Science.gov

Sample records for low-temperature gas discharge

  1. Coulomb collisions in the Boltzmann equation for electrons in low-temperature gas discharge plasmas

    NASA Astrophysics Data System (ADS)

    Hagelaar, G. J. M.

    2016-02-01

    This paper investigates the effects of electron-electron and electron-ion Coulomb collisions on the electron distribution function and transport coefficients obtained from the Boltzmann equation for simple dc gas discharge conditions. Expressions are provided for the full Coulomb collision terms acting on both the isotropic and anisotropic parts of the electron distribution function, which are then incorporated in the freeware Boltzmann equation solver BOLSIG+. Different Coulomb collision effects are demonstrated and discussed on the basis of BOLSIG+  results for argon gas. It is shown that the anisotropic part of the electron-electron collision term, neglected in previous work, can in certain cases have a large effect on the electron mobility and is essential when describing the transition towards the Coulomb-collision dominated regime characterized by Spitzer transport coefficients. Finally, a brief overview is presented of the discharge conditions for which different Coulomb collision effects occur in different gases.

  2. PlasmaPIC: A tool for modeling low-temperature plasma discharges

    NASA Astrophysics Data System (ADS)

    Muehlich, Nina Sarah; Becker, Michael; Henrich, Robert; Heiliger, Christian

    2015-09-01

    PlasmaPIC is a three-dimensional particle in cell (PIC) code. It consists of an electrostatic part for modeling dc and rf-ccp discharges as well as an electrodynamic part for modeling inductively coupled discharges. The three-dimensional description enables the modeling of discharges in arbitrary geometries without limitations to any symmetry. These geometries can be easily imported from common CAD tools. A main feature of PlasmaPIC is the ability of an excellent massive parallelization of the computation, which scales linearly up to a few hundred cpu cores. This is achieved by using a multigrid algorithm for the field solver as well as an effective load balancing of the particles. Moreover, PlasmaPIC includes the interaction of the neutral gas and the plasma discharge. Because the neutral gas and the plasma simulation are acting on different time scales we perform the simulation of both separately in a self-consistent treatment, whereas the neutral gas distribution is calculated using the direct simulation Monte Carlo method (DSMC). The merge of these features turns PlasmaPIC into a powerful simulation tool for a wide range of plasma discharges and introduces a new way of understanding and optimizing low-temperature plasma applications. This work has been supported by the ``Bundesministerium fuer Wirtschaft und Energie.'' Grant 50RS1507.

  3. Investigation of NOx Reduction by Low Temperature Oxidation Using Ozone Produced by Dielectric Barrier Discharge

    NASA Astrophysics Data System (ADS)

    Stamate, Eugen; Irimiea, Cornelia; Salewski, Mirko

    2013-05-01

    NOx reduction by low temperature oxidation using ozone produced by a dielectric barrier discharge generator is investigated for different process parameters in a 6 m long reactor in serpentine arrangement using synthetic dry flue gas with NOx levels below 500 ppm, flows up to 50 slm and temperatures up to 80 °C. The role of different mixing schemes and the impact of a steep temperature gradient are also taken into consideration. The process chemistry is monitored by Fourier transform infrared spectroscopy, chemiluminescence and absorption spectroscopy. The kinetic mechanism during the mixing in a cross flow configuration is investigated using three-dimensional simulations.

  4. Low temperature plasma RF capacitive discharge in helium at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hakki, A.; Fayrushin, I.; Kashapov, N.

    2016-01-01

    The paper describes Low temperature plasma RF capacitive discharge in helium at atmospheric pressure. The circuit has been done, to obtain output currentabout 90mA,and the maximum power was 100W, The frequency of the discharging was f = 40MHz.Twolamps (DУ-50) were used in power supply. Helium consumption was about 1.5l/m.

  5. Gas detection using low-temperature reduced graphene oxide sheets

    NASA Astrophysics Data System (ADS)

    Lu, Ganhua; Ocola, Leonidas E.; Chen, Junhong

    2009-02-01

    We demonstrate a high-performance gas sensor using partially reduced graphene oxide (GO) sheets obtained through low-temperature step annealing (300 °C at maximum) in argon flow at atmospheric pressure. The electrical conductance of GO was measured after each heating cycle to interpret the level of reduction. The thermally reduced GO showed p-type semiconducting behavior in ambient conditions and were responsive to low-concentration NO2 diluted in air at room temperature. The sensitivity is attributed to the electron transfer from the reduced GO to adsorbed NO2, which leads to enriched hole concentration and enhanced electrical conduction in the reduced GO sheet.

  6. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    SciTech Connect

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-13

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  7. Inactivation of Microcystis aeruginosa using dielectric barrier discharge low-temperature plasma

    NASA Astrophysics Data System (ADS)

    Pu, Sichuan; Chen, Jierong; Wang, Gang; Li, Xiaoyong; Ma, Yun

    2013-05-01

    The efficiency of Microcystis aeruginosa plasma inactivation was investigated using dielectric barrier discharge low-temperature plasma. The inactivation efficiency was characterized in terms of optical density. The influence of electrical and physicochemical parameters on M. aeruginosa inactivation was studied to determine the optimal experimental conditions. The influence of active species was studied. The proliferation of the M. aeruginosa cells was significantly decreased under plasma exposure. The morphologic changes in M. aeruginosa were characterized under scanning electron microscopy. These results suggest that the low-temperature plasma technology is a promising method for water pollution control.

  8. Low-temperature gas from marine shales: wet gas to dry gas over experimental time

    PubMed Central

    2009-01-01

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300° below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100°C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins. PMID:19900271

  9. Low-temperature gas from marine shales: wet gas to dry gas over experimental time.

    PubMed

    Mango, Frank D; Jarvie, Daniel M

    2009-01-01

    Marine shales exhibit unusual behavior at low temperatures under anoxic gas flow. They generate catalytic gas 300 degrees below thermal cracking temperatures, discontinuously in aperiodic episodes, and lose these properties on exposure to trace amounts of oxygen. Here we report a surprising reversal in hydrocarbon generation. Heavy hydrocarbons are formed before light hydrocarbons resulting in wet gas at the onset of generation grading to dryer gas over time. The effect is moderate under gas flow and substantial in closed reactions. In sequential closed reactions at 100 degrees C, gas from a Cretaceous Mowry shale progresses from predominately heavy hydrocarbons (66% C5, 2% C1) to predominantly light hydrocarbons (56% C1, 8% C5), the opposite of that expected from desorption of preexisting hydrocarbons. Differences in catalyst substrate composition explain these dynamics. Gas flow should carry heavier hydrocarbons to catalytic sites, in contrast to static conditions where catalytic sites are limited to in-place hydrocarbons. In-place hydrocarbons and their products should become lighter with conversion thus generating lighter hydrocarbon over time, consistent with our experimental results. We recognize the similarities between low-temperature gas generation reported here and the natural progression of wet gas to dry gas over geologic time. There is now substantial evidence for natural catalytic activity in source rocks. Natural gas at thermodynamic equilibrium and the results reported here add to that evidence. Natural catalysis provides a plausible and unique explanation for the origin and evolution of gas in sedimentary basins.

  10. Low-temperature sterilization of wrapped materials using flexible sheet-type dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Eto, Hiroyuki; Ono, Yoshihito; Ogino, Akihisa; Nagatsu, Masaaki

    2008-12-01

    A flexible sheet-type dielectric barrier discharge (DBD) was studied for the low-temperature sterilization of medical instruments wrapped with Tyvek packaging. Sterilization experiments using Geobacillus stearothermophilus spores with a population of 106 were carried out with various mixtures of nitrogen and oxygen. We confirmed the inactivation of spores after 4.5 min of DBD irradiation at a temperature of 28.4 °C and relative humidity of 64.4%. The main sterilizing factors of this method are the ozone and UV emissions generated by DBD in dry air and synergistic OH radicals generated by DBD in moist air.

  11. Decontamination effects of low-temperature plasma generated by corona discharge. Part II: new insights.

    PubMed

    Scholtz, V; Julák, J; Kríha, V; Mosinger, J; Kopecká, S

    2007-01-01

    The second part of our paper presents the results of experiments with the decontamination of surfaces by low-temperature plasma generated by corona discharge in air at atmospheric pressure. A simple device is described and the effects of the corona discharge on model microorganisms, viz. the yeast Candida albicans, Gram-negative bacteria Escherichia coli, Enterobacter aerogenes, Neisseria sicca, Stenotrophomonas maltophilia, Gram-positive bacteria Deinococcus radiodurans, Enterococcus faecium, Staphylococcus epidermidis, Streptococcus sanguinis, and vegetative and spore forms of Geobacillus stearothermophilus are discussed. A similar microbicidal effect after about one-minute exposure was observed in all vegetative forms of the microorganisms. Measurement in growth inhibition zones on a semisolid medium was used to determine the dependence of the microbicidal effect on exposure time and the distance between electrodes. Counting of colonies served to assess the microbicidal effect of the discharge on contaminated inert surfaces observable after more than 1 min exposure. Geobacillus stearothermophilus spores were found to have several times lower susceptibility to the action of the discharge and the microbicidal effect was observed only after an 8 min exposure. Reaction with the iodide reagent did not unambiguously demonstrate the difference between ozone and singlet oxygen as presumed active components of the corona. The area distribution of reactive oxygen species was determined; it was found to differ from the Wartburg law depending on exposure time. Qualitative evidence was obtained on the penetration of the reactive oxygen species into the semisolid medium. PMID:18225640

  12. INTENSE ENERGETIC GAS DISCHARGE

    DOEpatents

    Luce, J.S.

    1960-03-01

    A method and apparatus for initiating and sustaining an energetic gas arc discharge are described. A hollow cathode and a hollow anode are provided. By regulating the rate of gas flow into the interior of the cathode, the arc discharge is caused to run from the inner surface of the cathode with the result that adequate space-charge neutralization is provided inside the cathode but not in the main arc volume. Thus, the gas fed to the cathode is substantially completely ionized before it leaves the cathode, with the result that an energetic arc discharge can be maintained at lower operating pressures.

  13. GAS DISCHARGE DEVICES

    DOEpatents

    Jefferson, S.

    1958-11-11

    An apparatus utilized in introducing tritium gas into envelope of a gas discharge device for the purpose f maintaining the discharge path in ionized condition is described. ln addition to the cathode and anode, the ischarge device contains a zirconium or tantalum ilament arranged for external excitation and a metallic seed containing tritium, and also arranged to have a current passed through it. Initially, the zirconium or tantalum filament is vaporized to deposit its material adjacent the main discharge region. Then the tritium gas is released and, due to its affinity for the first released material, it deposits in the region of the main discharge where it is most effective in maintaining the discharge path in an ionized condition.

  14. Acetamiprid removal in wastewater by the low-temperature plasma using dielectric barrier discharge.

    PubMed

    Li, Shanping; Ma, Xiaolong; Jiang, Yanyan; Cao, Xiaohong

    2014-08-01

    Degradation of acetamiprid in wastewater was studied in a dielectric barrier discharge (DBD) reactor. This reactor produces ultraviolet light and reactive species like ozone (O₃) can be used for the treatment of wastewater. We examined the factors that could affect the degradation process, including the discharge power, and the initial concentrations of acetamiprid, and O₃ which is generated by the DBD reactor. We also investigated the effect of adding Na₂B₄O₇ as a radical scavenger to probe the role of hydroxyl radical in the reaction. The results indicated that acetamiprid could be removed from aqueous solution effectively and hydroxyl radicals played an important role during the degradation by the low temperature plasma. The degradation process of acetamiprid fits the first-order kinetics. The degradation efficiency was 83.48 percent at 200 min when the discharge power was 170 W and the initial acetamiprid concentration was 50 mg/L. The removal efficiency of acetamiprid decreased with the increasing concentration of Na₂B₄O₇ because B₄O₇(2-) is an excellent radical scavenger that inhibited the generation of OH during the DBD process. The removal efficiency of acetamiprid improved in the presence of O₃. The main reason was that O₃ can oxidize certain organic compounds directly or indirectly by generating hydroxyl radicals. The degradation products of acetamiprid were characterized qualitatively and quantitatively using high performance liquid chromatography, mass spectrometry and UV-vis spectroscopy. PMID:24840877

  15. Treatment of Candida albicans biofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet

    NASA Astrophysics Data System (ADS)

    Koban, Ina; Matthes, Rutger; Hübner, Nils-Olaf; Welk, Alexander; Meisel, Peter; Holtfreter, Birte; Sietmann, Rabea; Kindel, Eckhard; Weltmann, Klaus-Dieter; Kramer, Axel; Kocher, Thomas

    2010-07-01

    Because of some disadvantages of chemical disinfection in dental practice (especially denture cleaning), we investigated the effects of physical methods on Candida albicans biofilms. For this purpose, the antifungal efficacy of three different low-temperature plasma devices (an atmospheric pressure plasma jet and two different dielectric barrier discharges (DBDs)) on Candida albicans biofilms grown on titanium discs in vitro was investigated. As positive treatment controls, we used 0.1% chlorhexidine digluconate (CHX) and 0.6% sodium hypochlorite (NaOCl). The corresponding gas streams without plasma ignition served as negative treatment controls. The efficacy of the plasma treatment was determined evaluating the number of colony-forming units (CFU) recovered from titanium discs. The plasma treatment reduced the CFU significantly compared to chemical disinfectants. While 10 min CHX or NaOCl exposure led to a CFU log10 reduction factor of 1.5, the log10 reduction factor of DBD plasma was up to 5. In conclusion, the use of low-temperature plasma is a promising physical alternative to chemical antiseptics for dental practice.

  16. A low-temperature ZnO nanowire ethanol gas sensor prepared on plastic substrate

    NASA Astrophysics Data System (ADS)

    Lin, Chih-Hung; Chang, Shoou-Jinn; Hsueh, Ting-Jen

    2016-09-01

    In this work, a low-temperature ZnO nanowire ethanol gas sensor was prepared on plastic substrate. The operating temperature of the ZnO nanowire ethanol gas sensor was reduced to room temperature using ultraviolet illumination. The experimental results indicate a favorable sensor response at low temperature, with the best response at 60 °C. The results also reveal that the ZnO nanowire ethanol gas sensor can be easily integrated into portable products, whose waste heat can improve sensor response and achieve energy savings, while energy consumption can be further reduced by solar irradiation.

  17. Discharge conditions for CW and pulse-modulated surface-wave plasmas in low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Terashita, F.; Nonaka, H.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2006-01-01

    The discharge conditions required for low-temperature plasma sterilization were investigated using low-pressure surface-wave plasma (SWP). The discharge conditions for both continuous wave (CW) and pulse-modulated SWPs in low-temperature sterilization of Geobacillus stearothermophilus with a population of 1.5 × 106 and 3.0 × 106 were studied by varying the microwave input power from 500 W to 3 kW, and the effective plasma treatment time from 40 to 300 s. Results showed that sterilization was possible in a shorter treatment time using a higher microwave power for both CW and pulse-modulated SWPs. Pulse-modulated SWPs gave effective sterilization at a temperature roughly 10 to 20 °C below that of CW SWPs under the same average microwave power.

  18. Demonstration of organic volatile decomposition and bacterial sterilization by miniature dielectric barrier discharges on low-temperature cofired ceramic electrodes

    NASA Astrophysics Data System (ADS)

    Kim, Duk-jae; Shim, Yeun-keun; Park, Jeongwon; Kim, Hyung-jun; Han, Jeon-geon

    2016-04-01

    Nonthermal atmospheric-pressure plasma discharge is designed with low-temperature cofired ceramic (LTCC) electrodes to achieve dielectric barrier surface discharge (DBSD). The environmental requirement (below 0.05 ppm) of the amount of byproducts (ozone and NO x ) produced during the process was met by optimizing the electrode design to produce a high dielectric barrier discharge for low-voltage (∼700 V) operation and minimizing the distance between electrodes to improve the plasma discharging efficiency. The concentrations of volatile organic compounds (VOCs) within interior cabins of commercial vehicles were significantly reduced after 1-h treatment to improve air quality cost-effectively. This atmospheric-pressure plasma process was demonstrated for the sterilization of Escherichia coli to prevent food poisoning during the preservation of food in refrigerators.

  19. Ultra-low-temperature cooling of two-dimensional electron gas

    NASA Astrophysics Data System (ADS)

    Xia, J. S.; Adams, E. D.; Shvarts, V.; Pan, W.; Stormer, H. L.; Tsui, D. C.

    2000-05-01

    A new design has been used for cooling GaAs/Al xGa 1- xAs sample to ultra-low-temperatures. The sample, with electrical contacts directly soldered to the sintered silver powder heat exchangers, was immersed in liquid 3He, which was cooled by a PrNI 5 nuclear refrigerator. The data analysis shows that the two-dimensional electron gas (2DEG) was cooled to 4.0 mK at the refrigerator base temperature Tb of 2.0 mK. The design with heat exchanger cooling is applicable to any ultra-low-temperature transport measurements of 2DEG system.

  20. Reactions at very low temperatures: gas kinetics at a new frontier.

    PubMed

    Smith, Ian W M

    2006-04-28

    Advances in experimental techniques, especially the development of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme) method, allow many gas-phase molecular processes to be studied at very low temperatures. This Review focuses on the reactions of molecular and atomic radicals with neutral molecules. Rate constants for almost 50 such reactions have been measured at temperatures as low as 13 K by using the CRESU method. The surprising demonstration that so many reactions between electrically neutral species can be extremely rapid at these very low temperatures has excited interest both from theoreticians and from those seeking to understand the chemistry that gives rise to the 135 or so molecules that are present in low-temperature molecular clouds in the interstellar medium. Theoretical treatments of these reactions are based on the idea that a reaction occurs when the long-range potential between the reagent species brings them into close contact. The astrochemical context, theoretical studies, and the determination of the rate constants of these low-temperature reactions are critically discussed.

  1. Gas Hydrate Stability at Low Temperatures and High Pressures with Applications to Mars and Europa

    NASA Technical Reports Server (NTRS)

    Marion, G. M.; Kargel, J. S.; Catling, D. C.

    2004-01-01

    Gas hydrates are implicated in the geochemical evolution of both Mars and Europa [1- 3]. Most models developed for gas hydrate chemistry are based on the statistical thermodynamic model of van der Waals and Platteeuw [4] with subsequent modifications [5-8]. None of these models are, however, state-of-the-art with respect to gas hydrate/electrolyte interactions, which is particularly important for planetary applications where solution chemistry may be very different from terrestrial seawater. The objectives of this work were to add gas (carbon dioxide and methane) hydrate chemistries into an electrolyte model parameterized for low temperatures and high pressures (the FREZCHEM model) and use the model to examine controls on gas hydrate chemistries for Mars and Europa.

  2. Streptococci biofilm decontamination on teeth by low-temperature air plasma of dc corona discharges

    NASA Astrophysics Data System (ADS)

    Kovalóvá, Z.; Zahoran, M.; Zahoranová, A.; Machala, Z.

    2014-06-01

    Non-thermal plasmas of atmospheric pressure air direct current corona discharges were investigated for potential applications in dental medicine. The objective of this ex vivo study was to apply cold plasmas for the decontamination of Streptococci biofilm grown on extracted human teeth, and to estimate their antimicrobial efficiency and the plasma's impact on the enamel and dentine of the treated tooth surfaces. The results show that both positive streamer and negative Trichel pulse coronas can reduce bacterial population in the biofilm by up to 3 logs in a 10 min exposure time. This bactericidal effect can be reached faster (within 5 min) by electrostatic spraying of water through the discharge onto the treated tooth surface. Examination of the tooth surface after plasma exposure by infrared spectroscopy and scanning electron microscopy did not show any significant alteration in the tooth material composition or the tooth surface structures.

  3. Gas-phase reactions and energy transfer at very low temperatures.

    PubMed

    Sims, I R; Smith, I W

    1995-01-01

    Experimental studies of gas-phase chemical reactions and molecular energy transfer at very low temperatures and between electrically neutral species are reviewed. Although work of collisionally induced vibrational and rotational transfer is described, emphasis is placed on very recent results on the rates of free radical reactions obtained by applying the pulsed laser photolysis (PLP)-laser-induced fluorescence (LIF) technique in a CRESU (Cinétique de Réactions en Ecoulement Supersonique Uniforme) apparatus at temperatures as low as 13 K. These measurements demonstrate that quite a wide variety of reactions-including those between two radicals, those between radicals and unsaturated molecules, and even some of those between radicals and saturated molecules-remain rapid at very low temperatures. Theoretical efforts to explain some of these results are described, as is their impact on attempts to model the synthesis of molecules in interstellar clouds.

  4. Low Temperature Force Microscopy on a Deeply Embedded Two Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Hedberg, James Augustin

    2011-12-01

    Experimental physics in the low temperature limit has consistently produced major advances for condensed matter research. Likewise, scanning probe microscopy offers a unique view of the nanometer scale features that populate the quantum landscape. This work discusses the merger of the two disciplines via the development of the Ultra Low Temperature Scanning Probe Microscope, the ULT-SPM. We focus on the novel characterization of an exotic condensed matter system: a deeply buried two dimensional electron gas with a cleaved edge overgrowth geometry. By coupling the dynamics of the force sensing probe microscope to the electrostatics of the electron gas, we can remotely and non-invasively measure charge transport features which are normally only observable using physically contacted electrodes. Focusing on the quantum Hall regime, we can exploit the high sensitivity of the local force sensor to study spatially dependent phenomena associated with electronic potential distributions. The instrument shows promise for many exciting experiments in which low temperatures, high magnetic fields, and local measurements are critical. Designed for operation at 50 mK, in magnetic fields reaching 16 T, many components of the instrument are not commercially available and were therefore designed and constructed in- house. As such, the intricate details of its design, construction and operation are documented thoroughly. This includes: the microscope assembly, the modular components such as the scan head and coarse motors, the electronics developed for controlling the instrument, and the general integration into the low temperature infrastructure. A quartz tuning fork is used as the force sensor in this instrument, enabling a wide selection between different modes of operation, the most relevant being electrostatic force microscopy. Noise limits are investigated and matched sources of experimental noise are identified. Detailed schematics of the instrument are also included.

  5. Nitric Oxide Studies in Low Temperature Plasmas Generated with a Nanosecond Pulse Sphere Gap Electrical Discharge

    NASA Astrophysics Data System (ADS)

    Burnette, David Dean

    This dissertation presents studies of NO kinetics in a plasma afterglow using various nanosecond pulse discharges across a sphere gap. The discharge platform is developed to produce a diffuse plasma volume large enough to allow for laser diagnostics in a plasma that is rich in vibrationally-excited molecules. This plasma is characterized by current and voltage traces as well as ICCD and NO PLIF images that are used to monitor the plasma dimensions and uniformity. Temperature and vibrational loading measurements are performed via coherent anti-Stokes Raman spectroscopy (CARS). Absolute NO concentrations are obtained by laser-induce fluorescence (LIF) measurements, and N and O densities are found using two photon absorption laser-induced fluorescence (TALIF). For all dry air conditions studied, the NO behavior is characterized by a rapid rate of formation consistent with an enhanced Zeldovich process involving electronically-excited nitrogen species that are generated within the plasma. After several microseconds, the NO evolution is entirely controlled by the reverse Zeldovich process. These results show that under the chosen range of conditions and even in extreme instances of vibrational loading, there is no formation channel beyond ~2 musec. Both the NO formation and consumption mechanisms are strongly affected by the addition of fuel species, producing much greater NO concentrations in the afterglow.

  6. Low-temperature thermodynamics of the unitary Fermi gas: Superfluid fraction, first sound, and second sound

    SciTech Connect

    Salasnich, Luca

    2010-12-15

    We investigate the low-temperature thermodynamics of the unitary Fermi gas by introducing a model based on the zero-temperature spectra of both bosonic collective modes and fermonic single-particle excitations. We calculate the Helmholtz free energy and from it we obtain the entropy, the internal energy, and the chemical potential as a function of the temperature. By using these quantities and the Landau's expression for the superfluid density we determine analytically the superfluid fraction, the critical temperature, the first sound velocity, and the second sound velocity. We compare our analytical results with other theoretical predictions and experimental data of ultracold atoms and dilute neutron matter.

  7. Liquid phase low temperature method for production of methanol from synthesis gas and catalyst formulations therefor

    DOEpatents

    Mahajan, Devinder

    2005-07-26

    The invention provides a homogenous catalyst for the production of methanol from purified synthesis gas at low temperature and low pressure which includes a transition metal capable of forming transition metal complexes with coordinating ligands and an alkoxide, the catalyst dissolved in a methanol solvent system, provided the transition metal complex is not transition metal carbonyl. The coordinating ligands can be selected from the group consisting of N-donor ligands, P-donor ligands, O-donor ligands, C-donor ligands, halogens and mixtures thereof.

  8. Improving the low temperature dyeability of polyethylene terephthalate fabric with dispersive dyes by atmospheric pressure plasma discharge

    NASA Astrophysics Data System (ADS)

    Elabid, Amel E. A.; Zhang, Jie; Shi, Jianjun; Guo, Ying; Ding, Ke; Zhang, Jing

    2016-07-01

    Polyethylene terephthalate (PET) fiber and textile is one of the largest synthetic polymer commodity in the world. The great energy consumption and pollution caused by the high temperature and pressure dyeing of PET fibers and fabrics with disperse dyes has been caused concern these years. In this study, an atmospheric pressure plasma with fine and uniform filament discharge operated at 20 kHz has been used to improve the low temperature dyeability of PET fabric at 95 °C with three cation disperse dyes: Red 73, Blue 183 and Yellow 211. The dyes uptake percentage of the treated PET fabrics was observed to increase as twice as much of untreated fabric. The color strength rate was increased more than 20%. The reducing of the water contact angle and the raising of the capillary height of treated PET fabric strip indicate its hydrophilicity improvement. Scanning electron microscope (SEM) results display nano to micro size of etching pits appeared uniformly on the fiber surface of the treated PET. Simultaneously, X-ray photoelectron spectroscopy (XPS) analysis indicates an increase of the oxygen content in the surface caused by the introduction of polar groups such as Cdbnd O and COOH. The rough surface with improved polar oxygen groups showed hydrophilicity and affinity to C.I. dispersive dyes and is believed to be caused by the strong and very fine filament discharge appearing randomly at one place at an instant but evenly at many places at a longer period. This increases the diffusion and absorption of the C.I. disperse dyes on the PET fiber surface, which improve its low temperature dyeability.

  9. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range.

  10. Infrared Action Spectroscopy of Low-Temperature Neutral Gas-Phase Molecules of Arbitrary Structure.

    PubMed

    Yatsyna, Vasyl; Bakker, Daniël J; Salén, Peter; Feifel, Raimund; Rijs, Anouk M; Zhaunerchyk, Vitali

    2016-09-01

    We demonstrate a technique for IR action spectroscopy that enables measuring IR spectra in a background-free fashion for low-temperature neutral gas-phase molecules of arbitrary structure. The method is exemplified experimentally for N-methylacetamide molecules in the mid-IR spectral range of 1000-1800  cm^{-1}, utilizing the free electron laser FELIX. The technique involves the resonant absorption of multiple mid-IR photons, which induces molecular dissociation. The dissociation products are probed with 10.49 eV vacuum ultraviolet photons and analyzed with a mass spectrometer. We also demonstrate the capability of this method to record, with unprecedented ease, mid-IR spectra for the molecular associates, such as clusters and oligomers, present in a molecular beam. In this way the mass-selected spectra of low-temperature gas-phase dimers and trimers of N-methylacetamide are measured in the full amide I-III range. PMID:27661721

  11. Effects of forming gas plasma treatment on low-temperature Cu–Cu direct bonding

    NASA Astrophysics Data System (ADS)

    Kim, Sungdong; Nam, Youngju; Eunkyung Kim, Sarah

    2016-06-01

    Low-temperature Cu–Cu direct bonding becomes of great importance as Cu is widely used as an interconnection material in the packaging industry. Preparing a clean surface is a key to successful Cu–Cu direct bonding. We investigated the effects of forming gas plasma treatment on the reduction of Cu oxide and Cu–Cu bonding temperature. As plasma input power and treatment time increased, Cu oxide could be effectively reduced, and this could be attributed to the enhanced chemical reaction between forming gas plasma and Cu oxide. When the bonding temperature was reduced from 415 to 300 °C, the bonding strength of the plasma-treated interface was increased from 1.8 to 5.55 J/m2 while that of the wet-treated interface was decreased.

  12. Separation of H2, HD and D2 using Low Temperature Gas Chromatography

    NASA Astrophysics Data System (ADS)

    Whisnant, C. Steven; Kelley, Travis; Burke, Ryan; Hansen, Patrick

    2008-10-01

    The frozen spin HD target developed for the study of photonuclear physics by the LEGS collaboration at Brookhaven National Laboratory (and now moved to JLab) requires high purity HD gas to produce targets with spin relaxation times on the order of months. Since this purity is not available commercially, the gas is distilled at low temperature to reduce the residual H2 and D2 contamination. Quantifying the remaining amount of these contaminants is important for preparing a target that obtains the desired polarization and spin relaxation time. To measure the relative concentrations of H2 and D2, a gas chromatography system has been developed that separates the isotopes of hydrogen. The system uses a 50 meter porous-layer open-tabular (PLOT) 5å carbon molsieve column with an inner diameter of 0.53 mm held at temperatures near 150K. The carrier gas is neon. The signal is produced by measuring differences in thermal conductivity between hydrogen and neon. Under these conditions, not only are H2 and D2 separated from HD, but o-H2 and p-H2 are also well separated from one another. The resulting chromatograms are fit to extract areas and corrected for isotopic differences in thermal conductivity to produce relative concentrations. The analysis of several gas samples will be presented and the status of the method discussed.

  13. Low temperatures shear viscosity of a two-component dipolar Fermi gas with unequal population

    NASA Astrophysics Data System (ADS)

    Darsheshdar, E.; Yavari, H.; Zangeneh, Z.

    2016-07-01

    By using the Green's functions method and linear response theory we calculate the shear viscosity of a two-component dipolar Fermi gas with population imbalance (spin polarized) in the low temperatures limit. In the strong-coupling Bose-Einstein condensation (BEC) region where a Feshbach resonance gives rise to tightly bound dimer molecules, a spin-polarized Fermi superfluid reduces to a simple Bose-Fermi mixture of Bose-condensed dimers and the leftover unpaired fermions (atoms). The interactions between dimer-atom, dimer-dimer, and atom-atom take into account to the viscous relaxation time (τη) . By evaluating the self-energies in the ladder approximation we determine the relaxation times due to dimer-atom (τDA) , dimer-dimer (τcDD ,τdDD) , and atom-atom (τAA) interactions. We will show that relaxation rates due to these interactions τDA-1 ,τcDD-1, τdDD-1, and τAA-1 have T2, T4, e - E /kB T (E is the spectrum of the dimer atoms), and T 3 / 2 behavior respectively in the low temperature limit (T → 0) and consequently, the atom-atom interaction plays the dominant role in the shear viscosity in this rang of temperatures. For small polarization (τDA ,τAA ≫τcDD ,τdDD), the low temperatures shear viscosity is determined by contact interaction between dimers and the shear viscosity varies as T-5 which has the same behavior as the viscosity of other superfluid systems such as superfluid neutron stars, and liquid helium.

  14. Ignition of a coal particle at the low temperature of gas flow

    NASA Astrophysics Data System (ADS)

    Glushkov, Dmitrii O.; Sharypov, Oleg V.

    2015-01-01

    Regularities of physical and chemical processes occurring during the heating of the coal dust particles by low-temperature air flow are investigated by means of thermogravimetric analyzer TA SDT Q600 and experimental setup of optical diagnostics of multiphase flows based on PIV method. Qualitative and quantitative characteristics were established for the processes of the coal particle inert heating, moisture evaporation, thermal decomposition, combustible gas mixture formation, oxidation of volatiles and carbon. It was revealed that the temperature of the oxidizer required for the coal particle ignition is higher than 500 ∘C. The experimental data can be used to develop predictive mathematical models of technological processes fire hazard in pulverized coal systems of thermal power plants.

  15. Low temperature combustion using nitrogen enrichment to mitigate NOx from large bore natural gas fueled engines.

    SciTech Connect

    Biruduganti, M.; Gupta, S.; Sekar, R.; Energy Systems

    2010-01-01

    Low temperature combustion is identified as one of the pathways to meet the mandatory ultra low NO{sub x} emissions levels set by the regulatory agencies. Exhaust gas recirculation (EGR) is a well known technique to realize low NO{sub x} emissions. However, EGR has many built-in adverse ramifications that negate its advantages in the long term. This paper discusses nitrogen enrichment of intake air using air separation membranes as a better alternative to the mature EGR technique. This investigation was undertaken to determine the maximum acceptable level of nitrogen enrichment of air for a single-cylinder spark-ignited natural gas engine. NO{sub x} reduction as high as 70% was realized with a modest 2% nitrogen enrichment while maintaining power density and simultaneously improving fuel conversion efficiency (FCE). Any enrichment beyond this level degraded engine performance in terms of power density, FCE, and unburned hydrocarbon emissions. The effect of ignition timing was also studied with and without N{sub 2} enrichment. Finally, lean burn versus stoichiometric operation utilizing nitrogen enrichment was compared. Analysis showed that lean burn operation along with nitrogen enrichment is one of the effective pathways for realizing better FCE and lower NO{sub x} emissions.

  16. Surface modification of superaustenitic and maraging stainless steels by low-temperature gas-phase carburization

    NASA Astrophysics Data System (ADS)

    Gentil, Johannes

    Low-temperature gas-phase carburization of 316L austenitic stainless steel was developed in recent years by the Swagelok company. This process generates great mechanical and electrochemical surface properties. Hardness, wear resistance, fatigue behavior, and corrosion resistance are dramatically improved, while the formation of carbides is effectively suppressed. This new technique is of technical, economical, but especially of scientific interest because the surface properties of common stainless steel can be enhanced to a level of more sophisticated and more expensive superalloys. The consequential continuation of previous research is the application of the carburization process to other steel grades. Differences in chemical composition, microstructure, and passivity between the various alloys may cause technical problems and it is expected that the initial process needs to be optimized for every specific material. This study presents results of low-temperature carburization of AL-6XN (superaustenitic stainless steel) and PH13-8Mo (precipitation-hardened martensitic stainless steel). Both alloys have been treated successfully in terms of creating a hardened surface by introducing high amounts of interstitially dissolved carbon. The surface hardness of AL-6XN was increased to 12GPa and is correlated with a colossal carbon supersaturation at the surface of up to 20 at.%. The hardened case develops a carburization time-dependent thickness between 10mum after one carburization cycle and up to 35mum after four treatments and remains highly ductile. Substantial broadening of X-ray diffraction peaks in low-temperature carburized superaustenitic stainless steels are attributed to the generation of very large compressive biaxial residual stresses. Those large stresses presumably cause relaxations of the surface, so-called undulations. Heavily expanded regions of carburized AL-6XN turn ferromagnetic. Non-carburized AL-6XN is known for its outstanding corrosion resistance

  17. Testing marine shales' ability to generate catalytic gas at low temperature

    NASA Astrophysics Data System (ADS)

    Wei, L.; Schimmelmann, A.; Drobniak, A.; Sauer, P. E.; Mastalerz, M.

    2013-12-01

    Hydrocarbon gases are generally thought to originatevia low-temperature microbial or high-temperature thermogenicpathways (Whiticar, 1996) that can be distinguished by compound-specific hydrogen and carbon stable isotope ratios. An alternative low-temperature catalytic pathway for hydrocarbon generation from sedimentary organic matter has been proposed to be active at temperatures as low as 50oC (e.g.,Mango and Jarvie,2009,2010; Mango et al., 2010; Bartholomew et al., 1999). This hypothesis, however, still requires rigoroustesting by independent laboratory experiments.The possibility of catalytic generation of hydrocarbons in some source rocks (most likely in relatively impermeable and organic-rich shales where reduced catalytic centers can be best preserved) would offer an explanation for the finding of gas of non-microbial origin in formations that lack the thermal maturity for generating thermogenic gas.It is unknown whether catalytically generated methane would be isotopically different from thermogenicmethane (δ13CCH4>-50‰, δ2HCH4from -275‰ to -100‰) ormicrobially generated methane (δ13CCH4from -40‰ to -110‰, δ2HCH4from -400‰to -150‰) (Whiticar, 1998). In order to test for catalytic gas generationin water-wet shales and coals, we are conductinglaboratory experiments at three temperatures (60°C, 100°C, 200°C)and three pressures (ambient pressure, 107 Pa, 3x107 Pa)over periods of six months to several years. So far, our longest running experiments have reached one year. We sealed different types of thermally immature, pre-evacuatedshales (Mowry, New Albany, and Mahoganyshales) and coals (SpringfieldCoal and Wilcoxlignite)with isotopically defined waters in gold cells in the absence of elemental oxygen.Preliminary results show that these samples, depending on conditions, can generate light hydrocarbon gases (methane, ethane and propane) and CO2. Methane, CO2, and traces of H2havebeen generated at 60°C, whereas experiments at 100°C and 200

  18. High-pressure/low-temperature neutron scattering of gas inclusion compounds: progress and prospects.

    PubMed

    Zhao, Yusheng; Xu, Hongwu; Daemen, Luke L; Lokshin, Konstantin; Tait, Kimberly T; Mao, Wendy L; Luo, Junhua; Currier, Robert P; Hickmott, Donald D

    2007-04-01

    Alternative energy resources such as hydrogen and methane gases are becoming increasingly important for the future economy. A major challenge for using hydrogen is to develop suitable materials to store it under a variety of conditions, which requires systematic studies of the structures, stability, and kinetics of various hydrogen-storing compounds. Neutron scattering is particularly useful for these studies. We have developed high-pressure/low-temperature gas/fluid cells in conjunction with neutron diffraction and inelastic neutron scattering instruments allowing in situ and real-time examination of gas uptake/release processes. We studied the formation of methane and hydrogen clathrates, a group of inclusion compounds consisting of frameworks of hydrogen-bonded H(2)O molecules with gas molecules trapped inside the cages. Our results reveal that clathrate can store up to four hydrogen molecules in each of its large cages with an intermolecular H(2)-H(2) distance of only 2.93 A. This distance is much shorter than that in the solid/metallic hydrogen (3.78 A), suggesting a strong densification effect of the clathrate framework on the enclosed hydrogen molecules. The framework-pressurizing effect is striking and may exist in other inclusion compounds such as metal-organic frameworks (MOFs). Owing to the enormous variety and flexibility of their frameworks, inclusion compounds may offer superior properties for storage of hydrogen and/or hydrogen-rich molecules, relative to other types of compounds. We have investigated the hydrogen storage properties of two MOFs, Cu(3)[Co(CN)(6)](2) and Cu(3)(BTC)(2) (BTC = benzenetricarboxylate), and our preliminary results demonstrate that the developed neutron-scattering techniques are equally well suited for studying MOFs and other inclusion compounds. PMID:17389387

  19. Advances in electron kinetics and theory of gas discharges

    SciTech Connect

    Kolobov, Vladimir I.

    2013-10-15

    “Electrons, like people, are fertile and infertile: high-energy electrons are fertile and able to reproduce.”—Lev TsendinModern physics of gas discharges increasingly uses physical kinetics for analysis of non-equilibrium plasmas. The description of underlying physics at the kinetic level appears to be important for plasma applications in modern technologies. In this paper, we attempt to grasp the legacy of Professor Lev Tsendin, who advocated the use of the kinetic approach for understanding fundamental problems of gas discharges. We outline the fundamentals of electron kinetics in low-temperature plasmas, describe elements of the modern kinetic theory of gas discharges, and show examples of the theoretical approach to gas discharge problems used by Lev Tsendin. Important connections between electron kinetics in gas discharges and semiconductors are also discussed. Using several examples, we illustrate how Tsendin's ideas and methods are currently being developed for the implementation of next generation computational tools for adaptive kinetic-fluid simulations of gas discharges used in modern technologies.

  20. Gas-phase kinetics of the N + C2N reaction at low temperature.

    PubMed

    Stubbing, James W; Vanuzzo, Gianmarco; Moudens, Audrey; Loison, Jean-Christophe; Hickson, Kevin M

    2015-04-01

    The rate of the gas-phase N((4)S) + C2N(X(2)Πi) reaction has been measured in a continuous supersonic flow reactor down to 54 K through the relative-rate method using the N((4)S) + OH(X(2)Π) → H((2)S) + NO(X(2)Π) reaction as a reference. The microwave discharge technique was employed to produce high concentrations of atomic nitrogen. Pulsed laser photolysis of precursor molecules Cl3C2N and H2O2 at 212 nm in situ led to C2N and OH radical formation, respectively. The rate constant is shown to be approximately independent of temperature, in contrast to previous studies of atom-radical reactions involving atomic nitrogen. While the reaction rate is faster than previously estimated, astrochemical simulations indicate that this reaction is probably only a minor source of CN radicals in dense interstellar clouds.

  1. Characterization of low-temperature cofired ceramic tiles as platforms for gas chromatographic separations.

    PubMed

    Darko, Ernest; Thurbide, Kevin B; Gerhardt, Geoff C; Michienzi, Joseph

    2013-06-01

    A gas chromatography (GC) column is fabricated within a low-temperature cofired ceramic (LTCC) tile, and its analytical properties are characterized. By using a dual-spiral design, a 100 μm wide square channel up to 15 m in length is produced within an 11 cm × 5.5 cm LTCC tile. The channel is dynamically coated with an OV-101 stationary phase that is cross-linked with dicumyl peroxide. While the uncoated LTCC tiles were able to separate a mixture of n-alkanes, the peak shapes were broad (base width of ~2 min) and tailing. In contrast to this, the coated LTCC tiles produced sharp (base width of ~8-10 s), symmetrical, well-resolved peaks for the same analytes. By using a 7.5 m long channel, about 15,000 plates were obtained for a dodecane test analyte. Further, the coated LTCC tiles were found to produce plate heights that were about 3-fold smaller than those obtained from a conventional capillary GC column of similar length, dimension, and coating operated under the same conditions. As a result, test analyte separations were slightly improved in the LTCC tiles, and their overall performance fared well. In terms of temperature programming, it was found that a series of n-alkanes separated on the LTCC tile provided a cumulative peak capacity of around 54 peaks when using C₈ to C₁₃ as analyte markers. Results indicate that LTCC tiles provide a viable and useful alternative platform for performing good quality GC separations.

  2. Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures.

    PubMed

    Xu, Yalin; Zhong, Qin; Xing, Lili

    2014-01-01

    Co modified fly ash (FA) prepared by the wet impregnation method was investigated for gas-phase elemental mercury capture under air at 80°C in this paper. X-ray fluorescence spectrometry, Brunauer-Emmett-Teller, scanning electron micrographs, X-ray diffraction, thermogravimetric (TG) analysis and X-ray photoelectron spectroscopy (XPS) were employed to characterize the samples. Experimental results showed that the optimal Co loading was 9 wt%, which gave a Hg(0) removal efficiency of 76% in a laboratory packed-bed reactor at low temperatures in the presence of O₂. The high removal efficiency was mainly attributed to oxidation of Hg(0) by the enrichment of well-dispersed Co₃O₄on the surface of FA. However, higher Co loading resulted in the decrease of removal efficiency due to the decline of surface area and Co₃O₄agglomeration. TG and XPS characterization indicated that Hg(0) was oxidized by Co₃O₄and some of the oxidized mercury formed recombination mercury oxide with Co₃O₄, which could either exist stably at low temperature or be desorbed from the adsorbents at higher temperature. Finally, the possible adsorption mechanisms were proposed according to the observed phenomena. PMID:25176492

  3. Greenhouse gas emissions from Australian open-cut coal mines: contribution from spontaneous combustion and low-temperature oxidation.

    PubMed

    Day, Stuart J; Carras, John N; Fry, Robyn; Williams, David J

    2010-07-01

    Spontaneous combustion and low-temperature oxidation of waste coal and other carbonaceous material at open-cut coal mines are potentially significant sources of greenhouse gas emissions. However, the magnitude of these emissions is largely unknown. In this study, emissions from spontaneous combustion and low-temperature oxidation were estimated for six Australian open-cut coal mines with annual coal production ranging from 1.7 to more than 16 Mt. Greenhouse emissions from all other sources at these mines were also estimated and compared to those from spontaneous combustion and low-temperature oxidation. In all cases, fugitive emission of methane was the largest source of greenhouse gas; however, in some mines, spontaneous combustion accounted for almost a third of all emissions. For one mine, it was estimated that emissions from spontaneous combustion were around 250,000 t CO(2)-e per annum. The contribution from low-temperature oxidation was generally less than about 1% of the total for all six mines. Estimating areas of spoil affected by spontaneous combustion by ground-based surveys was prone to under-report the area. Airborne infrared imaging appears to be a more reliable method.

  4. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics. PMID:27430635

  5. Low-Temperature Photochemically Activated Amorphous Indium-Gallium-Zinc Oxide for Highly Stable Room-Temperature Gas Sensors.

    PubMed

    Jaisutti, Rawat; Kim, Jaeyoung; Park, Sung Kyu; Kim, Yong-Hoon

    2016-08-10

    We report on highly stable amorphous indium-gallium-zinc oxide (IGZO) gas sensors for ultraviolet (UV)-activated room-temperature detection of volatile organic compounds (VOCs). The IGZO sensors fabricated by a low-temperature photochemical activation process and exhibiting two orders higher photocurrent compared to conventional zinc oxide sensors, allowed high gas sensitivity against various VOCs even at room temperature. From a systematic analysis, it was found that by increasing the UV intensity, the gas sensitivity, response time, and recovery behavior of an IGZO sensor were strongly enhanced. In particular, under an UV intensity of 30 mW cm(-2), the IGZO sensor exhibited gas sensitivity, response time and recovery time of 37%, 37 and 53 s, respectively, against 750 ppm concentration of acetone gas. Moreover, the IGZO gas sensor had an excellent long-term stability showing around 6% variation in gas sensitivity over 70 days. These results strongly support a conclusion that a low-temperature solution-processed amorphous IGZO film can serve as a good candidate for room-temperature VOCs sensors for emerging wearable electronics.

  6. Low-temperature interface between the gas and solid phases of hard spheres with a short-ranged attraction.

    PubMed

    Sear, R P

    1999-06-01

    At low temperature, spheres with a very short-ranged attraction exist as a near-close-packed solid coexisting with an almost infinitely dilute gas. We find that the ratio of the interfacial tension between these two phases to the thermal energy diverges as the range of the attraction tends to zero. The large tensions when the interparticle attractions are short ranged may be why globular proteins only crystallize over a narrow range of conditions. PMID:11969672

  7. Pulse circuit apparatus for gas discharge laser

    DOEpatents

    Bradley, Laird P.

    1980-01-01

    Apparatus and method using a unique pulse circuit for a known gas discharge laser apparatus to provide an electric field for preconditioning the gas below gas breakdown and thereafter to place a maximum voltage across the gas which maximum voltage is higher than that previously available before the breakdown voltage of that gas laser medium thereby providing greatly increased pumping of the laser.

  8. Low-temperature fabrication of alkali metal-organic charge transfer complexes on cotton textile for optoelectronics and gas sensing.

    PubMed

    Ramanathan, Rajesh; Walia, Sumeet; Kandjani, Ahmad Esmaielzadeh; Balendran, Sivacarendran; Mohammadtaheri, Mahsa; Bhargava, Suresh Kumar; Kalantar-zadeh, Kourosh; Bansal, Vipul

    2015-02-01

    A generalized low-temperature approach for fabricating high aspect ratio nanorod arrays of alkali metal-TCNQ (7,7,8,8-tetracyanoquinodimethane) charge transfer complexes at 140 °C is demonstrated. This facile approach overcomes the current limitation associated with fabrication of alkali metal-TCNQ complexes that are based on physical vapor deposition processes and typically require an excess of 800 °C. The compatibility of soft substrates with the proposed low-temperature route allows direct fabrication of NaTCNQ and LiTCNQ nanoarrays on individual cotton threads interwoven within the 3D matrix of textiles. The applicability of these textile-supported TCNQ-based organic charge transfer complexes toward optoelectronics and gas sensing applications is established.

  9. Ternary gas mixture for diffuse discharge switch

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1988-01-01

    A new diffuse discharge gas switch wherein a mixture of gases is used to take advantage of desirable properties of the respective gases. There is a conducting gas, an insulating gas, and a third gas that has low ionization energy resulting in a net increase in the number of electrons available to produce a current.

  10. Low Temperature Physics

    NASA Astrophysics Data System (ADS)

    Ruhemann, M.; Ruhemann, B.

    2014-05-01

    Part I. Phase Equilibrium: 1. Early methods of gas liquefaction; 2. Industrial air liquefaction; 3. The production of low temperatures; 4. The measurement of low temperatures; 5. Rectification in theory and practice; 6. Solid liquid equilibrium; Part II. The Solid State: 1. The crystal lattice; 2. The thermal energy of crystals; 3. Nernst's third law; Part III. Orbit and Spin: 1. Internal degrees of freedom; 2. Paramagnetism; 3. Magnetic cooling; Part IV. The 'Free' Electron: 1. Conductivity at low temperatures; 2. Supra-conductivity; Note added in proof; Bibliography; Addenda.

  11. Stability and photochemistry of ClO dimers formed at low temperature in the gas phase

    NASA Technical Reports Server (NTRS)

    Cox, R. A.; Hayman, G. D.

    1988-01-01

    The recent observations of elevated concentrations of the ClO radical in the austral spring over Antarctica have implicated catalytic destruction by chlorine in the large depletions seen in the total ozone column. One of the chemical theories consistent with an elevated concentration of the ClO is a cycle involving the formation of the ClO dimer through the association reaction: ClO + ClO = Cl2O2 and the photolysis of the dimer to give the active Cl species necessary for O3 depletion. Here, researchers report experimental studies designed to characterize the dimer of ClO formed by the association reaction at low temperatures. ClO was produced by static photolysis of several different precursor systems: Cl sub 2 + O sub 3; Cl sub 2 O sub 2; OClO + Cl sub 2 O spectroscopy in the U.V. region, which allowed the time dependence of Cl sub 2, Cl sub 2 O, ClO, OClO, O sub 3 and other absorbing molecules to be determined.

  12. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tseng, Ming-Hung; Yu, Hui-Huan; Chou, Kun-Yi; Jou, Jwo-Huei; Lin, Kung-Liang; Wang, Chin-Chiun; Tsai, Feng-Yu

    2016-07-01

    Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ∼ 10‑6 g m‑2 d‑1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

  13. Low-temperature gas-barrier films by atomic layer deposition for encapsulating organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Tseng, Ming-Hung; Yu, Hui-Huan; Chou, Kun-Yi; Jou, Jwo-Huei; Lin, Kung-Liang; Wang, Chin-Chiun; Tsai, Feng-Yu

    2016-07-01

    Dependences of gas-barrier performance on the deposition temperature of atomic-layer-deposited (ALD) Al2O3, HfO2, and ZnO films were studied to establish low-temperature ALD processes for encapsulating organic light-emitting diodes (OLEDs). By identifying and controlling the key factors, i.e. using H2O2 as an oxidant, laminating Al2O3 with HfO2 or ZnO layers into AHO or AZO nanolaminates, and extending purge steps, OLED-acceptable gas-barrier performance (water vapor transmission rates ˜ 10-6 g m-2 d-1) was achieved for the first time at a low deposition temperature of 50 °C in a thermal ALD mode. The compatibility of the low-temperature ALD process with OLEDs was confirmed by applying the process to encapsulate different types of OLED devices, which were degradation-free upon encapsulation and showed adequate lifetime during accelerated aging tests (pixel shrinkage <5% after 240 h at 60 °C/90% RH).

  14. Low temperature operated NiO-SnO2 heterostructured SO2 gas sensor

    NASA Astrophysics Data System (ADS)

    Tyagi, Punit; Sharma, Anjali; Tomar, Monika; Gupta, Vinay

    2016-04-01

    Sulfur dioxide (SO2) is among the most toxic gas released by the industries which is extremely dangerous for human health. In the present communication, an attempt has been made for the detection of SO2 gas (500 ppm) with the help of SnO2 thin film based gas sensor. A low sensing response of 1.3 is obtained for sputtered SnO2 thin films based sensors at a high operating temperature of 220 °C. To improve the sensing response, different heterostructured sensors are developed by incorporating other metal oxide thin films (PdO, MgO, NiO, V2O5) over SnO2 thin film surface. Sensing response studies of different sensors towards SO2 gas (500 ppm) are presented in the present report. Among all the prepared sensors NiO-SnO2 hetero-structure sensor is showing highest sensing response (˜8) at a comparatively lower operating temperature (140 °C). Possible sensing mechanism for NiO-SnO2 heterostructured sensor has also been discussed in the present report.

  15. Micromechanical cohesion force between gas hydrate particles measured under high pressure and low temperature conditions.

    PubMed

    Lee, Bo Ram; Sum, Amadeu K

    2015-04-01

    To prevent hydrate plugging conditions in the transportation of oil/gas in multiphase flowlines, one of the key processes to control is the agglomeration/deposition of hydrate particles, which are determined by the cohesive/adhesive forces. Previous studies reporting measurements of the cohesive/adhesive force between hydrate particles used cyclopentane hydrate particles in a low-pressure micromechanical force apparatus. In this study, we report the cohesive forces of particles measured in a new high-pressure micromechanical force (MMF) apparatus for ice particles, mixed (methane/ethane, 74.7:25.3) hydrate particles (Structure II), and carbon dioxide hydrate particles (Structure I). The cohesive forces are measured as a function of the contact time, contact force, temperature, and pressure, and determined from pull-off measurements. For the measurements performed of the gas hydrate particles in the gas phase, the determined cohesive force is about 30-35 mN/m, about 8 times higher than the cohesive force of CyC5 hydrates in the liquid CyC5, which is about 4.3 mN/m. We show from our results that the hydrate structure (sI with CO2 hydrates and sII with CH4/C2H6 hydrates) has no influence on the cohesive force. These results are important in the deposition of a gas-dominated system, where the hydrate particles formed in the liquid phase can then stick to the hydrate deposited in the wall exposed to the gas phase.

  16. Emerging applications of low temperature gas plasmas in the food industry.

    PubMed

    Shaw, Alex; Shama, Gilbert; Iza, Felipe

    2015-06-16

    The global burden of foodborne disease due to the presence of contaminating micro-organisms remains high, despite some notable examples of their successful reduction in some instances. Globally, the number of species of micro-organisms responsible for foodborne diseases has increased over the past decades and as a result of the continued centralization of the food processing industry, outbreaks now have far reaching consequences. Gas plasmas offer a broad range of microbicidal capabilities that could be exploited in the food industry and against which microbial resistance would be unlikely to occur. In addition to reducing the incidence of disease by acting on the micro-organisms responsible for food spoilage, gas plasmas could also play a role in increasing the shelf-life of perishable foods and thereby reduce food wastage with positive financial and environmental implications. Treatment need not be confined to the food itself but could include food processing equipment and also the environment in which commercial food processing occurs. Moreover, gas plasmas could also be used to bring about the degradation of undesirable chemical compounds, such as allergens, toxins, and pesticide residues, often encountered on foods and food-processing equipment. The literature on the application of gas plasmas to food treatment is beginning to reveal an appreciation that attention needs also to be paid to ensuring that the key quality attributes of foods are not significantly impaired as a result of treatment. A greater understanding of both the mechanisms by which micro-organisms and chemical compounds are inactivated, and of the plasma species responsible for this is forming. This is significant, as this knowledge can then be used to design plasma systems with tailored compositions that will achieve maximum efficacy. Better understanding of the underlying interactions will also enable the design and implementation of control strategies capable of minimizing variations in

  17. Rotational relaxation of fluoromethane molecules in low-temperature collisions with buffer-gas helium

    NASA Astrophysics Data System (ADS)

    Li, Xingjia; Xu, Liang; Yin, Yanning; Xu, Supeng; Xia, Yong; Yin, Jianping

    2016-06-01

    We propose a method to study the rotational relaxation of polar molecules [here taking fluoromethane (CH3F ) as an example] in collisions with 3.5 K buffer-gas helium (He) atoms by using an electrostatic guiding technique. The dependence of the guiding signal of CH3F on the injected He flux and the dependence of the guiding efficiency of CH3F on its rotational temperature are investigated both theoretically and experimentally. By comparing the experimental and simulated results, we find that the translational and rotational temperatures of the buffer-gas cooled CH3F molecules can reach to about 5.48 and 0.60 K, respectively, and the ratio between the translational and average rotational collisional cross sections of CH3F -He is γ =σt/σr=36.49 ±6.15 . In addition, the slowing, cooling, and boosting effects of the molecular beam with different injected He fluxes are also observed and their forming conditions are investigated in some detail. Our study shows that our proposed method can not only be used to measure the translational and rotational temperatures of the buffer-gas cooled molecules, but also to measure the ratio of the translational collisional cross section to the average rotational collisional cross section, and even to measure the average rotational collisional cross section when the translational collisional cross section is measured by fitting the lifetime of molecule signal to get a numerical solution from the diffusion equation of buffer-gas He atoms in the cell.

  18. Low temperature deposition of silver sulfide thin films by AACVD for gas sensor application

    NASA Astrophysics Data System (ADS)

    Hussain, Syed Tajammul; Bakar, Shahzad Abu; Saima, BiBi; Muhammad, Bakhtiar

    2012-10-01

    Crack free Ag2S thin films were deposited on glass substrates by aerosol assisted chemical vapor deposition (AACVD) using [Ag(S2CN (C2H5)2)3]2 (1) as a precursor. Thin films were deposited from solution of methanol at 400 °C and characterized by X-ray diffraction (XRD), UV-vis spectroscopy, scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analysis. SEM image of thin film showed well-defined and porous surface morphology with an average particle size of 0.3-0.5 μm. Optical band gaps energy of 1.33 eV was estimated for Ag2S thin film, by extrapolating the linear part of the Tauc plot recorded at room temperature. The gas sensing characteristics of the novel gas sensors based on Ag2S were investigated for the detection carbon monoxide. The effect of operating temperature and change in gas concentration on the performance of carbon monoxide were investigated. The sensing mechanism of sensor was discussed.

  19. Electrochemical study of natural gas fueled electrodes for low temperature solid oxide fuel cell

    NASA Astrophysics Data System (ADS)

    Hussain, M. Jafar; Raza, Rizwan; Ahmad, Mukhtar; Ali, Akbar; Ahmad, Imran; Syed, Waqar A. A.; Janjua, Naveed Kausar; Anis-Ur-Rehman, M.; Khan, M. Ajmal; Shahid, Shaukat A.; Abbas, Ghazanfar

    2016-07-01

    Fuel cell is undoubtedly widespread energy conversion technology, which can convert fuel (biogas) energy into electricity. Solid oxide fuel cell (SOFC) is one of the best choices among the fuel cell’s family due to high efficiency and fuel flexibility. In this study, zinc-based nanostructured Mn0.20FexZn0.80-xOδ electrode materials were successfully developed by solid state reaction. The proposed materials have been characterized by XRD and SEM. The electrical conductivities have been examined by four-probe DC method in the temperature range of 300-600∘C, the maximum values were recorded and found to be 12.019 and 5.106 S/cm at natural gas and air atmosphere, respectively. The electrochemical performance has been measured employing NK-SDC electrolyte material and their current density versus voltage and current density versus power density (I-V and I-P characteristics) have been drawn. The maximum power density was found to be 170 mW/cm2 using natural gas as a bio-fuel over a temperature of 600∘C.

  20. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    PubMed

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use. PMID:26567487

  1. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction

    SciTech Connect

    Laine, R.M.; Wood, B.J.; Krishnan, G.N.

    1986-04-01

    The objective of this project is to identify, prepare, test, characterize, and evaluate a practical, homogeneous catalyst for a water-gas shift process. The project effort is divided into the following five tasks: (1) Update SRI's recent review of the literature on the catalysis of the water-gas shift reaction (WGSR) to include references after 1982 and those in the patent literature. Based on this review, SRI will choose ten candidate systems to be evaluated as to their abilities to catalyze the WGSR using syngas derived from gasified coal. (2) Develop a test plan designed to effectively evaluate both the catalysts and, to some extent, reactor configuration for WGSR catalysis. (3) Perform a series of experiments to identify the most effective and economical of the ten candidate catalysts and then further evaluate the reaction kinetics of at least one selected catalyst system to develop sufficient data to provide the basis for the work in Task 4. (4) Develop a mathematical model of the final candidate system that uses rate expressions to describe the catalytic process. (5) Perform a techno-economical evaluation of the catalyst in terms of a proposed plant design based on the reaction model, current costs, and standard chemical engineering practice and compare the proposed design with a conventional hydrogen plant.

  2. Interface engineering: broadband light and low temperature gas detection abilities using a nano-heterojunction device.

    PubMed

    Chang, Chien-Min; Hsu, Ching-Han; Liu, Yi-Wei; Chien, Tzu-Chiao; Sung, Chun-Han; Yeh, Ping-Hung

    2015-12-21

    Herein, we have designed a nano-heterojunction device using interface defects and band bending effects, which can have broadband light detection (from 365-940 nm) and low operating temperature (50 °C) gas detection abilities. The broadband light detection mechanism occurs because of the defects and band bending between the heterojunction interface. We have demonstrated this mechanism using CoSi2/SnO2, CoSi2/TiO2, Ge/SnO2 and Ge/TiO2 nano-heterojunction devices, and all these devices show broadband light detection ability. Furthermore, the nano-heterojunction of the nano-device has a local Joule-heating effect. For gas detection, the results show that the nano-heterojunction device presents a high detection ability. The reset time and sensitivity of the nano-heterojunction device are an order faster and larger than Schottky-contacted devices (previous works), which is due to the local Joule-heating effect between the interface of the nano-heterojunction. Based on the abovementioned idea, we can design diverse nano-devices for widespread use.

  3. Solid sorbents for removal of carbon dioxide from gas streams at low temperatures

    DOEpatents

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO.sub.2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO.sub.2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35.degree. C.

  4. Solid Sorbents for Removal of Carbon Dioxide from Gas Streams at Low Temperatures

    SciTech Connect

    Sirwardane, Ranjani V.

    2005-06-21

    New low-cost CO2 sorbents are provided that can be used in large-scale gas-solid processes. A new method is provided for making these sorbents that involves treating substrates with an amine and/or an ether so that the amine and/or ether comprise at least 50 wt. percent of the sorbent. The sorbent acts by capturing compounds contained in gaseous fluids via chemisorption and/or physisorption between the unit layers of the substrate's lattice where the polar amine liquids and solids and/or polar ether liquids and solids are located. The method eliminates the need for high surface area supports and polymeric materials for the preparation of CO2 capture systems, and provides sorbents with absorption capabilities that are independent of the sorbents' surface areas. The sorbents can be regenerated by heating at temperatures in excess of 35 degrees C.

  5. Evaluation of bactericidal effects of low-temperature nitrogen gas plasma towards application to short-time sterilization.

    PubMed

    Kawamura, Kumiko; Sakuma, Ayaka; Nakamura, Yuka; Oguri, Tomoko; Sato, Natsumi; Kido, Nobuo

    2012-07-01

    To develop a novel low-temperature plasma sterilizer using pure N(2) gas as a plasma source, we evaluated bactericidal ability of a prototype apparatus provided by NGK Insulators. After determination of the sterilizing conditions without the cold spots, the D value of the BI of Geobacillus stearothermophilus endospores on the filter paper was determined as 1.9 min. However, the inactivation efficiency of BI carrying the same endospores on SUS varied to some extent, suggesting that the bactericidal effect might vary by materials of sterilized instruments. Staphylococcus aureus and Escherichia coli were also exposed to the N(2) gas plasma and confirmed to be inactivated within 30 min. Through the evaluation of bactericidal efficiency in a sterilization bag, we concluded that the UV photons in the plasma and the high-voltage pulse to generate the gas plasma were not concerned with the bactericidal effect of the N(2) gas plasma. Bactericidal effect might be exhibited by activated nitrogen atoms or molecular radicals.

  6. Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature.

    PubMed

    Zöpfl, Alexander; Lemberger, Michael-Maximilian; König, Matthias; Ruhl, Guenther; Matysik, Frank-Michael; Hirsch, Thomas

    2014-01-01

    Reduced graphene oxide (rGO) was investigated as a material for use in chemiresistive gas sensors. The carbon nanomaterial was transferred onto a silicon wafer with interdigital gold electrodes. Spin coating turned out to be the most reliable transfer technique, resulting in consistent rGO layers of reproducible quality. Fast changes in the electrical resistance at a low operating temperature of 85 °C could be detected for the gases NO(2), CH(4) and H(2). Especially upon adsorption of NO(2) the high signal changes allowed a minimum detection of 0.3 ppm (S/N = 3). To overcome the poor selectivity, rGO was chemically functionalized with octadecylamine, or modified by doping with metal nanoparticles such as Pd and Pt, and also metal oxides such as MnO(2), and TiO(2). The different response patterns for six different materials allowed the discrimination of all of the test gases by pattern recognition based on principal component analysis. PMID:25467062

  7. On the Mechanism of Low-Temperature Water Gas Shift Reaction on Copper

    SciTech Connect

    Gokhale, Amit A.; Dumesic, James A.; Mavrikakis, Manos

    2008-01-30

    The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Periodic, self-consistent density functional theory (DFT-GGA) calculations are used to investigate the water gas shift reaction (WGSR) mechanism on Cu(111). The thermochemistry and activation energy barriers for all the elementary steps of the commonly accepted redox mechanism, involving complete water activation to atomic oxygen, are presented. Through our calculations, we identify carboxyl, a new reactive intermediate, which plays a central role in WGSR on Cu(111). The thermochemistry and activation energy barriers of the elementary steps of a new reaction path, involving carboxyl, are studied. A detailed DFTbased microkinetic model of experimental reaction rates, accounting for both the previous and the new WGSR mechanism show that, under relevant experimental conditions, (1) the carboxyl-mediated route is the dominant path, and (2) the initial hydrogen abstraction from water is the rate-limiting step. Formate is a stable “spectator” species, formed predominantly through CO₂ hydrogenation. In addition, the microkinetic model allows for predictions of (i) surface coverage of intermediates, (ii) WGSR apparent activation energy, and (iii) reaction orders with respect to CO, H₂O, CO₂, and H₂.

  8. Reduced graphene oxide and graphene composite materials for improved gas sensing at low temperature.

    PubMed

    Zöpfl, Alexander; Lemberger, Michael-Maximilian; König, Matthias; Ruhl, Guenther; Matysik, Frank-Michael; Hirsch, Thomas

    2014-01-01

    Reduced graphene oxide (rGO) was investigated as a material for use in chemiresistive gas sensors. The carbon nanomaterial was transferred onto a silicon wafer with interdigital gold electrodes. Spin coating turned out to be the most reliable transfer technique, resulting in consistent rGO layers of reproducible quality. Fast changes in the electrical resistance at a low operating temperature of 85 °C could be detected for the gases NO(2), CH(4) and H(2). Especially upon adsorption of NO(2) the high signal changes allowed a minimum detection of 0.3 ppm (S/N = 3). To overcome the poor selectivity, rGO was chemically functionalized with octadecylamine, or modified by doping with metal nanoparticles such as Pd and Pt, and also metal oxides such as MnO(2), and TiO(2). The different response patterns for six different materials allowed the discrimination of all of the test gases by pattern recognition based on principal component analysis.

  9. Computation of the properties of liquid neon, methane, and gas helium at low temperature by the Feynman-Hibbs approach.

    PubMed

    Tchouar, N; Ould-Kaddour, F; Levesque, D

    2004-10-15

    The properties of liquid methane, liquid neon, and gas helium are calculated at low temperatures over a large range of pressure from the classical molecular-dynamics simulations. The molecular interactions are represented by the Lennard-Jones pair potentials supplemented by quantum corrections following the Feynman-Hibbs approach. The equations of state, diffusion, and shear viscosity coefficients are determined for neon at 45 K, helium at 80 K, and methane at 110 K. A comparison is made with the existing experimental data and for thermodynamical quantities, with results computed from quantum numerical simulations when they are available. The theoretical variation of the viscosity coefficient with pressure is in good agreement with the experimental data when the quantum corrections are taken into account, thus reducing considerably the 60% discrepancy between the simulations and experiments in the absence of these corrections.

  10. Combined low temperature-high light effects on gas exchange properties of jojoba leaves.

    PubMed

    Loreto, F; Bongi, G

    1989-12-01

    Jojoba (Simmondsia chinensis [Link] Schneider) is an important crop in desert climates. A relatively high frequency of periods of chilling and high photon flux density (PFD) in this environment makes photoinhibition likely, resulting in a reduction of assimilation capacity in overwintering leaves. This could explain the low net photosynthesis found in shoots from the field (4-6 micromoles per square meter per second) when compared to greenhouse grown plants (12-15 micromoles per square meter per second). The responses of photosynthesis and stomatal conductance to changes in absorbed PFD and in substomatal partial pressure of CO(2) were measured on jojoba leaves recovering from chilling temperature (4 degrees C) in high or low PFD. No measurable gas exchange was found immediately after chilling in either high or low PFD. For leaves chilled in low PFD, the original quantum yield was restored after 24 hours. The time course of recovery from chilling in high PFD was much longer. Quantum yield recovered to 60% of its original value in 72 hours but failed to recover fully after 1 week. Measurements of PSII chlorophyll fluorescence at 77 K showed that the reduced quantum yield was caused by photoinhibition. The ratio of variable to maximal fluorescence fell from a control level of 0.82 to 0.41 after the photoinhibitory treatment and recovery was slow. We also found a large increase in net assimilation rate and little closure of stomata as CO(2) was increased from ambient partial pressure of 35 to 85 pascals. For plants grown in full light, the increase in net assimilation rate was 100%. The photosynthetic response at high CO(2) concentration may constitute an ecological advantage of jojoba as a crop in the future.

  11. Electron Temperature Modification in Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Godyak, Valery

    2011-10-01

    In gas discharge plasma with a Maxwellian electron energy distribution function (EEDF), the ionization balance results in the electron temperature Te being solely a function of the product of gas pressure p and plasma characteristic size d, Te = Te(pd), independently on plasma density and electron heating mechanism. This common feature of gas discharge plasma takes place in self-sustained discharges where ionization is locally coupled with electron heating, usually in a uniform heating electric field. At such condition, there is no room for electron temperature change at fixed pd. Variety of non-equilibrium phenomena observed in self-organized dc and rf discharge structures, and in relaxation process therein suggests the way to EEDF and Te modification. At such conditions, the electron heating can be separated (in space or/and in time) from the ionization. Few examples of such discharge structures in well know stationary dc and rf discharges and in plasma transient processes, leading to considerable mean electron energy reduction, will be considered in the presentation together with abbreviated review of existing methods and experimental results on EEDF control in laboratory plasmas. This work was supported in part by the DOE OFES (Contract No DE-SC0001939).

  12. Structure Sensitivity of the Low-temperature Water-gas Shift Reaction on Cu–CeO2 catalysts

    SciTech Connect

    Si, R.; Zhang, L.; Raitano, J.; Yi, N.; Chan, S.-W.; Flytzani-Stephanopoulos, M.

    2012-01-17

    We have investigated the structure sensitivity of the water-gas shift (WGS) reaction on Cu-CeO{sub 2} catalysts prepared at the nanoscale by different techniques. On the surface of ceria, different CuO{sub x} structures exist. We show here that only the strongly bound Cu-[O{sub x}]-Ce species, probably associated with the surface oxygen vacancies of ceria, are active for catalyzing the low-temperature WGS reaction. Weakly bound CuO{sub x} clusters and CuO nanoparticles are spectator species in the reaction. Isolated Cu{sup 2+} ions doping the ceria surface are not active themselves, but they are important in that they create oxygen vacancies and can be used as a reservoir of copper to replenish surface Cu removed by leaching or sintering. Accordingly, synthesis techniques such as coprecipitation that allow for extensive solubility of Cu in ceria should be preferred over impregnation, deposition-precipitation, ion exchange or another two-step method whereby the copper precursor is added to already made ceria nanocrystals. For the synthesis of different structures, we have used two methods: a homogeneous coprecipitation (CP), involving hexamethylenetetramine as the precipitating agent and the pH buffer; and a deposition-precipitation (DP) technique. In the latter case, the ceria supports were first synthesized at the nanoscale with different shapes (rods, cubes) to investigate any potential shape effect on the reaction. Cu-CeO{sub 2} catalysts with different copper contents up to ca. 20 at.% were prepared. An indirect shape effect of CeO{sub 2}, manifested by the propensity to form oxygen vacancies and strongly bind copper in the active form, was established; i.e. the water-gas shift reaction is not structure-sensitive. The apparent activation energy of the reaction on all samples was similar, 50 {+-} 10 kJ/mol, in a product-free (2% CO-10% H{sub 2}O) gas mixture.

  13. Multiplex electric discharge gas laser system

    NASA Technical Reports Server (NTRS)

    Laudenslager, James B. (Inventor); Pacala, Thomas J. (Inventor)

    1987-01-01

    A multiple pulse electric discharge gas laser system is described in which a plurality of pulsed electric discharge gas lasers are supported in a common housing. Each laser is supplied with excitation pulses from a separate power supply. A controller, which may be a microprocessor, is connected to each power supply for controlling the application of excitation pulses to each laser so that the lasers can be fired simultaneously or in any desired sequence. The output light beams from the individual lasers may be combined or utilized independently, depending on the desired application. The individual lasers may include multiple pairs of discharge electrodes with a separate power supply connected across each electrode pair so that multiple light output beams can be generated from a single laser tube and combined or utilized separately.

  14. Metal hydrides studied in gas discharge tube

    NASA Astrophysics Data System (ADS)

    Bozhinova, I.; Kolev, S.; Popov, Tsv.; Pashov, A.; Dimitrova, M.

    2016-05-01

    A novel construction of gas discharge tube has been tested for production of high densities of metal hydrydes. Its performance turned out to be comparable with the existing sources of the same type and even better. First results of the tests on NiH are reported and critically analysed. Plans for future modifiaction of the construction and application of the tube are discussed.

  15. Oxynitrided Surface Layer Produced On Ti6Al4V Titanium Alloy Under Low Temperature Glow Discharge Conditions For Medical Applications

    SciTech Connect

    Wierzchon, T.; Ossowski, M.; Borowski, T.; Morgiel, J.; Czarnowska, E.

    2011-01-17

    In spite that titanium oxides increase biocompatibility of titanium implants but their functional life is limited due to the problems arising from brittles and metalosis. Therefore technology, that allow to produce composite surface layer with controlled microstructure, chemical and phase composition and surface morphology on titanium alloy and eliminates the oxides disadvantages has been existing till now is searched. The requirements of titanium and its alloys implants can be fulfill by the low-temperature glow discharge assisted oxynitriding.The paper describes the surface layer of TiO{sub 2}+TiN+Ti{sub 2}N+{alpha}Ti(N) type produced at temperature 680 deg. C that preserves mechanical properties of titanium alloy Ti6Al4V. Characteristics of produced diffusion multi-phase surface layers in range of phase composition, microstructure (SEM, TEM, XRD) and its properties, such as frictional wear resistance are presented. The biological properties in dependency to the applied sterilization method are also analyzed.Properties of produced surface layers are discussed with reference to titanium alloy. The obtained data show that produced surface layers improves titanium alloy properties both frictional wear and biological. Preliminary in vitro examinations show good biocompatibility and antithrombogenic properties.

  16. Multi-zone modelling of partially premixed low-temperature combustion in pilot-ignited natural-gas engines

    SciTech Connect

    Krishnan, S. R.; inivasan, K. K.

    2010-09-14

    Detailed results from a multi-zone phenomenological simulation of partially premixed advanced-injection low-pilot-ignited natural-gas low-temperature combustion are presented with a focus on early injection timings (the beginning of (pilot) injection (BOI)) and very small diesel quantities (2-3 per cent of total fuel energy). Combining several aspects of diesel and spark ignition engine combustion models, the closed-cycle simulation accounted for diesel autoignition, diesel spray combustion, and natural-gas combustion by premixed turbulent flame propagation. The cylinder contents were divided into an unburned zone, several pilot fuel zones (or 'packets') that modelled diesel evaporation and ignition, a flame zone for natural-gas combustion, and a burned zone. The simulation predicted the onset of ignition, cylinder pressures, and heat release rate profiles satisfactorily over a wide range of BOIs (20-60° before top dead centre (before TDC)) but especially well at early BOIs. Strong coupling was observed between pilot spray combustion in the packets and premixed turbulent combustion in the flame zone and, therefore, the number of ignition centres (packets) profoundly affected flame combustion. The highest local peak temperatures (greater than 2000 K) were observed in the packets, while the flame zone was much cooler (about 1650 K), indicating that pilot diesel spray combustion is probably the dominant source of engine-out emissions of nitrogen oxide (NOx). Further, the 60° before TDC BOI yielded the lowest average peak packet temperatures (about 1720 K) compared with the 20° before TDC BOI (about 2480 K) and 40° before TDC BOI (about 2700 K). These trends support experimental NOx trends, which showed the lowest NOx emissions for the 60°, 20°, and 40° before TDC BOIs in that order. Parametric studies showed that increasing the intake charge temperature, pilot quantity, and natural-gas equivalence ratio all led to higher peak

  17. Sensors for low temperature application

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  18. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    PubMed Central

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas. PMID:23560062

  19. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  20. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  1. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by gas pressurization. 153.964 Section 153.964... CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.964 Discharge by gas pressurization. The person in charge of cargo transfer may...

  2. PREFACE: 12th International Conference on Gas Discharge Plasmas and Their Applications

    NASA Astrophysics Data System (ADS)

    Koval, N.; Landl, N.; Bogdan, A.; Yudin, A.

    2015-11-01

    The 12th International Conference ''Gas Discharge Plasmas and Their Applications'' (GDP 2015) was held in Tomsk, Russia, on September 6-11, 2015. GDP 2015 represents a continuation of the conferences on physics of gas discharge held in Russia since 1984 and seminars and conferences on the technological applications of low temperature plasmas traditionally organized in Tomsk. The six-day Conference brought together the specialists from different countries and organizations and provided an excellent opportunity to exchange knowledge, make oral contributions and poster presentations, and initiate discussions on the topics that are of interest to the Conference participants. The selected papers of the Conference cover a wide range of technical areas and modern aspects of the physical processes in the generators of low-temperature plasma, the low and high-pressure discharges, the pulsed plasma sources, the surface modification, and other gas-discharge technologies. The Conference was hosted by Institute of High Current Electronics SB RAS, Tomsk Polytechnic University, Tomsk Scientific Center, and Tomsk State University of Architecture and Building.

  3. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  4. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  5. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Discharge by gas pressurization. 154.1838 Section 154... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge by gas pressurization. The person in charge of cargo transfer may not authorize cargo discharge...

  6. Sounding experiments of high pressure gas discharge

    SciTech Connect

    Biele, Joachim K.

    1998-07-10

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at the combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.

  7. Low-voltage gas-discharge device

    DOEpatents

    Kovarik, V.J.; Hershcovitch, A.; Prelec, K.

    1982-06-08

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region is described. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a large number of gas atoms, thus reducing the voltage necessary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  8. Freely Localized Microwave Discharge in a Supersonic Gas Flow

    SciTech Connect

    Shibkov, V.M.; Aleksandrov, A.F.; Ershov, A.P.; Timofeev, I.B.; Chernikov, V.A.; Shibkova, L.V.

    2005-09-15

    A discharge produced by a focused microwave beam in a supersonic gas flow has been investigated experimentally. It is shown that the degree of ionization and the gas temperature in the discharge are fairly high and that the main properties of the discharge plasma are only slightly affected by the supersonic air flow. Discharges produced by focused microwave beams can find application in supersonic plasma aerodynamics.

  9. Quantification of OH and HO2 radicals during the low-temperature oxidation of hydrocarbons by Fluorescence Assay by Gas Expansion technique

    PubMed Central

    Blocquet, Marion; Schoemaecker, Coralie; Amedro, Damien; Herbinet, Olivier; Battin-Leclerc, Frédérique; Fittschen, Christa

    2013-01-01

    •OH and •HO2 radicals are known to be the key species in the development of ignition. A direct measurement of these radicals under low-temperature oxidation conditions (T = 550–1,000 K) has been achieved by coupling a technique named fluorescence assay by gas expansion, an experimental technique designed for the quantification of these radicals in the free atmosphere, to a jet-stirred reactor, an experimental device designed for the study of low-temperature combustion chemistry. Calibration allows conversion of relative fluorescence signals to absolute mole fractions. Such radical mole fraction profiles will serve as a benchmark for testing chemical models developed to improve the understanding of combustion processes. PMID:24277836

  10. 2D fluid simulations of discharges at atmospheric pressure in reactive gas mixtures

    NASA Astrophysics Data System (ADS)

    Bourdon, Anne

    2015-09-01

    Since a few years, low-temperature atmospheric pressure discharges have received a considerable interest as they efficiently produce many reactive chemical species at a low energy cost. This potential is of great interest for a wide range of applications as plasma assisted combustion or biomedical applications. Then, in current simulations of atmospheric pressure discharges, there is the need to take into account detailed kinetic schemes. It is interesting to note that in some conditions, the kinetics of the discharge may play a role on the discharge dynamics itself. To illustrate this, we consider the case of the propagation of He-N2 discharges in long capillary tubes, studied for the development of medical devices for endoscopic applications. Simulation results put forward that the discharge dynamics and structure depend on the amount of N2 in the He-N2 mixture. In particular, as the amount of N2 admixture increases, the discharge propagation velocity in the tube increases, reaches a maximum for about 0 . 1 % of N2 and then decreases, in agreement with experiments. For applications as plasma assisted combustion with nanosecond repetitively pulsed discharges, there is the need to handle the very different timescales of the nanosecond discharge with the much longer (micro to millisecond) timescales of combustion processes. This is challenging from a computational point of view. It is also important to better understand the coupling of the plasma induced chemistry and the gas heating. To illustrate this, we present the simulation of the flame ignition in lean mixtures by a nanosecond pulsed discharge between two point electrodes. In particular, among the different discharge regimes of nanosecond repetitively pulsed discharges, a ``spark'' regime has been put forward in the experiments, with an ultra-fast local heating of the gas. For other discharge regimes, the gas heating is much weaker. We have simulated the nanosecond spark regime and have observed shock waves

  11. Low-Temperature Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  12. Discharge source with gas curtain for protecting optics from particles

    DOEpatents

    Fornaciari, Neal R.; Kanouff, Michael P.

    2004-03-30

    A gas curtain device is employed to deflect debris that is generated by an extreme ultraviolet and soft x-ray radiation discharge source such as an electric discharge plasma source. The gas curtain device projects a stream of gas over the path of the radiation to deflect debris particles into a direction that is different from that of the path of the radiation. The gas curtain can be employed to prevent debris accumulation on the optics used in photolithography.

  13. Thermally induced atmospheric pressure gas discharges using pyroelectric crystals

    NASA Astrophysics Data System (ADS)

    Johnson, Michael J.; Linczer, John; Go, David B.

    2014-12-01

    Using a heated pyroelectric crystal, an atmospheric pressure gas discharge was generated through the input of heat. When put through a change in temperature, the polarization of a pyroelectric can change significantly, creating a substantial electric potential at its surface. When configured with a grounded sharp counter electrode, a large inhomogeneous electric field forms in the interstitial gas to initiate a corona-like discharge. Under constant heating conditions, gaseous ions drifting to the pyroelectric accumulate and screen the electric field, extinguishing the discharge. By thermally cycling the pyroelectric, negative and positive discharges are generated during heating and cooling, respectively, with peak currents on the order of 80 nA. Time-integrated visualization confirmed the generation of both a corona-like discharge and a surface discharge on the pyroelectric. Parametric studies identified that thermal cycling conditions significantly influence discharge formation for this new atmospheric pressure discharge approach.

  14. Low Temperature Oxidation Catalyst

    NASA Technical Reports Server (NTRS)

    1995-01-01

    One day soon homeowners everywhere may be protected from deadly carbon monoxide fumes, thanks to a device invented at NASA Langley Research Center in Hampton, Va. It uses a new class of low-temperature oxidation catalysts to convert carbon monoxide to non-toxic carbon dioxide at room temperature. It can also remove formaldehyde from the air. The catalysts initially were developed for research involving carbon dioxide lasers. Industry already has shown an interest. Rochester Gas and Electric Co., of Rochester, N.Y., has an agreement with NASA Langley to develop a product for habitable spaces such as homes, cars and aircraft. The Mantic Corp., of Salt Lake City, Utah, plans to use them in breathing apparatus, such as firefighter masks. The catalysts also have applications as trace-gas detectors, and in cold-engine emission control. To work, the catalysts - tin oxide and platinum - are applied to a surface. Air passing over the surface reacts with the catalysts, transforming carbon monoxide and formaldehyde. The device requires no energy for operation, doesn't need to be plugged in, has no moving parts and lasts a long time.

  15. Self-organization of intense light within erosive gas discharges

    NASA Astrophysics Data System (ADS)

    Torchigin, V. P.; Torchigin, A. V.

    2007-01-01

    Process of appearance of fire balls at gas discharges is considered. It is shown that the intense white light radiated by atoms excited at gas discharge is subject to self-organization in such a way that miniature ball lightnings appear.

  16. Laser-induced breakdown spectroscopy on metallic samples at very low temperature in different ambient gas pressures

    NASA Astrophysics Data System (ADS)

    El-Saeid, R. H.; Abdelhamid, M.; Harith, M. A.

    2016-02-01

    Analysis of metals at very low temperature adopting laser-induced breakdown spectroscopy (LIBS) is greatly beneficial in space exploration expeditions and in some important industrial applications. In the present work, the effect of very low sample temperature on the spectral emission intensity of laser-induced plasma under both atmospheric pressure and vacuum has been studied for different bronze alloy samples. The sample was cooled down to liquid nitrogen (LN) temperature 77 K in a special vacuum chamber. Laser-induced plasma has been produced onto the sample surface using the fundamental wavelength of Nd:YAG laser. The optical emission from the plasma is collected by an optical fiber and analyzed by an echelle spectrometer combined with an intensified CCD camera. The integrated intensities of certain spectral emission lines of Cu, Pb, Sn, and Zn have been estimated from the obtained LIBS spectra and compared with that measured at room temperature. The laser-induced plasma parameters (electron number density Ne and electron temperature Te) were investigated at room and liquid nitrogen temperatures for both atmospheric pressure and vacuum ambient conditions. The results suggest that reducing the sample temperature leads to decrease in the emission line intensities under both environments. Plasma parameters were found to decrease at atmospheric pressure but increased under vacuum conditions.

  17. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    SciTech Connect

    A. Dunaevsky; N.J. Fisch

    2004-03-08

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  18. Power supply for negative impedance gas discharge lasers

    SciTech Connect

    Bees, G.L.

    1987-12-29

    An adjustable constant current power supply for a negative impedance gas discharge laser is described comprising: means for providing constant output of current, means connected between the constant current providing means and the gas discharge laser for matching the current output of the constant current providing means with lasing requirements of the gas discharge laser, the constant current providing means providing electrical energy to pump the gas discharge laser; and means electrically connected to the constant current providing means for feeding a variable controlled voltage to the constant current providing means the variable voltage altering the constant output of current over a preselected range feedback circuit means for providing a control signal to the variably controlled voltage feeding means; such that output power of the gas discharge laser varies with the output of current from the current providing means.

  19. Characteristics of surface-wave plasma with air-simulated N2 O2 gas mixture for low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Nonaka, H.; Zhou, H. Y.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2007-02-01

    Sterilization experiments using low-pressure air discharge plasma sustained by the 2.45 GHz surface-wave have been carried out. Geobacillus stearothermoplilus spores having a population of 3.0 × 106 were sterilized for only 3 min using air-simulated N2-O2 mixture gas discharge plasma, faster than the cases of pure O2 or pure N2 discharge plasmas. From the SEM analysis of plasma-irradiated spores and optical emission spectroscopy measurements of the plasmas, it has been found that the possible sterilization mechanisms of air-simulated plasma are the chemical etching effect due to the oxygen radicals and UV emission from the N2 molecules and NO radicals in the wavelength range 200-400 nm. Experiment suggested that UV emission in the wavelength range less than 200 nm might not be significant in the sterilization. The UV intensity at 237.0 nm originated from the NO γ system (A 2Σ+ → X 2Π) in N2-O2 plasma as a function of the O2 percentage added to N2-O2 mixture gas has been investigated. It achieved its maximum value when the O2 percentage was roughly 10-20%. This result suggests that air can be used as a discharge gas for sterilization, and indeed we have confirmed a rapid sterilization with the actual air discharge at a sample temperature of less than 65 °C.

  20. Coke-free dry reforming of model diesel fuel by a pulsed spark plasma at low temperatures using an exhaust gas recirculation (EGR) system

    NASA Astrophysics Data System (ADS)

    Sekine, Yasushi; Furukawa, Naotsugu; Matsukata, Masahiko; Kikuchi, Eiichi

    2011-07-01

    Dry reforming of diesel fuel, an endothermic reaction, is an attractive process for on-board hydrogen/syngas production to increase energy efficiency. For operating this dry reforming process in a vehicle, we can use the exhaust gas from an exhaust gas recirculation (EGR) system as a source of carbon dioxide. Catalytic dry reforming of heavy hydrocarbon is a very difficult reaction due to the high accumulation of carbon on the catalyst. Therefore, we attempted to use a non-equilibrium pulsed plasma for the dry reforming of model diesel fuel without a catalyst. We investigated dry reforming of model diesel fuel (n-dodecane) with a low-energy pulsed spark plasma, which is a kind of non-equilibrium plasma at a low temperature of 523 K. Through the reaction, we were able to obtain syngas (hydrogen and carbon monoxide) and a small amount of C2 hydrocarbon without coke formation at a ratio of CO2/Cfuel = 1.5 or higher. The reaction can be conducted at very low temperatures such as 523 K. Therefore, it is anticipated as a novel and effective process for on-board syngas production from diesel fuel using an EGR system.

  1. Sensitive glow discharge ion source for aerosol and gas analysis

    DOEpatents

    Reilly, Peter T. A.

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  2. LOW TEMPERATURE X-RAY DIFFRACTION STUDIES OF NATURAL GAS HYDRATE SAMPLES FROM THE GULF OF MEXICO

    SciTech Connect

    Rawn, Claudia J; Sassen, Roger; Ulrich, Shannon M; Phelps, Tommy Joe; Chakoumakos, Bryan C; Payzant, E Andrew

    2008-01-01

    Clathrate hydrates of methane and other small alkanes occur widespread terrestrially in marine sediments of the continental margins and in permafrost sediments of the arctic. Quantitative study of natural clathrate hydrates is hampered by the difficulty in obtaining pristine samples, particularly from submarine environments. Bringing samples of clathrate hydrate from the seafloor at depths without compromising their integrity is not trivial. Most physical property measurements are based on studies of laboratory-synthesized samples. Here we report X-ray powder diffraction measurements of a natural gas hydrate sample from the Green Canyon, Gulf of Mexico. The first data were collected in 2002 and revealed ice and structure II gas hydrate. In the subsequent time the sample has been stored in liquid nitrogen. More recent X-ray powder diffraction data have been collected as functions of temperature and time. This new data indicates that the larger sample is heterogeneous in ice content and shows that the amount of sII hydrate decreases with increasing temperature and time as expected. However, the dissociation rate is higher at lower temperatures and earlier in the experiment.

  3. Low temperature, sulfur tolerant homogeneous catalysts for the water-gas shift reaction. Task 2, Test plan

    SciTech Connect

    Laine, R.M.; Wood, B.J.; Krishnan, G.N.

    1986-04-01

    The objective of this project is to identify, prepare, test, characterize, and evaluate a practical, homogeneous catalyst for a water-gas shift process. The project effort is divided into the following five tasks: (1) Update SRI`s recent review of the literature on the catalysis of the water-gas shift reaction (WGSR) to include references after 1982 and those in the patent literature. Based on this review, SRI will choose ten candidate systems to be evaluated as to their abilities to catalyze the WGSR using syngas derived from gasified coal. (2) Develop a test plan designed to effectively evaluate both the catalysts and, to some extent, reactor configuration for WGSR catalysis. (3) Perform a series of experiments to identify the most effective and economical of the ten candidate catalysts and then further evaluate the reaction kinetics of at least one selected catalyst system to develop sufficient data to provide the basis for the work in Task 4. (4) Develop a mathematical model of the final candidate system that uses rate expressions to describe the catalytic process. (5) Perform a techno-economical evaluation of the catalyst in terms of a proposed plant design based on the reaction model, current costs, and standard chemical engineering practice and compare the proposed design with a conventional hydrogen plant.

  4. Discharge effects on gas flow dynamics in a plasma jet

    NASA Astrophysics Data System (ADS)

    Xian, Yu Bin; Hasnain Qaisrani, M.; Yue, Yuan Fu; Lu, Xin Pei

    2016-10-01

    Plasma is used as a flow visualization method to display the gas flow of a plasma jet. Using this method, it is found that a discharge in a plasma jet promotes the transition of the gas flow to turbulence. A discharge at intermediate frequency (˜6 kHz in this paper) has a stronger influence on the gas flow than that at lower or higher frequencies. Also, a higher discharge voltage enhances the transition of the gas flow to turbulence. Analysis reveals that pressure modulation induced both by the periodically directed movement of ionized helium and Ohmic heating on the gas flow plays an important role in inducing the transition of the helium flow regime. In addition, since the modulations induced by the high- and low-frequency discharges are determined by the frequency-selective effect, only intermediate-frequency (˜6 kHz) discharges effectively cause the helium flow transition from the laminar to the turbulent flow. Moreover, a discharge with a higher applied voltage makes a stronger impact on the helium flow because it generates stronger modulations. These conclusions are useful in designing cold plasma jets and plasma torches. Moreover, the relationship between the discharge parameters and the gas flow dynamics is a useful reference on active flow control with plasma actuators.

  5. Collision lifetimes of polyatomic molecules at low temperatures: Benzene–benzene vs benzene–rare gas atom collisions

    SciTech Connect

    Cui, Jie; Krems, Roman V.; Li, Zhiying

    2014-10-28

    We use classical trajectory calculations to study the effects of the interaction strength and the geometry of rigid polyatomic molecules on the formation of long-lived collision complexes at low collision energies. We first compare the results of the calculations for collisions of benzene molecules with rare gas atoms He, Ne, Ar, Kr, and Xe. The comparison illustrates that the mean lifetimes of the collision complexes increase monotonically with the strength of the atom–molecule interaction. We then compare the results of the atom–benzene calculations with those for benzene–benzene collisions. The comparison illustrates that the mean lifetimes of the benzene–benzene collision complexes are significantly reduced due to non-ergodic effects prohibiting the molecules from sampling the entire configuration space. We find that the thermally averaged lifetimes of the benzene–benzene collisions are much shorter than those for Xe with benzene and similar to those for Ne with benzene.

  6. Supported Copper, Nickel and Copper-Nickel Nanoparticle Catalysts for Low Temperature Water-Gas-Shift Reaction

    NASA Astrophysics Data System (ADS)

    Lin, Jiann-Horng

    Hydrogen is being considered worldwide as a future replacement for gasoline, diesel fuel, natural gas in both the transportation and non-transportation sectors. Hydrogen is a versatile energy carrier that can be produced from a variety of widely available primary energy sources, including coal, natural gas, biomass, solar, wind, and nuclear power. Coal, the most abundant fossil fuel on the planet, is being looked at as the possible future major source of H2, due to the development of the integrated gasification combined cycle (IGCC) and integrated gasification fuel cell technologies (IGFC). The gasification of coal produces syngas consisting of predominately carbon monoxide and hydrogen with some remaining hydrocarbons, carbon dioxide and water. Then, the water-gas shift reaction is used to convert CO to CO2 and additional hydrogen. The present work describes the synthesis of model Cu, Ni and Cu-Ni catalysts prepared from metal colloids, and compares their behavior in the WGS reaction to that of traditional impregnation catalysts. Initially, we systematically explored the performance of traditional Cu, Ni and Cu-Ni WGS catalysts made by impregnation methods. Various bimetallic Cu-Ni catalysts were prepared by supported impregnation and compared to monometallic Cu and Ni catalysts. The presence of Cu in bimetallic catalysts suppressed undesirable methanation side reaction, while the Ni component was important for high WGS activity. Colloidal Cu, Ni and Cu-Ni alloy nanoparticles obtained by chemical reduction were deposited onto alumina to prepare supported catalysts. The resulting Cu and Ni nanoparticle catalysts were found to be 2.5 times more active in the WGS reaction per unit mass of active metal as compared to catalysts prepared by the conventional impregnation technique. The powder XRD and HAADF-STEM provided evidence supporting the formation of Cu-Ni particles containing the Cu core and Cu-Ni alloy shell. The XPS data indicated surface segregation of Cu in

  7. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, Gary; D'Silva, Arthur P.; Fassel, Velmer A.

    1986-05-06

    An apparatus for providing a simple, low-frequency electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  8. Atmospheric pressure helium afterglow discharge detector for gas chromatography

    DOEpatents

    Rice, G.; D'Silva, A.P.; Fassel, V.A.

    1985-04-05

    An apparatus for providing a simple, low-frequency, electrodeless discharge system for atmospheric pressure afterglow generation. A single quartz tube through which a gas mixture is passed is extended beyond a concentric electrode positioned thereabout. A grounding rod is placed directly above the tube outlet to permit optical viewing of the discharge between the electrodes.

  9. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... SAFETY STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1838 Discharge... pressurizing medium is the cargo vapor or a nonflammable, nontoxic gas that is inert with the cargo; and...

  10. Atomically Dispersed Au-(OH)x Species Bound on Titania Catalyze the Low-Temperature Water-Gas Shift Reaction

    SciTech Connect

    Yang, Ming; Allard, Lawrence F; Flytzani-Stephanopoulos, Maria

    2013-03-27

    We report a new method for stabilizing appreciable loadings (~1 wt %) of isolated gold atoms on titania and show that these catalyze the low-temperature water-gas shift reaction. The method combines a typical gold deposition/precipitation method with UV irradiation of the titania support suspended in ethanol. Dissociation of H2O on the thus-created Au–O–TiOx sites is facile. At higher gold loadings, nanoparticles are formed, but they were shown to add no further activity to the atomically bound gold on titania. Removal of this “excess” gold by sodium cyanide leaching leaves the activity intact and the atomically dispersed gold still bound on titania. The new materials may catalyze a number of other reactions that require oxidized active metal sites.

  11. Endotoxin removal by radio frequency gas plasma (glow discharge)

    NASA Astrophysics Data System (ADS)

    Poon, Angela

    2011-12-01

    -IR measurements were repeated after employing 3-minute RFGD treatments sequentially for more than 10 cycles to observe removal of deposited matter that correlated with diminished EU titers. The results showed that 5 cycles, for a total exposure time of 15 minutes to low-temperature gas plasma, was sufficient to reduce endotoxin titers to below 0.05 EU/ml, and correlated with concurrent reduction of major endotoxin reference standard absorption bands at 3391 cm-1, 2887 cm-1, 1646 cm -1 1342 cm-1, and 1103 cm-1 to less than 0.05 Absorbance Units. Band depletion varied from 15% to 40% per 3-minute cycle of RFGD exposure, based on peak-to-peak analyses. In some cases, 100% of all applied biomass was removed within 5 sequential 3-minute RFGD cycles. The lipid ester absorption band expected at 1725 cm-1 was not detectable until after the first RFGD cycle, suggesting an unmasking of the actual bacterial endotoxin membrane induced within the gas plasma environment. Future work must determine the applicability of this low-temperature, quick depyrogenation process to medical devices of more complicated geometry than the flat surfaces tested here.

  12. Low temperature fluid blender

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1971-01-01

    Blender supplies hydrogen at temperatures from 289 deg K to 367 deg K. Hydrogen temperature is controlled by using blender to combine flow from liquid hydrogen tank /276 deg K/ and gaseous hydrogen cylinder /550 deg K/. Blenders are applicable where flow of controlled low-temperature fluid is desired.

  13. Attaining Low Temperatures

    ERIC Educational Resources Information Center

    Wheatley, John D.; Van Till, Howard J.

    1970-01-01

    Discusses the definition of temperature and the concept of order in non-mathematical terms. Describes the cooling techniques necessary in low temperature physics research, including magnetic cooling, the use of the Pomeranchuk Effect, and dilution refrigeration. Outlines the types of phenomena observed in matter within various temperature ranges…

  14. Three-dimensional mesoporous graphene aerogel-supported SnO2 nanocrystals for high-performance NO2 gas sensing at low temperature.

    PubMed

    Li, Lei; He, Shuijian; Liu, Minmin; Zhang, Chunmei; Chen, Wei

    2015-02-01

    A facile and cost-efficient hydrothermal and lyophilization two-step strategy has been developed to prepare three-dimensional (3D) SnO2/rGO composites as NO2 gas sensor. In the present study, two different metal salt precursors (Sn(2+) and Sn(4+)) were used to prepare the 3D porous composites. It was found that the products prepared from different tin salts exhibited different sensing performance for NO2 detection. The scanning electron microscopy and transmission electron microscopy characterizations clearly show the macroporous 3D hybrids, nanoporous structure of reduce graphene oxide (rGO), and the supported SnO2 nanocrystals with an average size of 2-7 nm. The specific surface area and porosity properties of the 3D mesoporous composites were analyzed by Braunauer-Emmett-Teller method. The results showed that the SnO2/rGO composite synthesized from Sn(4+) precursor (SnO2/rGO-4) has large surface area (441.9 m(2)/g), which is beneficial for its application as a gas sensing material. The gas sensing platform fabricated from the SnO2/rGO-4 composite exhibited a good linearity for NO2 detection, and the limit of detection was calculated to be as low as about 2 ppm at low temperature. The present work demonstrates that the 3D mesoporous SnO2/rGO composites with extremely large surface area and stable nanostructure are excellent candidate materials for gas sensing. PMID:25556377

  15. Development of novel low-temperature selective hydrogen gas sensors made of palladium/oxide or nitride capped Magnesium-transition metal hydride films

    NASA Astrophysics Data System (ADS)

    Tang, Yu Ming

    Palladium capped Mg-based transition metal alloy film (Pd/Mg-TM) is a potentially useful hydrogen gas (H2) sensing material, which can operate at low temperature for detection of H2 leakage in an environment to ensure safe use and storage of the gas. The Pd layer catalytically dissociates hydrogen molecules, and the hydrogen atoms produced can enter (hydridation) or be detached (dehydridation) from the alloy layer. These processes are reversible, such that the film is switchable between a metal state and a hydride state, giving rise to substantial changes in its optical transmittance/reflectance and electrical resistivity. Unlike a conventional metal-oxide (MOx) H2 sensor, hydridation of an Mg-TM film is associated with relatively low enthalpy, and hence can perform at temperature much lower than the operation temperature of an MOx sensor (typically around 500°C or above). As such, an Mg-TM based sensor does not experience undesired annealing effect during operation, and hence is much more stable and durable. Furthermore, the detection selectivity of a Pd/Mg-TM film versus other reducing gases is superior to most conventional MOx-type hydrogen sensors. In this project, we systematically investigated the H2 sensing properties of Pd/Mg-TM films.

  16. Study on the removal of elemental mercury from simulated flue gas by Fe₂O₃-CeO₂/AC at low temperature.

    PubMed

    Wang, Yan; Li, Caiting; Zhao, Lingkui; Xie, Yin'e; Zhang, Xunan; Zeng, Guangming; Wu, Huiyu; Zhang, Jie

    2016-03-01

    Fe2O3 and CeO2 modified activated coke (AC) synthesized by the equivalent-volume impregnation were employed to remove elemental mercury (Hg(0)) from simulated flue gas at a low temperature. Effects of the mass ratio of Fe2O3 and CeO2, reaction temperature, and individual flue gas components including O2, NO, SO2, and H2O (g) on Hg(0) removal efficiency of impregnated AC were investigated. The samples were characterized by Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with optimal mass percentage of 3 % Fe2O3 and 3 % CeO2 on Fe3Ce3/AC, the Hg(0) removal efficiency could reach an average of 88.29 % at 110 °C. Besides, it was observed that O2 and NO exhibited a promotional effect on Hg(0) removal, H2O (g) exerted a suppressive effect, and SO2 showed an insignificant inhibition without O2 to some extent. The analysis of XPS indicated that the main species of mercury on used Fe3Ce3/AC was HgO, which implied that adsorption and catalytic oxidation were both included in Hg(0) removal. Furthermore, the lattice oxygen, chemisorbed oxygen, and/or weakly bonded oxygen species made a contribution to Hg(0) oxidation. PMID:26552788

  17. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, Loucas G.; Carter, James G.; Hunter, Scott R.

    1984-01-01

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF.sub.4, C.sub.2 F.sub.6, C.sub.3 F.sub.8, n-C.sub.4 F.sub.10, WF.sub.6, (CF.sub.3).sub.2 S and (CF.sub.3).sub.2 O.

  18. Gas mixture for diffuse-discharge switch

    DOEpatents

    Christophorou, L.G.; Carter, J.G.; Hunter, S.R.

    1982-08-31

    Gaseous medium in a diffuse-discharge switch of a high-energy pulse generator is formed of argon combined with a compound selected from the group consisting of CF/sub 4/, C/sub 2/F/sub 6/, C/sub 3/F/sub 8/, n-C/sub 4/F/sub 10/, WF/sub 6/, (CF/sub 3/)/sub 2/S and (CF/sub 3/)/sub 2/O.

  19. Interaction of a surface glow discharge with a gas flow

    NASA Astrophysics Data System (ADS)

    Aleksandrov, A. L.; Schweigert, I. V.

    2010-05-01

    A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250-300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow’s influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.

  20. Interaction of a surface glow discharge with a gas flow

    SciTech Connect

    Aleksandrov, A. L. Schweigert, I. V.

    2010-05-15

    A surface glow discharge in a gas flow is of particular interest as a possible tool for controlling the flow past hypersonic aircrafts. Using a hydrodynamic model of glow discharge, two-dimensional calculations for a kilovolt surface discharge in nitrogen at a pressure of 0.5 Torr are carried out in a stationary gas, as well as in a flow with a velocity of 1000 m/s. The discharge structure and plasma parameters are investigated near a charged electrode. It is shown that the electron energy in a cathode layer reaches 250-300 eV. Discharge is sustained by secondary electron emission. The influence of a high-speed gas flow on the discharge is considered. It is shown that the cathode layer configuration is flow-resistant. The distributions of the electric field and electron energy, as well as the ionization rate profile in the cathode layer, do not change qualitatively under the action of the flow. The basic effect of the flow's influence is a sharp decrease in the region of the quasineutral plasma surrounding the cathode layer due to fast convective transport of ions.

  1. Highly enhanced low temperature discharge capacity of LiNi1/3Co1/3Mn1/3O2 with lithium boron oxide glass modification

    NASA Astrophysics Data System (ADS)

    Tan, ShuangYuan; Wang, Lei; Bian, Liang; Xu, JinBao; Ren, Wei; Hu, PengFei; Chang, AiMin

    2015-03-01

    Although lithium ion battery is known to be an excellent renewable energy provider in electronic markets further application of it has been limited by its notoriously poor performance at low temperature, especially below -20 °C. In this paper, the electrochemical performance of the LiNi1/3Co1/3Mn1/3O2 cathode materials coated by lithium boron oxide (LBO) glass was investigated at a temperature range from 20 to -40 °C. The results show that the LBO coating not only helps to improve the discharge capacity of LiNi1/3Co1/3Mn1/3O2 at room temperature but also increase the discharge capacity retention of the LiNi1/3Co1/3Mn1/3O2 from 22.5% to 57.8% at -40 °C. Electrochemical impedance spectra results reveal that the LBO coating plays an important role in reducing the charge-transfer resistance on the electrolyte-electrode interfaces and improving lithium ion diffusion coefficients. The mechanism associated with the change of the structure and electrical properties are discussed in detail.

  2. Gas temperature measurements in a microcathode sustained discharge in oxygen

    NASA Astrophysics Data System (ADS)

    Puech, V.; Lagrange, J. F.; Sadeghi, N.; Touzeau, M.; Bauville, G.; Lacour, B.

    2006-10-01

    Microcathode sustained discharges (MCSD) produced between a microhollow cathode discharge (MHCD) and a third electrode offer the possibility to produce high density plasmas at low E/N values. Such discharges in oxygen could be attractive for efficient production of singlet O2 if the gas temperature remains low. The temperature of a discharge in oxygen at 50 Torr and for currents up to 2 mA and E/N of 25 Td was measured through a spectroscopic investigation of the plasma emission. The spatial distribution of the O2(b^1σ) and O(5p) was measured. These species have a very different behaviour: O(5p) is mainly produced inside the hole of the 0.2 mm diameter MHCD and its density decreases by two orders of magnitude over a distance of 3 mm. On the other hand, the O2(b^1σ) production by the MHCD is very low, and this state is mainly produced in the MCSD, with a smooth density gradient in the interelectrode gap. The gas temperature was determined in the MCSD from the high resolution spectra of the atmospheric band at 760 nm, while the gas temperature inside the hole of the MHCD was measured through the rotational spectra of the 337 nm 2^nd positive band of nitrogen, introduced at low concentration in the discharge. In our experimental conditions, the gas temperature in the MHCD is lower than 650 K and less than 400 K in the MCSD.

  3. GAS DISCHARGE SWITCH EVALUATION FOR RHIC BEAM ABORT KICKER APPLICATION.

    SciTech Connect

    ZHANG,W.; SANDBERG,J.; SHELDRAKE,R.; PIRRIE,C.

    2002-06-30

    A gas discharge switch EEV HX3002 is being evaluated at Brookhaven National Laboratory as a possible candidate of RHIC Beam Abort Kicker modulator main switch. At higher beam energy and higher beam intensity, the switch stability becomes very crucial. The hollow anode thyratron used in the existing system is not rated for long reverse current conduction. The reverse voltage arcing caused thyratron hold-off voltage de-rating has been the main limitation of the system operation. To improve the system reliability, a new type of gas discharge switch has been suggested by Marconi Applied Technology for its reverse conducting capability.

  4. Low temperature near infrared plasmonic gas sensing of gallium and aluminum doped zinc oxide thin films from colloidal inks (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Sturaro, Marco; Della Gaspera, Enrico; Martucci, Alessandro; Guglielmi, Massimo

    2015-08-01

    We obtained Gallium-doped and Aluminum-doped Zinc Oxide nanocrystals by non aqueous colloidal heat-up synthesis. These nanocrystals are transparent in the visible range but exhibit localized surface plasmon resonances (LSPRs) in the near IR range, tunable and shiftable with dopant concentration (up to 20% mol nominal). GZO and AZO inks can be deposited by spin coating, dip coating or spray coating on glass or silicon, leading to uniform and high optical quality thin films. To enhance absorbtion in the infrared region, samples can be annealed in inert or reductant atmosphere (N2/Argon or H2 in Argon) resulting in plasmon intensity enhancement due to oxygen vacancies and conduction band electrons density increment. Then IR plasmon has been exploited for gas sensing application, according to the plasmon shifting for carrier density variations, due to electrons injection or removal by the target gas/sample chemical interactions. To obtain a functional sensor at low temperature, another treatment was investigated, involving surfanctant removal by dipping deposited films in a solution of organic acid, tipically oxalic acid in acetonitrile; such process could pave the way to obtain similar sensors deposited on plastics. Finally, GZO and AZO thin films proved sensibility to H2 and NOx, and in particular circumstances also to CO, from room temperature to 200°C. Sensibility behavior for different dopant concentration and temperture was investigated both in IR plasmon wavelengths (~2400 nm) and zinc oxide band gap (~370 nm). An enhancement in sensitivity to H2 is obtained by adding Pt nanoparticles, exploiting catalytic properties of Platinum for hydrogen splitting.

  5. METHOD AND APPARATUS FOR PRODUCING INTENSE ENERGETIC GAS DISCHARGES

    DOEpatents

    Bell, P.R.; Luce, J.S.

    1960-01-01

    A device for producing an energetic gas arc discharge employing the use of gas-fed hollow cathode and anode electrodes is reported. The rate of feed of the gas to the electrodes is regulated to cause complete space charge neutralization to occur within the electrodes. The arc discharge is closely fitted within at least one of the electrodes so tint the gas fed to this electrode is substantially completely ionized before it is emitted into the vacuum chamber. It is this electrode design and the axial potential gradient that exists in the arc which permits the arc to be operated in low pressures and at volthges and currents that permit the arc to be energetic. The use of the large number of energetic ions that are accelerated toward the cathode as a propulsion device for a space vehicle is set forth.

  6. Low temperature materials

    NASA Astrophysics Data System (ADS)

    Ballingall, J. M.; Ho, P.; Mazurowski, J.; Lester, L.; Hwang, K. C.

    1994-03-01

    In(x)Ga(l-x)As (x=025-0.35) grown at low temperature on GaAs by molecular beam epitaxy is characterized by Hall effect, transmission electron microscopy, and ultrafast optical testing. As with low temperature (LT) GaAs, the resistivity is generally higher after a brief anneal at 600 C. High-resolution transmission electron micrography shows all the as-grown epilayers grown directly on GaAs to be heavily dislocated due to the large lattice mismatch (2-3%). Annealed layers also show precipitate formation, in addition to the dislocations. Like LT GaAs, In(x)Ga(1-x)As lifetimes shorten as growth temperatures are reduced; and LT In(x)Ga(l-x)As lifetimes are generally shorter in as-grown samples than in annealed samples. The metal-semiconductor-metal photodetectors we fabricated on the material exhibit response times of 1-3 picoseconds, comparable to results reported on GaAs grown at low temperature, and the fastest ever reported in the wavelength range of 1.0-1.3 microns. To improve the crystalline quality and to distinguish detector speed and responsivity limitations due to dislocations versus defects induced by LT growth, we have grown 3 microns-thick graded layers of In(x)Al(l-x)As between the GaAs substrates and In(0.35)Ga(0.65)As films. The In(x)Al(l-x)As layers are heavily dislocated, with the dislocation density increasing with distance from the GaAs substrate, and abruptly terminating at or below the In(0.35)Ga(0.65)As layer.

  7. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  8. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  9. Industrial Applications of Low Temperature Plasmas

    SciTech Connect

    Bardsley, J N

    2001-03-15

    The use of low temperature plasmas in industry is illustrated by the discussion of four applications, to lighting, displays, semiconductor manufacturing and pollution control. The type of plasma required for each application is described and typical materials are identified. The need to understand radical formation, ionization and metastable excitation within the discharge and the importance of surface reactions are stressed.

  10. Synergetic aspects of gas-discharge: lateral patterns in dc systems with a high ohmic barrier

    NASA Astrophysics Data System (ADS)

    Purwins, H.-G.; Stollenwerk, L.

    2014-12-01

    The understanding of self-organized patterns in spatially extended nonlinear dissipative systems is one of the most challenging subjects in modern natural sciences. Such patterns are also referred to as dissipative structures. We review this phenomenon in planar low temperature dc gas-discharge devices with a high ohmic barrier. It is demonstrated that for these systems a deep qualitative understanding of dissipative structures can be obtained from the point of view of synergetics. At the same time, a major contribution can be made to the general understanding of dissipative structures. The discharge spaces of the experimentally investigated systems, to good approximation, have translational and rotational symmetry by contraction. Nevertheless, a given system may exhibit stable current density distributions and related patterns that break these symmetries. Among the experimentally observed fundamental patterns one finds homogeneous isotropic states, fronts, periodic patterns, labyrinth structures, rotating spirals, target patterns and localized filaments. In addition, structures are observed that have the former as elementary building blocks. Finally, defect structures as well as irregular patterns are common phenomena. Such structures have been detected in numerous other driven nonlinear dissipative systems, as there are ac gas-discharge devices, semiconductors, chemical solutions, electrical networks and biological systems. Therefore, from the experimental observations it is concluded that the patterns in planar low temperature dc gas-discharge devices exhibit universal behavior. From the theoretical point of view, dissipative structures of the aforementioned kind are also referred to as attractors. The possible sets of attractors are an important characteristic of the system. The number and/or qualitative nature of attractors may change when changing parameters. The related bifurcation behavior is a central issue of the synergetic approach chosen in the present

  11. Pulsed electrical discharge in gas bubbles in water

    NASA Astrophysics Data System (ADS)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  12. Development of a pulsed uniform supersonic gas expansion system based on an aerodynamic chopper for gas phase reaction kinetic studies at ultra-low temperatures.

    PubMed

    Jiménez, E; Ballesteros, B; Canosa, A; Townsend, T M; Maigler, F J; Napal, V; Rowe, B R; Albaladejo, J

    2015-04-01

    A detailed description of a new pulsed supersonic uniform gas expansion system is presented together with the experimental validation of the setup by applying the CRESU (French acronym for Cinétique de Réaction en Ecoulement Supersonique Uniforme or Reaction Kinetics in a Uniform Supersonic Flow) technique to the gas-phase reaction of OH radicals with 1-butene at ca. 23 K and 0.63 millibars of helium (carrier gas). The carrier gas flow, containing negligible mixing ratios of OH-precursor and 1-butene, is expanded from a high pressure reservoir (337 millibars) to a low pressure region (0.63 millibars) through a convergent-divergent nozzle (Laval type). The novelty of this experimental setup is that the uniform supersonic flow is pulsed by means of a Teflon-coated aerodynamic chopper provided with two symmetrical apertures. Under these operational conditions, the designed Laval nozzle achieves a temperature of (22.4 ± 1.4) K in the gas jet. The spatial characterization of the temperature and the total gas density within the pulsed uniform supersonic flow has also been performed by both aerodynamical and spectroscopic methods. The gas consumption with this technique is considerably reduced with respect to a continuous CRESU system. The kinetics of the OH+1-butene reaction was investigated by the pulsed laser photolysis/laser induced fluorescence technique. The rotation speed of the disk is temporally synchronized with the exit of the photolysis and the probe lasers. The rate coefficient (k(OH)) for the reaction under investigation was then obtained and compared with the only available data at this temperature.

  13. Spots and patterns on electrodes of gas discharges

    NASA Astrophysics Data System (ADS)

    Benilov, Mikhail

    2015-09-01

    Concentration of electrical current onto the surface of electrodes of gas discharges in well-defined regions, or current spots, is often the rule rather than the exception. These spots occur on otherwise uniform electrode surfaces, a regime where one might expect a uniform distribution of current over the surface. In many cases, multiple spots may appear, forming beautiful patterns and surprising the observer. Important advances have been attained in the last 15 years in experimental investigation, understanding, and modelling of spots and patterns in discharges of different types, in particular, high-pressure arc discharges, dc glow discharges, and barrier discharges. It became clear that in many, if not most, cases there is no need to look for special physical mechanisms responsible for the formation of spots or patterns on uniform electrode surfaces: the spots or patterns originate in self-organization caused by (nonlinear) interaction of well-known mechanisms. In particular, standard mechanisms of near-cathode space-charge sheath are sufficient to produce self-organization, and it is this kind of self-organization that gives rise to cathode spots in low-current high-pressure arcs and normal spots and patterns of spots on cathodes of dc glow discharges. It was shown that spots and patterns on electrodes of gas discharges, being self-organization phenomena, are inherently related to multiple solutions, with one of the solutions describing a mode with a uniform distribution of current over the electrode surface and the others describing regimes with different spot patterns. These multiple solutions exist even in the most basic self-consistent models of gas discharges. In particular, multiple solutions have been found for dc glow discharges; the fact rather surprising by itself, given that such discharges have been under intensive theoretical investigation for many years. A concise review of the above-described advances is given in this talk. Work supported by FCT

  14. Comparative studies on individual isomeric 18:1 acids in cow, goat, and ewe milk fats by low-temperature high-resolution capillary gas-liquid chromatography.

    PubMed

    Precht, D; Molkentin, J; Destaillats, F; Wolff, R L

    2001-08-01

    The trans- as well as the cis-18:1 isomer profiles were established in cow, goat, and ewe cheese fats, with the assumption that these are representative of the corresponding milks. Argentation thin-layer chromatography was combined with low-temperature high-resolution gas-liquid chromatography on 100-m highly polar capillary columns, thus adding precision to earlier data for these species. Despite differences in the absolute content of trans-18:1 isomers between species, the relative profiles were essentially similar. Except for the minor trans delta6-delta8 group, all trans-18:1 isomers with their ethylenic bonds between positions delta4 and delta16 (including the resolved critical pair delta13/delta14) were separated and quantitated individually. As expected, vaccenic (trans delta9-18:1) acid was the main isomer, accounting for as much as 37 to 50% of the total fraction. It was observed that the goat trans-18:1 isomer profile was usually rather close to that of cows in winter (barn feeding), whereas that of the ewe shows a seasonal dependence. The trans-18:1 profile of ewe milk fats from this study resembles that of cows in the transition period between winter and summer (pasture) feeding. Regarding the cis-18:1 acid fraction, two isomers (oleic and cis-vaccenic acids) accounted for ca. 97% of that fraction for the three species, with the cis-delta12 isomer ranked third. The analytical procedure employed here appears a convenient alternative to oxidative-based procedures (generally ozonolysis), taking less time and alleviating some drawbacks of the latter procedure.

  15. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    NASA Astrophysics Data System (ADS)

    Qazi, H. I. A.; Nie, Qiu-Yue; Li, He-Ping; Zhang, Xiao-Fei; Bao, Cheng-Yu

    2015-12-01

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A-X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  16. Comparison of electrical and optical characteristics in gas-phase and gas-liquid phase discharges

    SciTech Connect

    Qazi, H. I. A.; Li, He-Ping Zhang, Xiao-Fei; Bao, Cheng-Yu; Nie, Qiu-Yue

    2015-12-15

    This paper presents an AC-excited argon discharge generated using a gas-liquid (two-phase) hybrid plasma reactor, which mainly consists of a powered needle electrode enclosed in a conical quartz tube and grounded deionized water electrode. The discharges in the gas-phase, as well as in the two-phase, exhibit two discharge modes, i.e., the low current glow-like diffuse mode and the high current streamer-like constrict mode, with a mode transition, which exhibits a negative resistance of the discharges. The optical emission spectral analysis shows that the stronger diffusion of the water vapor into the discharge region in the two-phase discharges boosts up the generation of OH (A–X) radicals, and consequently, leads to a higher rotational temperature in the water-phase plasma plume than that of the gas-phase discharges. Both the increase of the power input and the decrease of the argon flow rate result in the increase of the rotational temperature in the plasma plume of the water-phase discharge. The stable two-phase discharges with a long plasma plume in the water-phase under a low power input and gas flow rate may show a promising prospect for the degradation of organic pollutants, e.g., printing and dyeing wastewater, in the field of environmental protection.

  17. Gas laser in which the gas is excited by capacitor discharge

    SciTech Connect

    Lacour, B.; de Witte, O.; Maillet, M.; Vannier, C.

    1985-01-22

    A gas laser in which the gas is excited by laser discharge, said laser including two capacitors formed by two parallel metal plates between which two dielectric parts are spaced apart to form a passage which contains the laser gas. It further includes a transformer whose secondary winding is connected to the plates and whose primary winding is connected in series with a capacitor, means for charging and capacitor and a thyristor for discharging the capacitor in the primary winding. Application to exciting gas lasers in which the gas contains a dye stuff.

  18. Glow discharge in a fast longitudinal gas flow

    NASA Astrophysics Data System (ADS)

    Pashchenko, N. T.; Raizer, Iu. P.

    1982-09-01

    A one-dimensional formulation is used to analyze the entrainment of charges by the flow in a glow discharge in a longitudinal gas flow directed from the cathode to the anode. It is sought to determine whether a discharge can occur if, in contrast to the normal course of events, positive ions are carried by a fast flow toward the positive electrode. The results reveal that a flow, even if very fast, has relatively little effect on the discharge parameters. The discharge, however, acquires a structural feature similar to that which arises at supersonic gas flows. Here, the ion drift serves as the sound. Nothing that occurs outside the cathode sheath during the 'supersonic flow' has any effect on the events at the cathode. The anode sheath is observed to disappear. It is pointed out that this effect may improve the stability of the discharge with respect to instabilities nucleated near the anode and in the positive column, since the cathode 'senses' nothing and no change can occur in the processes occurring at the cathode.

  19. Low Temperature Sheet Forming

    NASA Astrophysics Data System (ADS)

    Voges-Schwieger, Kathrin; Hübner, Sven; Behrens, Bernd-Arno

    2011-05-01

    Metastable austenitic stainless steels change their lattice during forming operations by strain-induced alpha'-martensite formation. Temperatures below T = 20° C can accelerate the phase transformation while temperatures above T = 60° C may suppress the formation of martensite during the forming operation. In past investigations, the effect of high-strength martensitic regions in an austenitic ductile lattice was used in crash relevant parts for transportation vehicles. The local martensitic regions act as reinforcements leading to an increase in crash energy absorption. Moreover, they control the folding behavior as well as the force-distance-characteristic and increase the buckling resistance. This paper deals with a concerted thermomechanical drawing process to increase the local formation of alpha'-martensite caused by low temperatures.

  20. Low temperature latching solenoid

    NASA Technical Reports Server (NTRS)

    Wang, W. S. (Inventor)

    1981-01-01

    A magnetically latching solenoid includes a pull-in coil and a delatching coil. Each of the coils is constructed with a combination of wire materials, including material of low temperature coefficient of resistivity to enable the solenoid to be operated at cryogenic temperatures while maintaining sufficient coil resistance. An armature is spring-based toward a first position, that may extend beyond the field of force of a permanent magnet. When voltage is temporarily applied across the pull-in magnet, the induced electromagnetic forces overcome the spring force and pulls the armature to a second position within the field of the permanent magnet, which latches the armature in the pulled-in position. Application of voltage across the delatching coil induces electromagnetic force which at least partially temporarily nullifies the field of the permanent magnet at the armature, thereby delatching the armature and allowing the spring to move the armature to the first position.

  1. Pre-breakdown evaluation of gas discharge mechanisms in microgaps

    SciTech Connect

    Semnani, Abbas; Peroulis, Dimitrios; Venkattraman, Ayyaswamy; Alexeenko, Alina A.

    2013-04-29

    The individual contributions of various gas discharge mechanisms to total pre-breakdown current in microgaps are quantified numerically. The variation of contributions of field emission and secondary electron emission with increasing electric field shows contrasting behavior even for a given gap size. The total current near breakdown decreases rapidly with gap size indicating that microscale discharges operate in a high-current, low-voltage regime. This study provides the first such analysis of breakdown mechanisms and aids in the formulation of physics-based theories for microscale breakdown.

  2. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas

    NASA Astrophysics Data System (ADS)

    Torokova, Lucie; Mazankova, Vera; Krcma, Frantisek; Mason, Nigel J.; Matejcik, Stefan

    2015-07-01

    This paper reports the results of an extensive study of with the in situ mass spectrometry analysis of gaseous phase species produced by an atmospheric plasma glow discharge in N2-CH4 gas mixtures (with methane concentrations ranging from 1% to 4%). The products are studied using proton-transfer-reaction mass spectrometry (PTR-MS). HCN and CH3CN are identified as the main gaseous products. Hydrazine, methanimine, methyldiazene, ethylamine, cyclohexadiene, pyrazineacetylene, ethylene, propyne and propene are identified as minor compounds. All the detected compounds and their relative abundances are determined with respect to the experimental conditions (gas composition and applied power). The same molecules were observed by the Cassini-Huygens probe in Titan's atmosphere (which has same N2-CH4 gas mixtures). Such, experiments show that the formation of such complex organics in atmospheres containing C, N and H, like that of Titan, could be a source of prebiotic molecules. Contribution to the topical issue "The 14th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE XIV)", edited by Nicolas Gherardi, Ronny Brandenburg and Lars Stollenwark

  3. Industrial applications of low-temperature plasma physics

    SciTech Connect

    Chen, F.F.

    1995-06-01

    The application of plasma physics to the manufacturing and processing of materials may be the new frontier of our discipline. Already partially ionized discharges are used in industry, and the performance of plasmas has a large commercial and technological impact. However, the science of low-temperature plasmas is not as well developed as that of high-temperature, collisionless plasmas. In this paper several major areas of application are described and examples of forefront problems in each are given. The underlying thesis is that gas discharges have evolved beyond a black art, and that intellectually challenging problems with elegant solutions can be found. {copyright} {ital 1995} {ital American} {ital Institute} {ital of} {ital Physics}.

  4. New insights into the experimental behavior of magnetized gas discharges

    NASA Astrophysics Data System (ADS)

    Chen, Francis F.

    2012-10-01

    Helicon discharges have been extensively researched for over 25 years, and over 700 papers have been published on this subject in that time. Helicons are different from other gas discharges because they exist in a dc magnetic field and depend on energy deposition from waves driven by an external radiofrequency (rf) antenna. They produce higher plasma densities than other rf plasmas, but the physics of how they do that turns out to be very complicated. This research has been like peeling an onion. Each layer reveals another layer deeper down. Though the properties of coupled helicon and Trivelpiece-Gould waves have been known for a long time, there has been no theory of the equilibrium profiles of density, electron temperature Te, and neutral density. In tackling this problem, we found that the sheaths on the endplates are important. They allow electrons to cross the magnetic field via the Simon short-circuit effect. A radial electric field is then set up which drives the ions radially outward at a speed scaled to Te. For fixed Te, the density profile follows a ``universal'' profile which is independent of discharge radius and pressure. A physical reason is given for this universality. From this point forward, the theory goes into many details which give insights to the physics of all cylindrical gas discharges, with or without a magnetic field.

  5. Flow shaping using three-dimensional microscale gas discharge

    SciTech Connect

    Wang, C.-C.; Roy, Subrata

    2009-08-24

    We introduce a flow shaping mechanism using surface compliant microscale gas discharge. A three-dimensional finite element-based multiscale ionized gas flow code is utilized to analyze charge separation, potential distribution, and flow inducement mechanism. For the case of quiescent flow, a horseshoe-shaped plasma generator is introduced. Due to its unusual shape, the three-dimensional electric force excites a pinching effect on the fluid inside selectively powered electrode arc. Such effect is capable of tripping the flow-ejecting fluid normal to the plane of the actuator and thus can be very useful for many applications.

  6. Removal of residual dissolved methane gas in an upflow anaerobic sludge blanket reactor treating low-strength wastewater at low temperature with degassing membrane.

    PubMed

    Bandara, Wasala M K R T W; Satoh, Hisashi; Sasakawa, Manabu; Nakahara, Yoshihito; Takahashi, Masahiro; Okabe, Satoshi

    2011-05-01

    In this study, we investigated the efficiency of dissolved methane (D-CH(4)) collection by degasification from the effluent of a bench-scale upflow anaerobic sludge blanket (UASB) reactor treating synthetic wastewater. A hollow-fiber degassing membrane module was used for degasification. This module was connected to the liquid outlet of the UASB reactor. After chemical oxygen demand (COD) removal efficiency of the UASB reactor became stable, D-CH(4) discharged from the UASB reactor was collected. Under 35 °C and a hydraulic retention time (HRT) of 10 h, average D-CH(4) concentration could be reduced from 63 mg COD L(-1) to 15 mg COD L(-1); this, in turn, resulted in an increase in total methane (CH(4)) recovery efficiency from 89% to 97%. Furthermore, we investigated the effects of temperature and HRT of the UASB reactor on degasification efficiency. Average D-CH(4) concentration was as high as 104 mg COD L(-1) at 15 °C because of the higher solubility of CH(4) gas in liquid; the average D-CH(4) concentration was reduced to 14 mg COD L(-1) by degasification. Accordingly, total CH(4) recovery efficiency increased from 71% to 97% at 15 °C as a result of degasification. Moreover, degasification tended to cause an increase in particulate COD removal efficiency. The UASB reactor was operated at the same COD loading rate, but different wastewater feed rates and HRTs. Although average D-CH(4) concentration in the UASB reactor was almost unchanged (ca. 70 mg COD L(-1)) regardless of the HRT value, the CH(4) discharge rate from the UASB reactor increased because of an increase in the wastewater feed rate. Because the D-CH(4) concentration could be reduced down to 12 ± 1 mg COD L(-1) by degasification at an HRT of 6.7 h, the CH(4) recovery rate was 1.5 times higher under degasification than under normal operation.

  7. Low temperature synthesis of methyl formate

    DOEpatents

    Mahajan, Devinder; Slegeir, William A.; Sapienza, Richard S.; O'Hare, Thomas E.

    1986-01-01

    A gas reaction process for the preferential production of methyl formate over the co-production of methanol wherein the reactant ratio of CO/H.sub.2 is upgraded and this reaction takes place at low temperatures of 50.degree.-150.degree. C. and moderate pressures of .gtoreq.100 psi.

  8. Gas flow dependence of atmospheric pressure plasma needle discharge characteristics

    NASA Astrophysics Data System (ADS)

    Qian, Muyang; Yang, Congying; Liu, Sanqiu; Chen, Xiaochang; Ni, Gengsong; Wang, Dezhen

    2016-04-01

    In this paper, a two-dimensional coupled model of neutral gas flow and plasma dynamics is presented to explain the gas flow dependence of discharge characteristics in helium plasma needle at atmospherics pressure. The diffusional mixing layer between the helium jet core and the ambient air has a moderate effect on the streamer propagation. The obtained simulation results present that the streamer shows the ring-shaped emission profile at a moderate gas flow rate. The key chemical reactions which drive the streamer propagation are electron-impact ionization of helium neutral, nitrogen and oxygen molecules. At a moderate gas flow rate of 0.5 slm, a significant increase in propagation velocity of the streamer is observed due to appropriate quantity of impurities air diffuse into the helium. Besides, when the gas flow rate is below 0.35 slm, the radial density of ground-state atomic oxygen peaks along the axis of symmetry. However, when the gas flow rate is above 0.5 slm, a ring-shaped density distribution appears. The peak density is on the order of 1020 m-3 at 10 ns in our work.

  9. Energy from low temperature differences

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.

    1985-05-01

    A number of energy conservation and alternative energy approaches utilize a low temperature heat source. Applications in this category include: solar ponds, ocean thermal energy conversion (OTEC), low temperature solar thermal, geothermal, and waste heat recovery and bottoming cycles. Low temperature power extraction techniques are presented and the differences between closed and open Rankine power cycles are discussed. Specific applications and technical areas of current research in OTEC along with a breakdown of plant operating conditions and a rough cost estimate illustrate how the use of low temperature power conversion technology can be cost effective.

  10. Power-loading effects in gas-discharge models

    SciTech Connect

    Pitchford, L.C.

    1983-01-01

    The effect is examined of the large discharge currents in the switch conduction stage on the transport and rate coefficients which appear in the rate equation for the electron density, the basic element in a discharge model. Measurements of translational and vibrational heating indicate that for the current levels of interest here, there will be significant heating. As a result, we must consider the related changes due to enhanced populations in the high energy states of the gas molecules: modified rates for translational gas heating and for excitation, dissociation, and perhaps ionization. It is concluded that it is primarily the high energy tail of the electron energy distribution that is affected. Thus, rate coefficients are more sensitive to power loading of the gas than are the drift velocity, average electron energy, and difusion rate. In terms of model predictions of switch performance, knowledge of the source function from the e-beam is important in calculations of switch current gain and for conductivities. These will be underestimated with the neglect of ionization produced by secondaries. The distribution function is modified at the high energies from its form characterized by E/N in the presence of the e-beam source. The subsequent changes in the rate coefficients due to the e-beam source and the excited state populations can affect the turn-on time of the switch.

  11. Rotating structures and vortices in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Boeuf, Jean-Pierre

    2014-10-01

    Rotating structures are present in a number of low temperature EXB devices such as Hall thrusters, magnetrons, Penning discharges etc...Some aspects of the physics of these rotating instabilities are specific to low temperature plasmas because of the relatively large collisionality, the role of ionization, and the fact that ions are often non-magnetized. On the basis of fully kinetic simulations (Particle-In-Cell Monte Carlo Collisions) we describe the formation of a rotating instability associated with an ionization front (``rotating spoke'') and driven by a cross-field current in a self-sustained cylindrical magnetron discharge at gas pressure on the order of 1 Pa. The rotating spoke is a strong double layer (electrostatic sheath) moving towards the higher potential region at a velocity close to the critical ionization velocity, a concept proposed by Alfvén in the context of the formation of the solar system. The mechanisms of cross-field electron transport induced by this instability are analyzed. At lower pressure (<0.01 Pa) the plasma of a magnetron discharge is non-neutral and the simulations predict the formation of electron vortices rotating in the azimuthal direction and resulting from the diocotron instability. The properties of these vortices are specific since they form in a self-sustained discharge where ionization (and losses at the ends of the plasma column) play an essential role in contrast with the electron vortices in pure electron plasmas. We discuss and analyze the mechanisms leading to the generation, dynamics and merging of these self-sustained electron vortices, and to the periodic ejection of fast electrons at the column ends (consistent with previous experimental observations).

  12. Gas-discharge plasma sources for nonlocal plasma technology

    SciTech Connect

    Demidov, V. I.; DeJoseph, C. A. Jr.; Simonov, V. Ya.

    2007-11-12

    Nonlocal plasma technology is based on the effect of self-trapping of fast electrons in the plasma volume [V. I. Demidov, C. A. DeJoseph, Jr., and A. A. Kudryavtsev, Phys. Rev. Lett. 95, 215002 (2006)]. This effect can be achieved by changing the ratio of fast electron flux to ion flux incident on the plasma boundaries. This in turn leads to a significant change in plasma properties and therefore can be useful for technological applications. A gas-discharge device which demonstrates control of the plasma properties by this method is described.

  13. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  14. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  15. 21 CFR 1020.20 - Cold-cathode gas discharge tubes.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cold-cathode gas discharge tubes. 1020.20 Section... discharge tubes. (a) Applicability. The provisions of this section are applicable to cold-cathode gas discharge tubes designed to demonstrate the effects of a flow of electrons or the production of...

  16. ORAL ISSUE OF THE JOURNAL "USPEKHI FIZICHESKIKH NAUK": Modeling of gas discharge plasma

    NASA Astrophysics Data System (ADS)

    Smirnov, Boris M.

    2009-06-01

    The condition for the self-maintenance of a gas discharge plasma (GDP) is derived from its ionization balance expressed in the Townsend form and may be used as a definition of a gas discharge plasma in its simplest form. The simple example of a gas discharge plasma in the positive column of a cylindrical discharge tube allows demonstrating a wide variety of possible GDP regimes, revealing a contradiction between simple models used to explain gas discharge regimes and the large number of real processes responsible for the self-maintenance of GDP. The variety of GDP processes also results in a stepwise change of plasma parameters and developing some instabilities as the voltage or discharge current is varied. As a consequence, new forms and new applications of gas discharge arise as technology progresses.

  17. Laser scattering for temporal and spatial diagnostic of low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Palomares Linares, Jose Maria

    2012-10-01

    Many recent industrial and technological applications like surface etching, inorganic films deposition, polymerization of surfaces or sterilization are developed within the field of low temperature plasmas. To study, monitor and model plasma processes is of great importance to have diagnostic tools that can provide reliable information on different plasma parameters. In general, laser scattering techniques provide a direct and accurate method for plasma diagnostic with spatial and temporal resolution. Laser Thomson scattering is used for the diagnostic of electron density and temperature, two of the most important parameters in low temperature discharges. With a similar setup Rayleigh and Raman scattering techniques are used for the diagnostic of gas density and temperature. In this contribution we deal with the different technical and theoretical aspects that are required for the application of these laser scattering techniques. Of special importance are the detection limit, laser stray light rejection and laser perturbations of the plasma. The present study is performed on different low temperature microwave discharges, both at low and atmospheric pressure. The laser scattering techniques provide information on the spatial distribution of the mentioned plasma parameters over different discharge conditions, including small micro-plasmas. Similarly, the temporal evolution of pulsed plasmas is studied, unraveling the features of the switching on and off phases of the discharges.

  18. Modeling nitrogen and methane with ethane and propane gas hydrates at low temperatures (173-290 K) with applications to Titan

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Kargel, J. S.; Tan, S. P.

    2015-09-01

    The FREZCHEM model was primarily designed for cold temperatures (173-298 K) and high pressures (1-1000 bars). Nitrogen gas (95.0%) and methane gas (5.0%) are major gases on the surface of Titan. Recently, we added nitrogen and methane gas hydrates to FREZCHEM model on Titan; and nitrogen-methane gas hydrates formed on Titan at 178 K. The other common but less abundant gases on Titan are ethane (C2H6) and propane (C3H8) that can also form gas hydrates with nitrogen and methane. The specific objectives of this study were to (1) add ethane and propane to gas hydrates, including mixtures with nitrogen, methane, and carbon dioxide, and (2) explore the potential roles of gas hydrates on Titan. At 273 K, the Ln(gas hydrates) were 5.095 for N2, 3.217 for CH4, 2.327 for CO2, 1.288 for C2H6, and 0.281 for C3H8. At 173 K, the Ln(gas hydrates) were -4.968 for N2, -6.102 for CH4, -7.803 for CO2, -5.125 for C2H6, and -5.512 for C3H8. Apparently C2H6 and C3H8 gas hydrates change less at lower temperatures than N2, CH4, and CO2 gas hydrates. In previous papers, we added three mixed CH4-CO2, N2-CH4, and N2-CO2 binary gas hydrates. In this paper, we added ethane and propane to include new binary gas hydrate mixtures of N2-C2H6, N2-C3H8, C2H6-C3H8, CH4-C2H6, CH4-C3H8, CO2-C2H6, and CO2-C3H8. Today, there are ten binary gas hydrates in the FREZCHEM model. In the text, how to cope with more than two species is described. Simulations from 273 K to 173 K used a surface Titan pressure of 1.467 bars with a major gas of nitrogen (94.24%), a minor gas of methane (5.65%), and extremely minor gases of ethane (0.0038%), and propane (0.000343%). Eventually at 178 K, N2·6H2O formed with 0.17694 mol, CH4·6H2O formed with 0.04101 mol, C2H6·6H2O formed with 6.48e-6 mol, and C3H8·6H2O formed with 9.36e-7 mol. Based on the atmospheric conditions of Titan, the trace gases of ethane and propane led to low gas hydrate precipitations of ethane and propane with nitrogen and methane. However, the gas

  19. Organic Combustion in the Presence of Ca-Carbonate and Mg-Perchlorate: A Possible Source for the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, Douglas; Ming, D.; Niles, P.; Sutter, B.; Lauer, H.

    2012-01-01

    Two of the most important discoveries of the Phoenix Lander were the detection of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in landing site soils. The Thermal and Evolved Gas Analyzer (TEGA) instrument on the Phoenix lander could heat samples up to approx.1000 C and monitor evolved gases with a mass spectrometer. TEGA detected a low (approx.350 C) and high (approx.750 C) temperature CO2 release. The high temp release was attributed to the thermal decomposition of Ca-carbonate (calcite). The low temperature CO2 release could be due to desorption of CO2, decomposition of a different carbonate mineral, or the combustion of organic material. A new hypothesis has also been proposed that the low temperature CO2 release could be due to the early breakdown of calcite in the presence of the decomposition products of certain perchlorate salts [3]. We have investigated whether or not this new hypothesis is also compatible with organic combustion. Magnesium perchlorate is stable as Mg(ClO4)2-6H2O on the martian surface [4]. During thermal decomposition, this perchlorate salt releases H2O, Cl2, and O2 gases. The Cl2 can react with water to form HCl which then reacts with calcite, releasing CO2 below the standard thermal decomposition temperature of calcite. However, when using concentrations of perchlorate and calcite similar to what was detected by Phoenix, the ratio of high:low temperature CO2 evolved is much larger in the lab, indicating that although this process might contribute to the low temp CO2 release, it cannot account for all of it. While H2O and Cl2 cause calcite decomposition, the O2 evolved during perchlorate decomposition can lead to the combustion of any reduced carbon present in the sample [5]. We investigate the possible contribution of organic molecules to the low temperature CO2 release seen on Mars.

  20. Development of pulsed gas discharge lasers for shock hardening

    NASA Astrophysics Data System (ADS)

    Hintz, Gerd; Tkotz, R.; Keusch, C.; Negendanck, Matthias; Christiansen, Jens; Hoffmann, D. H. H.

    1996-08-01

    Shock hardening of metals (e.g. Ti, stainless steel) by pulsed lasers offers the possibility of large hardening depth (several millimeters) without serious damage to the surface of the workpiece. Previous investigations for shock hardening have mainly been performed with high power solid state lasers. The adaptation of commercial, high power gas discharge lasers to the shock hardening process could make this process relevant for industrial applications, as high repetition rates may be used. Two different laser systems have been investigated: a TEA carbon-dioxide laser and a XeCl laser. Both systems have pulse energies of some joule, a pulse length of several ten nanoseconds, and pulse repetition rates of up to 10 Hertz. The divergence of the beam was minimized to improve focusing properties. Systematic measurements of the laser induced pressure by means of piezo probes have been performed. An enhancement of the hardness of illuminated Ti(RT15) targets has been found and is reported.

  1. Destruction of Bacterial Biofilms Using Gas Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Abramzon, Nina

    2005-03-01

    Biofilms are bacterial communities embedded in an exopolysaccharidic matrix with a complex architectural structure. Bacteria in biofilms show different properties from those in free life thus, conventional methods of killing bacteria are often ineffective with biofilms. The use of plasmas potentially offers an alternative to conventional sterilization methods since plasmas contain a mixture of charged particles, chemically reactive species, and UV radiation. 4 and 7 day-old biofilms were produced using two bacterial species: Rhizobium gallicum and Chromobacterium violaceum. Gas discharge plasma was produced by using an AtomfloTM reactor (Surfx Technologies) and bacterial biofilms were exposed to it for different periods of time. Our results show that a 10-minute plasma treatment was able to kill 100% of the cells in most cases. Optical emission spectroscopy was used to study plasma composition which is then correlated with the effectiveness of killing. These results indicate the potentiality of plasma as an alternative sterilization method. Supported by CSuperb.

  2. Instability of dusty particle system in gas-discharge plasma

    SciTech Connect

    Filinov, V.S.; Petrov, O.F.; Fortov, V.E.; Molotkov, V.I.

    2005-10-31

    An effective anisotropic potential is proposed for the interaction between dust particles in a gas-discharge plasma. In addition to the Coulomb repulsion this potential takes into account attraction due to the spatial positive plasma charge originating from focusing of the ionic fluxes by dusty particles. The time evolution of the dust particle kinetic and potential energies from random initial configurations have been investigated by the Brownian dynamics method. Results of our simulation showed that the attraction between dusty particles can be the main physical reason of formation and decay of classical bound dust particle pairs and many particle complexes with low potential energy, while the kinetic energy (temperature) of unbound dust particles and particle oscillating in bound complexes may increase on three order as observed in experiments.

  3. Continuous gas discharge plasma with 200 K electron temperature

    SciTech Connect

    Dickson, Shannon; Robertson, Scott

    2010-03-15

    A very cold and collisional hot-filament discharge plasma is created in a vacuum chamber with an inner wall cooled by liquid nitrogen. The inner chamber (16.5 cm diameterx30 cm) has two negatively biased tungsten filaments for plasma generation and a Langmuir probe on axis for diagnostic measurements. With the wall at 140 K, 0.5-16 mA filament emission, and 1.6 mTorr carbon monoxide as the working gas, probe data give electron temperatures of 17-28 meV (197-325 K) with corresponding densities of 10{sup 8}-10{sup 9} cm{sup -3}. With He, Ar, H{sub 2}, and N{sub 2} at 140 K, the electron temperatures are >500 K. The lower electron temperature with CO is attributed to the asymmetric CO molecule having a larger cross section for electron excitation of rotational modes as a consequence of its dipole moment.

  4. Coupling discharge and gas dynamics in streamer-less spark formation in supercritical N2

    NASA Astrophysics Data System (ADS)

    Agnihotri, Ashutosh; Hundsdorfer, Willem; Ebert, Ute

    2016-07-01

    A two-dimensional cylindrically symmetric model is developed to study the streamer-less spark formation in a short gap on the timescale of ion motion. It incorporates the coupling between the electric discharge and the gas through the heat generated by the discharge and the consecutive gas expansion. The model is employed to study electrical breakdown in supercritical N2. We present the simulation results of gas heating by the electrical discharge and the effect of gas expansion on the electrical discharge.

  5. Role of flue gas components in mercury oxidation over TiO2 supported MnOx-CeO2 mixed-oxide at low temperature.

    PubMed

    Li, Hailong; Wu, Chang-Yu; Li, Ying; Li, Liqing; Zhao, Yongchun; Zhang, Junying

    2012-12-01

    MnO(x)-CeO(2) mixed-oxide supported on TiO(2) (Mn-Ce/Ti) was synthesized by an ultrasound-assisted impregnation method and employed to oxidize elemental mercury (Hg(0)) at 200°C in simulated coal combustion flue gas. Over 90% of Hg(0) oxidation was achieved on the Mn-Ce/Ti catalyst at 200°C under simulated flue gas representing those from burning low-rank coals with a high gas hourly space velocity of 60,000 h(-1). Gas-phase O(2) regenerated the lattice oxygen and replenished the chemisorbed oxygen, which facilitated Hg(0) oxidation. HCl was the most effective flue gas component responsible for Hg(0) oxidation. 10 ppm HCl plus 4% O(2) resulted in 100% Hg(0) oxidation under the experimental conditions. SO(2) competed with Hg(0) for active sites, thus deactivating the catalyst's capability in oxidizing Hg(0). NO covered the active sites and consumed surface oxygen active for Hg(0) oxidation, hence limiting Hg(0) oxidation. Water vapor showed prohibitive effect on Hg(0) oxidation due to its competition with HCl and Hg(0) for active adsorption sites. This study provides information about the promotional or inhibitory effects of individual flue gas components on Hg(0) oxidation over a highly effective Mn-Ce/Ti catalyst. Such knowledge is of fundamental importance for industrial applications of the Mn-Ce/Ti catalyst in coal-fired power plants. PMID:23131500

  6. Low temperature barrier wellbores formed using water flushing

    DOEpatents

    McKinzie, II; John, Billy [Houston, TX; Keltner, Thomas Joseph [Spring, TX

    2009-03-10

    A method of forming an opening for a low temperature well is described. The method includes drilling an opening in a formation. Water is introduced into the opening to displace drilling fluid or indigenous gas in the formation adjacent to a portion of the opening. Water is produced from the opening. A low temperature fluid is applied to the opening.

  7. Reaction mechanism for the aqueous-phase mineral carbonation of heat-activated serpentine at low temperatures and pressures in flue gas conditions.

    PubMed

    Pasquier, Louis-César; Mercier, Guy; Blais, Jean-François; Cecchi, Emmanuelle; Kentish, Sandra

    2014-05-01

    Mineral carbonation is known as one of the safest ways to sequester CO2. Nevertheless, the slow kinetics and low carbonation rates constitute a major barrier for any possible industrial application. To date, no studies have focused on reacting serpentinite with a relatively low partial pressure of CO2 (pCO2) close to flue gas conditions. In this work, finely ground and heat-treated serpentinite [Mg3Si2O5(OH)4] extracted from mining residues was reacted with a 18.2 vol % CO2 gas stream at moderate global pressures to investigate the effect on CO2 solubility and Mg leaching. Serpentinite dissolution rates were also measured to define the rate-limiting step. Successive batches of gas were contacted with the same serpentinite to identify surface-limiting factors using scanning electron microscopy (SEM) analysis. Investigation of the serpentinite carbonation reaction mechanisms under conditions close to a direct flue gas treatment showed that increased dissolution rates could be achieved relative to prior work, with an average Mg dissolution rate of 3.55 × 10(-11) mol cm(-2) s(-1). This study provides another perspective of the feasibility of applying a mineral carbonation process to reduce industrial greenhouse gas (GHG) emissions from large emission sources.

  8. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must...

  9. 46 CFR 153.462 - Static discharges from inert gas systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Equipment Special Requirements for Flammable Or Combustible Cargoes § 153.462 Static discharges from inert gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must...

  10. Three-dimensional patterns in dielectric barrier discharge with "H" shaped gas gap

    NASA Astrophysics Data System (ADS)

    Gao, Xing; Dong, Lifang; Wang, Hao; Zhang, Hao; Liu, Ying; Liu, Weibo; Fan, Weili; Pan, Yuyang

    2016-08-01

    Three-dimensional (3D) patterns are obtained for the first time in dielectric barrier discharge by a special designed device with "H" shaped gas gap which consists of a single gas layer gap and two double gas layer gaps. Three dimensional spatiotemporal characteristics of discharge are investigated by photomultiplier and intensified charge-coupled device camera. Results show that the discharge first generates in the single gas layer gap and the coupled filaments in the double gas layer gap present the simultaneity characteristics. The formation of 3D patterns is determined by the distribution of the effective field of the applied field and the wall charge field.

  11. A summary of volatile impurity measurements and gas generation studies on MISSTD-1, a high-purity plutonium oxide produced by low-temperature calcination of plutonium oxalate

    SciTech Connect

    Berg, John M.; Narlesky, Joshua E.; Veirs, Douglas K.

    2012-06-08

    Plutonium dioxide of high specific surface area was subjected to long-term tests of gas generation in sealed containers. The material preparation and the storage conditions were outside the bounds of acceptable parameters defined by DOE-STD-3013-2012 in that the material was stabilized to a lower temperature than required and had higher moisture content than allowed. The data provide useful information for better defining the bounding conditions for safe storage. Net increases in internal pressure and transient increases in H{sub 2} and O{sub 2} were observed, but were well within the bounds of gas compositions previously shown to not threaten integrity of 3013 containers.

  12. Particle-in-cell modeling of gas-confined barrier discharge

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan L.

    2016-04-01

    Gas-confined barrier discharge is studied using the one-dimensional Particle-in-Cell Monte Carlo Collisions model for the conditions reported by Guerra-Garcia and Martinez-Sanchez [Appl. Phys. Lett. 106, 041601 (2015)]. Depending on the applied voltage, two modes of discharge are observed. In the first mode, the discharge develops in the entire interelectrode gap. In the second mode, the discharge is ignited and develops only in the gas layer having smaller breakdown voltage. The one-dimensional model shows that for the conditions considered, there is no streamer stage of breakdown as is typical for a traditional dielectric barrier discharge.

  13. Effects of ionic liquid electrode on pulse discharge plasmas in the wide range of gas pressures

    SciTech Connect

    Chen Qiang; Hatakeyama, Rikizo; Kaneko, Toshiro

    2010-11-15

    Gas-liquid interfacial pulse discharge plasmas are generated in the wide range of gas pressures, where an ionic liquid is used as the liquid electrode. By analyzing the characteristics of discharge voltage and current, the discharge mechanisms at low and high pressures are found to be dominated by secondary electron emission and first Townsend ionization, respectively. Therefore, the discharge properties at low and high pressures are mainly determined by the cathode material and the discharge gas type, respectively. Furthermore, the plasma properties are investigated by a double Langmuir probe. The density of the positive pulse plasma is found to be much smaller than that of the negative pulse plasma, although the discharge voltage and current of the negative and positive pulse plasmas are of the same order of magnitude. The positive pulse discharge plasma is considered to quickly diffuse onto the chamber wall from the radially central region due to its high plasma potential compared with that in the peripheral region.

  14. Low-temperature tracking detectors

    NASA Astrophysics Data System (ADS)

    Niinikoski, T. O.; Abreu, M.; Anbinderis, P.; Anbinderis, T.; D'Ambrosio, N.; de Boer, W.; Borchi, E.; Borer, K.; Bruzzi, M.; Buontempo, S.; Chen, W.; Cindro, V.; Dezillie, B.; Dierlamm, A.; Eremin, V.; Gaubas, E.; Gorbatenko, V.; Granata, V.; Grigoriev, E.; Grohmann, S.; Hauler, F.; Heijne, E.; Heising, S.; Hempel, O.; Herzog, R.; Härkönen, J.; Ilyashenko, I.; Janos, S.; Jungermann, L.; Kalesinskas, V.; Kapturauskas, J.; Laiho, R.; Li, Z.; Luukka, P.; Mandic, I.; De Masi, R.; Menichelli, D.; Mikuz, M.; Militaru, O.; Nuessle, G.; O'Shea, V.; Pagano, S.; Paul, S.; Perea Solano, B.; Piotrzkowski, K.; Pirollo, S.; Pretzl, K.; Rahman, M.; Rato Mendes, P.; Rouby, X.; Ruggiero, G.; Smith, K.; Sousa, P.; Tuominen, E.; Tuovinen, E.; Vaitkus, J.; Verbitskaya, E.; da Viá, C.; Vlasenko, L.; Vlasenko, M.; Wobst, E.; Zavrtanik, M.; CERN RD39 Collaboration

    2004-03-01

    RD39 collaboration develops new detector techniques for particle trackers, which have to withstand fluences up to 1016 cm-2 of high-energy particles. The work focuses on the optimization of silicon detectors and their readout electronics while keeping the temperature as a free parameter. Our results so far suggest that the best operating temperature is around 130 K. We shall also describe in this paper how the current-injected mode of operation reduces the polarization of the bulk silicon at low temperatures, and how the engineering and materials problems related with vacuum and low temperature can be solved.

  15. Gas discharges in fumarolic ice caves of Erebus volcano, Antarctica

    NASA Astrophysics Data System (ADS)

    Fischer, T. P.; Curtis, A. G.; Kyle, P. R.; Sano, Y.

    2013-12-01

    reactions. We are confident that the atmospheric component is not the result of sampling procedure but intrinsic to the ice cave system. In addition to carbon dioxide, magmatic gases emitted from Erebus lava lake contain significant amounts of SO2, HCl, HF, CO and H2 [1,2]. The acid magmatic gases (SO2, HCl, HF) and a significant amount of the CO2 are likely absorbed by the subsurface ice/water system. The atmospheric components (Ar, nitrogen, oxygen) likely enter the system at shallow levels. The relative abundances of these components reflect degassing fractionation of these volatiles from liquid water at low temperatures, suggesting the presence of liquid water in the subsurface. [1] Oppenheimer, C., Kyle, P.R., 2008. Probing the magma plumbing of Erebus volcano, Antarctica, by open-path FTIR spectroscopy of gas emissions. J. Vol. Geoth. Res. 177, 743-754. [2] Moussallam, Y., Oppenheimer, C., et al., 2012. Hydrogen emission from Erebus volcano, Antarctica. Bull. Volcan 74, 2109-2120.

  16. Note: Fiber optic transport probe for Hall measurements under light and magnetic field at low temperatures: Case study of a two dimensional electron gas

    SciTech Connect

    Bhadauria, P. P. S.; Gupta, Anurag; Kumar, Pramod; Dogra, Anjana; Budhani, R. C.

    2015-05-15

    A fiber optic based probe is designed and developed for electrical transport measurements in presence of quasi-monochromatic (360–800 nm) light, varying temperature (T = 1.8–300 K), and magnetic field (B = 0–7 T). The probe is tested for the resistivity and Hall measurements performed on a LaAlO{sub 3}–SrTiO{sub 3} heterointerface system with a conducting two dimensional electron gas.

  17. Improving the gas barrier and mechanical properties of a-SiO x films synthesized at low temperature by using high energy and hydrogen flow rate control

    NASA Astrophysics Data System (ADS)

    Jin, Su B.; Long, Wen; Sahu, B. B.; Han, Jeon G.; Hori, M.

    2015-05-01

    Silicon-oxide thin films were deposited on polyethylene-terephthalate (PET) and glass substrates for applications in transparent barrier packaging and replacement display cover glasses by using plasma-enhanced chemical vapor deposition (PECVD). The bias conditions and the input power in the radio-frequency plasma were changed to optimize the gas barrier and the mechanical properties of the silicon-oxide thin film. We made an advanced plasma source for large-area PECVD (370 × 470 mm2 size). The dissociation of the octamethylycyclodisiloxane (OMCTS) precursor was controlled by using the plasma processing parameters. The gas barrier and the mechanical properties of the a-SiO x film were improved by controlling the plasma process parameters. The gas barrier and the mechanical properties of the coatings were examined using a Permatran (MOCON) system and a pencil hardness measurement. The chemical structure properties of the coatings were examined by using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The properties of the a-SiO x thin films were improved by the dissociation of OMCTS obtained by using various appropriate plasma processing parameters.

  18. Emission spectroscopic study on gas-gas interactions in glow discharge plasmas using several binary gas mixtures.

    PubMed

    Wagatsuma, Kazuaki

    2010-01-01

    Emission spectra of constituent gas species from glow discharge plasmas using argon-helium, krypton-helium, argon-krypton, and krypton-argon gas mixtures were analyzed to elucidate collisional energy transfer between these gas species occurring in the plasma. In the argon-helium mixed gas plasma, the enhancement or quenching of particular Ar II lines was observed when helium was added to an argon-matrix glow discharge plasma, meaning that a redistribution in the population among the excited levels could be induced through argon-helium collisions. On the other hand, the krypton-helium plasma showed little change in the emission intensities of Kr II lines when helium was added to a krypton-matrix glow discharge plasma, meaning that energy exchanges between krypton and helium excited species occur inactively. These phenomena are principally because the excitation energy as well as the spin multiplicity between collision partners follow both the energy resonance conditions and the spin conservation rule in collisions of the second kind in the argon-helium system, but not in the krypton-helium system. In the argon-krypton and krypton-argon mixed gas plasmas, significant intensity changes of particular Ar II or Kr II lines could not be found; therefore, there were no dominant channels for energy exchanges between argon and krypton species in the mixed gas plasmas.

  19. Current-Voltage Characteristics of DC Discharge in Micro Gas Jet Injected into Vacuum Environment

    NASA Astrophysics Data System (ADS)

    Matra, K.; Furuta, H.; Hatta, A.

    2013-06-01

    A current-voltage characteristic of direct current (DC) gas discharge operated in a micro gas jet injected into a secondary electron microscope (SEM) chamber is presented. Ar gas was injected through a 30 μm orifice gas nozzle (OGN) and was evacuated by an additional pump to keep the high vacuum environment. Gas discharges were ignited between the OGN as anode and a counter electrode of Si wafer. The discharge was self-pulsating in most of the cases while it was stable at lower pressure, larger gap length, and larger time averaged current. The self-pulsating discharge was oscillated by the RC circuit consisting of a stray capacitor and a large ballast resistor. The real time plots of voltage and current during the pulsating was investigated using a discharge model.

  20. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  1. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  2. Catalysts for low temperature oxidation

    DOEpatents

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  3. Inception of Snapover and Gas Induced Glow Discharges

    NASA Technical Reports Server (NTRS)

    Galofaro, J. T.; Vayner, B. V.; Degroot, W. A.; Ferguson, D. C.; Thomson, C. D.; Dennison, J. R.; Davies, R. E.

    2000-01-01

    Ground based experiments of the snapover phenomenon were conducted in the large vertical simulation chamber at the Glenn Research Center (GRC) Plasma Interaction Facility (PIF). Two Penning sources provided both argon and xenon plasmas for the experiments. The sources were used to simulate a variety of ionospheric densities pertaining to a spacecraft in a Low Earth Orbital (LEO) environment. Secondary electron emission is believed responsible for dielectric surface charging, and all subsequent snapover phenomena observed. Voltage sweeps of conductor potentials versus collected current were recorded in order to examine the specific charging history of each sample. The average time constant for sample charging was estimated between 25 and 50 seconds for all samples. It appears that current drops off by approximately a factor of 3 over the charging time of the sample. All samples charged in the forward and reverse bias directions, demonstrated hysteresis. Current jumps were only observed in the forward or positive swept voltage direction. There is large dispersion in tile critical snapover potential when repeating sweeps on any one sample. The current ratio for the first snapover region jumps between 2 and 4.6 times, with a standard deviation less than 1.6. Two of the samples showed even larger current ratios. It is believed the second large snapover region is due to sample outgassing. Under certain preset conditions, namely at the higher neutral gas background pressures, a perceptible blue-green glow was observed around the conductor. The glow is believed to be a result of secondary electrons undergoing collisions with an expelled tenuous cloud of gas, that is outgassed from the sample. Spectroscopic measurements of the glow discharge were made in an attempt to identify specific lines contributing to the observed glow.

  4. The application of an assisting gas plasma generator for low- temperature magnetron sputtering of Ti-C-Mo-S antifriction coatings on titanium alloys

    NASA Astrophysics Data System (ADS)

    Potekaev, A. I.; Savostikov, V. M.; Tabachenko, A. N.; Dudarev, E. F.; Melnikova, E. A.; Shulepov, I. A.

    2015-11-01

    The positive effect of assisting influence of high-density gas plasma formed by an independent plasma generator PINK on mechanical and tribological characteristics of Ti-C- Mo-S magnetron coating on titanium alloys at lowered to 350°C temperature of coating regardless of alloy structural condition was revealed by methods of calotest, nanorecognition, scratch testing and frictional material tests. The coating formed by means of a combined magnetron plasma method reduces titanium alloys friction coefficient in multiple times and increases wear resistance by two orders of magnitude. At the same time the mechanical properties of ultra-fine-grained titanium alloys obtained by nanostructuring do not deteriorate.

  5. Low temperature electrolytes for lithium/silver vanadium oxide cells

    NASA Technical Reports Server (NTRS)

    Tuhovak, Denise R.; Takeuchi, Esther S.

    1991-01-01

    Combinations of methyl formate (MF) and propylene carbonate (PC) using salt concentrations of 0.6 to 2.4 M, with lithium hexafluoroarsenate and lithium tetrafluoroborate in a five to one molar ratio, were investigated as electrolytes in lithium/silver vanadium oxide batteries. The composition of the electrolyte affected cell performance at low temperature, self-discharge and abuse resistance as characterized by short circuit and crush testing. The electrolyte that provided the best combination of good low temperature performance, low cell self-discharge and abuse resistance was 0.6 M salt in 10:90 PC/MF.

  6. Synthesis and characterization of nano titania powder with high photoactivity for gas-phase photo-oxidation of benzene from TiOCl(2) aqueous solution at low temperatures.

    PubMed

    Li, Yuanzhi; Lee, Nam-Hee; Hwang, Doo-Sun; Song, Jae Sung; Lee, Eun Gu; Kim, Sun-Jae

    2004-12-01

    Nano rutile, anatase, and bicrystalline (anatase + brookite) titania powders with an average crystal size of below 10 nm are prepared from aqueous TiOCl(2) solution at low temperatures by adjusting pH values of the starting solution and adding different additives. Adding a small amount of octyl phenol poly(ethylene oxide) into aqueous TiOCl(2) solution leads to the change of particle morphologies of obtained nano titania from needlelike to nano spherical rutile crystals. Amorphous-anatase transformation of titania could proceed in liquid-solid reaction at low temperatures, even at room temperature. A formation mechanism of rutile, anatase, and brookite titania was proposed. It is found that H(+) or H(3)O(+) plays a catalytic role in the phase transformation from amorphous to anatase titania and that the presence of a small amount of SO(4)(2)(-) ion is unfavorable to the formation of both rutile and brookite. By carefully adjusting preparation conditions, nano pure anatase with higher surface area, good crystallinity, and a lower recombination rate of photoexcited electrons and holes was obtained. This nano pure anatase showed a very good photocatalytic activity for gas-phase photo-oxidation of benzene.

  7. Quasicylindrical description of a swirling light gas jet discharging into a heavier ambient gas

    NASA Astrophysics Data System (ADS)

    Gallardo-Ruiz, J. M.; del Pino, C.; Fernandez-Feria, R.

    2010-11-01

    The structure of an axisymmetric swirling gas jet of a light species discharging into an ambient of a heavier gas is analyzed using the quasicylindrical approximation of the compressible flow equations, with the main aim of describing the conditions for the onset of vortex breakdown. A self-similar solution valid in the mixing-layer close to the jet exit is found, which is used to start the numerical integration of the parabolic equations. For the computations, we consider the particular case of a swirling jet of hydrogen discharging into air. We characterize the critical swirl number for vortex breakdown as a function of the coflow velocity of the ambient gas, and compare it to the case of a homogeneous, single-species gas jet, discussing the physical differences found between the cases. We also consider the influence of the Mach number on the onset of vortex breakdown, and discuss the results in relation to the incompressible limit, finding that the swirl level for breakdown decreases as the Mach number increases.

  8. Rapid synthesis and characterization of hybrid ZnO@Au core-shell nanorods for high performance, low temperature NO2 gas sensor applications

    NASA Astrophysics Data System (ADS)

    Ponnuvelu, Dinesh Veeran; Pullithadathil, Biji; Prasad, Arun K.; Dhara, Sandip; Ashok, Anuradha; Mohamed, Kamruddin; Tyagi, Ashok Kumar; Raj, Baldev

    2015-11-01

    A rapid synthesis route for hybrid ZnO@Au core-shell nanorods has been realized for ultrasensitive, trace-level NO2 gas sensor applications. ZnO nanorods and hybrid ZnO@Au core-shell nanorods are structurally analyzed using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS). Optical characterization using UV-visible (UV-vis), photoluminescence (PL) and Raman spectroscopies elucidate alteration in the percentage of defect and charge transport properties of ZnO@Au core-shell nanorods. The study reveals the accumulation of electrons at metal-semiconductor junctions leading to upward band bending for ZnO and thus favors direct electron transfer from ZnO to Au nanoclusters, which mitigates charge carrier recombination process. The operating temperature of ZnO@Au core-shell nanorods based sensor significantly decreased to 150 °C compared to alternate NO2 sensors (300 °C). Moreover, a linear sensor response in the range of 0.5-5 ppm of NO2 concentration was observed with a lowest detection limit of 500 ppb using conventional electrodes. The defects with deep level, observed in ZnO nanorods and hybrid ZnO@Au core-shell nanorods influences local electron density, which in-turn indirectly influence the gas sensing properties. The ZnO@Au core-shell nanorods based sensor exhibited good selectivity toward NO2 and was found to be very stable.

  9. OBSERVATIONS OF THE [HNCS]/[HSCN] RATIO IN Sgr B2 AND TMC-1: EVIDENCE FOR LOW-TEMPERATURE GAS-PHASE CHEMISTRY

    SciTech Connect

    Adande, G. R.; Halfen, D. T.; Ziurys, L. M.; Quan, D.; Herbst, E.

    2010-12-10

    Millimeter observations of isothiocyanic acid (HNCS) and its higher energy isomer, thiocyanic acid (HSCN), have been carried out toward Sgr B2 and TMC-1 using the 12 m telescope of the Arizona Radio Observatory. For both species, the J{sub Ka,Kc} = 8{sub 0,8} {yields} 7{sub 0,7} and 9{sub 0,9} {yields} 8{sub 0,8} transitions near 91-93 GHz and 103-106 GHz were mapped across a 6' x 3' region, centered near Sgr B2(M). Comparative mapping observations were also done for the J{sub Ka,Kc} = 4{sub 0,4} {yields} 3{sub 0,3} line of HNCO and HOCN near 84-87 GHz. In addition, the J{sub Ka,Kc} = 7{sub 0,7} {yields} 6{sub 0,6} and 8{sub 0,8} {yields} 7{sub 0,7} transitions of both HNCS and HSCN were detected in TMC-1, the first identification of either molecule in a cold, dark cloud. Emission from HNCS and HSCN was found to be extended over the Sgr B2 cloud, with a single velocity component and a linewidth of {approx}20-25 km s{sup -1}. Column densities derived for HSCN in Sgr B2 are typically N{sub tot} {approx} (0.2-1) x 10{sup 13} cm{sup -2}, with N{sub tot} {approx} (0.8-5) x 10{sup 13} cm{sup -2} for the more stable isomer, HNCS. In TMC-1, these species have similar column densities of (6-8) x 10{sup 10} cm{sup -2}. The [HNCS]/[HSCN] abundance ratio ranges from 2 to 7 in Sgr B2, with a value of {approx}1 in TMC-1. In contrast, the [HNCO]/[HOCN] ratio in Sgr B2 is {approx}110-250. Gas-grain chemical models do not reproduce the observed abundances of the sulfur isomers in either source. Given the energy difference of over 3200 K between HNCS and HSCN, these observations suggest that both molecules are produced from gas-phase, ion-molecule chemistry with a common precursor, HNCSH{sup +}. The oxygen analogs, in contrast, probably have a more complex chemical network, perhaps involving the H{sub 2}NCO{sup +} precursor, which preferentially leads to HNCO.

  10. Low-Temperature Synthesis of Single-Walled Carbon Nanotubes in a High Vacuum Using Pt Catalyst in Alcohol Gas Source Method

    NASA Astrophysics Data System (ADS)

    Fukuoka, Naoya; Mizutani, Yoshihiro; Naritsuka, Shigeya; Maruyama, Takahiro; Iijima, Sumio

    2012-06-01

    The growth of single-walled carbon nanotubes (SWCNTs) was carried out on SiO2/Si substrates with Pt catalysts between 500 and 700 °C under various ethanol pressures using an alcohol gas source method in a high vacuum and the grown SWCNTs were characterized by scanning electron microscopy (SEM) and Raman spectroscopy. It was found that, irrespective of the growth temperature, the optimal ethanol pressures were 1×10-3-1×10-4 Pa, which were much smaller than those used in the SWCNT growth with Co catalysts. SEM observations showed that the yield of SWCNTs grown with a Pt catalyst under 1×10-3 Pa at 700 °C was similar to that with a Co catalyst under the optimal growth condition, even though the ethanol pressure was fairly lower in the growth with Pt. By optimizing the growth pressure, SWCNTs could be grown even at 500 °C by using a Pt catalyst.

  11. Investigation of isochronal annealing on the optical properties of HWCVD amorphous silicon nitride deposited at low temperatures and low gas flow rates

    NASA Astrophysics Data System (ADS)

    Muller, T. F. G.; Jacobs, S.; Cummings, F. R.; Oliphant, C. J.; Malgas, G. F.; Arendse, C. J.

    2015-06-01

    Hydrogenated amorphous silicon nitride (a-SiNx:H) is used as anti-reflection coatings in commercial solar cells. A final firing step in the production of micro-crystalline silicon solar cells allows hydrogen effusion from the a-SiNx:H into the solar cell, and contributes to bulk passivation of the grain boundaries. In this study a-SiNx:H deposited in a hot-wire chemical vapour deposition (HWCVD) chamber with reduced gas flow rates and filament temperature compared to traditional deposition regimes, were annealed isochronally. The UV-visible reflection spectra of the annealed material were subjected to the Bruggeman Effective Medium Approximation (BEMA) treatment, in which a theoretical amorphous semiconductor was combined with particle inclusions due to the structural complexities of the material. The extraction of the optical functions and ensuing Wemple-DeDomenici analysis of the wavelength-dependent refractive index allowed for the correlation of the macroscopic optical properties with the changes in the local atomic bonding configuration, involving silicon, nitrogen and hydrogen.

  12. A Possible Organic Contribution to the Low Temperature CO2 Release Seen in Mars Phoenix Thermal and Evolved Gas Analyzer Data

    NASA Technical Reports Server (NTRS)

    Archer, P. D. Jr.; Lauer, H. V., Jr.; Sutter, B.; Ming, D. W.; Niles, P. B.; Boynton, W. V.

    2012-01-01

    Two of the most important discoveries of the Phoenix Mars Lander were the discovery of approx.0.6% perchlorate [1] and 3-5% carbonate [2] in the soils at the landing site in the martian northern plains. The Thermal and Evolved Gas Analyzer (TEGA) instrument was one of the tools that made this discovery. After soil samples were delivered to TEGA and transferred into small ovens, the samples could be heated up to approx.1000 C and the gases that evolved during heating were monitored by a mass spectrometer. A CO2 signal was detected at high temperature (approx.750 C) that has been attributed to calcium carbonate decomposition. In addition to this CO2 release, a lower temperature signal was seen. This lower temperature CO2 release was postulated to be one of three things: 1) desorption of CO2, 2) decomposition of a different carbonate mineral, or 3) CO2 released due to organic combustion. Cannon et al. [3] present another novel hypothesis involving the interaction of decomposition products of a perchlorate salt and calcium carbonate.

  13. Storage of CO2 at low temperature as liquid or solid gas hydrate - Application to the Biscay deep zone in the French EEZ

    NASA Astrophysics Data System (ADS)

    Burnol, André; Thinon, Isabelle; Audigane, Pascal; Leynet, Aurélien

    2013-04-01

    Amongst the various CO2 geological storage options currently under consideration, the deep saline aquifers (beyond 800-m depth) were considered to present the most interesting storage capacity due to the density of CO2 in its supercritical state. However, at lower temperature, another form of storage is possible, either in the state of CO2 hydrates or liquid CO2 (1, 2). In Alaska, a first demonstrator showed recently the possibility of exchange of CO2 and CH4 in natural gas hydrates. At higher pressures common in deep-sea sediments, liquid CO2 can be denser than the overlying seawater and therefore be trapped in the marine sediments (2). We explored in this work the storage capacity at the Biscay deep zone in the French Exclusive Economic Zone (EEZ). A local bathymetry of the zone (abyssal plain and continental margin) was used to define a potential interesting zone for the CO2 storage, considering different safety criteria. A sensitivity analysis on the geothermal gradient was carried out using two extreme scenarios (Low and High gradient) based on the available Ocean Drilling Program's data. In both cases, the Negative Buoyancy Zone (NBZ) and the CO2 Hydrate Formation Zone (HFZ) were calculated using the GERG-2008 Equation of State for liquid CO2 and the CSMGem code for CO2 hydrate, respectively. Following this sensitivity analysis, a CO2 injection depth is proposed and the French "deep offshore" storage capacity is quantitatively evaluated and compared to the "onshore" storage capacity in deep saline aquifers. References 1. Le Nindre Y., Allier D., Duchkov A., Altunina L. K., Shvartsev S., Zhelezniak M. and Klerkx J. (2011) Storing CO2 underneath the Siberian Permafrost: A win-win solution for long-term trapping of CO2 and heavy oil upgrading. Energy Procedia4, 5414-5421 2. House K. Z., Schrag D. P., Harvey C. F. and Lackner K. S. (2006) Permanent carbon dioxide storage in deep-sea sediments. PNAS

  14. Rice husk ash/calcium oxide/ceria sorbent for simultaneous removal of sulfur dioxide and nitric oxide from flue gas at low temperature

    SciTech Connect

    Dahlan, I.; Lee, K.T.; Kamaruddin, A.H.; Mohamed, A.R.

    2009-06-15

    The reduction of sulfur dioxide (SO{sub 2}) and nitric oxide (NO) emissions has become an isssue of great importance to government regulatory agencies and general public due to their negative effect towards the environment and human health. In this work, the simultaneous removal of sulfur dioxide (SO{sub 2}) and nitric oxide (NO) from simulated flue gas was investigated in a fixed-bed reactor using rice husk ash (RHA)/CaO/CeO{sub 2} sorbent. Attention was focused on the major reactor operation parameters affecting sorption capacity of RHA/CaO/CeO{sub 2} sorbent, which include feed concentration of SO{sub 2} and NO, relative humidity (RH), operating temperature and space velocity (GHSV). This is because such information is unavailable for RHA-based sorbent and the effects of these parameters reported in the literature are also not reliable. Enhancement effect of NO on removal of SO{sub 2} was observed and the presence of SO{sub 2} was essential to the removal of NO. However, at a high level of SO{sub 2}/NO concentration, competition in the sorption of NO and SO{sub 2} on the sorbent active sites might have occurred. RH was found to significantly enhance the SO{sub 2} sorption of the RHA/CaO/CeO{sub 2} sorbent. By contrast, NO sorption capacity decreases when RH was further introduced, as it was not easy to sorb NO in the presence of water. Apart from that, the results also shows that there was a threshold value for the RH to ensure higher SO{sub 2} and NO removal and this value was observed at 50% RH. Higher operating temperatures were favored for SO{sub 2} and NO removal. Nevertheless, beyond 150 degrees C the SO{sub 2} removal was found to decrease. On the other hand, a lower space velocity resulted in a higher SO{sub 2} and NO removal.

  15. PREFACE: VII Conference on Low Temperature Plasma in the Processes of Functional Coating Preparation

    NASA Astrophysics Data System (ADS)

    Nail, Kashapov

    2016-01-01

    The VII All-Russian (with international participation) Scientific Technical Conference "Low-temperature plasma during the deposition of functional coatings" took place from 4-7 November 2015 at the Academy of Sciences of the Republic of Tatarstan and the Kazan Federal University. The conference was attended by over 150 people from Russia and abroad. The participants proposed a wide range of issues affecting the theoretical and experimental aspects of the problems of the physics of low-temperature plasma. We heard the reports of experts from leading universities and research organizations in the field of plasma physics: Moscow State University, St. Petersburg State University, MEPhI, Tomsk Polytechnic University, Institute of High Current Electronics SB RAS, etc. A series of works were devoted to the study of thin films obtained by low-temperature plasma. This year, work dedicated to the related field of heat mass transfer in multiphase media and low-temperature plasma was also presented. Of special interest were reports on the exploration of gas discharges with liquid electrolytic electrodes and the study of dusty plasmas. Kashapov Nail, D.Sc., professor (Kazan Federal University)

  16. Vortex breakdown of a swirling light gas jet discharging into a heavier ambient gas

    NASA Astrophysics Data System (ADS)

    Gallardo, J. M.; Del Pino, C.; Fernandez-Feria, R.

    2009-11-01

    The effect of co-flow in the structure of laminar gas swirling jets with very small jet-to-ambient density ratios has been investigated by solving the high Reynolds number parabolic equations. The study is of interest for the design of Hydrogen swirl combustors. We find that the critical swirl number for vortex breakdown decreases for increasing co-flow ratios, as in a swirling jet discharging into the same ambient gas, but the critical swirl for breakdown in a light gas jet can be significantly larger. As the co-flow increases, the difference between both critical swirl numbers decreases, are equal for co-flow ratio unity, and, for co-flow ratios larger than unity, the critical swirl for a light gas jet becomes smaller than that for a homogeneous jet. These behaviors are explained by the differences in the pressure distributions generated by the swirl when the jet is much lighter than the ambient gas, in relation to a homogeneous jet. The situation becomes more complex when compressibility effects are taken into account, owing to the interplay between temperature, density and pressure differences generated by the swirl. We characterize the critical swirl for vortex breakdown as a function of the density ratio, the co-flow ratio, and the Mach number.

  17. Volt-Ampere characteristics and the anatomy of gas discharges

    NASA Astrophysics Data System (ADS)

    Petrović, Zoran; Marić, Dragana; Malović, Gordana; Škoro, Nikola; Radmilović-Radjenović, Marija

    2008-11-01

    We are presenting time resolved recordings of the spatial profile (radial and axial) of cylindrically symmetric discharges recorded by ICCD camera. These pictures are closely associated with temporal development of voltage and current. Volta-Ampere characteristics are recorded in order to test the pd, jd^2 and E/N scaling in such discharges and we have performed measurements both and standard, cm size discharges and for micro discharges. Most importantly we have recorded carefully the area of the discharge in order to make proper normalization of the total measured current into current density j. The proper breakdown voltage versus current density normalized by the square of the gap length characteristics is obtained where entire glow discharge is a single point as expected by the basic phenomenology. This has never been directly proven by measurements. We have also found that the Paschen curves and Volt- Ampere characteristics hold well, if properly normalized down to 200 micro meters. We have also found several modes, presumably associated with spatial profiles in hollow cathode and even in parallel plate discharges when radial dimension exceeds the mean free path by a large amount. We have also found evidence that flat Paschen curves recorded to the left of the minimum are in some cases due to the long path breakdown. This work was funded by project 155 of the Serbian Academy of Sciences and arts.

  18. Database in low temperature plasma modeling

    NASA Astrophysics Data System (ADS)

    Sakai, Y.

    2002-05-01

    This article is composed of recommended sets of electron collision cross-sections and reaction cross-sections of excited species assessed by a swam method and of information on transport coefficients and reaction rates (cross-sections) of ions, which are needed in low temperature plasma modeling. These data have been piled up by the Investigation Committee on "Discharge Plasma Electron Collision Cross-sections", IEE Japan, and the author's laboratory. The gases taken for the assessment in this work are rare gases, Hg, N 2, O 2, CO 2, CF 4, CH 4, GeH 4, SiH 4, SF 6, C 2H 6, Si 2H 6, c-C 4F 8 and CCl 2F 2.

  19. Estimating the extreme low-temperature event using nonparametric methods

    NASA Astrophysics Data System (ADS)

    D'Silva, Anisha

    This thesis presents a new method of estimating the one-in-N low temperature threshold using a non-parametric statistical method called kernel density estimation applied to daily average wind-adjusted temperatures. We apply our One-in-N Algorithm to local gas distribution companies (LDCs), as they have to forecast the daily natural gas needs of their consumers. In winter, demand for natural gas is high. Extreme low temperature events are not directly related to an LDCs gas demand forecasting, but knowledge of extreme low temperatures is important to ensure that an LDC has enough capacity to meet customer demands when extreme low temperatures are experienced. We present a detailed explanation of our One-in-N Algorithm and compare it to the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution. We show that our One-in-N Algorithm estimates the one-in- N low temperature threshold more accurately than the methods using the generalized extreme value distribution, the normal distribution, and the variance-weighted composite distribution according to root mean square error (RMSE) measure at a 5% level of significance. The One-in- N Algorithm is tested by counting the number of times the daily average wind-adjusted temperature is less than or equal to the one-in- N low temperature threshold.

  20. Growth of TiN films at low temperature

    NASA Astrophysics Data System (ADS)

    Wei, L. I.; Jun-Fang, Chen

    2007-06-01

    Thermodynamic analysis on growth of TiN films was given. The driving force for deposition of TiN is dependent on original Ti(g)/N(g) ratio and original partial pressure of N(g). TiN films were deposited by ion beam assisted electron beam evaporation system under suitable nitrogen gas flow rate at 523 K while the density of plasma varied with diverse discharge pressure had been investigated by the Langmuir probe. TiN films were characterized by means of Fourier transform infrared absorption spectrum (FTIR), X-ray diffraction (XRD) and observed by means of atom force microscopy (AFM). The results of these measurements indicated preferential TiN(1 1 1) films were deposited on substrate of Si(1 0 0) and glass by ion beam assisted electron beam evaporation system at low temperature, and it was possible for the deposition of TiN films with a preferential orientation or more orientations if the nitrogen gas flow rate increased enough. Sand Box was used to characterize the fractal dimension of surface of TiN films. The results showed the fractal dimension was a little more than 1.7, which accorded with the model of diffusion limited aggregation (DLA), and the fractal dimension of TiN films increased with increase of the temperature of deposition.

  1. Atomic iodine production in a gas flow by decomposing methyl iodide in a dc glow discharge

    SciTech Connect

    Mikheyev, P A; Shepelenko, A A; Voronov, A I; Kupryaev, Nikolai V

    2002-01-31

    The production of atomic iodine for an oxygen - iodine laser is studied by decomposing methyl iodide in a dc glow discharge in a vortex gas flow. The concentration of iodine atoms in discharge products was measured from the atomic iodine absorption of the radiation of a single-frequency tunable diode laser at a wavelength of 1.315 {mu}m. Atomic iodine concentrations sufficient for the operation of an oxygen - iodine laser were obtained. The concentration of atomic iodine amounted to 3.6 x 10{sup 15} cm{sup -3} for a pressure of the carrying argon gas of 15 Torr. The discharge stabilisation by a vortex gas flow allowed the glow discharge to be sustained in a strongly electronegative halogen-containing gas mixture for pressures up to 20 Torr. (active media)

  2. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  3. Gas-discharge probe microscopy of water-carrying channels in wood

    NASA Astrophysics Data System (ADS)

    Ivanov-Omskii, V. I.; Ivanova, E. I.

    2012-04-01

    We have used a gas-discharge imaging technique to study the water transport channels (tracheids) in wood samples. Results obtained for the samples of bitch and aspen show features of this variant of the probe microscopy and show its additional possibilities as compared to optical microscopy. It is concluded that gas-discharge probe microscopy can be used for additional diagnostics of the structure of plant and animal tissues.

  4. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, Scott R.; Christophorou, Loucas G.

    1990-01-01

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue of the combined physio-electric properties of the mixture components.

  5. Ultra-low temperature MAS-DNP

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  6. Temporally, spatially, and spectrally resolved barrier discharge produced in trapped helium gas at atmospheric pressure

    SciTech Connect

    Chiper, Alina Silvia; Popa, Gheorghe

    2013-06-07

    Experimental study was made on induced effects by trapped helium gas in the pulsed positive dielectric barrier discharge (DBD) operating in symmetrical electrode configuration at atmospheric pressure. Using fast photography technique and electrical measurements, the differences in the discharge regimes between the stationary and the flowing helium are investigated. It was shown experimentally that the trapped gas atmosphere (TGA) has notable impact on the barrier discharge regime compared with the influence of the flowing gas atmosphere. According to our experimental results, the DBD discharge produced in trapped helium gas can be categorized as a multi-glow (pseudo-glow) discharge, each discharge working in the sub-normal glow regime. This conclusion is made by considering the duration of current pulse (few {mu}s), their maximum values (tens of mA), the presence of negative slope on the voltage-current characteristic, and the spatio-temporal evolution of the most representative excited species in the discharge gap. The paper focuses on the space-time distribution of the active species with a view to better understand the pseudo-glow discharge mechanism. The physical basis for these effects was suggested. A transition to filamentary discharge is suppressed in TGA mode due to the formation of supplementary source of seed electrons by surface processes (by desorption of electrons due to vibrationally excited nitrogen molecules, originated from barriers surfaces) rather than volume processes (by enhanced Penning ionisation). Finally, we show that the pseudo-glow discharge can be generated by working gas trapping only; maintaining unchanged all the electrical and constructive parameters.

  7. 46 CFR 154.1838 - Discharge by gas pressurization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... gas pressurization unless: (a) The tank to be offloaded is an independent tank type B or C; (b) The pressurizing medium is the cargo vapor or a nonflammable, nontoxic gas that is inert with the cargo; and...

  8. Physical processes of image formation during gas-discharge visualization (the Kirlian effect) (Review)

    NASA Astrophysics Data System (ADS)

    Bankovskii, N. G.; Korotkov, K. G.; Petrov, N. N.

    1986-04-01

    A survey is made of previously published and original results on physical processes which determine Kirlian-effect visualization. Three types of gas-discharge visualization (GDV) are considered: (1) avalanche GDV, at atmospheric pressure and small discharge gaps; (2) surface GDV, at atmospheric pressure and a discharge sliding along the surface of a dielectric; and (3) 'vacuum' GDV, at reduced pressure and relatively large discharge gaps (of the order of a centimeter). The possibilities of the practical application of these techniques are assessed, and specific recommendations on their use are given.

  9. Interplay of discharge and gas flow in atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Yang, JingLong; He, Feng; Cao, Zexian

    2011-05-01

    Interplay of discharge and gas flow in the atmospheric pressure plasma jets generated with three different discharge modes [N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 106, 013308 (2009); N. Jiang, A. L. Ji, and Z. X. Cao, J. Appl. Phys. 108, 033302 (2010)] has been investigated by simultaneous photographing of both plasma plumes and gas flows in the ambient, with the former being visualized by using an optical schlieren system. Gas flow gains a forward momentum from discharge except for the case of overflow jets at smaller applied voltages. Larger applied voltage implies an elongated plasma jet only for single-electrode mode; for dielectric barrier discharge jet the plume length maximizes at a properly applied voltage. These findings can help understand the underlying processes, and are useful particularly for the economic operation of tiny helium plasma jets and jet arrays.

  10. Initiation of long, free-standing Z-discharges by CO2 laser gas heating

    SciTech Connect

    Nieman, C.; Tauschwitz, A.; Penache, D.; Neff, S.; Knobloch, R.; Birkner, R.; Presura, R.; Hoffmann, D.H.H.; Yu, S.S.; Sharp, W.M.

    2004-04-19

    High current discharge channels can neutralize both current and space charge of very intense ion beams. Therefore they are considered as an interesting alternative for the final focus and beam transport in a heavy ion beam fusion reactor. At the GSI accelerator facility, 50 cm long, stable, free-standing discharge channels with currents in excess of 40 kA in 2 to 25 mbar ammonia (NH{sub 3}) gas are investigated for heavy ion beam transport studies. The discharges are initiated by a CO{sub 2} laser pulse along the channel axis before the discharge is triggered. Resonant absorption of the laser, tuned to the {nu}{sub 2} vibration of the ammonia molecule, causes strong gas heating. Subsequent expansion and rarefaction of the gas prepare the conditions for a stable discharge to fulfill the requirements for ion beam transport. This paper describes the laser-gas interaction and the discharge initiation mechanism. We report on the channel stability and evolution, measured by fast shutter and streak imaging techniques. The rarefaction of the laser heated gas is studied by means of a hydrocode simulation.

  11. The Low Temperature Microgravity Physics Facility Project

    NASA Technical Reports Server (NTRS)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; Gannon, J.

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  12. Chemical kinetics with electrical and gas dynamics modelization for NOx removal in an air corona discharge

    NASA Astrophysics Data System (ADS)

    Eichwald, O.; Guntoro, N. A.; Yousfi, M.; Benhenni, M.

    2002-03-01

    A non-stationary reactive gas dynamics model in a mono-dimensional geometry, including radial mass diffusion, gas temperature variation and chemical kinetics, is developed in this paper. The aim is to analyse the spatio-temporal evolution of the main neutral species involved in a corona discharge used for NO pollution control in polluted air at atmospheric pressure and ambient temperature. The present reactive gas dynamics model takes into account 16 neutral chemical species (including certain metastable species) reacting following 110 selected chemical reactions. The initial concentration of each neutral species is obtained from a 1.5D electrical discharge model. The gas temperature variations are due to direct Joule heating during the discharge phase, and also result from the delayed heating due to the relaxation of the vibrational energy into a random thermal energy during the post-discharge phase. The simulation conditions are those of an existing experimental setup (anode voltage of 10 kV in the case of a point to plane geometry with an interelectrode distance of 10 mm). The obtained results show that the diffusion phenomena and the gas temperature rise affect quite well the gas reactivity and the neutral species evolution. This allows us to better understand the different reaction processes and transport phenomena affecting the NO concentration magnitude inside the discharge channel.

  13. Electron decoherence at low temperatures

    NASA Astrophysics Data System (ADS)

    Mohanty, Pritiraj

    2001-03-01

    Electron decoherence is fundamental to condensed matter physics. Our understanding of metals and insulators in the Fermi-liquid framework relies entirely on a diverging decoherence rate 1/τ_φ at low temperatures, which is expected to vanish at T=0. However, recent experiments find that 1/τ_φ saturates at low temperatures [1-2]. We review these measurements on a variety of mesoscopic systems (in 0D, 1D, 2D and 3D) as well as the control experiments used to check for various artifacts [1-3]. We emphasize the connection between the temperature-independent decoherence rate and persistent current in normal metals [4]. We briefly discuss decoherence induced by dynamic defects or two-level systems [5,6], including its relevance--or lack thereof---to the experiments on metallic wires [2]. Saturation of decohrence rate is argued to be present in---and relevant to---the following phenomena: metal-insulator transition in 2D [7,8], superconductor-insulator transition in 2D [9], quantum-Hall-insulator transition [10], transport through superconductor/normal-metal hybrid junctions [11], normal-state resistivity of high Tc superconductors [12], persistent current in normal metals [4], and energy relaxation in normal metals [13]. [1] P. Mohanty, Physica B 280, 446 (2000). [2] P. Mohanty, E.M.Q. Jariwala, R. Webb, PRL 78, 3366 (1997); PRB 55, R13542 (1997). [3] P. Mohanty, R. Webb, PRL 84, 4481 (2000). [4] P. Mohanty, Ann. Phys. 8, 549 (1999). [5] P. Mohanty, M.L. Roukes (to be published). [6] K. Ahn, P. Mohanty, cond-mat/ 0011139. [7] S. Kravchenko et al. PRB 50, 8039 (1994). [8] G. Brunthaler, A. Prinz, G. Bauer, V. Pudalov, cond-mat/0007230. [9] A. Kapitulnik, N. Mason, S. Kivelson, S. Chakravarty, cond-mat/0008005. [10] D. Shahar, D. Tsui, M. Shayegan, J. Cunningham, E. Shimsoni, S. Sondhi, SSC. 102, 817 (1997). [11] A. Vaknin, A. Frydman, Z. Ovadyahu, PRB 61, 13037 (2000). [12] P. Fournier et al., PRB 62, R11993 (2000). [13] A. Gougam, F. Pierre, H. Pothier, D. Esteve, N

  14. Laser optical interferometry for electric gas discharge diagnosis

    NASA Astrophysics Data System (ADS)

    Ralea, Mihai F.; Rosu, Nicu; Popescu, Ion M.; Iova, Iancu; Paraschiv, R.; Mircea, D.

    1995-03-01

    A new double-differential method based on holographic interferometry in real time with references fringes for the determination of gas parameters in cylindrical tubes is presented. By studying the interferograms one gets a graphical recording of the radial distribution of the refraction index of the gas in any region of the tube at a given time, as well as their axial distribution.

  15. Evaluation of Low Temperature CO Removal Catalysts

    NASA Technical Reports Server (NTRS)

    Monje, Oscar

    2015-01-01

    CO removal from spacecraft gas streams was evaluated for three commercial, low temperature oxidation catalysts: Carulite 300, Sofnocat 423, and Hamilton Sundstrand Pt1. The catalysts were challenged with CO concentrations (1-100 ppm) under dry and wet (50% humidity) conditions using 2-3 % O2. CO removal and CO2 concentration were measured at constant feed composition using a FTIR. Water vapor affected the CO conversion of each catalyst differently. An initial screening found that Caulite 300 could not operate in humid conditions. The presence of water vapor affected CO conversion of Sofnocat 423 for challenge concentrations below 40 ppm. The conversion of CO by Sofnocat 423 was 80% at CO concentrations greater than 40 ppm under both dry and moist conditions. The HS Pt1 catalyst exhibited CO conversion levels of 100% under both dry and moist conditions.

  16. Analysis of the Gas Puffing Performance for Improving the Repeatability of Ohmic Discharges in the SUNIST Spherical Tokamak

    NASA Astrophysics Data System (ADS)

    Xie, Huiqiao; Tan, Yi; Ke, Rui; Wang, Wenhao; Gao, Zhe

    2014-08-01

    The gas puffing performance plays a key role in repeatable discharges in the Sino-UNIted Spherical Tokamak (SUNIST) experiments. In this paper, temporal evolution of the gas pressure in the vacuum vessel and the dependence of the repeatability of plasma discharges on different timing arrangements between the gas puffing pulse and the Ohmic field have been experimentally investigated. The results show that, after a fast rising phase, the gas pressure becomes quasi-stationary. In the regime of the discharges being started up when the gas pressure has already reached the quasi-stationary state for about 37 ms, an improved repeatability of the plasma discharges is achieved.

  17. Spark discharge method of liquid rare-gas purification

    NASA Astrophysics Data System (ADS)

    Pokachalov, S. G.; Kirsanov, M. A.; Kruglov, A. A.; Obodovski, I. M.

    1993-03-01

    The spark disharge method of liquid rare-gas purification is describe. The method is sufficiently more simple than those widely used. Physical aspects of the method are discussed, and examples of its application are presented.

  18. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson

    2000-03-31

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and Testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Progress has been made in the preparation and characterization of thin electrolytes and porous LSM substrates. Both of these tasks are essentially on or ahead of schedule. In our proposal, we suggested that the ZrO{sub 2}/Sc system needed to be considered as a candidate as a thin electrolyte. This was because microcrystalline ZrO{sub 2}/Sc has a significantly higher ionic conductivity than YSZ, particularly at the lower temperatures. As a result, some 0.5 micron thick film of ZrO{sub 2}/16% Sc on an alumina substrate (grain size 20nm) was prepared and the electrical conductivity measured as a function of temperature and oxygen activity. The Sc doped ZrO{sub 2} certainly has a higher conductivity that either 20nm or 2400nm YSZ, however, electronic conductivity dominates the conductivity for oxygen activities below 10{sup -15}. Whereas for YSZ, electronic conductivity is not a problem until the oxygen activity decreases below 10{sup -25}. These initial results show that the ionic conductivity of 20nm YSZ and 20nm ZrO{sub 2}/16% Sc are essentially the same and the enhanced conductivity which is observed for Sc doping in microcrystalline specimens is not observed for the same composition when it is nanocrystalline. In addition they show that the electronic conductivity of Sc doped ZrO{sub 2} is at least two orders of magnitude higher than that observed for YSZ. The conclusion one reaches is that for 0.5 to 1 micron thick nanocrystalline films, Sc doping of ZrO{sub 2} has no benefits compared to YSZ. As a result, electrolyte films of ZrO{sub 2}/Sc should not be considered as candidates

  19. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  20. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    SciTech Connect

    Moreno, H.; Pacheco, M.; Mercado, A.; Cruz, A.; Pacheco, J.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-04

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  1. Toxic Gas Removal by Dielectric Discharge with Corona Effect

    NASA Astrophysics Data System (ADS)

    Moreno, H.; Pacheco, M.; Pacheco, J.; Mercado, A.; Cruz, A.; Yousfi, M.; Eichwald, O.; Benhenni, M.

    2006-12-01

    In this work, a theoretical and experimental study on SO2 and NOx removal by non-thermal plasma technology, more specifically a dielectric barrier (DBD) discharge combined with the Corona effect, is presented. Results obtained from a theoretical study describe the chemical kinetic model of SO2 and NOx removal processes; the effect of OH radicals in removal of both gases is noteworthy. Experimental results of de-SO2 process are reported. Also, optical emission spectroscopy study was applied on some atomic helium lines to obtain temperature of electrons in the non-thermal plasma.

  2. Self-sustained and non-self-sustained glow discharges in a gas flow

    SciTech Connect

    Gembarzhevskii, G.V.; Generalov, N.A.; Gorbulenko, M.I.; Kosynkin, V.D.; Raizer, Y.P.; Zimakov, V.P.

    1986-09-01

    Experimental volt-ampere characteristics of self-sustained and non-self-sustained longitudinal glow discharges in various mixtures of CO/sub 2/, N/sub 2/, and He with heating of the gas taken into account are presented. With the aid of an analysis of experimental results for self-sustained discharges at different flow velocities and a comparison of these with computational data, it is shown that attachment and detachment processes must be taken into account in the creation-loss balance for the electrons. Experimental values of the rate constant for detachment are presented for different discharge conditions.

  3. Gas-dynamic disturbances created by surface dielectric barrier discharge in the constricted mode

    NASA Astrophysics Data System (ADS)

    Moralev, I.; Boytsov, S.; Kazansky, P.; Bityurin, V.

    2014-05-01

    Three-dimensional structure of the gas-dynamic disturbances, created by surface dielectric barrier discharge in a constricted (saturated) mode, was analyzed simultaneously with the discharge morphology. Discharge was created in the still air under normal conditions. Flow visualization was performed by shadowgraphy and stereo-PIV technique. The wall-normal jets with the origins located in between the positions of the constricted filaments are found. Velocity magnitude in the wall-normal direction is comparable with the tangential component. Flow structure is similar to the one created by the serpentine actuator.

  4. Experimental study of electric discharge propagation in gas bubbles in liquid

    NASA Astrophysics Data System (ADS)

    Faust, Jessica; Gershman, Sophia

    2013-10-01

    The studies of pulsed electrical discharges in gas bubbles in liquids continue to generate interest by their practical applications to the water treatment as well their theoretical significance for the understanding of the discharge propagation along liquid surfaces. Computational models suggest that the discharge path depends on the ratio of the dielectric constant of the liquid and the gas. This study investigates the formation and propagation of the discharge inside a gas bubble in water and glycerin (dielectric constants of approximately 80 and 41, respectively, at 20 C). The discharge is generated by a 1 μs pulse of 10-15 kV applied between a needle electrode piercing the bubble wall and a disk electrode submerged in the liquid. Time-resolved 5-10 ns exposure ICCD images are used to compare the discharge path in Ar, O2, and air bubbles in the two liquid dielectrics. 10 nm bandpass filters are used to image the behavior of various excited species, ex. Ar +, OH. Experimental results are compared to the previous modeling results.

  5. Effects of Gas Flow Rate on the Discharge Characteristics of a DC Excited Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Jia, Pengying; Di, Cong; Bao, Wenting; Zhang, Chunyan

    2015-09-01

    A direct current (DC) source excited plasma jet consisting of a hollow needle anode and a plate cathode has been developed to form a diffuse discharge plume in ambient air with flowing argon as the working gas. Using optical and electrical methods, the discharge characteristics are investigated for the diffuse plasma plume. Results indicate that the discharge has a pulse characteristic, under the excitation of a DC voltage. The discharge pulse corresponds to the propagation process of a plasma bullet travelling from the anode to the cathode. It is found that, with an increment of the gas flow rate, both the discharge plume length and the current peak value of the pulsed discharge decrease in the laminar flow mode, reach their minima at about 1.5 L/min, and then slightly increase in the turbulent mode. However, the frequency of the pulsed discharge increases in the laminar mode with increasing the argon flow rate until the argon flow rate equals to about 1.5 L/min, and then slightly decreases in the turbulent mode. supported by National Natural Science Foundation of China (Nos. 10805013, 11375051), Funds for Distinguished Young Scientists of Hebei Province, China (No. A2012201045), Department of Education for Outstanding Youth Project of China (No. Y2011120), and Youth Project of Hebei University of China (No. 2011Q14)

  6. Treatment of Dye Wastewater by Using a Hybrid Gas/Liquid Pulsed Discharge Plasma Reactor

    NASA Astrophysics Data System (ADS)

    Lu, Na; Li, Jie; Wu, Yan; Masayuki, Sato

    2012-02-01

    A hybrid gas/liquid pulsed discharge plasma reactor using a porous ceramic tube is proposed for dye wastewater treatment. High voltage pulsed discharge plasma was generated in the gas phase and simultaneously the plasma channel was permeated through the tiny holes of the ceramic tube into the water phase accompanied by gas bubbles. The porous ceramic tube not only separated the gas phase and liquid phase but also offered an effective plasma spreading channel. The effects of the peak pulse voltage, additive gas varieties, gas bubbling rate, solution conductivity and TiO2 addition were investigated. The results showed that this reactor was effective for dye wastewater treatment. The decoloration efficiency of Acid Orange II was enhanced with an increase in the power supplied. Under the studied conditions, 97% of Acid Orange II in aqueous solution was effectively decolored with additive oxygen gas, which was 51% higher than that with argon gas, and the increasing O2 bubbling rate also benefited the decoloration of dye wastewater. Water conductivity had a small effect on the level of decoloration. Catalysis of TiO2 could be induced by the pulsed discharge plasma and addition of TiO2 aided the decoloration of Acid Orange II.

  7. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the cargo; and (c) The pressurizing line has: (1) A pressure reducing valve whose setting does not exceed 90% of the tank's relief valve setting and a manual control valve between the pressure reducing valve and the tank; or (2) For an inert gas medium: (i) A safety relief valve with a cross...

  8. 46 CFR 153.964 - Discharge by gas pressurization.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... exceed 90% of the tank's relief valve setting and a manual control valve between the pressure reducing valve and the tank; or (2) For an inert gas medium: (i) A safety relief valve with a cross sectional... 90 percent of the tank's relief valve setting; (ii) A manual control valve between the safety...

  9. Zero Discharge Water Management for Horizontal Shale Gas Well Development

    SciTech Connect

    Paul Ziemkiewicz; Jennifer Hause; Raymond Lovett; David Locke Harry Johnson; Doug Patchen

    2012-03-31

    Hydraulic fracturing technology (fracking), coupled with horizontal drilling, has facilitated exploitation of huge natural gas (gas) reserves in the Devonian-age Marcellus Shale Formation (Marcellus) of the Appalachian Basin. The most-efficient technique for stimulating Marcellus gas production involves hydraulic fracturing (injection of a water-based fluid and sand mixture) along a horizontal well bore to create a series of hydraulic fractures in the Marcellus. The hydraulic fractures free the shale-trapped gas, allowing it to flow to the well bore where it is conveyed to pipelines for transport and distribution. The hydraulic fracturing process has two significant effects on the local environment. First, water withdrawals from local sources compete with the water requirements of ecosystems, domestic and recreational users, and/or agricultural and industrial uses. Second, when the injection phase is over, 10 to 30% of the injected water returns to the surface. This water consists of flowback, which occurs between the completion of fracturing and gas production, and produced water, which occurs during gas production. Collectively referred to as returned frac water (RFW), it is highly saline with varying amounts of organic contamination. It can be disposed of, either by injection into an approved underground injection well, or treated to remove contaminants so that the water meets the requirements of either surface release or recycle use. Depending on the characteristics of the RFW and the availability of satisfactory disposal alternatives, disposal can impose serious costs to the operator. In any case, large quantities of water must be transported to and from well locations, contributing to wear and tear on local roadways that were not designed to handle the heavy loads and increased traffic. The search for a way to mitigate the situation and improve the overall efficiency of shale gas production suggested a treatment method that would allow RFW to be used as make

  10. Combined effects Na and SO2 in flue gas on Mn-Ce/TiO2 catalyst for low temperature selective catalytic reduction of NO by NH3 simulated by Na2SO4 doping

    NASA Astrophysics Data System (ADS)

    Zhou, Aiyi; Yu, Danqing; Yang, Liu; Sheng, Zhongyi

    2016-08-01

    A series of Mn-Ce/TiO2 catalysts were synthesized through an impregnation method and used for low temperature selective catalytic reduction (SCR) of NOx with ammonia (NH3). Na2SO4 was added into the catalyst to simulate the combined effects of alkali metal and SO2 in the flue gas. Experimental results showed that Na2SO4 had strong and fluctuant influence on the activity of Mn-Ce/TiO2, because the effect of Na2SO4 included pore occlusion and sulfation effect simultaneously. When Na2SO4 loading content increased from 0 to 1 wt.%, the SCR activities of Na2SO4-doped catalysts decreased greatly. With further increasing amount of Na2SO4, however, the catalytic activity increased gradually. XRD results showed that Na2SO4 doping could induce the crystallization of MnOx phases, which were also confirmed by TEM and SEM results. BET results showed that the surface areas decreased and a new bimodal mesoporous structure formed gradually with the increasing amount of Na2SO4. XPS results indicated that part of Ce4+ and Mn3+ were transferred to Ce3+ and Mn4+ due to the sulfation after Na2SO4 deposition on the surface of the catalysts. When the doped amounts of Na2SO4 increased, NH3-TPD results showed that the Lewis acid sites decreased and the Brønsted acid sites of Mn-Ce/TiO2 increased quickly, which could be considered as another reason for the observed changes in the catalytic activity. The decreased Mn and Ce atomic concentration, the changes of their oxidative states, and the variation in acidic properties on the surface of Na2SO4-doped catalysts could be the reasons for the fluctuant changes of the catalytic activity.

  11. Employing partially coherent, compact gas-discharge sources for coherent diffractive imaging with extreme ultraviolet light

    NASA Astrophysics Data System (ADS)

    Bußmann, J.; Odstrčil, M.; Bresenitz, R.; Rudolf, D.; Miao, Jianwei; Brocklesby, W. S.; Grützmacher, D.; Juschkin, L.

    2015-09-01

    Coherent diffractive imaging (CDI) and related techniques enable a new type of diffraction-limited high-resolution extreme ultraviolet (EUV) microscopy. Here, we demonstrate CDI reconstruction of a complex valued object under illumination by a compact gas-discharge EUV light source emitting at 17.3 nm (O VI spectral line). The image reconstruction method accounts for the partial spatial coherence of the radiation and allows imaging even with residual background light. These results are a first step towards laboratory-scale CDI with a gas-discharge light source for applications including mask inspection for EUV lithography, metrology and astronomy.

  12. Binary and ternary gas mixtures for use in glow discharge closing switches

    DOEpatents

    Hunter, S.R.; Christophorou, L.G.

    1988-04-27

    Highly efficient binary and ternary gas mixtures for use in diffuse glow discharge closing switches are disclosed. The binary mixtures are combinations of helium or neon and selected perfluorides. The ternary mixtures are combinations of helium, neon, or argon, a selected perfluoride, and a small amount of gas that exhibits enhanced ionization characteristics. These mixtures are shown to be the optimum choices for use in diffuse glow discharge closing switches by virtue if the combines physio-electric properties of the mixture components. 9 figs.

  13. Ozone production by nanoporous dielectric barrier glow discharge in atmospheric pressure air

    SciTech Connect

    Cho, J. H.; Koo, I. G.; Choi, M. Y.; Lee, W. M.

    2008-03-10

    This study is aimed at demonstrating plasma-chemical ozone production based on low temperature atmospheric pressure glow discharge through nanoporous dielectric barriers. The 20 kHz ac driven discharge is formed in air or oxygen gas flowing in the axial direction of the cylindrical plasma reactor containing four parallel aluminum rods covered with nanoporous alumina films. The discharge utilizing nanoporous dielectric barrier is more uniform and more energy efficient in ozone generation than the discharge through smooth-surface dielectric barriers.

  14. Advanced low-temperature sorbents

    SciTech Connect

    Ayala, R.E.; Venkataramani, V.S.; Abbasian, J.; Hill, A.H.

    1995-12-01

    A number of promising technologies are currently being optimized for coal-based power generation, including the Integrated-Gasification Combined Cycle (IGCC) system. If IGCC is to be used successfully for power generation, an economic and efficient way must be found to remove the contaminants, particularly sulfur species, found in coal gas. Except for the hot gas desulfurization system, all major components of IGCC are commercially available or have been shown to meet system requirements. Over the last two decades, the U.S. Department of Energy/Morgantown Energy Technology Center (DOE/METC) has sponsored development of various configurations of high-temperature desulfurization systems including fixed-bed, moving-bed, transport-bed, and fluidized-bed systems. Because of their mode of operation and requirements for sorbent manufacturing, the fixed-bed systems can generally use the same materials as moving-bed configurations, i.e., pelletized or extruded sorbents, while fluidized-bed (circulating or bubbling configurations) and transport reactor configurations use materials generally described as agglomerated or granulated.The objective of this program is to remove hydrogen sulfides from coal gas using sorbent materials.

  15. Low Temperature Catalyst for NH3 Removal

    NASA Technical Reports Server (NTRS)

    Monje, Oscar; Melendez, Orlando

    2013-01-01

    Air revitalization technologies maintain a safe atmosphere inside spacecraft by the removal of C02, ammonia (NH3), and trace contaminants. NH3 onboard the International Space Station (ISS) is produced by crew metabolism, payloads, or during an accidental release of thermal control refrigerant. Currently, the ISS relies on removing NH3 via humidity condensate and the crew wears hooded respirators during emergencies. A different approach to cabin NH3 removal is to use selective catalytic oxidation (SCO), which builds on thermal catalytic oxidation concepts that could be incorporated into the existing TCCS process equipment architecture on ISS. A low temperature platinum-based catalyst (LTP-Catalyst) developed at KSC was used for converting NH3 to H20 and N2 gas by SCO. The challenge of implementing SCO is to reduce formation of undesirable byproducts like NOx (N20 and NO). Gas mixture analysis was conducted using FTIR spectrometry in the Regenerable VOC Control System (RVCS) Testbed. The RVCS was modified by adding a 66 L semi-sealed chamber, and a custom NH3 generator. The effect of temperature on NH3 removal using the LTP-Catalyst was examined. A suitable temperature was found where NH3 removal did not produce toxic NO, (NO, N02) and N20 formation was reduced.

  16. LOW TEMPERATURE CATHODE SUPPORTED ELECTROLYTES

    SciTech Connect

    Harlan U. Anderson; Wayne Huebner; Igor Kosacki

    2000-09-30

    This project has three main goals: Thin Films Studies, Preparation of Graded Porous Substrates and Basic Electrical Characterization and testing of Planar Single Cells. During this time period substantial progress has been made in developing low temperature deposition techniques to produce dense, nanocrystalline yttrium-stabilized zirconia films on both dense oxide and polymer substrates. Microstructural changes in unsupported nanocrystalline yttrium stabilized zirconia (ZrO{sub 2}:16%Y, or YSZ) thin films were examined as a function of temperature and annealing time in order to determine the grain growth exponent and the mechanisms of pinhole formation. Grain growth and pinhole formation were measured using high resolution transmission electron microscopy (HRTEM), normal imaging mode transmission electron microscopy (TEM), electron diffraction, and energy dispersive X-ray microanalysis (EDS). Grain growth was found to vary with a time exponent of about one half before pinhole formation and about one third after. Pinhole formation in 70 nm thick films occurred at temperatures near 600 C, corresponding to a grain size of about 15 nm, or a grain size to film thickness ration of approximately 0.25. The deposition of films on porous substrates is hampered by the penetration of the polymer precursor solution into the substrate whose pores as > 0.2 {micro}m, therefore much attention has to be paid to the development of porous colloidal oxide films onto surfaces. Thus during this line period we have been studying these films. Optical properties have proven to be an excellent way to study the quality of these nanoporous films. The influence of porosity and densification on optical properties of films on sapphire substrates that were prepared from water colloidal suspensions of small ({approx}5nm) particles of ceria was investigated. The colloidal ceria films have initially very porous structure (porosity about 50%) and densification starts at about 600 C accompanied by

  17. Low-Temperature Extraction of Oil From Shale

    NASA Technical Reports Server (NTRS)

    Compton, L. E.

    1985-01-01

    Technique increases recovery and energy efficiency. Advantages of method greater product yield and, because of the relatively low temperatures, minimal gas formation, smaller amounts of char byproduct, and less carbonate-rock decomposition. Up to 94 percent by weight of organic material in shale extracted.

  18. Low-temperature sterilization alternatives in the 1990s

    SciTech Connect

    Schneider, P. . Surgical Div.)

    1994-01-01

    Vapor phase hydrogen peroxide, gas plasma, ozone, and peracetic acids have been commercialized as alternative technologies for low-temperature sterilization. None are viewed as a total replacement for ethylene oxide for on-site sterilization of reusable, heat-sensitive medical materials in healthcare facilities.

  19. Low temperature performance of lithium/silver vanadium oxide cells

    NASA Technical Reports Server (NTRS)

    Takeuchi, E. S.; Tuhovak, D. R.; Post, C. J.

    1990-01-01

    Lithium/silver vanadium oxide cells for low temperature applications have been developed. Prismatic and spirally wound AA cells were tested under constant load discharge of 0.3 to 1.8 amps or pulse discharge of 0.225 or 1.0 amps at temperatures from -40 to 25 C. At -40 C with current densities of 2.5 mA/cm2, 23 percent of theoretical capacity was achieved under constant load discharge and 40 percent of theoretical capacity was achieved under pulse test. Self-discharge estimates of 0.7 percent per year at 25 C were obtained from microcalorimetry. Preliminary safety testing of the cells revealed no violent performance under short circuit or crush tests.

  20. CORONA DISCHARGE IGNITION FOR ADVANCED STATIONARY NATURAL GAS ENGINES

    SciTech Connect

    Dr. Paul D. Ronney

    2003-09-12

    An ignition source was constructed that is capable of producing a pulsed corona discharge for the purpose of igniting mixtures in a test chamber. This corona generator is adaptable for use as the ignition source for one cylinder on a test engine. The first tests were performed in a cylindrical shaped chamber to study the characteristics of the corona and analyze various electrode geometries. Next a test chamber was constructed that closely represented the dimensions of the combustion chamber of the test engine at USC. Combustion tests were performed in this chamber and various electrode diameters and geometries were tested. The data acquisition and control system hardware for the USC engine lab was updated with new equipment. New software was also developed to perform the engine control and data acquisition functions. Work is underway to design a corona electrode that will fit in the new test engine and be capable igniting the mixture in one cylinder at first and eventually in all four cylinders. A test engine was purchased for the project that has two spark plug ports per cylinder. With this configuration it will be possible to switch between corona ignition and conventional spark plug ignition without making any mechanical modifications.

  1. RF hollow cathode discharge with mini-slot at high gas pressure

    NASA Astrophysics Data System (ADS)

    Yu, Zengqi; Hoshimiya, Katsumi; Collins, George

    2002-10-01

    The hollow cathode discharge (HCD) has been widely used for spectra light sources, low-vacuum electron beam sources and gas lasers due to its ability provide a low voltage plasma discharge. Traditional HCD operates with a DC power supply to drive the discharge. The HCD, however, has a tendency to arc, which limits its maximum operating power without arc control provisions in the power supply. K. Schoenbachs group reported the most detailed progress to achieve pulsed micro hollow cathode discharge at Hundreds Torr of noble gases for VUV source. CSU has explored a rectangular shape HCD, which also demonstrates its stable operation at RF discharge mode. The rf HCD devices consist of a water-cold cathode with a proximity anode, controllable spacer, and rf matching elements. As with other HCD the cathode cooling mechanism is important to assure long device life time due to the high-density plasma achieved and associated heat build-up, especially at the narrow (100 micron) slot several centimeter length. Tailored dielectric coatings, with controlled thickness, on top of the metallic cathode surface play an important role in creating the characteristics of the discharge plasma. Alternatively, the cold cathode can be made from metal-ceramic composite for the additional capability of high secondary electron emission. Cathode slot size of 0.1 0.5 mm has been tested at slot length of 3 cm, and it operates at the gas pressure up to atmospheric pressure.

  2. Discharge characteristics and hydrodynamics behaviors of atmospheric plasma jets produced in various gas flow patterns

    NASA Astrophysics Data System (ADS)

    Setsuhara, Yuichi; Uchida, Giichiro; Nakajima, Atsushi; Takenaka, Kosuke; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Atmospheric nonequilibrium plasma jets have been widely employed in biomedical applications. For biomedical applications, it is an important issue to understand the complicated mechanism of interaction of the plasma jet with liquid. In this study, we present analysis of the discharge characteristics of a plasma jet impinging onto the liquid surface under various gas flow patterns such as laminar and turbulence flows. For this purpose, we analyzed gas flow patters by using a Schlieren gas-flow imaging system in detail The plasma jet impinging into the liquid surface expands along the liquid surface. The diameter of the expanded plasma increases with gas flow rate, which is well explained by an increase in the diameter of the laminar gas-flow channel. When the gas flow rate is further increased, the gas flow mode transits from laminar to turbulence in the gas flow channel, which leads to the shortening of the plasm-jet length. Our experiment demonstrated that the gas flow patterns strongly affect the discharge characteristics in the plasma-jet system. This study was partly supported by a Grant-in-Aid for Scientific Research on Innovative Areas ``Plasma Medical Innovation'' (24108003) from the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT).

  3. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    SciTech Connect

    Ahadi, Amir Mohammad; Rehders, Stefan; Strunskus, Thomas; Faupel, Franz; Trottenberg, Thomas; Kersten, Holger

    2015-08-15

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  4. Three-dimensional numerical modelling of gas discharges at atmospheric pressure incorporating photoionization phenomena

    NASA Astrophysics Data System (ADS)

    Papageorgiou, L.; Metaxas, A. C.; Georghiou, G. E.

    2011-02-01

    A three-dimensional (3D) numerical model for the characterization of gas discharges in air at atmospheric pressure incorporating photoionization through the solution of the Helmholtz equation is presented. Initially, comparisons with a two-dimensional (2D) axi-symmetric model are performed in order to assess the validity of the model. Subsequently several discharge instabilities (plasma spots and low pressure inhomogeneities) are considered in order to study their effect on streamer branching and off-axis propagation. Depending on the magnitude and position of the plasma spot, deformations and off-axis propagation of the main discharge channel were obtained. No tendency for branching in small (of the order of 0.1 cm) overvolted discharge gaps was observed.

  5. Characterization of a radio frequency hollow electrode discharge at low gas pressures

    NASA Astrophysics Data System (ADS)

    Ahadi, Amir Mohammad; Trottenberg, Thomas; Rehders, Stefan; Strunskus, Thomas; Kersten, Holger; Faupel, Franz

    2015-08-01

    A radio frequency (RF) hollow discharge configuration is presented, which makes use of a combination of RF plasma generation and the hollow cathode effect. The system was especially designed for the treatment of nanoparticles, plasma polymerization, and nanocomposite fabrication. The process gas streams through the plasma in the inner of the cylindrical electrode system. In the here presented measurements, pure argon and argon with oxygen admixtures are exemplarily used. The discharge is characterized by probe measurements in the effluent, electrical measurements of the discharge parameters, and visual observations of the plasma glow. It is found that the RF fluctuations of the plasma potential are weak. The plasma potential resembles the one of a DC hollow cathode discharge, the RF hollow electrode acts as a cathode due to the self-bias, and a high voltage sheath forms in its inner cylinder.

  6. Influence of dust-particle concentration on gas-discharge plasma.

    PubMed

    Sukhinin, G I; Fedoseev, A V

    2010-01-01

    A self-consistent kinetic model of a low-pressure dc glow discharge with dust particles based on Boltzmann equation for the electron energy distribution function is presented. The ions and electrons production in ionizing processes as well as their recombination on the dust-particle surface and on the discharge tube wall were taken into account. The influence of dust-particle concentration N(d) on gas discharge and dust particles parameters was investigated. It is shown that the increase of N(d) leads to the increase of an averaged electric field and ion density, and to the decrease of a dust-particle charge and electron density in the dusty cloud. The results were obtained in a wide region of different discharge and dusty plasma parameters: dust particles density 10(2)-10(8) cm(-3), discharge current density 10(-1)-10(1) mA/cm(2), and dust particles radius 1, 2, and 5 microm. The scaling laws for dust-particle surface potential and electric filed dependencies on dust-particle density, particle radius and discharge currents were revealed. It is shown that the absorption of electrons and ions on the dust particles surface does not lead to the electron energy distribution function depletion due to a self-consistent adjustment of dust particles and discharge parameters.

  7. Measurement of gas temperature and convection velocity profiles in a dc atmospheric glow discharge

    SciTech Connect

    Stepaniuk, Vadim P.; Ioppolo, Tindaro; Oetuegen, M. Volkan; Sheverev, Valery A.

    2007-12-15

    Gas temperature and convective velocity distributions are presented for an unconfined glow discharge in air at atmospheric pressure, with electric currents ranging between 30 and 92 mA. The vertically oriented discharge was formed between a pin anode (top) and an extended cathode. The temperature and velocity profiles were measured using laser-induced Rayleigh scattering and laser Doppler anemometry techniques, respectively. The temperature field exhibited a conical shape with the radius of hot temperature zone increasing toward the anode. A maximum temperature of 2470 K was observed on the discharge axis with the discharge current of 92 mA. Air velocity measurements around the discharge demonstrated that the shape and magnitude of the temperature field are strongly affected by natural convection. Estimates indicate that convective losses may account for more than 50% of the power input into the positive column of the discharge. The measured temperature fields and convective velocity profiles provide a set of data that is important for the evaluation of dc atmospheric glow discharges in various applications such as sound manipulation and acoustic noise mitigation.

  8. Real gas effects on charging and discharging processes of high pressure pneumatics

    NASA Astrophysics Data System (ADS)

    Luo, Yuxi; Wang, Xuanyin; Ge, Yaozheng

    2013-01-01

    The high pressure pneumatic system has been applied to special industries. It may cause errors when we analyze high pressure pneumatics under ideal gas assumption. However, the real gas effect on the performances of high pressure pneumatics is seldom investigated. In this paper, the real gas effects on air enthalpy and internal energy are estimated firstly to study the real gas effect on the energy conversion. Under ideal gas assumption, enthalpy and internal energy are solely related to air temperature. The estimation result indicates that the pressure enthalpy and pressure internal energy of real pneumatic air obviously decrease the values of enthalpy and internal energy for high pressure pneumatics, and the values of pressure enthalpy and pressure internal energy are close. Based on the relationship among pressure, enthalpy and internal energy, the real gas effects on charging and discharging processes of high pressure pneumatics are estimated, which indicates that the real gas effect accelerates the temperature and pressure decreasing rates during discharging process, and decelerates their increasing rates during charging process. According to the above analysis, and for the inconvenience in building the simulation model for real gas and the difficulty of measuring the detail thermal capacities of pneumatics, a method to compensate the real gas effect under ideal gas assumption is proposed by modulating the thermal capacity of the pneumatic container in simulation. The experiments of switching expansion reduction (SER) for high pressure pneumatics are used to verify this compensating method. SER includes the discharging process of supply tanks and the charging process of expansion tank. The simulated and experimental results of SER are highly consistent. The proposed compensation method provides a convenient way to obtain more realistic simulation results for high pressure pneumatics.

  9. Ignition of a combustible gas mixture by a high-current electric discharge in a closed volume

    SciTech Connect

    Berezhetskaya, N. K.; Gritsinin, S. I.; Kop'ev, V. A.; Kossyi, I. A.; Kuleshov, P. S.; Popov, N. A.; Starik, A. M.; Tarasova, N. M.

    2009-06-15

    Results are presented from experimental studies and numerical calculations of the ignition of a stoichiometric CH{sub 4}: O{sub 2} gas mixture by a high-current gliding discharge. It is shown that this type of discharge generates an axially propagating thermal wave (precursor) that penetrates into the gas medium and leads to fast gas heating. This process is followed by an almost simultaneous ignition of the gas mixture over the entire reactor volume.

  10. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  11. Low Temperature Thermometry Using Inexpensive Silicon Diodes.

    ERIC Educational Resources Information Center

    Waltham, N. R.; And Others

    1981-01-01

    Describes the use of silicon diodes for low temperature thermometry in the teaching laboratory. A simple and inexpensive circuit for display of the diode forward voltage under constant current conditions is described, and its application in the evaluation of low cost silicon diodes as low temperature thermometers is presented. (SK)

  12. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1988-06-28

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  13. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, Loucas G.; Hunter, Scott R.

    1990-01-01

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc.

  14. Binary and ternary gas mixtures with temperature enhanced diffuse glow discharge characteristics for use in closing switches

    DOEpatents

    Christophorou, L.G.; Hunter, S.R.

    1990-06-26

    An improvement to the gas mixture used in diffuse glow discharge closing switches is disclosed which includes binary and ternary gas mixtures which are formulated to exhibit decreasing electron attachment with increasing temperature. This increases the efficiency of the conductance of the glow discharge and further inhibits the formation of an arc. 11 figs.

  15. Conformational properties of 1-silyl-1-silacyclohexane, C(5)H(10)SiHSiH(3): gas electron diffraction, low-temperature NMR, temperature-dependent Raman spectroscopy, and quantum chemical calculations (&).

    PubMed

    Wallevik, Sunna O; Bjornsson, Ragnar; Kvaran, Agúst; Jonsdottir, Sigridur; Arnason, Ingvar; Belyakov, Alexander V; Baskakov, Alexander A; Hassler, Karl; Oberhammer, Heinz

    2010-02-11

    The molecular structure of axial and equatorial conformers of 1-silyl-silacyclohexane, C(5)H(10)SiHSiH(3), and the thermodynamic equilibrium between these species were investigated by means of gas electron diffraction (GED), dynamic nuclear magnetic resonance (DNMR), temperature-dependent Raman spectroscopy, and quantum chemical calculations (CCSD(T), MP2 and DFT methods). According to GED, the compound exists as a mixture of two conformers possessing the chair conformation of the six-membered ring and C(s) symmetry and differing in the axial or equatorial position of the SiH(3) group (axial = 57(7) mol %/equatorial = 43(7) mol %) at T = 321 K. This corresponds to an A value (free energy difference = G(axial) - G(equatorial)) of -0.17(15) kcal mol(-1). A low-temperature (13)C NMR experiment using SiD(4) as a solvent resulted in an axial/equatorial ratio of 45(3)/55(3) mol % at 110 K corresponding to an A value of 0.05(3) kcal mol(-1), and a DeltaG(#) value of 5.7(2) kcal mol(-1) was found at 124 K. Temperature-dependent Raman spectroscopy in the temperature range of 210-300 K of the neat liquid, a THF solution, and a heptane solution indicates that the axial conformer is favored over the equatorial one by 0.26(10), 0.23(10), and 0.22(10) kcal mol(-1) (DeltaH values), respectively. CCSD(T)/CBS and MP2/CBS calculations in general predict both conformations to have very similar stability and are, thus, in excellent agreement with the DNMR result but in a slight disagreement with the GED and Raman results. Two DFT functionals, that account for dispersion interactions, M06-2X/pc-3 and B2PLYP-D/QZVPP, deviate from the high-level coupled cluster and MP2 calculations by only 0.1 kcal mol(-1) on average, whereas B3LYP/pc-3 calculations greatly overestimate the stability of the equatorial conformer.

  16. Spacecraft Charging in Low Temperature Environments

    NASA Technical Reports Server (NTRS)

    Parker, Linda N.

    2007-01-01

    Spacecraft charging in plasma and radiation environments is a temperature dependent phenomenon due to the reduction of electrical conductivity in dielectric materials at low temperatures. Charging time constants are proportional to l/conductivity may become very large (on the order of days to years) at low temperatures and accumulation of charge densities in insulators in charging environments traditionally considered benign at ambient temperatures may be sufficient to produce charge densities and electric fields of concern in insulators at low temperatures. Low temperature charging is of interest because a number of spacecraft-primarily infrared astronomy and microwave cosmology observatories-are currently being design, built, and or operated at very cold temperatures on the order of 40K to 100K. This paper reviews the temperature dependence of spacecraft charging processes and material parameters important to charging as a function of temperature with an emphasis on low temperatures regimes.

  17. Development of prototype apparatus for creating ZnO at low temperatures using diethyl zinc and O- plasmas

    NASA Astrophysics Data System (ADS)

    Himura, Haruhiko; Yamamoto, Masayoshi; Mizuike, Naruhiro; Kiyohara, Akira

    2015-01-01

    A new plasma process for fabricating impurity-free zinc oxide films and/or nanoparticles using diethyl zinc (DEZn) and negative oxygen (O-) plasmas at low temperatures has been proposed. To test it experimentally, a prototype apparatus has been developed. For the O- source, an intermittent discharge with 13.56 MHz radio frequency is employed. As the Zn precursor, DEZn is successfully transported to a reactor chamber without using any carrier gas. Initial results obtained using the developed apparatus are also discussed.

  18. Some properties of a microwave boosted glow discharge source using neon as the operating gas.

    PubMed

    Leis, F; Steers, E B

    1996-07-01

    The use of neon as the operating gas for the analysis of aluminium samples with the microwave boosted glow discharge source has been studied. A new type of anode tube allowed the gas to enter the source near the sample surface so that more material was transported into the discharge. Erosion rates have been measured under conditions optimised for high line-to-background ratios and found to be lower than with argon (9 and 21 n/s, respectively). Despite the lower erosion rate the detection limits measured for a number of elements in aluminium are in the range 0.02-1 microg/g and comparable to those obtained with argon as the operating gas.

  19. Dimmable Electronic Ballast for a Gas Discharge Lamp

    NASA Technical Reports Server (NTRS)

    Raducanu, Marius; Hennings, Brian D.

    2013-01-01

    Titanium dioxide (TiO2) is the most efficient photocatalyst for organic oxidative degradation. TiO2 is effective not only in aqueous solution, but also in nonaqueous solvents and in the gas phase. It is photostable, biologically and chemically inert, and non-toxic. Low-energy UV light (approximately 375 nm, UV-A) can be used to photoactivate TiO2. TiO2 photocatalysis has been used to mineralize most types of organic compounds. Also, TiO2 photocatalysis has been effectively used in sterilization. This effectiveness has been demonstrated by its aggressive destruction of microorganisms, and aggressive oxidation effects of toxins. It also has been used for the oxidation of carbon monoxide to carbon dioxide, and ammonia to nitrogen. Despite having many attractive features, advanced photocatalytic oxidation processes have not been effectively used for air cleaning. One of the limitations of the traditional photocatalytic systems is the ballast that powers (lights) the bulbs. Almost all commercial off-the-shelf (COTS) ballasts are not dimmable and do not contain safety features. COTS ballasts light the UV lamp as bright as the bulb can be lit, and this results in shorter bulb lifetime and maximal power consumption. COTS magnetic ballasts are bulky, heavy, and inefficient. Several iterations of dimmable electronic ballasts have been developed. Some manifestations have safety features such as broken-bulb or over-temperature warnings, replace-bulb alert, logbulb operational hours, etc. Several electronic ballast boards capable of independently lighting and controlling (dimming) four fluorescent (UV light) bulbs were designed, fabricated, and tested. Because of the variation in the market bulb parameters, the ballast boards were designed with a very broad range output. The ballast boards can measure and control the current (power) for each channel.

  20. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    SciTech Connect

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to H{alpha} at 656.3 nm implied an electron density and gas temperature of 2 x 10{sup 14} cm{sup -3} and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and H{alpha} intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e{sup -}{yields} O + H + e{sup -}.

  1. Emission spectroscopy of a microhollow cathode discharge plasma in helium-water gas mixtures

    NASA Astrophysics Data System (ADS)

    Namba, S.; Yamasaki, T.; Hane, Y.; Fukuhara, D.; Kozue, K.; Takiyama, K.

    2011-10-01

    A dc microhollow cathode discharge (MHCD) plasma was generated inflowing helium gas containing water vapor. The cathode hole diameters were 0.3, 0.7, 1.0, and 2.0 mm, each with a length of 2.0 mm. Emission spectroscopy was carried out to investigate the discharge mode and to determine the plasma parameters. For the 0.3-mm cathode, stable MHCDs in an abnormal glow mode existed at pressures up to 100 kPa, whereas for larger diameters, a plasma was not generated at atmospheric pressure. An analysis of the lineshapes relevant to He at 667.8 nm and to Hα at 656.3 nm implied an electron density and gas temperature of 2 × 1014 cm-3 and 1100 K, respectively, for a 100-kPa discharge in the negative glow region. The dependence of the OH band, and Hα intensities on the discharge current exhibited different behaviors. Specifically, the OH spectrum had a maximum intensity at a certain current, while the H atom intensity kept increasing with the discharge current. This observation implies that a high concentration of OH radicals results in quenching, leading to the production of H atoms via the reaction OH + e- → O + H + e-.

  2. Ion swarm data for electrical discharge modeling in air and flue gas mixtures

    NASA Astrophysics Data System (ADS)

    Nelson, D.; Benhenni, M.; Eichwald, O.; Yousfi, M.

    2003-07-01

    The first step of this work is the determination of the elastic and inelastic ion-molecule collision cross sections for the main ions (N2+, O2+, CO2+, H2O+ and O-) usually present either in the air or flue gas discharges. The obtained cross section sets, given for ion kinetic energies not exceeding 100 eV, correspond to the interactions of each ion with its parent molecule (symmetric case) or nonparent molecule (asymmetric case). Then by using these different cross section sets, it is possible to obtain the ion swarm data for the different gas mixtures involving N2, CO2, H2O and O2 molecules whatever their relative proportions. These ion swarm data are obtained from an optimized Monte Carlo method well adapted for the ion transport in gas mixtures. This also allows us to clearly show that the classical linear approximations usually applied for the ion swarm data in mixtures such as Blanc's law are far to be valid. Then, the ion swarm data are given in three cases of gas mixtures: a dry air (80% N2, 20% O2), a ternary gas mixture (82% N2, 12% CO2, 6% O2) and a typical flue gas (76% N2, 12% CO2, 6% O2, 6% H2O). From these reliable ion swarm data, electrical discharge modeling for a wire to plane electrode configuration has been carried out in these three mixtures at the atmospheric pressure for different applied voltages. Under the same discharge conditions, large discrepancies in the streamer formation and propagation have been observed in these three mixture cases. They are due to the deviations existing not only between the different effective electron-molecule ionization rates but also between the ion transport properties mainly because of the presence of a highly polar molecule such as H2O. This emphasizes the necessity to properly consider the ion transport in the discharge modeling.

  3. Simulation of current filamentation in a dc-driven planar gas discharge-semiconductor system

    NASA Astrophysics Data System (ADS)

    Mokrov, M. S.; Raizer, Yu P.

    2011-10-01

    We have performed a theoretical study of self-organized current filamentation in a dc-driven planar gas discharge-semiconductor system at very low currents and under cryogenic conditions. The discharge instability and the observed formation of current filaments are explained by a thermal mechanism, as proposed in our previous paper. We have found, for the first time, a stationary periodic current structure in a two-dimensional Cartesian geometry from first principles, by numerically solving the general system of continuity equations for ions and electrons, the Poisson equation for the electric field in the gas, together with the equation for gas temperature and the equation for electric field in the semiconductor. The space charge induced electric field redistribution, which usually leads to a discharge instability and is automatically included in the first three equations of the system, is practically absent at the very low currents considered, and thus it cannot be responsible for the discharge instability. This is why another mechanism of filamentation (thermal) should be considered. The calculated periodic current structure agrees with the hexagonal current pattern observed in the experiment, as well as with the periodic current structure found in the frame of the previously developed simple model. This serves as a corroboration of the fact that the thermal effect is essential for pattern formation under the conditions considered.

  4. Piezoelectric transformers for low-voltage generation of gas discharges and ionic winds in atmospheric air

    SciTech Connect

    Johnson, Michael J.; Go, David B.

    2015-12-28

    To generate a gas discharge (plasma) in atmospheric air requires an electric field that exceeds the breakdown threshold of ∼30 kV/cm. Because of safety, size, or cost constraints, the large applied voltages required to generate such fields are often prohibitive for portable applications. In this work, piezoelectric transformers are used to amplify a low input applied voltage (<30 V) to generate breakdown in air without the need for conventional high-voltage electrical equipment. Piezoelectric transformers (PTs) use their inherent electromechanical resonance to produce a voltage amplification, such that the surface of the piezoelectric exhibits a large surface voltage that can generate corona-like discharges on its corners or on adjacent electrodes. In the proper configuration, these discharges can be used to generate a bulk air flow called an ionic wind. In this work, PT-driven discharges are characterized by measuring the discharge current and the velocity of the induced ionic wind with ionic winds generated using input voltages as low as 7 V. The characteristics of the discharge change as the input voltage increases; this modifies the resonance of the system and subsequent required operating parameters.

  5. Gas breakdown mechanism in pulse-modulated asymmetric ratio frequency dielectric barrier discharges

    SciTech Connect

    Wang, Qi; Sun, Jizhong Ding, Zhenfeng; Ding, Hongbin; Wang, Dezhen; Nozaki, Tomohiro; Wang, Zhanhui

    2014-08-15

    The gas breakdown mechanisms, especially the roles of metastable species in atmospheric pressure pulse-modulated ratio frequency barrier discharges with co-axial cylindrical electrodes, were studied numerically using a one dimensional self-consistent fluid model. Simulation results showed that in low duty cycle cases, the electrons generated from the channels associated with metastable species played a more important role in initializing next breakdown than the direct ionization of helium atoms of electronic grounded states by electron-impact. In order to quantitatively evaluate the contribution to the discharge by the metastables, we defined a “characteristic time” and examined how the value varied with the gap distance and the electrode asymmetry. The results indicated that the lifetime of the metastable species (including He*and He{sub 2}{sup *}) was much longer than that of the pulse-on period and as effective sources of producing electrons they lasted over a period up to millisecond. When the ratio of the outer radius to the inner radius of the cylindrical electrodes was far bigger than one, it was found that the metastables distributed mainly in a cylindrical region around the inner electrode. When the ratio decreased as the inner electrode moved outward, the density of metastables in the discharge region near the outer electrode became gradually noticeable. As the discharging gap continued to decrease, the two hill-shaped distributions gradually merged to one big hill. When the discharge spacing was fixed, asymmetric electrodes facilitated the discharge.

  6. Evaluation of the potentials of humic acid removal in water by gas phase surface discharge plasma.

    PubMed

    Wang, Tiecheng; Qu, Guangzhou; Ren, Jingyu; Yan, Qiuhe; Sun, Qiuhong; Liang, Dongli; Hu, Shibin

    2016-02-01

    Degradation of humic acid (HA), a predominant type of natural organic matter in ground water and surface waters, was conducted using a gas phase surface discharge plasma system. HA standard and two surface waters (Wetland, and Weihe River) were selected as the targets. The experimental results showed that about 90.9% of standard HA was smoothly removed within 40 min's discharge plasma treatment at discharge voltage 23.0 kV, and the removal process fitted the first-order kinetic model. Roles of some active species in HA removal were studied by evaluating the effects of solution pH and OH radical scavenger; and the results presented that O3 and OH radical played significant roles in HA removal. Scanning electron microscope (SEM) and FTIR analysis showed that HA surface topography and molecular structure were changed during discharge plasma process. The mineralization of HA was analyzed by UV-Vis spectrum, dissolved organic carbon (DOC), specific UV absorbance (SUVA), UV absorption ratios, and excitation-emission matrix (EEM) fluorescence. The formation of disinfection by-products during HA sample chlorination was also identified, and CHCl3 was detected as the main disinfection by-product, but discharge plasma treatment could suppress its formation to a certain extent. In addition, approximately 82.3% and 67.9% of UV254 were removed for the Weihe River water and the Wetland water after 40 min of discharge plasma treatment.

  7. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    NASA Technical Reports Server (NTRS)

    Sciamma-O'Brien, Ella; Salama, Farid

    2013-01-01

    Titan's atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn's magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSMIC simulation chamber at NASA Ames in order to study the different steps of Titan's atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature (approx. 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2,-CH4 chemistry (C2H2, C2H4, C6H6...) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan's atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan fs atmospheric chemistry as well as specific chemical pathways leading to Titan fs haze formation.

  8. Gas laser for efficient sustaining a continuous optical discharge plasma in scientific and technological applications

    SciTech Connect

    Zimakov, V P; Kuznetsov, V A; Kedrov, A Yu; Solov'ev, N G; Shemyakin, A N; Yakimov, M Yu

    2009-09-30

    A stable high-power laser is developed for the study and technical applications of a continuous optical discharge (COD). The laser based on the technology of a combined discharge in a scheme with a fast axial gas flow emits 2.2 kW at 10.6 {mu}m per meter of the active medium in continuous and repetitively pulsed regimes with the electrooptical efficiency 20%. The sustaining of the COD plasma in argon and air is demonstrated at the atmospheric pressure. The emission properties of the COD plasma are studied and its possible applications are discussed. (lasers)

  9. Two-Dimensional Plasma Density Distributions in Low-Pressure Gas Discharges

    SciTech Connect

    Berlin, E.V.; Dvinin, S.A.; Mikheev, V.V.; Omarov, M.O.; Sviridkina, V. S.

    2004-12-15

    The plasma density distribution in a two-dimensional nonuniform positive column of a low-pressure gas discharge is studied in the hydrodynamic approximation with allowance for ion inertia. Exact solutions are derived for discharges in a rectangular and a cylindrical chamber. Asymptotic solutions near the coordinate origin and near the critical surface are considered. It is shown that, for potential plasma flows, the flow velocity component normal to the plasma boundary is equal to the ion acoustic velocity. The results obtained can be used to analyze the processes occurring in low-pressure plasmochemical reactors.

  10. Two-stage plasma gun based on a gas discharge with a self-heating hollow emitter.

    PubMed

    Vizir, A V; Tyunkov, A V; Shandrikov, M V; Oks, E M

    2010-02-01

    The paper presents the results of tests of a new compact two-stage bulk gas plasma gun. The plasma gun is based on a nonself-sustained gas discharge with an electron emitter based on a discharge with a self-heating hollow cathode. The operating characteristics of the plasma gun are investigated. The discharge system makes it possible to produce uniform and stable gas plasma in the dc mode with a plasma density up to 3x10(9) cm(-3) at an operating gas pressure in the vacuum chamber of less than 2x10(-2) Pa. The device features high power efficiency, design simplicity, and compactness.

  11. Low-Temperature Power Electronics Program

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Dickman, John E.; Hammoud, Ahmad; Gerber, Scott

    1997-01-01

    Many space and some terrestrial applications would benefit from the availability of low-temperature electronics. Exploration missions to the outer planets, Earth-orbiting and deep-space probes, and communications satellites are examples of space applications which operate in low-temperature environments. Space probes deployed near Pluto must operate in temperatures as low as -229 C. Figure 1 depicts the average temperature of a space probe warmed by the sun for various locations throughout the solar system. Terrestrial applications where components and systems must operate in low-temperature environments include cryogenic instrumentation, superconducting magnetic energy storage, magnetic levitation transportation system, and arctic exploration. The development of electrical power systems capable of extremely low-temperature operation represents a key element of some advanced space power systems. The Low-Temperature Power Electronics Program at NASA Lewis Research Center focuses on the design, fabrication, and characterization of low-temperature power systems and the development of supporting technologies for low-temperature operations such as dielectric and insulating materials, power components, optoelectronic components, and packaging and integration of devices, components, and systems.

  12. Modeling Low-temperature Geochemical Processes

    NASA Astrophysics Data System (ADS)

    Nordstrom, D. K.

    2003-12-01

    Geochemical modeling has become a popular and useful tool for a wide number of applications from research on the fundamental processes of water-rock interactions to regulatory requirements and decisions regarding permits for industrial and hazardous wastes. In low-temperature environments, generally thought of as those in the temperature range of 0-100 °C and close to atmospheric pressure (1 atm=1.01325 bar=101,325 Pa), complex hydrobiogeochemical reactions participate in an array of interconnected processes that affect us, and that, in turn, we affect. Understanding these complex processes often requires tools that are sufficiently sophisticated to portray multicomponent, multiphase chemical reactions yet transparent enough to reveal the main driving forces. Geochemical models are such tools. The major processes that they are required to model include mineral dissolution and precipitation; aqueous inorganic speciation and complexation; solute adsorption and desorption; ion exchange; oxidation-reduction; or redox; transformations; gas uptake or production; organic matter speciation and complexation; evaporation; dilution; water mixing; reaction during fluid flow; reaction involving biotic interactions; and photoreaction. These processes occur in rain, snow, fog, dry atmosphere, soils, bedrock weathering, streams, rivers, lakes, groundwaters, estuaries, brines, and diagenetic environments. Geochemical modeling attempts to understand the redistribution of elements and compounds, through anthropogenic and natural means, for a large range of scale from nanometer to global. "Aqueous geochemistry" and "environmental geochemistry" are often used interchangeably with "low-temperature geochemistry" to emphasize hydrologic or environmental objectives.Recognition of the strategy or philosophy behind the use of geochemical modeling is not often discussed or explicitly described. Plummer (1984, 1992) and Parkhurst and Plummer (1993) compare and contrast two approaches for

  13. [Low temperature plasma technology for biomass refinery].

    PubMed

    Fu, Xiaoguo; Chen, Hongzhang

    2014-05-01

    Biorefinery that utilizes renewable biomass for production of fuels, chemicals and bio-materials has become more and more important in chemical industry. Recently, steam explosion technology, acid and alkali treatment are the main biorefinery treatment technologies. Meanwhile, low temperature plasma technology has attracted extensive attention in biomass refining process due to its unique chemical activity and high energy. We systemically summarize the research progress of low temperature plasma technology for pretreatment, sugar platflow, selective modification, liquefaction and gasification in biomass refinery. Moreover, the mechanism of low temperature plasma in biorefinery and its further development were also discussed.

  14. Improved Low Temperature Performance of Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.; Gnanaraj, Joe

    2013-01-01

    Low temperature double-layer capacitor operation enabled by: - Base acetonitrile / TEATFB salt formulation - Addition of low melting point formates, esters and cyclic ethers center dot Key electrolyte design factors: - Volume of co-solvent - Concentration of salt center dot Capacity increased through higher capacity electrodes: - Zeolite templated carbons - Asymmetric cell designs center dot Continuing efforts - Improve asymmetric cell performance at low temperature - Cycle life testing Motivation center dot Benchmark performance of commercial cells center dot Approaches for designing low temperature systems - Symmetric cells (activated carbon electrodes) - Symmetric cells (zeolite templated carbon electrodes) - Asymmetric cells (lithium titanate/activated carbon electrodes) center dot Experimental results center dot Summary

  15. Study of the switching rate of gas-discharge devices based on the open discharge with counter-propagating electron beams

    SciTech Connect

    Bokhan, P. A.; Gugin, P. P.; Lavrukhin, M. A.; Zakrevsky, Dm. E.

    2015-06-15

    The switching rate of gas-discharge devices “kivotrons” based on the open discharge with counter-propagating electron beams has been experimentally studied. Structures with 2-cm{sup 2} overall cathode area were examined. The switching time was found to show a monotonic decrease with increasing the working-gas helium pressure and with increasing the voltage across the discharge gap at breakdown. The minimum switching time was found to be ∼240 ps at 17 kV voltage, and the maximum rate of electric-current rise limited by the discharge-circuit inductance was 3 × 10{sup 12 }A/s.

  16. Compressor discharge bleed air circuit in gas turbine plants and related method

    SciTech Connect

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2002-01-01

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  17. Compressor discharge bleed air circuit in gas turbine plants and related method

    SciTech Connect

    Anand, Ashok Kumar; Berrahou, Philip Fadhel; Jandrisevits, Michael

    2003-04-08

    A gas turbine system that includes a compressor, a turbine component and a load, wherein fuel and compressor discharge bleed air are supplied to a combustor and gaseous products of combustion are introduced into the turbine component and subsequently exhausted to atmosphere. A compressor discharge bleed air circuit removes bleed air from the compressor and supplies one portion of the bleed air to the combustor and another portion of the compressor discharge bleed air to an exhaust stack of the turbine component in a single cycle system, or to a heat recovery steam generator in a combined cycle system. In both systems, the bleed air diverted from the combustor may be expanded in an air expander to reduce pressure upstream of the exhaust stack or heat recovery steam generator.

  18. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance. PMID:25284442

  19. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance.

  20. Revealing atom-radical reactivity at low temperature through the N + OH reaction.

    PubMed

    Daranlot, Julien; Jorfi, Mohamed; Xie, Changjian; Bergeat, Astrid; Costes, Michel; Caubet, Philippe; Xie, Daiqian; Guo, Hua; Honvault, Pascal; Hickson, Kevin M

    2011-12-16

    More than 100 reactions between stable molecules and free radicals have been shown to remain rapid at low temperatures. In contrast, reactions between two unstable radicals have received much less attention due to the added complexity of producing and measuring excess radical concentrations. We performed kinetic experiments on the barrierless N((4)S) + OH((2)Π) → H((2)S) + NO((2)Π) reaction in a supersonic flow (Laval nozzle) reactor. We used a microwave-discharge method to generate atomic nitrogen and a relative-rate method to follow the reaction kinetics. The measured rates agreed well with the results of exact and approximate quantum mechanical calculations. These results also provide insight into the gas-phase formation mechanisms of molecular nitrogen in interstellar clouds.

  1. Is Submarine Groundwater Discharge a Gas Hydrate Formation Mechanism on the Circum-Arctic Shelf?

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2015-12-01

    Methane hydrate is an ice-like solid that can sequester large quantities of methane gas in marine sediments along most continental margins where thermodynamic conditions permit its formation. Along the circum-Arctic shelf, relict permafrost-associated methane hydrate deposits formed when non-glaciated portions of the shelf experienced subaerial exposure during ocean transgressions. Gas hydrate stability and the permeability of circum-Arctic shelf sediments to gas migration is closely linked with relict submarine permafrost. Heat flow observations on the Alaskan North Slope and Canadian Beaufort Shelf suggest the movement of groundwater offshore, but direct observations of groundwater flow do not exist. Submarine discharge, an offshore flow of fresh, terrestrial groundwater, can affect the temperature and salinity field in shelf sediments, and may be an important factor in submarine permafrost and gas hydrate evolution on the Arctic continental shelf. Submarine groundwater discharge may also enhance the transport of organic matter for methanogenesis within marine sediments. Because it is buoyancy-driven, the velocity field contains regions with a vertical (upward) component as groundwater flows offshore. This combination of factors makes submarine groundwater discharge a potential mechanism controlling permafrost-associated gas hydrate evolution on the Arctic continental shelf. In this study, we quantitatively investigate the feasibility of submarine groundwater discharge as a control on permafrost-associated gas hydrate formation on the Arctic continental shelf, using the Canadian Beaufort Shelf as an example. We have developed a shelf-scale, two-dimensional numerical model based on the finite volume method for two-phase flow of pore fluid and methane gas within Arctic shelf sediments. The model tracks the evolution of the pressure, temperature, salinity, methane gas, methane hydrate, and permafrost fields given imposed boundary conditions, with latent heat of

  2. TOPICAL REVIEW: Numerical modelling of atmospheric pressure gas discharges leading to plasma production

    NASA Astrophysics Data System (ADS)

    Georghiou, G. E.; Papadakis, A. P.; Morrow, R.; Metaxas, A. C.

    2005-10-01

    In this paper, we give a detailed review of recent work carried out on the numerical characterization of non-thermal gas discharge plasmas in air at atmospheric pressure. First, we briefly describe the theory of discharge development for dielectric barrier discharges, which is central to the production of non-equilibrium plasma, and we present a hydrodynamic model to approximate the evolution of charge densities. The model consists of the continuity equations for electrons, positive and negative ions coupled to Poisson's equation for the electric field. We then describe features of the finite element flux corrected transport algorithm, which has been developed to specifically aim for accuracy (no spurious diffusion or oscillations), efficiency (through the use of unstructured grids) and ease of extension to complex 3D geometries in the framework of the hydrodynamic model in gas discharges. We summarize the numerical work done by other authors who have applied different methods to various models and then we present highlights of our own work, which includes code validation, comparisons with existing results and modelling of radio frequency systems, dc discharges, secondary effects such as photoionization and plasma production in the presence of dielectrics. The extension of the code to 3D for more realistic simulations is demonstrated together with the adaptive meshing technique, which serves to achieve higher efficiency. Finally, we illustrate the versatility of our scheme by using it to simulate the transition from non-thermal to thermal discharges. We conclude that numerical modelling and, in particular, the extension to 3D can be used to shed new light on the processes involved with the production and control of atmospheric plasma, which plays an important role in a host of emerging technologies.

  3. [Study on vibrational temperature and gas temperature in a hollowneedle-plate discharge plasma].

    PubMed

    Dong, Li-fang; Liu, Wei-yuan; Yang, Yu-jie; Wang, Shuai

    2010-09-01

    A 1.6-3 cm long plasma torch was generated when argon gas was introduced by using a hollowneedle-plate discharge device working in atmosphere. The vibrational temperature and the gas temperature at plasma root and tip were studied by using optical emission spectrum at different argon gas flow. The gas temperature was obtained by comparing experimental line shape of OH radicals band around 309 nm with its simulated line shape. The vibrational temperature was calculated using N2 second posi tive band system C3:pi u-B3 pi g. It was found that the gas temperatures at arc root and arc tip are equal and they decrease with the argon flow rate increasing. The gas temperature decreases from 350 to 300 K when argon flow rate increases from 3.0 to 6.5 mL x min(-1). The vibrational temperature at are tip (1950 K) is higher than that at arc root (1755 K) under a low gas flow rate (e.g., 3.0 mL x min(-1)). With gas flow rate increasing, the vibrational temperature at both tip and root decreases, but the decreasing rate at are tip is faster than that at arc root. When gas flow is larger, the vibrational temperatures at tip and root tend to be equal.

  4. Li/CFx Cells Optimized for Low-Temperature Operation

    NASA Technical Reports Server (NTRS)

    Smart, Marshall C.; Whitacre, Jay F.; Bugga, Ratnakumar V.; Prakash, G. K. Surya; Bhalla, Pooja; Smith, Kiah

    2009-01-01

    Some developments reported in prior NASA Tech Briefs articles on primary electrochemical power cells containing lithium anodes and fluorinated carbonaceous (CFx) cathodes have been combined to yield a product line of cells optimized for relatively-high-current operation at low temperatures at which commercial lithium-based cells become useless. These developments have involved modifications of the chemistry of commercial Li/CFx cells and batteries, which are not suitable for high-current and low-temperature applications because they are current-limited and their maximum discharge rates decrease with decreasing temperature. One of two developments that constitute the present combination is, itself, a combination of developments: (1) the use of sub-fluorinated carbonaceous (CFx wherein x<1) cathode material, (2) making the cathodes thinner than in most commercial units, and (3) using non-aqueous electrolytes formulated especially to enhance low-temperature performance. This combination of developments was described in more detail in High-Energy-Density, Low- Temperature Li/CFx Primary Cells (NPO-43219), NASA Tech Briefs, Vol. 31, No. 7 (July 2007), page 43. The other development included in the present combination is the use of an anion receptor as an electrolyte additive, as described in the immediately preceding article, "Additive for Low-Temperature Operation of Li-(CF)n Cells" (NPO- 43579). A typical cell according to the present combination of developments contains an anion-receptor additive solvated in an electrolyte that comprises LiBF4 dissolved at a concentration of 0.5 M in a mixture of four volume parts of 1,2 dimethoxyethane with one volume part of propylene carbonate. The proportion, x, of fluorine in the cathode in such a cell lies between 0.5 and 0.9. The best of such cells fabricated to date have exhibited discharge capacities as large as 0.6 A h per gram at a temperature of 50 C when discharged at a rate of C/5 (where C is the magnitude of the

  5. Electron density measurement in gas discharge plasmas by optical and acoustic methods

    NASA Astrophysics Data System (ADS)

    Biagioni, A.; Anania, M. P.; Bellaveglia, M.; Chiadroni, E.; Cianchi, A.; Di Giovenale, D.; Di Pirro, G.; Ferrario, M.; Filippi, F.; Mostacci, A.; Pompili, R.; Shpakov, V.; Vaccarezza, C.; Villa, F.; Zigler, A.

    2016-08-01

    Plasma density represents a very important parameter for both laser wakefield and plasma wakefield acceleration, which use a gas-filled capillary plasma source. Several techniques can be used to measure the plasma density within a capillary discharge, which are mainly based on optical diagnostic methods, as for example the well-known spectroscopic method using the Stark broadening effect. In this work, we introduce a preliminary study on an alternative way to detect the plasma density, based on the shock waves produced by gas discharge in a capillary. Firstly, the measurements of the acoustic spectral content relative to the laser-induced plasmas by a solid target allowed us to understand the main properties of the acoustic waves produced during this kind of plasma generation; afterwards, we have extended such acoustic technique to the capillary plasma source in order to calibrate it by comparison with the stark broadening method.

  6. Removal of adhesive dusts from flue gas using corona discharges with spraying water.

    PubMed

    Xu, De-xuan; Zhao, Jian-wei; Ding, Yun-zheng; Ge, Wei-li

    2003-07-01

    Effective removal of adhesive and fine dusts from flue gas is very difficult. A new method of electrostatic precipitation of the corona discharges with spraying water (CDSW) was introduced. A new electrode configuration and the circulation spraying of water were employed in the method. The efficient electrostatic precipitation for adhesive and fine dusts can be accomplished without any drain water during a long operating period. The fundamental structure, discharge characteristics, mechanism of spraying and precipitation principle of the electrostatic precipitation using CDSW were described and analyzed. The V-I characteristics, spraying state, supplying water quantity, influence of temperature and clean of the electrodes were researched in series experiments. The treating effects of circulating spraying using the corona plasma at the same time of electrostatic precipitation were investigated. The fundamental theories and experimental data were proposed, in order to effectively remove the adhesive dusts from flue gas using CDSW in practice.

  7. Thermal poling of ferroelectrets: How does the gas temperature influence dielectric barrier discharges in cavities?

    NASA Astrophysics Data System (ADS)

    Qiu, Xunlin; Wirges, Werner; Gerhard, Reimund

    2016-06-01

    The influence of the temperature in the gas-filled cavities on the charging process of ferroelectret film systems has been studied in hysteresis measurements. The threshold voltage and the effective polarization of the ferroelectrets were determined as functions of the charging temperature TP. With increasing TP, the threshold voltage for triggering dielectric barrier discharges in ferroelectrets decreases. Thus, increasing the temperature facilitates the charging of ferroelectrets. However, a lower threshold voltage reduces the attainable remanent polarization because back discharges occur at lower charge levels, as soon as the charging voltage is turned off. The results are discussed in view of Paschen's law for electrical breakdown, taking into account the respective gas temperature and a simplified model for ferroelectrets. Our results indicate that the thermal poling scheme widely used for conventional ferroelectrics is also useful for electrically charging ferroelectrets.

  8. The THS: Simulating Titan’s atmospheric chemistry at low temperature

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Upton, Kathleen T.; Beauchamp, Jack L.; Salama, Farid

    2015-08-01

    In Titan’s atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan’s atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature (~150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (~200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics.A recent mass spectrometry study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan’s atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini’s CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A DART mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile

  9. Plasma motion velocity along laser beam and continuous optical discharge in gas flow

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Gus'kov, K. G.; Raizer, Iu. P.; Surzhikov, S. T.

    1991-02-01

    The present solution of the problem of gas flow around a hollow ball demonstrates why the velocity of a laser deflagration wave is an order of magnitude higher than the velocity of the wave driven by heat conductivity. Attention is given to the numerical siumulation of continuous optical discharge motion in a parallel beam; simulation results are compared with experimental data and found to be in agreement.

  10. Behaviour Of Gas Conditions During Vacuum Arc Discharges Used For Deposition Of Thin Films

    NASA Astrophysics Data System (ADS)

    Strzyzewski, P.; Catani, L.; Cianchi, A.; Langner, J.; Lorkiewicz, J.; Mirowski, R.; Russo, R.; Sadowski, M.; Tazzari, S.; Witkowski, J.

    2006-01-01

    The paper concerns an important problem which is connected with the inclusion of some impurities in the deposited metal film. It was found that appearance of contaminants in the film is induced mainly by water vapor remnants inside the vacuum chamber. The paper presents information on changes in the gas composition during and between arc-discharges, which is of primary importance for the selection of appropriate experimental conditions.

  11. Radial profile of the electron energy distribution function in RF capacitive gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Dimitrova, M.; Popov, Tsv; Puac, N.; Skoro, N.; Spasic, K.; Malovic, G.; Dias, F. M.; Petrovic, Z. Lj

    2016-03-01

    This paper reports experimental results on low-pressure argon capacitive RF discharge (parallel-plate capacitively-coupled plasma - CCP) under different conditions, namely, gas pressure in the range 3 -r- 30 Pa and RF power in the range 10 - 100 W. The IV characteristics measured were processed by two different second-derivative probe techniques for determination of the plasma parameters and the electron energy distribution function. The radial profiles of the main plasma parameters are presented.

  12. VUV generation by adiabatically expanded and excited by a DC electrical discharge Argon gas

    SciTech Connect

    Pipergias, K.; Yasemidis, D.; Reppa, E.; Pentaris, D.; Efthimiopoulos, T.; Merlemis, N.; Giannetas, V.

    2010-11-10

    We investigate the emission of Argon (Ar) gas which is adiabatically expanded through a nozzle and excited using a DC electrical discharge. Because of the expansion and the electronic excitation, Ar dimers and clusters are formed, which give radiation in the second (2nd) and in the third (3rd) continua of Ar, centered at about 126 and 254 nm respectively. We particularly focus our study on the 2nd continuum, in order to develop a laser at this wavelength.

  13. Control of stochastic sensitivity in a stabilization problem for gas discharge system

    SciTech Connect

    Bashkirtseva, Irina

    2015-11-30

    We consider a nonlinear dynamic stochastic system with control. A problem of stochastic sensitivity synthesis of the equilibrium is studied. A mathematical technique of the solution of this problem is discussed. This technique is applied to the problem of the stabilization of the operating mode for the stochastic gas discharge system. We construct a feedback regulator that reduces the stochastic sensitivity of the equilibrium, suppresses large-amplitude oscillations, and provides a proper operation of this engineering device.

  14. Electron beam method and apparatus for obtaining uniform discharges in electrically pumped gas lasers

    DOEpatents

    Fenstermacher, Charles A.; Boyer, Keith

    1986-01-01

    A method and apparatus for obtaining uniform, high-energy, large-volume electrical discharges in the lasing medium of a gas laser whereby a high-energy electron beam is used as an external ionization source to ionize substantially the entire volume of the lasing medium which is then readily pumped by means of an applied potential less than the breakdown voltage of the medium. The method and apparatus are particularly useful in CO.sub.2 laser systems.

  15. Inactivation of possible micromycete food contaminants using the low-temperature plasma and hydrogen peroxide

    SciTech Connect

    Čeřovský, M.; Khun, J.; Rusová, K.; Scholtz, V.; Soušková, H.

    2013-09-15

    The inhibition effect of hydrogen peroxide aerosol, low-temperature plasma and their combinations has been studied on several micromycetes spores. The low-temperature plasma was generated in corona discharges in the open air apparatus with hydrogen peroxide aerosol. Micromycete spores were inoculated on the surface of agar plates, exposed solely to the hydrogen peroxide aerosol, corona discharge or their combination. After incubation the diameter of inhibition zone was measured. The solely positive corona discharge exhibits no inactivation effect, the solely negative corona discharge and solely hydrogen peroxide aerosol exhibit the inactivation effect, however their combinations exhibit to be much more effective. Low-temperature plasma and hydrogen peroxide aerosol present a possible alternative method of microbial decontamination of food, food packages or other thermolabile materials.

  16. Theory of a stationary microwave discharge with multiply charged ions in an expanding gas jet

    NASA Astrophysics Data System (ADS)

    Shalashov, A. G.; Abramov, I. S.; Golubev, S. V.; Gospodchikov, E. D.

    2016-08-01

    The formation of a jet of a nonequilibrium multiply charged ion plasma is studied in the inhomogeneous gas jet. It is shown that the geometrical divergence of the jet restricts the maximum ion charge state and results in the spatial localization of the discharge. Stationary solutions corresponding to such regimes are constructed. The model proposed can be used to optimize modern experiments on generation of hard UV radiation due to the line emission of multiply ionized atoms in a gas jet heated by high-power millimeter and submillimeter radiation.

  17. Boltzmann Equation Analysis Of Electron Swarms For Non Thermal Flue Gas Discharge Modeling

    NASA Astrophysics Data System (ADS)

    Yousfi, M.

    1997-10-01

    The aim of this presentation is to give an overview on the electron swarm development in the flue gas mixture discharges involving N2, O2, H2O and CO2. The corresponding electron basic data needed for the non thermal plasma device for pollution control are given in typical flue gases from Boltzmann equation solution including the dominant collision processes (elastic, inelastic and super-elastic). These data are first the electron-molecule collision cross sections for each gas of the mixture and then the transport and reaction coefficients of electron swarms in the gas mixture. The strong coupling between this electron swarm model with the different models used for the non thermal plasma device of our interest are emphasized. This concerns the electron Boltzamnn equation coupled with the charged particle (or electrical) model, the gas dynamics and also the chemical kinetics models. Some illustrative results of this coupling are then given.

  18. Time-dependent coupled kinetics and gas temperature in N2-NO pulsed discharges

    NASA Astrophysics Data System (ADS)

    Pintassilgo, Carlos D.; Welzel, Stefan

    2016-10-01

    A self-consistent time-dependent kinetic model coupled to the gas thermal balance equation is presented for a N2-1%NO millisecond pulsed DC discharge at a pressure of 266 Pa (2 Torr) and a current of 35 mA. The model provides the temporal evolution of the most important heavy species of interest to this work such as N2(X1Σg+, v), NO(X2Π), N2(A3Σu+), N2(a'1Σu-), N(4S) and O(3P), simultaneously with the time-dependent variation of the gas temperature. Predicted results for NO number densities during the pulse are compared to experimental ones measured by time-resolved quantum cascade laser absorption spectroscopy (QCLAS). The agreement between experiment and modelling predictions is very reasonable, mainly until a pulse duration of 2 ms, revealing the temporal evolution of the most important creation and loss mechanisms of NO(X). Simulations show a slow gas heating during the first millisecond. Thereafter, gas heating is accelerated and levels off at a time ~ 40 ms. These effects are explained and discussed in detail, together with the analysis of the fraction of the discharge power transferred to gas heating.

  19. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    NASA Astrophysics Data System (ADS)

    Prasetyaningrum, A.; Ratnawati, Jos, B.

    2015-12-01

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O3) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  20. Effect of pulsed corona discharge voltage and feed gas flow rate on dissolved ozone concentration

    SciTech Connect

    Prasetyaningrum, A. Ratnawati,; Jos, B.

    2015-12-29

    Ozonization is one of the methods extensively used for water purification and degradation of organic materials. Ozone (O{sub 3}) is recognized as a powerful oxidizing agent. Due to its strong oxidability and better environmental friendless, ozone increasing being used in domestic and industrial applications. Current technology in ozone production utilizes several techniques (corona discharge, ultra violet radiation and electrolysis). This experiment aimed to evaluating effect of voltage and gas flow rate on ozone production with corona discharge. The system consists of two net-type stainless steel electrode placed in a dielectric barrier. Three pulsed voltage (20, 30, 40 KV) and flow rate (5, 10, 15 L/min) were prepare for operation variable at high frequency (3.7 kHz) with AC pulsed power supply. The dissolved ozone concentration depends on the applied high-voltage level, gas flow rate and the discharge exposure duration. The ozone concentration increases with decreasing gas flow rate. Dissolved ozone concentrations greater than 200 ppm can be obtained with a minimum voltage 40 kV.

  1. Theoretical Study of Plasma Parameters Dependence on Gas Temperature in an Atmospheric Pressure Argon Microwave Discharge

    SciTech Connect

    Pencheva, M.; Benova, E.; Zhelyazkov, I.

    2008-03-19

    The gas temperature is an important parameter in many applications of atmospheric pressure microwave discharges (MW). That is why it is necessary to study the influence of that temperature on the plasma characteristics. Our investigation is based on a self-consistent model including the wave electrodynamics and gas-discharge kinetics. We adopt a blocks' energy structure of the argon excited atom. More specifically, we consider 7 different blocks of states, namely 4s, 4p, 3d, 5s, 5p, 4d, and 6s. Each block k is characterized by its effective energy uk (derived as an average energy of all levels in the block), as well as its effective g-factor and population. The argon dimmer, atomic and molecular ions are also taken into account in the model. We solve the Boltzmann equation in order to get the electron energy distribution function and the necessary rate constants of the elementary processes. The collisional-radiative part of the model is based on 87 processes. As a result we obtain the electron and ions' number densities, mean electron energy, mean power for sustaining an electron--ion pair in the discharge bulk, as well as the population of the excited blocks of states of the argon atom as functions of the gas temperature.

  2. [Emission spectroscopy diagnosis of the radicals generated in gas-liquid phases gliding arc discharge].

    PubMed

    Yan, Jian-hua; Dai, Shang-li; Li, Xiao-dong; Tu, Xin; Liu, Ya-na; Cen, Ke-fa

    2008-08-01

    Gas-liquid phases gliding arc discharge has been investigated as a potential treatment technology for liquid phase pollution treatment. To further understand the interaction mechanisms of gas-liquid phase gliding arc degradation process for the wastewater treatment, the characteristics of major reactive species (the OH and NO radicals) in a gas-liquid gliding arc at atmospheric pressure have been investigated by using optical emission spectroscopy. The chemical reactions that may lead to the generation of free radicals in the discharge were discussed. The influence of operating conditions (water feed rate, input voltage etc. ) on the relative intensity of radical emission was studied. The results show that axial evolution of the relative emission intensity of both reactive species exhibit the similar tendency under the same operating conditions. In non-thermodynamic equilibrium region of the arc discharge, the intensities of both radicals increase with the input voltage. In addition, the intensity of OH radical increases with the water feed rate, while the opposition phenomena are observed for NO radical.

  3. The Fungal Spores Survival Under the Low-Temperature Plasma

    NASA Astrophysics Data System (ADS)

    Soušková, Hana; Scholtz, V.; Julák, J.; Savická, D.

    This paper presents an experimental apparatus for the decontamination and sterilization of water suspension of fungal spores. The fungicidal effect of stabilized positive and negative corona discharges on four fungal species Aspergillus oryzae, Clacosporium sphaerospermum, Penicillium crustosum and Alternaria sp. was studied. Simultaneously, the slower growing of exposed fungal spores was observed. The obtained results are substantially different in comparison with those of the analogous experiments performed with bacteria. It may be concluded that fungi are more resistant to the low-temperature plasma.

  4. Application of Atmospheric-Pressure Microwave Line Plasma for Low Temperature Process

    NASA Astrophysics Data System (ADS)

    Suzuki, Haruka; Nakano, Suguru; Itoh, Hitoshi; Sekine, Makoto; Hori, Masaru; Toyoda, Hirotaka

    2015-09-01

    Atmospheric pressure (AP) plasmas have been given much attention because of its high cost benefit and a variety of possibilities for industrial applications. In various kinds of plasma production technique, pulsed-microwave discharge plasma using slot antenna is attractive due to its ability of high-density and stable plasma production. In this plasma source, however, size of the plasma has been limited up to a few cm in length due to standing wave inside a waveguide. To solve this, we have proposed a newly-developed AP microwave plasma source that utilizes not standing wave but travelling wave. By using this plasma source, spatially-uniform AP line plasma with 40 cm in length was realized by pure helium discharge in 60 cm slot and with nitrogen gas additive of 1%. Furthermore, gas temperature as low as 400 K was realized in this device. In this study, as an example of low temperature processes, hydrophilic treatment of PET films was performed. Processing speed increased with pulse frequency and a water contact angle of ~20° was easily obtained within 5 s with no thermal damage to the substrate. To evaluate treatment-uniformity of long line length, PET films were treated by 90 cm slot-antenna plasma and uniform treatment performance was confirmed.

  5. Analytical model of atmospheric pressure, helium/trace gas radio-frequency capacitive Penning discharges

    NASA Astrophysics Data System (ADS)

    Lieberman, M. A.

    2015-04-01

    Atmospheric and near-atmospheric pressure, helium/trace gas radio-frequency capacitive discharges have wide applications. An analytic equilibrium solution is developed based on a homogeneous, current-driven discharge model that includes sheath and electron multiplication effects and contains two electron populations. A simplified chemistry is used with four unknown densities: hot electrons, warm electrons, positive ions and metastables. The dominant electron-ion pair production is Penning ionization, and the dominant ion losses are to the walls. The equilibrium particle balances are used to determine a single ionization balance equation for the warm electron temperature, which is solved, both approximately within the α- and γ-modes, and exactly by conventional root-finding techniques. All other discharge parameters are found, the extinction and α-γ transitions are determined, and a similarity law is given, in which the equilibrium for a short gap at high pressure can be rescaled to a longer gap at lower pressure. Within the α-mode, we find the scaling of the discharge parameters with current density, frequency, gas density and gap width. The analytic results are compared to hybrid and particle-in-cell (PIC) results for He/0.1%N2, and to hybrid results for He/0.1%H2O. For nitrogen, a full reaction set is used for the hybrid calculations and a simplified reaction set for the PIC simulations. For the chemically complex water trace gas, a set of 209 reactions among 43 species is used. The analytic results are found to be in reasonably good agreement with the more elaborate hybrid and PIC calculations.

  6. Low-temperature volumetric receiver concept

    NASA Astrophysics Data System (ADS)

    Drost, M. K.

    1988-09-01

    This document describes an alternative solar central receiver concept that offers the potential for a substantial reduction in the cost of electrical energy. The concept consists of a low temperature volumetric receiver which supplies 1100 F air to a Kalina cycle heat engine. Hot air can also be supplied to a packed bed of Dresser basalt where the hot air is used to heat the bed. The thermal energy stored in the bed can be extracted and supplied to the Kalina cycle during periods of low insolation. Previous investigations of the volumetric receiver concentrated on high temperature applications. The results showed that the volumetric concept could be very efficient, but the receiver was expensive and there were significant technical problems. Areas of technical uncertainty included fiber durability, the feasibility of inducing a preswirl and cost effective applications. The use of the volumetric receiver to produce low temperature will avoid the problems identified in the high temperature studies. The attractiveness of the low temperature concept is enhanced by the availability of the Kalina cycle. This heat engine was developed as a bottoming cycle for Brayton and Rankine cycle power plants. The key feature of the Kalina cycle is its ability to efficiently utilize the energy in a relatively low temperature heat source. The combination of the low temperature volumetric receiver and the Kalina cycle is particularly interesting.

  7. Low-temperature volumetric receiver concept

    SciTech Connect

    Drost, M.K.

    1988-09-01

    This document describes an alternative solar central receiver concept that offers the potential for a substantial reduction in the cost of electrical energy. The concept consists of a low temperature volumetric receiver which supplies 1100/degree/F air to a Kalina cycle heat engine. Hot air can also be supplied to a packed bed of Dresser basalt where the hot air is used to heat the bed. The thermal energy stored in the bed can be extracted and supplied to the Kalina cycle during periods of low insolation. Previous investigations of the volumetric receiver concentrated on high temperature applications. The results showed that the volumetric concept could be very efficient, but the receiver was expensive and there were significant technical problems. Areas of technical uncertainty included fiber durability, the feasibility of inducing a preswirl and cost effective applications. The use of the volumetric receiver to produce low temperature will avoid the problems identified in the high temperature studies. The attractiveness of the low temperature concept is enhanced by the availability of the Kalina cycle. This heat engine was developed as a bottoming cycle for Brayton and Rankine cycle power plants. The key feature of the Kalina cycle is its ability to efficiently utilize the energy in a relatively low temperature heat source. The combination of the low temperature volumetric receiver and the Kalina cycle is particularly interesting. 7 refs., 2 figs., 3 tabs.

  8. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  9. Effect of Submarine Groundwater Discharge on Relict Arctic Submarine Permafrost and Gas Hydrate

    NASA Astrophysics Data System (ADS)

    Frederick, J. M.; Buffett, B. A.

    2014-12-01

    Permafrost-associated gas hydrate deposits exist at shallow depths within the sediments of the circum-Arctic continental shelves. Degradation of this shallow water reservoir has the potential to release large quantities of methane gas directly to the atmosphere. Gas hydrate stability and the permeability of the shelf sediments to gas migration is closely linked with submarine permafrost. Submarine permafrost extent depends on several factors, such as the lithology, sea level variations, mean annual air temperature, ocean bottom water temperature, geothermal heat flux, and the salinity of the pore water. The salinity of the pore water is especially relevant because it partially controls the freezing point for both ice and gas hydrate. Measurements of deep pore water salinity are few and far between, but show that deep off-shore sediments are fresh. Deep freshening has been attributed to large-scale topographically-driven submarine groundwater discharge, which introduces fresh terrestrial groundwater into deep marine sediments. We investigate the role of submarine ground water discharge on the salinity field and its effects on the seaward extent of relict submarine permafrost and gas hydrate stability on the Arctic shelf with a 2D shelf-scale model based on the finite volume method. The model tracks the evolution of the temperature, salinity, and pressure fields given imposed boundary conditions, with latent heat of water ice and hydrate formation included. The permeability structure of the sediments is coupled to changes in permafrost. Results show that pore fluid is strongly influenced by the permeability variations imposed by the overlying permafrost layer. Groundwater discharge tends to travel horizontally off-shore beneath the permafrost layer and the freshwater-saltwater interface location displays long timescale transient behavior that is dependent on the groundwater discharge strength. The seaward permafrost extent is in turn strongly influenced by the

  10. Service life of metals at low temperatures

    NASA Technical Reports Server (NTRS)

    Verkin, B. I.; Lyubarskiy, I. M.; Grinberg, N. M.; Yakovenko, L. F.

    1974-01-01

    Current concepts of the nature of fatigue failure at low temperatures are presented on the basis of experimental results of various investigators. The fundamental approach to the technique for studying low-temperature fatigue is examined. The necessity for using the same medium at different fatigue test temperatures and also the necessity for taking into account the magnitude of the plastic deformation amplitude are confirmed. Experimental data from a study of the influence of low temperatures (down to liquid nitrogen temperatures) on the fatigue life of copper and armco-iron in dry air, over a wide range of deformations, are presented. These results are compared with microscopic and electron microscopic pictures of the surface of the deformed specimens.

  11. Analysis of double-probe characteristics in low-frequency gas discharges and its improvement

    SciTech Connect

    Liu, DongLin Li, XiaoPing; Xie, Kai; Liu, ZhiWei; Shao, MingXu

    2015-01-15

    The double-probe has been used successfully in radio-frequency discharges. However, in low-frequency discharges, the double-probe I-V curve is so much seriously distorted by the strong plasma potential fluctuations that the I-V curve may lead to a large estimate error of plasma parameters. To suppress the distortion, we investigate the double-probe characteristics in low-frequency gas discharge based on an equivalent circuit model, taking both the plasma sheath and probe circuit into account. We discovered that there are two primary interferences to the I-V curve distortion: the voltage fluctuation between two probe tips caused by the filter difference voltage and the current peak at the negative edge of the plasma potential. Consequently, we propose a modified passive filter to reduce the two types of interference simultaneously. Experiments are conducted in a glow-discharge plasma (f = 30 kHz) to test the performance of the improved double probe. The results show that the electron density error is reduced from more than 100% to less than 10%. The proposed improved method is also suitable in cases where intensive potential fluctuations exist.

  12. A compact repetitive high-voltage nanosecond pulse generator for the application of gas discharge.

    PubMed

    Pang, Lei; Zhang, Qiaogen; Ren, Baozhong; He, Kun

    2011-04-01

    Uniform and stable discharge plasma requires very short duration pulses with fast rise times. A repetitive high-voltage nanosecond pulse generator for the application of gas discharge is presented in this paper. It is constructed with all solid-state components. Two-stage magnetic compression is used to generate a short duration pulse. Unlike in some reported studies, common commercial fast recovery diodes instead of a semiconductor opening switch (SOS) are used in our experiment that plays the role of SOS. The SOS-like effects of four different kinds of diodes are studied experimentally to optimize the output performance. It is found that the output pulse voltage is higher with a shorter reverse recovery time, and the rise time of pulse becomes faster when the falling time of reverse recovery current is shorter. The SOS-like effect of the diodes can be adjusted by changing the external circuit parameters. Through optimization the pulse generator can provide a pulsed voltage of 40 kV with a 40 ns duration, 10 ns rise time, and pulse repetition frequency of up to 5 kHz. Diffuse plasma can be formed in air at standard atmospheric pressure using the developed pulse generator. With a light weight and small packaging the pulse generator is suitable for gas discharge application.

  13. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    The use of atmospheric pressure plasmas in gases and liquids for purification of liquids has been investigated by numerous researchers, and is highly attractive due to their strong potential as a disinfectant and sterilizer. However, the fundamental understanding of plasma production in liquid water is still limited. Despite the decades of study dedicated to electrical discharges in liquids, many physical aspects of liquids, such as the high inhomogeneity of liquids, complicate analyses. For example, the complex nonlinearities of the fluid have intricate effects on the electric field of the propagating streamer. Additionally, the liquid material itself can vaporize, leading to discontinuous liquid-vapor boundaries. Both can and do often lead to notable hydrodynamic effects. The chemistry of these high voltage discharges on liquid media can have circular effects, with the produced species having influence on future discharges. Two notable examples include an increase in liquid conductivity via charged species production, which affects the discharge. A second, more complicated scenario seen in some liquids (such as water) is the doubling or tripling of molecular density for a few molecule layers around a high voltage electrode. These complexities require technological advancements in optical diagnostics that have only recently come into being. This dissertation investigates several aspects of electrical discharges in gas bubbles in liquids. Two primary experimental configurations are investigated: the first allows for single bubble analysis through the use of an acoustic trap. Electrodes may be brought in around the bubble to allow for plasma formation without physically touching the bubble. The second experiment investigates the resulting liquid phase chemistry that is driven by the discharge. This is done through a dielectric barrier discharge with a central high voltage surrounded by a quartz discharge tube with a coil ground electrode on the outside. The plasma

  14. Breakdown voltage reliability improvement in gas-discharge tube surge protectors employing graphite field emitters

    NASA Astrophysics Data System (ADS)

    Žumer, Marko; Zajec, Bojan; Rozman, Robert; Nemanič, Vincenc

    2012-04-01

    Gas-discharge tube (GDT) surge protectors are known for many decades as passive units used in low-voltage telecom networks for protection of electrical components from transient over-voltages (discharging) such as lightning. Unreliability of the mean turn-on DC breakdown voltage and the run-to-run variability has been overcome successfully in the past by adding, for example, a radioactive source inside the tube. Radioisotopes provide a constant low level of free electrons, which trigger the breakdown. In the last decades, any concept using environmentally harmful compounds is not acceptable anymore and new solutions were searched. In our application, a cold field electron emitter source is used as the trigger for the gas discharge but with no activating compound on the two main electrodes. The patent literature describes in details the implementation of the so-called trigger wires (auxiliary electrodes) made of graphite, placed in between the two main electrodes, but no physical explanation has been given yet. We present experimental results, which show that stable cold field electron emission current in the high vacuum range originating from the nano-structured edge of the graphite layer is well correlated to the stable breakdown voltage of the GDT surge protector filled with a mixture of clean gases.

  15. Some qualitative features of the gas dynamics of laser breakdown and microwave discharge: Numerical investigation

    SciTech Connect

    Baimirov, B.M.; Grudnitskii, V.G.

    1995-09-01

    The paper describes the results of numerical investigation of the processes occurring in gas under conditions of fast and simultaneous energy release in systems of periodically arranged domains. Such energy release may occur, for instance, when laser or electron beams or microwave discharges pass through a gas medium. Special attention is given to the behavior of thermodynamic nonuniformities in these processes. Regions of hot gas (thermals) that form during energy release may be divided in the process of repeated interaction with shock waves and move through relatively great distances without being destroyed, which leads, for example, to a rapid restoration of density at the place of beam passage and to a number of other effects.

  16. Nondestructive Evaluation of the J-2X Direct Metal Laser Sintered Gas Generator Discharge Duct

    NASA Technical Reports Server (NTRS)

    Esther, Elizabeth A.; Beshears, Ronald D.; Lash, Rhonda K.

    2012-01-01

    The J-2X program at NASA's Marshall Space Flight Center (MSFC) procured a direct metal laser sintered (DMLS) gas generator discharge duct from Pratt & Whitney Rocketdyne and Morris Technologies for a test program that would evaluate the material properties and durability of the duct in an engine-like environment. DMLS technology was pursued as a manufacturing alternative to traditional techniques, which used off nominal practices to manufacture the gas generator duct's 180 degree turn geometry. MSFC's Nondestructive Evaluation (NDE) Team performed radiographic, ultrasonic, computed tomographic, and fluorescent penetrant examinations of the duct. Results from the NDE examinations reveal some shallow porosity but no major defects in the as-manufactured material. NDE examinations were also performed after hot-fire testing the gas generator duct and yielded similar results pre and post-test and showed no flaw growth or development.

  17. Low temperature monitoring system for subsurface barriers

    SciTech Connect

    Vinegar, Harold J.; McKinzie, II. Billy John

    2009-08-18

    A system for monitoring temperature of a subsurface low temperature zone is described. The system includes a plurality of freeze wells configured to form the low temperature zone, one or more lasers, and a fiber optic cable coupled to at least one laser. A portion of the fiber optic cable is positioned in at least one freeze well. At least one laser is configured to transmit light pulses into a first end of the fiber optic cable. An analyzer is coupled to the fiber optic cable. The analyzer is configured to receive return signals from the light pulses.

  18. Aluminium Sheet Metal Forming at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Schneider, R.; Heine, B.; Grant, R. J.; Zouaoui, Z.

    2015-02-01

    Low-temperature forming technology offers a new potential for forming operations of aluminium wrought alloys which show a limited formability at ambient temperatures. This paper indicates the mechanical behaviour of the commercial aluminium alloys EN AW-5182 and EN AW-6016 at low temperatures. Stress-strain relationships at different temperatures were investigated through tensile testing experiments. Flow curves were extrapolated using an adapted mathematical constitutive relationship of flow stress and strain. A device which allows cupping tests at sub-zero temperatures was specially designed and a limiting dome height was determined.

  19. Plasma ionization frequency, edge-to-axis density ratio, and density on axis of a cylindrical gas discharge

    SciTech Connect

    Palacio Mizrahi, J. H.

    2014-06-15

    A rigorous derivation of expressions, starting from the governing equations, for the ionization frequency, edge-to-axis ratio of plasma density, plasma density at the axis, and radially averaged plasma density in a cylindrical gas discharge has been obtained. The derived expressions are simple and involve the relevant parameters of the discharge: Cylinder radius, axial current, and neutral gas pressure. The found expressions account for ion inertia, ion temperature, and changes in plasma ion collisionality.

  20. Electronics for Low-Temperature Space Operation Being Evaluated

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2001-01-01

    Electronic components and systems capable of low-temperature operation are needed for many future NASA missions where it is desirable to have smaller, lighter, and cheaper (unheated) spacecraft. These missions include Mars (-20 to -120 C) orbiters, landers, and rovers; Europa (-150 C) oceanic exploratory probes and instrumentation; Saturn (-183 C) and Pluto (-229 C) interplanetary probes. At the present, most electronic equipment can operate down to only -55 C. It would be very desirable to have electronic components that expand the operating temperature range down to -233 C. The successful development of these low-temperature components will eventually allow space probes and onboard electronics to operate in very cold environments (out as far as the planet Pluto). As a result, radioisotope heating units, which are used presently to keep space electronics near room temperature, will be reduced in number or eliminated. The new cold electronics will make spacecraft design and operation simpler, more flexible, more reliable, lighter, and cheaper. Researchers at the NASA Glenn Research Center are evaluating potential commercial off-the- shelf devices and are developing new electronic components that will tolerate operation at low temperatures down to -233 C. This work is being carried out mainly inhouse and also through university grants and commercial contracts. The components include analog-to-digital converters, semiconductor switches, capacitors, dielectric and packaging material, and batteries. For example, the effect of low temperature on the capacitance of three different types of capacitors is shown in the graph. Using these advanced components, system products will be developed, including dc/dc converters, battery charge/discharge management systems, digital control electronics, transducers, and sensor instrumentation.

  1. Improving the Performance of Lithium Ion Batteries at Low Temperature

    SciTech Connect

    Trung H. Nguyen; Peter Marren; Kevin Gering

    2007-04-20

    The ability for Li-ion batteries to operate at low temperatures is extremely critical for the development of energy storage for electric and hybrid electric vehicle technologies. Currently, Li-ion cells have limited success in operating at temperature below –10 deg C. Electrolyte conductivity at low temperature is not the main cause of the poor performance of Li-ion cells. Rather the formation of a tight interfacial film between the electrolyte and the electrodes has often been an issue that resulted in a progressive capacity fading and limited discharge rate capability. The objective of our Phase I work is to develop novel electrolytes that can form low interfacial resistance solid electrolyte interface (SEI) films on carbon anodes and metal oxide cathodes. From the results of our Phase I work, we found that the interfacial impedance of Fluoro Ethylene Carbonate (FEC) electrolyte at the low temperature of –20degC is astonishingly low, compared to the baseline 1.2M LiPFEMC:EC:PC:DMC (10:20:10:60) electrolyte. We found that electrolyte formulations with fluorinated carbonate co-solvent have excellent film forming properties and better de-solvation characteristics to decrease the interfacial SEI film resistance and facilitate the Li-ion diffusion across the SEI film. The very overwhelming low interfacial impedance for FEC electrolytes will translate into Li-ion cells with much higher power for cold cranking and high Regen/charge at the low temperature. Further, since the SEI film resistance is low, Li interaction kinetics into the electrode will remain very fast and thus Li plating during Regen/charge period be will less likely to happen.

  2. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  3. Peculiarities of the charge transport in the gas discharge electronic device with irradiated porous zeolite

    NASA Astrophysics Data System (ADS)

    Ozturk, Sevgul; Koseoglu, Kivilcim; Ozer, Metin; Salamov, Bahtiyar G.

    2015-11-01

    The influence of pressure and β-radiation (1 kGy β doses) on the charge transport mechanism, charge trapping effects in porous zeolite surfaces and breakdown voltage (UB) are discussed in atmospheric microplasmas for the first time. This is due to exposure the zeolite cathode (ZC) to β-radiation resulting in substantial decreases in the UB, discharge currents and conductivity due to increase in porosity of the material. Results indicated that the enhancement of plasma light intensity and electron emission from the ZC surface with the release of trapped electrons which are captured by the defect centers following β-irradiation. The porosity of the ZC and radiation defect centers has significant influence on the charge transport of the microstructure and optical properties of the devices manufactured on its base. Thus, we confirm that the ZCir is a suitable cathode material for plasma light source, field emission displays, energy storage devices and low power gas discharge electronic devices.

  4. Kinetic temperature of dust particle motion in gas-discharge plasma.

    PubMed

    Norman, G E; Timofeev, A V

    2011-11-01

    A system of equations describing motion of dust particles in gas discharge plasma is formulated. This system is developed for a monolayer of dust particles with an account of dust particle charge fluctuations and features of the discharge near-electrode layer. Molecular dynamics simulation of the dust particles system is performed. A mechanism of dust particle average kinetic energy increase is suggested on the basis of theoretical analysis of the simulation results. It is shown that heating of dust particles' vertical motion is initiated by forced oscillations caused by the dust particles' charge fluctuations. The process of energy transfer from vertical to horizontal motion is based on the phenomenon of the parametric resonance. The combination of parametric and forced resonances explains the abnormally high values of the dust particles' kinetic energy. Estimates of frequency, amplitude, and kinetic energy of dust particles are close to the experimental values.

  5. Mechanism of Phase Transition from Liquid to Gas Under Dielectric Barrier Discharge Plasma

    NASA Astrophysics Data System (ADS)

    Wang, Qiuying; Li, Sen; Gu, Fan

    2010-10-01

    Liquid gasification phenomenon was observable in liquid-solid dielectric barrier discharge (DBD) experiments. Starting from classical thermodynamics, this study aimed at finding the reason of liquid gasification in the DBD experiments. Fluid statics and electrohydrodynamics were adopted to analyze the mechanism of phase transition from liquid to gas. The Sumoto effect was also employed to visually explain the change in the pressure of fluid due to the electric field. It was concluded from both theoretical analysis and experiment that the change in liquid pressure was a key factor causing liquid to gasify in DBD conditions. Furthermore, it was stressed that the liquid pressure was affected by many parameters including liquid permittivity, voltage, electric intensity, size of the discharge space and uniformity of the electric field distribution, etc. All of them affected DBD liquid gasification. The related results would provide useful theoretical evidence for multi-phase DBD applications.

  6. Experimental investigation on the effect of plasma jet in the triggered discharge process of a gas switch

    NASA Astrophysics Data System (ADS)

    Tie, W.; Liu, S.; Liu, X.; Zhang, Q.

    2016-08-01

    The temporal and spatial evolution of a plasma jet generated by a spark discharge was observed. The electron temperature and density were obtained under different time and gas pressures by optical emission spectroscopy. Moreover, the discharge process of the plasma-jet triggered gas switch was recorded and analyzed at the lowest working coefficient. The results showed that the plasma jet moved forward in a bullet mode, and the advancing velocity increased with the decrease of pressure, and decreased with time growing. At initial time, the maximum velocity of a plasma jet could reach 3.68 × 106 cm/s. The electron temperature decreased from 2.0 eV to 1.3 eV, and the electron density increased from 3.1 × 1015/cm3 to 6.3 × 1015/cm3 at the initial moment as the gas pressure increases from 0.1 MPa to 0.32 MPa. For a two-gap gas switch, the discharge performances were more depended on the second discharge spark gap (gap 2). Because plasma jet promoted the discharge in Gap 2, the gas switch operating in mode II had better triggered discharge characteristics. In the discharge process, the plasma-jet triggering had the effect of non-penetrating inducing, which not only provided initial electrons for reducing statistical lag but also enhanced the local electric field. The discharge was initiated and accelerated from electron avalanche to streamer. Therefore, a fast discharge was occurred in the gas switch.

  7. Fuzzy Logic Controller for Low Temperature Application

    NASA Technical Reports Server (NTRS)

    Hahn, Inseob; Gonzalez, A.; Barmatz, M.

    1996-01-01

    The most common temperature controller used in low temperature experiments is the proportional-integral-derivative (PID) controller due to its simplicity and robustness. However, the performance of temperature regulation using the PID controller depends on initial parameter setup, which often requires operator's expert knowledge on the system. In this paper, we present a computer-assisted temperature controller based on the well known.

  8. Study of deposit associated with discharge in micro-pixel gas chamber

    NASA Astrophysics Data System (ADS)

    Homma, Y.; Ochi, A.; Moriya, K.; Matsuda, S.; Yoshida, K.; Kobayashi, S.

    2009-02-01

    We found some deposits associated with discharge on dielectric (polyimide) substrates in "Micro-Pixel Gas Chambers" ( μ-PIC) operating with Ar/C2H6 90/10. Secondary electron images taken with a scanning electron microscope (SEM) revealed that they were a conductive material. Auger electron spectroscopy clearly showed that their main component was carbon (98%). Their origin was clarified using spark tests in which a single pixel was sparked a specific number of times. Secondary electron images clearly showed that discharge occurred in the narrow gaps between the electrodes. With a Ar/C2H6 50/50 gas mixture, the amount of carbon deposited depended on the number of sparks. The drop in the applied voltage after the test depended on the number of sparks. With pure N2 gas, no deposits were clearly found, however, a decrease in the applied voltage after the tests was observed. This can be attributed to carbonization of the polyimide surface. Although the SEM images did not show clear proof of this, this carbonization could contribute much less than the ethane dissociation.

  9. Modelling the interaction between the plasma and the neutral gas in a pulsed glow discharge in nitrogen

    SciTech Connect

    Guiberteau, E.; Bonhomme, G.; Zoheir, C.

    1995-12-31

    We present here the first results obtained from the modelling of a pulsed glow discharge in nitrogen, taking into account the heat transfer to the neutral gas. The aim of modelling is to optimize the plasma process in a nitriding reactor. The iron sample to be nitrided forms the cathode of the glow discharge at low pressure (100 to 200 Pa). The reactor uses two disks of diameter 50 mm as electrodes with a 40 mm gap. It works in a pulsed regime (cycle period varies from 10 to 100 ms) with a discharge duration which can be varied from 0.5 to 10 ms. Experimental studies have been carried out using emission spectroscopy resolved in space (1 mm) and time (1 {mu}s), under various discharge and post-discharge durations. These studies have shown the important effect of energy transfer from the discharge to the neutral gas. In fact this transfer produces an expansion of the negative glow observed when the post-discharge duration is decreased. A realistic modelling should thus be performed bearing in mind that the neutral gas behaves not as a thermostat. Consequently the thermal and hydrodynamic evolution of the neutral gas must be considered in the whole modelling.

  10. Low temperature plasma biomedicine: A tutorial reviewa)

    NASA Astrophysics Data System (ADS)

    Graves, David B.

    2014-08-01

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown to be potentially useful for surface and wound sterilization, antisepsis, bleeding cessation, wound healing, and cancer treatment, among other biomedical applications. This tutorial review summarizes the field, stressing the likely role of reactive oxygen and nitrogen species created in these plasmas as the biologically and therapeutically active agents. Reactive species, including radicals and non-radical compounds, are generated naturally within the body and are now understood to be essential for normal biological functions. These species are known to be active agents in existing therapies for wound healing, infection control, and cancer treatment. But they are also observed at elevated levels in persons with many diseases and are associated with aging. The physical and chemical complexity of plasma medical devices and their associated biochemical effects makes the development of safe, effective plasma medical devices and procedures a challenge, but encouragingly rapid progress has been reported around the world in the last several years.

  11. Low temperature plasma biomedicine: A tutorial review

    SciTech Connect

    Graves, David B.

    2014-08-15

    Gas discharge plasmas formed at atmospheric pressure and near room temperature have recently been shown to be potentially useful for surface and wound sterilization, antisepsis, bleeding cessation, wound healing, and cancer treatment, among other biomedical applications. This tutorial review summarizes the field, stressing the likely role of reactive oxygen and nitrogen species created in these plasmas as the biologically and therapeutically active agents. Reactive species, including radicals and non-radical compounds, are generated naturally within the body and are now understood to be essential for normal biological functions. These species are known to be active agents in existing therapies for wound healing, infection control, and cancer treatment. But they are also observed at elevated levels in persons with many diseases and are associated with aging. The physical and chemical complexity of plasma medical devices and their associated biochemical effects makes the development of safe, effective plasma medical devices and procedures a challenge, but encouragingly rapid progress has been reported around the world in the last several years.

  12. Characterisation of pulsed discharge in water

    NASA Astrophysics Data System (ADS)

    Kocik, Marek; Dors, Miroslaw; Podlinski, Janusz; Mizeraczyk, Jerzy; Kanazawa, Seiji; Ichiki, Ryuta; Sato, Takehiko

    2013-10-01

    In this paper, Schlieren photography technique has been applied for the visualization of the pressure field of a single-shot underwater pulsed discharge. A needle-to-plane electrode configuration submerged in distilled water was used. The detailed time- and space-resolved images of both streamers and pressure waves were captured. As a result, several phenomena, such as the phase change prior to the initiation of the discharge, primary and secondary streamers propagation, shock wave generation, and the bubble formation, were observed. From these observations, a scenario of multiple events from prebreakdown to post-discharge was proposed. The gas bubbles generated in discharge were used to visualize the electrohydrodynamic flow induced by the discharge. This work was presented on the occasion of the 13th International Symposium on High Pressure Low Temperature Plasma Chemistry (Hakone XIII).

  13. Modernization of the X-Ray Tomographic Scanner Based on Gas-Discharge Linear Detector

    NASA Astrophysics Data System (ADS)

    Stuchebrov, S. G.; Batranin, A. V.; Miloichikova, I. A.

    2016-01-01

    In this paper, we describe the modernization of the tomographic scanner based on multi-channel linear gas-discharge detector. We have changed the principle of acquisition the projection data, which allowed to receive a bulk three-dimensional tomographic data instead of single slices of the studied samples. Modified scanner has shown increasing contrast and spatial resolution of single slices. The volume of interest in studied objects has been significantly increased and are as high as 25 000 cubic cm, which is determined by 1536 pixels in high

  14. Conversion of air mixture with ethanol and water vapors in nonequilibrium gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Shchedrin, A. I.; Levko, D. S.; Chernyak, V. Ya.; Yukhimenko, V. V.; Naumov, V. V.

    2009-05-01

    In search for an alternative fuel for internal combustion engines, we have studied the possibility of obtaining molecular hydrogen via the conversion of air mixture with ethanol and water vapors in a new plasma reactor. It is shown that, in agreement with experimental data, the H2 concentration is a linear function of the discharge current and decreases with increasing gas flow rate in the interelectrode gap. It is established that the proposed approach provides higher molecular hydrogen concentrations as compared to those achieved with other methods.

  15. Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler

    SciTech Connect

    Matsumoto, Hiroyo; Shioji, Norio; Hamasaki, Akihiro

    1995-12-31

    To mitigate CO{sub 2} discharged from thermal power plants, studies on CO{sub 2} fixation by the photosynthesis of microalgae using actual exhaust gas have been carried out. The results are as follows: (1) A method is proposed for evaluating the maximum photosynthesis rate in the raceway cultivator using only the algal physical properties; (2) Outdoor cultivation tests taking actual flue gas were performed with no trouble or break throughout 1 yr using the strain collected in the test; (3) The produced microalgae is effective as solid fuel; and (4) The feasibility studies of this system were performed. The system required large land area, but the area is smaller than that required for other biomass systems, such as tree farms.

  16. Gas flow dependence of ground state atomic oxygen in plasma needle discharge at atmospheric pressure

    SciTech Connect

    Sakiyama, Yukinori; Graves, David B.; Knake, Nikolas; Schroeder, Daniel; Winter, Joerg; Schulz-von der Gathen, Volker

    2010-10-11

    We present clear evidence that ground state atomic oxygen shows two patterns near a surface in the helium plasma needle discharge. Two-photon absorption laser-induced fluorescence spectroscopy, combined with gas flow simulation, was employed to obtain spatially-resolved ground state atomic oxygen densities. When the feed gas flow rate is low, the radial density peaks along the axis of the needle. At high flow rate, a ring-shaped density distribution appears. The peak density is on the order of 10{sup 21} m{sup -3} in both cases. The results are consistent with a previous report of the flow-dependent bacterial killing pattern observed under similar conditions.

  17. Optimization of PECVD Chamber Cleans Through Fundamental Studies of Electronegative Fluorinated Gas Discharges.

    NASA Astrophysics Data System (ADS)

    Langan, John

    1996-10-01

    The predominance of multi-level metalization schemes in advanced integrated circuit manufacturing has greatly increased the importance of plasma enhanced chemical vapor deposition (PECVD) and in turn in-situ plasma chamber cleaning. In order to maintain the highest throughput for these processes the clean step must be as short as possible. In addition, there is an increasing desire to minimize the fluorinated gas usage during the clean, while maximizing its efficiency, not only to achieve lower costs, but also because many of the gases used in this process are global warming compounds. We have studied the fundamental properties of discharges of NF_3, CF_4, and C_2F6 under conditions relevant to chamber cleaning in the GEC rf reference cell. Using electrical impedance analysis and optical emission spectroscopy we have determined that the electronegative nature of these discharges defines the optimal processing conditions by controlling the power coupling efficiency and mechanisms of power dissipation in the discharge. Examples will be presented where strategies identified by these studies have been used to optimize actual manufacturing chamber clean processes. (This work was performed in collaboration with Mark Sobolewski, National Institute of Standards and Technology, and Brian Felker, Air Products and Chemicals, Inc.)

  18. Spectral Characteristics of Deuterium-, Helium- and Gas-Mixture-Discharges within PF-1000 Facility

    SciTech Connect

    Tsarenko, A.; Malinowski, K.; Skladnik-Sadowska, E.; Sadowski, M. J.; Scholz, M.; Paduch, M.; Tomaszewski, K.

    2006-01-15

    The paper reports on spectroscopic studies of high-current plasma discharges performed at different gas fillings within the large PF-1000 facility. To study visible radiation (VR) the use was made of a MECHELLE registered 900-spectrometer equipped with the CCD readout. The observations of a PF pinch column were performed at an angle of about 65 deg. to the z-axis, and the viewing field was at a distance of 40-50 mm from the electrode ends. Optical measurements were carried out at 0.5-{mu}s exposition synchronized with a chosen period of the investigated discharge. Differences in the optical spectra, recorded at various deuterium-helium mixtures, were analyzed. Intensities of HeI lines were computed for an assumed electron temperature and compared with the experiment. Estimated plasma concentration in pure-deuterium discharges amounted to 8x1018 cm-3, while that in pure helium shots was (4-7)x1017 cm-3 only. Estimates of the electron temperature, from the ratio of intensities of the chosen spectral lines and the continuum, gave values ranging from 5 eV to 50 eV. The paper presents also some spectra from 'weak shots', which show distinct impurity lines caused by different reasons.

  19. Origin and Distribution of Thiophenes and Furans in Gas Discharges from Active Volcanoes and Geothermal Systems

    PubMed Central

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-01-01

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C2–C20 species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C4H8O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection. PMID:20480029

  20. Modeling the Dynamics of Micro- and Macroparticles in a Combined Gas-Discharge Installation

    NASA Astrophysics Data System (ADS)

    Astashinskii, V. V.; Bogach, M. I.; Burachevskii, A. V.

    2016-05-01

    We present a model of the dynamics of micro- and macroparticles in a combined gas-discharge installation that accounts for the processes of metal explosion (heating of a metal in its solid state, melting, heating of the liquid metal, intense evaporation, ionization in metal vapor), a magnetohydrodynamic description of plasma acceleration (on the basis of the mass, momentum, and energy conservation laws neglecting the plasma viscosity and thermal conductivity), and a description of the processes of energy transfer from a high-velocity stream to accelerated particles. It has been established that the process of melting terminates in 1.3 ns after the start of the discharge and that the evaporation terminates in 480 ns. The stage of cooling starts in 21 μs. The average density of the plasma upon completion of the evaporation process can be estimated to be 1.7·10-5 g/cm3, with the pressure being of the order of 1.5·104 Pa and the total time of discharge, of about 250 μs.

  1. Origin and distribution of thiophenes and furans in gas discharges from active volcanoes and geothermal systems.

    PubMed

    Tassi, Franco; Montegrossi, Giordano; Capecchiacci, Francesco; Vaselli, Orlando

    2010-03-31

    The composition of non-methane organic volatile compounds (VOCs) determined in 139 thermal gas discharges from 18 different geothermal and volcanic systems in Italy and Latin America, consists of C(2)-C(20) species pertaining to the alkanes, alkenes, aromatics and O-, S- and N-bearing classes of compounds. Thiophenes and mono-aromatics, especially the methylated species, are strongly enriched in fluids emissions related to hydrothermal systems. Addition of hydrogen sulphide to dienes and electrophilic methylation involving halogenated radicals may be invoked for the formation of these species. On the contrary, the formation of furans, with the only exception of C(4)H(8)O, seems to be favoured at oxidizing conditions and relatively high temperatures, although mechanisms similar to those hypothesized for the production of thiophenes can be suggested. Such thermodynamic features are typical of fluid reservoirs feeding high-temperature thermal discharges of volcanoes characterised by strong degassing activity, which are likely affected by conspicuous contribution from a magmatic source. The composition of heteroaromatics in fluids naturally discharged from active volcanoes and geothermal areas can then be considered largely dependent on the interplay between hydrothermal vs. magmatic contributions. This implies that they can be used as useful geochemical tools to be successfully applied in both volcanic monitoring and geothermal prospection.

  2. Low-Temperature Synthesis Routes to Intermetallic Superconductors

    SciTech Connect

    Schaak, Raymond E

    2008-01-08

    Over the past few years, our group has gained expertise at developing low-temperature solution-based synthetic pathways to complex nanoscale solids, with particular emphasis on nanocrystalline intermetallic compounds. Our synthetic capabilities are providing tools to reproducibly generate intermetallic nanostructures with simultaneous control over crystal structure, composition, and morphology. This DOE-funded project aims to expand these capabilities to intermetallic superconductors. This could represent an important addition to the tools that are available for the synthesis and processing of intermetallic superconductors, which traditionally utilize high-temperature, high-pressure, thin film, or gas-phase vacuum deposition methods. Our current knowledge of intermetallic superconductors suggests that significant enhancements could result from the inherent benefits of low-temperature solution synthesis, e.g. metastable phase formation, control over nanoscale morphology to facilitate size-dependent property studies, robust and inexpensive processability, low-temperature annealing and consolidation, and impurity incorporation (for doping, stoichiometry control, flux pinning, and improving the critical fields). Our focus is on understanding the superconducting properties as a function of synthetic route, crystal structure, crystallite size, and morphology, and developing the synthetic tools necessary to accomplish this. This research program can currently be divided into two classes of superconducting materials: intermetallics (transition metal/post transition metal) and metal carbides/borides. Both involve the development and exploitation of low-temperature synthesis routes followed by detailed characterization of structures and properties, with the goal of understanding how the synthetic pathways influence key superconducting properties of selected target materials. Because of the low-temperature methods used to synthesize them and the nanocrystalline morphologies

  3. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  4. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-15

    In this study, a bipolar nanosecond pulse with 20ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  5. Manufacturing Demonstration Facility: Low Temperature Materials Synthesis

    SciTech Connect

    Graham, David E.; Moon, Ji-Won; Armstrong, Beth L.; Datskos, Panos G.; Duty, Chad E.; Gresback, Ryan; Ivanov, Ilia N.; Jacobs, Christopher B.; Jellison, Gerald Earle; Jang, Gyoung Gug; Joshi, Pooran C.; Jung, Hyunsung; Meyer, III, Harry M.; Phelps, Tommy

    2015-06-30

    The Manufacturing Demonstration Facility (MDF) low temperature materials synthesis project was established to demonstrate a scalable and sustainable process to produce nanoparticles (NPs) for advanced manufacturing. Previous methods to chemically synthesize NPs typically required expensive, high-purity inorganic chemical reagents, organic solvents and high temperatures. These processes were typically applied at small laboratory scales at yields sufficient for NP characterization, but insufficient to support roll-to-roll processing efforts or device fabrication. The new NanoFermentation processes described here operated at a low temperature (~60 C) in low-cost, aqueous media using bacteria that produce extracellular NPs with controlled size and elemental stoichiometry. Up-scaling activities successfully demonstrated high NP yields and quality in a 900-L pilot-scale reactor, establishing this NanoFermentation process as a competitive biomanufacturing strategy to produce NPs for advanced manufacturing of power electronics, solid-state lighting and sensors.

  6. Cyclic and low temperature effects on microcircuits

    NASA Technical Reports Server (NTRS)

    Weissflug, V. A.; Sisul, E. V.

    1977-01-01

    Cyclic temperature and low temperature operating life tests, and pre-/post-life device evaluations were used to determine the degrading effects of thermal environments on microcircuit reliability. Low power transistor-transistor-logic gates and linear devices were included in each test group. Device metallization systems included aluminum metallization/aluminum wire, aluminum metallization/gold wire, and gold metallization/gold wire. Fewer than 2% electrical failures were observed during the cyclic and low temperature life tests and the post-life evaluations revealed approximately 2% bond pull failures. Reconstruction of aluminum die metallization was observed in all devices and the severity of the reconstruction appeared to be directly related to the magnitude of the temperature excursion. All types of bonds except the gold/gold bonds were weakened by exposure to repeated cyclic temperature stress.

  7. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions.

    PubMed

    Bukin, Sergei V; Pavlova, Olga N; Manakov, Andrei Y; Kostyreva, Elena A; Chernitsyna, Svetlana M; Mamaeva, Elena V; Pogodaeva, Tatyana V; Zemskaya, Tamara I

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716

  8. The Ability of Microbial Community of Lake Baikal Bottom Sediments Associated with Gas Discharge to Carry Out the Transformation of Organic Matter under Thermobaric Conditions

    PubMed Central

    Bukin, Sergei V.; Pavlova, Olga N.; Manakov, Andrei Y.; Kostyreva, Elena A.; Chernitsyna, Svetlana M.; Mamaeva, Elena V.; Pogodaeva, Tatyana V.; Zemskaya, Tamara I.

    2016-01-01

    The ability to compare the composition and metabolic potential of microbial communities inhabiting the subsurface sediment in geographically distinct locations is one of the keys to understanding the evolution and function of the subsurface biosphere. Prospective areas for study of the subsurface biosphere are the sites of hydrocarbon discharges on the bottom of the Lake Baikal rift, where ascending fluxes of gas-saturated fluids and oil from deep layers of bottom sediments seep into near-surface sediment. The samples of surface sediments collected in the area of the Posolskaya Bank methane seep were cultured for 17 months under thermobaric conditions (80°C, 5 MPa) with the addition of complementary organic substrate, and a different composition for the gas phase. After incubation, the presence of intact cells of microorganisms, organic matter transformation and the formation of oil biomarkers was confirmed in the samples, with the addition of Baikal diatom alga Synedra acus detritus, and gas mixture CH4:H2:CO2. Taxonomic assignment of the 16S rRNA sequence data indicates that the predominant sequences in the enrichment were Sphingomonas (55.3%), Solirubrobacter (27.5%) and Arthrobacter (16.6%). At the same time, in heat-killed sediment and in sediment without any additional substrates, which were cultivated in a CH4 atmosphere, no geochemical changes were detected, nor the presence of intact cells and 16S rRNA sequences of Bacteria and Archaea. This data may suggest that the decomposition of organic matter under culturing conditions could be performed by microorganisms from low-temperature sediment layers. One possible explanation of this phenomenon is migration of the representatives of the deep thermophilic community through fault zones in the near surface sediment layers, together with gas-bearing fluids. PMID:27242716

  9. Dust trap formation in a non-self-sustained discharge with external gas ionization

    SciTech Connect

    Filippov, A. V. Babichev, V. N.; Pal’, A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-15

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  10. Ptychographic imaging with a compact gas-discharge plasma extreme ultraviolet light source.

    PubMed

    Odstrcil, M; Bussmann, J; Rudolf, D; Bresenitz, R; Miao, Jianwei; Brocklesby, W S; Juschkin, L

    2015-12-01

    We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas-discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab-scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas-discharge source. The ability to conduct ptychographic imaging with lab-scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method. PMID:26625054

  11. Removal of acetaldehyde and skatole in gas by a corona-discharge reactor

    SciTech Connect

    Sano, Noriaki; Nagamoto, Toshiki; Hamon, Hajime; Suzuki, Tetsuo; Okazaki, Morio

    1997-09-01

    Recently, ultrahigh gas purification has been important in many cases, such as, for example, (1) removal of dioxin from incineration plants, (2) complete removal of radioactive iodine compounds from nuclear fuel recycling, (3) simultaneous removal of NO{sub x} and SO{sub x} in exhaust gases from cogeneration plants, (4) removal or decomposition of chlorofluorocarbons, and (5) supply of purified gas for semiconductor industries. A corona-discharge reactor, called a deposition-type reactor, was applied to remove acetaldehyde and skatole from nitrogen and an oxygen-nitrogen mixture. In the removal from nitrogen, acetaldehyde and skatole are negatively ionized and removed by depositing at the anode surface. In simultaneous removals of acetaldehyde and skatole, it is found that skatole has a higher reactivity of electron attachment than acetaldehyde. In the removal of acetaldehyde from an oxygen-nitrogen mixture, 40 molecules of acetaldehyde were removed by one electron. The reason for the extremely high removal efficiency is considered to be based on the ozone reaction and the formation of negative-ion clusters. Stabilization energies of the negative-ion clusters were estimated by ab initio molecular orbital calculation. Skatole was removed from a nitrogen-oxygen mixture perfectly with extremely low discharge current by the ozone reaction. Simultaneous removals of acetaldehyde and skatole from a nitrogen-oxygen mixture suggest that coexisting skatole inhibits the removal of acetaldehyde.

  12. Ptychographic imaging with a compact gas-discharge plasma extreme ultraviolet light source.

    PubMed

    Odstrcil, M; Bussmann, J; Rudolf, D; Bresenitz, R; Miao, Jianwei; Brocklesby, W S; Juschkin, L

    2015-12-01

    We report the demonstration of a scanning probe coherent diffractive imaging method (also known as ptychographic CDI) using a compact and partially coherent gas-discharge plasma source of extreme ultraviolet (EUV) radiation at a 17.3 nm wavelength. Until now, CDI has been mainly carried out with coherent, high-brightness light sources, such as third generation synchrotrons, x-ray free-electron lasers, and high harmonic generation. Here we performed ptychographic lensless imaging of an extended sample using a compact, lab-scale source. The CDI reconstructions were achieved by applying constraint relaxation to the CDI algorithm. Experimental results indicate that our method can handle the low spatial coherence and broadband nature of the EUV illumination, as well as the residual background due to visible light emitted by the gas-discharge source. The ability to conduct ptychographic imaging with lab-scale and partially coherent EUV sources is expected to significantly expand the applications of this powerful CDI method.

  13. Natural gas in Lake Erie: a reconnaissance survey of discharges from an offshore drilling rig

    SciTech Connect

    Ferrante, J.G.; Dettmann, E.H.; Parker, J.I.

    1980-10-01

    Field studies were conducted May 28-June 1, 1979, to determine the chemical composition and physical behavior of discharges from an offshore gas drilling rig in the central basin of Lake Erie. The drilling operation was observed for four days, from rig jackup to the circulation of mud through the borehole after drilling had been completed. Resuspension studies using nephelometry, supplemented with chemical analyses, indicated little resuspension of lake bottom materials or release of metals to the water column during rig jack-up. Portions of the turbidity plumes generated during drilling were buoyant. Three surface turbidity plumes were mapped with nephelometry to a point at which particulate concentrations reached background levels in the Lake. Detectable plumes were approx. 400 to 1500 m in length and had maximum widths < 230 m. A chemical survey conducted in the plume during early gas shows indicated that discharged inorganic chemical species were rapidly diluted to background concentrations and that methane and ethane concentrations were substantially reduced within 330 m of the rig. There was no evidence of carbon tetrachloride extractable hydrocarbons (CTEH) above background concentrations during this chemical plume survey. However, a pair of water samples taken within 100 m of the rig approximately 3 hours after drilling of the target zone was completed had CTEH concentrations that were a factor of 2.4 above background.

  14. Dust trap formation in a non-self-sustained discharge with external gas ionization

    NASA Astrophysics Data System (ADS)

    Filippov, A. V.; Babichev, V. N.; Pal', A. F.; Starostin, A. N.; Cherkovets, V. E.; Rerikh, V. K.; Taran, M. D.

    2015-11-01

    Results from numerical studies of a non-self-sustained gas discharge containing micrometer dust grains are presented. The non-self-sustained discharge (NSSD) was controlled by a stationary fast electron beam. The numerical model of an NSSD is based on the diffusion drift approximation for electrons and ions and self-consistently takes into account the influence of the dust component on the electron and ion densities. The dust component is described by the balance equation for the number of dust grains and the equation of motion for dust grains with allowance for the Stokes force, gravity force, and electric force in the cathode sheath. The interaction between dust grains is described in the self-consistent field approximation. The height of dust grain levitation over the cathode is determined and compared with experimental results. It is established that, at a given gas ionization rate and given applied voltage, there is a critical dust grain size above which the levitation condition in the cathode sheath cannot be satisfied. Simulations performed for the dust component consisting of dust grains of two different sizes shows that such grains levitate at different heights, i.e., size separation of dust drains levitating in the cathode sheath of an NSSD takes place.

  15. Flame generation and maintenance by non-stationary discharge in mixture of air and natural gas

    NASA Astrophysics Data System (ADS)

    Medeiros, Henrique De Souza; Sagas, Julio; Lacava, Pedro

    2013-09-01

    Plasma assisted combustion is a promising research field, where the high generation of reactive species by non-equilibrium plasmas is used to modify the combustion kinetics in order to improve the process either by increasing the production of specific species (like molecular hydrogen) or by decreasing pollutant emission. One typical issue observed in plasma assisted combustion is the increase of inflammability limits, i.e the observation of combustion and flame in situation where it is not observed in conventional combustion. To study the effect of a non-stationary discharge in flame generation and maintenance in a mixture for air and natural gas, the air mass flow rate was fixed in 0.80 g/s and the natural gas flow rate was varied between 0.02 and 0.14 g/s, resulting in a variation of equivalence ratio from 0.4 to 3.0. It is observed a dependence of inflammability limits with the applied power. The analysis by mass spectrometry indicates that the increase of inflammability limits with plasma is due not only applied power, but also to hydrogen production in the discharge. Visual analysis together with high speed camera measurements show a modification in spatial distribution of the flame, probably due to modifications both in flow velocity and flame velocity. Supported by FAPESP PRONEX project grant 11/50773-0.

  16. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  17. Hydrogen generation in a microhollow cathode discharge in high-pressure ammonia-argon gas mixtures

    NASA Astrophysics Data System (ADS)

    Qiu, H.; Martus, K.; Lee, W. Y.; Becker, K.

    2004-04-01

    We explored the feasibility of using a single flow-through microhollow cathode discharge (MHCD) as a non-thermal plasma source for hydrogen (H2) production for portable fuel cell applications. The MHCD device consisted of two thin metal electrodes separated by a mica spacer with a single-hole, roughly 100 [mu]m in diameter, through all three layers. The efficiency of the MHCD reactor for H2 generation from NH3 was analyzed by monitoring the products formed in the discharge in a mass spectrometer. Using a gas mixture of up to 10% NH3 in Ar at pressures up to one atmosphere, the MHCD reactor achieved a maximum ammonia conversion of slightly more than 20%. The overall power efficiency of the MHCD reactor reached a peak value of about 11%. The dependence of NH3 conversion and power efficiency on the residence time of the gas in the MHCD plasma was studied. Experiments using pulsed excitation of the MHCD plasma indicated that pulsing can increase the power efficiency. Design and operating criteria are proposed for a microplasma-based H2 generator that can achieve a power efficiency above the break-even point, i.e., a microplasma reactor that requires less electrical power to generate and maintain the plasma than the power that can be obtained from the conversion of the H2 generated in the microplasma reactor.

  18. The physical nature of the phenomenon of positive column plasma constriction in low-pressure noble gas direct current discharges

    SciTech Connect

    Kurbatov, P. F.

    2014-02-15

    The essence of the positive-column plasma constriction for static (the diffusion mode) and dynamic ionization equilibrium (the stratificated and constricted modes) is analyzed. Two physical parameters, namely, the effective ionization rate of gas atoms and the ambipolar diffusion coefficient of electrons and ions, determine the transverse distribution of discharge species and affect the current states of plasma. Transverse constriction of the positive column takes place as the gas ionization level (discharge current) and pressure increase. The stratified mode (including the constricted one) is observed between the two adjacent types of self-sustained discharge phases when they coexist together at the same time or in the same place as a coherent binary mixture. In the case, a occurrence of the discharge phase with more high electron density presently involve a great decrease in the cross-section of the current channel for d.c. discharges. Additional physical factors, such as cataphoresis and electrophoresis phenomena and spatial gas density inhomogeneity correlated with a circulatory flow in d.c. discharges, are mainly responsible for the current hysteresis and partially constricted discharge.

  19. Thermodynamic power stations at low temperatures

    NASA Astrophysics Data System (ADS)

    Malherbe, J.; Ployart, R.; Alleau, T.; Bandelier, P.; Lauro, F.

    The development of low-temperature thermodynamic power stations using solar energy is considered, with special attention given to the choice of the thermodynamic cycle (Rankine), working fluids (frigorific halogen compounds), and heat exchangers. Thermomechanical conversion machines, such as ac motors and rotating volumetric motors are discussed. A system is recommended for the use of solar energy for irrigation and pumping in remote areas. Other applications include the production of cold of fresh water from brackish waters, and energy recovery from hot springs.

  20. Low-Temperature Spacecraft: Challenges/Opportunities

    NASA Astrophysics Data System (ADS)

    Dickman, J. E.; Patterson, R. L.; Overton, E.; Hammoud, A. N.; Gerber, S. S.

    2001-01-01

    Imagine sending a spacecraft into deep space that operates at the ambient temperature of its environment rather than hundreds of degrees Kelvin warmer. The average temperature of a spacecraft warmed only by the sun drops from 279 K near the Earth's orbit to 90 K near the orbit of Saturn, and to 44 K near Pluto's orbit. At present, deep space probes struggle to maintain an operating temperature near 300 K for the onboard electronics. To warm the electronics without consuming vast amounts of electrical energy, radioisotope heater units (RHUs) are used in vast numbers. Unfortunately, since RHU are always 'on', an active thermal management system is required to reject the excess heat. A spacecraft designed to operate at cryogenic temperatures and shielded from the sun by a large communication dish or solar cell array could be less complex, lighter, and cheaper than current deep space probes. Before a complete low-temperature spacecraft becomes a reality, there are several challenges to be met. Reliable cryogenic power electronics is one of the major challenges. The Low-Temperature Power Electronics Research Group at NASA Glenn Research Center (GRC) has demonstrated the ability of some commercial off the shelf power electronic components to operate at temperatures approaching that of liquid nitrogen (77 K). Below 77 K, there exists an opportunity for the development of reliable semiconductor power switching technologies other than bulk silicon CMOS. This paper will report on the results of NASA GRC's Low-Temperature Power Electronics Program and discuss the challenges to (opportunities for) the creation of a low-temperature spacecraft.

  1. Low-Temperature Hydrothermal Resource Potential

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  2. Low-Temperature Hydrothermal Resource Potential Estimate

    DOE Data Explorer

    Katherine Young

    2016-06-30

    Compilation of data (spreadsheet and shapefiles) for several low-temperature resource types, including isolated springs and wells, delineated area convection systems, sedimentary basins and coastal plains sedimentary systems. For each system, we include estimates of the accessible resource base, mean extractable resource and beneficial heat. Data compiled from USGS and other sources. The paper (submitted to GRC 2016) describing the methodology and analysis is also included.

  3. Microcathode Sustained Discharges for the generation of DC, non-thermal plasmas at high gas pressure

    NASA Astrophysics Data System (ADS)

    Pitchford, Leanne

    2007-10-01

    It is now well known that non-thermal DC plasmas can be generated and maintained in high pressure gases in small - hundreds of micron-sized - geometries. One such configuration, a MicroHollow Cathode Discharge (MHCD), orginally investigated by Schoenbach and colleagues (KH Schoenbach, et al, Plasma Sources Sci. Technol. 6, 468 (1997)), consists of a metal/dielectric/metal sandwich through through which a central hole is pierced. The diameter of the hole and the thickness of the sandwich are each some 100's of microns. Larger volume plasmas can be generated by placing a third, positively biased electrode some distance (1 cm) away, in which case the MHCD can act as a plasma cathode. This configuration is called a MicroCathode Sustained Discharge or MCSD (RH Stark and KH Schoenbach J. Appl. Phys. 85 2075 (1999)). This talk will focus on the properties of the MCSD - its initiation and its electrical properties - and on the properties of the plasma generated in the MCSD volume. Experimental and numerical results for discharges in rare gases and in rare gas/oxygen mixtures at pressures up to atmospheric will be used to illustrate that the plasma generated in the MCSD is similar to a positive column plasma, with a low electric field and low to moderate gas temperature. The plasma conditions in the MCSD are suitable for the generation of large densities of radical species, such as oxygen molecules in the singlet delta metastable state (G. Bauville, et al, Appl. Phys. Lett. 90, 031501 (2007)).

  4. Effects of gas temperature on NO(x) removal by dielectric barrier discharge.

    PubMed

    Wang, Tao; Sun, Bao-Min; Xiao, Hai-Ping

    2013-01-01

    The purpose of this investigation is to discuss the effect of gas temperature on NO(x) removal by dielectric barrier discharge. The Boltzmann equation was used to analyse the electron distribution function in the reactor, and experiments were conducted to find out the effects of different temperatures. The calculation results show that, with a rise in the temperature, E/N increases, increasing the ionization rate. When the ratio of electric field strength to total gas density (E/N) rises from 50 to 150 Td, the ionization rate and electron mean energy increase by 2.0 x 10(5) and 2.3, respectively. The experiments show that in the NO/N2 system, when the temperature increases to 1 30 degrees C and the applied voltage is 11.1 kV, the discharge power is 44.7 W, which is higher than the discharge power of 35.4 W found at 25 degrees C; in the NO/O2/N2 system, an increase in the temperature increases the decomposition of active O3 species, producing a negative effect on NO oxidation; in the NO/O2/N2/C2H4 system, when the temperature increases, the quantity of active species HO2 increases and the NO removal reaction rate increases, reflecting an obvious improvement in the NO removal; and in the NO/O2/N2/C2H4/H2O system, at 25 degrees C, 90 degrees C, and 130 degrees C, when the energy density is 239.7 J L(-1), the NO removal efficiencies are 52.8%, 66.4%, and 71.0%, respectively.

  5. The inactivation of Chlorella spp. with dielectric barrier discharge in gas-liquid mixture

    NASA Astrophysics Data System (ADS)

    Song, Dan; Sun, Bing; Zhu, Xiaomei; Yan, Zhiyu; Liu, Hui; Liu, Yongjun

    2013-03-01

    The inactivation of Chlorella spp. with high voltage and frequency pulsed dielectric barrier discharge in hybrid gas-liquid reactor with a suspension electrode was studied experimentally. In the hybrid gas-liquid reactor, a steel plate was used as high voltage electrode while a quartz plate as a dielectric layer, another steel plate placing in the aqueous solution worked as a whole ground electrode. A suspension electrode is installed near the surface of solution between high voltage and ground electrode to make the dielectric barrier discharge uniform and stable, the discharge gap was between the quartz plate and the surface of the water. The effect of peak voltage, treatment time, the initial concentration of Chlorella spp. and conductivity of solution on the inactivation rate of Chlorella spp. was investigated, and the inactivation mechanism of Chlorella spp. preliminarily was studied. Utilizing this system inactivation of Chlorella spp., the inactivation rate increased with increasing of peak voltage, treatment time and electric conductivity. It was found that the inactivation rate of Chlorella spp. arrived at 100% when the initial concentration was 4 × 106 cells mL-1, and the optimum operation condition required a peak voltage of 20 kV, a treatment time of 10 min and a frequency of 7 kHz. Though the increasing of initial concentration of the Chlorella spp. contributed to the addition of interaction probability between the Chlorella spp. and O3, H2O2, high-energy electrons, UV radiation and other active substances, the total inactivation number raise, but the inactivation rate of the Chlorella spp. decreased.

  6. Minimizing material damage using low temperature irradiation

    NASA Astrophysics Data System (ADS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  7. Dynamical States of Low Temperature Cirrus

    NASA Technical Reports Server (NTRS)

    Barahona, D.; Nenes, A.

    2011-01-01

    Low ice crystal concentration and sustained in-cloud supersaturation, commonly found in cloud observations at low temperature, challenge our understanding of cirrus formation. Heterogeneous freezing from effloresced ammonium sulfate, glassy aerosol, dust and black carbon are proposed to cause these phenomena; this requires low updrafts for cirrus characteristics to agree with observations and is at odds with the gravity wave spectrum in the upper troposphere. Background temperature fluctuations however can establish a dynamical equilibrium between ice production and sedimentation loss (as opposed to ice crystal formation during the first stages of cloud evolution and subsequent slow cloud decay) that explains low temperature cirrus properties. This newly-discovered state is favored at low temperatures and does not require heterogeneous nucleation to occur (the presence of ice nuclei can however facilitate its onset). Our understanding of cirrus clouds and their role in anthropogenic climate change is reshaped, as the type of dynamical forcing will set these clouds in one of two preferred microphysical regimes with very different susceptibility to aerosol.

  8. A method for achieving ignition of a low voltage gas discharge device

    DOEpatents

    Kovarik, Vincent J.; Hershcovitch, Ady; Prelec, Krsto

    1988-01-01

    An electronic device of the type wherein current flow is conducted by an ionized gas comprising a cathode of the type heated by ionic bombardment, an anode, means for maintaining a predetermined pressure in the region between the anode and the cathode and means for maintaining a field in the region. The field, which is preferably a combined magnetic and electric field, is oriented so that the mean distance traveled by electrons before reaching the anode is increased. Because of this increased distance traveled electrons moving to the anode will ionize a larger number of gas atoms, thus reducing the voltage necesary to initiate gas breakdown. In a preferred embodiment the anode is a main hollow cathode and the cathode is a smaller igniter hollow cathode located within and coaxial with the main hollow cathode. An axial magnetic field is provided in the region between the hollow cathodes in order to facilitate gas breakdown in that region and initiate plasma discharge from the main hollow cathode.

  9. Evolution of a vortex in gas-discharge plasma with allowance for gas compressibility

    NASA Astrophysics Data System (ADS)

    Sukhomlinov, V. S.; Mustafaev, A. S.

    2016-09-01

    The dynamics of a vortex tube in a compressible medium with the Rayleigh energy release mechanism has been considered theoretically. The analytic theory of this phenomenon is constructed and various approximations have been considered. The range of applicability conditions for the vortex formation theory has been extended substantially. It has been shown based on the model of a plasma as a Rayleigh medium that, for a certain relative orientation of the vortex axis and the electric field vector at an air pressure of tens of Torr, a vortex tube in the glow discharge plasma is destroyed over time intervals on the order of hundredths of a second. It has been found that allowance for the compressibility leads to an increase in the rate of vortex destruction. For this medium, the time dependences of the tangential velocity in a vortex tube have been calculated for various initial parameters. The similarity rules for the given phenomena and the universal dependence of the vortex tube dynamics have been obtained.

  10. Southern New Mexico low temperature geothermal resource economic analysis

    NASA Astrophysics Data System (ADS)

    Fischer, Carol L.; Whittier, Jack; Witcher, James C.; Schoenmackers, Rudi

    1990-08-01

    An economic evaluation of three low-temperature geothermal sites in New Mexico were performed. A hypothetical geothermal system was designed to supply sufficient energy to satisfy thermal loads for one, four, ten, and fifteen acre commercial greenhouses. Geothermal sites were evaluated to identify the important infrastructure requirements. Capital and operating costs were estimated. Annual levelized costs were calculated for the provision of hot water and fresh water for each site. Geothermal costs were compared with annual levelized costs for a natural gas system to supply the equivalent thermal load. Calculated results indicate that geothermal systems may be competitive with natural gas for larger installations. It is not economically attractive to develop a small geothermal system because the initial capital costs are not recovered with reduced operating costs, relative to natural gas.

  11. Formation of stable direct current microhollow cathode discharge by venturi gas flow system for remote plasma source in atmosphere

    SciTech Connect

    Park, Ki Wan; Lee, Tae Il; Hwang, Hyeon Seok; Noh, Joo Hyon; Baik, Hong Koo; Song, Kie Moon

    2008-02-11

    We introduce a microhollow cathode configuration with venturi gas flow to ambient air in order to obtain glow discharge at atmospheric pressure. Stable microhollow cathode discharge was formed in a 200 {mu}m diameter at 9 mA and the optimum value of gas velocityxdiameter for hollow cathode effect was obtained in our system. In order to confirm hollow cathode effect, we measured the enhancement of E/N strength for 200 {mu}m (0.31 m{sup 2}/s) and 500 {mu}m (0.78 m{sup 2}/s) air discharge at 8 mA under the velocity of 156 m/s. As a result, an increase of 46.7% in E/N strength of the discharge of 200 {mu}m hole was obtained compare to that of 500 {mu}m.

  12. Low-temperature performance of Li-ion batteries: The behavior of lithiated graphite

    NASA Astrophysics Data System (ADS)

    Senyshyn, A.; Mühlbauer, M. J.; Dolotko, O.; Ehrenberg, H.

    2015-05-01

    Safety issues along with the substantially reduced energy and power capabilities of Li-ion cells, operated at low temperatures, pose a technical barrier limiting their use in electric vehicles and aerospace applications. A combined in situ high-resolution neutron powder diffraction and electrochemical study on Li-ion cells of the 18650-type over a temperature range from 230 K to 320 K is reported with a focus on the graphite anode and the low temperature performance of the cell. Instead of a quasi-continuous behavior as observed at ambient temperatures, an anomalous behavior occurs upon discharge at low temperature, primarily reflected in the abrupt character of the LiC12 - to - graphite phase transformation and the unusual temperature dependence of the amount of LiC6. An instability of lithiated graphite phases at temperatures below 250 K is observed, which affects the performance of Li-ion batteries at low temperatures.

  13. Investigating Titan's Atmospheric Chemistry at Low Temperature in Support of the NASA Cassini Mission

    NASA Astrophysics Data System (ADS)

    Sciamma-O'Brien, Ella; Salama, F.

    2013-06-01

    Titan’s atmosphere, composed mainly of N2 and CH4, is the siege of a complex chemistry induced by solar UV radiation and electron bombardment from Saturn’s magnetosphere. This organic chemistry occurs at temperatures lower than 200 K and leads to the production of heavy molecules and subsequently solid aerosols that form the orange haze surrounding Titan. The Titan Haze Simulation (THS) experiment has been developed on the COSmIC simulation chamber at NASA Ames in order to study the different steps of Titan’s atmospheric chemistry at low temperature and to provide laboratory data in support for Cassini data analysis. The chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas mixture is adiabatically cooled to Titan-like temperature 150 K) before inducing the chemistry by plasma discharge. Different gas mixtures containing N2, CH4, and the first products of the N2-CH4 chemistry (C2H2, C2H4, C6H6…) but also heavier molecules such as PAHs or nitrogen containing PAHs can be injected. Both the gas phase and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed. Here we present the results of recent gas phase and solid phase studies that highlight the chemical growth evolution when injecting heavier hydrocarbon trace elements in the initial N2-CH4 mixture. Due to the short residence time of the gas in the plasma discharge, only the first steps of the chemistry have time to occur in a N2-CH4 discharge. However by adding acetylene and benzene to the initial N2-CH4 mixture, we can study the intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways. These results show the uniqueness of the THS experiment to help understand the first and intermediate steps of Titan’s atmospheric chemistry as well as specific chemical pathways leading to Titan’s haze formation. Aknowledgements: This research is supported by NASA SMD (PATM). E

  14. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    NASA Astrophysics Data System (ADS)

    Raizer, Yu. P.; Mokrov, M. S.

    2013-10-01

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.

  15. Physical mechanisms of self-organization and formation of current patterns in gas discharges of the Townsend and glow types

    SciTech Connect

    Raizer, Yu. P.; Mokrov, M. S.

    2013-10-15

    The paper discusses current filamentation and formation of current structures (in particular, hexagonal current patterns) in discharges of the Townsend and glow types. The aim of the paper, which is in part a review, is to reveal basic reasons for formation of current patterns in different cases, namely, in dielectric barrier discharge, discharge with semiconductor cathode, and micro-discharge between metallic electrodes. Pursuing this goal, we give a very brief review of observations and discuss only those theoretical, computational, and experimental papers that shed light on the physical mechanisms involved. The mechanisms are under weak currents—the thermal expansion of the gas as a result of Joule heating; under enhanced currents—the electric field and ionization rate redistribution induced by space charge. Both mechanisms lead to instability of the homogeneous discharges. In addition, we present new results of numerical simulations of observed short-living current filaments which are chaotic in space and time.

  16. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode.

    PubMed

    Bulychev, Sergey V; Dubinov, Alexander E; L'vov, Igor L; Popolev, Vyacheslav L; Sadovoy, Sergey A; Sadchikov, Eugeny A; Selemir, Victor D; Valiulina, Valeria K; Vyalykh, Dmitry V; Zhdanov, Victor S

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ∼90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ∼25%.

  17. Autonomous portable pulsed-periodical generator of high-power radiofrequency-pulses based on gas discharge with hollow cathode

    NASA Astrophysics Data System (ADS)

    Bulychev, Sergey V.; Dubinov, Alexander E.; L'vov, Igor L.; Popolev, Vyacheslav L.; Sadovoy, Sergey A.; Sadchikov, Eugeny A.; Selemir, Victor D.; Valiulina, Valeria K.; Vyalykh, Dmitry V.; Zhdanov, Victor S.

    2016-05-01

    Portable autonomous generator of high-power RF-pulses based on the gas discharge with hollow cathode has been designed, fabricated, and tested. Input and output characteristics are the following: discharge current amplitude is 800 A, duration of generated RF-pulses is 350 ns, carrier frequency is ˜90 MHz, power in RF-pulse is 0.5 MW, pulse repetition rate is 0.5 kHz, and device efficiency is ˜25%.

  18. Vapor pressures of acetylene at low temperatures

    NASA Technical Reports Server (NTRS)

    Masterson, C. M.; Allen, John E., Jr.; Kraus, G. F.; Khanna, R. K.

    1990-01-01

    The atmospheres of many of the outer planets and their satellites contain a large number of hydrocarbon species. In particular, acetylene (C2H2) has been identified at Jupiter, Saturn and its satellite Titan, Uranus and Neptune. In the lower atmospheres of these planets, where colder temperatures prevail, the condensation and/or freezing of acetylene is probable. In order to obtain accurate models of the acetylene in these atmospheres, it is necessary to have a complete understanding of its vapor pressures at low temperatures. Vapor pressures at low temperatures for acetylene are being determined. The vapor pressures are measured with two different techniques in order to cover a wide range of temperatures and pressures. In the first, the acetylene is placed in a sample tube which is immersed in a low temperature solvent/liquid nitrogen slush bath whose temperature is measured with a thermocouple. The vapor pressure is then measured directly with a capacitance manometer. For lower pressures, a second technique which was called the thin-film infrared method (TFIR) was developed. It involves measuring the disappearance rate of a thin film of acetylene at a particular temperature. The spectra are then analyzed using previously determined extinction coefficient values, to determine the disappearance rate R (where R = delta n/delta t, the number of molecules that disappear per unit time). This can be related to the vapor pressure directly. This technique facilitates measurement of the lower temperatures and pressures. Both techniques have been calibrated using CO2, and have shown good agreement with the existing literature data.

  19. The influence of submarine groundwater discharge on greenhouse gas evasion from coastal waters (Invited)

    NASA Astrophysics Data System (ADS)

    Santos, I. R.

    2013-12-01

    Coastal waters are thought to play a major role on global carbon budgets but we still lack a quantitative understanding about some mechanisms driving greenhouse gas cycling in coastal waters. Very little is known about the role of submarine groundwater discharge (SGD) in delivering carbon to rivers, estuaries and coastal waters even though the concentrations of most carbon species in groundwater are often much higher than those in surface waters. I hypothesize that SGD plays a significant role in coastal carbon and greenhouse gas budgets even if the volumetric SGD contribution is small. I will report new, detailed observations of radon (a natural groundwater tracer) and carbon dioxide and methane concentrations and stable isotopes in tidal rivers, estuaries, coastal wetlands, mangroves and coral reef lagoons. Groundwater exchange at these contrasting sites was driven by a wide range of processes, including terrestrial hydraulic gradients, tidal pumping, and convection. In all systems, SGD was an important source of carbon dioxide, DIC, and methane to surface waters. In some cases, groundwater seepage alone could account for 100% of carbon dioxide evasion from surface waters to the atmosphere. Combining high precision in situ radon and greenhouse gas concentration and stable isotope observations allows for an effective, unambiguous assessment of how groundwater seepage drives carbon dynamics in surface waters.

  20. Optical diagnostics with radiation trapping effect in low density and low temperature helium plasma

    NASA Astrophysics Data System (ADS)

    Lee, Wonwook; Park, Kyungdeuk; Kwon, Duck-Hee; Oh, Cha-Hwan

    2016-06-01

    Low density (ne < 1011 cm-3) and low temperature (Te < 10 eV) helium plasma was generated by hot filament discharge. Electron temperature and density of neutral helium plasma were measured by Langmuir probe and were determined by line intensity ratio method using optical emission spectroscopy with population modelings. Simple corona model and collisional-radiative (CR) model without consideration for radiation trapping effect are applied. In addition, CR model taking into account the radiation trapping effect (RTE) is adopted. The change of single line intensity ratio as a function of electron temperature and density were investigated when the RTE is included and excluded. The changes of multi line intensity ratios as a function of electron temperature were scanned for various radiative-excitation rate coefficients from the ground state and the helium gas pressures related with the RTE. Our CR modeling with RTE results in fairly better agreement of the spectroscopic diagnostics for the plasma temperature or density with the Langmuir probe measurements for various helium gas pressures than corona modeling and CR modeling without RTE.

  1. The Socorro Geothermal System: A Low Temperature Geothermal Resource

    NASA Astrophysics Data System (ADS)

    Person, M. A.; Owens, L. B.

    2009-12-01

    The State of New Mexico is endowed with relatively high background heat flow and permeable, fractured crystalline and sedimentary rocks. This combination has given rise to numerous low temperature geothermal systems throughout the state. In many instances, hot springs associated with these systems are located within gaps in regional confining units (a.k.a. hydrologic windows) caused either by fault block rotation or the emplacement of volcanic dikes. The Socorro Geothermal Area (SGA) is a prime example of this type of a forced convection geothermal system. The Socorro geothermal area (SGA) lies 2 miles to the west of the NM Tech Campus near the base of the Socorro Mountain Block and will be assessed for production by drilling a 1500ft test well in September 2009. Published shallow temperature gradient measurements in fractured, permeable (3000 Darcy) granites indicate peak heat flow values as high as 490 mW/m^2 but decreases to 25 mW/m^2 about 10 km to the west within the La Jencia Basin near the foothills of the Magdalena Mountains. Silica and Cation based geothermometers suggest that deep geothermal reservoir reaches temperatures of 80 to 112 deg. C. Carbon14 age dating of shallow groundwater within the discharge area are about 20,000 years old. Hydrothermal models we constructed indicates that Mountain front recharge penetrates to depths of 4.5 km below the La Jencia Basin sedimentary pile into fractured, crystalline rocks. Discharge occurs through a hydrologic window to the east within a breached playa deposit at the western edge of the Socorro Basin. The hydrologic window was caused by fault block rotation. Warm springs which produce several hundred gpm of 32 deg. C water at the surface several miles to the south of the proposed drilling area also attest to the presence of a significant hydrothermal system. This low temperature resource could potentially heat the Campus of NM Tech.

  2. Stream measurements locate thermogenic methane fluxes in groundwater discharge in an area of shale-gas development.

    PubMed

    Heilweil, Victor M; Grieve, Paul L; Hynek, Scott A; Brantley, Susan L; Solomon, D Kip; Risser, Dennis W

    2015-04-01

    The environmental impacts of shale-gas development on water resources, including methane migration to shallow groundwater, have been difficult to assess. Monitoring around gas wells is generally limited to domestic water-supply wells, which often are not situated along predominant groundwater flow paths. A new concept is tested here: combining stream hydrocarbon and noble-gas measurements with reach mass-balance modeling to estimate thermogenic methane concentrations and fluxes in groundwater discharging to streams and to constrain methane sources. In the Marcellus Formation shale-gas play of northern Pennsylvania (U.S.A.), we sampled methane in 15 streams as a reconnaissance tool to locate methane-laden groundwater discharge: concentrations up to 69 μg L(-1) were observed, with four streams ≥ 5 μg L(-1). Geochemical analyses of water from one stream with high methane (Sugar Run, Lycoming County) were consistent with Middle Devonian gases. After sampling was completed, we learned of a state regulator investigation of stray-gas migration from a nearby Marcellus Formation gas well. Modeling indicates a groundwater thermogenic methane flux of about 0.5 kg d(-1) discharging into Sugar Run, possibly from this fugitive gas source. Since flow paths often coalesce into gaining streams, stream methane monitoring provides the first watershed-scale method to assess groundwater contamination from shale-gas development.

  3. Low temperature phonon anomalies in cuprates

    SciTech Connect

    Egami, T.; Petrov, Y.; McQueeney, R.J.; Shirane, G.; Endoh, Y.

    1998-08-01

    The inelastic neutron scattering measurement on La{sub 1.85}Sr{sub .15}CuO{sub 4} single crystals shows that the in-plane LO phonon dispersion at low temperature is incompatible with the current view on the dynamic charge stripes, which for this composition should have the periodicity of 4a. Instead the results are consistent with the dynamic stripes with the periodicity of 2a, half of what is expected and a quarter of the magnetic periodicity. Calculations with the two-band t-t{prime}-J model suggest that such 2a stripe charge ordering may help hole pairing.

  4. Low temperature waste form process intensification

    SciTech Connect

    Fox, K. M.; Cozzi, A. D.; Hansen, E. K.; Hill, K. A.

    2015-09-30

    This study successfully demonstrated process intensification of low temperature waste form production. Modifications were made to the dry blend composition to enable a 50% increase in waste concentration, thus allowing for a significant reduction in disposal volume and associated costs. Properties measurements showed that the advanced waste form can be produced using existing equipment and processes. Performance of the waste form was equivalent or better than the current baseline, with approximately double the amount of waste incorporation. The results demonstrate the feasibility of significantly accelerating low level waste immobilization missions across the DOE complex and at environmental remediation sites worldwide.

  5. Low temperature photoresponse of monolayer tungsten disulphide

    SciTech Connect

    Cao, Bingchen; Shen, Xiaonan; Shang, Jingzhi; Cong, Chunxiao; Yang, Weihuang; Eginligil, Mustafa E-mail: meginligil@ntu.edu.sg; Yu, Ting E-mail: meginligil@ntu.edu.sg

    2014-11-01

    High photoresponse can be achieved in monolayers of transition metal dichalcogenides. However, the response times are inconveniently limited by defects. Here, we report low temperature photoresponse of monolayer tungsten disulphide prepared by exfoliation and chemical vapour deposition (CVD) method. The exfoliated device exhibits n-type behaviour; while the CVD device exhibits intrinsic behaviour. In off state, the CVD device has four times larger ratio of photoresponse for laser on/off and photoresponse decay–rise times are 0.1 s (limited by our setup), while the exfoliated device has few seconds. These findings are discussed in terms of charge trapping and localization.

  6. Investigations of Low Temperature Time Dependent Cracking

    SciTech Connect

    Van der Sluys, W A; Robitz, E S; Young, B A; Bloom, J

    2002-09-30

    The objective of this project was to investigate metallurgical and mechanical phenomena associated with time dependent cracking of cold bent carbon steel piping at temperatures between 327 C and 360 C. Boiler piping failures have demonstrated that understanding the fundamental metallurgical and mechanical parameters controlling these failures is insufficient to eliminate it from the field. The results of the project consisted of the development of a testing methodology to reproduce low temperature time dependent cracking in laboratory specimens. This methodology was used to evaluate the cracking resistance of candidate heats in order to identify the factors that enhance cracking sensitivity. The resultant data was integrated into current available life prediction tools.

  7. The development of low temperature curing adhesives

    NASA Technical Reports Server (NTRS)

    Green, H. E.; Sutherland, J. D.; Hom, J. M.; Sheppard, C. H.

    1975-01-01

    An approach for the development of a practical low temperature (293 K-311 K/68 F-100 F) curing adhesive system based on a family of amide/ester resins was studied and demonstrated. The work was conducted on resin optimization and adhesive compounding studies. An improved preparative method was demonstrated which involved the reaction of an amine-alcohol precursor, in a DMF solution with acid chloride. Experimental studies indicated that an adhesive formulation containing aluminum powder provided the best performance when used in conjunction with a commercial primer.

  8. Impacts from oil and gas produced water discharges on the gulf of Mexico hypoxic zone.

    SciTech Connect

    Parker, M. E.; Satterlee, K.; Veil, J. A.; Environmental Science Division; ExxonMobil Production Co.; Shell Offshore

    2006-01-01

    Shallow water areas of the Gulf of Mexico continental shelf experience low dissolved oxygen (hypoxia) each summer. The hypoxic zone is primarily caused by input of nutrients from the Mississippi and Atchafalaya Rivers. The nutrients stimulate the growth of phytoplankton, which leads to reduction of the oxygen concentration near the sea floor. During the renewal of an offshore discharge permit used by the oil and gas industry in the Gulf of Mexico, the U.S. Environmental Protection Agency (EPA) identified the need to assess the potential contribution from produced water discharges to the occurrence of hypoxia. The EPA permit required either that all platforms in the hypoxic zone submit produced water samples, or that industry perform a coordinated sampling program. This paper, based on a report submitted to EPA in August 2005 (1), describes the results of the joint industry sampling program and the use of those results to quantify the relative significance of produced water discharges in the context of other sources on the occurrence of hypoxia in the Gulf of Mexico. In the sampling program, 16 facilities were selected for multiple sampling - three times each at one month intervals-- and another 34 sites for onetime sampling. The goal of the sampling program was to quantify the sources and amount of oxygen demand associated with a variety of Gulf of Mexico produced waters. Data collected included direct oxygen demand measured by BOD5 (5-day biochemical oxygen demand) and TOC (total organic carbon) and indirect oxygen demand measured by nitrogen compounds (ammonia, nitrate, nitrate, and TKN [total Kjeldahl nitrogen]) and phosphorus (total phosphorus and orthophosphate). These data will serve as inputs to several available computer models currently in use for forecasting the occurrence of hypoxia in the Gulf of Mexico. The output of each model will be compared for consistency in their predictions and then a semi-quantitative estimate of the relative significance of

  9. Elongated dust clouds in a uniform DC positive column of low pressure gas discharge

    NASA Astrophysics Data System (ADS)

    Usachev, A. D.; Zobnin, A. V.; Petrov, O. F.; Fortov, V. E.; Thoma, M. H.; Pustylnik, M. Y.; Fink, M. A.; Morfill, G. E.

    2016-06-01

    Experimental investigations of the formation of elongated dust clouds and their influence on the plasma glow intensity of the uniform direct current (DC) positive column (PC) have been performed under microgravity conditions. For the axial stabilization of the dust cloud position a polarity switching DC gas discharge with a switching frequency of 250 Hz was used. During the experiment, a spontaneous division of one elongated dust cloud into two smaller steady state dust clouds has been observed. Quantitative data on the dust cloud shape, size and dust number density distribution were obtained. Axial and radial distributions of plasma emission within the 585.2 nm and 703.2 nm neon spectral lines were measured over the whole discharge volume. It has been found that both spectral line intensities at the dust cloud region grew 1.7 times with respect to the undisturbed positive column region; in this the 585.2 nm line intensity increased by 10% compared to the 703.2 nm line intensity. For a semi-quantitative explanation of the observed phenomena the Schottky approach based on the equation of diffusion was used. The model reasonably explains the observed glow enhancement as an increasing of the ionization rate in the discharge with dust cloud, which compensates ion-electron recombination on the dust grain surfaces. In this, the ionization rate increases due to the growing of the DC axial electric field, and the glow grows directly proportional to the electric field. It is shown that the fundamental condition of the radial stability of the dusty plasma cloud is equal to the ionization and recombination rates within the cloud volume that is possible only when the electron density is constant and the radial electric field is absent within the dust cloud.

  10. Study of the Low Temperature Oxidation of Propane

    PubMed Central

    Cord, Maximilien; Husson, Benoit; Huerta, Juan Carlos Lizardo; Herbinet, Olivier; Glaude, Pierre-Alexandre; Fournet, René; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Ruiz-Lopez, Manuel; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei

    2013-01-01

    The low-temperature oxidation of propane was investigated using a jet-stirred reactor at atmospheric pressure and two methods of analysis: gas chromatography and synchrotron vacuum ultraviolet photoionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected by gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of the temperature (530-730 K), with a particular attention to reaction products involved in the low temperature oxidation, such as cyclic ethers, aldehydes, alcohols, ketones, and hydroperoxides. A new model has been obtained from an automatically generated one, which was used as a starting point, with a large number of re-estimated thermochemical and kinetic data. The kinetic data of the most sensitive reactions, i.e., isomerizations of alkylperoxy radicals and the subsequent decompositions, have been calculated at the CBS-QB3 level of theory. The model allows a satisfactory prediction of the experimental data. A flow rate analysis has allowed highlighting the important reaction channels. PMID:23181456

  11. Zero Liquid Discharge (ZLD) System for Flue-Gas Derived Water From Oxy-Combustion Process

    SciTech Connect

    Sivaram Harendra; Danylo Oryshchyn; Thomas Ochs; Stephen J. Gerdemann; John Clark

    2011-10-16

    Researchers at the National Energy Technology Laboratory (NETL) located in Albany, Oregon, have patented a process - Integrated Pollutant Removal (IPR) that uses off-the-shelf technology to produce a sequestration ready CO{sub 2} stream from an oxy-combustion power plant. Capturing CO{sub 2} from fossil-fuel combustion generates a significant water product which can be tapped for use in the power plant and its peripherals. Water condensed in the IPR{reg_sign} process may contain fly ash particles, sodium (from pH control), and sulfur species, as well as heavy metals, cations and anions. NETL is developing a treatment approach for zero liquid discharge while maximizing available heat from IPR. Current treatment-process steps being studied are flocculation/coagulation, for removal of cations and fine particles, and reverse osmosis, for anion removal as well as for scavenging the remaining cations. After reverse osmosis process steps, thermal evaporation and crystallization steps will be carried out in order to build the whole zero liquid discharge (ZLD) system for flue-gas condensed wastewater. Gypsum is the major product from crystallization process. Fast, in-line treatment of water for re-use in IPR seems to be one practical step for minimizing water treatment requirements for CO{sub 2} capture. The results obtained from above experiments are being used to build water treatment models.

  12. Characteristics of gas-liquid pulsed discharge plasma reactor and dye decoloration efficiency.

    PubMed

    Sun, Bing; Aye, Nyein Nyein; Gao, Zhiying; Lv, Dan; Zhu, Xiaomei; Sato, Masayuki

    2012-01-01

    The pulsed high-voltage discharge is a new advanced oxidation technology for water treatment. Methyl Orange (MO) dye wastewater was chosen as the target object. Some investigations were conducted on MO decoloration including the discharge characteristics of the multi-needle reactor, parameter optimization, and the degradation mechanism. The following results were obtained. The color group of the azo dye MO was effectively decomposed by water surface plasma. The decoloration rate was promoted with the increase of treatment time, peak voltage, and pulse frequency. When the initial conductivity was 1700 microS/cm, the decoloration rate was the highest. The optimum distance between the needle electrodes and the water surface was 1 mm, the distance between the grounding electrode and the water surface was 28 mm, and the number of needle electrodes and spacing between needles were 24 and 7.5 mm, respectively. The decoloration rate of MO was affected by the gas in the reactor and varied in the order oxygen > air> argon > nitrogen, and the energy yield obtained in this investigation was 0.45 g/kWh.

  13. Gas-discharge laser on a self-terminating thallium transition

    SciTech Connect

    Bokhan, P A; Zakrevskii, D E; Lavrukhin, M A

    2009-10-31

    We report an experimental study of the performance parameters of a gas discharge pumped thallium vapour laser operating on the 7s{sup 2}S{sub 1/2} - 6p{sup 2}P{sub 3/2}{sup o} self-terminating transition at 535 nm. The switch we used, a TPI3-10k/25 cold-cathode thyratron, ensures a rise time of the load voltage pulse less than 15 ns. The laser output power is shown to increase in proportion to the energy stored in the discharge capacitor (up to the maximum voltage of the thyratron). The optimal pump pulse repetition rate for He(Ne)-Tl mixtures is {approx}1.75 kHz. Even small hydrogen additions reduce the lasing energy and average output power. The addition of bismuth vapour increases the optimal pulse repetition rate (up to 3 kHz) and average output power. The factors responsible for the lower lasing efficiency in comparison with the copper vapour laser are analysed. (lasers)

  14. Interferometric broadband Fourier spectroscopy with a partially coherent gas-discharge extreme ultraviolet light source.

    PubMed

    Rudolf, Denis; Bußmann, Jan; Odstrčil, Michal; Dong, Minjie; Bergmann, Klaus; Danylyuk, Serhiy; Juschkin, Larissa

    2015-06-15

    Extreme ultraviolet (EUV) spectroscopy is a powerful tool for studying fundamental processes in plasmas as well as for spectral characterization of EUV light sources and EUV optics. However, a simultaneous measurement covering a broadband spectral range is difficult to realize. Here, we propose a method for interferometric broadband Fourier spectroscopy connecting soft x ray and visible spectral ranges with moderate spectral resolution. We present an analytical model to recover the spectrum from a double-slit interferogram. We apply our model for spectral characterization of a partially coherent gas-discharge EUV light source operated with different gases in the spectral range between 10 and 110 nm wavelengths. Our approach allows a simple and fast broadband spectroscopy with fully or partially spatially coherent light sources, for instance, to characterize out-of-band radiation in EUV lithography applications. PMID:26076270

  15. Role of gas dynamics in negative ion formation in an atmospheric sampling glow discharge ionization source

    SciTech Connect

    Chambers, D.M.; McLuckey, S.A.; Glish, G.L. )

    1993-03-15

    A version of the atmospheric sampling glow discharge ionization (ASGDI) source was developed to study the role of gas dynamics on anion formation. This source, which is used in conjunction with mass spectrometry for direct air monitoring, was designed so several key instrumental dimensions as well as operating parameters could be readily changed. Such flexibility permitted the study of ionization processes in ASGDI and the parameters that can be controlled to favor a particular ion product. One aspect of ASGDI that was found to influence ionization yield was the hydrodynamic properties of the sample inlet free-jet expansion. From these investigations, it was found that mean molecular flow of species expanding toward the skimmer could be manipulated to favor kinetically fast reactions over more thermodynamically preferred reactions. In the case of 2,4-dinitrotoluene, observation of the M[sup [minus

  16. Cathode sheath and hydrogen Balmer lines modelling in a micro-hollow gas discharge

    NASA Astrophysics Data System (ADS)

    Spasojević, Dj

    2012-11-01

    We present a model of the cathode sheath (CS) processes responsible for the broadening of the hydrogen Balmer beta line recorded from a micro-hollow gas discharge (MHGD) and used for simultaneous diagnostics of plasma and CS parameters. The MHGD was generated in a microhole (diameter 100 μm at narrow side and 130 μm at wider side) of a gold-alumina-gold sandwich in the pressure ranges: (100-900) mbar in argon with traces of hydrogen, and (100-400) mbar in pure hydrogen. The electron number density is determined from the plasma broadened line width of the central part of Balmer beta profile, while the average value of electric field strength in the CS and the CS thickness are determined from the extended line wings induced by the dc Stark effect.

  17. Influence of Nitrogen Gas Flow Rate on the Electrical Behavior of an Atmospheric Pressure Dielectric Barrier Jet Discharge

    SciTech Connect

    Choo, C. Y.; Chin, O. H.

    2011-03-30

    The dielectric barrier discharge configuration used consists of a hemispherical electrode insulated by 1 mm thick borosilicate glass and a grounded plate with a hole through which the jet is formed externally in the surrounding air. The effect of gas flow rate on the behavior of an atmospheric pressure dielectric barrier jet discharge was studied for different air-gap distance and drive voltage, V{sub DD}, to the MOSFET. It is found that at higher rate of nitrogen gas flow, the current spikes reduce in number when the driving voltage and air-gap distance are kept constant.

  18. Electronics for Low Temperature Space Exploration Missions

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2007-01-01

    Exploration missions to outer planets and deep space require spacecraft, probes, and on-board data and communication systems to operate reliably and efficiently under severe harsh conditions. On-board electronics, in particular those in direct exposures to the space environment without any shielding or protection, will encounter extreme low temperature and thermal cycling in their service cycle in most of NASA s upcoming exploration missions. For example, Venus atmosphere, Jupiter atmosphere, Moon surface, Pluto orbiter, Mars, comets, Titan, Europa, and James Webb Space Telescope all involve low-temperature surroundings. Therefore, electronics for space exploration missions need to be designed for operation under such environmental conditions. There are ongoing efforts at the NASA Glenn Research Center (GRC) to establish a database on the operation and reliability of electronic devices and circuits under extreme temperature operation for space applications. This work is being performed under the Extreme Temperature Electronics Program with collaboration and support of the NASA Electronic Parts and Packaging (NEPP) Program. The results of these investigations will be used to establish safe operating areas and to identify degradation and failure modes, and the information will be disseminated to mission planners and system designers for use as tools for proper part selection and in risk mitigation. An overview of this program along with experimental data will be presented.

  19. Low temperature properties of holographic condensates

    NASA Astrophysics Data System (ADS)

    Basu, Pallab

    2011-03-01

    In the current work we study various models of holographic superconductors at low temperature. Generically the zero temperature limit of those models are solitonic solution with a zero sized horizon. Here we generalized simple version of those zero temperature solutions to small but non-zero temperature T. We confine ourselves to cases where near horizon geometry is AdS 4. At a non-zero temperature a small horizon would form deep inside this AdS 4 which does not disturb the UV physics. The resulting geometry may be matched with the zero temperature solution at an intermediate length scale. We understand this matching from separation of scales by setting up a perturbative expansion in gauge potential. We have a better analytic control in abelian case and quantities may be expressed in terms of hypergeometric function. From this we calculate low temperature behavior of various quatities like entropy, charge density and specific heat etc. We also calculate various energy gaps associated with p-wave holographic superconductor to understand the underlying pairing mechanism. The result deviates significantly from the corresponding weak coupling BCS counterpart.

  20. Antimisting kerosene: Low temperature degradation and blending

    NASA Technical Reports Server (NTRS)

    Yavrouian, A.; Parikh, P.; Sarohia, V.

    1988-01-01

    The inline filtration characteristics of freshly blended and degraded antimisting fuels (AMK) at low temperature are examined. A needle valve degrader was modified to include partial recirculation of degraded fuel and heat addition in the bypass loop. A pressure drop across the needle valve of up to 4,000 psi was used. The pressure drop across a 325 mesh filter screen placed inline with the degrader and directly downstream of the needle valve was measured as a function of time for different values of pressure drop across the needle valve. A volume flux of 1 gpm/sq in was employed based on the frontal area of the screen. It was found that, at ambient temperatures, freshly blended AMK fuel could be degraded using a single pass degradation at 4,000 psi pressure drop across the needle valve to give acceptable filterability performance. At fuel temperatures below -20 C, degradation becomes increasingly difficult and a single pass technique results in unacceptable filtration performance. Recirculation of a fraction of the degraded fuel and heat addition in the bypass loop improved low temperature degradation performance. The problem is addressed of blending the AMK additive with Jet A at various base fuel temperatures.

  1. Low Temperature Spin Structure of Gadolinium Titanate

    NASA Astrophysics Data System (ADS)

    Javanparast, Behnam; McClarty, Paul; Gingras, Michel

    2012-02-01

    Many rare earth pyrochlore oxides exhibit exotic spin configurations at low temperatures due to frustration. The nearest neighbor coupling between spins on the corner-sharing tetrahedral network generate geometrical magnetic frustration. Among these materials, gadolinium titanate (Gd2Ti2O7) is of particular interest. Its low temperature ordered phases are not yet understood theoretically. Bulk thermal measurements such as specific heat and magnetic susceptibility measurements find two phase transitions in zero external field, in agreement with simple mean field calculations. However, recent neutron scattering experiments suggest a so-called 4-k spin structure for intermediate phase and a so called canted 4-k structure for lower temperature phase that does not agree with either mean-field theory or Monte Carlo simulation which find the 1-k state and Palmer-Chalker state respectively as the lowest free energy configuration for those phases. In our work, we study the 4-k structure in detail and present a new phase diagram for dipolar Heisenberg spins on a pyrochlore lattice, certain portions of which describe gadolinium titanate.

  2. Low Temperature Reflectance Spectra of Titan Tholins

    NASA Technical Reports Server (NTRS)

    Roush, T. L.; Dalton, J. B.; Fonda, Mark (Technical Monitor)

    2001-01-01

    Compositional interpretation of remotely obtained reflectance spectra of outer solar system surfaces is achieved by a variety of methods. These include matching spectral curves, matching spectral features, quantitative spectral interpretation, and theoretical modeling of spectra. All of these approaches rely upon laboratory measurements of one kind or another. The bulk of these laboratory measurements are obtained with the sample of interest at ambient temperatures and pressures. However, surface temperatures of planets, satellites, and asteroids in the outer solar system are significantly cooler than ambient laboratory conditions on Earth. The infrared spectra of many materials change as a function of temperature. As has been recently demonstrated it is important to assess what effects colder temperatures have on spectral properties and hence, compositional interpretations. Titan tholin is a solid residue created by energetic processing of H-, C-, and N-bearing gases. Such residues can also be created by energetic processing if the gases are condensed into ices. Titan tholin has been suggested as a coloring agent for several surfaces in the outer solar system. Here we report laboratory measurements of Titan tholin at a temperature of 100 K and compare these to measurements of the same sample near room temperature. At low temperature the absorption features beyond 1 micrometer narrow slightly. At wavelengths greater than approx. 0.8 micrometer the overall reflectance of the sample decreases slightly making the sample less red at low temperatures. We will discuss the implications of the laboratory measurements for interpretation of cold outer solar system surfaces.

  3. Low Temperature Decomposition Rates for Tetraphenylborate Ion

    SciTech Connect

    Walker, D.D.

    1998-11-18

    Previous studies indicated that palladium is catalyzes rapid decomposition of alkaline tetraphenylborate slurries. Additional evidence suggest that Pd(II) reduces to Pd(0) during catalyst activation. Further use of tetraphenylborate ion in the decontamination of radioactive waste may require removal of the catalyst or cooling to temperatures at which the decomposition reaction proceeds slowly and does not adversely affect processing. Recent tests showed that tetraphenylborate did not react appreciably at 25 degrees Celsius over six months suggesting the potential to avoid the decomposition at low temperatures. The lack of reaction at low temperature could reflect very slow kinetics at the lower temperature, or may indicate a catalyst ''deactivation'' process. Previous tests in the temperature range 35 to 70 degrees Celsius provided a low precision estimate of the activation energy of the reaction with which to predict the rate of reaction at 25 percent Celsius. To understand the observations at 25 degrees Celsius, experiments must separate the catalyst activation step and the subsequent reaction with TPB. Tests described in this report represent an initial attempt to separate the two steps and determine the rate and activation energy of the reaction between active catalyst and TPB. The results of these tests indicate that the absence of reaction at 25 degrees Celsius was caused by failure to activate the catalyst or the presence of a deactivating mechanism. In the presence of activated catalyst, the decomposition reaction rate is significant.

  4. Low temperature alteration processes affecting ultramafic bodies

    USGS Publications Warehouse

    Nesbitt, H.W.; Bricker, O.P.

    1978-01-01

    At low temperatures, in the presence of an aqueous solution, olivine and orthopyroxene are not stable relative to the hydrous phases brucite, serpentine and talc. Alteration of dunite and peridotite to serpentine or steatite bodies must therefore proceed via non-equilibrium processes. The compositions of natural solutions emanating from dunites and peridotites demonstrate that the dissolution of forsterite and/or enstatite is rapid compared with the precipitation of the hydrous phases; consequently, dissolution of anhydrous minerals controls the chemistry of such solutions. In the presence of an aqueous phase, precipitation of hydrous minerals is the rate-controlling step. Brucite-bearing and -deficient serpentinites alter at low temperature by non-equilibrium processes, as evidenced by the composition of natural solutions from these bodies. The solutions approach equilibrium with the least stable hydrous phase and, as a consequence, are supersaturated with other hydrous phases. Dissolution of the least stable phase is rapid compared to precipitation of other phases, so that the dissolving mineral controls the solution chemistry. Non-equilibrium alteration of anhydrous ultramafic bodies continues until at least one anhydrous phase equilibrates with brucite, chrysotile or talc. The lowest temperature (at a given pressure) at which this happens is defined by the reaction: 3H2O + 2Mg2SiO4 ??? Mg3Si2O5(OH)4 + Mg(OH)2 (Johannes, 1968, Contrib. Mineral. Petrol. 19, 309-315) so that non-equilibrium alteration may occur well into greenschist facies metamorphic conditions. ?? 1978.

  5. Spectroscopic and electric characterization of an atmospheric pressure segmented gas discharge with micro hollow electrodes

    NASA Astrophysics Data System (ADS)

    Jovović, Jovica; Konjević, Nikola

    2014-03-01

    We present the results of an optical emission spectroscopy and electric study of segmented micro hollow gas discharge source (SMHGD) operating at atmospheric pressure in DC regime. This microdischarge source with 1 mm discharge channel consists of five metal discs separated by alumina. Three central discs are made of copper while stainless steel was used for the cathode and anode. In order to perform side on measurements, 1.5 mm diameter side hole was drilled through central copper disc. The electron temperature ( T e ), gas temperature ( T g ) and electron number density ( N e ) were measured in argon, argon-hydrogen and helium SMHGDs operating in the voltage range (220 to 475) V and currents 40 mA, 60 mA and 80 mA. Boltzmann plots of relative Ar I and He I line intensities were used to measure T e = (3700-5500) K in argon and (2500-2800) K in helium SMHGDs. Same technique is applied to N2 ( C 3 Π u- B 3 Π g ) band to measure T g in the range (700-900) K in Ar and He and (1400-1600) K in Ar-H2 mixture. Line profiles of hydrogen the H β line in argon and the ratio of He I 447.1 nm line intensity and its forbidden component in helium are employed to determine N e ≈ (2-4) × 1014 cm-3 in the center of SMHGD. By measuring SMHGD disc voltages, the longitudinal distribution of plasma potential and electric field strength are determined.

  6. Basic data of polyatomic ion-molecule systems for flue gas discharge modelling

    NASA Astrophysics Data System (ADS)

    Nelson, D.; Benhenni, M.; Yousfi, M.; Eichwald, O.

    2001-11-01

    In the presence of an external electric field, ion transport coefficients (ion mobility and diffusion coefficients) are closely related to the ion-neutral interaction potential. A new generalized potential model, coupled to an optimized Monte Carlo technique, has been developed for the determination of the transport coefficients of polyatomic ions in weakly ionized gases. This corresponds to the polyatomic ion-molecule systems which can affect the electrical behaviour of the flue gas discharges used for the non-thermal plasma reactor for pollution control. The ion-molecule interaction has been described by a rigid core potential model which is adapted for both polar and non-polar systems and also symmetric and asymmetric systems. Momentum transfer cross sections are then determined using a semi-classical approach. The corresponding sets of cross sections including the dominant processes in our intermediate ion energy range (elastic and mainly charge transfer in certain cases) are used in the Monte Carlo code to calculate the ion transport coefficients over a wide range of reduced electric field E/N. These ion transport data fit quite well the drift tube measurements available in the literature for the CO2+/CO2 system, and also for certain weakly polar cases. The case of the H2O+/H2O system is then considered thus giving in this highly polar system the ion swarm data for the first time in the literature. Finally, we have considered with quite good reliability some asymmetric systems such as CO2+/N2 and N2+/CO2 whose ion data are also needed for flue gas discharge modelling.

  7. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Ellis, Wade C.; Lewis, Charlotte R.; Openshaw, Anna P.; Farnsworth, Paul B.

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration.

  8. The Effects of Added Hydrogen on Noble Gas Discharges Used as Ambient Desorption/Ionization Sources for Mass Spectrometry.

    PubMed

    Ellis, Wade C; Lewis, Charlotte R; Openshaw, Anna P; Farnsworth, Paul B

    2016-09-01

    We demonstrate the effectiveness of using hydrogen-doped argon as the support gas for the dielectric barrier discharge (DBD) ambient desorption/ionization (ADI) source in mass spectrometry. Also, we explore the chemistry responsible for the signal enhancement observed when using both hydrogen-doped argon and hydrogen-doped helium. The hydrogen-doped argon was tested for five analytes representing different classes of molecules. Addition of hydrogen to the argon plasma gas enhanced signals for gas-phase analytes and for analytes coated onto glass slides in positive and negative ion mode. The enhancements ranged from factors of 4 to 5 for gas-phase analytes and factors of 2 to 40 for coated slides. There was no significant increase in the background. The limit of detection for caffeine was lowered by a factor of 79 using H2/Ar and 2 using H2/He. Results are shown that help explain the fundamental differences between the pure-gas discharges and those that are hydrogen-doped for both argon and helium. Experiments with different discharge geometries and grounding schemes indicate that observed signal enhancements are strongly dependent on discharge configuration. Graphical Abstract ᅟ. PMID:27380389

  9. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(C3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2] > 10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t = 1-30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  10. The Low Temperature Microgravity Physics Experiments Project

    NASA Technical Reports Server (NTRS)

    Holmes, Warren; Lai, Anthony; Croonquist, Arvid; Chui, Talso; Eraker, J. H.; Abbott, Randy; Mills, Gary; Mohl, James; Craig, James; Balachandra, Balu; Gannon, Jade

    2000-01-01

    The Low Temperature Microgravity Physics Facility (LTMPF) is being developed by NASA to provide long duration low temperature and microgravity environment on the International Space Station (ISS) for performing fundamental physics investigations. Currently, six experiments have been selected for flight definition studies. More will be selected in a two-year cycle, through NASA Research Announcement. This program is managed under the Low Temperature Microgravity Physics Experiments Project Office at the Jet Propulsion Laboratory. The facility is being designed to launch and returned to earth on a variety of vehicles including the HII-A and the space shuttle. On orbit, the facility will be connected to the Exposed Facility on the Japanese Experiment Module, Kibo. Features of the facility include a cryostat capable of maintaining super-fluid helium at a temperature of 1.4 K for 5 months, resistance thermometer bridges, multi-stage thermal isolation system, thermometers capable of pico-Kelvin resolution, DC SQUID magnetometers, passive vibration isolation, and magnetic shields with a shielding factor of 80dB. The electronics and software architecture incorporates two VME buses run using the VxWorks operating system. Technically challenging areas in the design effort include the following: 1) A long cryogen life that survives several launch and test cycles without the need to replace support straps for the helium tank. 2) The minimization of heat generation in the sample stage caused by launch vibration 3) The design of compact and lightweight DC SQUID electronics. 4) The minimization of RF interference for the measurement of heat at pico-Watt level. 5) Light weighting of the magnetic shields. 6) Implementation of a modular and flexible electronics and software architecture. The first launch is scheduled for mid-2003, on an H-IIA Rocket Transfer Vehicle, out of the Tanegashima Space Center of Japan. Two identical facilities will be built. While one facility is onboard

  11. Radically Different Kinetics at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Sims, Ian

    2014-06-01

    The use of the CRESU (Cinétique de Réaction en Ecoulement Supersonique Uniforme, or Reaction Kinetics in Uniform Supersonic Flow) technique coupled with pulsed laser photochemical kinetics methods has shown that reactions involving radicals can be very rapid at temperatures down to 10 K or below. The results have had a major impact in astrochemistry and planetology, as well as proving an exacting test for theory. The technique has also been applied to the formation of transient complexes of interest both in atmospheric chemistry and combustion. Until now, all of the chemical reactions studied in this way have taken place on attractive potential energy surfaces with no overall barrier to reaction. The F + H2 {→} HF + H reaction does possess a substantial energetic barrier ({\\cong} 800 K), and might therefore be expected to slow to a negligible rate at very low temperatures. In fact, this H-atom abstraction reaction does take place efficiently at low temperatures due entirely to tunneling. I will report direct experimental measurements of the rate of this reaction down to a temperature of 11 K, in remarkable agreement with state-of-the-art quantum reactive scattering calculations by François Lique (Université du Havre) and Millard Alexander (University of Maryland). It is thought that long chain cyanopolyyne molecules H(C2)nCN may play an important role in the formation of the orange haze layer in Titan's atmosphere. The longest carbon chain molecule observed in interstellar space, HC11N, is also a member of this series. I will present new results, obtained in collaboration with Jean-Claude Guillemin (Ecole de Chimie de Rennes) and Stephen Klippenstein (Argonne National Labs), on reactions of C2H, CN and C3N radicals (using a new LIF scheme by Hoshina and Endo which contribute to the low temperature formation of (cyano)polyynes. H. Sabbah, L. Biennier, I. R. Sims, Y. Georgievskii, S. J. Klippenstein, I. W. M. Smith, Science 317, 102 (2007). S. D. Le Picard, M

  12. Numerical simulation of gas diffusion effects on charge/discharge characteristics of a solid oxide redox flow battery

    NASA Astrophysics Data System (ADS)

    Ohmori, Hiroko; Uratani, Syoichi; Iwai, Hiroshi

    2012-06-01

    Fundamental characteristics of a solid oxide redox flow battery consisting of solid oxide electrochemical cell (SOEC) and redox metal were studied by a gas-diffusion based time-dependent 1-D numerical simulation taking both the electrochemical and redox reactions into account. Close attention was paid to the distributions of the participating gas species and their effects on the charge/discharge performance. The volume expansion/reduction of the porous metal associated with the redox reaction was modeled as decrease/increase in local porosity. The numerical results for charge/discharge operation qualitatively showed the time-dependent distributions of the related physical quantities such as the gas concentrations, the active reaction region in the redox metal, and its local porosity. It was found that, to ensure effective redox reaction throughout the operation, the gas diffusion in the redox metal should be carefully designed.

  13. LOW-TEMPERATURE SPECTROSCOPY OF THE {sup 12}C{sub 2}H{sub 2} (υ{sub 1} + υ{sub 3}) BAND IN A HELIUM BUFFER GAS

    SciTech Connect

    Santamaria, L.; Sarno, V. Di; Ricciardi, I.; De Rosa, M.; Mosca, S.; Maddaloni, P.; Santambrogio, G.; De Natale, P.

    2015-03-01

    Buffer gas cooling with a {sup 4}He gas is used to perform laser-absorption spectroscopy of the {sup 12}C{sub 2}H{sub 2} (υ{sub 1} + υ{sub 3}) band at cryogenic temperatures. Doppler thermometry is first carried out to extract translational temperatures from the recorded spectra. Then, rotational temperatures down to 20 K are retrieved by fitting the Boltzmann distribution to the relative intensities of several ro-vibrational lines. The potential of our setup to tune the thermal equilibrium between translational and rotational degrees of freedom is also demonstrated. This can be used to reproduce in a controlled way the regime of non-local thermal equilibrium typically encountered in the interstellar medium. The underlying helium-acetylene collisional physics, relevant for modeling planetary atmospheres, is also addressed. In particular, the diffusion time of {sup 12}C{sub 2}H{sub 2} in the buffer cell is measured against the {sup 4}He flux at two separate translational temperatures; the observed behavior is then compared with that predicted by a Monte Carlo simulation, thus providing an estimate for the respective total elastic cross sections: σ{sub el}(100 K) = (4 ± 1) × 10{sup –20} m{sup 2} and σ{sub el}(25 K) = (7 ± 2) × 10{sup –20} m{sup 2}.

  14. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography.

    PubMed

    Manginell, Ronald P; Mowry, Curtis D; Pimentel, Adam S; Mangan, Michael A; Moorman, Matthew W; Sparks, Elizabeth S; Allen, Amy; Achyuthan, Komandoor E

    2015-01-01

    Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ∼10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure. PMID:26561264

  15. Pulsed-plasma gas-discharge inactivation of microbial pathogens in chilled poultry wash water.

    PubMed

    Rowan, N J; Espie, S; Harrower, J; Anderson, J G; Marsili, L; MacGregor, S J

    2007-12-01

    A pulsed-plasma gas-discharge (PPGD) system was developed for the novel decontamination of chilled poultry wash water. Treatment of poultry wash water in the plasma generation chamber for up to 24 s at 4 degrees C reduced Escherichia coli NCTC 9001, Campylobacter jejuni ATCC 33560, Campylobacter coli ATCC 33559, Listeria monocytogenes NCTC 9863, Salmonella enterica serovar Enteritidis ATCC 4931, and S. enterica serovar Typhimurium ATCC 14028 populations to non-detectable levels (< or = 8 log CFU/ml). Although similar PPGD treatments at 4 degrees C also produced significant reductions (> or = 3 log CFU/ml) in recalcitrant B. cereus NCTC 11145 endospore numbers within 30 s, the level of endospore reduction was dependent on the nature of the sparged gas used in the plasma treatments. Scanning electron microscopy revealed that significant damage occurred at the cellular level in PPGD-treated test organisms. This electrotechnology delivers energy in intense ultrashort bursts, generating products such as ozone, UV light, acoustic and shock waves, and pulsed electric fields that have multiple bactericidal properties. This technology offers an exciting complementary or alternative approach for treating raw poultry wash water and for preventing cross-contamination in processing environments.

  16. Development of a Mesoscale Pulsed Discharge Helium Ionization Detector for Portable Gas Chromatography.

    PubMed

    Manginell, Ronald P; Mowry, Curtis D; Pimentel, Adam S; Mangan, Michael A; Moorman, Matthew W; Sparks, Elizabeth S; Allen, Amy; Achyuthan, Komandoor E

    2015-01-01

    Miniaturization of gas chromatography (GC) instrumentation enables field detection of volatile organic compounds (VOCs) for chembio-applications such as clandestine human transport and disease diagnostics. We fabricated a mesoscale pulsed discharge helium ionization detector (micro-PDHID) for integrating with our previously described mini-GC hardware. Stainless steel electrodes fabricated by photochemical etching and electroforming facilitated rapid prototyping and enabled nesting of inter-electrode insulators for self-alignment of the detector core during assembly. The prototype was ∼10 cm(3) relative to >400 cm(3) of a commercial PDHID, but with a comparable time to sweep a VOC peak from the detector cell (170 ms and 127 ms, respectively). Electron trajectory modeling, gas flow rate, voltage bias, and GC outlet location were optimized for improving sensitivity. Despite 40-fold miniaturization, the micro-PDHID detected 18 ng of the human emanation, 3-methyl-2-hexenoic acid with <3-fold decrease in sensitivity relative to the commercial detector. The micro-PDHID was rugged and operated for 9 months without failure.

  17. Measurements of Electron Temperature and Gas Temperature in a Pulsed Atmospheric Pressure Air Discharge

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Hufney Mohamed, Abdel-Aleam; Schoenbach, Karl H.

    2001-10-01

    The application of electrical pulses with duration shorter than the time constant for glow-to-arc transition allows us to shift the electron energy distribution in high pressure glow discharges temporally to high energy values [1]. Application of these nonequilibrium plasmas are plasma ramparts, plasma reactors, and excimer light sources. In order to obtain information on the electron energy distribution , or electron energy, respectively, and the gas temperature with the required temporal resolution of 1 ns, we have explored two diagnostic methods. One is based on the evaluation of the bremsstrahlung. This method allows us to determine the electron temperature [2]. The gas temperature is obtained from the rotational spectrum of the second positive system of nitrogen. The results of measurement on a 10 ns pulsed atmospheric pressure air glow will be presented. References [1] Robert H. Stark and Karl H. Schoenbach, J. Appl. Phys. 89, 3568 (2001) [2] Jaeyoung Park, Ivars Henins, Hans W. Herrmann, and Gary S. Selwyn, Physics of Plasmas 7, 3141 (2000). [3] R. Block, O. Toedter, and K. H. Schoenbach, Bull. APS 43, 1478 (1998)

  18. Low Temperature SQUID for NDE Applications

    NASA Technical Reports Server (NTRS)

    Wincheski, Buzz (Technical Monitor); Selim, Raouf

    2003-01-01

    We have developed a low temperature SuperConducting Quantum Interference Device - SQUID measurement system for detection of defects deep under the surface of aluminum structures using eddy current techniques. The system uses a two dimensional planar inducer with two different excitation frequencies to induce a current in the sample. We have developed a data analysis software program that enabled us to distinguish between round defects (holes), straight defects (slots) and slots close to holes simulating cracks starting from rivets in aluminum structures. We were able to detect defects that are 8mm below the surface. We have also measured the change in phase of the detected signal as a function of depth of the defect. This relationship can be used to determine the depth of hidden flaws. Using this analysis software with the high temperature SQUID system at NASA Langley we were able to detect slots close to holes in layered aluminum sample.

  19. Low temperature catalyst system for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.

    1984-04-20

    This patent discloses a catalyst and process useful at low temperatures (150/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen. The catalyst components are used in slurry form and comprise (1) a complex reducing agent derived from the component structure NaH-ROH-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms and (2) a metal carbonyl of a group VI (Mo, Cr, W) metal. For the first component, Nic is preferred (where M = Ni and R = tertiary amyl). For the second component, Mo(CO)/sub 6/ is preferred. The mixture is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  20. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-09-30

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1--6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  1. Coal desulfurization by low-temperature chlorinolysis

    NASA Technical Reports Server (NTRS)

    Hsu, G. C.; Kalvinskas, J. J.; Ganguli, P. S.; Gavalas, G. R.

    1977-01-01

    Among the three principal methods for precombustion desulfurization of coal, which include physical depyriting, chemical desulfurization, and coal conversion to low-sulfur liquid and gaseous fuels, the potential of chemical methods looks promising in terms of both total sulfur removal and processing cost. The principal chemical methods for coal desulfurization involve treatment with either oxidizing agents or basic media at elevated temperature and pressure. A description is given of some recent experimental results which show the feasibility of removing sulfur, particularly organic sulfur, from high-sulfur coals by a simple method of low-temperature chlorinolysis followed by hydrolysis and dechlorination. The chemical feasibility of sulfur removal by chlorinolysis rather than the detailed engineering process is emphasized.

  2. Low-temperature geothermal resources of Washington

    SciTech Connect

    Schuster, J.E.; Bloomquist, R.G.

    1994-06-01

    This report presents information on the location, physical characteristics, and water chemistry of low-temperature geothermal resources in Washington. The database includes 941 thermal (>20C or 68F) wells, 34 thermal springs, lakes, and fumaroles, and 238 chemical analyses. Most thermal springs occur in the Cascade Range, and many are associated with stratovolcanoes. In contrast, 97 percent of thermal wells are located in the Columbia Basin of southeastern Washington. Some 83.5 percent are located in Adams, Benton, Franklin, Grant, Walla Walla, and Yakima Counties. Yakima County, with 259 thermal wells, has the most. Thermal wells do not seem to owe their origin to local sources of heat, such as cooling magma in the Earth`s upper crust, but to moderate to deep circulation of ground water in extensive aquifers of the Columbia River Basalt Group and interflow sedimentary deposits, under the influence of a moderately elevated (41C/km) average geothermal gradient.

  3. Automotive fuels at low temperatures. Technical digest

    SciTech Connect

    Diemand, D.

    1991-03-01

    Problems with fuels at extremely low temperatures are largely due to wax formation, increased viscosity, decreased volatility and contamination by water. This is especially true of diesel fuels, but even gasoline suffers from these problems to some extent. Some difficulties may begin to appear at temperatures above 0 deg. C. The majority of fuels are derived from petroleum crude oil. In addition, secondary processing of the crude procedures further fuel stocks from other fractions that could not otherwise be used as fuel. Cracking reduces large molecules from light gases or from the lighter products of the cracking process; polymerization is similar to alkylation but results in products with a lower octane rating; reforming catalytically alters certain low-octane substances, resulting in a high-octane product. The four basic molecular structures in petroleum oil products are aromatics, naphthenes, olefins and paraffins.

  4. Low temperature double-layer capacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J. (Inventor); Smart, Marshall C. (Inventor); West, William C. (Inventor)

    2011-01-01

    Double-layer capacitors capable of operating at extremely low temperatures (e.g., as low as -75.degree. C.) are disclosed. Electrolyte solutions combining a base solvent (e.g., acetonitrile) and a cosolvent are employed to lower the melting point of the base electrolyte. Example cosolvents include methyl formate, ethyl acetate, methyl acetate, propionitrile, butyronitrile, and 1,3-dioxolane. An optimized concentration (e.g., 0.10 M to 0.75 M) of salt, such as tetraethylammonium tetrafluoroborate, is dissolved into the electrolyte solution. In some cases (e.g., 1,3-dioxolane cosolvent) additives, such as 2% by volume triethylamine, may be included in the solvent mixture to prevent polymerization of the solution. Conventional device form factors and structural elements (e.g., porous carbon electrodes and a polyethylene separator) may be employed.

  5. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  6. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOEpatents

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  7. Preparation of silver nanoparticles at low temperature

    NASA Astrophysics Data System (ADS)

    Mishra, Mini; Chauhan, Pratima

    2016-04-01

    Silver from ancient time is used as antimicrobial agent in the bulk form but now with the advancement in nanotechnology silver in the form of nanoparticles shown potential effect against microbes which make us easy to fight with many diseases plants and animals. In this work silver nanoparticles were synthesized by chemical routes using sodium borohydride as reducing agent at low temperature. The particles were characterized through UV-Visible spectroscopy as well as X-Ray Diffraction. The UV-visible spectra of silver nanoparticles exhibited absorption at 425 cm; the crystallite size of the particles is between 19nm to 39nm. EDAX graph shows two peaks of silver and oxygen. Water absorbed by silver nanoparticles was removed by the calcinations.

  8. Low-temperature thermodynamics with quantum coherence

    PubMed Central

    Narasimhachar, Varun; Gour, Gilad

    2015-01-01

    Thermal operations are an operational model of non-equilibrium quantum thermodynamics. In the absence of coherence between energy levels, exact state transition conditions under thermal operations are known in terms of a mathematical relation called thermo-majorization. But incorporating coherence has turned out to be challenging, even under the relatively tractable model wherein all Gibbs state-preserving quantum channels are included. Here we find a mathematical generalization of thermal operations at low temperatures, ‘cooling maps', for which we derive the necessary and sufficient state transition condition. Cooling maps that saturate recently discovered bounds on coherence transfer are realizable as thermal operations, motivating us to conjecture that all cooling maps are thermal operations. Cooling maps, though a less-conservative generalization to thermal operations, are more tractable than Gibbs-preserving operations, suggesting that cooling map-like models at general temperatures could be of use in gaining insight about thermal operations. PMID:26138621

  9. A symmetrical low temperature pressure transducer

    NASA Astrophysics Data System (ADS)

    Helvensteijn, B. P. M.; VanSciver, S. W.

    1990-03-01

    The design and operating characteristics of a fully differential pressure transducer are described. The device is intended for use with He II heat transfer experiments where it operates in vacuum and at low temperatures (T<4.2 K). A movable electrode is attached to two sets of miniature bellows such that the electrode position is determined by the differential pressure across the device. The movable electrode is located between two fixed electrodes, thus forming a pair of variable capacitors. A dedicated charge amplifier is used to convert the pressure induced capacitance change to an ac output voltage. The sensitivity is roughly 5 μV/Pa. For the present application, the capacitor and electronics have acceptable performance, with a mean noise level of ±5 Pa.

  10. Improved Thermal-Insulation Systems for Low Temperatures

    NASA Technical Reports Server (NTRS)

    Fesmire, James E.; Augustynowicz, Stanislaw D.

    2003-01-01

    Improved thermal-insulation materials and structures and the techniques for manufacturing them are undergoing development for use in low-temperature applications. Examples of low-temperature equipment for which these thermal insulation systems could provide improved energy efficiency include storage tanks for cryogens, superconducting electric-power-transmission equipment, containers for transport of food and other perishable commodities, and cold boxes for low-temperature industrial processes. These systems could also be used to insulate piping used to transfer cryogens and other fluids, such as liquefied natural gas, refrigerants, chilled water, crude oil, or low-pressure steam. The present thermal-insulation systems are layer composites based partly on the older class of thermal-insulation systems denoted generally as multilayer insulation (MLI). A typical MLI structure includes an evacuated jacket, within which many layers of radiation shields are stacked or wrapped close together. Low-thermal-conductivity spacers are typically placed between the reflection layers to keep them from touching. MLI can work very well when a high vacuum level (less than 10(exp-4) torr) is maintained and utmost care is taken during installation, but its thermal performance deteriorates sharply as the pressure in the evacuated space rises into the soft vacuum range [pressures greater than 0.1 torr (greater than 13 Pa)]. In addition, the thermal performance of MLI is extremely sensitive to mechanical compression and edge effects and can easily decrease from one to two orders of magnitude from its ideal value even when the MLI is kept under high vacuum condition. The present thermal-insulation systems are designed to perform well under soft vacuum level, in particular the range of 1 to 10 torr. They are also designed with larger interlayer spacings to reduce vulnerability to compression (and consequent heat leak) caused by installation and use. The superiority of these systems is the

  11. Magnetic discharge accelerating diode for the gas-filled pulsed neutron generators based on inertial confinement of ions

    NASA Astrophysics Data System (ADS)

    Kozlovskij, K. I.; Shikanov, A. E.; Vovchenko, E. D.; Shatokhin, V. L.; Isaev, A. A.; Martynenko, A. S.

    2016-09-01

    The paper deals with magnetic discharge diode module with inertial electrostatic ions confinement for the gas-filled pulsed neutron generators. The basis of the design is geometry with the central hollow cathode surrounded by the outer cylindrical anode and electrodes made of permanent magnets. The induction magnitude about 0.1-0.4 T in the central region of the discharge volume ensures the confinement of electrons in the space of hollow (virtual) cathode and leads to space charge compensation of accelerated ions in the centre. The research results of different excitation modes in pulsed high-voltage discharge are presented. The stable form of the volume discharge preserveing the shape and amplitude of the pulse current in the pressure range of 10-3-10-1 Torr and at the accelerating voltage up to 200 kV was observed.

  12. Oxidation of ammonium sulfite by a multi-needle-to-plate gas phase pulsed corona discharge reactor

    NASA Astrophysics Data System (ADS)

    Ren, Hua; Lu, Na; Shang, Kefeng; Li, Jie; Wu, Yan

    2013-03-01

    The oxidation of ammonium sulfite in the ammonia-based flue gas desulfurization (FGD) process was investigated in a multi-needle-to-plate gas phase pulsed corona discharge reactor in this paper. The effect of several parameters, including capacitance and peak pulse voltage of discharge system, electrode gap and bubbling gas flow rate on the oxidation rate of ammonium sulfite was reviewed. The oxidation rate of ammonium sulfite could reach 47.2% at the capacitance, the peak pulse voltage, electrode gap and bubbling gas flow rate equal to 2 nF, -24.6 k V, 35 mm and 4 L min-1 within treatment time of 40 min The experimental results indicate that the gas phase pulsed discharge system with a multi-needle-to-plate electrode can oxide the ammonium sulfite. The oxidation rate increased with the applied capacitance and peak pulse voltage and decreased with the electrode gap. As the bubbling gas flow rate increased, the oxidation rate increased first and then tended to reach a stationary value. These results would be important for the process optimization of the (NH4)2SO3 to (NH4)2SO4 oxidation.

  13. Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum

    NASA Astrophysics Data System (ADS)

    Kiribayashi, Hoshimitsu; Ogawa, Seigo; Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-06-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 500 and 600 °C using Al2O3/Pd/Al2O3 multilayer catalysts on SiO2/Si substrates by the alcohol gas source method. When the ethanol pressures were 1 × 10‑4 and 1 × 10‑3 Pa, radial-breathing-mode (RBM) peaks and sharp G band peaks appeared in Raman spectra, indicating the growth of SWCNTs even at 500 °C. When the growth temperature and ethanol pressure were 500 °C and 1 × 10‑4 Pa, respectively, the growth rate decreased gradually with the growth time, but the SWCNT growth continued for more than 4 h and the diameter distribution changed as the growth proceeded. X-ray photoelectron spectroscopy measurements showed that oxidized Pd catalyst particles were reduced to metallic states after the SWCNT growth started.

  14. The effect of low temperature cryocoolers on the development of low temperature superconducting magnets

    SciTech Connect

    Green, Michael A.

    2000-08-05

    The commercial development of reliable 4 K cryocoolers improves the future prospects for magnets made from low temperature superconductors (LTS). The hope of the developers of high temperature superconductors (HTS) has been to replace liquid helium cooled LTS magnets with HTS magnets that operate at or near liquid nitrogen temperature. There has been limited success in this endeavor, but continued problems with HTS conductors have greatly slowed progress toward this goal. The development of cryocoolers that reliably operate below 4 K will allow magnets made from LTS conductor to remain very competitive for many years to come. A key enabling technology for the use of low temperature cryocoolers on LTS magnets has been the development of HTS leads. This report describes the characteristics of LTS magnets that can be successfully melded to low-temperature cryocoolers. This report will also show when it is not appropriate to consider the use of low-temperature cryocoolers to cool magnets made with LTS conductor. A couple of specific examples of LTS magnets where cryocoolers can be used are given.

  15. Low temperature plasma enhanced atomic layer deposition of conducting zirconium nitride films using tetrakis (dimethylamido) zirconium and forming gas (5% H{sub 2} + 95% N{sub 2}) plasma

    SciTech Connect

    Muneshwar, Triratna Cadien, Ken

    2015-05-15

    Zirconium nitride (ZrN) has the lowest bulk electrical resistivity and high thermal stability among group IV and V transition metal nitrides, which makes it a promising material for ULSI applications such as a diffusion barrier for Cu interconnects, contact metal in III-V semiconductor devices, and in high density memory structures. Plasma enhanced atomic layer deposition (PEALD) of conducting ZrN thin films using Zr[N(CH{sub 3}){sub 2}]{sub 4} and forming gas (5% H{sub 2} + 95% N{sub 2}) plasma is reported in this article. The growth per cycle (GPC) for every deposition was determined from analysis of dynamic in-situ spectroscopic ellipsometry (d-iSE) measurements. An experimental design is proposed for faster determination of ALD growth saturation curves. At substrate temperature of 150 °C, a GPC of 0.10 nm/cycle was observed for self-limiting ZrN PEALD growth. The electrical resistivity of ZrN films deposited on SiO{sub 2} substrate was found to be 559.5 ± 18.5 μΩ cm with negligible change in resistivity even after ∼1000 h exposure to air. The metallic behavior of our ZrN films was evident from the free electron dispersion component in dielectric response, the broad band of photoelectron emission across Fermi level and the positive temperature coefficient for resistivity of 0.0088/ °C.

  16. Fluoroester Co-Solvents for Low-Temperature Li+ Cells

    NASA Technical Reports Server (NTRS)

    Smart, Marshall; Bugga, Ratnakumar; Prakash, G. K. Surya; Smith, Kiah; Bhalla, Pooja

    2009-01-01

    Electrolytes comprising LiPF6 dissolved in alkyl carbonate/fluoroester mixtures have been found to afford improved low-temperature performance and greater high-temperature resilience in rechargeable lithium-ion electrochemical cells. These and other electrolytes comprising lithium salts dissolved mixtures of esters have been studied in continuing research directed toward extending the lower limit of operating temperatures of such cells. This research at earlier stages, and the underlying physical and chemical principles, were reported in numerous previous NASA Tech Briefs articles. The purpose of the present focus on high-temperature resilience in addition to low-temperature performance is to address issues posed by the flammability of the esters and, at temperatures near the upper end (about 55 C) of their intended operating temperature range, by their high chemical reactivity. As used here, high-temperature resilience signifies, loosely, a desired combination of low flammability of an electrolyte mixture and the ability of a cell that contains the mixture to sustain a relatively small loss of reversible charge/discharge capacity during storage in the fully charged condition at high temperature. The selection of fluoroesters for study as candidate electrolyte solvent components to increase high-temperature resilience was prompted in part by the observation that like other halogenated compounds, fluoroesters have low flammability. The fluoroesters investigated in this study include trifluoroethyl butyrate (TFEB), ethyl trifluoroacetate (ETFA), trifluoroethyl acetate (TFEA), and methyl pentafluoropropionate (MPFP). Solvent mixtures were prepared by mixing these fluoroesters with two other esters: ethylene carbonate (EC) and ethyl methyl carbonate (EMC).

  17. Conformational Properties of 1-Halogenated-1-Silacyclohexanes, C5H10SiHX (X = Cl, Br, I): Gas Electron Diffraction, Low-Temperature NMR, Temperature-Dependent Raman Spectroscopy, and Quantum-Chemical Calculations.

    PubMed

    Wallevik, Sunna Ó; Bjornsson, Ragnar; Kvaran, Agúst; Jonsdottir, Sigridur; Arnason, Ingvar; Belyakov, Alexander V; Kern, Thomas; Hassler, Karl

    2013-12-01

    The molecular structures of axial and equatorial conformers of cyclo-C5H10SiHX (X = Cl, Br, I) as well as the thermodynamic equilibrium between these species was investigated by means of gas electron diffraction, dynamic nuclear magnetic resonance, temperature-dependent Raman spectroscopy, and quantum-chemical calculations applying CCSD(T), MP2, and DFT methods. According to the experimental and calculated results, all three compounds exist as a mixture of two chair conformers of the six-membered ring. The two chair forms of Cs symmetry differ in the axial or equatorial position of the X atom. In all cases, the axial conformer is preferred over the equatorial one. When the experimental uncertainties are taken into account, all of the experimental and theoretical results for the conformational energy (E axial - E equatorial) fit into a remarkably narrow range of -0.50 ± 0.15 kcal mol(-1). It was found by NBO analysis that the axial conformers are unfavorable in terms of steric energy and conjugation effects and that they are stabilized mainly by electrostatic interactions. The conformational energies for C6H11X and cyclo-C5H10SiHX (X = F, Cl, Br, I, At) were compared using CCSD(T) calculations. In both series, fluorine is predicted to have a lower conformational preference (cyclohexane equatorial, silacyclohexane axial) than Cl, Br, and I. It is predicted that astatine would behave very similarly to Cl, Br, and I within each series. PMID:24353364

  18. Conformational Properties of 1-Halogenated-1-Silacyclohexanes, C5H10SiHX (X = Cl, Br, I): Gas Electron Diffraction, Low-Temperature NMR, Temperature-Dependent Raman Spectroscopy, and Quantum-Chemical Calculations†

    PubMed Central

    2013-01-01

    The molecular structures of axial and equatorial conformers of cyclo-C5H10SiHX (X = Cl, Br, I) as well as the thermodynamic equilibrium between these species was investigated by means of gas electron diffraction, dynamic nuclear magnetic resonance, temperature-dependent Raman spectroscopy, and quantum-chemical calculations applying CCSD(T), MP2, and DFT methods. According to the experimental and calculated results, all three compounds exist as a mixture of two chair conformers of the six-membered ring. The two chair forms of Cs symmetry differ in the axial or equatorial position of the X atom. In all cases, the axial conformer is preferred over the equatorial one. When the experimental uncertainties are taken into account, all of the experimental and theoretical results for the conformational energy (Eaxial – Eequatorial) fit into a remarkably narrow range of −0.50 ± 0.15 kcal mol–1. It was found by NBO analysis that the axial conformers are unfavorable in terms of steric energy and conjugation effects and that they are stabilized mainly by electrostatic interactions. The conformational energies for C6H11X and cyclo-C5H10SiHX (X = F, Cl, Br, I, At) were compared using CCSD(T) calculations. In both series, fluorine is predicted to have a lower conformational preference (cyclohexane equatorial, silacyclohexane axial) than Cl, Br, and I. It is predicted that astatine would behave very similarly to Cl, Br, and I within each series. PMID:24353364

  19. Interactions between Controlled Atmospheres and Low Temperature Tolerance: A Review of Biochemical Mechanisms

    PubMed Central

    Boardman, Leigh; Sørensen, Jesper Givskov; Johnson, Shelley A.; Terblanche, John S.

    2011-01-01

    Controlled atmosphere treatments using carbon dioxide, oxygen, and/or nitrogen, together with controlled temperature and humidity, form an important method for post-harvest sterilization against insect-infested fruit. However, in insects, the cross tolerance and biochemical interactions between the various stresses of modified gas conditions and low temperature may either elicit or block standard stress responses which can potentiate (or limit) lethal low temperature exposure. Thus, the success of such treatments is sometimes erratic and does not always result in the desired pest mortality. This review focuses on the biochemical modes of action whereby controlled atmospheres affect insects low temperature tolerance, making them more (or occasionally, less) susceptible to cold sterilization. Insights into the integrated biochemical modes of action may be used together with the pests’ low temperature tolerance physiology to determine which treatments may be of value in post-harvest sterilization. PMID:22144965

  20. Retardation of C2C12 myoblast cell proliferation by exposure to low-temperature atmospheric plasma.

    PubMed

    Nakai, Naoya; Fujita, Ryo; Kawano, Fuminori; Takahashi, Kazuo; Ohira, Takashi; Shibaguchi, Tsubasa; Nakata, Ken; Ohira, Yoshinobu

    2014-09-01

    As the first step in evaluating the possibility of low-temperature atmospheric plasma for clinical applications in the treatment of rhabdomyosarcoma (RMS), we determined the effects of plasma exposure on C2C12 myoblasts. The low-temperature atmospheric plasma was generated through an electrical discharge in argon gas. One minute of plasma exposure every 24 h inhibited the cell proliferation, whereas myoblast differentiation was not affected. Plasma exposure increased the phosphorylation of ERK and JNK at 30 min after the exposure, but the phosphorylation of both was decreased to less than control levels at 1 and 4 h after the exposure. Plasma exposure increased the percentage of cells in the G2/M phase at 8 h after the exposure. In conclusion, plasma exposure retarded the proliferation of C2C12 myoblasts by G2/M arrest. Therefore, plasma exposure can be a possible treatment for the anti-proliferative effects of malignant tumors, such as RMS, without affecting differentiated skeletal muscle cells.

  1. Optical and electrical analyses of DC positive corona discharge in N2/O2/CO2 gas mixtures

    NASA Astrophysics Data System (ADS)

    Merbahi, N.; Abahazem, A.; Dubois, D.; Eichwald, O.; Yousfi, M.

    2008-04-01

    This paper presents an experimental analysis of the electrical and optical behaviour of positive point-plane corona discharges. The measurements of the instantaneous corona current and the current-voltage characteristics are used with the imagery analyses (CCD and streak camera) to determine the streamer properties such as the streamer morphology and velocity with the primary and secondary streamer developments. These analyses are performed first in synthetic air as a function of operating parameters such the applied voltage. Then the effect of gas mixtures (several proportions of N{2}, O{2} with or without CO{2}) is analysed. When the gas concentration is varied the discharge morphology, the shape and amplitude of the corona current are significantly affected due to the variation of the gas electronegativity following its composition and concentration.

  2. Study of Ozone-Initiated Limonene Reaction Products by Low Temperature Plasma Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Nørgaard, Asger W.; Vibenholt, Anni; Benassi, Mario; Clausen, Per Axel; Wolkoff, Peder

    2013-07-01

    Limonene and its ozone-initiated reaction products were investigated in situ by low temperature plasma (LTP) ionization quadrupole time-of-flight (QTOF) mass spectrometry. Helium was used as discharge gas and the protruding plasma generated ~850 ppb ozone in front of the glass tube by reaction with the ambient oxygen. Limonene applied to filter paper was placed in front of the LTP afterglow and the MS inlet. Instantly, a wide range of reaction products appeared, ranging from m/ z 139 to ca. 1000 in the positive mode and m/ z 115 to ca. 600 in the negative mode. Key monomeric oxidation products including levulinic acid, 4-acetyl-1-methylcyclohexene, limonene oxide, 3-isopropenyl-6-oxo-heptanal, and the secondary ozonide of limonene could be identified by collision-induced dissociation. Oligomeric products ranged from the nonoxidized dimer of limonene (C20H30) and up to the hexamer with 10 oxygen atoms (C60H90O10). The use of LTP for in situ ozonolysis and ionization represents a new and versatile approach for the assessment of ozone-initiated terpene chemistry.

  3. Experimental study of low-temperature plasma transport across a magnetic filter

    NASA Astrophysics Data System (ADS)

    Baude, Romain; Gaboriau, Freddy; Hagelaar, Gerjan

    2014-10-01

    Magnetized low-temperature plasmas are widely used in fields like space propulsion, materials processing or neutral beam injection. Charged particle transport in these plasmas is complex and still not fully understood. This paper presents an experimental study of plasma transport across a magnetic barrier as used in various (negative) ion sources. The aim is to obtain experimental data that are sufficiently detailed to provide direct insight into the physical principles of the cross-field transport and to validate numerical simulations. For this purpose we developed a dedicated laboratory set-up featuring an inductive argon discharge connected with a magnetic filter region. A segmented wall probe was used to measure the spatial profiles of the electron and ion current densities across the filter, while the plasma parameters were measured at different positions with a Langmuir probe. Measurements were performed for different gas pressures, magnetic field strengths, and bias voltages. The results clearly demonstrate the transition between a collisional regime where the electron current varies as 1/B2 and a bounded-drift regime with asymmetric electron temperature and 1/B current. This work is supported by French National Research Agency (Project METRIS ANR-11-JS09-008).

  4. NO density and gas temperature measurements in atmospheric pressure nanosecond repetitively pulsed (NRP) discharges by Mid-IR QCLAS

    NASA Astrophysics Data System (ADS)

    Simeni Simeni, Marien; Stancu, Gabi-Daniel; Laux, Christophe

    2014-10-01

    Nitric oxide is a key species for many processes: in combustion, in human skin physiology... Recently, NO-ground state absolute density measurements produced by atmospheric pressure NRP discharges were carried out in air as a function of the discharge parameters, using Quantum Cascade Laser Absorption Spectroscopy. These measurements were space averaged and performed in the post-discharge region in a large gas volume. Here we present radial profiles of NO density and temperature measured directly in the discharge for different configurations. Small plasma volume and species densities, high temperature and EM noise environment make the absorption diagnostic challenging. For this purpose the QCLAS sensitivity was improved using a two-detector system. We conducted lateral absorbance measurements with a spatial resolution of 300 μm for two absorption features at 1900.076 and 1900.517 cm-1. The radial temperature and NO density distributions were obtained from the Abel inverted lateral measurements. Time averaged NO densities of about 1.E16 cm-3 and gas temperature of about 1000K were obtained in the center of the discharge. PLASMAFLAME Project (Grant No ANR-11-BS09-0025).

  5. Magnetic structure at low temperatures in FeGe2

    NASA Astrophysics Data System (ADS)

    Babu, P. D.; Mishra, P. K.; Dube, V.; Mishra, R.; Sastry, P. U.; Ravikumar, G.

    2014-04-01

    Magnetic phase of FeGe2 intermetallic is studied using low-temperature neutron diffraction and DC magnetization. Zero-magnetic-field neutron scattering data shows the presence of an antiferromagnetic phase in the low temperature range. We find the evidence of the presence of a ferromagnetic order overriding on the predominantly antiferromagnetic phase at low temperatures.

  6. Relatively low-temperature pyrolysis of silane in free space

    NASA Technical Reports Server (NTRS)

    Levin, H.

    1981-01-01

    The continuous flow pyrolyzer is a free space reactor that is used to study the effects of concentration, flow rate and temperature in making solar-grade silicon by pyrolysis of silane gas. Work with the continuous flow pyrolyzer is within the DOE-sponsored Low-Cost Solar Array Project. The work has led to a new theoretical treatment of silane pyrolysis in free space at relatively low temperatures (550 C to 750 C). It involves a sequential, three-step mechanism of particle growth: first, silicon atom generation by homogeneous reaction; second, coagulation to a 0.1 micron particle due to Brownian motion and van der Waals forces; and finally, chemical vapor deposition by heterogeneous reaction to final particle size.

  7. Low-temperature plasmonics of metallic nanostructures.

    PubMed

    Bouillard, Jean-Sebastien G; Dickson, Wayne; O'Connor, Daniel P; Wurtz, Gregory A; Zayats, Anatoly V

    2012-03-14

    The requirements for spatial and temporal manipulation of electromagnetic fields on the nanoscale have recently resulted in an ever-increasing use of plasmonics for achieving various functionalities with superior performance to those available from conventional photonics. For these applications, ohmic losses resulting from free-electron scattering in the metal is one major limitation for the performance of plasmonic structures. In the low-frequency regime, ohmic losses can be reduced at low temperatures. In this work, we study the effect of temperature on the optical response of different plasmonic nanostructures and show that the extinction of a plasmonic nanorod metamaterial can be efficiently controlled with temperature with transmission changes by nearly a factor of 10 between room and liquid nitrogen temperatures, while temperature effects in plasmonic crystals are relatively weak (transmission changes only up to 20%). Because of the different nature of the plasmonic interactions in these types of plasmonic nanostructures, drastically differing responses (increased or decreased extinction) to temperature change were observed despite identical variations of the metal's permittivity.

  8. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1986-10-28

    A catalyst and process useful at low temperatures (below about 160 C) and preferably in the range 80--120 C used in the production of methanol from carbon monoxide and hydrogen are disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa-M(OAc)[sub 2] where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is NiC (where M = Ni and R = tertiary amyl). Mo(CO)[sub 6] is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  9. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, Richard S.; Slegeir, William A.; O'Hare, Thomas E.; Mahajan, Devinder

    1986-01-01

    A catalyst and process useful at low temperatures (below about 160.degree. C.) and preferably in the range 80.degree.-120.degree. C. used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH--RONa--M(OAc).sub.2 where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1-6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M=Ni and R=tertiary amyl). Mo(CO).sub.6 is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  10. Low temperature catalysts for methanol production

    DOEpatents

    Sapienza, R.S.; Slegeir, W.A.; O'Hare, T.E.; Mahajan, D.

    1985-03-12

    A catalyst and process useful at low temperatures (below about 160/sup 0/C) and preferably in the range 80 to 120/sup 0/C used in the production of methanol from carbon monoxide and hydrogen is disclosed. The catalyst is used in slurry form and comprises a complex reducing agent derived from the component structure NaH-RONa-M(OAc)/sub 2/ where M is selected from the group consisting of Ni, Pd, and Co and R is a lower alkyl group containing 1 to 6 carbon atoms. This catalyst is preferably used alone but is also effective in combination with a metal carbonyl of a group VI (Mo, Cr, W) metal. The preferred catalyst precursor is Nic (where M = Ni and R = tertiary amyl). Mo(CO)/sub 6/ is the preferred metal carbonyl if such component is used. The catalyst is subjected to a conditioning or activating step under temperature and pressure, similar to the parameters given above, to afford the active catalyst.

  11. Low temperature operation of a boost converter

    SciTech Connect

    Moss, B.S.; Boudreaux, R.R.; Nelms, R.M.

    1996-12-31

    The development of satellite power systems capable of operating at low temperatures on the order of 77K would reduce the heating system required on deep space vehicles. The power supplies in the satellite power system must be capable of operating at these temperatures. This paper presents the results of a study into the operation of a boost converter at temperatures close to 77K. The boost converter is designed to supply an output voltage and power of 42 V and 50 W from a 28 V input source. The entire system, except the 28 V source, is placed in the environmental chamber. This is important because the system does not require any manual adjustments to maintain a constant output voltage with a high efficiency. The constant 42 V output of this converter is a benefit of the application of a CMOS microcontroller in the feedback path. The switch duty cycle is adjusted by the microcontroller to maintain a constant output voltage. The efficiency of the system varied less than 1% over the temperature range of 22 C to {minus}184 C and was approximately 94.2% when the temperature was {minus}184 C.

  12. Extreme low temperature tolerance in woody plants.

    PubMed

    Strimbeck, G Richard; Schaberg, Paul G; Fossdal, Carl G; Schröder, Wolfgang P; Kjellsen, Trygve D

    2015-01-01

    Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane-membrane interactions. PMID:26539202

  13. Extreme low temperature tolerance in woody plants

    PubMed Central

    Strimbeck, G. Richard; Schaberg, Paul G.; Fossdal, Carl G.; Schröder, Wolfgang P.; Kjellsen, Trygve D.

    2015-01-01

    Woody plants in boreal to arctic environments and high mountains survive prolonged exposure to temperatures below -40°C and minimum temperatures below -60°C, and laboratory tests show that many of these species can also survive immersion in liquid nitrogen at -196°C. Studies of biochemical changes that occur during acclimation, including recent proteomic and metabolomic studies, have identified changes in carbohydrate and compatible solute concentrations, membrane lipid composition, and proteins, notably dehydrins, that may have important roles in survival at extreme low temperature (ELT). Consideration of the biophysical mechanisms of membrane stress and strain lead to the following hypotheses for cellular and molecular mechanisms of survival at ELT: (1) Changes in lipid composition stabilize membranes at temperatures above the lipid phase transition temperature (-20 to -30°C), preventing phase changes that result in irreversible injury. (2) High concentrations of oligosaccharides promote vitrification or high viscosity in the cytoplasm in freeze-dehydrated cells, which would prevent deleterious interactions between membranes. (3) Dehydrins bind membranes and further promote vitrification or act stearically to prevent membrane–membrane interactions. PMID:26539202

  14. Gas and plasma dynamics of RF discharge jet of low pressure in a vacuum chamber with flat electrodes and inside tube, influence of RF discharge on the steel surface parameters

    NASA Astrophysics Data System (ADS)

    Khristoliubova, V. I.; Kashapov, N. F.; Shaekhov, M. F.

    2016-06-01

    Researches results of the characteristics of the RF discharge jet of low pressure and the discharge influence on the surface modification of high speed and structural steels are introduced in the article. Gas dynamics, power and energy parameters of the RF low pressure discharge flow in the discharge chamber and the electrode gap are studied in the presence of the materials. Plasma flow rate, discharge power, the concentration of electrons, the density of RF power, the ion current density, and the energy of the ions bombarding the surface materials are considered for the definition of basic properties crucial for the process of surface modification of materials as they were put in the plasma jet. The influence of the workpiece and effect of products complex configuration on the RF discharge jet of low pressure is defined. The correlation of the input parameters of the plasma unit on the characteristics of the discharge is established.

  15. Strontium isotope quantification of siderite, brine and acid mine drainage contributions to abandoned gas well discharges in the Appalachian Plateau

    SciTech Connect

    Chapman, Elizabeth C.; Capo, Rosemary C.; Stewart, Brian W.; Hedin, Robert S.; Weaver, Theodore J.; Edenborn, Harry M.

    2013-04-01

    Unplugged abandoned oil and gas wells in the Appalachian region can serve as conduits for the movement of waters impacted by fossil fuel extraction. Strontium isotope and geochemical analysis indicate that artesian discharges of water with high total dissolved solids (TDS) from a series of gas wells in western Pennsylvania result from the infiltration of acidic, low Fe (Fe < 10 mg/L) coal mine drainage (AMD) into shallow, siderite (iron carbonate)-cemented sandstone aquifers. The acidity from the AMD promotes dissolution of the carbonate, and metal- and sulfate-contaminated waters rise to the surface through compromised abandoned gas well casings. Strontium isotope mixing models suggest that neither upward migration of oil and gas brines from Devonian reservoirs associated with the wells nor dissolution of abundant nodular siderite present in the mine spoil through which recharge water percolates contribute significantly to the artesian gas well discharges. Natural Sr isotope composition can be a sensitive tool in the characterization of complex groundwater interactions and can be used to distinguish between inputs from deep and shallow contamination sources, as well as between groundwater and mineralogically similar but stratigraphically distinct rock units. This is of particular relevance to regions such as the Appalachian Basin, where a legacy of coal, oil and gas exploration is coupled with ongoing and future natural gas drilling into deep reservoirs.

  16. Discharge stabilization studies of CO laser gas mixtures in quasi-steady supersonic flow

    NASA Technical Reports Server (NTRS)

    Srinivasan, G.; Smith, J. A.

    1976-01-01

    Experiments were conducted to study the applicability of a double discharge stabilization scheme in conditions appropriate for high energy CO lasers in supersonic flows. A Ludwieg tube impulse flow facility and a ballasted capacitor bank provided essentially steady flow and discharge conditions (d.c.) for times longer than ten electrode length-flow transit times. Steady, arc-free, volume discharges were produced in a Mach 3 test cavity using an auxiliary discharge to stabilize the main discharge in N2 and He/CO mixture. A signigicant result is the lack of observed plasma E/N changes in response to auxiliary discharge current changes. Also, where glow discharges were obtained, the energy loading achieved was very much less than the threshold level required for laser operation.

  17. Development of Electromagnetically Pulled-Out Gas Plasma (EPOP) Gun for Medium Vacuum and its Fundamental Discharge Characteristics

    NASA Astrophysics Data System (ADS)

    Yanagita, Taichiro; Tanoue, Hideto; Kamiya, Masao; Suda, Yoshiyuki; Takikawa, Hirofumi; Taki, Makoto; Hasegawa, Yushi; Ishikawa, Takeshi

    Electromagnetically pulled-out gas plasma (EPOP) gun was developed, which will be applied to the filtered arc deposition system in order to enhance the nitriding of preparing thin film under medium vacuum. A hot cathode of tungsten (W) filament was employed and DC discharge was generated between the cathode and anode (SUS304). The distance of electrodes was 100 mm. Electromagnetic coils were placed around the cathode, anode and plasma pulled-out duct, separately. Experimental pressure was 0.1 Pa. The following results were obtained. Ignition voltage became lower when the same direction magnetic field was axially applied to the cathode and anode. Minimum voltage for sustaining the discharge became lower when the magnetic filed was applied to the anode. With increasing discharge voltage, the discharge current increased dramatically for the discharge voltage less than 50 V and increased gradually for the voltage more than that. The plasma between the cathode and anode was able to be pulled out to the process chamber by applying magnetic field perpendicular to the discharge axis. The amount of pulled-out plasma increased with increasing the filament current and magnetic flux density for plasma pulling-out.

  18. New developments in low temperature physics New developments in low temperature physics

    NASA Astrophysics Data System (ADS)

    Hallock, Bob; Paalanenn, Mikko

    2009-04-01

    Below you will find part of the activity report to the IUPAP General Assembly, October 2008, by the present and previous Chairmen of C5. It provides an overview of the most important and recent developments in low temperature physics, much in line with the program of LT25. For the field of experimental low temperature physics, the ability to conduct research has been damaged by the dramatic increase in the price of liquid helium. In the USA, for example, the price of liquid helium has approximately doubled over the past two years. This has led to a reduction in activity in many laboratories as the funding agencies have not quickly increased support in proportion. The increase in price of liquid helium has accelerated interest in the development and use of alternative cooling systems. In particular, pulse-tube coolers are now available that will allow cryostats with modest cooling needs to operate dilution refrigerators without the need for repeated refills of liquid helium from external supply sources. Solid helium research has seen a dramatic resurgence. Torsional oscillator experiments have been interpreted to show that solid helium may undergo a transition to a state in which some of the atoms in the container do not follow the motion of the container, e.g. may be 'supersolid'. The observation is robust, but the interpretation is controversial. The shear modulus of solid helium undergoes a similar signature with respect to temperature. Experiments that should be expected to cause helium to flow give conflicting results. Theory predicts that a perfect solid cannot show supersolid behavior, but novel superfluid-like behavior should be seen in various defects that can exist in the solid, and vorticity may play a significant role. And, recently there have been reports of unusual mass decoupling in films of pure 4He on graphite surfaces as well as 3He- 4He mixture films on solid hydrogen surfaces. These may be other examples of unusual superfluid-like behavior. There

  19. Gas discharge visualization: an imaging and modeling tool for medical biometrics.

    PubMed

    Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D; Cohly, Hari H P

    2011-01-01

    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases.

  20. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance.

  1. Gas discharge plasmas are effective in inactivating Bacillus and Clostridium spores.

    PubMed

    Tseng, Shawn; Abramzon, Nina; Jackson, James O; Lin, Wei-Jen

    2012-03-01

    Bacterial spores are the most resistant form of life and have been a major threat to public health and food safety. Nonthermal atmospheric gas discharge plasma is a novel sterilization method that leaves no chemical residue. In our study, a helium radio-frequency cold plasma jet was used to examine its sporicidal effect on selected strains of Bacillus and Clostridium. The species tested included Bacillus subtilis, Bacillus stearothermophilus, Clostridium sporogenes, Clostridium perfringens, Clostridium difficile, and Clostridium botulinum type A and type E. The plasmas were effective in inactivating selected Bacillus and Clostridia spores with D values (decimal reduction time) ranging from 2 to 8 min. Among all spores tested, C. botulinum type A and C. sporogenes were significantly more resistant to plasma inactivation than other species. Observations by phase contrast microscopy showed that B. subtilis spores were severely damaged by plasmas and the majority of the treated spores were unable to initiate the germination process. There was no detectable fragmentation of the DNA when the spores were treated for up to 20 min. The release of dipicolinic acid was observed almost immediately after the plasma treatment, indicating the spore envelope damage could occur quickly resulting in dipicolinic acid release and the reduction of spore resistance. PMID:22075631

  2. Gas Discharge Visualization: An Imaging and Modeling Tool for Medical Biometrics

    PubMed Central

    Kostyuk, Nataliya; Cole, Phyadragren; Meghanathan, Natarajan; Isokpehi, Raphael D.; Cohly, Hari H. P.

    2011-01-01

    The need for automated identification of a disease makes the issue of medical biometrics very current in our society. Not all biometric tools available provide real-time feedback. We introduce gas discharge visualization (GDV) technique as one of the biometric tools that have the potential to identify deviations from the normal functional state at early stages and in real time. GDV is a nonintrusive technique to capture the physiological and psychoemotional status of a person and the functional status of different organs and organ systems through the electrophotonic emissions of fingertips placed on the surface of an impulse analyzer. This paper first introduces biometrics and its different types and then specifically focuses on medical biometrics and the potential applications of GDV in medical biometrics. We also present our previous experience with GDV in the research regarding autism and the potential use of GDV in combination with computer science for the potential development of biological pattern/biomarker for different kinds of health abnormalities including cancer and mental diseases. PMID:21747817

  3. Energetics of Molecular Excitation, Fragmentation, and Polymerization in a Dielectric Barrier Discharge with Argon Carrier Gas.

    PubMed

    Watson, Sean; Nisol, Bernard; Lerouge, Sophie; Wertheimer, Michael Robert

    2015-09-22

    We report experiments at atmospheric pressure (AP) using a dielectric barrier discharge (DBD) reactor designed for plasma polymerization (PP) with "monomers" at ‰ concentrations in ca.10 standard liters per minute of argon (Ar) carrier gas. We have perfected a method for measuring Eg, the energy dissipated per cycle of the applied a.c. high voltage, Va(f), but the focus here is on ΔEg, the energy difference with and without a flow, Fd, of monomer in the Ar flow, with the plasma being sustained at Va(f) = 2.8 kVrms, f = 20 kHz. From ΔEg and Fd, we derive a characteristic energy per molecule, Em (in eV), and investigate plots of Em versus Fd and 1/Fd for three model "monomers": formic, acetic, and acrylic acid. These data, along with those for lighter or heavier organic compounds, reveal novel information about energy absorption from the plasma and ensuing polymerization reactions. PMID:26343365

  4. High and Low Temperature Oceanic Detachment Faults

    NASA Astrophysics Data System (ADS)

    Titarenko, Sofya; McCaig, Andrew

    2013-04-01

    One of the most important discoveries in Plate Tectonics in the last ten years is a "detachment mode" of seafloor spreading. Up to 50% of the Atlantic seafloor has formed by a combination of magmatism and slip on long-lived, convex-up detachment faults, forming oceanic core complexes (OCC). Two end-member types of OCC can be defined: The Atlantis Bank on the Southwest Indian Ridge is a high temperature OCC sampled by ODP Hole 735b. Deformation was dominated by crystal-plastic flow both above and below the solidus at 800-950 °C, over a period of around 200 ka. In contrast, the Atlantis Massif at 30 °N in the Atlantic, sampled by IODP Hole 1309D, is a low temperature OCC in which crystal plastic deformation of gabbro is very rare and greenschist facies deformation was localised onto talc-tremolite-chlorite schists in serpentinite, and breccia zones in gabbro and diabase. The upper 100m of Hole 1309D contains about 43% diabase intruded into hydrated fault breccias. This detachment fault zone can be interpreted as a dyke-gabbro transition, which was originally (before flexural unroofing) a lateral boundary between active hydrothermal circulation in the fault zone and hangingwall, and intrusion of gabbroic magma in the footwall. Thus a major difference between high and low temperature detachment faults may be cooling of the latter by active hydrothermal circulation. 2-D thermal modelling suggests that if a detachment fault is formed in a magmatically robust segment of a slow spreading ridge, high temperature mylonites can be formed for 1-2 ka provided there is no significant hydrothermal cooling of the fault zone. In contrast, if the fault zone is held at temperatures of 400 °C by fluid circulation, cooling of the upper 1 km of the fault footwall occurs far too rapidly for extensive mylonites to form. Our models are consistent with published cooling rate data from geospeedometry and isotopic closure temperatures. The control on this process is likely a combination of

  5. Gas geochemistry of the fumarolic discharges from the Tatun Volcanic Complex (Taiwan)

    NASA Astrophysics Data System (ADS)

    Vaselli, Orlando; Tassi, Franco; Bonini, Marco; Lee, Hsiao-Fen; Yang, Tsanyao Frank; Fiebig, Jens; Song, Sheng-Rong; Nisi, Barbara; Venturi, Stefania

    2016-04-01

    The Tatun Volcanic Complex (TVC), mainly consisting of Pleistocene andesitic and pyroclastic volcanics overlying Miocene sedimentary terrains, is located in the northernmost part of Taiwan. TVC is related to the convergent boundary where the Philippine Sea plate is subducting under the Eurasian plate. This volcanic area is characterized by the Mt. Tatun and at least 20 volcanic domes. Despite its age that would suggest to consider this system as extinct, a large number of hot springs and low magnitude background seismicity occur. In this study, we present and discuss the geochemical and isotopic data acquired in the framework of a bilateral project between the Taiwanese NSC (now MoST) and the Italian CNR aimed to evaluate the equilibrium temperature of the fluid reservoir. Gas geothermometry in the H2-CO-CH4-CO2-H2O system based on the composition of the fumarolic discharges distributed throughout the Tatun volcanic complex are suggesting that the hydrothermal gases are strongly affected by secondary processes at shallow depth, causing a strong scattering of the concentrations of the most redox and temperature-sensitive gas species (H2, CO and CH4). Therefore, a reliable estimation of reservoir temperature using this geochemical tool is unlike. Additionally, the carbon isotopic ratios of CH4 were consistent with those typical of a shallow thermogenic source, thus masking any possible contribution of a deep fluid component. Geothermometric calculations based on the propane-propene ratios, which are affected by secondary processes at a limited extent, seem to indicate relatively high equilibrium temperatures (>300 °C) at redox conditions controlled by the volcanic gas buffer, i.e. the SO2-H2S pair. This implies that the hydrothermal system representing the main fluid source for the fumaroles receives strong inputs of magmatic fluids, as also testified by the occurrence of SO2 at low but significant concentrations in the surface fluids. The contribution derived by a

  6. New low temperature multiphase ferroelectric films

    NASA Astrophysics Data System (ADS)

    Bescher, Eric; Xu, Yuhuan; Mackenzie, J. D.

    2001-06-01

    This article describes the low-temperature synthesis of new multiphase ferroelectrics containing an inorganic ferroelectric phase entrapped in amorphous silica or in an organically modified silicate (ormosil). Sol gel derived LiNbO3 and BaTiO3 crystals were grown in SiO2 and in RSiO1.5 glass where R contains a chromophore (TDP) insensitive to hydrolysis and condensation reactions. The LiNbO3-SiO2 and BaTiO3-SiO2 compositions as well as the TDP-LiNbO3-SiO2 and TDP-BaTiO3-SiO2 ormosils exhibit ferroelectric-like properties. This unusual characteristic is due to the presence of small, partially ordered crystallites of the ferroelectric, dispersed in the amorphous matrix. In addition to their ferroelectric properties, the ormosils also exhibit interesting optical characteristics: the TDP-BaTiO3-SiO2 materials are red, whereas the TDP-LiNbO3-SiO2 are yellow. The materials described in this article are representative of two new classes of weak ferroelectrics. In the first class, a ferroelectric is dispersed in an amorphous matrix. The second class may be called "organically-modified crystals": small ferroelectric crystals embedded in an organically modified matrix. The fabrication of such materials is possible for inorganic crystalline phases forming at temperatures below the decomposition temperature of the organic (about 250 °C). This article also contains some theoretical considerations explaining why these materials, although amorphous by x-ray diffraction, exhibit ferroelectric-like properties.

  7. EUV induced low temperature SF6-based plasma

    NASA Astrophysics Data System (ADS)

    Bartnik, A.; Wachulak, P.; Fiedorowicz, H.; Skrzeczanowski, W.; Jarocki, R.; Fok, T.; Węgrzyński, Ł.

    2016-03-01

    In this work spectral investigations of low temperature F-rich photoionized plasmas were performed. The photoionized plasmas were created by irradiation of SF6 gas with intense EUV (extreme ultraviolet) radiation pulses. Two laser plasma EUV sources of different parameters used in the experiments were based on 0.8 J /4ns and 10 J/ 10 ns Nd:YAG lasers respectively. Both sources operated at 10 Hz repetition rate. The EUV radiation was focused using a dedicated reflective collector onto the gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of the SF6 gas resulted in dissociative ionization of the molecules, leading to creation of SFn+ ions and fluorine atoms. Further photo- or electron impact ionization and excitation processes allow for formation of photoionized plasmas emitting radiation in the wide spectral range. Emission spectra were measured in the EUV and optical ranges. The EUV spectra contained multiple spectral lines, originating from F II, F III and S II ions. The UV/VIS spectra were composed of spectral lines corresponding to radiative transitions in F II, F I and S II species. A computer simulation of the F II spectrum was performed using a collisional-radiative PrismSPECT code. Parameters of the photoionized plasmas were estimated by fitting the spectrum obtained from the simulations to the experimental one. Apart from that, the electron temperature was estimated employing Boltzmann plots based on the UV/VIS spectrum.

  8. Prospecting for zones of contaminated ground-water discharge to streams using bottom-sediment gas bubbles

    USGS Publications Warehouse

    Vroblesky, Don A.; Lorah, Michelle M.

    1991-01-01

    Decomposition of organic-rich bottom sediment in a tidal creek in Maryland results in production of gas bubbles in the bottom sediment during summer and fall. In areas where volatile organic contaminants discharge from ground water, through the bottom sediment, and into the creek, part of the volatile contamination diffuses into the gas bubbles and is released to the atmosphere by ebullition. Collection and analysis of gas bubbles for their volatile organic contaminant content indicate that relative concentrations of the volatile organic contaminants in the gas bubbles are substantially higher in areas where the same contaminants occur in the ground water that discharges to the streams. Analyses of the bubbles located an area of previously unknown ground-water contamination. The method developed for this study consisted of disturbing the bottom sediment to release gas bubbles, and then capturing the bubbles in a polyethylene bag at the water-column surface. The captured gas was transferred either into sealable polyethylene bags for immediate analysis with a photoionization detector or by syringe to glass tubes containing wires coated with an activated-carbon adsorbent. Relative concentrations were determined by mass spectral analysis for chloroform and trichloroethylene.

  9. New electrolytes and electrolyte additives to improve the low temperature performance of lithium-ion batteries

    SciTech Connect

    Yang, Xiao-Qing

    2008-08-31

    In this program, two different approaches were undertaken to improve the role of electrolyte at low temperature performance - through the improvement in (i) ionic conductivity and (ii) interfacial behavior. Several different types of electrolytes were prepared to examine the feasibil.ity of using these new electrolytes in rechargeable lithium-ion cells in the temperature range of +40°C to -40°C. The feasibility studies include (a) conductivity measurements of the electrolytes, (b) impedance measurements of lithium-ion cells using the screened electrolytes with di.fferent electrochemical history such as [(i) fresh cells prior to formation cycles, (ii) after first charge, and (iii) after first discharge], (c) electrical performance of the cells at room temperatures, and (d) charge discharge behavior at various low temperatures. Among the different types of electrolytes investigated in Phase I and Phase II of this SBIR project, carbonate-based LiPF6 electrolytes with the proposed additives and the low viscous ester as a third component to the carbonate-based LiPF6 electrolytes show promising results at low temperatures. The latter electrolytes deliver over 80% of room temperature capacity at -20{degrees}C when the lithium-ion cells containing these electrolytes were charged at -20 °C. Also, there was no lithium plating when the lithium­-ion cells using C-C composite anode and LiPF{sub 6} in EC/EMC/MP electrolyte were charged at -20{degrees}C at C/5 rate. The studies of ionic conductivity and AC impedance of these new electrolytes, as well as the charge discharge characteristics of lithium-ion cells using these new electrolytes at various low temperatures provide new findings: The reduced capacity and power capability, as well as the problem of lithium plating at low temperatures charging of lithium-ion cells are primarily due to slow the lithium-ion intercalation/de-intercalation kinetics in the carbon structure.

  10. Dissociation degree of nitrogen molecule in low-pressure microwave-discharge nitrogen plasma with various rare-gas admixtures

    NASA Astrophysics Data System (ADS)

    Kuwano, Kei; Nezu, Atsushi; Matsuura, Haruaki; Akatsuka, Hiroshi

    2016-08-01

    The dissociation degree of nitrogen molecules is examined in a microwave discharge nitrogen-rare gas mixture plasma with a total discharge pressure of 1 Torr, by actinometry measurement. Although the spectral line from the excited nitrogen atoms is overlapped by the band spectrum of the N2 first positive system (1PS), the subtraction of the 1PS spectrum fitted theoretically can successfully extract the atomic nitrogen line, which enables actinometry measurement. The nitrogen dissociation degree decreases with increasing mixture ratio of Ar to Kr, whereas it increases with He, which is attributed to the variations in the electron temperature and density. When we dilute the nitrogen with neon, however, we find an anomalous increase in the nitrogen dissociation degree by several orders of magnitude even at a downstream region in the discharge tube. The reason for the dissociation enhancement upon adding neon is discussed in terms of atomic and molecular processes in the plasma.

  11. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(С3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2]  >  10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron–ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t  =  1–30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  12. Low Temperature Trapping: from Reactions to Spectroscopy

    NASA Astrophysics Data System (ADS)

    Schlemmer, S.; Asvany, O.; Brunken, S.

    2013-06-01

    The kinetics of ion - molecule reactions are investigated in higher-order multipole traps by observation of the temporal evolution of mass selected parent ions in the presence of a neutral reaction partner. Rate coeffients for fast reactions (proceeding at collision rate) and very slow reactions (taking millions of collisions) are determined over a wide range of temperatures. Endothermic or hindered reactions can be promoted by excitation of the ion via absorption of a photon. Scanning the photon energy while detecting the number of product ions establishes an action spectroscopy method which we developed over the last 10-15 years and termed LIR: laser or light induced reactions. The main advantages of LIR are mass selection of the parent ion and low temperature conditions in the trap. Long storage times in combination with a near unity detection efficiency make LIR one of the most sensitive spectroscopy methods. The status quo of LIR will be discussed on selected examples. Recent measurements are concerned with ro-vibrational spectra of CH_2D^+ and CH_5^+ at highest resolution using cw OPO radiation. In the particular case of CH_5^+, the lines in the mid IR have been measured at a nominal temperature of 10 K and a frequency comb has been used for absolute calibration. Line positions can be determined to an accuracy which shall enable us in the future to obtain rotational spectra in a THz-IR double resonance approach. We tested the feasibility of this two photon method recently on H_2D^+. S. Schlemmer, T. Kuhn, E. Lescop, and D. Gerlich, Laser excited N_2^+ in a 22-Pole Trap: Experimental Studies of Rotational Relaxation Processes, Int. J. Mass Spectrometry and Ion Processes, 185-187, 589-602, (1999), S.D. Ivanov, O. Asvany, A. Witt, E. Hugo, G. Mathias, B. Redlich, D. Marx and S. Schlemmer, Quantum-induced symmetry breaking explains infrared spectra of CH_5^+ isotopologues, Nature Chemistry, 2, 298-302 (2010) S. Gaertner, J. Krieg, A. Klemann, O. Asvany and S

  13. Composite Materials for Low-Temperature Applications

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Composite materials with improved thermal conductivity and good mechanical strength properties should allow for the design and construction of more thermally efficient components (such as pipes and valves) for use in fluid-processing systems. These materials should have wide application in any number of systems, including ground support equipment (GSE), lunar systems, and flight hardware that need reduced heat transfer. Researchers from the Polymer Science and Technology Laboratory and the Cryogenics Laboratory at Kennedy Space Center were able to develop a new series of composite materials that can meet NASA's needs for lightweight materials/composites for use in fluid systems and also expand the plastic-additive markets. With respect to thermal conductivity and physical properties, these materials are excellent alternatives to prior composite materials and can be used in the aerospace, automotive, military, electronics, food-packaging, and textile markets. One specific application of the polymeric composition is for use in tanks, pipes, valves, structural supports, and components for hot or cold fluid-processing systems where heat flow through materials is a problem to be avoided. These materials can also substitute for metals in cryogenic and other low-temperature applications. These organic/inorganic polymeric composite materials were invented with significant reduction in heat transfer properties. Decreases of 20 to 50 percent in thermal conductivity versus that of the unmodified polymer matrix were measured. These novel composite materials also maintain mechanical properties of the unmodified polymer matrix. These composite materials consist of an inorganic additive combined with a thermoplastic polymer material. The intrinsic, low thermal conductivity of the additive is imparted into the thermoplastic, resulting in a significant reduction in heat transfer over that of the base polymer itself, yet maintaining most of the polymer's original properties. Normal

  14. Low Temperature Electrical Performance Characteristics of Li-Ion Cells

    SciTech Connect

    Nagasubramanian, Ganesan

    1999-04-29

    Advanced rechargeable lithium-ion batteries are presently being developed and commercialized worldwide for use in consumer electronics, military and space applications. The motivation behind these efforts involves, among other things, a favorable combination of energy and power density. For some of the applications the power sources may need to perform at a reasonable rate at subambient temperatures. Given the nature of the lithium-ion cell chemistry the low temperature performance of the cells may not be very good. At Sandia National Laboratories, we have used different electrochemical techniques such as impedance and charge/discharge at ambient and subambient temperatures to probe the various electrochemical processes that are occurring in Li-ion cells. The purpose of this study is to identify the component that reduces the cell performance at subambient temperatures. We carried out 3-electrode impedance measurements on the cells which allowed us to measure the anode and cathode impedances separately. Our impedance data suggests that while the variation in the electrolyte resistance between room temperature and -20"C is negligible, the cathode electrolyte interracial resistance increases substantially in the same temperature span. We believe that the slow interracial charge transfer kinetics at the cathode electrolyte may be responsible for the increase in cell impedance and poor cell performance.

  15. Investigations of Biofilm-Forming Bacterial Cells by Atomic Force Microscopy Prior to and Following Treatment from Gas Discharge Plasmas

    NASA Astrophysics Data System (ADS)

    Vandervoort, K. G.; Joaquin, J. C.; Kwan, C.; Bray, J. D.; Torrico, R.; Abramzon, N.; Brelles-Marino, G.

    2007-03-01

    We present investigations of biofilm-forming bacteria before and after treatment from gas discharge plasmas. Gas discharge plasmas represent a way to inactivate bacteria under conditions where conventional disinfection methods are often ineffective. These conditions involve bacteria in biofilm communities, where cooperative interactions between cells make organisms less susceptible to standard killing methods. Rhizobium gallicum and Chromobacterium violaceum were imaged before and after plasma treatment using an atomic force microscope (AFM). In addition, cell wall elasticity was studied by measuring force distance curves as the AFM tip was pressed into the cell surface. Results for cell surface morphology and micromechanical properties for plasma treatments lasting from 5 to 60 minutes were obtained and will be presented.

  16. Effect Of Gas Mixture Composition On Tar Removal Process In A Pulsed Corona Discharge Reactor

    NASA Astrophysics Data System (ADS)

    Filimonova E.; Naidis, G.

    2010-07-01

    The simulation of naphthalene (C10H8) removal from several gas mixtures (pure nitrogen, mixtures containing N2 with CO2, CO, H2, H2O, and biogas - the product of biomass gasification), has been investigated. The modeling is based on the experimental data obtained in the reactor with a pulsed positive corona discharge. The problem of simulation of the cleaning process includes description of two stages. The first, fast stage is generation of primary active species during streamer propagation. The second, slow stage is the chain of chemical transformations triggered by these species. The input parameters for the modeling of the second stage are G-values for generation of primary active species, obtained under consideration of streamer dynamics. Simulation of the second stage of the removal process takes into account the processes of chemical kinetics and diffusion outside and inside of streamer traces during multi-pulsed treatment. Besides neutral active species, streamer discharges produce electrons and ions. Primary positive ions (N2+, CO+, CO2+, H2+, H2O+) in a chain of fast ion-molecule reactions transform into more stable positive ions. The ions recombine with electrons. Both ion-molecule reactions and electron-ion recombination process are additional (to dissociation of gas molecules by electron impact in the streamer head) sources of neutral active species. The relative contribution of these sources to the G-values for H, OH and O is rather large. In our modeling two approaches have been used. At the first approach the contribution of ion-molecule reactions is estimated approximately assuming that the dominating stable ion is N4+ (in pure N2 and its mixtures with H2) or CO2+ (in mixtures including CO2). Other way is the calculations with kinetic scheme including the molecular ions, aquated ions such as H3O(H2O)m+, NO2(H2O)-, NO2(H2O)+ and other. The comparison of results of two approaches is presented. Only full kinetic scheme allowed describing the

  17. Two-dimensional simulation of the development of an inhomogeneous volume discharge in a Ne/Xe/HCl gas mixture

    SciTech Connect

    Bychkov, Yu. I. Yampolskaya, S. A.; Yastremskii, A. G.

    2013-05-15

    The kinetic processes accompanying plasma column formation in an inhomogeneous discharge in a Ne/Xe/HCl gas mixture at a pressure of 4 atm were investigated by using a two-dimensional model. Two cathode spots spaced by 0.7 cm were initiated by distorting the cathode surface at local points, which resulted in an increase in the field strength in the cathode region. Three regimes differing in the charging voltage, electric circuit inductance, and electric field strength at the local cathode points were considered. The spatiotemporal distributions of the discharge current; the electron density; and the densities of excited xenon atoms, HCl(v = 0) molecules in the ground state, and HCl(v > 0) molecules in vibrational levels were calculated. The development of the discharge with increasing the electron density from 10{sup 4} to 10{sup 16} cm{sup -3} was analyzed, and three characteristic stages in the evolution of the current distribution were demonstrated. The width of the plasma column was found to depend on the energy deposited in the discharge. The width of the plasma column was found to decrease in inverse proportion to the deposited energy due to spatiotemporal variations in the rates of electron production and loss. The calculated dependences of the cross-sectional area of the plasma column on the energy deposited in the discharge agree with the experimental results.

  18. Low Temperature Surface Carburization of Stainless Steels

    SciTech Connect

    Collins, Sunniva R; Heuer, Arthur H; Sikka, Vinod K

    2007-12-07

    Low-temperature colossal supersaturation (LTCSS) is a novel surface hardening method for carburization of austenitic stainless steels (SS) without the precipitation of carbides. The formation of carbides is kinetically suppressed, enabling extremely high or colossal carbon supersaturation. As a result, surface carbon concentrations in excess of 12 at. % are routinely achieved. This treatment increases the surface hardness by a factor of four to five, improving resistance to wear, corrosion, and fatigue, with significant retained ductility. LTCSS is a diffusional surface hardening process that provides a uniform and conformal hardened gradient surface with no risk of delamination or peeling. The treatment retains the austenitic phase and is completely non-magnetic. In addition, because parts are treated at low temperature, they do not distort or change dimensions. During this treatment, carbon diffusion proceeds into the metal at temperatures that constrain substitutional diffusion or mobility between the metal alloy elements. Though immobilized and unable to assemble to form carbides, chromium and similar alloying elements nonetheless draw enormous amounts of carbon into their interstitial spaces. The carbon in the interstitial spaces of the alloy crystals makes the surface harder than ever achieved before by more conventional heat treating or diffusion process. The carbon solid solution manifests a Vickers hardness often exceeding 1000 HV (equivalent to 70 HRC). This project objective was to extend the LTCSS treatment to other austenitic alloys, and to quantify improvements in fatigue, corrosion, and wear resistance. Highlights from the research include the following: • Extension of the applicability of the LTCSS process to a broad range of austenitic and duplex grades of steels • Demonstration of LTCSS ability for a variety of different component shapes and sizes • Detailed microstructural characterization of LTCSS-treated samples of 316L and other alloys

  19. An atmospheric air gas-liquid diffuse discharge excited by bipolar nanosecond pulse in quartz container used for water sterilization

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Yang, De-Zheng; Wang, Wen-Chun; Zhang, Shuai; Liu, Zhi-Jie; Tang, Kai; Song, Ying

    2013-12-01

    In this Letter, we report that the air gas-liquid diffuse discharge plasma excited by bipolar nanosecond pulse in quartz container with different bottom structures at atmospheric pressure. Optical diagnostic measurements show that bountiful chemically and biologically active species, which are beneficial for effective sterilization in some areas, are produced. Such diffuse plasmas are then used to treat drinking water containing the common microorganisms (Candida albicans and Escherichia coli). It is found that these plasmas can sterilize the microorganisms efficiently.

  20. Modeling and simulation of plasma gas flow driven by a single nanosecond-pulsed dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Xu, S. Y.; Cai, J. S.; Li, J.

    2016-10-01

    A simplified (7 species and 9 processes) plasma kinetic model is proposed to investigate the mechanism of the plasma aerodynamic actuation driven by nanosecond-pulsed dielectric barrier discharge (NS-DBD). The governing equations include conservation equations for each species, the Poisson equation for the electric potential, and Navier-Stokes equations for the gas dynamic flow. Numerical simulations of plasma discharge and flow actuation on NS-DBD plasma actuators have been carried out. Key discharge characteristics and the responses of the quiescent air were reproduced and compared to those obtained in experiments and numerical simulations. Results demonstrate that the reduced plasma kinetic model is able to capture the dominant species and reactions to predict the actuation in complicated hydrodynamics. For the one-dimensional planar and two-dimensional symmetric NS-DBD, the forming of the sheath collapse is mainly due to the charge accumulation and secondary emission from the grounded electrode. Rapid species number density rise and electric field drop occur at the edge of the plasma sheath, where the space charge density gradient peaks. For the aerodynamic actuation with typical asymmetry electrodes, discharge characteristics have a core area on the right edge of the upper electrode, where the value can be much higher. The formation and propagation of the compression waves generated through rapid heating have also been performed and compared to those measured in a recent experiment. Energy release leads to gas expansion and forms a cylindrical shock wave, centering at the upper electrode tip with low gas acceleration. For the present single pulsed 12 kV case, the mean temperature of gas heating reaches about 575 K at 1 μs and decreases to about 460 K at 10 μs.

  1. Dependence of Ozone Generation on Gas Temperature Distribution in AC Atmospheric Pressure Dielectric Barrier Discharge in Oxygen

    NASA Astrophysics Data System (ADS)

    Takahashi, Go; Akashi, Haruaki

    AC atmospheric pressure multi-filament dielectric barrier discharge in oxygen has been simulated using two dimensional fluid model. In the discharge, three kinds of streamers have been obtained. They are primary streamers, small scale streamers and secondary streamers. The primary streamers are main streamers in the discharge and the small scale streamers are formed after the ceasing of the primary streamers. And the secondary streamers are formed on the trace of the primary streamers. In these streamers, the primary and the small scale streamers are very effective to generate O(3P) oxygen atoms which are precursor of ozone. And the ozone is generated mainly in the vicinity of the dielectrics. In high gas temperature region, ozone generation decreases in general. However, increase of the O(3P) oxygen atom density in high gas temperature region compensates decrease of ozone generation rate coefficient. As a result, amount of ozone generation has not changed. But if the effect of gas temperature was neglected, amount of ozone generation increases 10%.

  2. Enhancement of the EUV emission of a metallic capillary discharge operated with argon ambient gas

    SciTech Connect

    Chan, L. S. Tan, D. Saboohi, S. Yap, S. L. Wong, C. S.

    2014-03-05

    In this work, the metallic capillary discharge is operated with two different ambients: air and argon. In the experiments reported here, the chamber is first evacuated to 10{sup −5} mbar. The discharge is initiated by the transient hollow cathode effect generated electron beam, with either air ambient or argon ambient at 10{sup −4} mbar. The bombardment of electron beam at the tip of the stainless steel anode gives rise to a metallic vapor, which is injected into the capillary and initiates the main discharge through the capillary. The EUV emission is measured for different discharge voltages for both conditions and compared. It is found that the metallic capillary discharge with argon ambientis able to produce higher EUV energy compared to that with air ambient.

  3. Quantitative diagnostics of reactive, multicomponent low-temperature plasmas

    NASA Astrophysics Data System (ADS)

    Schwarz-Selinger, Thomas

    2013-09-01

    The special emphasis in this work is put on the quantitative determination of the plasma composition of an inductively coupled low temperature plasma (ICP). Several standard plasma diagnostic techniques were applied. As a test case for a multi-component low-temperature plasma argon-hydrogen as well as argon-hydrogen-nitrogen mixed plasmas were investigated. For steady-state plasma operation the ion density and electron temperature were determined with a single tip Langmuir probe. A multi-grid miniature retarding-field analyzer was used to measure the mass integrated ion flux. An energy-dispersive mass spectrometer - a so-called plasma monitor (PM) - was applied to sample ions from the plasma to derive the ion composition. The degree of dissociation of hydrogen and the gas temperature were derived from optical emission spectroscopy. The gas temperature was estimated by the rotational distribution of the Q-branch lines of the hydrogen Fulcher- α diagonal band for the argon-hydrogen mixed plasmas and from the second positive system of N2 in argon-hydrogen-nitrogen mixed plasmas. The degree of dissociation of hydrogen was measured by actinometry. The influence of the substrate material of the counter electrode (stainless steel, copper, tungsten, Macor, and aluminium) on the atomic hydrogen concentration was investigated by OES. In addition, ionization-threshold mass spectrometry (ITMS) was used to determine the densities of atomic nitrogen (N) and atomic hydrogen (H and D). Pulsed plasma operation was applied to directly measure the loss rate of H, D and N in the afterglow from the temporal decay of the ITMS signal. From these data the wall loss probability of atomic hydrogen was determined. Furthermore, a zero-dimensional rate equation model was devised to explain the ion composition in these mixed plasmas with different admixture ratios. In addition to the experimental data on electron density, gas temperature, total pressure, atomic hydrogen density, and Ar, H2

  4. Membrane Separation Processes at Low Temperatures

    NASA Technical Reports Server (NTRS)

    Parrish, Clyde

    2002-01-01

    The primary focus of Kennedy Space Center's gas separation activities has been for carbon dioxide, nitrogen, and argon used in oxygen production technologies for Martian in-situ resource utilization (ISRU) projects. Recently, these studies were expanded to include oxygen for regenerative life support systems. Since commercial membrane systems have been developed for separation of carbon dioxide, nitrogen, and oxygen, initially the studies focused on these membrane systems, but at lower operating temperatures and pressures. Current investigations art examining immobilized liquids and solid sorbents that have the potential for higher selectivity and lower operating temperatures. The gas separation studies reported here use hollow fiber membranes to separate carbon dioxide, nitrogen, and argon in the temperature range from 230 to 300 K. Four commercial membrane materials were used to obtain data at low feed and permeate pressures. These data were used with a commercial solution-diffusion modeling tool to design a system to prepare a buffer gas from the byproduct of a process to capture Martian carbon dioxide. The system was designed to operate, at 230 K with a production rate 0.1 sLpm; Feed composition 30% CO2, 44% N2, and 26% Ar; Feed pressure 104 kPa (780); and Permeate pressure 1 kPa (6 torr); Product concentration 600 ppm CO2. This new system was compared with a similar system designed to operate at ambient temperatures (298 K). The systems described above, along with data, test apparatus, and models are presented.

  5. Li-Ion Cell Development for Low Temperature Applications

    NASA Technical Reports Server (NTRS)

    Huang, C.-K.; Sakamoto, J. S.; Surampudi, S.; Wolfenstine, J.

    2000-01-01

    JPL is involved in the development of rechargeable Li-ion cells for future Mars Exploration Missions. The specific objectives are to improve the Li-ion cell cycle life performance and rate capability at low temperature (<<-20 C) in order to enhance survivability of the Mars lander and rover batteries. Poor Li-ion rate capability at low temperature has been attributed to: (1) the electrolytes becoming viscous or freezing and/or (2) reduced electrode capacity that results from decreased Li diffusivity. Our efforts focus on increasing the rate capability at low temperature for Li-ion cells. In order to improve the rate capability we evaluated the following: (1) cathode performance at low temperatures, (2) electrode active material particle size on low temperature performance and (3) Li diffusivity at room temperature and low temperatures. In this paper, we will discuss the results of our study.

  6. Low-temperature experimental studies in molecular biophysics: a review

    NASA Astrophysics Data System (ADS)

    Blagoi, Yu. P.; Sheina, G. G.; Ivanov, A. Yu.; Radchenko, E. D.; Kosevich, M. V.; Shelkovsky, V. S.; Boryak, O. A.; Rubin, Yu. V.

    1999-10-01

    The enormous contribution of Academician Boris I. Verkin in laying the foundation of the biophysics research school in Kharkov are recalled in the Jubilee year commemorating his 80th birthday. This review describes the development and realization of his ideas during the last two decades at Molecular Biophysics Department of the Institute for Low Temperature Physics and Engineering (ILTPE) in Kharkov. Main results of the studies of physical and chemical properties of biopolymer fragments and biologically active compounds using methods of low-temperature electron-vibrational spectroscopy, low-temperature secondary-emission mass spectrometry, and low-temperature luminescence spectroscopy are presented.

  7. The low temperature chemistry of Titan's atmosphere

    NASA Astrophysics Data System (ADS)

    Ramírez Jiménez; , Sandra I.; Contreras Jiménez, Gastón

    2010-04-01

    In Titan's atmosphere there is a permanent transformation of its major constituents, nitrogen (N2) and methane (CH4), into more complex organic compounds. We have conducted a series of experiments in which a simulated Titan's atmosphere enriched with trace gases (C2H2, C6H6, CO) was subjected to short-period cold-plasma irradiations at liquid nitrogen temperature in a continuous flow regime. The electric plasma is produced by a high voltage generator at positive and negative polarity and at a constant power of 8.83 Watts. The identification of organic compounds formed in gas phase was performed coupling the gas chromatography and mass spectrometry techniques. They include all the hydrocarbons and nitriles already detected in the satellite's atmosphere, particularly the unsaturated and aromatic ones, and some oxygenated compounds. The energetic yield for each one of the identified compound was calculated and contrasted with results of experiments performed during the last decade in different laboratories (Cabane and Chassefière, 1995; Coll et al., 1999; Ramírez et al., 2001; Ramírez et al., 2002) finding interesting remarks.

  8. Stealth export of hydrogen and methane from a low temperature serpentinization system

    NASA Astrophysics Data System (ADS)

    Larson, B. I.; Lang, S. Q.; Lilley, M. D.; Olson, E. J.; Lupton, J. E.; Nakamura, K.; Buck, N. J.

    2015-11-01

    Chemical input to the deep sea from hydrothermal systems is a globally distributed phenomenon. Hydrothermal discharge is one of the primary mechanisms by which the Earth's interior processes manifest themselves at the Earth's surface, and it provides a source of energy for autotrophic processes by microbes that are too deep to capitalize on sunlight. Much is known about the water-column signature of this discharge from high-temperature mid-ocean Ridge (MOR) environments and their neighboring low-temperature counterparts. Hydrothermal discharge farther away from the ridge, however, has garnered less attention, owing in part to the difficulty in finding this style of venting, which eludes methods of detection that work well for high-temperature 'black smoker'-type venting. Here we present a case study of the plume from one such 'invisible' off-axis environment, The Lost City, with an emphasis on the dissolved volatile content of the hydrothermal plume. Serpentinization and abiotic organic synthesis generate significant concentrations of H2 and CH4 in vent fluid, but these species are unevenly transported to the overlying plume, which itself appears to be a composite of two different sources. A concentrated vent cluster on the talus slope channels fluid through at least eight chimneys, producing a water-column plume with the highest observed concentrations of CH4 in the field. In contrast, a saddle in the topography leading up to a carbonate cap hosts broadly distributed, nearly invisible venting apparent only in its water-column signals of redox potential and dissolved gas content, including the highest observed plume H2. After normalizing H2 and CH4 to the 3He background-corrected anomaly (3HeΔ) to account for mixing and relative amount of mantle input, it appears that, while a minimum of 60% of CH4 is transported out of the system, greater than 90% of the H2 is consumed in the subsurface prior to venting. The exception to this pattern occurs in the plume

  9. Characterizations of atmospheric pressure low temperature plasma jets and their applications

    NASA Astrophysics Data System (ADS)

    Karakas, Erdinc

    2011-12-01

    Atmospheric pressure low temperature plasma jets (APLTPJs) driven by short pulses have recently received great attention because of their potential in biomedical and environmental applications. This potential is due to their user-friendly features, such as low temperature, low risk of arcing, operation at atmospheric pressure, easy handheld operation, and low concentration of ozone generation. Recent experimental observations indicate that an ionization wave exists and propagates along the plasma jet. The plasma jet created by this ionization wave is not a continuous medium but rather consists of a bullet-like-structure known as "Plasma Bullet". More interestingly, these plasma bullets actually have a donut-shaped makeup. The nature of the plasma bullet is especially interesting because it propagates in the ambient air at supersonic velocities without any externally applied electric field. In this dissertation, experimental insights are reported regarding the physical and chemical characteristics of the APLTPJs. The dynamics of the plasma bullet are investigated by means of a high-speed ICCD camera. A plasma bullet propagation model based on the streamer theory is confirmed with adequate explanations. It is also found that a secondary discharge, ignited by the charge accumulation on the dielectric electrode surfaces at the end of the applied voltage, interrupts the plasma bullet propagation due to an opposing current along the ionization channel. The reason for this interesting phenomenon is explained in detail. The plasma bullet comes to an end when the helium mole fraction along the ionization channel, or applied voltage, or both, are less than some critical values. The presence of an inert gas channel in the surrounding air, such as helium or argon, has a critical role in plasma bullet formation and propagation. For this reason, a fluid dynamics study is employed by a commercially available simulation software, COMSOL, based on finite element method. Spatio

  10. Optical Radiation of a Gas Discharge in an Argon-Sulfur Mixture

    NASA Astrophysics Data System (ADS)

    General, A. A.; Kelman, V. A.; Zhmenyak, Yu. V.; Zvenigorodsky, V. V.

    2016-09-01

    Plasma luminescence spectra of longitudinal repetitively pulsed discharge in a mixture of argon-sulfur were investigated in the spectral range 300-1000 nm. The major emitting plasma components, such as S2 molecules, sulfur atoms, and ions, are formed as a result of the fragmentation of clusters and sulfur molecules, which starts at energies of ~10 eV. Plasma radiation power increases three-fold on heating the discharge tube from ~50oC to 120oC.

  11. Low temperature dry scrubbing reaction kinetics and mechanisms: Volume 2

    SciTech Connect

    Prudich, M.E.; Sampson, K.J.; Visneski, M.J.; Reddy, S.N.; Ben-Said, L.; Maldei, M. )

    1992-03-01

    A resistance-in-series kinetic model for the low temperature reaction of sulfur dioxide with limestone is presented. The resistances considered are the gas-phase transport of sulfur dioxide, the liquid-phase diffusion of both the sulfur species and the calcium species and the solid-phase dissolution of limestone. The model uses film theory to predict the liquid concentrations of the dissolved species and assumes an instantaneous reaction between the sulfur species and calcium species. The kinetic model incorporates three rate equations for the removal of sulfur dioxide. When the rate of removal is limited by the diffusion of sulfur dioxide across the gas film surrounding the limestone particle, a gas-phase controlled rate equation is used. When the diffusion of the reacting species through the liquid film covering the limestone particle is the predominant resistance, a liquid-phase controlled rate equation is used. When the rate is limited by the dissolution of limestone, a solid-phase controlled rate equation is used. The kinetic model is incorporated into a flow model for the fixed-bed Limestone Emission Control (LEC) system. The LEC system employs a fixed-bed of standard quarry-sized limestone to remove sulfur dioxide from coal-fired boiler flue gases. The flow modeling equations for the fixed-bed LEC system, which include simultaneous heat and mass transfer as applied to water-phase evaporation and condensation are also presented. The combined kinetic and flow model is subjected to a parametric study and the modeling predictions are compared with experimental results.

  12. Mastectomy - discharge

    MedlinePlus

    Breast removal surgery - discharge; Nipple-sparing mastectomy - discharge; Total mastectomy - discharge; Simple mastectomy - discharge; Modified radical mastectomy - discharge; Breast cancer - mastectomy -discharge

  13. Influence of gas temperature on self-sustained volume discharge characteristics in working mixtures of a repetitively pulsed COIL

    SciTech Connect

    Aksinin, V I; Kazantsev, S Yu; Kononov, I G; Podlesnykh, S V; Firsov, K N; Antsiferov, S A; Velikanov, S D; Kalinovskii, V V; Konovalov, V V; Mikhalkin, V N; Sevryugin, I V

    2014-02-28

    The influence of gas temperature on the characteristics of a self-sustained volume discharge was studied in the working mixtures of a chemical oxygen – iodine laser with pulsed electricdischarge production of iodine atoms. In experiments, laser working mixtures were modelled by the mixture of air and iodide C{sub 2}H{sub 5}I. It was established that mixture heating is accompanied by an increase in the voltage across the discharge plasma and by a decrease in the discharge current. By varying the temperature of the mixture with the iodine content of ∼2.7% and initial pressure p=12 Torr from 22 °C to 96 °C, the current amplitude falls by ∼12%, and at the instant corresponding to a maximal current the voltage raises by ∼22%. Such a change in the discharge characteristics is explained by a higher rate of electron attachment to vibrationally excited iodide molecules at elevated temperatures. (active media)

  14. Model of a surface-wave discharge at atmospheric pressure with a fixed profile of the gas temperature

    NASA Astrophysics Data System (ADS)

    Nikovski, M.; Kiss'ovski, Zh; Tatarova, E.

    2016-03-01

    We present a 3D model of a surface-wave-sustained discharge at 2.45 GHz at atmospheric pressure. A small plasma source creates a plasma column in a dielectric tube and a plasma torch is observed above the top. The plasma parameters and the axial profile of the gas temperature are significantly changed in the presence of the substrate above the plasma torch. The Boltzmann equation for electrons under the local approximation is solved, together with the heavy particle balance equations at a fixed axial profile of the gas temperature. The model of this finite length plasma column includes also the dispersion relation of azimuthally-symmetric surface waves. A detailed collisional-radiative model is also implemented for argon discharge at atmospheric pressure, which includes 21 rate balance equations for excited Ar atoms [(Ar(1s5-1s2), Ar(2p10-2p1), Ar(2s3d), Ar(3p)], for positive Ar+ and Ar2 + ions and for excited molecules. The changes in the EEDF shape and the mean electron energy along the plasma column are investigated and the axial structures of the discharge and plasma parameters are obtained.

  15. Nitriding molybdenum: Effects of duration and fill gas pressure when using 100-Hz pulse DC discharge technique

    NASA Astrophysics Data System (ADS)

    Ikhlaq, U.; R., Ahmad; Shafiq, M.; Saleem, S.; S. Shah, M.; Hussain, T.; A. Khan, I.; K., Abbas; S. Abbas, M.

    2014-10-01

    Molybdenum is nitrided by a 100-Hz pulsed DC glow discharge technique for various time durations and fill gas pressures to study the effects on the surface properties of molybdenum. X-ray diffractometry (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) are used for the structural and morphological analysis of the nitrided layers. Vickers' microhardness tester is utilized to investigate surface microhardness. Phase analysis shows the formation of more molybdenum nitride molecules for longer nitriding durations at fill gas pressures of 2 mbar and 3 mbar (1 bar = 105 Pa). A considerable increase in surface microhardness (approximately by a factor of 2) is observed for longer duration (10 h) and 2-mbar pressure. Longer duration (10 h) and 2-mbar fill gas pressure favors the formation of homogeneous, smooth, hard layers by the incorporation of more nitrogen.

  16. Experimental and modeling investigation of the low-temperature oxidation of n-heptane

    PubMed Central

    Herbinet, Olivier; Husson, Benoit; Serinyel, Zeynep; Cord, Maximilien; Warth, Valérie; Fournet, René; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei

    2013-01-01

    The low-temperature oxidation of n-heptane, one of the reference species for the octane rating of gasoline, was investigated using a jet-stirred reactor and two methods of analysis: gas chromatography and synchrotron vacuum ultra-violet photo-ionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected using gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of temperature (500-1100K), at a residence time of 2s, at a pressure of 800 torr (1.06 bar) and at stoichiometric conditions. The fuel was diluted in an inert gas (fuel inlet mole fraction of 0.005). Attention was paid to the formation of reaction products involved in the low temperature oxidation of n-heptane, such as olefins, cyclic ethers, aldehydes, ketones, species with two carbonyl groups (diones) and ketohydroperoxides. Diones and ketohydroperoxides are important intermediates in the low temperature oxidation of n-alkanes but their formation have rarely been reported. Significant amounts of organic acids (acetic and propanoic acids) were also observed at low temperature. The comparison of experimental data and profiles computed using an automatically generated detailed kinetic model is overall satisfactory. A route for the formation of acetic and propanoic acids was proposed. Quantum calculations were performed to refine the consumption routes of ketohydroperoxides towards diones. PMID:23712100

  17. Experimental and modeling investigation of the low-temperature oxidation of n-heptane.

    PubMed

    Herbinet, Olivier; Husson, Benoit; Serinyel, Zeynep; Cord, Maximilien; Warth, Valérie; Fournet, René; Glaude, Pierre-Alexandre; Sirjean, Baptiste; Battin-Leclerc, Frédérique; Wang, Zhandong; Xie, Mingfeng; Cheng, Zhanjun; Qi, Fei

    2012-12-01

    The low-temperature oxidation of n-heptane, one of the reference species for the octane rating of gasoline, was investigated using a jet-stirred reactor and two methods of analysis: gas chromatography and synchrotron vacuum ultra-violet photo-ionization mass spectrometry (SVUV-PIMS) with direct sampling through a molecular jet. The second method allowed the identification of products, such as molecules with hydroperoxy functions, which are not stable enough to be detected using gas chromatography. Mole fractions of the reactants and reaction products were measured as a function of temperature (500-1100K), at a residence time of 2s, at a pressure of 800 torr (1.06 bar) and at stoichiometric conditions. The fuel was diluted in an inert gas (fuel inlet mole fraction of 0.005). Attention was paid to the formation of reaction products involved in the low temperature oxidation of n-heptane, such as olefins, cyclic ethers, aldehydes, ketones, species with two carbonyl groups (diones) and ketohydroperoxides. Diones and ketohydroperoxides are important intermediates in the low temperature oxidation of n-alkanes but their formation have rarely been reported. Significant amounts of organic acids (acetic and propanoic acids) were also observed at low temperature. The comparison of experimental data and profiles computed using an automatically generated detailed kinetic model is overall satisfactory. A route for the formation of acetic and propanoic acids was proposed. Quantum calculations were performed to refine the consumption routes of ketohydroperoxides towards diones.

  18. Low temperature induced changes in gene expression in low temperature-sensitive and -tolerant tomatoes

    SciTech Connect

    Vallejos, C.E.; Camp, S.F. )

    1989-04-01

    The objective of this project is to identify genes that control low temperature (LT) tolerance/acclimation in a high altitude ecotype of the wild tomato L. hirsutum. LT induced changes in gene expression were monitored via 2-D gel electrophoresis and fluorography of radiolabeled in vitro translation products. Two types of changes were detected when both LT-sensitive (L. esculentum, L. hirsutum 100m) and LT-tolerant (L. hirsutum 3100m) genotypes were exposed to 6{degrees}C for 12 h in the dark: (a) specific LT induction or up-regulation or up-regulation of some genes; and (b) changes in the turnover rate of day specific mRNA's. Increased exposure lead to the disappearance of some mRNA's. These comparisons will lead to the identification of mRNA's involved in acclimation, and those involved in stress response.

  19. Phosphorus-doped glass proton exchange membranes for low temperature direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Prakash, Shruti; Mustain, William E.; Park, SeongHo; Kohl, Paul A.

    Phosphorus-doped silicon dioxide thin films were used as ion exchange membranes in low temperature proton exchange membrane fuel cells. Phosphorus-doped silicon dioxide glass (PSG) was deposited via plasma-enhanced chemical vapor deposition (PECVD). The plasma deposition of PSG films allows for low temperature fabrication that is compatible with current microelectronic industrial processing. SiH 4, PH 3 and N 2O were used as the reactant gases. The effect of plasma deposition parameters, substrate temperature, RF power, and chamber pressure, on the ionic conductivity of the PSG films is elucidated. PSG conductivities as high as 2.54 × 10 -4 S cm -1 were realized, which is 250 times higher than the conductivity of pure SiO 2 films (1 × 10 -6 S cm -1) under identical deposition conditions. The higher conductivity films were deposited at low temperature, moderate pressure, limited reactant gas flow rate, and high RF power.

  20. Low temperature magnetic force microscopy on ferromagnetic and superconducting oxides

    NASA Astrophysics Data System (ADS)

    Sirohi, Anshu; Sheet, Goutam

    2016-05-01

    We report the observation of complex ferromagnetic domain structures on thin films of SrRuO3 and superconducting vortices in high temperature superconductors through low temperature magnetic force microscopy. Here we summarize the experimental details and results of magnetic imaging at low temperatures and high magnetic fields. We discuss these data in the light of existing theoretical concepts.