enhance the topographical features of the surface. Using these techniques, we have imaged and analyzed (1) the amino acid crystal DL-leucine and noted that the surface represents an extension of the bulk crystal, (2) imaged polyalanine demonstrating the ability of the microscope to image polymers with molecular resolution, (3) observed the process of blood clotting at the molecular level, (4) imaged important samples including germanium and graphite with atomic resolution and large scale objects including red and white blood cells with nanometer resolution, (5) imaged photographic film as an example of industrial quality control, (6) demonstrated through

  7. Atomic force microscopy of Precambrian microscopic fossils

    PubMed Central

    Kempe, André; Schopf, J. William; Altermann, Wladyslaw; Kudryavtsev, Anatoliy B.; Heckl, Wolfgang M.

    2002-01-01

    Atomic force microscopy (AFM) is a technique used routinely in material science to image substances at a submicron (including nm) scale. We apply this technique to analysis of the fine structure of organic-walled Precambrian fossils, microscopic sphaeromorph acritarchs (cysts of planktonic unicellular protists) permineralized in ≈650-million-year-old cherts of the Chichkan Formation of southern Kazakhstan. AFM images, backed by laser-Raman spectroscopic analysis of individual specimens, demonstrate that the walls of these petrified fossils are composed of stacked arrays of ≈200-nm-sized angular platelets of polycyclic aromatic kerogen. Together, AFM and laser-Raman spectroscopy provide means by which to elucidate the submicron-scale structure of individual microscopic fossils, investigate the geochemical maturation of ancient organic matter, and, potentially, distinguish true fossils from pseudofossils and probe the mechanisms of fossil preservation by silica permineralization. PMID:12089337

  8. High-frequency multimodal atomic force microscopy

    PubMed Central

    Nievergelt, Adrian P; Adams, Jonathan D; Odermatt, Pascal D

    2014-01-01

    Summary Multifrequency atomic force microscopy imaging has been recently demonstrated as a powerful technique for quickly obtaining information about the mechanical properties of a sample. Combining this development with recent gains in imaging speed through small cantilevers holds the promise of a convenient, high-speed method for obtaining nanoscale topography as well as mechanical properties. Nevertheless, instrument bandwidth limitations on cantilever excitation and readout have restricted the ability of multifrequency techniques to fully benefit from small cantilevers. We present an approach for cantilever excitation and deflection readout with a bandwidth of 20 MHz, enabling multifrequency techniques extended beyond 2 MHz for obtaining materials contrast in liquid and air, as well as soft imaging of delicate biological samples. PMID:25671141

  9. Measuring molecular weight by atomic force microscopy.

    PubMed

    Sheiko, Sergei S; da Silva, Marcelo; Shirvaniants, David; LaRue, Isaac; Prokhorova, Svetlana; Moeller, Martin; Beers, Kathryn; Matyjaszewski, Krzysztof

    2003-06-04

    Absolute-molecular-weight distribution of cylindrical brush molecules were determined using a combination of the Langmuir Blodget (LB) technique and Atomic Force Microscopy (AFM). The LB technique gives mass density of a monolayer, i.e., mass per unit area, whereas visualization of individual molecules by AFM enables accurate measurements of the molecular density, i.e., number of molecules per unit area. From the ratio of the mass density to the molecular density, one can determine the absolute value for the number average molecular weight. Assuming that the structure of brush molecules is uniform along the backbone, the length distribution should be virtually identical to the molecular weight distribution. Although we used only brush molecules for demonstration purpose, this approach can be applied for a large variety of molecular and colloidal species that can be visualized by a microscopic technique.

  10. Atomic force microscopy of model lipid membranes.

    PubMed

    Morandat, Sandrine; Azouzi, Slim; Beauvais, Estelle; Mastouri, Amira; El Kirat, Karim

    2013-02-01

    Supported lipid bilayers (SLBs) are biomimetic model systems that are now widely used to address the biophysical and biochemical properties of biological membranes. Two main methods are usually employed to form SLBs: the transfer of two successive monolayers by Langmuir-Blodgett or Langmuir-Schaefer techniques, and the fusion of preformed lipid vesicles. The transfer of lipid films on flat solid substrates offers the possibility to apply a wide range of surface analytical techniques that are very sensitive. Among them, atomic force microscopy (AFM) has opened new opportunities for determining the nanoscale organization of SLBs under physiological conditions. In this review, we first focus on the different protocols generally employed to prepare SLBs. Then, we describe AFM studies on the nanoscale lateral organization and mechanical properties of SLBs. Lastly, we survey recent developments in the AFM monitoring of bilayer alteration, remodeling, or digestion, by incubation with exogenous agents such as drugs, proteins, peptides, and nanoparticles.

  11. Atomic force microscopy of Precambrian microscopic fossils.

    PubMed

    Kempe, André; Schopf, J William; Altermann, Wladyslaw; Kudryavtsev, Anatoliy B; Heckl, Wolfgang M

    2002-07-09

    Atomic force microscopy (AFM) is a technique used routinely in material science to image substances at a submicron (including nm) scale. We apply this technique to analysis of the fine structure of organic-walled Precambrian fossils, microscopic sphaeromorph acritarchs (cysts of planktonic unicellular protists) permineralized in approximately 650-million-year-old cherts of the Chichkan Formation of southern Kazakhstan. AFM images, backed by laser-Raman spectroscopic analysis of individual specimens, demonstrate that the walls of these petrified fossils are composed of stacked arrays of approximately 200-nm-sized angular platelets of polycyclic aromatic kerogen. Together, AFM and laser-Raman spectroscopy provide means by which to elucidate the submicron-scale structure of individual microscopic fossils, investigate the geochemical maturation of ancient organic matter, and, potentially, distinguish true fossils from pseudofossils and probe the mechanisms of fossil preservation by silica permineralization.

  12. Atomic force microscopy of biochemically tagged DNA.

    PubMed Central

    Murray, M N; Hansma, H G; Bezanilla, M; Sano, T; Ogletree, D F; Kolbe, W; Smith, C L; Cantor, C R; Spengler, S; Hansma, P K

    1993-01-01

    Small fragments of DNA of known length were made with the polymerase chain reaction. These fragments had biotin molecules covalently attached at their ends. They were subsequently labeled with a chimeric protein fusion between streptavidin and two immunoglobulin G-binding domains of staphylococcal protein A. This tetrameric species was expected to bind up to four DNA molecules via their attached biotin moieties. The DNA-protein complex was deposited on mica and imaged with an atomic force microscope. The images revealed the protein chimera at the expected location at the ends of the strands of DNA as well as the expected dimers, trimers, and tetramers of DNA bound to a single protein. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8483898

  13. Atomic Force Microscopy for DNA SNP Identification

    NASA Astrophysics Data System (ADS)

    Valbusa, Ugo; Ierardi, Vincenzo

    The knowledge of the effects of single-nucleotide polymorphisms (SNPs) in the human genome greatly contributes to better comprehension of the relation between genetic factors and diseases. Sequence analysis of genomic DNA in different individuals reveals positions where variations that involve individual base substitutions can occur. Single-nucleotide polymorphisms are highly abundant and can have different consequences at phenotypic level. Several attempts were made to apply atomic force microscopy (AFM) to detect and map SNP sites in DNA strands. The most promising approach is the study of DNA mutations producing heteroduplex DNA strands and identifying the mismatches by means of a protein that labels the mismatches. MutS is a protein that is part of a well-known complex of mismatch repair, which initiates the process of repairing when the MutS binds to the mismatched DNA filament. The position of MutS on the DNA filament can be easily recorded by means of AFM imaging.

  14. Lewy bodies under atomic force microscope.

    PubMed

    Tercjak, Agnieszka; Bergareche, Alberto; Caballero, Cristina; Tuñon, Teresa; Linazasoro, Gurutz

    2014-02-01

    Lewy bodies are the hallmark of Parkinson disease and their sophisticated analysis will undoubtedly elucidate the pathogenic process. They have been studied by using different microscopic tools. The authors have used atomic force microscopy (AFM) to study the ultramicrotom cut postmortem brain tissue of Parkinson disease patients. Under the same preparation conditions, they have found aggregated fibrillary nanostructures in Lewy bodies, as well as a loss of connections between neurons located in other parts of the substantia nigra. Although these results are preliminary and descriptive in nature, this paper reports the application of a novel and intriguing technique. Further studies including the study of cortical LB and Lewy neurites will be needed to determine the full potential of AFM in the study of the pathogenesis of cell death in Parkinson disease and other synucleinopathies.

  15. Chlorine atom-initiated low-temperature oxidation of prenol and isoprenol: The effect of C=C double bonds on the peroxy radical chemistry in alcohol oxidation

    SciTech Connect

    Welz, Oliver; Savee, John D.; Osborn, David L.; Taatjes, Craig A.

    2014-07-04

    low-temperature reactivity during autoignition.

  16. QPlus: atomic force microscopy on single-crystal insulators with small oscillation amplitudes at 5 K.

    PubMed

    Bettac, Andreas; Koeble, Juergen; Winkler, Konrad; Uder, Bernd; Maier, Markus; Feltz, Albrecht

    2009-07-01

    Based on a proven low temperature scanning tunneling microscope (STM) platform, we have integrated a QPlus sensor, which employs a quartz tuning fork for force detection in non-contact atomic force microscopy (AFM). For combined STM operation, this sensor has key advantages over conventional sensors. For quantitative force spectroscopy on insulating thin films or semiconductors, decoupling of the tunneling current and the piezo-electrically induced AFM signal is important. In addition, extremely low signals require the first amplification stage to be very close to the sensor, i.e. to be compatible with low temperatures. We present atomic resolution imaging on single-crystal NaCl(100) with oscillation amplitudes below 100 pm (peak-to-peak) and operation at higher flexural modes in constant frequency shift (df) imaging feedback. We also present atomic resolution measurements on MgO(100) and Au(111), and first evaluation measurements of the QPlus sensor in Kelvin probe microscopy on Si(111) 7 x 7.

  17. Intermodulation Atomic Force Microscopy and Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hutter, Carsten; Platz, Daniel; Tholen, Erik; Haviland, David; Hansson, Hans

    2009-03-01

    We present a powerful new method of dynamic AFM, which allows to gain far more information about the tip-surface interaction than standard amplitude or phase imaging, while scanning at comparable speed. Our method, called intermodulation atomic force microscopy (ImAFM), employs the manifestly nonlinear phenomenon of intermodulation to extract information about tip-surface forces. ImAFM uses one eigenmode of a mechanical resonator, the latter driven at two frequencies to produce many spectral peaks near its resonace, where sensitivity is highest [1]. We furthermore present a protocol for decoding the combined information encoded in the spectrum of intermodulation peaks. Our theoretical framework suggests methods to enhance the gained information by using a different parameter regime as compared to Ref. [1]. We also discuss strategies for solving the inverse problem, i.e., for extracting the nonlinear tip-surface interaction from the response, also naming limitations of our theoretical analysis. We will further report on latest progress to experimentally employ our new protocol.[3pt] [1] D. Platz, E. A. Tholen, D. Pesen, and D. B. Haviland, Appl. Phys. Lett. 92, 153106 (2008).

  18. EDITORIAL: High-resolution noncontact atomic force microscopy High-resolution noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pérez, Rubén; García, Ricardo; Schwarz, Udo

    2009-06-01

    Progress in nanoscience and nanotechnology requires tools that enable the imaging and manipulation of matter at the atomic and molecular scale. During the last two decades or so, scanning probe-based techniques have proven to be particularly versatile in this regard. Among the various probe-based approaches, atomic force microscopy (AFM) stands out in many ways, including the total number of citations and the breadth of possible applications, ranging from materials characterization to nanofabrication and biological studies. However, while nanometer scale operation in different environments became routine, atomic resolution imaging remained elusive for a long time. The reason for this initial deficiency was that contact with the sample blunts atomically sharp tips, which are mandatory for successful atomic resolution imaging. This problem was overcome in the mid-1990s with the introduction of noncontact atomic force microscopy (NC-AFM), which represents a version of AFM where the cantilever is oscillated close to the sample surface without actually 'touching' it. This allows the preservation of the atomic sharpness of the tip while interaction-induced changes in the cantilever's resonance frequency are used to quantify the tip-sample distance. Since then, progress has been steady and includes the development of commercial instruments as well as the addition of many new capabilities beyond imaging, such as the identification and manipulation of individual atoms. A series of annual international conferences, starting in Osaka in 1998, have contributed significantly to this outstanding performance. The program of the most recent conference from this series, held in Madrid on 15-19 September 2008, reflects the maturity of this field, with an increasing number of groups developing strong activities that involve novel approaches and applications covering areas well beyond the original vacuum-based imaging. In this special issue of Nanotechnology we present a selection of

  19. Single molecule atomic force microscopy and force spectroscopy of chitosan.

    PubMed

    Kocun, Marta; Grandbois, Michel; Cuccia, Louis A

    2011-02-01

    Atomic force microscopy (AFM) and AFM-based force spectroscopy was used to study the desorption of individual chitosan polymer chains from substrates with varying chemical composition. AFM images of chitosan adsorbed onto a flat mica substrate show elongated single strands or aggregated bundles. The aggregated state of the polymer is consistent with the high level of flexibility and mobility expected for a highly positively charged polymer strand. Conversely, the visualization of elongated strands indicated the presence of stabilizing interactions with the substrate. Surfaces with varying chemical composition (glass, self-assembled monolayer of mercaptoundecanoic acid/decanethiol and polytetrafluoroethylene (PTFE)) were probed with chitosan modified AFM tips and the corresponding desorption energies, calculated from plateau-like features, were attributed to the desorption of individual polymer strands. Desorption energies of 2.0±0.3×10(-20)J, 1.8±0.3×10(-20)J and 3.5±0.3×10(-20)J were obtained for glass, SAM of mercaptoundecanoic/dodecanethiol and PTFE, respectively. These single molecule level results can be used as a basis for investigating chitosan and chitosan-based materials for biomaterial applications.

  20. Measuring and Understanding Forces on Atomic Length Scales with the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Cleveland, Jason Paul

    Most microscopes can be used with little understanding of how they work--much can be learned looking through a light microscope without ever knowing what a photon is or who Maxwell was--and the Atomic Force Microscope (AFM) is no exception. Many AFM images don't look much different from a mountainous landscape, and much is learned interpreting them as such; however, to really push a microscope to its limits means understanding the interactions creating the contrast in the picture. For a Scanning Electron Microscope, this means understanding how electrons interact with matter, for an AFM it means understanding forces. The focus of this thesis is understanding the forces acting (especially in liquids) between tip and sample in AFM and a better understanding the instrument itself. Chapters I, II and VI involve better characterizing and improving the most important part of the AFM, the tiny cantilever used to measure forces. Chapter I describes a solution to one of the most basic problems that must be solved before forces can be accurately measured--measuring the stiffness of these cantilevers. Many limitations in AFM are set by physical characteristics of the cantilever itself, such as resonance frequency, spring constant, and quality factor. If an external force can be applied to the cantilever, feedback can be used to improve these characteristics. Chapter II shows how to do this using a magnetically applied external force, which has the advantage of working in liquids. These physical characteristics also change drastically when the cantilever is immersed in fluid. The resonance frequency of common cantilevers drops by as much as a factor of six in going from air to water. Chapter VI studies these changes and shows how further miniaturization of cantilevers can improve imaging speeds and signal-to-noise ratio. Early in its career, the AFM was heralded as having atomic resolution, but as the field matured researchers realized that the contact area between tip and

  1. Driving forces behind the biotope structures in two low-temperature hydrothermal venting sites on the southern Mid-Atlantic Ridge.

    PubMed

    Perner, Mirjam; Hentscher, Michael; Rychlik, Nicolas; Seifert, Richard; Strauss, Harald; Bach, Wolfgang

    2011-12-01

    Although it has been more than 30 years since the discovery of deep-sea hydrothermal vents, comprehending the interconnections between hydrothermal venting and microbial life remains a challenge. Here we investigate abiotic-biotic linkages in low-temperature hydrothermal biotopes at Desperate and Lilliput on the southern Mid-Atlantic Ridge. Both sites are basalt-hosted and fluids exhibit the expected chemical signatures. However, contrasting crustal permeabilities have been proposed, supporting pervasive mixing at Desperate but restricting circulation at Lilliput. In Desperate fluids, sulfide and O2 were readily available but H2 hardly detectable. Under incubation conditions (oxic unamended, sulfide-spiked, oxic and anoxic H2 -spiked at 18°C), only sulfide oxidation by Thiomicrospira fuelled biomass synthesis. Microbial phylogenies from Desperate incubation experiments resembled those of the natural samples suggesting that the incubation conditions mimicked the environment. In Lilliput fluids, O2 was limited, whereas sulfide and H2 were enriched. Autotrophy appeared to be stimulated by residual sulfide and by amended H2 . Yet, based on bacterial phylogenies only conditions in anoxic H2 -spiked Lilliput incubations appeared similar to parts of the Lilliput habitat. In anoxic H2 -spiked Lilliput enrichments Campylobacteraceae likely supported biomass production through H2 oxidation. We argue that the diverging circulation patterns arising from different subseafloor permeabilities act as major driving forces shaping these biotope structures. © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd.

  2. Atomic Force Microscopy on Its Way to Adolescence

    NASA Astrophysics Data System (ADS)

    Giessibl, Franz J.

    2003-12-01

    When the atomic force microscope (AFM) was introduced in 1986, its potential to resolve surfaces with true atomic resolution was already proposed. However, substantial problems had to be overcome before atomic resolution became possible by AFM. Today, true atomic resolution by AFM is standard practice. This article discusses the influence of the cantilever stiffness and — amplitude on noise and short-range force sensitivity and introduces a sensor operating at near optimal conditions (qPlus sensor). The data achieved with this optimized sensing technology show substructures within single atom images, attributed to atomic orbitals.

  3. Exploring atomic-scale lateral forces in the attractive regime: a case study on graphite (0001).

    PubMed

    Baykara, Mehmet Z; Schwendemann, Todd C; Albers, Boris J; Pilet, Nicolas; Mönig, Harry; Altman, Eric I; Schwarz, Udo D

    2012-10-12

    A non-contact atomic force microscopy-based method has been used to map the static lateral forces exerted on an atomically sharp Pt/Ir probe tip by a graphite surface. With measurements carried out at low temperatures and in the attractive regime, where the atomic sharpness of the tip can be maintained over extended time periods, the method allows the quantification and directional analysis of lateral forces with piconewton and picometer resolution as a function of both the in-plane tip position and the vertical tip-sample distance, without limitations due to a finite contact area or to stick-slip-related sudden jumps of tip apex atoms. After reviewing the measurement principle, the data obtained in this case study are utilized to illustrate the unique insight that the method offers. In particular, the local lateral forces that are expected to determine frictional resistance in the attractive regime are found to depend linearly on the normal force for small tip-sample distances.

  4. Iron in the Fire: Searching for Fire's Magnetic Fingerprint using Controlled Heating Experiments, High-Resolution FORCs, IRM Coercivity Spectra, and Low-Temperature Remanence Experiments

    NASA Astrophysics Data System (ADS)

    Lippert, P. C.; Reiners, P. W.

    2014-12-01

    Evidence for recent climate-wildfire linkages underscores the need for better understanding of relationships between wildfire and major climate shifts in Earth history, which in turn offers the potential for prognoses for wildfire and human adaptations to it. In particular, what are the links between seasonality and wildfire frequency and severity, and what are the feedbacks between wildfire, landscape evolution, and biogeochemical cycles, particularly the carbon and iron cycles? A key first step in addressing these questions is recovering well-described wildfire records from a variety of paleolandscapes and paleoclimate regimes. Although charcoal and organic biomarkers are commonly used indicators of fire, taphonomic processes and time-consuming analytical preparations often preclude their routine use in some environments and in high-stratigraphic resolution paleowildfire surveying. The phenomenological relationship between fire and magnetic susceptibility can make it a useful surveying tool, but increased magnetic susceptibility in sediments is not unique to fire, and thus limits its diagnostic power. Here we utilize component-specific rock magnetic methods and analytical techniques to identify the rock magnetic fingerprint of wildfire. We use a custom-designed air furnace, a series of iron-free laboratory soils, natural saprolites and soils, and fuels from Arizona Ponderosa pine forests and grasslands to simulate wildfire in a controlled and monitored environment. Soil-ash residues and soil and fuel controls were then characterized using First Order Reversal Curve (FORC) patterns, DC backfield IRM coercivity spectra, low-temperature SIRM demagnetization behavior, and low-temperature cycling of room-temperature SIRM behavior. We will complement these magnetic analyses with high-resolution TEM of magnetic extracts. Here we summarize the systematic changes to sediment magnetism as pyrolitized organic matter is incorporated into artificial and natural soils. These

  5. Substrate impact on the low-temperature growth of GaN thin films by plasma-assisted atomic layer deposition

    SciTech Connect

    Kizir, Seda; Haider, Ali; Biyikli, Necmi

    2016-07-15

    Gallium nitride (GaN) thin films were grown on Si (100), Si (111), and c-plane sapphire substrates at 200 °C via hollow-cathode plasma-assisted atomic layer deposition (HCPA-ALD) using GaEt{sub 3} and N{sub 2}/H{sub 2} plasma as group-III and V precursors, respectively. The main aim of the study was to investigate the impact of substrate on the material properties of low-temperature ALD-grown GaN layers. Structural, chemical, and optical characterizations were carried out in order to evaluate and compare film quality of GaN on different substrates. X-ray reflectivity measurements showed film density values of 5.70, 5.74, and 5.54 g/cm{sup 3} for GaN grown on Si (100), Si (111), and sapphire, respectively. Grazing incidence x-ray diffraction measurements exhibited hexagonal wurtzite structure in all HCPA-ALD grown GaN samples. However, dominant diffraction peak for GaN films grown on Si and sapphire substrates were detected differently as (002) and (103), respectively. X-ray diffraction gonio scans measured from GaN grown on c-plane sapphire primarily showed (002) orientation. All samples exhibited similar refractive index values (∼2.17 at 632 nm) with 2–3 at. % of oxygen impurity existing within the bulk of the films. The grain size was calculated as ∼9–10 nm for GaN grown on Si (100) and Si (111) samples while it was ∼5 nm for GaN/sapphire sample. Root-mean-square surface roughness values found as 0.68, 0.76, and 1.83 nm for GaN deposited on Si (100), Si (111), and sapphire, respectively. Another significant difference observed between the samples was the film growth per cycle: GaN/sapphire sample showed a considerable higher thickness value when compared with GaN/Si samples, which might be attributed to a possibly more-efficient nitridation and faster nucleation of sapphire surface.

  6. Atomic force microscopy of virus shells.

    PubMed

    Moreno-Madrid, Francisco; Martín-González, Natalia; Llauró, Aida; Ortega-Esteban, Alvaro; Hernando-Pérez, Mercedes; Douglas, Trevor; Schaap, Iwan A T; de Pablo, Pedro J

    2017-04-15

    Microscopes are used to characterize small objects with the help of probes that interact with the specimen, such as photons and electrons in optical and electron microscopies, respectively. In atomic force microscopy (AFM), the probe is a nanometric tip located at the end of a microcantilever which palpates the specimen under study just as a blind person manages a walking stick. In this way, AFM allows obtaining nanometric resolution images of individual protein shells, such as viruses, in a liquid milieu. Beyond imaging, AFM also enables not only the manipulation of single protein cages, but also the characterization of every physicochemical property capable of inducing any measurable mechanical perturbation to the microcantilever that holds the tip. In the present revision, we start revising some recipes for adsorbing protein shells on surfaces. Then, we describe several AFM approaches to study individual protein cages, ranging from imaging to spectroscopic methodologies devoted to extracting physical information, such as mechanical and electrostatic properties. We also explain how a convenient combination of AFM and fluorescence methodologies entails monitoring genome release from individual viral shells during mechanical unpacking.

  7. Atomic force microscopy investigation of viruses.

    PubMed

    McPherson, Alexander; Kuznetsov, Yurii G

    2011-01-01

    Atomic force microscopy (AFM) has proven to be a valuable approach to delineate the architectures and detailed structural features of a wide variety of viruses. These have ranged from small plant satellite viruses of only 17 nm to the giant mimivirus of 750 nm diameter, and they have included diverse morphologies such as those represented by HIV, icosahedral particles, vaccinia, and bacteriophages. Because it is a surface technique, it provides images and information that are distinct from those obtained by electron microscopy, and in some cases, at even higher resolution. By enzymatic and chemical dissection of virions, internal structures can be revealed, as well as DNA and RNA. The method is relatively rapid and can be carried out on both fixed and unfixed samples in either air or fluids, including culture media. It is nondestructive and even non-perturbing. It can be applied to individual isolated virus, as well as to infected cells. AFM is still in its early development and holds great promise for further investigation of biological systems at the nanometer scale.

  8. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  9. Atomic force microscopy study of enamel remineralization.

    PubMed

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Lombardini, Marco; Colombo, Marco

    2014-07-01

    The aim of the present in vitro study was the evaluation of two products: a CPP-ACP paste (GC Tooth Mousse, GC Corp.) and a desensitizing toothpaste (Colgate Sensitive Pro Relief, Colgate-Palmolive) on preventing enamel erosion produced by a soft drink (Coca Cola) by using Atomic Force Microscopy (AFM). Thirty enamel specimens were assigned to 6 groups of 5 specimens each. 1: intact enamel, 2: enamel + soft drink, 3: intact enamel + Colgate Sensitive Pro Relief, 4: enamel + soft drink + Colgate Sensitive Pro Relief, 5: intact enamel + GC Tooth Mousse, 6: enamel + soft drink + GC Tooth Mousse. The surface of each specimen was imaged by AFM. The root mean-square roughness (Rrms) was obtained from the AFM images and the differences in the averaged values among the groups were analyzed by ANOVA test. Comparing groups 4 and 6 (soft drink + toothpastes) with group 2 (eroded enamel) a statistical difference (P<0.05) was registered, suggesting effectiveness in protecting enamel against erosion of the products investigated. The use of new formulation toothpastes can prevent enamel demineralization.

  10. Atomic force microscopy study of enamel remineralization

    PubMed Central

    Poggio, Claudio; Ceci, Matteo; Beltrami, Riccardo; Lombardini, Marco; Colombo, Marco

    2014-01-01

    Summary Aim The aim of the present in vitro study was the evaluation of two products: a CPP-ACP paste (GC Tooth Mousse, GC Corp.) and a desensitizing toothpaste (Colgate Sensitive Pro Relief, Colgate-Palmolive) on preventing enamel erosion produced by a soft drink (Coca Cola) by using Atomic Force Microscopy (AFM). Methods Thirty enamel specimens were assigned to 6 groups of 5 specimens each. 1: intact enamel, 2: enamel + soft drink, 3: intact enamel + Colgate Sensitive Pro Relief, 4: enamel + soft drink + Colgate Sensitive Pro Relief, 5: intact enamel + GC Tooth Mousse, 6: enamel + soft drink + GC Tooth Mousse. The surface of each specimen was imaged by AFM. The root mean-square roughness (Rrms) was obtained from the AFM images and the differences in the averaged values among the groups were analyzed by ANOVA test. Results Comparing groups 4 and 6 (soft drink + toothpastes) with group 2 (eroded enamel) a statistical difference (P<0.05) was registered, suggesting effectiveness in protecting enamel against erosion of the products investigated. Conclusions The use of new formulation toothpastes can prevent enamel demineralization. PMID:25506414

  11. Sharp Tips on the Atomic Force Microscope

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image shows the eight sharp tips of the NASA's Phoenix Mars Lander's Atomic Force Microscope, or AFM. The AFM is part of Phoenix's Microscopy, Electrochemistry, and Conductivity Analyzer, or MECA.

    The microscope maps the shape of particles in three dimensions by scanning them with one of the tips at the end of a beam. For the AFM image taken, the tip at the end of the upper right beam was used. The tip pointing up in the enlarged image is the size of a smoke particle at its base, or 2 microns. This image was taken with a scanning electron microscope before Phoenix launched on August 4, 2007.

    The AFM was developed by a Swiss-led consortium in collaboration with Imperial College London.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  12. Atomic Force Microscopy Based Cell Shape Index

    NASA Astrophysics Data System (ADS)

    Adia-Nimuwa, Usienemfon; Mujdat Tiryaki, Volkan; Hartz, Steven; Xie, Kan; Ayres, Virginia

    2013-03-01

    Stellation is a measure of cell physiology and pathology for several cell groups including neural, liver and pancreatic cells. In the present work, we compare the results of a conventional two-dimensional shape index study of both atomic force microscopy (AFM) and fluorescent microscopy images with the results obtained using a new three-dimensional AFM-based shape index similar to sphericity index. The stellation of astrocytes is investigated on nanofibrillar scaffolds composed of electrospun polyamide nanofibers that has demonstrated promise for central nervous system (CNS) repair. Recent work by our group has given us the ability to clearly segment the cells from nanofibrillar scaffolds in AFM images. The clear-featured AFM images indicated that the astrocyte processes were longer than previously identified at 24h. It was furthermore shown that cell spreading could vary significantly as a function of environmental parameters, and that AFM images could record these variations. The new three-dimensional AFM-based shape index incorporates the new information: longer stellate processes and cell spreading. The support of NSF PHY-095776 is acknowledged.

  13. Investigating bioconjugation by atomic force microscopy

    PubMed Central

    2013-01-01

    Nanotechnological applications increasingly exploit the selectivity and processivity of biological molecules. Integration of biomolecules such as proteins or DNA into nano-systems typically requires their conjugation to surfaces, for example of carbon-nanotubes or fluorescent quantum dots. The bioconjugated nanostructures exploit the unique strengths of both their biological and nanoparticle components and are used in diverse, future oriented research areas ranging from nanoelectronics to biosensing and nanomedicine. Atomic force microscopy imaging provides valuable, direct insight for the evaluation of different conjugation approaches at the level of the individual molecules. Recent technical advances have enabled high speed imaging by AFM supporting time resolutions sufficient to follow conformational changes of intricately assembled nanostructures in solution. In addition, integration of AFM with different spectroscopic and imaging approaches provides an enhanced level of information on the investigated sample. Furthermore, the AFM itself can serve as an active tool for the assembly of nanostructures based on bioconjugation. AFM is hence a major workhorse in nanotechnology; it is a powerful tool for the structural investigation of bioconjugation and bioconjugation-induced effects as well as the simultaneous active assembly and analysis of bioconjugation-based nanostructures. PMID:23855448

  14. Nonequilibrium statistical mechanics of mixed quantum classical ensembles: application to noncontact atomic force microscopy.

    PubMed

    Kantorovich, L N

    2002-08-26

    Using the nonequilibrium statistical operator method, we suggest a new general method of treating dynamics of a combined system consisting of interacting classical and quantum parts. The method is illustrated on the tip dynamics in the noncontact atomic force microscopy (NC-AFM) where a macroscopic tip interacts with a quantum microscopic system (the surface and the nanotip). The derived general equation of motion for the tip and the Fokker-Planck equation, applicable even at low temperatures, contain memory effects and a friction term which should (at least partially) be responsible for the observed energy dissipation in NC-AFM experiments.

  15. Imaging and manipulation of adatoms on an alumina surface by noncontact atomic force microscopy.

    PubMed

    Simon, G H; Heyde, M; Freund, H-J

    2012-02-29

    Noncontact atomic force microscopy (NC-AFM) has been performed on an aluminum oxide film grown on NiAl(110) in ultrahigh vacuum (UHV) at low temperature (5 K). Results reproduce the topography of the structural model, unlike scanning tunnelling microscopy (STM) images. Equipped with this extraordinary contrast the network of extended defects, which stems from domain boundaries intersecting the film surface, can be analysed in atomic detail. The knowledge of occurring surface structures opens up the opportunity to determine adsorption sites of individual adsorbates on the alumina film. The level of difficulty for such imaging depends on the imaging characteristics of the substrate and the interaction which can be maintained above the adsorbate. Positions of single adsorbed gold atoms within the unit cell have been determined despite their easy removal at slightly higher interaction strength. Preliminary manipulation experiments indicate a pick-up process for the vanishing of the gold adatoms from the film surface.

  16. On-surface generation and imaging of arynes by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Pavliček, Niko; Schuler, Bruno; Collazos, Sara; Moll, Nikolaj; Pérez, Dolores; Guitián, Enrique; Meyer, Gerhard; Peña, Diego; Gross, Leo

    2015-08-01

    Reactive intermediates are involved in many chemical transformations. However, their characterization is a great challenge because of their short lifetimes and high reactivities. Arynes, formally derived from arenes by the removal of two hydrogen atoms from adjacent carbon atoms, are prominent reactive intermediates that have been hypothesized for more than a century. Their rich chemistry enables a widespread use in synthetic chemistry, as they are advantageous building blocks for the construction of polycyclic compounds that contain aromatic rings. Here, we demonstrate the generation and characterization of individual polycyclic aryne molecules on an ultrathin insulating film by means of low-temperature scanning tunnelling microscopy and atomic force microscopy. Bond-order analysis suggests that a cumulene resonance structure is the dominant one, and the aryne reactivity is preserved at cryogenic temperatures. Our results provide important insights into the chemistry of these elusive intermediates and their potential application in the field of on-surface synthesis.

  17. Atomic-Scale Variations of the Mechanical Response of 2D Materials Detected by Noncontact Atomic Force Microscopy.

    PubMed

    de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M

    2016-06-17

    We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.

  18. Dispersion forces between ultracold atoms and a carbon nanotube.

    PubMed

    Schneeweiss, P; Gierling, M; Visanescu, G; Kern, D P; Judd, T E; Günther, A; Fortágh, J

    2012-08-01

    Dispersion forces are long-range interactions between polarizable objects that arise from fluctuations in the electromagnetic field between them. Dispersion forces have been observed between microscopic objects such as atoms and molecules (the van der Waals interaction), between macroscopic objects (the Casimir interaction) and between an atom and a macroscopic object (the Casimir-Polder interaction). Dispersion forces are known to increase the attractive forces between the components in nanomechanical devices, to influence adsorption rates onto nanostructures, and to influence the interactions between biomolecules in biological systems. In recent years, there has been growing interest in studying dispersion forces in nanoscale systems and in exploring the interactions between carbon nanotubes and cold atoms. However, there are considerable difficulties in developing dispersion force theories for general, finite geometries such as nanostructures. Thus, there is a need for new experimental methods that are able to go beyond measurements of planar surfaces and nanoscale gratings and make measurements on isolated nanostructures. Here, we measure the dispersion force between a rubidium atom and a multiwalled carbon nanotube by inserting the nanotube into a cloud of ultracold rubidium atoms and monitoring the loss of atoms from the cloud as a function of time. We perform these experiments with both thermal clouds of ultracold atoms and with Bose-Einstein condensates. The results obtained with this approach will aid the development of theories describing quantum fields near nanostructures, and hybrid cold-atom/solid-state devices may also prove useful for applications in quantum sensing and quantum information.

  19. Atomic force microscopy study of tooth surfaces.

    PubMed

    Farina, M; Schemmel, A; Weissmüller, G; Cruz, R; Kachar, B; Bisch, P M

    1999-03-01

    Atomic force microscopy (AFM) was used to study tooth surfaces in order to compare the pattern of particle distribution in the outermost layer of the tooth surfaces. Human teeth and teeth from a rodent (Golden hamster), from a fish (piranha), and from a grazing mollusk (chiton) with distinct feeding habits were analyzed in terms of particle arrangement, packing, and size distribution. Scanning electron microscopy and transmission electron microscopy were used for comparison. It was found that AFM gives high-contrast, high-resolution images and is an important tool as a source of complementary and/or new structural information. All teeth were cleaned and some were etched with acidic solutions before analysis. It was observed that human enamel (permanent teeth) presents particles tightly packed in the outer surface, whereas enamel from the hamster (continuously growing teeth) shows particles of less dense packing. The piranha teeth have a thin cuticle covering the long apatite crystals of the underlying enameloid. This cuticle has a rough surface of particles that have a globular appearance after the brief acidic treatment. The similar appearance of the in vivo naturally etched tooth surface suggests that the pattern of globule distribution may be due to the presence of an organic material. Elemental analysis of this cuticle indicated that calcium, phosphorus, and iron are the main components of the structure while electron microdiffraction of pulverized cuticle particles showed a pattern consistent with hydroxyapatite. The chiton mineralized tooth cusp had a smooth surface in an unabraded region and a very rough structure with the magnetite crystals (already known to make part of the structure) protruding from the surface. It was concluded that the structures analyzed are optimized for efficiency in feeding mechanism and life span of the teeth.

  20. Advanced atomic force microscopy: Development and application

    NASA Astrophysics Data System (ADS)

    Walters, Deron A.

    Over the decade since atomic force microscopy (AFM) was invented, development of new microscopes has been closely intertwined with application of AFM to problems of interest in physics, chemistry, biology, and engineering. New techniques such as tapping mode AFM move quickly in our lab from the designer's bench to the user's table-since this is often the same piece of furniture. In return, designers get ample feedback as to what problems are limiting current instruments, and thus need most urgent attention. Tip sharpness and characterization are such a problem. Chapter 1 describes an AFM designed to operate in a scanning electron microscope, whose electron beam is used to deposit sharp carbonaceous tips. These tips can be tested and used in situ. Another limitation is addressed in Chapter 2: the difficulty of extracting more than just topographic information from a sample. A combined AFM/confocal optical microscope was built to provide simultaneous, independent images of the topography and fluorescence of a sample. In combination with staining or antibody labelling, this could provide submicron information about the composition of a sample. Chapters 3 and 4 discuss two generations of small cantilevers developed for lower-noise, higher-speed AFM of biological samples. In Chapter 4, a 26 mum cantilever is used to image the process of calcite growth from solution at a rate of 1.6 sec/frame. Finally, Chapter 5 explores in detail a biophysics problem that motivates us to develop fast, quiet, and gentle microscopes; namely, the control of crystal growth in seashells by the action of soluble proteins on a growing calcite surface.

  1. Energy shift and Casimir-Polder force for an atom out of thermal equilibrium near a dielectric substrate

    NASA Astrophysics Data System (ADS)

    Zhou, Wenting; Yu, Hongwei

    2014-09-01

    We study the energy shift and the Casimir-Polder force of an atom out of thermal equilibrium near the surface of a dielectric substrate. We first generalize, adopting the local source hypothesis, the formalism proposed by Dalibard, Dupont-Roc, and Cohen-Tannoudji [J. Phys. (Paris) 43, 1617 (1982), 10.1051/jphys:0198200430110161700; J. Phys. (Paris) 45, 637 (1984), 10.1051/jphys:01984004504063700], which separates the contributions of thermal fluctuations and radiation reaction to the energy shift and allows a distinct treatment of atoms in the ground and excited states, to the case out of thermal equilibrium, and then we use the generalized formalism to calculate the energy shift and the Casimir-Polder force of an isotropically polarizable neutral atom. We identify the effects of the thermal fluctuations that originate from the substrate and the environment and discuss in detail how the Casimir-Polder force out of thermal equilibrium behaves in three different distance regions in both the low-temperature limit and the high-temperature limit for both the ground-state and excited-state atoms, with special attention devoted to the distinctive features as opposed to thermal equilibrium. In particular, we recover the distinctive behavior of the atom-wall force out of thermal equilibrium at large distances in the low-temperature limit recently found in a different theoretical framework, and furthermore we give a concrete region where this behavior holds.

  2. Velocity-dependent dipole forces on an excited atom

    NASA Astrophysics Data System (ADS)

    Donaire, M.; Lambrecht, A.

    2016-02-01

    We present a time-dependent calculation of the velocity-dependent forces which act on an excited atomic dipole in relative motion with respect to ground state atoms of a different kind. Both its interaction with a single atom and with a dilute atomic plate are evaluated. In either case, the total force consists of a conservative van der Waals component and a nonconservative Röntgen component. On physical grounds, the former corresponds to the velocity-dependent recoil experienced by the excited atom in the processes of absorption and emission of the photons that it exchanges with the ground-state atoms on a periodic basis. The latter corresponds to the time-variation of the Röntgen momentum, which is also mediated by the periodic exchange of quasiresonant photons. We find that, at leading order, all these interactions are linear in velocity. In the nonretarded regime the van der Waals force dominates, being antiparallel to the velocity. On the contrary, in the retarded regime the velocity-dependent forces oscillate in space, van der Waals and Röntgen forces are of the same order in the atom-atom interaction, and the Röntgen component dominates in the atom-surface interaction.

  3. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics.

    PubMed

    Pyzer-Knapp, Edward O; Thompson, Hugh P G; Day, Graeme M

    2016-08-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%.

  4. An optimized intermolecular force field for hydrogen-bonded organic molecular crystals using atomic multipole electrostatics

    PubMed Central

    Pyzer-Knapp, Edward O.; Thompson, Hugh P. G.; Day, Graeme M.

    2016-01-01

    We present a re-parameterization of a popular intermolecular force field for describing intermolecular interactions in the organic solid state. Specifically we optimize the performance of the exp-6 force field when used in conjunction with atomic multipole electrostatics. We also parameterize force fields that are optimized for use with multipoles derived from polarized molecular electron densities, to account for induction effects in molecular crystals. Parameterization is performed against a set of 186 experimentally determined, low-temperature crystal structures and 53 measured sublimation enthalpies of hydrogen-bonding organic molecules. The resulting force fields are tested on a validation set of 129 crystal structures and show improved reproduction of the structures and lattice energies of a range of organic molecular crystals compared with the original force field with atomic partial charge electrostatics. Unit-cell dimensions of the validation set are typically reproduced to within 3% with the re-parameterized force fields. Lattice energies, which were all included during parameterization, are systematically underestimated when compared with measured sublimation enthalpies, with mean absolute errors of between 7.4 and 9.0%. PMID:27484370

  5. Surface Biology of DNA by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Hansma, Helen G.

    2001-10-01

    The atomic force microscope operates on surfaces. Since surfaces occupy much of the space in living organisms, surface biology is a valid and valuable form of biology that has been difficult to investigate in the past owing to a lack of good technology. Atomic force microscopy (AFM) of DNA has been used to investigate DNA condensation for gene therapy, DNA mapping and sizing, and a few applications to cancer research and to nanotechnology. Some of the most exciting new applications for atomic force microscopy of DNA involve pulling on single DNA molecules to obtain measurements of single-molecule mechanics and thermodynamics.

  6. Atom wall dispersive forces from the master equation formalism

    NASA Astrophysics Data System (ADS)

    Mendes, T. N. C.; Farina, C.

    2007-06-01

    Using the general expressions for level shifts obtained from the master equation for a small system interacting with a large one considered as a reservoir, we calculate the dispersive potentials between an atom and a wall in the dipole approximation. We analyse in detail the particular case of a two-level atom in the presence of a perfectly conducting wall. We study the van der Waals as well as the resonant interactions. All distance regimes as well as the high and low temperature regimes are considered. We show that the Casimir-Polder interaction cannot be considered as a direct result of the vacuum fluctuations only. Concerning the interaction between the atom and the wall at high temperatures, we show that a saturation of the potential for all distances occurs. This saturated potential coincides precisely with that obtained in the London-van der Waals limit.

  7. Attaining Low Temperatures

    ERIC Educational Resources Information Center

    Wheatley, John D.; Van Till, Howard J.

    1970-01-01

    Discusses the definition of temperature and the concept of order in non-mathematical terms. Describes the cooling techniques necessary in low temperature physics research, including magnetic cooling, the use of the Pomeranchuk Effect, and dilution refrigeration. Outlines the types of phenomena observed in matter within various temperature ranges…

  8. Low temperature fluid blender

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1971-01-01

    Blender supplies hydrogen at temperatures from 289 deg K to 367 deg K. Hydrogen temperature is controlled by using blender to combine flow from liquid hydrogen tank /276 deg K/ and gaseous hydrogen cylinder /550 deg K/. Blenders are applicable where flow of controlled low-temperature fluid is desired.

  9. Attaining Low Temperatures

    ERIC Educational Resources Information Center

    Wheatley, John D.; Van Till, Howard J.

    1970-01-01

    Discusses the definition of temperature and the concept of order in non-mathematical terms. Describes the cooling techniques necessary in low temperature physics research, including magnetic cooling, the use of the Pomeranchuk Effect, and dilution refrigeration. Outlines the types of phenomena observed in matter within various temperature ranges…

  10. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy

    PubMed Central

    Neuman, Keir C.; Nagy, Attila

    2012-01-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. These techniques are described and illustrated with examples highlighting current capabilities and limitations. PMID:18511917

  11. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy.

    PubMed

    Neuman, Keir C; Nagy, Attila

    2008-06-01

    Single-molecule force spectroscopy has emerged as a powerful tool to investigate the forces and motions associated with biological molecules and enzymatic activity. The most common force spectroscopy techniques are optical tweezers, magnetic tweezers and atomic force microscopy. Here we describe these techniques and illustrate them with examples highlighting current capabilities and limitations.

  12. Optical force on atoms with periodic adiabatic rapid passage sequences

    NASA Astrophysics Data System (ADS)

    Miao, Xiyue

    Adiabatic Rapid Passage (ARP) is a long-existing method to invert the population of a two-level nuclear spin system. Its extension to the optical domain necessitates a frequency chirped light pulse to interact with a two-level atom through dipole interaction. In this dissertation ARP processes for various pulse schemes and pulse parameters have been studied theoretically and experimentally. The non-adiabatic transition probability of ARP was quantified to characterize the efficiency of ARP for population transfer. Unanticipated regularities were found in the pulse parameter space. ARP sequences in periodic phase coherent counter-propagating light pulses can be used to produce large optical forces on atoms. The magnitude of the force is proportional to the pulse repetition rate. So the force can be much larger than the usual radiative force if the pulse repetition rate is much higher than the spontaneous emission rate. The behavior of the atoms in such periodic ARP fields without spontaneous emission is well described by a periodic Hamiltonian. By investigating the evolution of the Bloch vector on the Bloch sphere, we related the average optical force on atoms to the non-adiabatic transition probability of a single pulse. Syncopation time has to be introduced in the pulsing scheme to produce a directional force in the presence of spontaneous emission. Experimentally, we observed the force on He* atoms by the deflection of the atomic beam with periodic chirped pulses from counter-propagating pulse trains. The chirped pulse train was realized by synchronized phase and amplitude modulation of the light from a cw diode laser. The Fourier spectrum of the modulated light was monitored to guarantee the quality of the chirped pulses. The measured ARP forces are about half of the theoretical predictions. Not only have we shown that such forces are huge and robust, but we have also been able to map the forces in the two dimensional pulse parameter space. The force

  13. The role of nonlinear dynamics in quantitative atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2012-07-05

    Various methods of force measurement with the atomic force microscope are compared for their ability to accurately determine the tip-surface force from analysis of the nonlinear cantilever motion. It is explained how intermodulation, or the frequency mixing of multiple drive tones by the nonlinear tip-surface force, can be used to concentrate the nonlinear motion in a narrow band of frequency near the cantilever's fundamental resonance, where accuracy and sensitivity of force measurement are greatest. Two different methods for reconstructing tip-surface forces from intermodulation spectra are explained. The reconstruction of both conservative and dissipative tip-surface interactions from intermodulation spectra are demonstrated on simulated data.

  14. CO Tip Functionalization Inverts Atomic Force Microscopy Contrast via Short-Range Electrostatic Forces

    NASA Astrophysics Data System (ADS)

    Schneiderbauer, Maximilian; Emmrich, Matthias; Weymouth, Alfred J.; Giessibl, Franz J.

    2014-04-01

    We investigate insulating Cu2N islands grown on Cu(100) by means of combined scanning tunneling microscopy and atomic force microscopy with two vastly different tips: a bare metal tip and a CO-terminated tip. We use scanning tunneling microscopy data as proposed by Choi, Ruggiero, and Gupta to unambiguously identify atomic positions. Atomic force microscopy images taken with the two different tips show an inverted contrast over Cu2N. The observed force contrast can be explained with an electrostatic model, where the two tips have dipole moments of opposite directions. This highlights the importance of short-range electrostatic forces in the formation of atomic contrast on polar surfaces in noncontact atomic force microscopy.

  15. CO tip functionalization inverts atomic force microscopy contrast via short-range electrostatic forces.

    PubMed

    Schneiderbauer, Maximilian; Emmrich, Matthias; Weymouth, Alfred J; Giessibl, Franz J

    2014-04-25

    We investigate insulating Cu2N islands grown on Cu(100) by means of combined scanning tunneling microscopy and atomic force microscopy with two vastly different tips: a bare metal tip and a CO-terminated tip. We use scanning tunneling microscopy data as proposed by Choi, Ruggiero, and Gupta to unambiguously identify atomic positions. Atomic force microscopy images taken with the two different tips show an inverted contrast over Cu2N. The observed force contrast can be explained with an electrostatic model, where the two tips have dipole moments of opposite directions. This highlights the importance of short-range electrostatic forces in the formation of atomic contrast on polar surfaces in noncontact atomic force microscopy.

  16. Fabricating metal-oxide-semiconductor field-effect transistors on a polyethylene terephthalate substrate by applying low-temperature layer transfer of a single-crystalline silicon layer by meniscus force

    SciTech Connect

    Sakaike, Kohei; Akazawa, Muneki; Nakamura, Shogo; Higashi, Seiichiro

    2013-12-02

    A low-temperature local-layer technique for transferring a single-crystalline silicon (c-Si) film by using a meniscus force was proposed, and an n-channel metal-oxide-semiconductor field-effect transistor (MOSFET) was fabricated on polyethylene terephthalate (PET) substrate. It was demonstrated that it is possible to transfer and form c-Si films in the required shape at the required position on PET substrates at extremely low temperatures by utilizing a meniscus force. The proposed technique for layer transfer was applied for fabricating high-performance c-Si MOSFETs on a PET substrate. The fabricated MOSFET showed a high on/off ratio of more than 10{sup 8} and a high field-effect mobility of 609 cm{sup 2} V{sup −1} s{sup −1}.

  17. Reaction kinetics and isotope effect of water formation by the surface reaction of solid H2O2 with H atoms at low temperatures.

    PubMed

    Oba, Yasuhiro; Osaka, Kazuya; Watanabe, Naoki; Chigai, Takeshi; Kouchi, Akira

    2014-01-01

    We performed laboratory experiments on the formation of water and its isotopologues by surface reactions of hydrogen peroxide (H2O2) with hydrogen (H) atoms and their deuterated counterparts (D2O2, D) at 10-30 K. High-purity H2O2 (> 95%) was prepared in situ by the codeposition of molecular oxygen and H atoms at relatively high temperatures (45-50 K). We determined that the high-purity H2O2 solid reacts with both H and deuterium (D) atoms at 10-30 K despite the large activation barriers (-2000 K). Moreover, the reaction rate for H atoms is approximately 45 times faster than that for D atoms at 15 K. Thus, the observed large isotope effect indicates that these reactions occurred through quantum tunneling. We propose that the observed HDO/H2O ratio in molecular clouds might be a good tool for the estimation of the atomic D/H ratio in those environments.

  18. Controlled manipulation of atoms in insulating surfaces with the virtual atomic force microscope.

    PubMed

    Trevethan, T; Watkins, M; Kantorovich, L N; Shluger, A L

    2007-01-12

    We predict how single oxygen ions can be manipulated on the MgO (100) surface and demonstrate the possibility of detecting a single-atom event using a noncontact atomic force microscope. The manipulation process is simulated explicitly in real time with a virtual dynamic atomic force microscope including the full response of the instrumentation and demonstrates a strong dependence on temperature. The proposed new atomistic mechanism and protocols for the controlled manipulation of single atoms and vacancies on insulating surfaces may be relevant for anchoring molecules and metal clusters at these surfaces and controlling their electronic properties.

  19. Quantitative measurements of shear displacement using atomic force microscopy

    SciTech Connect

    Wang, Wenbo; Wu, Weida; Sun, Ying; Zhao, Yonggang

    2016-03-21

    We report a method to quantitatively measure local shear deformation with high sensitivity using atomic force microscopy. The key point is to simultaneously detect both torsional and buckling motions of atomic force microscopy (AFM) cantilevers induced by the lateral piezoelectric response of the sample. This requires the quantitative calibration of torsional and buckling response of AFM. This method is validated by measuring the angular dependence of the in-plane piezoelectric response of a piece of piezoelectric α-quartz. The accurate determination of the amplitude and orientation of the in-plane piezoelectric response, without rotation, would greatly enhance the efficiency of lateral piezoelectric force microscopy.

  20. Dressed-atom description of the bichromatic force

    SciTech Connect

    Yatsenko, Leonid; Metcalf, Harold

    2004-12-01

    We develop a dressed-atom picture of the bichromatic force in two standing waves using a Floquet approach. It is based on previous work, but the approach allows for an interpretation of the velocity range of the force. It is limited to two-level atoms and one dimension, and the Floquet frequency is the beat between the two bichromatic optical fields. The force is mediated by Landau-Zener transitions between the dressed states of the Floquet Hamiltonian. Related topics have been addressed before in the literature, but not applied to this particular case.

  1. The unfolding of native laminin investigated by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Nemes, Cs.; Ramsden, J. J.; Rozlosnik, N.

    2002-10-01

    Atomic force microscopy has been used to directly measure the forces required to unfold individual domains of the extracellular matrix protein laminin. The approach-retraction cycles display a characteristic saw-tooth motif. Tooth heights and separations were used to establish a statistical relation between domain unfolding force and domain extension. The extensible domains of laminin require an unfolding force intermediate between previously established values for α-helical and β-sheet domains in other proteins. The relationship between unfolding force and extension for a given domain is not smooth; discrete steps are observed, interpreted as originating from the modularity of the protein structure.

  2. Reduced impurities and improved electrical properties of atomic-layer-deposited HfO2 film grown at a low temperature (100 °C) by Al2O3 incorporation

    NASA Astrophysics Data System (ADS)

    Park, Tae Joo; Byun, Youngchol; Wallace, Robert M.; Kim, Jiyoung

    2016-05-01

    The HfO2 films grown by atomic layer deposition (ALD) at a low temperature (100 °C) necessarily has a large amount of residual impurities due to lack of thermal energy for stable ALD reactions such as ligand removal and oxidation, which degrades various properties. However, Al2O3 incorporation into the film significantly decreased the residual impurities despite of a low growth temperature. The decrease in C impurity is attributed to the reduced oxygen vacancies by the incorporated Al2O3 phase or the high reactivity of Al precursor. Consequently, the electronic band structure of the film, and thereby the electrical properties were improved significantly.

  3. Effect of dispersion forces on squeezing with Rydberg atoms

    NASA Technical Reports Server (NTRS)

    Ng, S. K.; Muhamad, M. R.; Wahiddin, M. R. B.

    1994-01-01

    We report exact results concerning the effect of dipole-dipole interaction (dispersion forces) on dynamic and steady-state characteristics of squeezing in the emitted fluorescent field from two identical coherently driven two-level atoms. The atomic system is subjected to three different damping baths in particular the normal vacuum, a broad band thermal field and a broad band squeezed vacuum. The atomic model is the Dicke model, hence possible experiments are most likely to agree with theory when performed on systems of Rydberg atoms making microwave transitions. The presence of dipole-dipole interaction can enhance squeezing for realizable values of the various parameters involved.

  4. Measurement methods in atomic force microscopy.

    PubMed

    Torre, Bruno; Canale, Claudio; Ricci, Davide; Braga, Pier Carlo

    2011-01-01

    This chapter is introductory to the measurements: it explains different measurement techniques both for imaging and for force spectroscopy, on which most of the AFM experiments rely. It gives a general overview of the different techniques and of the output expected from the instrument; therefore it is, at a basic level, a good tool to properly start a new experiment. Concepts introduced in this chapter give the base for understanding the applications shown in the following chapters. Subheading 1 introduces the distinction between spectroscopy and imaging experiments and, within the last ones, between DC and AC mode. Subheading 2 is focused on DC mode (contact), explaining the topography and the lateral force channel. Subheading 3 introduces AC mode, both in noncontact and intermittent contact case. Phase imaging and force modulation are also discussed. Subheading 4 explains how the AFM can be used to measure local mechanical and adhesive properties of specimens by means of force spectroscopy technique. An overview on the state of the art and future trends in this field is also given.

  5. Low Temperature Powder Coating

    DTIC Science & Technology

    2011-02-09

    Patterson AFB, OH David Piatkowski, Chris Mahendra NAVAIR James Davila, Chris Geib SAIC Beavercreek, OH O G D E N A I R L O G I S T I C S C E N T...PUBLICATIONS Geib , C.W., Davila J.A., Patterson W., et al. “Low Temperature Cure Powder Coating, ESTCP Project WP-0614.” Joint Services Environmental...Management Conference, Columbus, Ohio. 21 – 24 May 2007. Geib , C.W., Davila J.A., Patterson W., et al. “Advances and Testing of Powder Coatings for Aerospace

  6. Complex patterning by vertical interchange atom manipulation using atomic force microscopy.

    PubMed

    Sugimoto, Yoshiaki; Pou, Pablo; Custance, Oscar; Jelinek, Pavel; Abe, Masayuki; Perez, Ruben; Morita, Seizo

    2008-10-17

    The ability to incorporate individual atoms in a surface following predetermined arrangements may bring future atom-based technological enterprises closer to reality. Here, we report the assembling of complex atomic patterns at room temperature by the vertical interchange of atoms between the tip apex of an atomic force microscope and a semiconductor surface. At variance with previous methods, these manipulations were produced by exploring the repulsive part of the short-range chemical interaction between the closest tip-surface atoms. By using first-principles calculations, we clarified the basic mechanisms behind the vertical interchange of atoms, characterizing the key atomistic processes involved and estimating the magnitude of the energy barriers between the relevant atomic configurations that leads to these manipulations.

  7. Ultra-low-temperature reactions of C({sup 3}P{sub 0}) atoms with benzene molecules in helium droplets

    SciTech Connect

    Krasnokutski, Serge A. Huisken, Friedrich

    2014-12-07

    The reaction of carbon atoms with benzene has been investigated in liquid helium droplets at T = 0.37 K. We found an addition of the carbon atom to form an initial intermediate complex followed by a ring opening and the formation of a seven-membered ring. In contrast to a previous gas phase study, the reaction is frozen after these steps and the loss of hydrogen does not occur. A calorimetric technique was applied to monitor the energy balance of the reaction. It was found that more than 267 kJ mol{sup −1} were released in this reaction. This estimation is in line with quantum chemical calculations of the formation energy of a seven-membered carbon ring. It is suggested that reactions of this kind could be responsible for the low abundance of small polycyclic aromatic hydrocarbon molecules in the interstellar medium. We also found the formation of weakly bonded water-carbon adducts, in which the carbon atom is linked to the oxygen atom of the water molecule with a binding energy of about 33.4 kJ mol{sup −1}.

  8. Lorentz force actuation of a heated atomic force microscope cantilever

    NASA Astrophysics Data System (ADS)

    Lee, Byeonghee; Prater, Craig B.; King, William P.

    2012-02-01

    We report Lorentz force-induced actuation of a silicon microcantilever having an integrated resistive heater. Oscillating current through the cantilever interacts with the magnetic field around a NdFeB permanent magnet and induces a Lorentz force that deflects the cantilever. The same current induces cantilever heating. With AC currents as low as 0.2 mA, the cantilever can be oscillated as much as 80 nm at resonance with a DC temperature rise of less than 5 °C. By comparison, the AC temperature variation leads to a thermomechanical oscillation that is about 1000 times smaller than the Lorentz deflection at the cantilever resonance. The cantilever position in the nonuniform magnetic field affects the Lorentz force-induced deflection, with the magnetic field parallel to the cantilever having the largest effect on cantilever actuation. We demonstrate how the cantilever actuation can be used for imaging, and for measuring the local material softening temperature by sensing the contact resonance shift.

  9. Manipulation of cadmium selenide nanorods with an atomic force microscope.

    PubMed

    Tranvouez, E; Orieux, A; Boer-Duchemin, E; Devillers, C H; Huc, V; Comtet, G; Dujardin, G

    2009-04-22

    We have used an atomic force microscope (AFM) to manipulate and study ligand-capped cadmium selenide nanorods deposited on highly oriented pyrolitic graphite (HOPG). The AFM tip was used to manipulate (i.e., translate and rotate) the nanorods by applying a force perpendicular to the nanorod axis. The manipulation result was shown to depend on the point of impact of the AFM tip with the nanorod and whether the nanorod had been manipulated previously. Forces applied parallel to the nanorod axis, however, did not give rise to manipulation. These results are interpreted by considering the atomic-scale interactions of the HOPG substrate with the organic ligands surrounding the nanorods. The vertical deflection of the cantilever was recorded during manipulation and was combined with a model in order to estimate the value of the horizontal force between the tip and nanorod during manipulation. This horizontal force is estimated to be on the order of a few tens of nN.

  10. MATCH: An Atom- Typing Toolset for Molecular Mechanics Force Fields

    PubMed Central

    Yesselman, Joseph D.; Price, Daniel J.; Knight, Jennifer L.; Brooks, Charles L.

    2011-01-01

    We introduce a toolset of program libraries collectively titled MATCH (Multipurpose Atom-Typer for CHARMM) for the automated assignment of atom types and force field parameters for molecular mechanics simulation of organic molecules. The toolset includes utilities for the conversion from multiple chemical structure file formats into a molecular graph. A general chemical pattern-matching engine using this graph has been implemented whereby assignment of molecular mechanics atom types, charges and force field parameters is achieved by comparison against a customizable list of chemical fragments. While initially designed to complement the CHARMM simulation package and force fields by generating the necessary input topology and atom-type data files, MATCH can be expanded to any force field and program, and has core functionality that makes it extendable to other applications such as fragment-based property prediction. In the present work, we demonstrate the accurate construction of atomic parameters of molecules within each force field included in CHARMM36 through exhaustive cross validation studies illustrating that bond increment rules derived from one force field can be transferred to another. In addition, using leave-one-out substitution it is shown that it is also possible to substitute missing intra and intermolecular parameters with ones included in a force field to complete the parameterization of novel molecules. Finally, to demonstrate the robustness of MATCH and the coverage of chemical space offered by the recent CHARMM CGENFF force field (Vanommeslaeghe, et al., JCC., 2010, 31, 671–690), one million molecules from the PubChem database of small molecules are typed, parameterized and minimized. PMID:22042689

  11. Interaction between solute atoms and radiation defects in Fe-Ni-Si and Fe-Mn-Si alloys under irradiation with proton ions at low-temperature

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto

    2016-12-01

    Isochronal annealing followed by residual resistivity measurements at 12 K was performed in Fe-0.6Ni-0.6Si and Fe-1.5Mn-0.6Si alloys irradiated with 1 MeV proton ions below 70 K, and recovery stages were compared with those of Fe-0.6Ni and Fe-1.5Mn. The effects of silicon addition in the Fe-Ni alloy was observed as the appearance of a new recovery stage at 282-372 K, presumably corresponding to clustering of solute atoms in matrix, and as a change in mixed dumbbell migration at 122-142 K. Silicon addition mitigated the manganese effect in Fe-Mn alloy that is obstructing the recovery of radiation defects. Reduction of resistivity in Fe-Mn-Si alloy also suggested formation of small solute atom clusters.

  12. Correct height measurement in noncontact atomic force microscopy.

    PubMed

    Sadewasser, Sascha; Lux-Steiner, Martha Ch

    2003-12-31

    We demonstrate that topography measurements by noncontact atomic force microscopy are subject to residual electrostatic forces. On highly oriented pyrolitic graphite (HOPG) with a submonolayer coverage of C60, we monitor the step height from C60 to HOPG as a function of dc bias between tip and sample. Because of the different contact potential of C60 and HOPG ( approximately 50 mV), the step height is strongly dependent on the dc bias. The presented results and additional simulations demonstrate clearly that for correct height measurements it is mandatory to use a Kelvin probe force microscopy method with active compensation of electrostatic forces.

  13. Single ricin detection by atomic force microscopy chemomechanical mapping

    NASA Astrophysics Data System (ADS)

    Chen, Guojun; Zhou, Jianfeng; Park, Bosoon; Xu, Bingqian

    2009-07-01

    The authors report on a study of detecting ricin molecules immobilized on chemically modified Au (111) surface by chemomechanically mapping the molecular interactions with a chemically modified atomic force microscopy (AFM) tip. AFM images resolved the different fold-up conformations of single ricin molecule as well as their intramolecule structure of A- and B-chains. AFM force spectroscopy study of the interaction indicates that the unbinding force has a linear relation with the logarithmic force loading rate, which agrees well with calculations using one-barrier bond dissociation model.

  14. Cutting forces related with lattice orientations of graphene using an atomic force microscopy based nanorobot

    NASA Astrophysics Data System (ADS)

    Zhang, Yu; Gao, Yang; Liu, Lianqing; Xi, Ning; Wang, Yuechao; Ma, Laipeng; Dong, Zaili; Wejinya, Uchechukwu C.

    2012-11-01

    The relationship between cutting forces and lattice orientations of monolayer graphene is investigated by using an atomic force microscopy (AFM) based nanorobot. In the beginning, the atomic resolution image of the graphene lattice is obtained by using an AFM. Then, graphene cutting experiments are performed with sample rotation method, which gets rid of the tip effect completely. The experimental results show that the cutting force along the armchair orientation is larger than the force along the zigzag orientation, and the cutting forces are almost identical every 60°, which corresponds well with the 60° symmetry in graphene honeycomb lattice structure. By using Poisson analysis method, the single cutting force along zigzag orientation is 3.9 nN, and the force along armchair is 20.5 nN. This work lays the experimental foundation to build a close-loop fabrication strategy with real-time force as a feedback sensor to control the cutting direction.

  15. Universal aspects of adhesion and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Smith, John R.; Ferrante, John

    1990-01-01

    Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.

  16. Universal aspects of adhesion and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Smith, John R.; Ferrante, John

    1990-01-01

    Adhesive energies are computed for flat and atomically sharp tips as a function of the normal distance to the substrate. The dependence of binding energies on tip shape is investigated. The magnitudes of the binding energies for the atomic force microscope are found to depend sensitively on tip material, tip shape and the sample site being probed. The form of the energy-distance curve, however, is universal and independent of these variables, including tip shape.

  17. Improved atomic force microscope using a laser diode interferometer

    NASA Astrophysics Data System (ADS)

    Sarid, Dror; Pax, Paul; Yi, Leon; Howells, Sam; Gallagher, Mark; Chen, Ting; Elings, Virgil; Bocek, Dan

    1992-08-01

    The performance of an atomic force microscope using a laser diode interferometer has been improved to the point where its resolution is comparable to that of laser beam deflection systems. We describe the structure of this microscope, present a model that takes into account the main parameters associated with its operation, and demonstrate its sensitivity by showing images of a small area scan with atomic resolution as well as a large area scan in a stand-alone configuration.

  18. A Dressed Atom Description of the Bichromatic Force

    NASA Astrophysics Data System (ADS)

    Yatsenko, Leonid; Metcalf, Harold

    2004-05-01

    We have elaborated on the dressed atom description of the bichromatic force initially proposed by Grimm et al(R. Grimm et al., Opt. Lett. 19), 658 (1994).^,(R. Grimm et al., Proceeding of the International School of Physics, ``Enrico Fermi", Course CXXXI, IOS Press, Amsterdam 1996.). We present two completely equivalent Floquet Hamiltonians that mimic the ``atom plus field" system of the dressed atom spectrum. One is best for high velocities and the other for small velocities (kv relative to 2δ, the bichromatic frequency difference). Then we argue that the force arises from the exchange of kinetic energy with the ``atom plus field" system. But transitions between the dressed states must occur by Landau-Zener (LZ) transitions as the atoms pass through exact or small crossings, and calculate these rates from the eigenstates of the Floquet Hamiltonian. We find that some ``anti-crossings" are passed adiabatically and some non-adiabatically, and the criterion is the atomic velocity. We find two LZ velocities that bound the range of the force, thus enabling a description of its velocity range. This is the first time that the observed capture range ± δ/2k has been calculated.

  19. Probe-rotating atomic force microscopy for determining material properties

    SciTech Connect

    Lee, Sang Heon

    2014-03-15

    In this paper, we propose a probe-rotating atomic force microscope that enables scan in an arbitrary direction in the contact imaging mode, which is difficult to achieve using a conventional atomic force microscope owing to the orientation-dependent probe and the inability to rotate the probe head. To enable rotation of the probe about its vertical axis, we employed a compact and light probe head, the sensor of which is made of an optical disk drive pickup unit. Our proposed mechanical configuration, operating principle, and control system enables axial and lateral scan in various directions.

  20. Will a Decaying Atom Feel a Friction Force?

    NASA Astrophysics Data System (ADS)

    Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M.

    2017-02-01

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v /c . At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  1. Will a Decaying Atom Feel a Friction Force?

    PubMed

    Sonnleitner, Matthias; Trautmann, Nils; Barnett, Stephen M

    2017-02-03

    We show how a simple calculation leads to the surprising result that an excited two-level atom moving through a vacuum sees a tiny friction force of first order in v/c. At first sight this seems to be in obvious contradiction to other calculations showing that the interaction with the vacuum does not change the velocity of an atom. It is even more surprising that this change in the atom's momentum turns out to be a necessary result of energy and momentum conservation in special relativity.

  2. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  3. Universal aspects of brittle fracture, adhesion, and atomic force microscopy

    NASA Technical Reports Server (NTRS)

    Banerjea, Amitava; Ferrante, John; Smith, John R.

    1989-01-01

    This universal relation between binding energy and interatomic separation was originally discovered for adhesion at bimetallic interfaces involving the simple metals Al, Zn, Mg, and Na. It is shown here that the same universal relation extends to adhesion at transition-metal interfaces. Adhesive energies have been computed for the low-index interfaces of Al, Ni, Cu, Ag, Fe, and W, using the equivalent-crystal theory (ECT) and keeping the atoms in each semiinfinite slab fixed rigidly in their equilibrium positions. These adhesive energy curves can be scaled onto each other and onto the universal adhesion curve. The effect of tip shape on the adhesive forces in the atomic-force microscope (AFM) is studied by computing energies and forces using the ECT. While the details of the energy-distance and force-distance curves are sensitive to tip shape, all of these curves can be scaled onto the universal adhesion curve.

  4. Note: Artificial neural networks for the automated analysis of force map data in atomic force microscopy

    SciTech Connect

    Braunsmann, Christoph; Schäffer, Tilman E.

    2014-05-15

    Force curves recorded with the atomic force microscope on structured samples often show an irregular force versus indentation behavior. An analysis of such curves using standard contact models (e.g., the Sneddon model) would generate inaccurate Young's moduli. A critical inspection of the force curve shape is therefore necessary for estimating the reliability of the generated Young's modulus. We used a trained artificial neural network to automatically recognize curves of “good” and of “bad” quality. This is especially useful for improving the analysis of force maps that consist of a large number of force curves.

  5. Theoretical Models for Surface Forces and Adhesion and Their Measurement Using Atomic Force Microscopy

    PubMed Central

    Leite, Fabio L.; Bueno, Carolina C.; Da Róz, Alessandra L.; Ziemath, Ervino C.; Oliveira, Osvaldo N.

    2012-01-01

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of AFS, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution. PMID:23202925

  6. Theoretical models for surface forces and adhesion and their measurement using atomic force microscopy.

    PubMed

    Leite, Fabio L; Bueno, Carolina C; Da Róz, Alessandra L; Ziemath, Ervino C; Oliveira, Osvaldo N

    2012-10-08

    The increasing importance of studies on soft matter and their impact on new technologies, including those associated with nanotechnology, has brought intermolecular and surface forces to the forefront of physics and materials science, for these are the prevailing forces in micro and nanosystems. With experimental methods such as the atomic force spectroscopy (AFS), it is now possible to measure these forces accurately, in addition to providing information on local material properties such as elasticity, hardness and adhesion. This review provides the theoretical and experimental background of afs, adhesion forces, intermolecular interactions and surface forces in air, vacuum and in solution.

  7. Spatial atomic layer deposition: Performance of low temperature H{sub 2}O and O{sub 3} oxidant chemistry for flexible electronics encapsulation

    SciTech Connect

    Maydannik, Philipp S. Plyushch, Alexander; Sillanpää, Mika; Cameron, David C.

    2015-05-15

    Water and oxygen were compared as oxidizing agents for the Al{sub 2}O{sub 3} atomic layer deposition process using spatial atomic layer deposition reactor. The influence of the precursor dose on the deposition rate and refractive index, which was used as a proxy for film density, was measured as a function of residence time, defined as the time which the moving substrate spent within one precursor gas zone. The effect of temperature on the growth characteristics was also measured. The water-based process gave faster deposition rates and higher refractive indices but the ozone process allowed deposition to take place at lower temperatures while still maintaining good film quality. In general, processes based on both oxidation chemistries were able to produce excellent moisture barrier films with water vapor transmission rate levels of 10{sup −4} g/m{sup 2} day measured at 38 °C and 90% of relative humidity on polyethylene naphthalate substrates. However, the best result of <5 × 10{sup −5} was obtained at 100 °C process temperature with water as precursor.

  8. Dispersion forces at arbitrary distances. [between closed-shell atoms

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Csanak, G.

    1975-01-01

    The formalism of Boehm and Yaris is used to evaluate explicitly the leading term of the London dispersion force between closed-shell atoms. Instead of using the usual multipole expansion, which breaks down at intermediate internuclear distances, an analytic representation of the Born amplitude together with a general angular momentum analysis is used. As a result, expressions are obtained which reduce to the usual dispersion forces at large distances and are finite at all distances.

  9. Dispersion forces at arbitrary distances. [between closed-shell atoms

    NASA Technical Reports Server (NTRS)

    Jacobi, N.; Csanak, G.

    1975-01-01

    The formalism of Boehm and Yaris is used to evaluate explicitly the leading term of the London dispersion force between closed-shell atoms. Instead of using the usual multipole expansion, which breaks down at intermediate internuclear distances, an analytic representation of the Born amplitude together with a general angular momentum analysis is used. As a result, expressions are obtained which reduce to the usual dispersion forces at large distances and are finite at all distances.

  10. Imaging proteins with atomic force microscopy: an overview.

    PubMed

    Silva, Luciano Paulino

    2005-08-01

    Atomic force microscopy (AFM) has become a common tool for biophysical studies of proteins; mainly due its property to perform characterizations near physiological conditions. The tertiary and quaternary structures, forces driving folding-unfolding processes, and secondary structure elements can be studied in their native environments allowing high resolution level associated with small distortions. This review outlines the operational principles and applications of AFM for protein biophysics.

  11. Using Atom Interferometry to Search for New Forces

    SciTech Connect

    Wacker, Jay G.; /SLAC

    2009-12-11

    Atom interferometry is a rapidly advancing field and this Letter proposes an experiment based on existing technology that can search for new short distance forces. With current technology it is possible to improve the sensitivity by up to a factor of 10{sup 2} and near-future advances will be able to rewrite the limits for forces with ranges from 100 {micro}m to 1km.

  12. Application of an atomic force microscope piezocantilever for dilatometry under extreme conditions

    NASA Astrophysics Data System (ADS)

    Wang, Liran; Schmiedeshoff, George M.; E Graf, David; Park, Ju-Hyun; Murphy, Timothy P.; Tozer, Stanley W.; Palm, Eric; Sarrao, John L.; Cooley, Jason C.

    2017-06-01

    We report on the development of a sensitive dilatometer based upon an atomic force microscope piezocantilever. This dilatometer is designed to measure the elastic properties of bulk materials in extreme conditions, such as temperatures down to 25 mK and magnetic fields up to 16 T. The layered heavy fermion superconductor \\text{CeCoI}{{\\text{n}}5} and its non-magnetic analog \\text{LaRhI}{{\\text{n}}5} are measured to demonstrate their use in detecting phase transitions and quantum oscillations. In addition, using this dilatometer, a simultaneous multi-axis dilation measurement is performed. This compact dilatometer has many advantages, such as its ability to measure very small samples with sub-mm lengths at low temperature and small field dependence, and its ability to rotate, while it works well irrespective of whether it is in a changing liquid or gas environment (i.e. within a flow cryostat or mixing chamber).

  13. Microrheology of cells with magnetic force modulation atomic force microscopy.

    PubMed

    Rebêlo, L M; de Sousa, J S; Mendes Filho, J; Schäpe, J; Doschke, H; Radmacher, M

    2014-04-07

    We propose a magnetic force modulation method to measure the stiffness and viscosity of living cells using a modified AFM apparatus. An oscillating magnetic field makes a magnetic cantilever oscillate in contact with the sample, producing a small AC indentation. By comparing the amplitude of the free cantilever motion (A0) with the motion of the cantilever in contact with the sample (A1), we determine the sample stiffness and viscosity. To test the method, the frequency-dependent stiffness of 3T3 fibroblasts was determined as a power law k(s)(f) = α + β(f/f¯)(γ) (α = 7.6 × 10(-4) N m(-1), β = 1.0 × 10(-4) N m(-1), f¯ = 1 Hz, γ = 0.6), where the coefficient γ = 0.6 is in good agreement with rheological data of actin solutions with concentrations similar to those in cells. The method also allows estimation of the internal friction of the cells. In particular we found an average damping coefficient of 75.1 μN s m(-1) for indentation depths ranging between 1.0 μm and 2.0 μm.

  14. High-speed force mapping on living cells with a small cantilever atomic force microscope

    SciTech Connect

    Braunsmann, Christoph; Seifert, Jan; Rheinlaender, Johannes; Schäffer, Tilman E.

    2014-07-15

    The imaging speed of the wide-spread force mapping mode for quantitative mechanical measurements on soft samples in liquid with the atomic force microscope (AFM) is limited by the bandwidth of the z-scanner and viscous drag forces on the cantilever. Here, we applied high-speed, large scan-range atomic force microscopy and small cantilevers to increase the speed of force mapping by ≈10−100 times. This allowed resolving dynamic processes on living mouse embryonic fibroblasts. Cytoskeleton reorganization during cell locomotion, growth of individual cytoskeleton fibers, cell blebbing, and the formation of endocytic pits in the cell membrane were observed. Increasing the force curve rate from 2 to 300 Hz increased the measured apparent Young's modulus of the cells by about 10 times, which facilitated force mapping measurements at high speed.

  15. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    ERIC Educational Resources Information Center

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  16. Taking Nanomedicine Teaching into Practice with Atomic Force Microscopy and Force Spectroscopy

    ERIC Educational Resources Information Center

    Carvalho, Filomena A.; Freitas, Teresa; Santos, Nuno C.

    2015-01-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic…

  17. Solid-state source of atomic oxygen for low-temperature oxidation processes: Application to pulsed laser deposition of TiO{sub 2}:N films

    SciTech Connect

    Ojima, Daiki; Chiba, Tetsuya; Shima, Kazunari; Hiramatsu, Hidenori; Hosono, Hideo; Hayashi, Katsuro

    2012-02-15

    An atomic oxygen (AO) source has been redesigned to coordinate with a pulsed laser deposition system and used to grow nitrogen-doped TiO{sub 2} films by deposition of TiN and simultaneous irradiation of the substrate with AO. The AO source uses an incandescently heated thin tube of zirconia as an oxygen permeation media to generate pure AO of low kinetic energy. The emission flux is calibrated using a silver-coated quartz crystal microbalance. The thin shape of the probe and transverse emission geometry of this emission device allow the emission area to be positioned close to the substrate surface, enhancing the irradiation flux at the substrate. AO irradiation is crucial for formation of TiO{sub 2} phases via oxidation of the deposited TiN laser plume, and is effective for decrease of the substrate temperature for crystallization of anatase phase to as low as around 200 deg. C.

  18. Low-Temperature Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  19. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  20. Uncertainty quantification in nanomechanical measurements using the atomic force microscope

    Treesearch

    Ryan Wagner; Robert Moon; Jon Pratt; Gordon Shaw; Arvind Raman

    2011-01-01

    Quantifying uncertainty in measured properties of nanomaterials is a prerequisite for the manufacture of reliable nanoengineered materials and products. Yet, rigorous uncertainty quantification (UQ) is rarely applied for material property measurements with the atomic force microscope (AFM), a widely used instrument that can measure properties at nanometer scale...

  1. Atomic force microscopy of torus-bearing pit membranes

    Treesearch

    Roland R. Dute; Thomas Elder

    2011-01-01

    Atomic force microscopy was used to compare the structures of dried, torus-bearing pit membranes from four woody species, three angiosperms and one gymnosperm. Tori of Osmanthus armatus are bipartite consisting of a pustular zone overlying parallel sets of microfibrils that form a peripheral corona. Microfibrils of the corona form radial spokes as they traverse the...

  2. Unifying theory of tapping-mode atomic-force microscopy

    NASA Astrophysics Data System (ADS)

    Paulo, Álvaro San; García, Ricardo

    2002-07-01

    We propose a general method for describing tapping-mode atomic-force microscopy. The combined participation of attractive and repulsive interactions determines the multivalued nature of the resonance curve. This, in turn, implies the coexistence of two different stable oscillations for some excitation frequencies. The coexistence of two stable oscillations depends on the driving force and tip-surface separation. Increasing the driving force inhibits the low-amplitude oscillation state. Because resolution depends on the oscillation state, we propose that the absence of the low amplitude solution is responsible for the inconsistencies observed in high-resolution imaging of biomolecules.

  3. Modeling noncontact atomic force microscopy resolution on corrugated surfaces.

    PubMed

    Burson, Kristen M; Yamamoto, Mahito; Cullen, William G

    2012-01-01

    Key developments in NC-AFM have generally involved atomically flat crystalline surfaces. However, many surfaces of technological interest are not atomically flat. We discuss the experimental difficulties in obtaining high-resolution images of rough surfaces, with amorphous SiO(2) as a specific case. We develop a quasi-1-D minimal model for noncontact atomic force microscopy, based on van der Waals interactions between a spherical tip and the surface, explicitly accounting for the corrugated substrate (modeled as a sinusoid). The model results show an attenuation of the topographic contours by ~30% for tip distances within 5 Å of the surface. Results also indicate a deviation from the Hamaker force law for a sphere interacting with a flat surface.

  4. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus; Freund, Hans-Joachim

    2016-05-01

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  5. Resolving amorphous solid-liquid interfaces by atomic force microscopy

    SciTech Connect

    Burson, Kristen M.; Gura, Leonard; Kell, Burkhard; Büchner, Christin; Lewandowski, Adrian L.; Heyde, Markus Freund, Hans-Joachim

    2016-05-16

    Recent advancements in liquid atomic force microscopy make it an ideal technique for probing the structure of solid-liquid interfaces. Here, we present a structural study of a two-dimensional amorphous silica bilayer immersed in an aqueous solution utilizing liquid atomic force microscopy with sub-nanometer resolution. Structures show good agreement with atomically resolved ultra-high vacuum scanning tunneling microscopy images obtained on the same sample system, owing to the structural stability of the silica bilayer and the imaging clarity from the two-dimensional sample system. Pair distance histograms of ring center positions are utilized to develop quantitative metrics for structural comparison, and the physical origin of pair distance histogram peaks is addressed by direct assessment of real space structures.

  6. Elasticity measurement of breast cancer cells by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Xu, Chaoxian; Wang, Yuhua; Jiang, Ningcheng; Yang, Hongqin; Lin, Juqiang; Xie, Shusen

    2014-09-01

    Mechanical properties of living cells play an important role in understanding various cells' function and state. Therefore cell biomechanics is expected to become a useful tool for cancer diagnosis. In this study, atomic force microscopy (AFM) using a square pyramid probe was performed to investigate cancerous (MCF-7) and benign (MCF-10A) human breast epithelial cells. The new QITM mode was used to acquire high-resolution topographic images and elasticity of living cells. Furthermore, individual force curves were recorded at maximum loads of 0.2, 0.5 and 1 nN, and the dependence of cell's elasticity with loading force was discussed. It was showed that the cancerous cells exhibited smaller elasticity modulus in comparison to non-cancerous counterparts. The elasticity modulus increased as the loading force increased from 0.2 nN to 1 nN. This observation indicates that loading force affects the cell's apparent elasticity and it is important to choose the appropriate force applied to cells in order to distinguish normal and cancer cells. The results reveal that the mechanical properties of living cells measured by atomic force microscopy may be a useful indicator of cell type and disease.

  7. Bifurcation, chaos, and scan instability in dynamic atomic force microscopy

    SciTech Connect

    Cantrell, John H.; Cantrell, Sean A.

    2016-03-28

    The dynamical motion at any point on the cantilever of an atomic force microscope can be expressed quite generally as a superposition of simple harmonic oscillators corresponding to the vibrational modes allowed by the cantilever shape. Central to the dynamical equations is the representation of the cantilever-sample interaction force as a polynomial expansion with coefficients that account for the interaction force “stiffness,” the cantilever-to-sample energy transfer, and the displacement amplitude of cantilever oscillation. Renormalization of the cantilever beam model shows that for a given cantilever drive frequency cantilever dynamics can be accurately represented by a single nonlinear mass-spring model with frequency-dependent stiffness and damping coefficients [S. A. Cantrell and J. H. Cantrell, J. Appl. Phys. 110, 094314 (2011)]. Application of the Melnikov method to the renormalized dynamical equation is shown to predict a cascade of period doubling bifurcations with increasing cantilever drive force that terminates in chaos. The threshold value of the drive force necessary to initiate bifurcation is shown to depend strongly on the cantilever setpoint and drive frequency, effective damping coefficient, nonlinearity of the cantilever-sample interaction force, and the displacement amplitude of cantilever oscillation. The model predicts the experimentally observed interruptions of the bifurcation cascade for cantilevers of sufficiently large stiffness. Operational factors leading to the loss of image quality in dynamic atomic force microscopy are addressed, and guidelines for optimizing scan stability are proposed using a quantitative analysis based on system dynamical parameters and choice of feedback loop parameter.

  8. Nanoporous silver cathode surface treated by atomic layer deposition of CeO(x) for low-temperature solid oxide fuel cells.

    PubMed

    Neoh, Ke Chean; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Choi, Hyung Jong; Park, Suk Won; Shim, Joon Hyung

    2016-05-06

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO(x)) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO(x) treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO(x) surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO(x) treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO(x)-treated Ag cathodes related to the microstructure of the layers.

  9. Nanoporous silver cathode surface treated by atomic layer deposition of CeO x for low-temperature solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Chean Neoh, Ke; Han, Gwon Deok; Kim, Manjin; Kim, Jun Woo; Jong Choi, Hyung; Park, Suk Won; Shim, Joon Hyung

    2016-05-01

    We evaluated the performance of solid oxide fuel cells (SOFCs) with a 50 nm thin silver (Ag) cathode surface treated with cerium oxide (CeO x ) by atomic layer deposition (ALD). The performances of bare and ALD-treated Ag cathodes were evaluated on gadolinia-doped ceria (GDC) electrolyte supporting cells with a platinum (Pt) anode over 300 °C-450 °C. Our work confirms that ALD CeO x treatment enhances cathodic performance and thermal stability of the Ag cathode. The performance difference between cells using a Ag cathode optimally treated with an ALD CeO x surface and a reference Pt cathode is about 50% at 450 °C in terms of fuel cell power output in our experiment. The bare Ag cathode completely agglomerated into islands during fuel cell operation at 450 °C, while the ALD CeO x treatment effectively protects the porosity of the cathode. We also discuss the long-term stability of ALD CeO x -treated Ag cathodes related to the microstructure of the layers.

  10. Low-temperature surface formation of NH3 and HNCO: hydrogenation of nitrogen atoms in CO-rich interstellar ice analogues

    NASA Astrophysics Data System (ADS)

    Fedoseev, G.; Ioppolo, S.; Zhao, D.; Lamberts, T.; Linnartz, H.

    2015-01-01

    Solid-state astrochemical reaction pathways have the potential to link the formation of small nitrogen-bearing species, like NH3 and HNCO, and prebiotic molecules, specifically amino acids. To date, the chemical origin of such small nitrogen-containing species is still not well understood, despite the fact that ammonia is an abundant constituent of interstellar ices towards young stellar objects and quiescent molecular clouds. This is mainly because of the lack of dedicated laboratory studies. The aim of this work is to experimentally investigate the formation routes of NH3 and HNCO through non-energetic surface reactions in interstellar ice analogues under fully controlled laboratory conditions and at astrochemically relevant temperatures. This study focuses on the formation of NH3 and HNCO in CO-rich (non-polar) interstellar ices that simulate the CO freeze-out stage in dark interstellar cloud regions, well before thermal and energetic processing start to become relevant. We demonstrate and discuss the surface formation of solid HNCO through the interaction of CO molecules with NH radicals - one of the intermediates in the formation of solid NH3 upon sequential hydrogenation of N atoms. The importance of HNCO for astrobiology is discussed.

  11. Resonant difference-frequency atomic force ultrasonic microscope

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Cantrell, Sean A. (Inventor)

    2010-01-01

    A scanning probe microscope and methodology called resonant difference-frequency atomic force ultrasonic microscopy (RDF-AFUM), employs an ultrasonic wave launched from the bottom of a sample while the cantilever of an atomic force microscope, driven at a frequency differing from the ultrasonic frequency by one of the contact resonance frequencies of the cantilever, engages the sample top surface. The nonlinear mixing of the oscillating cantilever and the ultrasonic wave in the region defined by the cantilever tip-sample surface interaction force generates difference-frequency oscillations at the cantilever contact resonance. The resonance-enhanced difference-frequency signals are used to create images of nanoscale near-surface and subsurface features.

  12. Analytical model of atomic-force-microscopy force curves in viscoelastic materials exhibiting power law relaxation

    NASA Astrophysics Data System (ADS)

    de Sousa, J. S.; Santos, J. A. C.; Barros, E. B.; Alencar, L. M. R.; Cruz, W. T.; Ramos, M. V.; Mendes Filho, J.

    2017-01-01

    We propose an analytical model for the force-indentation relationship in viscoelastic materials exhibiting a power law relaxation described by an exponent n, where n = 1 represents the standard viscoelastic solid (SLS) model and n < 1 represents a fractional SLS model. To validate the model, we perform nanoindentation measurements of polyacrylamide gels with atomic force microscopy (AFM) force curves. We found exponents n < 1 that depend on the bisacrylamide concentration. We also demonstrate that the fitting of AFM force curves for varying load speeds can reproduce the dynamic viscoelastic properties of those gels measured with dynamic force modulation methods.

  13. Low-temperature nanosolders

    SciTech Connect

    Boyle, Timothy J.; Lu, Ping; Vianco, Paul T.; Chandross, Michael E.

    2016-10-11

    A nanosolder comprises a first metal nanoparticle core coated with a second metal shell, wherein the first metal has a higher surface energy and smaller atomic size than the second metal. For example, a bimetallic nanosolder can comprise a protective Ag shell "glued" around a reactive Cu nanoparticle. As an example, a 3-D epitaxial Cu-core and Ag-shell structure was generated from a mixture of copper and silver nanoparticles in toluene at temperatures as low as 150.degree. C.

  14. Nanoprocessing of layered crystalline materials by atomic force microscopy.

    PubMed

    Miyake, Shojiro; Wang, Mei

    2015-01-01

    By taking advantage of the mechanical anisotropy of crystalline materials, processing at a single-layer level can be realized for layered crystalline materials with periodically weak bonds. Mica (muscovite), graphite, molybdenum disulfide (MoS2), and boron nitride have layered structures, and there is little interaction between the cleavage planes existing in the basal planes of these materials. Moreover, it is easy to image the atoms on the basal plane, where the processed shape can be observed on the atomic level. This study reviews research evaluating the nanometer-scale wear and friction as well as the nanometer-scale mechanical processing of muscovite using atomic force microscopy (AFM). It also summarizes recent AFM results obtained by our research group regarding the atomic-scale mechanical processing of layered materials including mica, graphite, MoS2, and highly oriented pyrolytic graphite.

  15. Simulation of liquid jet atomization coupled with forced perturbation

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochuan; Turan, Ali

    2017-02-01

    In this paper, the physical coupling processes between atomization and forced perturbation are considered. The effect of perturbation frequency and amplitude has been numerically investigated via a tree-based adaptive algorithm incorporating a time-dependent incompressible two-phase Navier-Stokes solver to simulate the atomization process. An open source code Gerris is validated using theoretical, numerical, and experimental results to demonstrate the generic capability and accuracy regarding atomization both in the low- and high-speed regimes. For a low speed jet, the breakup length and droplet diameter are examined to study the effect on breakup behaviour. For the high speed case, the frequency response of the jet is essentially classified into three distinct regimes. The jet shows a strong response for the low frequency and a correspondingly weak response for the high frequency. Perturbation amplitude also affects the atomization significantly.

  16. Properties of atomic-layer-deposited Al2O3/ZnO dielectric films grown at low temperature for RF MEMS

    NASA Astrophysics Data System (ADS)

    Herrmann, Cari F.; Del Rio, Frank W.; George, Steven M.; Bright, Victor M.

    2005-01-01

    Al2O3/ZnO alloy films were grown at 100°C using atomic layer deposition (ALD) techniques. It has been previously established that the resistivity of these films can be tuned over a wide range by varying the amount of Zn in the film. Al2O3/ZnO ALD alloy films can therefore be designed with a dielectric constant high enough to provide a large down-state capacitance and a resistivity low enough to promote the dissipation of trapped charges. The material and electrical properties of the Al2O3/ZnO ALD films were investigated using Auger electron spectroscopy (AES), nanoindentation, and mercury probe measurements. Chemical analysis using AES confirmed the presence of both Al and Zn in the alloys. The nanoindentation measurements were used to calculate the Young's modulus and hardness of the films. Pure Al2O3 ALD was determined to have a modulus between 150 and 155 GPa and a hardness of ~8 GPa, while the results for pure ZnO ALD indicated a modulus between 120 and 140 GPa and a hardness of ~5 GPa. An Al2O3/ZnO ALD alloy displayed a modulus of 140-145 GPa, which falls between the two pure films, and a hardness of ~8 GPa, which is similar to the pure Al2O3 film. The dielectric constants of the ALD films were calculated from the mercury probe measurements and were determined to be around 6.8. These properties indicate that the Al2O3/ZnO ALD films can be engineered as a property specific dielectric layer for RF MEMS devices.

  17. Low temperature formation of higher-k cubic phase HfO{sub 2} by atomic layer deposition on GeO{sub x}/Ge structures fabricated by in-situ thermal oxidation

    SciTech Connect

    Zhang, R.; Huang, P.-C.; Taoka, N.; Yokoyama, M.; Takenaka, M.; Takagi, S.

    2016-02-01

    We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x} interfacial layer.

  18. Electrical characterization of HgTe nanowires using conductive atomic force microscopy

    SciTech Connect

    Gundersen, P.; Kongshaug, K. O.; Selvig, E.; Haakenaasen, R.

    2010-12-01

    Self-organized HgTe nanowires grown by molecular beam epitaxy (MBE) have been characterized using conductive atomic force microscopy. As HgTe will degrade or evaporate at normal baking temperatures for electron beam lithography (EBL) resists, an alternative method was developed. Using low temperature optical lithography processes, large Au contacts were deposited on a sample covered with randomly oriented, lateral HgTe nanowires. Nanowires partly covered by the large electrodes were identified with a scanning electron microscope and then localized in the atomic force microscope (AFM). The conductive tip of the AFM was then used as a movable electrode to measure current-voltage curves at several locations on HgTe nanowires. The measurements revealed that polycrystalline nanowires had diffusive electron transport, with resistivities two orders of magnitude larger than that of an MBE-grown HgTe film. The difference can be explained by scattering at the rough surface walls and at the grain boundaries in the wires. The method can be a solution when EBL is not available or requires too high temperature, or when measurements at several positions along a wire are required.

  19. Relative microelastic mapping of living cells by atomic force microscopy.

    PubMed Central

    A-Hassan, E; Heinz, W F; Antonik, M D; D'Costa, N P; Nageswaran, S; Schoenenberger, C A; Hoh, J H

    1998-01-01

    The spatial and temporal changes of the mechanical properties of living cells reflect complex underlying physiological processes. Following these changes should provide valuable insight into the biological importance of cellular mechanics and their regulation. The tip of an atomic force microscope (AFM) can be used to indent soft samples, and the force versus indentation measurement provides information about the local viscoelasticity. By collecting force-distance curves on a time scale where viscous contributions are small, the forces measured are dominated by the elastic properties of the sample. We have developed an experimental approach, using atomic force microscopy, called force integration to equal limits (FIEL) mapping, to produce robust, internally quantitative maps of relative elasticity. FIEL mapping has the advantage of essentially being independent of the tip-sample contact point and the cantilever spring constant. FIEL maps of living Madine-Darby canine kidney (MDCK) cells show that elasticity is uncoupled from topography and reveal a number of unexpected features. These results present a mode of high-resolution visualization in which the contrast is based on the mechanical properties of the sample. PMID:9512052

  20. Advances in Bichromatic Force Slowing of Atoms and Molecules

    NASA Astrophysics Data System (ADS)

    Chieda, M. A.; Eyler, E. E.

    2012-06-01

    The optical bichromatic force (BCF) holds promise as an efficient, simple, and compact means to slow atoms and molecules to MOT capture velocities.ootnotetextM. Cashen and H. Metcalf, JOSA B 20, 915 (2003).^,ootnotetextM. A. Chieda and E. E. Eyler, PRA 84, 063401 (2011). Metastable helium beams, with v˜1000 m/s, are especially worthwhile atomic candidates since they presently require Zeeman slowers with lengths of 2--3 m. We present a novel BCF decelerator in which the Doppler shifts are chirped to keep the force centered on the atoms as they slow. This is made possible by recent advances in high-power diode lasers and electronics, and avoids many of the problems of alternative designs using large detunings. Initial tests on He* atoms show encouraging results. Unlike atoms, direct laser slowing of molecules remains exceedingly difficult, although success with SrF has very recently been reported.ootnotetextJ. F. Barry, E. S. Shuman, E. B. Norrgard, and D. DeMille, to be published. We calculate that for molecules with near-cycling transitions, rapid laser BCF slowing should be possible.ootnotetextChieda, op. sit. For the CaF molecule, we predict slowing by δv = 150 m/s, enough to bring a buffer-gas cooled beam to rest. An experimental demonstration is in progress.

  1. Single-shell carbon nanotubes imaged by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Höper, Ralf; Workman, Richard K.; Chen, Dong; Sarid, Dror; Yadav, Tapesh; Withers, James C.; Loutfy, Raouf O.

    1994-05-01

    Single-shell carbon nanotubes, approximately 1 nm in diameter, have been imaged for the first time by atomic force microscopy operating in both the contact and tapping modes. For the contact mode, the height of the imaged nanotubes has been calibrated using the atomic steps of the silicon substrate on which the nanotubes were deposited. For the tapping mode, the calibration was performed using an industry-standard grating. The paper discusses substrate and sample preparation methods for the characterization by scanning probe microscopy of nanotubes deposited on a substrate.

  2. Influence of the Coriolis force in atom interferometry.

    PubMed

    Lan, Shau-Yu; Kuan, Pei-Chen; Estey, Brian; Haslinger, Philipp; Müller, Holger

    2012-03-02

    In a light-pulse atom interferometer, we use a tip-tilt mirror to remove the influence of the Coriolis force from Earth's rotation and to characterize configuration space wave packets. For interferometers with a large momentum transfer and large pulse separation time, we improve the contrast by up to 350% and suppress systematic effects. We also reach what is to our knowledge the largest space-time area enclosed in any atom interferometer to date. We discuss implications for future high-performance instruments.

  3. Adhesion Force Measurements Using an Atomic Force Microscope Upgraded with a Linear Position Sensitive Detector

    PubMed Central

    Pierce, M.; Stuart, J.; Pungor, A.; Dryden, P.

    2012-01-01

    The atomic force microscope (AFM), in addition to providing images on an atomic scale, can be used to measure the forces between surfaces and the AFM probe. The potential uses of mapping the adhesive forces on the surface include a spatial determination of surface energy and a direct identification of surface proteins through specific protein–ligand binding interactions. The capabilities of the AFM to measure adhesive forces can be extended by replacing the four-quadrant photodiode detection sensor with an external linear position sensitive detector and by utilizing a dedicated user-programmable signal generator and acquisiton system. Such an upgrade enables the microscope to measure in the larger dynamic range of adhesion forces, improves the sensitivity and linearity of the measurement, and eliminates the problems inherent to the multiple repetitious contacts between the AFM probe and the specimen surface. PMID:25125792

  4. Atomic-scale mechanical properties of orientated C60 molecules revealed by noncontact atomic force microscopy.

    PubMed

    Pawlak, Rémy; Kawai, Shigeki; Fremy, Sweetlana; Glatzel, Thilo; Meyer, Ernst

    2011-08-23

    In this work, the mechanical properties of C(60) molecules adsorbed on Cu(111) are measured by tuning-fork-based noncontact atomic force microscopy (nc-AFM) and spectroscopy at cryogenic conditions. Site-specific tip-sample force variations are detected above the buckyball structure. Moreover, high-resolution images obtained by nc-AFM show the chemical structure of this molecule and describes unambiguously its orientations on the surface.

  5. Improved atomic force microscopy cantilever performance by partial reflective coating

    PubMed Central

    Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Summary Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds. PMID:26199849

  6. Improved atomic force microscopy cantilever performance by partial reflective coating.

    PubMed

    Schumacher, Zeno; Miyahara, Yoichi; Aeschimann, Laure; Grütter, Peter

    2015-01-01

    Optical beam deflection systems are widely used in cantilever based atomic force microscopy (AFM). Most commercial cantilevers have a reflective metal coating on the detector side to increase the reflectivity in order to achieve a high signal on the photodiode. Although the reflective coating is usually much thinner than the cantilever, it can still significantly contribute to the damping of the cantilever, leading to a lower mechanical quality factor (Q-factor). In dynamic mode operation in high vacuum, a cantilever with a high Q-factor is desired in order to achieve a lower minimal detectable force. The reflective coating can also increase the low-frequency force noise. In contact mode and force spectroscopy, a cantilever with minimal low-frequency force noise is desirable. We present a study on cantilevers with a partial reflective coating on the detector side. For this study, soft (≈0.01 N/m) and stiff (≈28 N/m) rectangular cantilevers were used with a custom partial coating at the tip end of the cantilever. The Q-factor, the detection and the force noise of fully coated, partially coated and uncoated cantilevers are compared and force distance curves are shown. Our results show an improvement in low-frequency force noise and increased Q-factor for the partially coated cantilevers compared to fully coated ones while maintaining the same reflectivity, therefore making it possible to combine the best of both worlds.

  7. A reverse pendulum bath cryostat design suitable for low temperature scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Heyde, M.; Thielsch, G.; Rust, H.-P.; Freund, H.-J.

    2005-03-01

    A new low temperature, ultrahigh vacuum cryostat design has been developed for atomic force and scanning tunnelling microscopy measurements. A microscope can be operated at 5 K in ultrahigh vacuum. The microscope body is thermally connected to a reverse pendulum and completely surrounded by a radiation shield. The design allows in situ dosing and irradiation of the sample as well as for easy access of tip and sample. The temperature performance and the vibrational properties of the reverse pendulum design are demonstrated in detail. A brief overview of low temperature instrumentation in scanning probe microscopy is given.

  8. Hydrogen-related contrast in atomic force microscopy.

    PubMed

    Schmidt, René; Schwarz, Alexander; Wiesendanger, Roland

    2009-07-01

    We study the effect of hydrogen adsorption on gadolinium islands epitaxially grown on W(110) utilizing atomic force microscopy operated in the non-contact regime. In constant force images, gadolinium islands exhibit two height levels, corresponding to hydrogen covered and clean gadolinium areas, respectively. The experimentally measured height differences are strongly bias dependent, showing that the contrast pattern is dominated by electrostatic tip-sample forces. We interpret our experimental findings in terms of a local reduction of the work function and the presence of localized charges on hydrogen covered areas. Both effects lead to a variation of the contact potential difference between tip and surface areas, which are clean or hydrogen covered gadolinium. After clarifying the electrostatic contrast formation, we can unambiguously identify regions of clean gadolinium on the islands. These results are important for further magnetic exchange force microscopy based studies, because hydrogen also alters the magnetic properties locally.

  9. Hydrogen-related contrast in atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Schmidt, René; Schwarz, Alexander; Wiesendanger, Roland

    2009-07-01

    We study the effect of hydrogen adsorption on gadolinium islands epitaxially grown on W(110) utilizing atomic force microscopy operated in the non-contact regime. In constant force images, gadolinium islands exhibit two height levels, corresponding to hydrogen covered and clean gadolinium areas, respectively. The experimentally measured height differences are strongly bias dependent, showing that the contrast pattern is dominated by electrostatic tip-sample forces. We interpret our experimental findings in terms of a local reduction of the work function and the presence of localized charges on hydrogen covered areas. Both effects lead to a variation of the contact potential difference between tip and surface areas, which are clean or hydrogen covered gadolinium. After clarifying the electrostatic contrast formation, we can unambiguously identify regions of clean gadolinium on the islands. These results are important for further magnetic exchange force microscopy based studies, because hydrogen also alters the magnetic properties locally.

  10. Quantification of cell-substratum interactions by atomic force microscopy.

    PubMed

    Li, Qian; Becker, Thomas; Sand, Wolfgang

    2017-08-30

    Microorganisms adhere to surfaces and, subsequently, form biofilms. This process is of major interest in biotechnology, environmental sciences and medicine. It is crucial to understand the mechanisms of interactions between substratum and cells or biofilms. By combining force mapping-based atomic force microscopy (AFM) with pyrite-modified cantilevers we quantified the adhesion forces between undenatured planktonic or biofilm cells of Sulfobacillus thermosulfidooxidans and the substratum pyrite with values of 2.6±0.3nN and 77.3±7.1pN, respectively. This was achieved under natural conditions without any artefact resulting from the use of denaturing chemicals such as glutaraldehyde. This new technique is unique for quantifying the real interaction forces between cells or biofilms and their substrata. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Interplay between Switching Driven by the Tunneling Current and Atomic Force of a Bistable Four-Atom Si Quantum Dot.

    PubMed

    Yamazaki, Shiro; Maeda, Keisuke; Sugimoto, Yoshiaki; Abe, Masayuki; Zobač, Vladimír; Pou, Pablo; Rodrigo, Lucia; Mutombo, Pingo; Pérez, Ruben; Jelínek, Pavel; Morita, Seizo

    2015-07-08

    We assemble bistable silicon quantum dots consisting of four buckled atoms (Si4-QD) using atom manipulation. We demonstrate two competing atom switching mechanisms, downward switching induced by tunneling current of scanning tunneling microscopy (STM) and opposite upward switching induced by atomic force of atomic force microscopy (AFM). Simultaneous application of competing current and force allows us to tune switching direction continuously. Assembly of the few-atom Si-QDs and controlling their states using versatile combined AFM/STM will contribute to further miniaturization of nanodevices.

  12. Molecular determinants of bacterial adhesion monitored by atomic force microscopy

    PubMed Central

    Razatos, Anneta; Ong, Yea-Ling; Sharma, Mukul M.; Georgiou, George

    1998-01-01

    Bacterial adhesion and the subsequent formation of biofilm are major concerns in biotechnology and medicine. The initial step in bacterial adhesion is the interaction of cells with a surface, a process governed by long-range forces, primarily van der Waals and electrostatic interactions. The precise manner in which the force of interaction is affected by cell surface components and by the physiochemical properties of materials is not well understood. Here, we show that atomic force microscopy can be used to analyze the initial events in bacterial adhesion with unprecedented resolution. Interactions between the cantilever tip and confluent monolayers of isogenic strains of Escherichia coli mutants exhibiting subtle differences in cell surface composition were measured. It was shown that the adhesion force is affected by the length of core lipopolysaccharide molecules on the E. coli cell surface and by the production of the capsular polysaccharide, colanic acid. Furthermore, by modifying the atomic force microscope tip we developed a method for determining whether bacteria are attracted or repelled by virtually any biomaterial of interest. This information will be critical for the design of materials that are resistant to bacterial adhesion. PMID:9736689

  13. Sampling Protein Form and Function with the Atomic Force Microscope*

    PubMed Central

    Baclayon, Marian; Roos, Wouter H.; Wuite, Gijs J. L.

    2010-01-01

    To study the structure, function, and interactions of proteins, a plethora of techniques is available. Many techniques sample such parameters in non-physiological environments (e.g. in air, ice, or vacuum). Atomic force microscopy (AFM), however, is a powerful biophysical technique that can probe these parameters under physiological buffer conditions. With the atomic force microscope operating under such conditions, it is possible to obtain images of biological structures without requiring labeling and to follow dynamic processes in real time. Furthermore, by operating in force spectroscopy mode, it can probe intramolecular interactions and binding strengths. In structural biology, it has proven its ability to image proteins and protein conformational changes at submolecular resolution, and in proteomics, it is developing as a tool to map surface proteomes and to study protein function by force spectroscopy methods. The power of AFM to combine studies of protein form and protein function enables bridging various research fields to come to a comprehensive, molecular level picture of biological processes. We review the use of AFM imaging and force spectroscopy techniques and discuss the major advances of these experiments in further understanding form and function of proteins at the nanoscale in physiologically relevant environments. PMID:20562411

  14. Minimizing Pulling Geometry Errors in Atomic Force Microscope Single Molecule Force Spectroscopy

    PubMed Central

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E.; Cole, Daniel G.; Clark, Robert L.

    2008-01-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies. PMID:18641069

  15. Minimizing pulling geometry errors in atomic force microscope single molecule force spectroscopy.

    PubMed

    Rivera, Monica; Lee, Whasil; Ke, Changhong; Marszalek, Piotr E; Cole, Daniel G; Clark, Robert L

    2008-10-01

    In atomic force microscopy-based single molecule force spectroscopy (AFM-SMFS), it is assumed that the pulling angle is negligible and that the force applied to the molecule is equivalent to the force measured by the instrument. Recent studies, however, have indicated that the pulling geometry errors can drastically alter the measured force-extension relationship of molecules. Here we describe a software-based alignment method that repositions the cantilever such that it is located directly above the molecule's substrate attachment site. By aligning the applied force with the measurement axis, the molecule is no longer undergoing combined loading, and the full force can be measured by the cantilever. Simulations and experimental results verify the ability of the alignment program to minimize pulling geometry errors in AFM-SMFS studies.

  16. Method for lateral force calibration in atomic force microscope using MEMS microforce sensor.

    PubMed

    Dziekoński, Cezary; Dera, Wojciech; Jarząbek, Dariusz M

    2017-06-14

    In this paper we present a simple and direct method for the lateral force calibration constant determination. Our procedure does not require any knowledge about material or geometrical parameters of an investigated cantilever. We apply a commercially available microforce sensor with advanced electronics for direct measurement of the friction force applied by the cantilever's tip to a flat surface of the microforce sensor measuring beam. Due to the third law of dynamics, the friction force of the equal value tilts the AFM cantilever. Therefore, torsional (lateral force) signal is compared with the signal from the microforce sensor and the lateral force calibration constant is determined. The method is easy to perform and could be widely used for the lateral force calibration constant determination in many types of atomic force microscopes. Copyright © 2017. Published by Elsevier B.V.

  17. Athermalization in atomic force microscope based force spectroscopy using matched microstructure coupling.

    PubMed

    Torun, H; Finkler, O; Degertekin, F L

    2009-07-01

    The authors describe a method for athermalization in atomic force microscope (AFM) based force spectroscopy applications using microstructures that thermomechanically match the AFM probes. The method uses a setup where the AFM probe is coupled with the matched structure and the displacements of both structures are read out simultaneously. The matched structure displaces with the AFM probe as temperature changes, thus the force applied to the sample can be kept constant without the need for a separate feedback loop for thermal drift compensation, and the differential signal can be used to cancel the shift in zero-force level of the AFM.

  18. Ubiquitous mechanisms of energy dissipation in noncontact atomic force microscopy.

    PubMed

    Ghasemi, S Alireza; Goedecker, Stefan; Baratoff, Alexis; Lenosky, Thomas; Meyer, Ernst; Hug, Hans J

    2008-06-13

    Atomistic simulations considering larger tip structures than hitherto assumed reveal novel dissipation mechanisms in noncontact atomic force microscopy. The potential energy surfaces of realistic silicon tips exhibit many energetically close local minima that correspond to different structures. Most of them easily deform, thus causing dissipation arising from hysteresis in force versus distance characteristics. Furthermore, saddle points which connect local minima can suddenly switch to connect different minima. Configurations driven into metastability by the tip motion can thus suddenly access lower energy structures when thermal activation becomes allowed within the time required to detect the resulting average dissipation.

  19. [Atomic force microscopy: a tool to analyze the viral cycle].

    PubMed

    Bernaud, Julien; Castelnovo, Martin; Muriaux, Delphine; Faivre-Moskalenko, Cendrine

    2015-05-01

    Each step of the HIV-1 life cycle frequently involves a change in the morphology and/or mechanical properties of the viral particle or core. The atomic force microscope (AFM) constitutes a powerful tool for characterizing these physical changes at the scale of a single virus. Indeed, AFM enables the visualization of viral capsids in a controlled physiological environment and to probe their mechanical properties by nano-indentation. Finally, AFM force spectroscopy allows to characterize the affinities between viral envelope proteins and cell receptors at the single molecule level.

  20. Non-Markovianity in atom-surface dispersion forces

    DOE PAGES

    Intravaia, F.; Behunin, R. O.; Henkel, C.; ...

    2016-10-18

    Here, we discuss the failure of the Markov approximation in the description of atom-surface fluctuation-induced interactions, both in equilibrium (Casimir-Polder forces) and out of equilibrium (quantum friction). Using general theoretical arguments, we show that the Markov approximation can lead to erroneous predictions of such phenomena with regard to both strength and functional dependencies on system parameters. Particularly, we show that the long-time power-law tails of two-time dipole correlations and their corresponding low-frequency behavior, neglected in the Markovian limit, affect the prediction of the force. These findings highlight the importance of non-Markovian effects in dispersion interactions.

  1. Surface modifications with Lissajous trajectories using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Cai, Wei; Yao, Nan

    2015-09-01

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  2. Future directions in geobiology and low-temperature geochemistry

    USGS Publications Warehouse

    Freeman, Katherine H.; Goldhaber, M.B.

    2011-01-01

    Humanity is confronted with an enormous challenge, as succinctly stated by the late Steven Schneider (2001; quoted by Jantzen 2004*): “Humans are forcing the Earth’s environmental systems to change at a rate that is more advanced than their knowledge of the consequences.” Geobiologists and low-temperature geochemists characterize material from the lithosphere, hydrosphere, atmosphere, and biosphere to understand processes operating within and between these components of the Earth system from the atomic to the planetary scale. For this reason, the interwoven disciplines of geobiology and low-temperature geochemistry are central to understanding and ultimately predicting the behavior of these life-sustaining systems. We present here comments and recommendations from the participants of a workshop entitled “Future Directions in Geobiology and Low-Temperature Geochemistry,” hosted by the Carnegie Institution of Washington, Geophysical Laboratory, Washington, DC, on 27–28 August 2010. The goal of the workshop was to suggest ways to leverage the vast intellectual and analytical capabilities of our diverse scientific community to characterize the Earth’s past, present, and future geochemical habitat as we enter the second decade of what E. O. Wilson dubbed “the century of the environment.”

  3. Mapping and control of atomic force on Si(1 1 1)square root(3) x square root(3)-Ag surface using noncontact atomic force microscope.

    PubMed

    Morita, S; Sugawara, Y

    2002-05-01

    We demonstrated the possibility of measuring the three-dimensional force-related map with true atomic resolution between an Si tip and Si(1 1 1)square root(3) x square root(3)-Ag sample surface by measuring the tip-sample distance dependence of noncontact atomic force microscope (NC-AFM) image, i.e. atomically resolved atomic force spectroscopy. Furthermore, we demonstrated the possibility of controlling the interaction force between the atom on the tip apex and a sample atom of Si(1 1 1)square root(3) x square root(3)-Ag surface on an atomic scale by placing an Ag atom on the Si tip apex instead of Si atom.

  4. Mechanical characterization of cellulose single nanofiber by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Zhai, Lindong; Kim, Jeong Woong; Lee, Jiyun; Kim, Jaehwan

    2017-04-01

    Cellulose fibers are strong natural fibers and they are renewable, biodegradable and the most abundant biopolymer in the world. So to develop new cellulose fibers based products, the mechanical properties of cellulose nanofibers would be a key. The atomic microscope is used to measure the mechanical properties of cellulose nanofibers based on 3-points bending of cellulose nanofiber. The cellulose nanofibers were generated for an aqueous counter collision system. The cellulose microfibers were nanosized under 200 MPa high pressure. The cellulose nanofiber suspension was diluted with DI water and sprayed on the silicon groove substrate. By performing a nanoscale 3-points bending test using the atomic force microscopy, a known force was applied on the center of the fiber. The elastic modulus of the single nanofiber is obtained by calculating the fiber deflection and several parameters. The elastic modulus values were obtained from different resources of cellulose such as hardwood, softwood and cotton.

  5. Frequency-dependent viscoelasticity measurement by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Yang, Nan; Wong, Kenneth Kar Ho; de Bruyn, John R.; Hutter, Jeffrey L.

    2009-02-01

    We demonstrate a new technique for investigating viscoelastic properties of soft materials using the atomic force microscope. A small oscillatory voltage is added to the deflection signal of the atomic force microscope causing a vertical oscillatory sample motion. Monitoring the amplitude and phase of this motion allows determination of the viscous and elastic moduli of the sample as a function of frequency during contact imaging. This technique is applied to suspended poly(vinyl alcohol) nanofibers and poly(vinyl alcohol) hydrogels, giving results similar to those measured using traditional static methods. However, the moduli of both the fibers and the hydrogels show a significant frequency dependence. The Young's modulus of the fibers increases with frequency, while for the viscoelastic hydrogels, the storage modulus dominates the mechanical response at low frequency whereas the loss modulus dominates at high frequency.

  6. Atomic force microscopy images of lyotropic lamellar phases.

    PubMed

    Garza, C; Thieghi, L T; Castillo, R

    2007-02-07

    For the very first time, atomic force microscope images of lamellar phases were observed combined with a freeze fracture technique that does not involve the use of replicas. Samples are rapidly frozen, fractured, and scanned directly with atomic force microscopy, at liquid nitrogen temperature and in high vacuum. This procedure can be used to investigate micro-structured liquids. The lamellar phases in Sodium bis(2-ethylhexyl) sulfosuccinate (AOT)/water and in C12E5/water systems were used to asses this new technique. Our observations were compared with x-ray diffraction measurements and with other freeze fracture methods reported in the literature. Our results show that this technique is useful to image lyotropic lamellar phases and the estimated repeat distances for lamellar periodicity are consistent with those obtained by x-ray diffraction.

  7. Automated manipulation of carbon nanotubes using atomic force microscopy.

    PubMed

    Zhang, Chao; Wu, Sen; Fu, Xing

    2013-01-01

    The manipulation of carbon nanotubes is an important and essential step for carbon-based nanodevice or nanocircuit assembly. However, the conventional push-and-image approach of manipulating carbon nanotubes using atomic force microscopy has low efficiency on account of the reduplicated scanning process during manipulation. In this article, an automated manipulation system is designed and tested. This automated manipulation system, which includes an atomic force microscope platform and a self-developed computer program for one-dimensional manipulation, is capable of automatically moving any assigned individual carbon nanotube to a defined target location without any intermediate scanning procedure. To demonstrate the high-efficiency of this automated manipulation system and its potential applications in nanoassembly, two experiments were conducted. The first experiment used this system to manipulate a carbon nanotube to a defined target location. In the second experiment, this system was used to automatically manipulate several carbon nanotubes for generating and translating a defined pattern of nanotubes.

  8. Nanoindentation of gold nanorods with an atomic force microscope

    NASA Astrophysics Data System (ADS)

    Reischl, B.; Kuronen, A.; Nordlund, K.

    2014-12-01

    The atomic force microscope (AFM) can be used to measure mechanical properties of nanoscale objects, which are too small to be studied using a conventional nanoindenter. The contact mechanics at such small scales, in proximity of free surfaces, deviate substantially from simple continuum models. We present results from atomistic computer simulations of the indentation of gold nanorods using a diamond AFM tip and give insight in the atomic scale processes, involving creation and migration of dislocations, leading to the plastic deformation of the sample under load, and explain the force-distance curves observed for different tip apex radii of curvature, as well as different crystallographic structure and orientation of the gold nanorod samples.

  9. Energy from low temperature differences

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.

    1985-05-01

    A number of energy conservation and alternative energy approaches utilize a low temperature heat source. Applications in this category include: solar ponds, ocean thermal energy conversion (OTEC), low temperature solar thermal, geothermal, and waste heat recovery and bottoming cycles. Low temperature power extraction techniques are presented and the differences between closed and open Rankine power cycles are discussed. Specific applications and technical areas of current research in OTEC along with a breakdown of plant operating conditions and a rough cost estimate illustrate how the use of low temperature power conversion technology can be cost effective.

  10. Atomic Force Microscopy of the Nacreous Layer in Mollusc Shells

    DTIC Science & Technology

    1994-02-25

    studies of the nacreous layers of molluscan shells . In particular, our studies of native and treated samples have highlighted significant morphological...sUnh S. PUNOWNG NUMIEMS Atomic Force Microscopy of the Nacreous Layer N00014-90-J-1159 in Mollusc Shells -. AUThORtS) S. Manne, C. M. Zaremba, R. Giles...tablets which comprise the mineral portion of nacre, in two types of molluscs, a bivalve (Arrina serrate) and a gastropod (Haliois rufescens). By

  11. Model based control of dynamic atomic force microscope

    SciTech Connect

    Lee, Chibum; Salapaka, Srinivasa M.

    2015-04-15

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H{sub ∞} control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  12. Atomic force microscope observations of otoconia in the newt

    NASA Technical Reports Server (NTRS)

    Hallworth, R.; Wiederhold, M. L.; Campbell, J. B.; Steyger, P. S.

    1995-01-01

    Calcitic and aragonitic otoconia from the Japanese red-bellied newt, Cynops pyrrhogaster, were examined using an atomic force microscope. The surface structure of both otoconial polymorphs consisted of arrays of elements approximately 50 nm in diameter. Elements were generally round and were separated by shallow depressions of no more than 20 nm. The elements are suggested to be single crystals of calcium carbonate. The relationship of these observations to theories of otoconial genesis is discussed.

  13. Model based control of dynamic atomic force microscope

    NASA Astrophysics Data System (ADS)

    Lee, Chibum; Salapaka, Srinivasa M.

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H∞ control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  14. Model based control of dynamic atomic force microscope.

    PubMed

    Lee, Chibum; Salapaka, Srinivasa M

    2015-04-01

    A model-based robust control approach is proposed that significantly improves imaging bandwidth for the dynamic mode atomic force microscopy. A model for cantilever oscillation amplitude and phase dynamics is derived and used for the control design. In particular, the control design is based on a linearized model and robust H(∞) control theory. This design yields a significant improvement when compared to the conventional proportional-integral designs and verified by experiments.

  15. Probing starch-iodine interaction by atomic force microscopy.

    PubMed

    Du, Xiongwei; An, Hongjie; Liu, Zhongdong; Yang, Hongshun; Wei, Lijuan

    2014-01-01

    We explored the interaction of iodine with three crystalline type starches, corn, potato, and sweet potato starches using atomic force microscopy. Results revealed that starch molecules aggregated through interaction with iodine solution as well as iodine vapor. Detailed fine structures such as networks, chains, and super-helical structures were found in iodide solution tests. The nanostructures formed due to iodine adsorption could help to understand the formation and properties of the starch-iodine complex. © 2013 Wiley Periodicals, Inc.

  16. Probing stem cell differentiation using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  17. A simple method for producing flattened atomic force microscopy tips.

    PubMed

    Biagioni, P; Farahani, J N; Mühlschlegel, P; Eisler, H-J; Pohl, D W; Hecht, B

    2008-01-01

    We describe a simple and reliable procedure for obtaining a flat plateau on top of standard silicon nitride atomic force microscopy tips by scanning them over the focus of a high-numerical-aperture objective illuminated by near-infrared ultrashort laser pulses. Flattened tips produced this way exhibit a plateau that is parallel to the substrate when the cantilever is mounted. They represent a valid and cost-effective alternative to commercially available plateau tips.

  18. Atomic force microscope observations of otoconia in the newt

    NASA Technical Reports Server (NTRS)

    Hallworth, R.; Wiederhold, M. L.; Campbell, J. B.; Steyger, P. S.

    1995-01-01

    Calcitic and aragonitic otoconia from the Japanese red-bellied newt, Cynops pyrrhogaster, were examined using an atomic force microscope. The surface structure of both otoconial polymorphs consisted of arrays of elements approximately 50 nm in diameter. Elements were generally round and were separated by shallow depressions of no more than 20 nm. The elements are suggested to be single crystals of calcium carbonate. The relationship of these observations to theories of otoconial genesis is discussed.

  19. Non-contact atomic-level interfacial force microscopy

    SciTech Connect

    Houston, J.E.; Fleming, J.G.

    1997-02-01

    The scanning force microscopies (notably the Atomic Force Microscope--AFM), because of their applicability to nearly all materials, are presently the most widely used of the scanning-probe techniques. However, the AFM uses a deflection sensor to measure sample/probe forces which suffers from an inherent mechanical instability that occurs when the rate of change of the force with respect to the interfacial separation becomes equal to the spring constant of the deflecting member. This instability dramatically limits the breadth of applicability of AFM-type techniques to materials problems. In the course of implementing a DOE sponsored basic research program in interfacial adhesion, a self-balancing force sensor concept has been developed and incorporated into an Interfacial Force Microscopy (IFM) system by Sandia scientists. This sensor eliminates the instability problem and greatly enhances the applicability of the scanning force-probe technique to a broader range of materials and materials parameters. The impact of this Sandia development was recognized in 1993 by a Department of Energy award for potential impact on DOE programs and by an R and D 100 award for one of the most important new products of 1994. However, in its present stage of development, the IFM is strictly a research-level tool and a CRADA was initiated in order to bring this sensor technology into wide-spread availability by making it accessible in the form of a commercial instrument. The present report described the goals, approach and results of this CRADA effort.

  20. Manipulation of Proteins on Mica by Atomic Force Microscopy

    PubMed Central

    Lea, A. S.; Pungor, A; Hlady, V; Andrade, J. D.; Herron, J. N.; Voss, E. W.

    2012-01-01

    The atomic force microscope was used to image adsorption of a monoclonal IgM on mica in real time. Under the smallest possible force we could achieve (<4 nN), the cantilever tip behaved as a molecular broom and was observed to orient protein aggregates in strands oriented perpendicularly to the facet of the cantilever tip. Rotating the scan direction preserved the orientational relationship, as seen by the formation of rotated strands. When the applied force was increased, the distance between the strands increased, indicating the amount of protein that can be swept depends on the applied force. The effect of scanning increased the apparent surface coverage of IgM. Manipulation of a deposited fibrinogen layer with a 4-nN repulsive force was observed only after tens of minutes, but not to the extent that strands formed, indicating a greater adhesion between the fibrinogen and mica than between IgM and mica. With an applied repulsive force of 30 nN, fibrinogen strands formed and the protein was manipulated to produce the block letter U. At a much higher repulsive force, the entire scanning area was swept clean. PMID:25147425

  1. Atomic force microscopy application in biological research: a review study.

    PubMed

    Vahabi, Surena; Nazemi Salman, Bahareh; Javanmard, Anahita

    2013-06-01

    Atomic force microscopy (AFM) is a three-dimensional topographic technique with a high atomic resolution to measure surface roughness. AFM is a kind of scanning probe microscope, and its near-field technique is based on the interaction between a sharp tip and the atoms of the sample surface. There are several methods and many ways to modify the tip of the AFM to investigate surface properties, including measuring friction, adhesion forces and viscoelastic properties as well as determining the Young modulus and imaging magnetic or electrostatic properties. The AFM technique can analyze any kind of samples such as polymers, adsorbed molecules, films or fibers, and powders in the air whether in a controlled atmosphere or in a liquid medium. In the past decade, the AFM has emerged as a powerful tool to obtain the nanostructural details and biomechanical properties of biological samples, including biomolecules and cells. The AFM applications, techniques, and -in particular- its ability to measure forces, are not still familiar to most clinicians. This paper reviews the literature on the main principles of the AFM modality and highlights the advantages of this technique in biology, medicine, and- especially- dentistry. This literature review was performed through E-resources, including Science Direct, PubMed, Blackwell Synergy, Embase, Elsevier, and Scholar Google for the references published between 1985 and 2010.

  2. Hierarchical atom type definitions and extensible all-atom force fields.

    PubMed

    Jin, Zhao; Yang, Chunwei; Cao, Fenglei; Li, Feng; Jing, Zhifeng; Chen, Long; Shen, Zhe; Xin, Liang; Tong, Sijia; Sun, Huai

    2016-03-15

    The extensibility of force field is a key to solve the missing parameter problem commonly found in force field applications. The extensibility of conventional force fields is traditionally managed in the parameterization procedure, which becomes impractical as the coverage of the force field increases above a threshold. A hierarchical atom-type definition (HAD) scheme is proposed to make extensible atom type definitions, which ensures that the force field developed based on the definitions are extensible. To demonstrate how HAD works and to prepare a foundation for future developments, two general force fields based on AMBER and DFF functional forms are parameterized for common organic molecules. The force field parameters are derived from the same set of quantum mechanical data and experimental liquid data using an automated parameterization tool, and validated by calculating molecular and liquid properties. The hydration free energies are calculated successfully by introducing a polarization scaling factor to the dispersion term between the solvent and solute molecules. © 2015 Wiley Periodicals, Inc.

  3. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid.

    PubMed

    Miyazawa, K; Izumi, H; Watanabe-Nakayama, T; Asakawa, H; Fukuma, T

    2015-03-13

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  4. Fabrication of electron beam deposited tip for atomic-scale atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Miyazawa, K.; Izumi, H.; Watanabe-Nakayama, T.; Asakawa, H.; Fukuma, T.

    2015-03-01

    Recently, possibilities of improving operation speed and force sensitivity in atomic-scale atomic force microscopy (AFM) in liquid using a small cantilever with an electron beam deposited (EBD) tip have been intensively explored. However, the structure and properties of an EBD tip suitable for such an application have not been well-understood and hence its fabrication process has not been established. In this study, we perform atomic-scale AFM measurements with a small cantilever and clarify two major problems: contaminations from a cantilever and tip surface, and insufficient mechanical strength of an EBD tip having a high aspect ratio. To solve these problems, here we propose a fabrication process of an EBD tip, where we attach a 2 μm silica bead at the cantilever end and fabricate a 500-700 nm EBD tip on the bead. The bead height ensures sufficient cantilever-sample distance and enables to suppress long-range interaction between them even with a short EBD tip having high mechanical strength. After the tip fabrication, we coat the whole cantilever and tip surface with Si (30 nm) to prevent the generation of contamination. We perform atomic-scale AFM imaging and hydration force measurements at a mica-water interface using the fabricated tip and demonstrate its applicability to such an atomic-scale application. With a repeated use of the proposed process, we can reuse a small cantilever for atomic-scale measurements for several times. Therefore, the proposed method solves the two major problems and enables the practical use of a small cantilever in atomic-scale studies on various solid-liquid interfacial phenomena.

  5. Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy.

    PubMed

    Almonte, Lisa; Lopez-Elvira, Elena; Baró, Arturo M

    2014-09-15

    Chemical information can be obtained by using atomic force microscopy (AFM) and force spectroscopy (FS) with atomic or molecular resolution, even in liquid media. The aim of this paper is to demonstrate that single molecules of avidin and streptavidin anchored to a biotinylated bilayer can be differentiated by using AFM, even though AFM topographical images of the two proteins are remarkably alike. At physiological pH, the basic glycoprotein avidin is positively charged, whereas streptavidin is a neutral protein. This charge difference can be determined with AFM, which can probe electrostatic double-layer forces by using FS. The force curves, owing to the electrostatic interaction, show major differences when measured on top of each protein as well as on the lipid substrate. FS data show that the two proteins are negatively charged. Nevertheless, avidin and streptavidin can be clearly distinguished, thus demonstrating the sensitivity of AFM to detect small changes in the charge state of macromolecules.

  6. Low-Temperature Growth of Indium Oxide Thin Film by Plasma-Enhanced Atomic Layer Deposition Using Liquid Dimethyl(N-ethoxy-2,2-dimethylpropanamido)indium for High-Mobility Thin Film Transistor Application.

    PubMed

    Kim, Hyo Yeon; Jung, Eun Ae; Mun, Geumbi; Agbenyeke, Raphael E; Park, Bo Keun; Park, Jin-Seong; Son, Seung Uk; Jeon, Dong Ju; Park, Sang-Hee Ko; Chung, Taek-Mo; Han, Jeong Hwan

    2016-10-12

    Low-temperature growth of In2O3 films was demonstrated at 70-250 °C by plasma-enhanced atomic layer deposition (PEALD) using a newly synthesized liquid indium precursor, dimethyl(N-ethoxy-2,2-dimethylcarboxylicpropanamide)indium (Me2In(EDPA)), and O2 plasma for application to high-mobility thin film transistors. Self-limiting In2O3 PEALD growth was observed with a saturated growth rate of approximately 0.053 nm/cycle in an ALD temperature window of 90-180 °C. As-deposited In2O3 films showed negligible residual impurity, film densities as high as 6.64-7.16 g/cm(3), smooth surface morphology with a root-mean-square (RMS) roughness of approximately 0.2 nm, and semiconducting level carrier concentrations of 10(17)-10(18) cm(-3). Ultrathin In2O3 channel-based thin film transistors (TFTs) were fabricated in a coplanar bottom gate structure, and their electrical performances were evaluated. Because of the excellent quality of In2O3 films, superior electronic switching performances were achieved with high field effect mobilities of 28-30 and 16-19 cm(2)/V·s in the linear and saturation regimes, respectively. Furthermore, the fabricated TFTs showed excellent gate control characteristics in terms of subthreshold swing, hysteresis, and on/off current ratio. The low-temperature PEALD process for high-quality In2O3 films using the developed novel In precursor can be widely used in a variety of applications such as microelectronics, displays, energy devices, and sensors, especially at temperatures compatible with organic substrates.

  7. Observation of Individual Fluorine Atom from Highly Oriented Poly (tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.,; Paley, Mark S.

    1999-01-01

    Direct observation of the film thickness, molecular structure and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.70 A and 0.54 A respectively.

  8. Observation of Individual Fluorine Atoms from Highly Oriented Poly(Tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, J. A.

    2000-01-01

    Direct observation of the film thickness, molecular structure, and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction-transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.7 and 0.54 A respectively.

  9. Observation of Individual Fluorine Atom from Highly Oriented Poly (tetrafluoroethylene) Films by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Lee, Jonathan A.,; Paley, Mark S.

    1999-01-01

    Direct observation of the film thickness, molecular structure and individual fluorine atoms from highly oriented poly(tetrafluoroethylene) (PTFE) films were achieved using atomic force microscopy (AFM). A thin PTFE film is mechanically deposited onto a smooth glass substrate at specific temperatures by a friction transfer technique. Atomic resolution images of these films show that the chain-like helical structures of the PTFE macromolecules are aligned parallel to each other with an intermolecular spacing of 5.72 A, and individual fluorine atoms are clearly observed along these twisted molecular chains with an interatomic spacing of 2.75 A. Furthermore, the first direct AFM measurements for the radius of the fluorine-helix, and of the carbon-helix in sub-angstrom scale are reported as 1.70 A and 0.54 A respectively.

  10. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-06-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials.

  11. Atomic species identification at the (101) anatase surface by simultaneous scanning tunnelling and atomic force microscopy

    PubMed Central

    Stetsovych, Oleksandr; Todorović, Milica; Shimizu, Tomoko K.; Moreno, César; Ryan, James William; León, Carmen Pérez; Sagisaka, Keisuke; Palomares, Emilio; Matolín, Vladimír; Fujita, Daisuke; Perez, Ruben; Custance, Oscar

    2015-01-01

    Anatase is a pivotal material in devices for energy-harvesting applications and catalysis. Methods for the accurate characterization of this reducible oxide at the atomic scale are critical in the exploration of outstanding properties for technological developments. Here we combine atomic force microscopy (AFM) and scanning tunnelling microscopy (STM), supported by first-principles calculations, for the simultaneous imaging and unambiguous identification of atomic species at the (101) anatase surface. We demonstrate that dynamic AFM-STM operation allows atomic resolution imaging within the material's band gap. Based on key distinguishing features extracted from calculations and experiments, we identify candidates for the most common surface defects. Our results pave the way for the understanding of surface processes, like adsorption of metal dopants and photoactive molecules, that are fundamental for the catalytic and photovoltaic applications of anatase, and demonstrate the potential of dynamic AFM-STM for the characterization of wide band gap materials. PMID:26118408

  12. Adhesion Forces between Lewis(X) Determinant Antigens as Measured by Atomic Force Microscopy.

    PubMed

    Tromas, C; Rojo, J; de la Fuente, J M; Barrientos, A G; García, R; Penadés, S

    2001-01-01

    The adhesion forces between individual molecules of Lewis(X) trisaccharide antigen (Le(X) ) have been measured in water and in calcium solution by using atomic force microscopy (AFM, see graph). These results demonstrate the self-recognition capability of this antigen, and reinforce the hypothesis that carbohydrate-carbohydrate interaction could be considered as the first step in the cell-adhesion process in nature. Copyright © 2001 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  13. Cooperatively enhanced dipole forces from artificial atoms in trapped nanodiamonds

    NASA Astrophysics Data System (ADS)

    Juan, Mathieu L.; Bradac, Carlo; Besga, Benjamin; Johnsson, Mattias; Brennen, Gavin; Molina-Terriza, Gabriel; Volz, Thomas

    2017-03-01

    Optical trapping is a powerful tool to manipulate small particles, from micrometre-size beads in liquid environments to single atoms in vacuum. The trapping mechanism relies on the interaction between a dipole and the electric field of laser light. In atom trapping, the dominant contribution to the associated force typically comes from the allowed optical transition closest to the laser wavelength, whereas for mesoscopic particles it is given by the polarizability of the bulk material. Here, we show that for nanoscale diamond crystals containing a large number of artificial atoms, nitrogen-vacancy colour centres, the contributions from both the nanodiamond and the colour centres to the optical trapping strength can be simultaneously observed in a noisy liquid environment. For wavelengths around the zero-phonon line transition of the colour centres, we observe a 10% increase of overall trapping strength. The magnitude of this effect suggests that due to the large density of centres, cooperative effects between the artificial atoms contribute to the observed modification of the trapping strength. Our approach may enable the study of cooperativity in nanoscale solid-state systems and the use of atomic physics techniques in the field of nano-manipulation.

  14. Atomically resolved scanning force studies of vicinal Si(111)

    NASA Astrophysics Data System (ADS)

    Pérez León, Carmen; Drees, Holger; Wippermann, Stefan Martin; Marz, Michael; Hoffmann-Vogel, Regina

    2017-06-01

    Well-ordered stepped semiconductor surfaces attract intense attention owing to the regular arrangements of their atomic steps that makes them perfect templates for the growth of one-dimensional systems, e.g., nanowires. Here, we report on the atomic structure of the vicinal Si (111 ) surface with 10∘ miscut investigated by a joint frequency-modulation scanning force microscopy (FM-SFM) and ab initio approach. This popular stepped surface contains 7 ×7 -reconstructed terraces oriented along the Si (111 ) direction, separated by a stepped region. Recently, the atomic structure of this triple step based on scanning tunneling microscopy (STM) images has been subject of debate. Unlike STM, SFM atomic resolution capability arises from chemical bonding of the tip apex with the surface atoms. Thus, for surfaces with a corrugated density of states such as semiconductors, SFM provides complementary information to STM and partially removes the dependency of the topography on the electronic structure. Our FM-SFM images with unprecedented spatial resolution on steps coincide with the model based on a (7 7 10 ) orientation of the surface and reveal structural details of this surface. Two different FM-SFM contrasts together with density functional theory calculations explain the presence of defects, buckling, and filling asymmetries on the surface. Our results evidence the important role of charge transfers between adatoms, restatoms, and dimers in the stabilisation of the structure of the vicinal surface.

  15. Atomic force microscopy force mapping in the study of supported lipid bilayers.

    PubMed

    Li, James K; Sullan, Ruby May A; Zou, Shan

    2011-02-15

    Investigating the structural and mechanical properties of lipid bilayer membrane systems is vital in elucidating their biological function. One route to directly correlate the morphology of phase-segregated membranes with their indentation and rupture mechanics is the collection of atomic force microscopy (AFM) force maps. These force maps, while containing rich mechanical information, require lengthy processing time due to the large number of force curves needed to attain a high spatial resolution. A force curve analysis toolset was created to perform data extraction, calculation and reporting specifically in studying lipid membrane morphology and mechanical stability. The procedure was automated to allow for high-throughput processing of force maps with greatly reduced processing time. The resulting program was successfully used in systematically analyzing a number of supported lipid membrane systems in the investigation of their structure and nanomechanics.

  16. Interpreting atomic force microscopy measurements of hydrodynamic and surface forces with nonlinear parametric estimation.

    PubMed

    Cui, Song; Manica, Rogerio; Tabor, Rico F; Chan, Derek Y C

    2012-10-01

    A nonlinear parameter estimation method has been developed to extract the separation-dependent surface force and cantilever spring constant from atomic force microscope data taken at different speeds for the interaction between a silica colloidal probe and plate in aqueous solution. The distinguishing feature of this approach is that it exploits information from the velocity dependence of the force-displacement data due to hydrodynamic interaction to provide an unbiased estimate of the functional form of the separation-dependent surface force. An assumed function for the surface force with unknown parameters is not required. In addition, the analysis also yields a consistent estimate of the in situ cantilever spring constant. In combination with data from static force measurements, this approach can further be used to quantify the extent of hydrodynamic slip.

  17. Low Temperature Distillation for Desalination

    NASA Astrophysics Data System (ADS)

    Schultz, William

    2013-11-01

    We examine a unique configuration that combines the evaporator and condenser in a low temperature distillation process. The low temperature (pressure) container is designed to use waste heat from a power plant as the hot source and a water reservoir as the cold source. Fresh and saline streams of droplets in close proximity create interesting hydrodynamic challenges for the directional stability of the droplets.

  18. Dielectric constants by multifrequency non-contact atomic force microscopy.

    PubMed

    Kumar, Bharat; Bonvallet, Joseph C; Crittenden, Scott R

    2012-01-20

    We present a method to obtain capacitive forces and dielectric constants of ultra-thin films on metallic substrates using multifrequency non-contact atomic force microscopy with amplitude feedback in air. Capacitive forces are measured via cantilever oscillations induced at the second bending mode and dielectric constants are calculated by fitting an analytic expression for the capacitance (Casuso et al 2007 Appl. Phys. Lett. 91 063111) to the experimental data. Dielectric constants for self-assembled monolayers of thiol molecules on gold (2.0±0.1) and sputtered SiO2 (3.6±0.07) were obtained under dry conditions, in good agreement with previous measurements. The high Q-factor of the second bending mode of the cantilever increases the accuracy of the capacitive measurements while the low applied potentials minimize the likelihood of variation of the dielectric constants at high field strength and of damage from dielectric breakdown of air.

  19. Noninvasive determination of optical lever sensitivity in atomic force microscopy

    SciTech Connect

    Higgins, M.J.; Proksch, R.; Sader, J.E.; Polcik, M.; Mc Endoo, S.; Cleveland, J.P.; Jarvis, S.P.

    2006-01-15

    Atomic force microscopes typically require knowledge of the cantilever spring constant and optical lever sensitivity in order to accurately determine the force from the cantilever deflection. In this study, we investigate a technique to calibrate the optical lever sensitivity of rectangular cantilevers that does not require contact to be made with a surface. This noncontact approach utilizes the method of Sader et al. [Rev. Sci. Instrum. 70, 3967 (1999)] to calibrate the spring constant of the cantilever in combination with the equipartition theorem [J. L. Hutter and J. Bechhoefer, Rev. Sci. Instrum. 64, 1868 (1993)] to determine the optical lever sensitivity. A comparison is presented between sensitivity values obtained from conventional static mode force curves and those derived using this noncontact approach for a range of different cantilevers in air and liquid. These measurements indicate that the method offers a quick, alternative approach for the calibration of the optical lever sensitivity.

  20. Subatomic-scale force vector mapping above a Ge(001) dimer using bimodal atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Naitoh, Yoshitaka; Turanský, Robert; Brndiar, Ján; Li, Yan Jun; Štich, Ivan; Sugawara, Yasuhiro

    2017-07-01

    Probing physical quantities on the nanoscale that have directionality, such as magnetic moments, electric dipoles, or the force response of a surface, is essential for characterizing functionalized materials for nanotechnological device applications. Currently, such physical quantities are usually experimentally obtained as scalars. To investigate the physical properties of a surface on the nanoscale in depth, these properties must be measured as vectors. Here we demonstrate a three-force-component detection method, based on multi-frequency atomic force microscopy on the subatomic scale and apply it to a Ge(001)-c(4 × 2) surface. We probed the surface-normal and surface-parallel force components above the surface and their direction-dependent anisotropy and expressed them as a three-dimensional force vector distribution. Access to the atomic-scale force distribution on the surface will enable better understanding of nanoscale surface morphologies, chemical composition and reactions, probing nanostructures via atomic or molecular manipulation, and provide insights into the behaviour of nano-machines on substrates.

  1. Fast drying of biocompatible polymer films loaded with poorly water-soluble drug nano-particles via low temperature forced convection.

    PubMed

    Susarla, Ramana; Sievens-Figueroa, Lucas; Bhakay, Anagha; Shen, Yueyang; Jerez-Rozo, Jackeline I; Engen, William; Khusid, Boris; Bilgili, Ecevit; Romañach, Rodolfo J; Morris, Kenneth R; Michniak-Kohn, Bozena; Davé, Rajesh N

    2013-10-15

    Fast drying of nano-drug particle laden strip-films formed using water-soluble biocompatible polymers via forced convection is investigated in order to form films having uniform drug distribution and fast dissolution. Films were produced by casting and drying a mixture of poorly water soluble griseofulvin (GF) nanosuspensions produced via media milling with aqueous hydroxypropyl methylcellulose (HPMC E15LV) solutions containing glycerin as a plasticizer. The effects of convective drying parameters, temperature and air velocity, and film-precursor viscosity on film properties were investigated. Two major drying regimes, a constant rate period as a function of the drying conditions, followed by a single slower falling rate period, were observed. Films dried in an hour or less without any irreversible aggregation of GF nanoparticles with low residual water content. Near-infrared chemical imaging (NIR-CI) and the content uniformity analysis indicated a better drug particle distribution when higher viscosity film-precursors were used. Powder X-ray diffraction showed that the GF in the films retained crystallinity and the polymorphic form. USP IV dissolution tests showed immediate release (~20 min) of GF. Overall, the films fabricated from polymer-based suspensions at higher viscosity dried at different conditions exhibited similar mechanical properties, improved drug content uniformity, and achieved fast drug dissolution. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces.

    PubMed

    Sweetman, Adam; Stannard, Andrew

    2014-01-01

    In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired 'short-range' force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip-sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the 'on-minus-off' method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method.

  3. Uncertainties in forces extracted from non-contact atomic force microscopy measurements by fitting of long-range background forces

    PubMed Central

    Stannard, Andrew

    2014-01-01

    Summary In principle, non-contact atomic force microscopy (NC-AFM) now readily allows for the measurement of forces with sub-nanonewton precision on the atomic scale. In practice, however, the extraction of the often desired ‘short-range’ force from the experimental observable (frequency shift) is often far from trivial. In most cases there is a significant contribution to the total tip–sample force due to non-site-specific van der Waals and electrostatic forces. Typically, the contribution from these forces must be removed before the results of the experiment can be successfully interpreted, often by comparison to density functional theory calculations. In this paper we compare the ‘on-minus-off’ method for extracting site-specific forces to a commonly used extrapolation method modelling the long-range forces using a simple power law. By examining the behaviour of the fitting method in the case of two radically different interaction potentials we show that significant uncertainties in the final extracted forces may result from use of the extrapolation method. PMID:24778964

  4. Effects of nonlinear forces on dynamic mode atomic force microscopy and spectroscopy.

    PubMed

    Das, Soma; Sreeram, P A; Raychaudhuri, A K

    2007-06-01

    In this paper, we describe the effects of nonlinear tip-sample forces on dynamic mode atomic force microscopy and spectroscopy. The jumps and hysteresis observed in the vibration amplitude (A) versus tip-sample distance (h) curves have been traced to bistability in the resonance curve. A numerical analysis of the basic dynamic equation was used to explain the hysteresis in the experimental curve. It has been found that the location of the hysteresis in the A-h curve depends on the frequency of the forced oscillation relative to the natural frequency of the cantilever.

  5. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  6. Atomic forces between noble gas atoms, alkali ions, and halogen ions for surface interactions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Outlaw, R. A.; Heinbockel, J. H.

    1988-01-01

    The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base developed from analysis of the two-body potential data, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas surfaces and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  7. Method for characterizing nanoscale wear of atomic force microscope tips.

    PubMed

    Liu, Jingjing; Notbohm, Jacob K; Carpick, Robert W; Turner, Kevin T

    2010-07-27

    Atomic force microscopy (AFM) is a powerful tool for studying tribology (adhesion, friction, and lubrication) at the nanoscale and is emerging as a critical tool for nanomanufacturing. However, nanoscale wear is a key limitation of conventional AFM probes that are made of silicon and silicon nitride (SiNx). Here we present a method for systematically quantifying tip wear, which consists of sequential contact-mode AFM scans on ultrananocrystalline diamond surfaces with intermittent measurements of the tip properties using blind reconstruction, adhesion force measurements, and transmission electron microscopy (TEM). We demonstrate direct measurement of volume loss over the wear test and agreement between blind reconstruction and TEM imaging. The geometries of various types of tips were monitored over a scanning distance of approximately 100 mm. The results show multiple failure mechanisms for different materials, including nanoscale fracture of a monolithic Si tip upon initial engagement with the surface, film failure of a SiNx-coated Si tip, and gradual, progressive wear of monolithic SiNx tips consistent with atom-by-atom attrition. Overall, the method provides a quantitative and systematic process for examining tip degradation and nanoscale wear, and the experimental results illustrate the multiple mechanisms that may lead to tip failure.

  8. Discriminating short-range from van der Waals forces using total force data in noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kuhn, Stefan; Rahe, Philipp

    2014-06-01

    Noncontact atomic force microscopy (NC-AFM) features the measurement of forces with highest spatial resolution and sensitivity, resolving forces of the order of pico-Newtons with submolecular resolution. However, the measured total force is a mixture composed of various interactions. While some interactions such as electrostatic or magnetic forces can be excluded by a careful design of the experiment, the subtraction of van der Waals forces, which mainly originate from London dispersion interactions between the macroscopic tip shank and the bulk sample, remains a challenge. We present the determination of the inherently present van der Waals forces in total interaction force data from fitting a suitable model, allowing for extraction of the short-range force component. We compare the applicability of several van der Waals models based on experimental interaction data from the calcite(101¯4) surface. The feasibility to fit these models to experimental data is critically discussed. We furthermore introduce criteria to assess the transition point from pure long-range interaction to mixed short- and long-range forces based on the variance of lateral and vertical force data. This determination allows us to extract the short-range interaction forces, which remained a challenge so far in NC-AFM experiments.

  9. Imaging stability in force-feedback high-speed atomic force microscopy.

    PubMed

    Kim, Byung I; Boehm, Ryan D

    2013-02-01

    We studied the stability of force-feedback high-speed atomic force microscopy (HSAFM) by imaging soft, hard, and biological sample surfaces at various applied forces. The HSAFM images showed sudden topographic variations of streaky fringes with a negative applied force when collected on a soft hydrocarbon film grown on a grating sample, whereas they showed stable topographic features with positive applied forces. The instability of HSAFM images with the negative applied force was explained by the transition between contact and noncontact regimes in the force-distance curve. When the grating surface was cleaned, and thus hydrophilic by removing the hydrocarbon film, enhanced imaging stability was observed at both positive and negative applied forces. The higher adhesive interaction between the tip and the surface explains the improved imaging stability. The effects of imaging rate on the imaging stability were tested on an even softer adhesive Escherichia coli biofilm deposited onto the grating structure. The biofilm and planktonic cell structures in HSAFM images were reproducible within the force deviation less than ∼0.5 nN at the imaging rate up to 0.2s per frame, suggesting that the force-feedback HSAFM was stable for various imaging speeds in imaging softer adhesive biological samples.

  10. Preparation of DOPC and DPPC Supported Planar Lipid Bilayers for Atomic Force Microscopy and Atomic Force Spectroscopy

    PubMed Central

    Attwood, Simon J.; Choi, Youngjik; Leonenko, Zoya

    2013-01-01

    Cell membranes are typically very complex, consisting of a multitude of different lipids and proteins. Supported lipid bilayers are widely used as model systems to study biological membranes. Atomic force microscopy and force spectroscopy techniques are nanoscale methods that are successfully used to study supported lipid bilayers. These methods, especially force spectroscopy, require the reliable preparation of supported lipid bilayers with extended coverage. The unreliability and a lack of a complete understanding of the vesicle fusion process though have held back progress in this promising field. We document here robust protocols for the formation of fluid phase DOPC and gel phase DPPC bilayers on mica. Insights into the most crucial experimental parameters and a comparison between DOPC and DPPC preparation are presented. Finally, we demonstrate force spectroscopy measurements on DOPC surfaces and measure rupture forces and bilayer depths that agree well with X-ray diffraction data. We also believe our approach to decomposing the force-distance curves into depth sub-components provides a more reliable method for characterising the depth of fluid phase lipid bilayers, particularly in comparison with typical image analysis approaches. PMID:23389046

  11. Characterization of new drug delivery nanosystems using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Spyratou, Ellas; Mourelatou, Elena A.; Demetzos, C.; Makropoulou, Mersini; Serafetinides, A. A.

    2015-01-01

    Liposomes are the most attractive lipid vesicles for targeted drug delivery in nanomedicine, behaving also as cell models in biophotonics research. The characterization of the micro-mechanical properties of drug carriers is an important issue and many analytical techniques are employed, as, for example, optical tweezers and atomic force microscopy. In this work, polyol hyperbranched polymers (HBPs) have been employed along with liposomes for the preparation of new chimeric advanced drug delivery nanosystems (Chi-aDDnSs). Aliphatic polyester HBPs with three different pseudogenerations G2, G3 and G4 with 16, 32, and 64 peripheral hydroxyl groups, respectively, have been incorporated in liposomal formulation. The atomic force microscopy (AFM) technique was used for the comparative study of the morphology and the mechanical properties of Chi-aDDnSs and conventional DDnS. The effects of both the HBPs architecture and the polyesters pseudogeneration number in the stability and the stiffness of chi-aDDnSs were examined. From the force-distance curves of AFM spectroscopy, the Young's modulus was calculated.

  12. Mechanical unfolding of titin domains at low temperatures

    NASA Astrophysics Data System (ADS)

    Liu, Ensheng; Yang, Guoliang

    2002-03-01

    Titin is a large protein composed of several hundred of globular domains and a number of still unknown structures, with total molecular weight of more than 3 MDa. Titin spans half the sarcomere in striated muscle, and plays critical roles to the proper function of the muscle. Recent studies using single-molecule techniques have revealed that the force-induced changes in the titin domains are intimately related to the mechanisms of titin’s biological functions. To further investigate the behaviors of titin under the influence of an external force, we have investigated the mechanical unfolding of individual titin domains under various temperatures using the atomic force microscopy. The sample used was a polymer composed of 12 identical titin I27 domains, which was synthesized by protein engineering (a gift from M. Carrion and J.Fernandez, Mayo Foundation). The force-induced domain unfolding has been characterized in the temperature range of 5.5 ºC to 30 ºC. From the temperature dependence of the unfolding forces and the unfolding/refolding rates, the force-induced unfolding/refolding pathways of titin domains can be probed in more details. The results can also provide information on the molecular basis of muscle elasticity at low temperatures.

  13. Molecular dynamics simulation of amplitude modulation atomic force microscopy.

    PubMed

    Hu, Xiaoli; Egberts, Philip; Dong, Yalin; Martini, Ashlie

    2015-06-12

    Molecular dynamics (MD) simulations were used to model amplitude modulation atomic force microscopy (AM-AFM). In this novel simulation, the model AFM tip responds to both tip-substrate interactions and to a sinusoidal excitation signal. The amplitude and phase shift of the tip oscillation observed in the simulation and their variation with tip-sample distance were found to be consistent with previously reported trends from experiments and theory. These simulation results were also fit to an expression enabling estimation of the energy dissipation, which was found to be smaller than that in a corresponding experiment. The difference was analyzed in terms of the effects of tip size and substrate thickness. Development of this model is the first step toward using MD to gain insight into the atomic-scale phenomena that occur during an AM-AFM measurement.

  14. Application of atomic force microscopy in bacterial research.

    PubMed

    Dorobantu, Loredana S; Gray, Murray R

    2010-01-01

    The atomic force microscope (AFM) has evolved from an imaging device into a multifunctional and powerful toolkit for probing the nanostructures and surface components on the exterior of bacterial cells. Currently, the area of application spans a broad range of interesting fields from materials sciences, in which AFM has been used to deposit patterns of thiol-functionalized molecules onto gold substrates, to biological sciences, in which AFM has been employed to study the undesirable bacterial adhesion to implants and catheters or the essential bacterial adhesion to contaminated soil or aquifers. The unique attribute of AFM is the ability to image bacterial surface features, to measure interaction forces of functionalized probes with these features, and to manipulate these features, for example, by measuring elongation forces under physiological conditions and at high lateral resolution (<1 A). The first imaging studies showed the morphology of various biomolecules followed by rapid progress in visualizing whole bacterial cells. The AFM technique gradually developed into a lab-on-a-tip allowing more quantitative analysis of bacterial samples in aqueous liquids and non-contact modes. Recently, force spectroscopy modes, such as chemical force microscopy, single-cell force spectroscopy, and single-molecule force spectroscopy, have been used to map the spatial arrangement of chemical groups and electrical charges on bacterial surfaces, to measure cell-cell interactions, and to stretch biomolecules. In this review, we present the fascinating options offered by the rapid advances in AFM with emphasizes on bacterial research and provide a background for the exciting research articles to follow. 2010 Wiley Periodicals, Inc.

  15. Atomic-scale sharpening of silicon tips in noncontact atomic force microscopy.

    PubMed

    Caciuc, V; Hölscher, H; Blügel, S; Fuchs, H

    2006-01-13

    The atomic-scale stability of clean silicon tips used in noncontact atomic force microscopy (NC-AFM) is simulated by ab initio calculations based on density functional theory. The tip structures are modeled by silicon clusters with and termination. For the often assumed Si(111)-type tip we observe the sharpening of the initially blunt tip via short-range chemical forces during the first approach and retraction cycle. The structural changes corresponding to this intrinsic process are irreversible and lead to stable NC-AFM imaging conditions. In opposition to the picture used in literature, the Si(001)-type tip does not exhibit the so-called "two-dangling bond" feature as a bulklike termination suggests.

  16. Applications of Atomic Force Microscopy in Macromolecular Crystal Growth

    NASA Astrophysics Data System (ADS)

    McPherson, Alexander

    1997-03-01

    A series of protein and virus crystals was investigated, in situ, using atomic force microscopy. Most of the crystals grew principally on steps generated by two dimensional nucleation on surfaces, though some, such as canavalin, grew by development of spiral dislocations. Apoferritin grew by a rarely encountered mechanism, normal growth, usually associated only with melt or vapor phase crystallization. Cubic crystals of satellite tobacco mosaic virus (STMV) grew, at moderate to high levels of supersaturation, by the direct addition of three- dimensional nuclei followed by their rapid normal growth and lateral expansion, a mechanism not previously described to promote controlled and reproducible crystal growth from solutions. Biological macromolecules apparently utilize a more diverse range of growth mechanisms in their crystallization than any previously studied material. High resolution AFM analyses have allowed us to record the first, real time, in situ atomic force microscope images, on the nanometer scale, of the incorporation of molecules into the growth steps of crystals grown from solution. The molecular structure of the growth step edge and surface layer on the (101) faces of tetragonal thaumatin crystals were resolved. It was shown that, although the growth step height corresponds to the unit cell containing eight thaumatin molecules, its advancement occurs by the addition of individual protein molecules rather than molecular clusters. Models for the packing of molecules on the surface layer, and of the structure of the step edge were developed which agree well with experimental data. Again, using high resolution, in situ atomic force microscopy, the initial stages of the formation and development of two- and three-dimensional nuclei on the surface of protein crystals were recorded. From these we conclude that non crystalline aggregates, with short range order, present both on the crystal-solution interface, and in the volume of the solution, give rise to

  17. Digital force-feedback for protein unfolding experiments using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Bippes, Christian A.; Janovjak, Harald; Kedrov, Alexej; Muller, Daniel J.

    2007-01-01

    Since its invention in the 1990s single-molecule force spectroscopy has been increasingly applied to study protein (un-)folding, cell adhesion, and ligand-receptor interactions. In most force spectroscopy studies, the cantilever of an atomic force microscope (AFM) is separated from a surface at a constant velocity, thus applying an increasing force to folded bio-molecules or bio-molecular bonds. Recently, Fernandez and co-workers introduced the so-called force-clamp technique. Single proteins were subjected to a defined constant force allowing their life times and life time distributions to be directly measured. Up to now, the force-clamping was performed by analogue PID controllers, which require complex additional hardware and might make it difficult to combine the force-feedback with other modes such as constant velocity. These points may be limiting the applicability and versatility of this technique. Here we present a simple, fast, and all-digital (software-based) PID controller that yields response times of a few milliseconds in combination with a commercial AFM. We demonstrate the performance of our feedback loop by force-clamp unfolding of single Ig27 domains of titin and the membrane proteins bacteriorhodopsin (BR) and the sodium/proton antiporter NhaA.

  18. Measuring Force-Induced Dissociation Kinetics of Protein Complexes Using Single-Molecule Atomic Force Microscopy.

    PubMed

    Manibog, K; Yen, C F; Sivasankar, S

    2017-01-01

    Proteins respond to mechanical force by undergoing conformational changes and altering the kinetics of their interactions. However, the biophysical relationship between mechanical force and the lifetime of protein complexes is not completely understood. In this chapter, we provide a step-by-step tutorial on characterizing the force-dependent regulation of protein interactions using in vitro and in vivo single-molecule force clamp measurements with an atomic force microscope (AFM). While we focus on the force-induced dissociation of E-cadherins, a critical cell-cell adhesion protein, the approaches described here can be readily adapted to study other protein complexes. We begin this chapter by providing a brief overview of theoretical models that describe force-dependent kinetics of biomolecular interactions. Next, we present step-by-step methods for measuring the response of single receptor-ligand bonds to tensile force in vitro. Finally, we describe methods for quantifying the mechanical response of single protein complexes on the surface of living cells. We describe general protocols for conducting such measurements, including sample preparation, AFM force clamp measurements, and data analysis. We also highlight critical limitations in current technologies and discuss solutions to these challenges. © 2017 Elsevier Inc. All rights reserved.

  19. CO tip functionalization in subatomic resolution atomic force microscopy

    SciTech Connect

    Kim, Minjung; Chelikowsky, James R.

    2015-10-19

    Noncontact atomic force microscopy (nc-AFM) employing a CO-functionalized tip displays dramatically enhanced resolution wherein covalent bonds of polycyclic aromatic hydrocarbon can be imaged. Employing real-space pseudopotential first-principles calculations, we examine the role of CO in functionalizing the nc-AFM tip. Our calculations allow us to simulate full AFM images and ascertain the enhancement mechanism of the CO molecule. We consider two approaches: one with an explicit inclusion of the CO molecule and one without. By comparing our simulations to existing experimental images, we ascribe the enhanced resolution of the CO functionalized tip to the special orbital characteristics of the CO molecule.

  20. Visualizing water molecule distribution by atomic force microscopy.

    PubMed

    Kimura, Kenjiro; Ido, Shinichiro; Oyabu, Noriaki; Kobayashi, Kei; Hirata, Yoshiki; Imai, Takashi; Yamada, Hirofumi

    2010-05-21

    Hydration structures at biomolecular surfaces are essential for understanding the mechanisms of the various biofunctions and stability of biomolecules. Here, we demonstrate the measurement of local hydration structures using an atomic force microscopy system equipped with a low-noise deflection sensor. We applied this method to the analysis of the muscovite mica/water interface and succeeded in visualizing a hydration structure that is site-specific on a crystal. Furthermore, at the biomolecule/buffer solution interface, we found surface hydration layers that are more packed than those at the muscovite mica/water interface.

  1. Thermal calibration of photodiode sensitivity for atomic force microscopy

    SciTech Connect

    Attard, Phil; Pettersson, Torbjoern; Rutland, Mark W.

    2006-11-15

    The photodiode sensitivity in the atomic force microscope is calibrated by relating the voltage noise to the thermal fluctuations of the cantilever angle. The method accounts for the ratio of the thermal fluctuations measured in the fundamental vibration mode to the total, and also for the tilt and extended tip of the cantilever. The method is noncontact and is suitable for soft or deformable surfaces where the constant compliance method cannot be used. For hard surfaces, the method can also be used to calibrate the cantilever spring constant.

  2. Atomic force microscopy of lead iodide crystal surfaces

    NASA Astrophysics Data System (ADS)

    George, M. A.; Azoulay, M.; Jayatirtha, H. N.; Biao, Y.; Burger, A.; Collins, W. E.; Silberman, E.

    1994-03-01

    Atomic force microscopy (AFM) was used to characterize the surface of lead iodide crystals. The high vapor pressure of lead iodide prohibits the use of traditional high resolution surface study techniques that require high vacuum conditions. AFM was used to image numerous insulating surface in various ambients, with very little sample preparation techniques needed. Freshly cleaved and modified surfaces, including, chemical and vacuum etched, and air aged surfaces, were examined. Both intrinsic and induced defects were imaged with high resolution. The results were compared to a similar AFM study of mercuric iodide surfaces and it was found that, at ambient conditions, lead iodide is significantly more stable than mercuric iodide.

  3. Electrochemical atomic force microscopy: In situ monitoring of electrochemical processes

    NASA Astrophysics Data System (ADS)

    Reggente, Melania; Passeri, Daniele; Rossi, Marco; Tamburri, Emanuela; Terranova, Maria Letizia

    2017-08-01

    The in-situ electrodeposition of polyaniline (PANI), one of the most attractive conducting polymers (CP), has been monitored performing electrochemical atomic force microscopy (EC-AFM) experiments. The electropolymerization of PANI on a Pt working electrode has been observed performing cyclic voltammetry experiments and controlling the evolution of current flowing through the electrode surface, together with a standard AFM image. The working principle and the potentialities of this emerging technique are briefly reviewed and factors limiting the studying of the in-situ electrosynthesis of organic compounds discussed.

  4. Chromatin Imaging with Time-Lapse Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.

    2016-01-01

    Time-lapse atomic force microscopy (AFM) is widely used for direct visualization of the nanoscale dynamics of various biological systems. The advent of high-speed AFM instrumentation made it possible to image the dynamics of proteins and protein-DNA complexes within millisecond time range. This chapter describes protocols for studies of structure and dynamics of nucleosomes with time-lapse AFM including the high-speed AFM instrument. The necessary specifics for the preparation of chromatin samples for imaging with AFM including the protocols for the surface preparation are provided. PMID:25827873

  5. Magnetostriction-driven cantilevers for dynamic atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Penedo, M.; Fernández-Martínez, I.; Costa-Krämer, J. L.; Luna, M.; Briones, F.

    2009-10-01

    An actuation mode is presented to drive the mechanical oscillation of cantilevers for dynamic atomic force microscopy. The method is based on direct mechanical excitation of the cantilevers coated with amorphous Fe-B-N thin films, by means of the film magnetostriction, i.e., the dimensional change in the film when magnetized. These amorphous magnetostrictive Fe-B-N thin films exhibit soft magnetic properties, excellent corrosion resistance in liquid environments, nearly zero accumulated stress when properly deposited, and good chemical stability. We present low noise and high resolution topographic images acquired in liquid environment to demonstrate the method capability.

  6. Nanoindentation of Pseudomonas aeruginosa bacterial biofilm using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Baniasadi, Mahmoud; Xu, Zhe; Gandee, Leah; Du, Yingjie; Lu, Hongbing; Zimmern, Philippe; Minary-Jolandan, Majid

    2014-12-01

    Bacterial biofilms are a source of many chronic infections. Biofilms and their inherent resistance to antibiotics are attributable to a range of health issues including affecting prosthetic implants, hospital-acquired infections, and wound infection. Mechanical properties of biofilm, in particular, at micro- and nano-scales, are governed by microstructures and porosity of the biofilm, which in turn may contribute to their inherent antibiotic resistance. We utilize atomic force microscopy (AFM)-based nanoindentation and finite element simulation to investigate the nanoscale mechanical properties of Pseudomonas aeruginosa bacterial biofilm. This biofilm was derived from human samples and represents a medically relevant model.

  7. Understanding the plasmonics of nanostructured atomic force microscopy tips

    NASA Astrophysics Data System (ADS)

    Sanders, A.; Bowman, R. W.; Zhang, L.; Turek, V.; Sigle, D. O.; Lombardi, A.; Weller, L.; Baumberg, J. J.

    2016-10-01

    Structured metallic tips are increasingly important for optical spectroscopies such as tip-enhanced Raman spectroscopy, with plasmonic resonances frequently cited as a mechanism for electric field enhancement. We probe the local optical response of sharp and spherical-tipped atomic force microscopy (AFM) tips using a scanning hyperspectral imaging technique to identify the plasmonic behaviour. Localised surface plasmon resonances which radiatively couple with far-field light are found only for spherical AFM tips, with little response for sharp AFM tips, in agreement with numerical simulations of the near-field response. The precise tip geometry is thus crucial for plasmon-enhanced spectroscopies, and the typical sharp cones are not preferred.

  8. Fountain pen nanochemistry: Atomic force control of chrome etching

    NASA Astrophysics Data System (ADS)

    Lewis, Aaron; Kheifetz, Yuri; Shambrodt, Efim; Radko, Anna; Khatchatryan, Edward; Sukenik, Chaim

    1999-10-01

    In this report we demonstrate a general method for affecting chemical reactions with a high degree of spatial control that has potentially wide applicability in science and technology. Our technique is based on complexing the delivery of liquid or gaseous materials through a cantilevered micropipette with an atomic force microscope that is totally integrated into a conventional optical microscope. Controlled etching of chrome is demonstrated without detectable effects on the underlying glass substrate. This simple combination allows for the nanometric spatial control of the whole world of chemical reactions in defined regions of surfaces. Applications of the technique in critical areas such as mask repair are likely.

  9. Atomic force microscopy of electrospun organic-inorganic lipid nanofibers

    NASA Astrophysics Data System (ADS)

    Zhang, Jinhong; Cohn, Celine; Qiu, Weiguo; Zha, Zhengbao; Dai, Zhifei; Wu, Xiaoyi

    2011-09-01

    An organic-inorganic hybridization strategy has been proposed to synthesize polymerizable lipid-based materials for the creation of highly stable lipid-mimetic nanostructures. We employ atomic force microscopy (AFM) to analyze the surface morphology and mechanical property of electrospun cholesteryl-succinyl silane (CSS) nanofibers. The AFM nanoindentation of the CSS nanofibers reveals elastic moduli of 55.3 ± 27.6 to 70.8 ± 35 MPa, which is significantly higher than the moduli of natural phospholipids and cholesterols. The study shows that organic-inorganic hybridization is useful in the design of highly stable lipid-based materials.

  10. Atomic force microscopy combined with optical microscopy for cells investigation.

    PubMed

    Cascione, Mariafrancesca; de Matteis, Valeria; Rinaldi, Rosaria; Leporatti, Stefano

    2017-01-01

    This review reports on the combined use of the atomic force microscopy (AFM) and several type of optical/fluorescence/laser scanning microscopy for investigating cells. It is shown that the hybrid systems of AFM with optical-derived microscopies enable to study in detail cell surface properties (such as topography), their mechanical properties (e.g., Young's modulus) mechanotransduction phenomena and allow to gain insight into biological-related pathways and mechanisms in the complex nanoworld of cells. Microsc. Res. Tech. 80:109-123, 2017. © 2016 Wiley Periodicals, Inc.

  11. Atomic force microscopy probing in the measurement of cell mechanics

    PubMed Central

    Kirmizis, Dimitrios; Logothetidis, Stergios

    2010-01-01

    Atomic force microscope (AFM) has been used incrementally over the last decade in cell biology. Beyond its usefulness in high resolution imaging, AFM also has unique capabilities for probing the viscoelastic properties of living cells in culture and, even more, mapping the spatial distribution of cell mechanical properties, providing thus an indirect indicator of the structure and function of the underlying cytoskeleton and cell organelles. AFM measurements have boosted our understanding of cell mechanics in normal and diseased states and provide future potential in the study of disease pathophysiology and in the establishment of novel diagnostic and treatment options. PMID:20463929

  12. Microstructural Characterization of Hierarchical Structured Surfaces by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Ponomareva, A. A.; Moshnikov, V. A.; Suchaneck, G.

    2013-12-01

    In this work, we evaluate the hierarchical surface topography of reactively sputtered nanocrystalline Pb(Zr,Ti)O3 and TiO2 thin films as well as plasma-treated antireflective PET films by means of determining the fractal dimension and power spectral density (PSD) of surface topography recorded by atomic force microscopy (AFM). Local fractal dimension was obtained using the triangulation method. The PSDs of all samples were fitted to the k-correlation model (also called ABC model) valid for a self-affine surface topography. Fractal analysis of AFM images was shown to be an appropriate and easy to use tool for the characterization of hierarchical nanostructures.

  13. Digital atomic force microscope moiré method.

    PubMed

    Liu, Chia-Ming; Chen, Lien-Wen

    2004-11-01

    In this study, a novel digital atomic force microscope (AFM) moiré method is established to measure the displacement and strain fields. The moiré pattern is generated by the interference between the specimen grating and the virtual reference grating formed by digital image processes. The overlapped image is filtered by the 2-D wavelet transformation to obtain clear interference moiré patterns. From moiré patterns, the displacement and strain fields can be analyzed. The experimental results show that the digital AFM moiré method is very sensitive and easy to realize in nanoscale measurements.

  14. Two-axis probing system for atomic force microscopy.

    PubMed

    Jayanth, G R; Jhiang, Sissy M; Menq, Chia-Hsiang

    2008-02-01

    A novel two-axis probing system is proposed for multiaxis atomic force microscopy (AFM). It employs a compliant manipulator that is optimally designed in terms of geometries and kinematics, and is actuated by multiple magnetic actuators to simultaneously control tip position and change tip orientation to achieve greater accessibility of the sample surface when imaging surfaces having large geometric variations. It leads to the creation of a multiaxis AFM system, which is a three-dimensional surface tool rather than a two-dimensional planar surface tool. The use of the system to scan the bottom corner of a grating step is reported.

  15. A Compact Vertical Scanner for Atomic Force Microscopes

    PubMed Central

    Park, Jae Hong; Shim, Jaesool; Lee, Dong-Yeon

    2010-01-01

    A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner’s performance, experiments are performed to evaluate the travel range, resonance frequency, and feedback noise level. In addition, an AFM image using the proposed vertical scanner is generated. PMID:22163492

  16. A compact vertical scanner for atomic force microscopes.

    PubMed

    Park, Jae Hong; Shim, Jaesool; Lee, Dong-Yeon

    2010-01-01

    A compact vertical scanner for an atomic force microscope (AFM) is developed. The vertical scanner is designed to have no interference with the optical microscope for viewing the cantilever. The theoretical stiffness and resonance of the scanner are derived and verified via finite element analysis. An optimal design process that maximizes the resonance frequency is performed. To evaluate the scanner's performance, experiments are performed to evaluate the travel range, resonance frequency, and feedback noise level. In addition, an AFM image using the proposed vertical scanner is generated.

  17. The limit of time resolution in frequency modulation atomic force microscopy by a pump-probe approach

    NASA Astrophysics Data System (ADS)

    Schumacher, Zeno; Spielhofer, Andreas; Miyahara, Yoichi; Grutter, Peter

    2017-01-01

    Atomic force microscopy (AFM) routinely achieves structural information in the sub-nm length scale. Measuring time resolved properties on this length scale to understand kinetics at the nm scale remains an elusive goal. We present a general analysis of the lower limit for time resolution in AFM. Our finding suggests that the time resolution in AFM is ultimately limited by the well-known thermal limit of AFM and not as often proposed by the mechanical response time of the force sensing cantilever. We demonstrate a general pump-probe approach using the cantilever as a detector responding to the averaged signal. This method can be applied to any excitation signal such as electrical, thermal, magnetic or optical. Experimental implementation of this method allows us to measure a photocarrier decay time of ˜1 ps in low temperature grown GaAs using a cantilever with a resonant frequency of 280 kHz.

  18. Interpreting motion and force for narrow-band intermodulation atomic force microscopy.

    PubMed

    Platz, Daniel; Forchheimer, Daniel; Tholén, Erik A; Haviland, David B

    2013-01-01

    Intermodulation atomic force microscopy (ImAFM) is a mode of dynamic atomic force microscopy that probes the nonlinear tip-surface force by measurement of the mixing of multiple modes in a frequency comb. A high-quality factor cantilever resonance and a suitable drive comb will result in tip motion described by a narrow-band frequency comb. We show, by a separation of time scales, that such motion is equivalent to rapid oscillations at the cantilever resonance with a slow amplitude and phase or frequency modulation. With this time-domain perspective, we analyze single oscillation cycles in ImAFM to extract the Fourier components of the tip-surface force that are in-phase with the tip motion (F(I)) and quadrature to the motion (F(Q)). Traditionally, these force components have been considered as a function of the static-probe height only. Here we show that F(I) and F(Q) actually depend on both static-probe height and oscillation amplitude. We demonstrate on simulated data how to reconstruct the amplitude dependence of F(I) and F(Q) from a single ImAFM measurement. Furthermore, we introduce ImAFM approach measurements with which we reconstruct the full amplitude and probe-height dependence of the force components F(I) and F(Q), providing deeper insight into the tip-surface interaction. We demonstrate the capabilities of ImAFM approach measurements on a polystyrene polymer surface.

  19. Analysis of the physical atomic forces between noble gas atoms, alkali ions and halogen ions

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.

    1986-01-01

    The physical forces between atoms and molecules are important in a number of processes of practical importance, including line broadening in radiative processes, gas and crystal properties, adhesion, and thin films. The components of the physical forces between noble gas atoms, alkali ions, and halogen ions are analyzed and a data base for the dispersion forces is developed from the literature based on evaluations with the harmonic oscillator dispersion model for higher order coefficients. The Zener model of the repulsive core is used in the context of the recent asymptotic wave functions of Handler and Smith; and an effective ionization potential within the Handler and Smith wave functions is defined to analyze the two body potential data of Waldman and Gordon, the alkali-halide molecular data, and the noble gas crystal and salt crystal data. A satisfactory global fit to this molecular and crystal data is then reproduced by the model to within several percent. Surface potentials are evaluated for noble gas atoms on noble gas and salt crystal surfaces with surface tension neglected. Within this context, the noble gas surface potentials on noble gas and salt crystals are considered to be accurate to within several percent.

  20. Atomic force microscopy: From red blood cells to immunohaematology.

    PubMed

    Yeow, Natasha; Tabor, Rico F; Garnier, Gil

    2017-05-11

    Atomic force microscopy (AFM) offers complementary imaging modes that can provide morphological and structural details of red blood cells (RBCs), and characterize interactions between specific biomolecules and RBC surface antigen. This review describes the applications of AFM in determining RBC health by the observation of cell morphology, elasticity and surface roughness. Measurement of interaction forces between plasma proteins and antibodies against RBC surface antigen using the AFM also brought new information to the immunohaematology field. With constant improvisation of the AFM in resolution and imaging time, the reaction of RBC to changes in the physico-chemistry of its environment and the presence of RBC surface antigen specific-biomolecules is achievable. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Atomic force microscopic observation of surface-supported human erythrocytes

    NASA Astrophysics Data System (ADS)

    Ho, Mon-Shu; Kuo, Feng-Jia; Lee, Yu-Siang; Cheng, Chao-Min

    2007-07-01

    The nanomechanical characteristics of the membrane cytoskeleton of human erythrocytes were studied using atomic force microscopy (AFM). The self-assembly, fine structure, cell diameter, thickness, and reticulate cytoskeleton of erythrocytes on the mica surface were investigated. The adhesive forces that correspond to the membrane elasticity of various parts of the erythrocyte membrane surface were measured directly by AFM to be 0.64±0.14nN for cell indentation, 4.2±0.7nN for cell hump, and 11.5nN for side waist, respectively. The deformation of erythrocytes was discussed. Standing waves on the membrane that were set up by increased AFM amplitude were observed. The propagating velocity on the erythrocyte membrane was estimated to be ˜2.02×10-2m/s. Liquid physiological conditions were considered throughout.

  2. Mechanical properties of biological specimens explored by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Kasas, S.; Longo, G.; Dietler, G.

    2013-04-01

    The atomic force microscope is a widely used surface scanning apparatus capable of reconstructing at a nanometric scale resolution the 3D morphology of biological samples. Due to its unique sensitivity, it is now increasingly used as a force sensor, to characterize the mechanical properties of specimens with a similar lateral resolution. This unique capability has produced, in the last years, a vast increase in the number of groups that have exploited the versatility and sensitivity of the instrument to explore the nanomechanics of various samples in the fields of biology, microbiology and medicine. In this review we outline the state of the art in this field, reporting the most interesting recent works involving the exploration of the nanomechanical properties of various biological samples.

  3. Introduction to atomic force microscopy (AFM) in biology.

    PubMed

    Goldsbury, Claire S; Scheuring, Simon; Kreplak, Laurent

    2009-11-01

    The atomic force microscope (AFM) has the unique capability of imaging biological samples with molecular resolution in buffer solution. In addition to providing topographical images of surfaces with nanometer- to angstrom-scale resolution, forces between single molecules and mechanical properties of biological samples can be investigated from the nanoscale to the microscale. Importantly, the measurements are made in buffer solutions, allowing biological samples to "stay alive" within a physiological-like environment while temporal changes in structure are measured-e.g., before and after addition of chemical reagents. These qualities distinguish AFM from conventional imaging techniques of comparable resolution, e.g., electron microscopy (EM). This unit provides an introduction to AFM on biological systems and describes specific examples of AFM on proteins, cells, and tissues. The physical principles of the technique and methodological aspects of its practical use and applications are also described.

  4. Cautions to predicate multiferroic by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Liu, Chen; Ma, Jing; Ma, Ji; Zhang, Yujun; Chen, Jiahui; Nan, Ce-Wen

    2017-05-01

    With the ever-increasing research activities in multiferroic driven by its profound physics and enormous potential for application, magnetic force microscopy (MFM), as a variety of atomic force microscope (AFM), has been brought to investigate the magnetic properties and the voltage controlled magnetism, especially in thin films and heterostructures. Here by taking a representative multiferroic system BiFeO3/La0.67Sr0.33MnO3 heterostructure and a ferroelectric PMN-PT single crystal for examples, we demonstrated that the MFM image is prone to be seriously interfered by the electrostatic interaction between the tip and sample surface, and misleads the predication of multiferroic. Assisted by the scanning Kelvin probe microscopy (SKPM), the origin and mechanism were discussed and an effective solution was proposed.

  5. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible 3He/10 T cryostat

    NASA Astrophysics Data System (ADS)

    von Allwörden, H.; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A.; Wiesendanger, R.

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped 3He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  6. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible (3)He/10 T cryostat.

    PubMed

    von Allwörden, H; Ruschmeier, K; Köhler, A; Eelbo, T; Schwarz, A; Wiesendanger, R

    2016-07-01

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped (3)He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  7. Set-up of a high-resolution 300 mK atomic force microscope in an ultra-high vacuum compatible {sup 3}He/10 T cryostat

    SciTech Connect

    Allwörden, H. von; Ruschmeier, K.; Köhler, A.; Eelbo, T.; Schwarz, A. Wiesendanger, R.

    2016-07-15

    The design of an atomic force microscope with an all-fiber interferometric detection scheme capable of atomic resolution at about 500 mK is presented. The microscope body is connected to a small pumped {sup 3}He reservoir with a base temperature of about 300 mK. The bakeable insert with the cooling stage can be moved from its measurement position inside the bore of a superconducting 10 T magnet into an ultra-high vacuum chamber, where the tip and sample can be exchanged in situ. Moreover, single atoms or molecules can be evaporated onto a cold substrate located inside the microscope. Two side chambers are equipped with standard surface preparation and surface analysis tools. The performance of the microscope at low temperatures is demonstrated by resolving single Co atoms on Mn/W(110) and by showing atomic resolution on NaCl(001).

  8. Sensors for low temperature application

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  9. Low Temperature Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Strayer, D.

    1993-01-01

    The recent flight of the Lambda Point Experiment has demonstrated the potential for performing precise tests of fundamental theories using low temperature techniques in Earth orbit. NASA's Microgravity Science and Applications Division has established a program of successor expermients to investigate other aspects of condensed matter physics using the same low temperature flight facility. This paper describes the new investigations that have been chosen for flight experiments, and those selected for ground-based studies that could lead to flight experiments later.

  10. Low Temperature Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Strayer, D.

    1993-01-01

    The recent flight of the Lambda Point Experiment has demonstrated the potential for performing precise tests of fundamental theories using low temperature techniques in Earth orbit. NASA's Microgravity Science and Applications Division has established a program of successor expermients to investigate other aspects of condensed matter physics using the same low temperature flight facility. This paper describes the new investigations that have been chosen for flight experiments, and those selected for ground-based studies that could lead to flight experiments later.

  11. Taking nanomedicine teaching into practice with atomic force microscopy and force spectroscopy.

    PubMed

    Carvalho, Filomena A; Freitas, Teresa; Santos, Nuno C

    2015-12-01

    Atomic force microscopy (AFM) is a useful and powerful tool to study molecular interactions applied to nanomedicine. The aim of the present study was to implement a hands-on atomic AFM course for graduated biosciences and medical students. The course comprises two distinct practical sessions, where students get in touch with the use of an atomic force microscope by performing AFM scanning images of human blood cells and force spectroscopy measurements of the fibrinogen-platelet interaction. Since the beginning of this course, in 2008, the overall rating by the students was 4.7 (out of 5), meaning a good to excellent evaluation. Students were very enthusiastic and produced high-quality AFM images and force spectroscopy data. The implementation of the hands-on AFM course was a success, giving to the students the opportunity of contact with a technique that has a wide variety of applications on the nanomedicine field. In the near future, nanomedicine will have remarkable implications in medicine regarding the definition, diagnosis, and treatment of different diseases. AFM enables students to observe single molecule interactions, enabling the understanding of molecular mechanisms of different physiological and pathological processes at the nanoscale level. Therefore, the introduction of nanomedicine courses in bioscience and medical school curricula is essential.

  12. Force measurements with the atomic force microscope: Technique, interpretation and applications

    NASA Astrophysics Data System (ADS)

    Butt, Hans-Jürgen; Cappella, Brunero; Kappl, Michael

    2005-10-01

    The atomic force microscope (AFM) is not only a tool to image the topography of solid surfaces at high resolution. It can also be used to measure force-versus-distance curves. Such curves, briefly called force curves, provide valuable information on local material properties such as elasticity, hardness, Hamaker constant, adhesion and surface charge densities. For this reason the measurement of force curves has become essential in different fields of research such as surface science, materials engineering, and biology. Another application is the analysis of surface forces per se. Some of the most fundamental questions in colloid and surface science can be addressed directly with the AFM: What are the interactions between particles in a liquid? How can a dispersion be stabilized? How do surfaces in general and particles in particular adhere to each other? Particles and surfaces interactions have major implications for friction and lubrication. Force measurements on single molecules involving the rupture of single chemical bonds and the stretching of polymer chains have almost become routine. The structure and properties of confined liquids can be addressed since force measurements provide information on the energy of a confined liquid film. After the review of Cappella [B. Cappella, G. Dietler, Surf. Sci. Rep. 34 (1999) 1-104] 6 years of intense development have occurred. In 1999, the AFM was used only by experts to do force measurements. Now, force curves are used by many AFM researchers to characterize materials and single molecules. The technique and our understanding of surface forces has reached a new level of maturity. In this review we describe the technique of AFM force measurements. Important experimental issues such as the determination of the spring constant and of the tip radius are discussed. Current state of the art in analyzing force curves obtained under different conditions is presented. Possibilities, perspectives but also open questions and

  13. Atomic force microscopy for university students: applications in biomaterials

    NASA Astrophysics Data System (ADS)

    Kontomaris, S. V.; Stylianou, A.

    2017-05-01

    Atomic force microscopy (AFM) is a powerful tool used in the investigation of the structural and mechanical properties of a wide range of materials including biomaterials. It provides the ability to acquire high resolution images of biomaterials at the nanoscale. It also provides information about the response of specific areas under controlled applied force, which leads to the mechanical characterization of the sample at the nanoscale. The wide range of information provided by AFM has established it as a powerful research tool. In this paper, we present a general overview of the basic operation and functions of AFM applications in biomaterials. The basic operation of AFM is explained in detail with a focus on the real interactions that take place at the nanoscale level during imaging. AFM’s ability to provide the mechanical characterization (force curves) of specific areas at the nanoscale is also explained. The basic models of applied mechanics that are used for processing the data obtained by the force curves are presented. The aim of this paper is to provide university students and young scientists in the fields of biophysics and nanotechnology with a better understanding of AFM.

  14. Stretching of Single Polymer Chains Using the Atomic Force Microscope

    NASA Astrophysics Data System (ADS)

    Ortiz, C.; van der Vegte, E. W.; van Swieten, E.; Robillard, G. T.; Hadziioannou, G.

    1998-03-01

    A variety of macroscopic phenomenon involve "nanoscale" polymer deformation including rubber elasticity, shear yielding, strain hardening, stress relaxation, fracture, and flow. With the advent of new and improved experimental techniques, such as the atomic force microscope (AFM), the probing of physical properties of polymers has reached finer and finer scales. The development of mixed self-assembling monolayer techniques and the chemical functionalization of AFM probe tips has allowed for mechanical experiments on single polymer chains of molecular dimensions. In our experiments, mixed monolayers are prepared in which end-functionalized, flexible polymer chains of thiol-terminated poly(methacrylic acid) are covalently bonded, isolated, and randomly distributed on gold substrates. The coils are then imaged, tethered to a gold-coated AFM tip, and stretched between the tip and the substrate in a conventional force / distance experiment. An increase in the attractive force due to entropic, elastic resistance to stretching, as well as fracture of the polymer chain is observed. The effect of chain stiffness, topological constraints, strain rate, mechanical hysteresis, and stress relaxation were investigated. Force modulation techniques were also employed in order to image the viscoelastic character of the polymer chains. Parallel work includes similar studies of biological systems such as wheat gluten proteins and polypeptides.

  15. Three-dimensional atomic force microscopy: interaction force vector by direct observation of tip trajectory.

    PubMed

    Sigdel, Krishna P; Grayer, Justin S; King, Gavin M

    2013-11-13

    The prospect of a robust three-dimensional atomic force microscope (AFM) holds significant promise in nanoscience. Yet, in conventional AFM, the tip-sample interaction force vector is not directly accessible. We scatter a focused laser directly off an AFM tip apex to rapidly and precisely measure the tapping tip trajectory in three-dimensional space. This data also yields three-dimensional cantilever spring constants, effective masses, and hence, the tip-sample interaction force components via Newton's second law. Significant lateral forces representing 49 and 13% of the normal force (Fz = 152 ± 17 pN) were observed in common tapping mode conditions as a silicon tip intermittently contacted a glass substrate in aqueous solution; as a consequence, the direction of the force vector tilted considerably more than expected. When addressing the surface of a lipid bilayer, the behavior of the force components differed significantly from that observed on glass. This is attributed to the lateral mobility of the lipid membrane coupled with its elastic properties. Direct access to interaction components Fx, Fy, and Fz provides a more complete view of tip dynamics that underlie force microscope operation and can form the foundation of a three-dimensional AFM in a plurality of conditions.

  16. Atomic force microscopy force-distance curves with small amplitude ultrasonic modulation.

    PubMed

    Ma, Chengfu; Chen, Yuhang; Wang, Tian; Chu, Jiaru

    2015-01-01

    Force-distance curves were acquired on a highly oriented pyrolytic graphite (HOPG) specimen and a gold film specimen under ultrasonic modulation in atomic force microscopy (AFM). Measurements demonstrated that small amplitude ultrasonic oscillation of either the cantilever or the sample has significant impacts on the characteristics of force-distance curves. With the increase of excitation amplitude, the apparent pull-off force decreased gradually and the hysteresis between the approach and retraction curves reduced significantly. Furthermore, the decrease of the pull-off force was determined to be also relevant to the excitation frequency. With the assistance of contact resonance spectra, the pull-off force was verified to have a near-linear relationship with the cantilever contact oscillation amplitude. Theoretical analysis and subsequent numerical simulations well interpreted the experimental results. The emergence of large oscillating contact forces under ultrasonic modulation altered the force-distance curves, and such a mechanism was ascertained by further ultrasonic AFM imaging. © Wiley Periodicals, Inc.

  17. Combined atomic force microscopy and voltage pulse technique to accurately measure electrostatic force

    NASA Astrophysics Data System (ADS)

    Inami, Eiichi; Sugimoto, Yoshiaki

    2016-08-01

    We propose a new method of extracting electrostatic force. The technique is based on frequency modulation atomic force microscopy (FM-AFM) combined with a voltage pulse. In this method, the work that the electrostatic field does on the oscillating tip is measured through the cantilever energy dissipation. This allows us to directly extract capacitive forces including the longer range part, to which the conventional FM-AFM is insensitive. The distance-dependent contact potential difference, which is modulated by local charges distributed on the surfaces of the tip and/or sample, could also be correctly obtained. In the absence of local charges, our method can perfectly reproduce the electrostatic force as a function of the distance and the bias voltage. Furthermore, we demonstrate that the system serves as a sensitive sensor enabling us to check the existence of the local charges such as trapped charges and patch charges.

  18. Atomic force microscopy to study intermolecular forces and bonds associated with bacteria.

    PubMed

    Lower, Steven K

    2011-01-01

    Atomic force microscopy (AFM) operates on a very different principle than other forms of microscopy, such as optical microscopy or electron microscopy. The key component of an AFM is a cantilever that bends in response to forces that it experiences as it touches another surface. Forces as small as a few picoNewtons can be detected and probed with AFM. AFM has become very useful in biological sciences because it can be used on living cells that are immersed in water. AFM is particularly useful when the cantilever is modified with chemical groups (e.g. amine or carboxylic groups), small beads (e.g. glass or latex), or even a bacterium. This chapter describes how AFM can be used to measure forces and bonds between a bacterium and another surface. This paper also provides an example of the use of AFM on Staphylococcus aureus, a Gram-positive bacterium that is often associated with biofilms in humans.

  19. Minimizing tip-sample forces in jumping mode atomic force microscopy in liquid.

    PubMed

    Ortega-Esteban, A; Horcas, I; Hernando-Pérez, M; Ares, P; Pérez-Berná, A J; San Martín, C; Carrascosa, J L; de Pablo, P J; Gómez-Herrero, J

    2012-03-01

    Control and minimization of tip-sample interaction forces are imperative tasks to maximize the performance of atomic force microscopy. In particular, when imaging soft biological matter in liquids, the cantilever dragging force prevents identification of the tip-sample mechanical contact, resulting in deleterious interaction with the specimen. In this work we present an improved jumping mode procedure that allows detecting the tip-sample contact with high accuracy, thus minimizing the scanning forces (-100 pN) during the approach cycles. To illustrate this method we report images of human adenovirus and T7 bacteriophage particles which are prone to uncontrolled modifications when using conventional jumping mode. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Easy and direct method for calibrating atomic force microscopy lateral force measurements

    PubMed Central

    Liu, Wenhua; Bonin, Keith; Guthold, Martin

    2010-01-01

    We have designed and tested a new, inexpensive, easy-to-make and easy-to-use calibration standard for atomic force microscopy (AFM) lateral force measurements. This new standard simply consists of a small glass fiber of known dimensions and Young’s modulus, which is fixed at one end to a substrate and which can be bent laterally with the AFM tip at the other end. This standard has equal or less error than the commonly used method of using beam mechanics to determine a cantilever’s lateral force constant. It is transferable, thus providing a universal tool for comparing the calibrations of different instruments. It does not require knowledge of the cantilever dimensions and composition or its tip height. This standard also allows direct conversion of the photodiode signal to force and, thus, circumvents the requirement for a sensor response (sensitivity) measurement. PMID:17614616

  1. Lateral force microscope calibration using a modified atomic force microscope cantilever

    SciTech Connect

    Reitsma, M. G.

    2007-10-15

    A proof-of-concept study is presented for a prototype atomic force microscope (AFM) cantilever and associated calibration procedure that provide a path for quantitative friction measurement using a lateral force microscope (LFM). The calibration procedure is based on the method proposed by Feiler et al. [Rev. Sci. Instrum. 71, 2746 (2000)] but allows for calibration and friction measurements to be carried out in situ and with greater precision. The modified AFM cantilever is equipped with lateral lever arms that facilitate the application of normal and lateral forces, comparable to those acting in a typical LFM friction experiment. The technique allows the user to select acceptable precision via a potentially unlimited number of calibration measurements across the full working range of the LFM photodetector. A microfabricated version of the cantilever would be compatible with typical commercial AFM instrumentation and allow for common AFM techniques such as topography imaging and other surface force measurements to be performed.

  2. Low-temperature Condensation of Carbon

    NASA Astrophysics Data System (ADS)

    Krasnokutski, S. A.; Goulart, M.; Gordon, E. B.; Ritsch, A.; Jäger, C.; Rastogi, M.; Salvenmoser, W.; Henning, Th.; Scheier, P.

    2017-10-01

    Two different types of experiments were performed. In the first experiment, we studied the low-temperature condensation of vaporized graphite inside bulk liquid helium, while in the second experiment, we studied the condensation of single carbon atoms together with H2, H2O, and CO molecules inside helium nanodroplets. The condensation of vaporized graphite leads to the formation of partially graphitized carbon, which indicates high temperatures, supposedly higher than 1000°C, during condensation. Possible underlying processes responsible for the instant rise in temperature during condensation are discussed. This suggests that such processes cause the presence of partially graphitized carbon dust formed by low-temperature condensation in the diffuse interstellar medium. Alternatively, in the denser regions of the ISM, the condensation of carbon atoms together with the most abundant interstellar molecules (H2, H2O, and CO), leads to the formation of complex organic molecules (COMs) and finally organic polymers. Water molecules were found not to be involved directly in the reaction network leading to the formation of COMs. It was proposed that COMs are formed via the addition of carbon atoms to H2 and CO molecules ({{C}}+{{{H}}}2\\to {HCH},{HCH}+{CO}\\to {{OCCH}}2). Due to the involvement of molecular hydrogen, the formation of COMs by carbon addition reactions should be more efficient at high extinctions compared with the previously proposed reaction scheme with atomic hydrogen.

  3. Atomic-force-controlled capillary electrophoretic nanoprinting of proteins.

    PubMed

    Lovsky, Yulia; Lewis, Aaron; Sukenik, Chaim; Grushka, Eli

    2010-01-01

    The general nanoprinting and nanoinjection of proteins on non-conducting or conducting substrates with a high degree of control both in terms of positional and timing accuracy is an important goal that could impact diverse fields from biotechnology (protein chips) to molecular electronics and from fundamental studies in cell biology to nanophotonics. In this paper, we combine capillary electrophoresis (CE), a separation method with considerable control of protein movement, with the unparalleled positional accuracy of an atomic force microscope (AFM). This combination provides the ability to electrophoretically or electroosmotically correlate the timing of protein migration with AFM control of the protein deposition at a high concentration in defined locations and highly confined volumes estimated to be 2 al. Electrical control of bovine serum albumin printing on standard protein-spotting glass substrates is demonstrated. For this advance, fountain pen nanolithography (FPN) that uses cantilevered glass-tapered capillaries is amended with the placement of electrodes on the nanopipette itself. This results in imposed voltages that are three orders of magnitude less than what is normally used in capillary electrophoresis. The development of atomic-force-controlled capillary electrophoretic printing (ACCEP) has the potential for electrophoretic separation, with high resolution, both in time and in space. The large voltage drop at the tip of the tapered nanopipettes allows for significant increases in concentration of protein in the small printed volumes. All of these attributes combine to suggest that this methodology should have a significant impact in science and technology.

  4. Multifarious applications of atomic force microscopy in forensic science investigations.

    PubMed

    Pandey, Gaurav; Tharmavaram, Maithri; Rawtani, Deepak; Kumar, Sumit; Agrawal, Y

    2017-04-01

    Forensic science is a wide field comprising of several subspecialties and uses methods derived from natural sciences for finding criminals and other evidence valid in a legal court. A relatively new area; Nano-forensics brings a new era of investigation in forensic science in which instantaneous results can be produced that determine various agents such as explosive gasses, biological agents and residues in different crime scenes and terrorist activity investigations. This can be achieved by applying Nanotechnology and its associated characterization techniques in forensic sciences. Several characterization techniques exist in Nanotechnology and nano-analysis is one such technique that is used in forensic science which includes Electron microscopes (EM) like Transmission (TEM) and Scanning (SEM), Raman microscopy (Micro -Raman) and Scanning Probe Microscopes (SPMs) like Atomic Force Microscope (AFM). Atomic force microscopy enables surface characterization of different materials by examining their morphology and mechanical properties. Materials that are immeasurable such as hair, body fluids, textile fibers, documents, polymers, pressure sensitive adhesives (PSAs), etc. are often encountered during forensic investigations. This review article will mainly focus on the use of AFM in the examination of different evidence such as blood stains, forged documents, human hair samples, ammunitions, explosives, and other such applications in the field of Forensic Science. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparative study of clinical pulmonary surfactants using atomic force microscopy

    PubMed Central

    Zhang, Hong; Fan, Qihui; Wang, Yi E.; Neal, Charles R.; Zuo, Yi Y.

    2016-01-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations. PMID:21439262

  6. Comparative study of clinical pulmonary surfactants using atomic force microscopy.

    PubMed

    Zhang, Hong; Fan, Qihui; Wang, Yi E; Neal, Charles R; Zuo, Yi Y

    2011-07-01

    Clinical pulmonary surfactant is routinely used to treat premature newborns with respiratory distress syndrome, and has shown great potential in alleviating a number of neonatal and adult respiratory diseases. Despite extensive study of chemical composition, surface activity, and clinical performance of various surfactant preparations, a direct comparison of surfactant films is still lacking. In this study, we use atomic force microscopy to characterize and compare four animal-derived clinical surfactants currently used throughout the world, i.e., Survanta, Curosurf, Infasurf and BLES. These modified-natural surfactants are further compared to dipalmitoyl phosphatidylcholine (DPPC), a synthetic model surfactant of DPPC:palmitoyl-oleoyl phosphatidylglycerol (POPG) (7:3), and endogenous bovine natural surfactant. Atomic force microscopy reveals significant differences in the lateral structure and molecular organization of these surfactant preparations. These differences are discussed in terms of DPPC and cholesterol contents. We conclude that all animal-derived clinical surfactants assume a similar structure of multilayers of fluid phospholipids closely attached to an interfacial monolayer enriched in DPPC, at physiologically relevant surface pressures. This study provides the first comprehensive survey of the lateral structure of clinical surfactants at various surface pressures. It may have clinical implications on future application and development of surfactant preparations. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. MIDAS: Lessons learned from the first spaceborne atomic force microscope

    NASA Astrophysics Data System (ADS)

    Bentley, Mark Stephen; Arends, Herman; Butler, Bart; Gavira, Jose; Jeszenszky, Harald; Mannel, Thurid; Romstedt, Jens; Schmied, Roland; Torkar, Klaus

    2016-08-01

    The Micro-Imaging Dust Analysis System (MIDAS) atomic force microscope (AFM) onboard the Rosetta orbiter was the first such instrument launched into space in 2004. Designed only a few years after the technique was invented, MIDAS is currently orbiting comet 67P Churyumov-Gerasimenko and producing the highest resolution 3D images of cometary dust ever made in situ. After more than a year of continuous operation much experience has been gained with this novel instrument. Coupled with operations of the Flight Spare and advances in terrestrial AFM a set of "lessons learned" has been produced, cumulating in recommendations for future spaceborne atomic force microscopes. The majority of the design could be reused as-is, or with incremental upgrades to include more modern components (e.g. the processor). Key additional recommendations are to incorporate an optical microscope to aid the search for particles and image registration, to include a variety of cantilevers (with different spring constants) and a variety of tip geometries.

  8. High resolution atomic force microscopy of double-stranded RNA

    NASA Astrophysics Data System (ADS)

    Ares, Pablo; Fuentes-Perez, Maria Eugenia; Herrero-Galán, Elías; Valpuesta, José M.; Gil, Adriana; Gomez-Herrero, Julio; Moreno-Herrero, Fernando

    2016-06-01

    Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to resolve the A-form sub-helical pitch periodicity. We have employed different high-sensitive force-detection methods and obtained images with similar spatial resolution. Therefore, we show here that the limiting factors for high-resolution AFM imaging of soft materials in liquid medium are, rather than the imaging mode, the force between the tip and the sample and the sharpness of the tip apex.Double-stranded (ds) RNA mediates the suppression of specific gene expression, it is the genetic material of a number of viruses, and a key activator of the innate immune response against viral infections. The ever increasing list of roles played by dsRNA in the cell and its potential biotechnological applications over the last decade has raised an interest for the characterization of its mechanical properties and structure, and that includes approaches using Atomic Force Microscopy (AFM) and other single-molecule techniques. Recent reports have resolved the structure of dsDNA with AFM at unprecedented resolution. However, an equivalent study with dsRNA is still lacking. Here, we have visualized the double helix of dsRNA under near-physiological conditions and at sufficient resolution to

  9. Significant improvements in stability and reproducibility of atomic-scale atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Akrami, S. M. R.; Nakayachi, H.; Watanabe-Nakayama, T.; Asakawa, H.; Fukuma, T.

    2014-11-01

    Recent advancement of dynamic-mode atomic force microscopy (AFM) for liquid-environment applications enabled atomic-scale studies on various interfacial phenomena. However, instabilities and poor reproducibility of the measurements often prevent systematic studies. To solve this problem, we have investigated the effect of various tip treatment methods for atomic-scale imaging and force measurements in liquid. The tested methods include Si coating, Ar plasma, Ar sputtering and UV/O3 cleaning. We found that all the methods provide significant improvements in both the imaging and force measurements in spite of the tip transfer through the air. Among the methods, we found that the Si coating provides the best stability and reproducibility in the measurements. To understand the origin of the fouling resistance of the cleaned tip surface and the difference between the cleaning methods, we have investigated the tip surface properties by x-ray photoelectron spectroscopy and contact angle measurements. The results show that the contaminations adsorbed on the tip during the tip transfer through the air should desorb from the surface when it is immersed in aqueous solution due to the enhanced hydrophilicity by the tip treatments. The tip surface prepared by the Si coating is oxidized when it is immersed in aqueous solution. This creates local spots where stable hydration structures are formed. For the other methods, there is no active mechanism to create such local hydration sites. Thus, the hydration structure formed under the tip apex is not necessarily stable. These results reveal the desirable tip properties for atomic-scale AFM measurements in liquid, which should serve as a guideline for further improvements of the tip treatment methods.

  10. Hydrodynamic damping of tip oscillation in pulsed-force atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Chen, X.; Davies, M. C.; Roberts, C. J.; Tendler, S. J. B.; Williams, P. M.

    2000-11-01

    Although proven a powerful technique for mapping adhesion and surface mechanical properties at high lateral resolution, pulsed-force (PF) atomic force microscopy (AFM) is problematic in liquid, due to heavy hydrodynamic damping of cantilever vibration. We present computer simulations using the simple harmonic oscillation model to explore the changes of deflection signal profile that occur from air to liquid environment. In agreement with experimental results, we find that oscillation phase lag plays a key role in the signal profile. When imaging in liquid, the deflection caused by liquid oscillation may exceed that caused by tip-sample contact repulsion and adhesion, which brings particular consideration for PF-AFM imaging in liquid.

  11. Note: Electrical resolution during conductive atomic force microscopy measurements under different environmental conditions and contact forces

    SciTech Connect

    Lanza, M.; Porti, M.; Nafria, M.; Aymerich, X.; Whittaker, E.; Hamilton, B.

    2010-10-15

    Conductive atomic force microscopy experiments on gate dielectrics in air, nitrogen, and UHV have been compared to evaluate the impact of the environment on topography and electrical measurements. In current images, an increase of the lateral resolution and a reduction of the conductivity were observed in N{sub 2} and, especially, in UHV (where current depends also on the contact force). Both effects were related to the reduction/elimination of the water layer between the tip and the sample in N{sub 2}/UHV. Therefore, since current measurements are very sensitive to environmental conditions, these factors must be taken into consideration when comparisons between several experiments are performed.

  12. Robust high-resolution imaging and quantitative force measurement with tuned-oscillator atomic force microscopy.

    PubMed

    Dagdeviren, Omur E; Götzen, Jan; Hölscher, Hendrik; Altman, Eric I; Schwarz, Udo D

    2016-02-12

    Atomic force microscopy (AFM) and spectroscopy are based on locally detecting the interactions between a surface and a sharp probe tip. For highest resolution imaging, noncontact modes that avoid tip-sample contact are used; control of the tip's vertical position is accomplished by oscillating the tip and detecting perturbations induced by its interaction with the surface potential. Due to this potential's nonlinear nature, however, achieving reliable control of the tip-sample distance is challenging, so much so that despite its power vacuum-based noncontact AFM has remained a niche technique. Here we introduce a new pathway to distance control that prevents instabilities by externally tuning the oscillator's response characteristics. A major advantage of this operational scheme is that it delivers robust position control in both the attractive and repulsive regimes with only one feedback loop, thereby providing an easy-to-implement route to atomic resolution imaging and quantitative tip-sample interaction force measurement.

  13. Organometallic Bonding in an Ullmann-Type On-Surface Chemical Reaction Studied by High-Resolution Atomic Force Microscopy.

    PubMed

    Kawai, Shigeki; Sadeghi, Ali; Okamoto, Toshihiro; Mitsui, Chikahiko; Pawlak, Rémy; Meier, Tobias; Takeya, Jun; Goedecker, Stefan; Meyer, Ernst

    2016-10-01

    The on-surface Ullmann-type chemical reaction synthesizes polymers by linking carbons of adjacent molecules on solid surfaces. Although an organometallic compound is recently identified as the reaction intermediate, little is known about the detailed structure of the bonded organometallic species and its influence on the molecule and the reaction. Herein atomic force microscopy at low temperature is used to study the reaction with 3,9-diiododinaphtho[2,3-b:2',3'-d]thiophene (I-DNT-VW), which is polymerized on Ag(111) in vacuum. Thermally sublimated I-DNT-VW picks up a Ag surface atom, forming a CAg bond at one end after removing an iodine. The CAg bond is usually short-lived, and a CAgC organometallic bond immediately forms with an adjacent molecule. The existence of the bonded Ag atoms strongly affects the bending angle and adsorption height of the molecular unit. Density functional theory calculations reveal the bending mechanism, which reveals that charge from the terminus of the molecule is transferred via the Ag atom into the organometallic bond and strengths the local adsorption to the substrate. Such deformations vanish when the Ag atoms are removed by annealing and CC bonds are established. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Isoelectric point of fluorite by direct force measurements using atomic force microscopy.

    PubMed

    Assemi, Shoeleh; Nalaskowski, Jakub; Miller, Jan D; Johnson, William P

    2006-02-14

    Interaction forces between a fluorite (CaF2) surface and colloidal silica were measured by atomic force microscopy (AFM) in 1 x 10(-3) M NaNO3 at different pH values. Forces between the silica colloid and fluorite flat were measured at a range of pH values above the isoelectric point (IEP) of silica so that the forces were mainly controlled by the fluorite surface charge. In this way, the IEP of the fluorite surface was deduced from AFM force curves at pH approximately 9.2. Experimental force versus separation distance curves were in good agreement with theoretical predictions based on long-range electrostatic interactions, allowing the potential of the fluorite surface to be estimated from the experimental force curves. AFM-deduced surface potentials were generally lower than the published zeta potentials obtained from electrokinetic methods for powdered samples. Differences in methodology, orientation of the fluorite, surface carbonation, and equilibration time all could have contributed to this difference.

  15. Nanoscale Characterization and Determination of Adhesion Forces of Pseudomonas aeruginosa Pili by Using Atomic Force Microscopy

    PubMed Central

    Touhami, Ahmed; Jericho, Manfred H.; Boyd, Jessica M.; Beveridge, Terry J.

    2006-01-01

    Type IV pili play an important role in bacterial adhesion, motility, and biofilm formation. Here we present high-resolution atomic force microscopy (AFM) images of type IV pili from Pseudomonas aeruginosa bacteria. An individual pilus ranges in length from 0.5 to 7 μm and has a diameter from 4 to 6 nm, although often, pili bundles in which the individual filaments differed in both length and diameter were seen. By attaching bacteria to AFM tips, it was possible to fasten the bacteria to mica surfaces by pili tethers. Force spectra of tethered pili gave rupture forces of 95 pN. The slopes of force curves close to the rupture force were nearly linear but showed little variation with pilus length. Furthermore, force curves could not be fitted with wormlike-chain polymer stretch models when using realistic persistence lengths for pili. The observation that the slopes near rupture did not depend on the pili length suggests that they do not represent elastic properties of the pili. It is possible that this region of the force curves is determined by an elastic element that is part of the bacterial wall, although further experiments are needed to confirm this. PMID:16385026

  16. Probing physical properties at the nanoscale using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ditzler, Lindsay Rachel

    Techniques that measure physical properties at the nanoscale with high sensitivity are significantly limited considering the number of new nanomaterials being developed. The development of atomic force microscopy (AFM) has lead to significant advancements in the ability to characterize physical properties of materials in all areas of science: chemistry, physics, engineering, and biology have made great scientific strides do to the versatility of the AFM. AFM is used for quantification of many physical properties such as morphology, electrical, mechanical, magnetic, electrochemical, binding interactions, and protein folding. This work examines the electrical and mechanical properties of materials applicable to the field of nano-electronics. As electronic devices are miniaturized the demand for materials with unique electrical properties, which can be developed and exploited, has increased. For example, discussed in this work, a derivative of tetrathiafulvalene, which exhibits a unique loss of conductivity upon compression of the self-assembled monolayer could be developed into a molecular switch. This work also compares tunable organic (tetraphenylethylene tetracarboxylic acid and bis(pyridine)s assemblies) and metal-organic (Silver-stilbizole coordination compounds) crystals which show high electrical conductivity. The electrical properties of these materials vary depending on their composition allowing for the development of compositionally tunable functional materials. Additional work was done to investigate the effects of molecular environment on redox active 11-ferroceneyl-1 undecanethiol (Fc) molecules. The redox process of mixed monolayers of Fc and decanethiol was measured using conductive probe atomic force microscopy and force spectroscopy. As the concentration of Fc increased large, variations in the force were observed. Using these variations the number of oxidized molecules in the monolayer was determined. AFM is additionally capable of investigating

  17. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Ooe, Hiroaki; Sakuishi, Tatsuya; Nogami, Makoto; Tomitori, Masahiko; Arai, Toyoko

    2014-07-01

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  18. Resonance frequency-retuned quartz tuning fork as a force sensor for noncontact atomic force microscopy

    SciTech Connect

    Ooe, Hiroaki; Sakuishi, Tatsuya; Arai, Toyoko; Nogami, Makoto; Tomitori, Masahiko

    2014-07-28

    Based on a two-prong type quartz tuning fork, a force sensor with a high Q factor, which we call a retuned fork sensor, was developed for non-contact atomic force microscopy (nc-AFM) with atomic resolution. By cutting a small notch and attaching an AFM tip to one prong, its resonance frequency can be retuned to that of the other intact prong. In balancing the two prongs in this manner, a high Q factor (>50 000 in ultrahigh vacuum) is obtained for the sensor. An atomic resolution image of the Si(111)-7 × 7 surface was demonstrated using an nc-AFM with the sensor. The dependence of the Q factor on resonance frequency of the sensor and the long-range force between tip and sample were measured and analyzed in view of the various dissipation channels. Dissipation in the signal detection circuit turned out to be mainly limited by the total Q factor of the nc-AFM system.

  19. Quantitative Membrane Electrostatics with the Atomic Force Microscope

    PubMed Central

    Yang, Yi; Mayer, Kathryn M.; Hafner, Jason H.

    2007-01-01

    The atomic force microscope (AFM) is sensitive to electric double layer interactions in electrolyte solutions, but provides only a qualitative view of interfacial electrostatics. We have fully characterized silicon nitride probe tips and other experimental parameters to allow a quantitative electrostatic analysis by AFM, and we have tested the validity of a simple analytical force expression through numerical simulations. As a test sample, we have measured the effective surface charge density of supported zwitterionic dioleoylphosphatidylcholine membranes with a variable fraction of anionic dioleoylphosphatidylserine. The resulting surface charge density and surface potential values are in quantitative agreement with those predicted by the Gouy-Chapman-Stern model of membrane charge regulation, but only when the numerical analysis is employed. In addition, we demonstrate that the AFM can detect double layer forces at a separation of several screening lengths, and that the probe only perturbs the membrane surface potential by <2%. Finally, we demonstrate 50-nm resolution electrostatic mapping on heterogeneous model membranes with the AFM. This novel combination of capabilities demonstrates that the AFM is a unique and powerful probe of membrane electrostatics. PMID:17158563

  20. Atomic force microscopy of asymmetric membranes from turtle erythrocytes.

    PubMed

    Tian, Yongmei; Cai, Mingjun; Xu, Haijiao; Ding, Bohua; Hao, Xian; Jiang, Junguang; Sun, Yingchun; Wang, Hongda

    2014-08-01

    The cell membrane provides critical cellular functions that rely on its elaborate structure and organization. The structure of turtle membranes is an important part of an ongoing study of erythrocyte membranes. Using a combination of atomic force microscopy and single-molecule force spectroscopy, we characterized the turtle erythrocyte membrane structure with molecular resolution in a quasi-native state. High-resolution images both leaflets of turtle erythrocyte membranes revealed a smooth outer membrane leaflet and a protein covered inner membrane leaflet. This asymmetry was verified by single-molecule force spectroscopy, which detects numerous exposed amino groups of membrane proteins in the inner membrane leaflet but much fewer in the outer leaflet. The asymmetric membrane structure of turtle erythrocytes is consistent with the semi-mosaic model of human, chicken and fish erythrocyte membrane structure, making the semi-mosaic model more widely applicable. From the perspective of biological evolution, this result may support the universality of the semi-mosaic model.

  1. Multifunctional hydrogel nano-probes for atomic force microscopy

    PubMed Central

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-01-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe—the key actuating element—has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices. PMID:27199165

  2. Investigating single molecule adhesion by atomic force spectroscopy.

    PubMed

    Stetter, Frank W S; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-02-27

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment.

  3. Investigating Single Molecule Adhesion by Atomic Force Spectroscopy

    PubMed Central

    Stetter, Frank W. S.; Kienle, Sandra; Krysiak, Stefanie; Hugel, Thorsten

    2015-01-01

    Atomic force spectroscopy is an ideal tool to study molecules at surfaces and interfaces. An experimental protocol to couple a large variety of single molecules covalently onto an AFM tip is presented. At the same time the AFM tip is passivated to prevent unspecific interactions between the tip and the substrate, which is a prerequisite to study single molecules attached to the AFM tip. Analyses to determine the adhesion force, the adhesion length, and the free energy of these molecules on solid surfaces and bio-interfaces are shortly presented and external references for further reading are provided. Example molecules are the poly(amino acid) polytyrosine, the graft polymer PI-g-PS and the phospholipid POPE (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine). These molecules are desorbed from different surfaces like CH3-SAMs, hydrogen terminated diamond and supported lipid bilayers under various solvent conditions. Finally, the advantages of force spectroscopic single molecule experiments are discussed including means to decide if truly a single molecule has been studied in the experiment. PMID:25867282

  4. Multifunctional hydrogel nano-probes for atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Jae Seol; Song, Jungki; Kim, Seong Oh; Kim, Seokbeom; Lee, Wooju; Jackman, Joshua A.; Kim, Dongchoul; Cho, Nam-Joon; Lee, Jungchul

    2016-05-01

    Since the invention of the atomic force microscope (AFM) three decades ago, there have been numerous advances in its measurement capabilities. Curiously, throughout these developments, the fundamental nature of the force-sensing probe--the key actuating element--has remained largely unchanged. It is produced by long-established microfabrication etching strategies and typically composed of silicon-based materials. Here, we report a new class of photopolymerizable hydrogel nano-probes that are produced by bottom-up fabrication with compressible replica moulding. The hydrogel probes demonstrate excellent capabilities for AFM imaging and force measurement applications while enabling programmable, multifunctional capabilities based on compositionally adjustable mechanical properties and facile encapsulation of various nanomaterials. Taken together, the simple, fast and affordable manufacturing route and multifunctional capabilities of hydrogel AFM nano-probes highlight the potential of soft matter mechanical transducers in nanotechnology applications. The fabrication scheme can also be readily utilized to prepare hydrogel cantilevers, including in parallel arrays, for nanomechanical sensor devices.

  5. Atomic force microscopy-based shape analysis of heart mitochondria.

    PubMed

    Lee, Gi-Ja; Park, Hun-Kuk

    2015-01-01

    Atomic force microscopy (AFM) has become an important medical and biological tool for the noninvasive imaging of cells and biomaterials in medical, biological, and biophysical research. The major advantages of AFM over conventional optical and electron microscopes for bio-imaging include the facts that no special coating is required and that imaging can be done in all environments-air, vacuum, or aqueous conditions. In addition, it can also precisely determine pico-nano Newton force interactions between the probe tip and the sample surface from force-distance curve measurements.It is widely known that mitochondrial swelling is one of the most important indicators of the opening of the mitochondrial permeability transition (MPT) pore. As mitochondrial swelling is an ultrastructural change, quantitative analysis of this change requires high-resolution microscopic methods such as AFM. Here, we describe the use of AFM-based shape analysis for the characterization of nanostructural changes in heart mitochondria resulting from myocardial ischemia-reperfusion injury.

  6. Probing Single Membrane Proteins by Atomic Force Microscopy

    NASA Astrophysics Data System (ADS)

    Scheuring, S.; Sapra, K. Tanuj; Müller, Daniel J.

    In this book chapter, we describe the working principle of the atomic force microscope (AFM), followed by the applications of AFM in high-resolution imaging and single-molecule force spectroscopy of membrane proteins. In the imaging mode, AFM allows observing the assembly of membrane proteins directly in native membranes approaching a resolution of ~0.5 nm with an outstanding signal-to-noise ratio. Conformational deviations of individual membrane proteins can be observed and their functional states directly imaged. Time-lapse AFM can image membrane proteins at work. In conjunction with high- resolution imaging, the use of the AFM as a single-molecule force spectroscope (SMFS) has gained tremendous importance in recent years. This combination allows to locate the inter- and intramolecular interactions of single membrane proteins. SMFS allows characterization of interactions that guide the folding of proteins and describe the parameters that lead to their destabilization, malfunction and misfolding. Moreover, it enables to measure the interactions established by ligand- and inhibitor-binding and in membrane protein assemblies. Because of its practical use in characterizing various parameters of membrane proteins in their native environment, AFM can be aptly described as a `lab on a tip' device.

  7. Atomic force microscopy as an advanced tool in neuroscience

    PubMed Central

    Jembrek, Maja Jazvinšćak; Šimić, Goran; Hof, Patrick R.; Šegota, Suzana

    2015-01-01

    This review highlights relevant issues about applications and improvements of atomic force microscopy (AFM) toward a better understanding of neurodegenerative changes at the molecular level with the hope of contributing to the development of effective therapeutic strategies for neurodegenerative illnesses. The basic principles of AFM are briefly discussed in terms of evaluation of experimental data, including the newest PeakForce Quantitative Nanomechanical Mapping (QNM) and the evaluation of Young’s modulus as the crucial elasticity parameter. AFM topography, revealed in imaging mode, can be used to monitor changes in live neurons over time, representing a valuable tool for high-resolution detection and monitoring of neuronal morphology. The mechanical properties of living cells can be quantified by force spectroscopy as well as by new AFM. A variety of applications are described, and their relevance for specific research areas discussed. In addition, imaging as well as non-imaging modes can provide specific information, not only about the structural and mechanical properties of neuronal membranes, but also on the cytoplasm, cell nucleus, and particularly cytoskeletal components. Moreover, new AFM is able to provide detailed insight into physical structure and biochemical interactions in both physiological and pathophysiological conditions. PMID:28123795

  8. Subharmonic Oscillations and Chaos in Dynamic Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Cantrell, Sean A.

    2015-01-01

    The increasing use of dynamic atomic force microscopy (d-AFM) for nanoscale materials characterization calls for a deeper understanding of the cantilever dynamics influencing scan stability, predictability, and image quality. Model development is critical to such understanding. Renormalization of the equations governing d- AFM provides a simple interpretation of cantilever dynamics as a single spring and mass system with frequency dependent cantilever stiffness and damping parameters. The renormalized model is sufficiently robust to predict the experimentally observed splitting of the free-space cantilever resonance into multiple resonances upon cantilever-sample contact. Central to the model is the representation of the cantilever sample interaction force as a polynomial expansion with coefficients F(sub ij) (i,j = 0, 1, 2) that account for the effective interaction stiffness parameter, the cantilever-to-sample energy transfer, and the amplitude of cantilever oscillation. Application of the Melnikov method to the model equation is shown to predict a homoclinic bifurcation of the Smale horseshoe type leading to a cascade of period doublings with increasing drive displacement amplitude culminating in chaos and loss of image quality. The threshold value of the drive displacement amplitude necessary to initiate subharmonic generation depends on the acoustic drive frequency, the effective damping coefficient, and the nonlinearity of the cantilever-sample interaction force. For parameter values leading to displacement amplitudes below threshold for homoclinic bifurcation other bifurcation scenarios can occur, some of which lead to chaos.

  9. A new ion sensing deep atomic force microscope

    SciTech Connect

    Drake, Barney; Randall, Connor; Bridges, Daniel; Hansma, Paul K.

    2014-08-15

    Here we describe a new deep atomic force microscope (AFM) capable of ion sensing. A novel probe assembly incorporates a micropipette that can be used both for sensing ion currents and as the tip for AFM imaging. The key advance of this instrument over previous ion sensing AFMs is that it uses conventional micropipettes in a novel suspension system. This paper focuses on sensing the ion current passively while using force feedback for the operation of the AFM in contact mode. Two images are obtained simultaneously: (1) an AFM topography image and (2) an ion current image. As an example, two images of a MEMS device with a microchannel show peaks in the ion current as the pipette tip goes over the edges of the channel. This ion sensing AFM can also be used in other modes including tapping mode with force feedback as well as in non-contact mode by utilizing the ion current for feedback, as in scanning ion conductance microscopy. The instrument is gentle enough to be used on some biological samples such as plant leaves.

  10. The influence of chemical bonding configuration on atomic identification by force spectroscopy.

    PubMed

    Welker, Joachim; Weymouth, Alfred John; Giessibl, Franz J

    2013-08-27

    The force between two atoms depends not only on their chemical species and distance, but also on the configuration of their chemical bonds to other atoms. This strongly affects atomic force spectroscopy, in which the force between the tip of an atomic force microscope and a sample is measured as a function of distance. We show that the short-range forces between tip and sample atoms depend strongly on the configuration of the tip, to the point of preventing atom identification with a poorly defined tip. Our solution is to control the tip apex before using it for spectroscopy. We demonstrate a method by which a CO molecule on Cu can be used to characterize the tip. In combination with gentle pokes, this can be used to engineer a specific tip apex. This CO Front atom Identification (COFI) method allows us to use a well-defined tip to conduct force spectroscopy.

  11. Atomic force microscope manipulation of Ag atom on the Si(111) surface

    NASA Astrophysics Data System (ADS)

    Enkhtaivan, Batnyam; Oshiyama, Atsushi

    2017-01-01

    We present first-principles total-energy electronic-structure calculations that provide the microscopic mechanism of Ag atom diffusion between the half unit cells (HUCs) on the Si(111)-(7 ×7 ) surface with and without the tip of the atomic force microscope (AFM). We find that, without the presence of the AFM tip, there are three pathways of inter-HUC diffusion. The pathway, in which the diffusing atom passes over the nanohole of the surface, has the lowest energy barrier. The diffusion along this pathway between the two HUCs is almost symmetric with the energy barrier of about 0.8 eV in both directions. In the other two pathways, the adatom diffuses along the edge of the nanohole. The diffusion along these two pathways have an energy barrier of about 1 eV. With the presence of the tip, we find that the reaction pathways are essentially the same, but the diffusion along the edge of the nanohole has a lower energy barrier than the diffusion over the nanohole. Thus the diffusion channel is changed by the presence of the tip. In the diffusion along the edge of the nanohole, the energy barrier in one direction is substantially reduced to be 0.2-0.4 eV by the tip, while that of the diffusion in the reverse direction remains larger than 1 eV. The Si tip reduces the energy barrier more than the Pt tip due to the flexibility of the tip apex structure. In addition to the reduction of the barrier, the tip traps the diffusing adatom preventing diffusion in the reverse direction. Also we find that the shape of the tip apex structure is important for the adatom's trapping ability. The bond formation between the AFM tip atom and the surface adatom is essential for atom manipulation using the AFM tip. Our results show that atom manipulation is possible with both the metallic and semiconducting AFM tips.

  12. Direct observation of dynamic force propagation between focal adhesions of cells on microposts by atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Okada, Akinori; Mizutani, Yusuke; Subagyo, Agus; Hosoi, Hirotaka; Nakamura, Motonori; Sueoka, Kazuhisa; Kawahara, Koichi; Okajima, Takaharu

    2011-12-01

    We investigated dynamic force propagation between focal adhesions of fibroblast cells cultured on polydimethylsiloxane micropost substrates, by atomic force microscopy. Live cells were mechanically modulated by the atomic force microscopy probe bound to cell apical surfaces at 0.01-0.5 Hz, while microposts served as a force sensor at basal surfaces. We observed that cells exhibited rheological behavior at the apical surface but had no apparent out-of-phase response at the basal surface, indicating that the dynamic force propagating through cytoskeletal filaments behaves in an elastic manner. Moreover, the direction of the propagated force was observed to be intimately associated with the prestress.

  13. Fast spatial atomic layer deposition of Al{sub 2}O{sub 3} at low temperature (<100 °C) as a gas permeation barrier for flexible organic light-emitting diode displays

    SciTech Connect

    Choi, Hagyoung; Shin, Seokyoon; Jeon, Hyeongtag; Choi, Yeongtae; Kim, Junghun; Kim, Sanghun; Chung, Seog Chul; Oh, Kiyoung

    2016-01-15

    The authors developed a high throughput (70 Å/min) and scalable space-divided atomic layer deposition (ALD) system for thin film encapsulation (TFE) of flexible organic light-emitting diode (OLED) displays at low temperatures (<100 °C). In this paper, the authors report the excellent moisture barrier properties of Al{sub 2}O{sub 3} films deposited on 2G glass substrates of an industrially relevant size (370 × 470 mm{sup 2}) using the newly developed ALD system. This new ALD system reduced the ALD cycle time to less than 1 s. A growth rate of 0.9 Å/cycle was achieved using trimethylaluminum as an Al source and O{sub 3} as an O reactant. The morphological features and step coverage of the Al{sub 2}O{sub 3} films were investigated using field emission scanning electron microscopy. The chemical composition was analyzed using Auger electron spectroscopy. These deposited Al{sub 2}O{sub 3} films demonstrated a good optical transmittance higher than 95% in the visible region based on the ultraviolet visible spectrometer measurements. Water vapor transmission rate lower than the detection limit of the MOCON test (less than 3.0 × 10{sup −3} g/m{sup 2} day) were obtained for the flexible substrates. Based on these results, Al{sub 2}O{sub 3} deposited using our new high-throughput and scalable spatial ALD is considered a good candidate for preparation of TFE films of flexible OLEDs.

  14. Can Point Defects in Surfaces in Solution be Atomically Resolved by Atomic Force Microscopy?

    NASA Astrophysics Data System (ADS)

    Reischl, Bernhard; Raiteri, Paolo; Gale, Julian D.; Rohl, Andrew L.

    2016-11-01

    While the atomic force microscope (AFM) is able to image mineral surfaces in solution with atomic resolution, so far, it has been a matter of debate whether imaging point defects is also possible under these conditions. The difficulties stem from the limited knowledge of what types of defects may be stable in the presence of an AFM tip, as well as from the complicated imaging mechanism involving interactions between hydration layers over the surface and around the tip apex. Here, we present atomistic molecular dynamics and free energy calculations of the AFM imaging of vacancies and ionic substitutions in the calcite (10 1 ¯ 4 ) surface in water, using a new silica AFM tip model. Our results indicate that both calcium and carbonate vacancies, as well as a magnesium substitution, could be resolved in an AFM experiment, albeit with different imaging mechanisms.

  15. In situ generation and atomic scale imaging of slip traces with atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Oele, W. F.; Kerssemakers, J. W. J.; De Hosson, J. Th. M.

    1997-12-01

    We have designed, constructed, and tested a three-point bending system for in situ studies of slip in ionic crystals with an atomic force microscope (AFM). The work is aimed at developing a novel instrumental attachment for an in situ study of plastic deformation. The bending system is installed inside the optical head of the AFM on top of the piezoelectric scanner. Since the bending should not obstruct scanning, a piezocrystal is used for bending as well as an external stepper motor, which is connected with a screw in the bending system via a flexible shaft. The bending system performs over a relatively wide, continuous deflection range. The operation of the three-point bending system is illustrated by experiments on an ionic material in which the effect of macroscopic bending is demonstrated at an atomic scale.

  16. Atomic Force Microscopy Used to Improve the Mobility of InSb-based Quantum Wells

    NASA Astrophysics Data System (ADS)

    Johnson, M. B.; Lindstrom, S. C.; Goldammer, K. J.; Liu, W. K.; Santos, M. B.

    1998-03-01

    High mobility InSb-based quantum wells grown on semi-insulating GaAs substrates have great promise as magnetic field detectors and high-speed low-current transistors. Unfortunately, the large mismatch between InSb and GaAs (14%) makes the growth of high-quality low dislocation density InSb/AlInSb structures problematic. In-plane ex-situ atomic force microscopy is an ideal tool to investigate the morphology and dislocation density of such MBE-grown quantum wells. The surface morphology reflects the morphology of the well/barrier interfaces when ultra-thin cap layers are used. Typical topographic scans show roughness due to the formation of spiral pyramidal structures centered on threading screw dislocations as well as oriented abrupt steps related to these dislocations. The surface concentration of these features correlates with the low temperature electron mobility indicating that this morphology may be a factor limiting electron mobility in these quantum wells. Approaches to increase the mobility through the improvement of the morphology will be discussed.

  17. Atomic force microscopy imaging of lipid rafts of human breast cancer cells.

    PubMed

    Orsini, F; Cremona, A; Arosio, P; Corsetto, P A; Montorfano, G; Lascialfari, A; Rizzo, A M

    2012-12-01

    Several studies suggest that the plasma membrane is composed of micro-domains of saturated lipids that segregate together to form lipid rafts. Lipid rafts have been operationally defined as cholesterol- and sphingolipid-enriched membrane micro-domains resistant to solubilization by non-ionic detergents at low temperatures. Here we report a biophysical approach aimed at investigating lipid rafts of MDA-MB-231 human breast cancer cells by coupling an atomic force microscopy (AFM) study to biochemical assays namely Western blotting and high performance thin layer chromatography. Lipid rafts were purified by ultracentrifugation on discontinuous sucrose gradient using extraction with Triton X-100. Biochemical analyses proved that the fractions isolated at the 5% and 30% sucrose interface (fractions 5 and 6) have a higher content of cholesterol, sphingomyelin and flotillin-1 with respect to the other purified fractions. Tapping mode AFM imaging of fraction 5 showed membrane patches whose height corresponds to the one awaited for a single lipid bilayer as well as the presence of micro-domains with lateral dimensions in the order of a few hundreds of nanometers. In addition, an AFM study using specific antibodies suggests the presence, in these micro-domains, of a characteristic marker of lipid rafts, the protein flotillin-1.

  18. Analysis of intraocular lens surface adhesiveness by atomic force microscopy.

    PubMed

    Lombardo, Marco; Carbone, Giovanni; Lombardo, Giuseppe; De Santo, Maria P; Barberi, Riccardo

    2009-07-01

    To analyze intraocular lens (IOL) optic surface adhesiveness using atomic force microscopy (AFM). LiCryL Laboratory, University of Calabria, Rende, Italy. The surface adhesive properties of poly(methyl methacrylate) (PMMA), silicone, hydrophilic acrylic, and hydrophobic acrylic IOLs were evaluated by AFM. Analysis was performed at room temperature (21 degrees C) in a liquid environment using the force-versus-distance mode of a commercial instrument (NanoScope III). Measurements were acquired with rectangular silicon cantilevers of a nominal elastic constant of 10 Newton/m. The nominal value of the tip's radius of curvature was 1 mum, and the scanning speed during the acquisitions ranged from 10 to 400 nm/s. The adhesion force measurements showed different characteristics for the various types of IOLs (P<.001, analysis of variance). The hydrophobic acrylic IOL had the largest mean adhesive force (283.75 nanoNewton [nN] +/- 0.14 [SD]) followed by the hydrophilic acrylic (84.76 +/- 0.94 nN), PMMA (45.77 +/- 0.47 nN), and silicone (2.10 +/- 0.01 nN) IOLs. The surface properties of the biomaterials used to manufacture IOLs are important because they can influence the incidence and severity of posterior capsule opacification (PCO). Although further studies are necessary to elucidate the mechanism of PCO development and the interface interactions between the IOL and capsule, the results in this study may bolster the theory of manufacturing more-adhesive materials to prevent PCO.

  19. Primate lens capsule elasticity assessed using Atomic Force Microscopy

    PubMed Central

    Ziebarth, Noël M.; Arrieta, Esdras; Feuer, William J.; Moy, Vincent T.; Manns, Fabrice; Parel, Jean-Marie

    2011-01-01

    The purpose of this project is to measure the elasticity of the human and non-human primate lens capsule at the microscopic scale using Atomic Force Microscopy (AFM). Elasticity measurements were performed using AFM on the excised anterior lens capsule from 9 cynomolgus monkey (5.9–8.0 years), 8 hamadryas baboon (2.8–10.1 years), and 18 human lenses (33–79 years). Anterior capsule specimens were obtained by performing a 5mm continuous curvilinear capsulorhexis and collecting the resulting disk of capsular tissue. To remove the lens epithelial cells the specimen was soaked in 0.1% trypsin and 0.02% EDTA for five minutes, washed, and placed on a Petri dish and immersed in DMEM. Elasticity measurements of the capsule were performed with a laboratory-built AFM system custom designed for force measurements of ophthalmic tissues. The capsular specimens were probed with an AFM cantilever tip to produce force-indentation curves for each specimen. Young’s modulus was calculated from the force-indentation curves using the model of Sneddon for a conical indenter. Young’s modulus of elasticity was 20.1–131kPa for the human lens capsule, 9.19–117kPa for the cynomolgus lens capsule, and 13.1–62.4kPa for the baboon lens capsule. Young’s modulus increased significantly with age in humans (p=0.03). The age range of the monkey and baboon samples was not sufficient to justify an analysis of age dependence. The capsule elasticity of young humans (<45 years) was not statistically different from that of the monkey and baboon. In humans, there is an increase in lens capsule stiffness at the microscale that could be responsible for an increase in lens capsule bulk stiffness. PMID:21420953

  20. Lateral force calibration of an atomic force microscope with a diamagnetic levitation spring system

    SciTech Connect

    Li, Q.; Kim, K.-S.; Rydberg, A.

    2006-06-15

    A novel diamagnetic lateral force calibrator (D-LFC) has been developed to directly calibrate atomic force microscope (AFM) cantilever-tip or -bead assemblies. This enables an AFM to accurately measure the lateral forces encountered in friction or biomechanical-testing experiments at a small length scale. In the process of development, deformation characteristics of the AFM cantilever assemblies under frictional loading have been analyzed and four essential response variables, i.e., force constants, of the assembly have been identified. Calibration of the lateral force constant and the 'crosstalk' lateral force constant, among the four, provides the capability of measuring absolute AFM lateral forces. The D-LFC is composed of four NdFeB magnets and a diamagnetic pyrolytic graphite sheet, which can calibrate the two constants with an accuracy on the order of 0.1%. Preparation of the D-LFC and the data processing required to get the force constants is significantly simpler than any other calibration methods. The most up-to-date calibration technique, known as the 'wedge method', calibrates mainly one of the two constants and, if the crosstalk effect is properly analyzed, is primarily applicable to a sharp tip. In contrast, the D-LFC can calibrate both constants simultaneously for AFM tips or beads with any radius of curvature. These capabilities can extend the applicability of AFM lateral force measurement to studies of anisotropic multiscale friction processes and biomechanical behavior of cells and molecules under combined loading. Details of the D-LFC method as well as a comparison with the wedge method are provided in this article.

  1. Wettability and surface forces measured by atomic force microscopy: the role of roughness

    NASA Astrophysics Data System (ADS)

    Gavoille, J.; Takadoum, J.; Martin, N.; Durand, D.

    2009-10-01

    Thin films of titanium, copper and silver with various roughnesses were prepared by physical vapour deposition technique: dc magnetron sputtering. By varying the deposition time from few minutes to one hour it was possible to obtain metallic films with surface roughness average ranging from 1 to 20 nm. The wettability of these films was studied by measuring the contact angle using the sessile drop method and surface forces were investigated using the atomic force microscopy (AFM) by measuring the pull-off force between the AFM tip and the surfaces. Experimental results have been mainly discussed in terms of metal surface reactivity, Young modulus of the materials and real surface of contact between the AFM tip and the film surfaces.

  2. Quantification of Staphylococcus aureus adhesion forces on various dental restorative materials using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Merghni, Abderrahmen; Kammoun, Dorra; Hentati, Hajer; Janel, Sébastien; Popoff, Michka; Lafont, Frank; Aouni, Mahjoub; Mastouri, Maha

    2016-08-01

    In the oral cavity dental restorative biomaterials can act as a reservoir for infection with opportunistic Staphylococcus aureus pathogen, which can lead to the occurrence of secondary caries and treatment failures. Our aim was to evaluate the adhesion forces by S. aureus on four dental restorative biomaterials and to correlate this finding to differences in specific surface characteristics. Additionally, the influence of salivary conditioning films in exerted adhesion forces was investigated. The substrate hydrophobicity was measured by goniometer and the surface free energy was calculated using the equilibrium advancing contact angle values of water, formamide, and diiodomethane on the tested surfaces. The surface roughness was determined using atomic force microscope (AFM). Additionally, cell force spectroscopy was achieved to quantify the forces that drive cell-substrate interactions. S. aureus bacterium exerted a considerable adhesion forces on various dental restorative materials, which decreased in the presence of saliva conditioning film. The influence of the surface roughness and free energy in initial adhesion appears to be more important than the effect of hydrophobicity, either in presence or absence of saliva coating. Hence, control of surface properties of dental restorative biomaterials is of crucial importance in preventing the attachment and subsequent the biofilm formation.

  3. Localization and force analysis at the single virus particle level using atomic force microscopy.

    PubMed

    Liu, Chih-Hao; Horng, Jim-Tong; Chang, Jeng-Shian; Hsieh, Chung-Fan; Tseng, You-Chen; Lin, Shiming

    2012-01-06

    Atomic force microscopy (AFM) is a vital instrument in nanobiotechnology. In this study, we developed a method that enables AFM to simultaneously measure specific unbinding force and map the viral glycoprotein at the single virus particle level. The average diameter of virus particles from AFM images and the specificity between the viral surface antigen and antibody probe were integrated to design a three-stage method that sets the measuring area to a single virus particle before obtaining the force measurements, where the influenza virus was used as the object of measurements. Based on the purposed method and performed analysis, several findings can be derived from the results. The mean unbinding force of a single virus particle can be quantified, and no significant difference exists in this value among virus particles. Furthermore, the repeatability of the proposed method is demonstrated. The force mapping images reveal that the distributions of surface viral antigens recognized by antibody probe were dispersed on the whole surface of individual virus particles under the proposed method and experimental criteria; meanwhile, the binding probabilities are similar among particles. This approach can be easily applied to most AFM systems without specific components or configurations. These results help understand the force-based analysis at the single virus particle level, and therefore, can reinforce the capability of AFM to investigate a specific type of viral surface protein and its distributions. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. Atomic force microscopy and force spectroscopy on the assessment of protein folding and functionality.

    PubMed

    Carvalho, Filomena A; Martins, Ivo C; Santos, Nuno C

    2013-03-01

    Atomic force microscopy (AFM) applied to biological systems can, besides generating high-quality and well-resolved images, be employed to study protein folding via AFM-based force spectroscopy. This approach allowed remarkable advances in the measurement of inter- and intramolecular interaction forces with piconewton resolution. The detection of specific interaction forces between molecules based on the AFM sensitivity and the manipulation of individual molecules greatly advanced the understanding of intra-protein and protein-ligand interactions. Apart from the academic interest in the resolution of basic scientific questions, this technique has also key importance on the clarification of several biological questions of immediate biomedical relevance. Force spectroscopy is an especially appropriate technique for "mechanical proteins" that can provide crucial information on single protein molecules and/or domains. Importantly, it also has the potential of combining in a single experiment spatial and kinetic measurements. Here, the main principles of this methodology are described, after which the ability to measure interactions at the single-molecule level is discussed, in the context of relevant protein-folding examples. We intend to demonstrate the potential of AFM-based force spectroscopy in the study of protein folding, especially since this technique is able to circumvent some of the difficulties typically encountered in classical thermal/chemical denaturation studies.

  5. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  6. Atomic force microscopy of atomic-scale ledges and etch pits formed during dissolution of quartz

    NASA Technical Reports Server (NTRS)

    Gratz, A. J.; Manne, S.; Hansma, P. K.

    1991-01-01

    The processes involved in the dissolution and growth of crystals are closely related. Atomic force microscopy (AFM) of faceted pits (called negative crystals) formed during quartz dissolution reveals subtle details of these underlying physical mechanisms for silicates. In imaging these surfaces, the AFM detected ledges less than 1 nm high that were spaced 10 to 90 nm apart. A dislocation pit, invisible to optical and scanning electron microscopy measurements and serving as a ledge source, was also imaged. These observations confirm the applicability of ledge-motion models to dissolution and growth of silicates; coupled with measurements of dissolution rate on facets, these methods provide a powerful tool for probing mineral surface kinetics.

  7. The long range voice coil atomic force microscope

    PubMed Central

    Barnard, H.; Randall, C.; Bridges, D.; Hansma, P. K.

    2012-01-01

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coils in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures. PMID:22380097

  8. Atomic-force microscopy of submicron films of electroactive polymer

    NASA Astrophysics Data System (ADS)

    Karamov, D. D.; Kornilov, V. M.; Lachinov, A. N.; Kraikin, V. A.; Ionova, I. A.

    2016-07-01

    Atomic-force microscopy is used to study the supramolecular structure of submicron films of electroactive thermally stable polymer (polydiphenylenephthalide (PDP)). It has been demonstrated that PDP films produced using centrifuging are solid homogeneous films with thicknesses down to several nanometers, which correspond to two or three monomolecular layers. The film volume is structurized at thicknesses greater than 100 nm. The study of the rheological properties of solutions used for film production yields a crossover point that separates the domains of strongly diluted and semidiluted solutions. A transition from the globular structure to the associate structure is observed in films that are produced using solutions with a boundary concentration. A model of the formation of polymer film that involves the presence of associates in the original solution is discussed.

  9. Imaging of nucleic acids with atomic force microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.; Ando, Toshio

    2011-01-01

    Atomic force microscopy (AFM) is a key tool of nanotechnology with great importance in applications to DNA nanotechnology and to the recently emerging field of RNA nanotechnology. Advances in the methodology of AFM now enable reliable and reproducible imaging of DNA of various structures, topologies, and DNA and RNA nanostructures. These advances are reviewed here with emphasis on methods utilizing modification of mica to prepare the surfaces enabling reliable and reproducible imaging of DNA and RNA nanostructures. Since the AFM technology for DNA is more mature, AFM imaging of DNA is introduced in this review to provide experience and background for the improvement of AFM imaging of RNA. Examples of imaging different structures of RNA and DNA are discussed and illustrated. Special attention is given to the potential use of AFM to image the dynamics of nucleic acids at the nanometer scale. As such, we review recent advances with the use of time-lapse AFM. PMID:21310240

  10. GaN nanowire tips for nanoscale atomic force microscopy.

    PubMed

    Behzadirad, Mahmoud; Nami, Mohsen; Rishinaramagalam, Ashwin; Feezell, Daniel; Busani, Tito

    2017-04-07

    Imaging of high-aspect-ratio nanostructures with sharp edges and straight walls in nanoscale metrology by Atomic Force Microscopy (AFM) has been challenging due to the mechanical properties and conical geometry of the majority of available commercial tips. Here we report on the fabrication of GaN probes for nanoscale metrology of high-aspect-ratio structures to enhance the resolution of AFM imaging and improve the durability of AFM tips. GaN nanowires (NWs) were fabricated using bottom-up and top-down techniques and bonded to Si cantilevers to scan vertical trenches on Si substrates. Over several scans, the GaN probes demonstrated excellent durability while scanning uneven structures and showed resolution enhancements in topography images, independent of scan direction, compared to commercial Si tips.

  11. Silicon Carbide Epitaxial Films Studied by Atomic Force Microscopy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Silicon carbide (SiC) holds great potential as an electronic material because of its wide band gap energy, high breakdown electric field, thermal stability, and resistance to radiation damage. Possible aerospace applications of high-temperature, high-power, or high-radiation SiC electronic devices include sensors, control electronics, and power electronics that can operate at temperatures up to 600 C and beyond. Commercially available SiC devices now include blue light-emitting diodes (LED's) and high-voltage diodes for operation up to 350 C, with other devices under development. At present, morphological defects in epitaxially grown SiC films limit their use in device applications. Research geared toward reducing the number of structural inhomogeneities can benefit from an understanding of the type and nature of problems that cause defects. The Atomic Force Microscope (AFM) has proven to be a useful tool in characterizing defects present on the surface of SiC epitaxial films. The in-house High-Temperature Integrated Electronics and Sensors (HTIES) Program at the NASA Lewis Research Center not only extended the dopant concentration range achievable in epitaxial SiC films, but it reduced the concentration of some types of defects. Advanced structural characterization using the AFM was warranted to identify the type and structure of the remaining film defects and morphological inhomogeneities. The AFM can give quantitative information on surface topography down to molecular scales. Acquired, in part, in support of the Advanced High Temperature Engine Materials Technology Program (HITEMP), the AFM had been used previously to detect partial fiber debonding in composite material cross sections. Atomic force microscopy examination of epitaxial SiC film surfaces revealed molecular-scale details of some unwanted surface features. Growth pits propagating from defects in the substrate, and hillocks due, presumably, to existing screw dislocations in the substrates, were

  12. Atomic force microscopy spring constant determination in viscous liquids.

    PubMed

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  13. Atomic force microscopy spring constant determination in viscous liquids

    NASA Astrophysics Data System (ADS)

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-01

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this "thermal noise method" is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  14. The long range voice coil atomic force microscope

    SciTech Connect

    Barnard, H.; Randall, C.; Bridges, D.; Hansma, P. K.

    2012-02-15

    Most current atomic force microscopes (AFMs) use piezoelectric ceramics for scan actuation. Piezoelectric ceramics provide precision motion with fast response to applied voltage potential. A drawback to piezoelectric ceramics is their inherently limited ranges. For many samples this is a nonissue, as imaging the nanoscale details is the goal. However, a key advantage of AFM over other microscopy techniques is its ability to image biological samples in aqueous buffer. Many biological specimens have topography for which the range of piezoactuated stages is limiting, a notable example of which is bone. In this article, we present the use of voice coils in scan actuation for an actuation range in the Z-axis an order of magnitude larger than any AFM commercially available today. The increased scan size will allow for imaging an important new variety of samples, including bone fractures.

  15. Imaging the membrane protein bacteriorhodopsin with the atomic force microscope

    SciTech Connect

    Butt, H.J.; Downing, K.H.; Hansma, P.K. )

    1990-12-01

    The membrane protein bacteriorhodopsin was imaged in buffer solution at room temperature with the atomic force microscope. Three different substrates were used: mica, silanized glass and lipid bilayers. Single bacteriorhodopsin molecules could be imaged in purple membranes adsorbed to mica. A depression was observed between the bacteriorhodopsin molecules. The two dimensional Fourier transform showed the hexagonal lattice with a lattice constant of 6.21 +/- 0.20 nm which is in agreement with results of electron diffraction experiments. Spots at a resolution of approximately 1.1 nm could be resolved. A protein, cationic ferritin, could be imaged bound to the purple membranes on glass which was silanized with aminopropyltriethoxysilane. This opens the possibility of studying receptor/ligand binding under native conditions. In addition, purple membranes bound to a lipid bilayer were imaged. These images may help in interpreting results of functional studies done with purple membranes adsorbed to black lipid membranes.

  16. A subsurface add-on for standard atomic force microscopes.

    PubMed

    Verbiest, G J; van der Zalm, D J; Oosterkamp, T H; Rost, M J

    2015-03-01

    The application of ultrasound in an Atomic Force Microscope (AFM) gives access to subsurface information. However, no commercially AFM exists that is equipped with this technique. The main problems are the electronic crosstalk in the AFM setup and the insufficiently strong excitation of the cantilever at ultrasonic (MHz) frequencies. In this paper, we describe the development of an add-on that provides a solution to these problems by using a special piezo element with a lowest resonance frequency of 2.5 MHz and by separating the electronic connection for this high frequency piezo element from all other connections. In this sense, we support researches with the possibility to perform subsurface measurements with their existing AFMs and hopefully pave also the way for the development of a commercial AFM that is capable of imaging subsurface features with nanometer resolution.

  17. Atomic force microscopy spring constant determination in viscous liquids

    SciTech Connect

    Pirzer, Tobias; Hugel, Thorsten

    2009-03-15

    The spring constant of cantilever in atomic force microscopy (AFM) is often calibrated from thermal noise spectra. Essential for accurate implementation of this 'thermal noise method' is an appropriate fitting function and procedure. Here, we survey the commonly used fitting functions and examine their applicability in a range of environments. We find that viscous liquid environments are extremely problematic due to the frequency dependent nature of the damping coefficient. The deviations from the true spring constant were sometimes more than 100% when utilizing the fit routines built into the three investigated commercial AFM instruments; similar problems can arise with homebuilt AFMs. We discuss the reasons for this problem, especially the limits of the fitting process. Finally, we present a thermal noise based procedure and an improved fit function to determine the spring constant with AFMs in fluids of various viscosities.

  18. Progress in the Correlative Atomic Force Microscopy and Optical Microscopy.

    PubMed

    Zhou, Lulu; Cai, Mingjun; Tong, Ti; Wang, Hongda

    2017-04-24

    Atomic force microscopy (AFM) has evolved from the originally morphological imaging technique to a powerful and multifunctional technique for manipulating and detecting the interactions between molecules at nanometer resolution. However, AFM cannot provide the precise information of synchronized molecular groups and has many shortcomings in the aspects of determining the mechanism of the interactions and the elaborate structure due to the limitations of the technology, itself, such as non-specificity and low imaging speed. To overcome the technical limitations, it is necessary to combine AFM with other complementary techniques, such as fluorescence microscopy. The combination of several complementary techniques in one instrument has increasingly become a vital approach to investigate the details of the interactions among molecules and molecular dynamics. In this review, we reported the principles of AFM and optical microscopy, such as confocal microscopy and single-molecule localization microscopy, and focused on the development and use of correlative AFM and optical microscopy.

  19. Atomic Force Microscopy Imaging Techniques for Piezoelectric Materials

    NASA Astrophysics Data System (ADS)

    Kunz, Jeremy; Inglefield, Colin

    2009-10-01

    Using an Atomic Force Microscope (AFM) and a Lock-in Detector we investigated the effectiveness of two different methods of local piezoelectricity within a standard commercial piezoelectric material, Pb(Ti, Zr)O3 (PIC 151). In the first method, sometimes known as piezo-mode AFM, we applied an AC voltage to the sample locally through the tip of the AFM; we were able to image the local piezoelectric response while taking a topographical image. For the second set of measurements, we used a sample of the PIC 151 material with a uniform silver electrode over the entire surface. The voltage was applied to the entire sample through the electrodes and the AFM cantilever measured local response. Images based on the two techniques will be compared along with the methods themselves.

  20. Measuring viscoelasticity of soft samples using atomic force microscopy.

    PubMed

    Tripathy, S; Berger, E J

    2009-09-01

    Relaxation indentation experiments using atomic force microscopy (AFM) are used to obtain viscoelastic material properties of soft samples. The quasilinear viscoelastic (QLV) model formulated by Fung (1972, "Stress Strain History Relations of Soft Tissues in Simple Elongation," in Biomechanics, Its Foundation and Objectives, Prentice-Hall, Englewood Cliffs, NJ, pp. 181-207) for uniaxial compression data was modified for the indentation test data in this study. Hertz contact mechanics was used for the instantaneous deformation, and a reduced relaxation function based on continuous spectrum is used for the time-dependent part in the model. The modified QLV indentation model presents a novel method to obtain viscoelastic properties from indentation data independent of relaxation times of the test. The major objective of the present study is to develop the QLV indentation model and implement the model on AFM indentation data for 1% agarose gel and a viscoelastic polymer using spherical indenter.