Science.gov

Sample records for low-temperature proton irradiation

  1. Minimizing material damage using low temperature irradiation

    NASA Astrophysics Data System (ADS)

    Craven, E.; Hasanain, F.; Winters, M.

    2012-08-01

    Scientific advancements in healthcare driven both by technological breakthroughs and an aging and increasingly obese population have lead to a changing medical device market. Complex products and devices are being developed to meet the demands of leading edge medical procedures. Specialized materials in these medical devices, including pharmaceuticals and biologics as well as exotic polymers present a challenge for radiation sterilization as many of these components cannot withstand conventional irradiation methods. The irradiation of materials at dry ice temperatures has emerged as a technique that can be used to decrease the radiation sensitivity of materials. The purpose of this study is to examine the effect of low temperature irradiation on a variety of polymer materials, and over a range of temperatures from 0 °C down to -80 °C. The effectiveness of microbial kill is also investigated under each of these conditions. The results of the study show that the effect of low temperature irradiation is material dependent and can alter the balance between crosslinking and chain scission of the polymer. Low temperatures also increase the dose required to achieve an equivalent microbiological kill, therefore dose setting exercises must be performed under the environmental conditions of use.

  2. Effects of low temperature periodic annealing on the deep-level defects in 200 keV proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Chiu, T. T.; Loo, R. Y.

    1981-01-01

    The GaAs solar cell has shown good potential for space applications. However, degradation in performance occurred when the cells were irradiated by high energy electrons and protons in the space environment. The considered investigation is concerned with the effect of periodic thermal annealing on the deep-level defects induced by the 200 keV protons in the AlGaAs-GaAs solar cells. Protons at a fluence of 10 to the 11th P/sq cm were used in the irradiation cycle, while annealing temperatures of 200 C (for 24 hours), 300 C (six hours), and 400 C (six hours) were employed. The most likely candidate for the E(c) -0.71 eV electron trap observed in the 200 keV proton irradiated samples may be due to GaAs antisite, while the observed E(v) +0.18 eV hole trap has been attributed to the gallium vacancy related defect. The obtained results show that periodic annealing in the considered case does not offer any advantages over the one time annealing process.

  3. Preliminary Low Temperature Electron Irradiation of Triple Junction Solar Cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2007-01-01

    For many years extending solar power missions far from the sun has been a challenge not only due to the rapid falloff in solar intensity (intensity varies as inverse square of solar distance) but also because some of the solar cells in an array may exhibit a LILT (low intensity low temperature) degradation that reduces array performance. Recent LILT tests performed on commercial triple junction solar cells have shown that high performance can be obtained at solar distances as great as approx. 5 AU1. As a result, their use for missions going far from the sun has become very attractive. One additional question that remains is whether the radiation damage experienced by solar cells under low temperature conditions will be more severe than when measured during room temperature radiation tests where thermal annealing may take place. This is especially pertinent to missions such as the New Frontiers mission Juno, which will experience cell irradiation from the trapped electron environment at Jupiter. Recent testing2 has shown that low temperature proton irradiation (10 MeV) produces cell degradation results similar to room temperature irradiations and that thermal annealing does not play a factor. Although it is suggestive to propose the same would be observed for low temperature electron irradiations, this has not been verified. JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature. A fluence of 1E15 1MeV electrons was

  4. Interaction between solute atoms and radiation defects in Fe-Ni-Si and Fe-Mn-Si alloys under irradiation with proton ions at low-temperature

    NASA Astrophysics Data System (ADS)

    Murakami, Kenta; Iwai, Takeo; Abe, Hiroaki; Sekimura, Naoto

    2016-12-01

    Isochronal annealing followed by residual resistivity measurements at 12 K was performed in Fe-0.6Ni-0.6Si and Fe-1.5Mn-0.6Si alloys irradiated with 1 MeV proton ions below 70 K, and recovery stages were compared with those of Fe-0.6Ni and Fe-1.5Mn. The effects of silicon addition in the Fe-Ni alloy was observed as the appearance of a new recovery stage at 282-372 K, presumably corresponding to clustering of solute atoms in matrix, and as a change in mixed dumbbell migration at 122-142 K. Silicon addition mitigated the manganese effect in Fe-Mn alloy that is obstructing the recovery of radiation defects. Reduction of resistivity in Fe-Mn-Si alloy also suggested formation of small solute atom clusters.

  5. Fast decay of the visible band electron in e-irradiated crystalline ice at low temperature: The isotope effects and the role of a mobile proton in the decay

    NASA Astrophysics Data System (ADS)

    Kawabata, Keisuke; Nagata, Yoshio; Okabe, Shigeru; Kimura, Novio; Tsumori, Kunihiko; Kawanishi, Masaharu; Buxton, George V.; Salmon, G. Arthur

    1982-10-01

    The trapped electron which absorbs in the visible region in crystalline ice e-vis has been studied by pulse radiolysis in the low temperature range 6 to 77 K using 2 μs pulses, and above 77 K using pulses of 40 ps to 6 ns width. The half-life of e-vis in ice around 77 K is unusually short, 8 ns in H2O ice and 120 ns in D2O ice. The decay of e-vis in ice is found to fit Hummel's empirical equation for the decay by geminate ion recombination in a spur. Several other pieces of evidence indicate that the decay occurs in a spur. Electron tunneling from e-vis to the OD radical does not occur in D2O ice. It is concluded that a proton (H3O+) or a deuteron (D3O+) produced in a spur by the irradiation migrates through ice to react with immobile e-vis in the same spur, and that the half-life of e-vis is determined by the mobility of the proton or deuteron. The Arrhenius plot of the half-life in the range 100 to 6 K is nonlinear and shows an activation energy of 20 meV at higher temperatures and much smaller values at temperatures below 50 K (1 meV below 15 K). The causes of the unusual Arrhenius plot and the isotope effect on the proton mobility are discussed.

  6. Lattice-assisted proton hopping in oxides at low temperatures

    NASA Astrophysics Data System (ADS)

    Samgin, A. L.

    2013-12-01

    Stimulated diffusion of protons in oxides such as ABO3 crystals and rutile TiO2 is discussed in the context of quantum Brownian motion. A self-consistent lattice-assisted proton hopping (LAPH) model is developed by going from white noise (characteristic of the standard stochastic theory of superionic conduction) to colored noise in the Markovian limit. This model differs from the commonly used ion jump models in that the hydrogen diffusion rate prefactor is identified as a quantity proportional to the frequency of phonon assistance. Application of the quantum fluctuation-dissipation theorem suggests that the dynamic activation energy for diffusion is a function of a bath-mode frequency. The LAPH model can predict enhanced rates of barrier jumping at room temperature compared to thermally activated proton diffusion. This indicates that low-temperature solid oxide devices are potential candidates for use in hydrogen energy research. The LAPH model offers a valid explanation for the mechanism of high protonic mobility recently observed for TiO2 in a picosecond transient pump-probe experiment. This unexpected dominant lattice relaxation channel must be considered as a new classical-like (but low-temperature) proton transfer mechanism. For vibration-assisted protonic jumps to occur at low temperature, the phonon assistance must be classified as a low-frequency vibration specific to each lattice.

  7. Thermal conductivity degradation of graphites irradiated at low temperature

    SciTech Connect

    Snead, L.L.; Burchell, T.D.

    1995-04-01

    The objective of this work is to study the thermal conductivity degradation of new, high thermal conductivity graphites and to compare these results to more standard graphites irradiated at low temperatures. Several graphites and graphite composites (C/C`s) have been irradiated near 150{degree}C and at fluences up to a displacement level of 0.24 dpa. The materials ranged in unirradiated room temperature thermal conductivity of these materials varied from 114 W/m-K for H-451 isotropic graphite, to 670 W/m-K for unidirectional FMI-1D C/C composite. At the irradiation temperature a saturation reduction in thermal conductivity was seen to occur at displacement levels of approximately 0.1 dpa. All materials were seen to degrade to approximately 10 to 14 % of their original thermal conductivity after irradiation. The effect of post irradiation annealing on the thermal conductivity was also studied.

  8. Quantum Effects at a Proton Relaxation at Low Temperatures

    NASA Astrophysics Data System (ADS)

    Kalytka, V. A.; Korovkin, M. V.

    2016-11-01

    Quantum effects during migratory polarization in multi-well crystals (including multi-well silicates and crystalline hydrates) are investigated in a variable electric field at low temperatures by direct quantum-mechanical calculations. Based on analytical solution of the quantum Liouville kinetic equation in the linear approximation for the polarizing field, the non-stationary density matrix is calculated for an ensemble of non-interacting protons moving in the field of one-dimensional multi-well crystal potential relief of rectangular shape. An expression for the complex dielectric constant convenient for a comparison with experiment and calculation of relaxer parameters is derived using the nonequilibrium polarization density matrix. The density matrix apparatus can be used for analytical investigation of the quantum mechanism of spontaneous polarization of a ferroelectric material (KDP and DKDP).

  9. Preliminary low temperature electron irradiation of triple junction solar cells

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.; Mueller, Robert L.; Scrivner, Roy L.; Helizon, Roger S.

    2005-01-01

    JPL has routinely performed radiation testing on commercial solar cells and has also performed LILT testing to characterize cell performance under far sun operating conditions. This research activity was intended to combine the features of both capabilities to investigate the possibility of any room temperature annealing that might influence the measured radiation damage. Although it was not possible to maintain the test cells at a constant low temperature between irradiation and electrical measurements, it was possible to obtain measurements with the cell temperature kept well below room temperature.

  10. Low-temperature electron irradiation and annealing in pure magnesium

    SciTech Connect

    Simester, J.H.

    1982-01-01

    In this study of magnesium after 1.0 MeV electron irradiations at 1.55/sup 0/K, it has been observed that the damage production rate in Mg is (3.57 +- 0.03) x 10/sup -26/ ..cap omega..cm/(e/sup -/ cm/sup 2/). There is no evidence for thermal annealing up to 4/sup 0/K. The low temperature recovery in magnesium is found to consist of two broad substages between 4 to 14/sup 0/K, both of which exhibit evidence for correlated and uncorrelated recovery processes. The two substages are found to have very different frequency factors for annealing, and there is evidence that the recovery processes in the second substage are influenced by those in the first. A model for recovery is proposed using the split configuration in the plane which explains the first substage as being due to interstitial migration in the basal plane and the second to migration perpendicular to the plane.

  11. Proton irradiation on materials

    NASA Technical Reports Server (NTRS)

    Chang, C. Ken

    1993-01-01

    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.

  12. Proton irradiation on materials

    NASA Astrophysics Data System (ADS)

    Chang, C. Ken

    1993-12-01

    A computer code is developed by utilizing a radiation transport code developed at NASA Langley Research Center to study the proton radiation effects on materials which have potential application in NASA's future space missions. The code covers the proton energy from 0.01 Mev to 100 Gev and is sufficient for energetic protons encountered in both low earth and geosynchronous orbits. With some modification, the code can be extended for particles heavier than proton as the radiation source. The code is capable of calculating the range, stopping power, exit energy, energy deposition coefficients, dose, and cumulative dose along the path of the proton in a target material. The target material can be any combination of the elements with atomic number ranging from 1 to 92, or any compound with known chemical composition. The generated cross section for a material is stored and is reused in future to save computer time. This information can be utilized to calculate the proton dose a material would receive in an orbit when the radiation environment is known. It can also be used to determine, in the laboratory, the parameters such as beam current of proton and irradiation time to attain the desired dosage for accelerated ground testing of any material. It is hoped that the present work be extended to include polymeric and composite materials which are prime candidates for use as coating, electronic components, and structure building. It is also desirable to determine, for ground testing these materials, the laboratory parameters in order to simulate the dose they would receive in space environments. A sample print-out for water subject to 1.5 Mev proton is included as a reference.

  13. Dose dependence of mechanical properties in tantalum and tantalum alloys after low temperature irradiation

    SciTech Connect

    Byun, Thak Sang

    2008-01-01

    The dose dependence of mechanical properties was investigated for tantalum and tantalum alloys after low temperature irradiation. Miniature tensile specimens of three pure tantalum metals, ISIS Ta, Aesar Ta1, Aesar Ta2, and one tantalum alloy, Ta-1W, were irradiated by neutrons in the High Flux Isotope Reactor (HFIR) at ORNL to doses ranging from 0.00004 to 0.14 displacements per atom (dpa) in the temperature range 60 C 100 oC. Also, two tantalum-tungsten alloys, Ta-1W and Ta-10W, were irradiated by protons and spallation neutrons in the LANSCE facility at LANL to doses ranging from 0.7 to 7.5 dpa and from 0.7 to 25.2 dpa, respectively, in the temperature range 50 C 160 oC. Tensile tests were performed at room temperature and at 250oC at nominal strain rates of about 10-3 s-1. All neutron-irradiated materials underwent progressive irradiation hardening and loss of ductility with increasing dose. The ISIS Ta experienced embrittlement at 0.14 dpa, while the other metals retained significant necking ductility. Such a premature embrittlement in ISIS Ta is believed to be because of high initial oxygen concentrations picked up during a pre-irradiation anneal. The Ta-1W and Ta-10W specimens irradiated in spallation condition experienced prompt necking at yield since irradiation doses for those specimens were high ( 0.7 dpa). At the highest dose, 25.2 dpa, the Ta-10W alloy specimen broke with little necking strain. Among the test materials, the Ta-1W alloy displayed the best combination of strength and ductility. The plastic instability stress and true fracture stress were nearly independent of dose. Increasing test temperature decreased strength and delayed the onset of necking at yield.

  14. Defects involving interstitial boron in low-temperature irradiated silicon

    NASA Astrophysics Data System (ADS)

    Khirunenko, L. I.; Sosnin, M. G.; Duvanskii, A. V.; Abrosimov, N. V.; Riemann, H.

    2016-12-01

    Interstitial boron-related defects in silicon subjected to irradiation with 5 MeV electrons at a temperature of 80 K are investigated by Fourier-transform infrared absorption spectroscopy. This study demonstrates the radiation-enhanced annealing of interstitial boron during irradiation. We have revealed the interaction, which occurs in the course of irradiation, of diffusing interstitial boron atoms with one another and with interstitial oxygen. The local vibrational modes associated with these defects are identified, and the thermal stability of the defects is determined.

  15. The PIREX proton irradiation facility

    SciTech Connect

    Victoria, M.

    1995-10-01

    The proton Irradiation Experiment (PIREX) is a materials irradiation facility installed in a beam line of the 590 MeV proton accelerator at the Paul Scherrer Institute. Its main purpose is the testing of candidate materials for fusion reactor components. Protons of this energy produce simultaneously displacement damage and spallation products, amongst them helium and can therefore simulate any possible synergistic effects of damage and helium, that would be produced by the fusion neutrons.

  16. Low Temperature Irradiation Embrittlement of Reactor Pressure Vessel Steels

    SciTech Connect

    Wang, Jy-An John

    2015-08-01

    The embrittlement trend curve development project for HFIR reactor pressure vessel (RPV) steels was carried out with three major tasks. Which are (1) data collection to match that used in HFIR steel embrittlement trend published in 1994 Journal Nuclear Material by Remec et. al, (2) new embrittlement data of A212B steel that are not included in earlier HFIR RPV trend curve, and (3) the adjustment of nil-ductility-transition temperature (NDTT) shift data with the consideration of the irradiation temperature effect. An updated HFIR RPV steel embrittlement trend curve was developed, as described below. NDTT( C) = 23.85 log(x) + 203.3 log (x) + 434.7, with 2- uncertainty of 34.6 C, where parameter x is referred to total dpa. The developed update HFIR RPV embrittlement trend curve has higher embrittlement rate compared to that of the trend curve developed in 1994.

  17. Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations

    NASA Astrophysics Data System (ADS)

    Sánchez-Mejorada, G.; Frias, D.

    2006-09-01

    A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 °K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.

  18. Irradiation of Frozen Solutions of Ferrous Sulphate as Dosimeter for Low Temperature Irradiations

    SciTech Connect

    Sanchez-Mejorada, G.; Frias, D.

    2006-09-08

    A theoretical model is presented for the evaluation of the energy transferred during the interaction of high energy radiation with icy bodies. Numerical simulations of the chemical reaction system reproduce the behavior of the icy systems (frozen solution of iron salts) after its interaction with the gamma radiation. Simulation experiments of extraterrestrial bodies are useful for space research, where low temperature dosimetry is necessary, especially in trips with humans or in the International Space Station (ISS) where humans are exposed to high radiation doses. The results showed that theoretical model applied for the irradiated system for different doses (from 10 to 2500Gy) and at different temperature (from 77 to 298 deg. K). The system under study was frozen solutions of iron salts and were analyzed (after Melting) by UV-spectroscopy. The systems were irradiates with gamma radiation. It is also shown that the response of the system is a function of the temperature and it was linear with as a function of dose.

  19. Effects of irradiation at low temperature on V-4Cr-4Ti

    SciTech Connect

    Alexander, D.J.; Snead, L.L.; Zinkle, S.J.

    1996-10-01

    Irradiation at low temperatures (100 to 275{degrees}C) to 0.5 dpa causes significant embrittlement and changes in the subsequent room temperature tensile properties of V-4Cr-4Ti. The yield strength and microhardness at room temperature increase with increasing irradiation temperature. The tensile flow properties at room temperature show large increases in strength and a complete loss of work hardening capacity with no uniform ductility. Embrittlement, as measured by an increase in the ductile-to-brittle transition temperature, increases with increasing irradiation temperature, at least up to 275{degrees}C. This embrittlement is not due to pickup of O or other interstitial solutes during the irradiation.

  20. Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell

    SciTech Connect

    Raza, Rizwan; Ahmed, Akhlaq; Akram, Nadeem; Saleem, Muhammad; Niaz Akhtar, Majid; Ajmal Khan, M.; Abbas, Ghazanfar; Alvi, Farah; Yasir Rafique, M.; Sherazi, Tauqir A.; Shakir, Imran; Mohsin, Munazza; Javed, Muhammad Sufyan; Zhu, Bin E-mail: zhubin@hubu.edu.cn

    2015-11-02

    In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport number of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.

  1. Temperature dependence of the deformation behavior of 316 stainless steel after low temperature neutron irradiation

    SciTech Connect

    Pawel-Robertson, J.E.; Rowcliffe, A.F.; Grossbeck, M.L.

    1996-10-01

    The effects of low temperature neutron irradiation on the tensile behavior of 316 stainless steel have been investigated. A single heat of solution annealed 316 was irradiated to 7 and 18 dpa at 60, 200, 330, and 400{degrees}C. The tensile properties as a function of dose and as a function of temperature were examined. Large changes in yield strength, deformation mode, strain to necking, and strain hardening capacity were seen in this irradiation experiment. The magnitudes of the changes are dependent on both irradiation temperature and neutron dose. Irradiation can more than triple the yield strength over the unirradiated value and decrease the strain to necking (STN) to less than 0.5% under certain conditions. A maximum increase in yield strength and a minimum in the STN occur after irradiation at 330{degrees}C but the failure mode remains ductile.

  2. Low-temperature irradiation effects on tensile and Charpy properties of low-activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Shiba, Kiyoyuki; Hishinuma, Akimichi

    2000-12-01

    Tensile and Charpy properties of low-activation ferritic steel, F82H irradiated up to 0.8 dpa at low temperature below 300°C were investigated. The helium effect on these properties was also investigated using the boron isotope doping method. Neutron irradiation increased yield stress accompanied with ductility loss, and it also shifted the ductile-to-brittle transition temperature (DBTT) from -50°C to 0°C. Boron-doped F82H showed larger degradation in DBTT and ductility than boron-free F82H, while they had the same yield stress before and after irradiation.

  3. The influence of low temperature on gamma-ray irradiated permanent magnets.

    PubMed

    Han, Young Chul; Cha, Hyun Gil; Kim, Chang Woo; Ji, Eun Sun; Kim, Young Hwan; Kang, Dong In; Kang, Young Soo

    2009-12-01

    The temperature effect on the magnetic property of gamma-ray irradiated Nd-Fe-B and Sr-Ferrite magnets has been investigated. When the permanent magnets are exposed to gamma-ray, it's magnetic and other related properties are declined with degree of dose. The decreased magnetic property by gamma-ray irradiation at low temperature is similar with the result of magnet at high temperature. The temperature effect on the gamma-ray irradiation at exposed moment is also regarded as one of the important parameters for the reduced magnetic properties. The gamma-irradiation at low temperature was carried out at 195 K, and the changed properties of two kinds of magnets before and after gamma-irradiation were comparatively studied. The increased demagnetization of the magnets were studied by Hall probe. And changed Curie temperature and micro-crystal structure of each permanent magnet by gamma-ray irradiation has been also studied. Moreover the strong and broad single line shape of ESR signal in the resonance magnetic field is attributed to unpaired electron of Fe2+ in the sample by the effect of gamma-ray irradiation.

  4. Proton irradiation and endometriosis

    SciTech Connect

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-08-01

    It was found that female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was determined to be 7 years after the proton exposure. The doses and energies of the radiation received by the experimental animals were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event. It is concluded that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crew members. 15 references.

  5. Proton irradiation and endometriosis

    SciTech Connect

    Wood, D.H.; Yochmowitz, M.G.; Salmon, Y.L.; Eason, R.L.; Boster, R.A.

    1983-08-01

    Female rhesus monkeys given single total-body exposures of protons of varying energies developed endometriosis at a frequency significantly higher than that of nonirradiated animals of the same age. The minimum latency period was 7 years after exposure. The doses and energies of the radiation received were within the range that could be received by an aircrew member in near-earth orbit during a random solar flare event, leading to the conclusion that endometriosis should be a consideration in assessing the risk of delayed radiation effects in female crewmembers.

  6. Using gamma irradiation and low temperature on microbial decontamination of red meat in Iran.

    PubMed

    Sedeh, F M; Arbabi, K; Fatolahi, H; Abhari, M

    2007-03-01

    Gamma irradiation can be used as one of the most efficient methods to reduce microorganisms in food. The irradiation of food is used for a number of purposes, including microbiological control, insects control and inhibition of sprouting and delay of senescence of living food. The aim of this study was to study effects of gamma irradiation, refrigeration and frozen storage as the combination process for improvement of red meat shelf-life. The bovine meat samples were treated with 0, 0.5, 1, 2 and 3 kGy of gamma irradiation and kept in refrigerator for 3 weeks and in freezer for 8 months. The control and irradiated samples were stored at 4-7°C and at -18°C for refrigeration and frozen storage, respectively; and microbial and chemical analyze was done at 1 week and 2 months intervals. In this study the optimum dose of gamma radiation in order to decrease the total count of Mesophilic bacteria, Coliforms, Staphylococcus aureus and especially for elimination of Salmonella was obtained at 3 kGy. Microbial analysis indicated that irradiation and storage at low temperature had a significant effect on the reduction of microbial loads. There was no significant difference in chemical characteristics during freezing storage in bovine meat. Also, irradiated meat samples (3 kGy) were stored in 4-7°C for 14 days, compared to 3 days for non irradiated samples.

  7. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  8. In Situ Irradiation and Measurement of Triple Junction Solar Cells at Low Intensity, Low Temperature (LILT) Conditions

    NASA Technical Reports Server (NTRS)

    Harris, R.D.; Imaizumi, M.; Walters, R.J.; Lorentzen, J.R.; Messenger, S.R.; Tischler, J.G.; Ohshima, T.; Sato, S.; Sharps, P.R.; Fatemi, N.S.

    2008-01-01

    The performance of triple junction InGaP/(In)GaAs/Ge space solar cells was studied following high energy electron irradiation at low temperature. Cell characterization was carried out in situ at the irradiation temperature while using low intensity illumination, and, as such, these conditions reflect those found for deep space, solar powered missions that are far from the sun. Cell characterization consisted of I-V measurements and quantum efficiency measurements. The low temperature irradiations caused substantial degradation that differs in some ways from that seen after room temperature irradiations. The short circuit current degrades more at low temperature while the open circuit voltage degrades more at room temperature. A room temperature anneal after the low temperature irradiation produced a substantial recovery in the degradation. Following irradiation at both temperatures and an extended room temperature anneal, quantum efficiency measurement suggests that the bulk of the remaining damage is in the (In)GaAs sub-cell

  9. Damage structure of austenitic stainless steel 316LN irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Grossbeck, M.L.; Rowcliffe, A.F.; Wakai, E.

    1998-03-01

    TEM disk specimens of austenitic stainless steel 316LN irradiated to damage levels of about 3 dpa at irradiation temperatures of either about 90 C or 250 C have been investigated by using transmission electron microscopy. The irradiation at 90 C and 250 C induced a dislocation loop density of 3.5 {times} 10{sup 22} m{sup {minus}3} and 6.5 {times} 10{sup 22} m{sup {minus}3}, a black dot density of 2.2 {times} 10{sup 23} m{sup {minus}3} and 1.6 {times} 10{sup 23} m{sup {minus}3}, respectively, in the steels, and a high density (<1 {times} 10{sup 22} m{sup {minus}3}) of precipitates in matrix. Cavities could be observed in the specimens after the irradiation. It is suggested that the dislocation loops, the black dots, and the precipitates cause irradiation hardening, an increase in the yield strength and a decrease in the uniform elongation, in the 316LN steel irradiated at low temperature.

  10. Tunnelling in low-temperature hydrogen-atom and proton transfers

    NASA Astrophysics Data System (ADS)

    Arnaut, Luis G.; Formosinho, Sebastião J.; Barroso, Monica

    2006-04-01

    The reaction path of the interacting-state model with the Lippincott-Schroeder potential for hydrogen bonds, is used in transition-state theory calculations with the semiclassical correction for tunnelling (LS-ISM/scTST) to estimate proton and hydrogen-atom transfer rates at low temperatures. Down to 100 K, the semiclassical correction leads to semi-empirical rates and isotope effects that are in good agreement with the thermal tautomerism of porphine, and the excited-state tautomerisms of salicylideneanilines and 2-(2'-hydroxyphenyl)benzoxazole. For lower temperatures, the tunnelling corrections become extremely high and unreliable. It is shown that the permeability of an Eckart barrier fitted to the curvature of the LS-ISM reaction path leads to good estimates of these reaction rates down to 2 K.

  11. Low energy plasma treatment of a proton exchange membrane used for low temperature fuel cells

    NASA Astrophysics Data System (ADS)

    Charles, C.; Ramdutt, D.; Brault, P.; Caillard, A.; Bulla, D.; Boswell, R.; Rabat, H.; Dicks, A.

    2007-05-01

    A low energy (~30 V) plasma treatment of Nafion, a commercial proton exchange membrane used for low temperature fuel cells, is performed in a helicon radiofrequency (13.56 MHz) plasma system. For argon densities in the 109-1010 cm-3 range, the water contact angle (hydrophobicity) of the membrane surface linearly decreases with an increase in the plasma energy dose, which is maintained below 5.1 J cm-2, and which results from the combination of an ion energy dose (up to 3.8 J cm-2) and a photon (mostly UV) energy dose (up to 1.3 J cm-2). The decrease in water contact angle is essentially a result of the energy brought to the surface by ion bombardment. The measured effect of the energy brought to the surface by UV light is found to be negligible.

  12. Investigation of the production and properties of lattice defects induced by low temperature reactor irradiation

    NASA Astrophysics Data System (ADS)

    Mansel, W.; Mueller, P.; Marangos, J.; Wahl, D.; Wallner, G.; Weck, W.; Riem, R.; Glaeser, W.

    1984-03-01

    Defects in irradiated metals were investigated. In the project defect production rate neutron spectra in the irradiated position of a low temperature irradiation stand are determined using the multiple probe activation method. In the project Mossbauer spectroscopy the trapping of interstitial atoms on 57C-impurity atoms in W and V is observed. It is found that in W interstitial atoms are mobile at 25 K. For Mo57Co a detailed understanding of the reactions between impurity and interstitial atoms is obtained. In the project alkali metals the mobility of interstitial atoms in K, Na and Li at 5K is demonstrated by resistivity measurements; step III lies at 16K. The investigations of the magnetic resistance on irradiated or worked K show that the macroscopic, residual defect systems in the samples are responsible for the anomalous linear evolution of the longitudinal high field magnetic resistance. In the project Fermi surfaces of Bi with lattice defects de Haas-van Alphen effect measurements on irradiated Bi show an increase up to 100% of the Fermi surface cross sections of the electron ellipsoid and a simultaneous decrease of the vacancies Fermi surface cross sections.

  13. National Low-Temperature Neutron Irradiation Facility (NLTNIF). The status of development

    SciTech Connect

    Coltman, R.R. Jr.; Kerchner, H.R.; Klabunde, C.E.; Young, F.W. Jr.

    1985-12-01

    In May 1983, the Department of Energy authorized the establishment of a National Low-Temperature Neutron Irradiation Facility (NLTNIF) at ORNL's Bulk Shielding Reactor (BSR). The NLTNIF, which will be available for qualified experiments at no cost to users, will provide a combination of high radiation intensities and special environmental and testing conditions that have not been previously available in the US. Since the DOE authorization, work has proceeded on the design and construction of the new facility without interruption. This report describes the present status of the development of the NLTNIF and the anticipated schedule for completion and performance testing. There is a table of the major specifications and capabilities and a schematic layout of the irradiation cryostate for design and dimensioning of test and experiment assemblies.

  14. Silicon solar cell characterization at low temperatures and low illumination as a function of particulate irradiation

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Peacock, C. L., Jr.

    1983-01-01

    Various configurations of back surface reflector silicon solar cells including small (2 x 2) cm and large (approx. 6 x 6) cm cells with conventional and wraparound contacts were subjected to 1 MeV electron irradiation and characterized under both Earth orbital and deep space conditions of temperatures and illuminations. Current-Voltage (I-V) data were generated from +65 C to -150 C and at incident illuminations from 135.3 mW/sq cm to 5.4 mW/sq cm for these cells. Degradation in cell performance which is manifested only under deep space conditions is emphasized. In addition, the effect of particle irradiation on the high temperature and high intensity and low temperature and low intensity performance of the cells is described. The cells with wraparound contacts were found to have lower efficiencies at Earth orbital conditions than the cells with conventional contacts.

  15. Low-temperature synthesis of allyl dimethylamine by selective heating under microwave irradiation used for water treatment

    NASA Astrophysics Data System (ADS)

    Tian, Binghui; Luan, Zhaokun; Li, Mingming

    2005-08-01

    Low-temperature synthesis of allyl dimethylamine (ADA) by selective heating under microwave irradiation (MI) used for water treatment is investigated. The effect of MI, ultrasound irradiation (UI) and conventional heating on yield of ADA, reaction time and the flocculation efficiency of polydiallyl dimethylammunion chloride (PDADMAC) prepared form ADA were studied. The results show that by selective heating at low temperature, MI not only increases yield of ADA and reduces reaction time, but also greatly enhances the flocculation efficiency of PDADMAC.

  16. Bend-fatigue properties of 590 MeV proton irradiated JPCA and 316F SS

    NASA Astrophysics Data System (ADS)

    Saito, S.; Kikuchi, K.; Usami, K.; Ishikawa, A.; Nishino, Y.; Kawai, M.; Dai, Y.

    2004-08-01

    A beam window of a spallation target will be subjected to proton/neutron irradiation, pressure wave and thermal stresses accompanied by high-energy proton beam injection. To obtain irradiation data, the SINQ target irradiation program (STIP) was initiated in 1996 at PSI. JAERI takes part in STIP and conducted the post-irradiation examination of JPCA, 316F. Irradiation conditions of JAERI specimens were as follows: proton energy was 590 MeV. Irradiation temperature ranged from 135 to 360 °C and irradiation dose from 6.3 to 12.5 dpa. The fatigue life of irradiated specimens is almost the same as that of unirradiated specimens. On the other hand, fracture surfaces varied with irradiation conditions. Specimens irradiated at low temperature fractured in a ductile manner. However, intergranular fractured surfaces were observed for 316F irradiated up to 12.5 dpa at 360 °C.

  17. Proton Irradiation Creep in Pyrocarbon

    SciTech Connect

    Was, Gary S.; Campbell, Anne

    2011-10-01

    This project aims to understand irradiation creep in pyrocarbon using proton irradiation under controlled stresses and temperatures. Experiments will be conducted over a range of temperatures and stresses per the proposal submitted. The work scope will include the preparation of samples, measurement of deposition thickness, thickness uniformity, and anisotropy. The samples produced will be made in strips, which will be used for the creep experiments. Materials used will include pyrolytic carbon (PyC), Highly Oriented Pyrolytic Graphite (HOPG), or graphite strip samples in that order depending upon success. Temperatures tested under will range from 800°C to 1200°C, and stresses from 6MPa to 20.7MPa. Optional testing may occur at 900°C and 1100°C and stresses from 6MPa to 20.7MPa if funding is available.

  18. Dose dependence of strength after low-temperature irradiation in metallic materials

    SciTech Connect

    Byun, Thak Sang; Li, Meimei; Farrell, Kenneth

    2013-01-01

    This study intends to review and characterize the low-temperature (< 200 oC) irradiation hardening behaviors in metallic materials and to propose new interpretations on the dose dependence of strength, particularly in the pre-hardening and saturation regimes. The analysis results of yield stress-dose curves indicate that four dose-dependence regimes exist: the pre-hardening, main hardening, saturation, and embrittlement regimes. The semi-log plots of yield stress versus dose data revealed that the pre-hardening regime displaying zero-hardening or softening was common at least for the alloys with low dose data available. It was observed that the dose range of the pre-hardening regime increased with the strength of material, which indicates that slower initiation in irradiation hardening is expected when strength is higher. For the majority of the metallic materials analyzed, it was reconfirmed that the exponent of the power-law hardening function was evaluated to be about 0.5 in the main hardening regime and about 0.1 in the saturation regime. In these positive hardening regimes the low strength pure metals such as Fe, Ta, Cu, and Zr displayed lower hardening exponents. The minimum dose to the saturation of irradiation hardening was in the range of 0.003 0.08 dpa, depending on the category of materials. It was also reaffirmed that there exists a strong relationship between the saturation in irradiation hardening and the occurrence of plastic instability at yield.

  19. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    SciTech Connect

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Wirth, Brian D; Snead, Lance Lewis

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  20. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    DOE PAGES

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...

    2016-01-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less

  1. Defect evolution in single crystalline tungsten following low temperature and low dose neutron irradiation

    NASA Astrophysics Data System (ADS)

    Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; Katoh, Yutai; Snead, Lance L.; Wirth, Brian D.

    2016-03-01

    The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (∼90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutron irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S-W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage, providing insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.

  2. Positron trapping at vacancies in electron-irradiated Si at low temperatures

    SciTech Connect

    Maekinen, J.; Corbel, C.; Hautojaervi, P.; Moser, P.; Pierre, F.

    1989-05-15

    Experimental results on positron trapping at vacancies in electron-irradiated silicon are presented. The positron lifetimes 273 +- 3 and 248 +- 2 ps in pure Si and heavily-phosphorus-doped Si ((P) = 10/sup 20/ cm/sup -3/) are assigned to a negative monovacancy V/sup -/ and a negative vacancy-phosphorus pair (V-P)/sup -/, respectively. In pure Si, positron trapping displays a strong negative temperature dependence, and the specific trapping rate reaches very large values (10/sup 17//sup --/10/sup 18/ s/sup -1/) at low temperatures. In Si:P the trapping rate is independent of temperature. These different temperature behaviors are attributed to different positron-trapping mechanisms, a cascade of one-phonon transitions in pure Si, and an Auger process in Si:P.

  3. Plastic instability behavior of bcc and hcp metals after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Byun, T. S.; Farrell, K.; Hashimoto, N.

    2004-08-01

    Plastic instability in uniaxial tensile deformation has been investigated for the body centered cubic (bcc) and hexagonal close packed (hcp) pure metals, V, Nb, Mo, and Zr, after low temperature (60-100 °C) neutron irradiation up to 0.7 dpa. Relatively ductile metals, V, Nb, and Zr, experienced uniform deformation prior to necking at low doses and prompt plastic instability at yield at high doses. Mo failed in a brittle mode within the elastic limit at doses above 0.0001 dpa. V showed a quasi-brittle failure at the highest dose of 0.69 dpa. In the ductile metals, plastic instability at yield occurred when the yield stress exceeded the plastic instability stress (PIS), which was nearly independent of dose. The PIS values for V, Nb, Mo, and Zr were about 390, 370, 510, and 170 MPa, respectively. The coincidence of plastic instability at yield and dislocation channeling cannot be generalized for all metallic materials.

  4. A study of irradiation-induced defects in silicon using low temperature photoluminescence

    NASA Technical Reports Server (NTRS)

    Streetman, B. G.

    1971-01-01

    Irradiation-induced defects in silicon, using low temperature photoluminescence as a probe of defect properties were investigated. The goal of this research was to gain new understanding of defects which degrade solar cell characteristics in a radiation environment. In this regard, an important aspect of this program was a study of radiation damage and annealing in lithium doped silicon, which is useful in reducing solar cell degradation. Luminescence was used to study defects because this property reveals electron transitions through a number of defect energy levels at any given annealing stage; the luminescence spectra give excellent resolution of many defect energy levels, and these measurements can be used to give defect symmetry in the lattice, impurity dependence, and annealing properties.

  5. Specific low temperature release of 131Xe from irradiated MOX fuel

    NASA Astrophysics Data System (ADS)

    Hiernaut, J.-P.; Wiss, T.; Rondinella, V. V.; Colle, J.-Y.; Sasahara, A.; Sonoda, T.; Konings, R. J. M.

    2009-08-01

    A particular low temperature behaviour of the 131Xe isotope was observed during release studies of fission gases from MOX fuel samples irradiated at 44.5 GWd/tHM. A reproducible release peak, representing 2.7% of the total release of the only 131Xe, was observed at ˜1000 K, the rest of the release curve being essentially identical for all the other xenon isotopes. The integral isotopic composition of the different xenon isotopes is in very good agreement with the inventory calculated using ORIGEN-2. The presence of this particular release is explained by the relation between the thermal diffusion and decay properties of the various iodine radioisotopes decaying all into xenon.

  6. A theoretical model of accelerated irradiation creep at low temperatures by transient interstitial absorption

    SciTech Connect

    Stoller, R.E.; Grossbeck, M.L.; Mansur, L.K.

    1990-01-01

    A theoretical model has been developed using the reaction rate theory of radiation effects to explain experimental results that showed higher than expected values of irradiation creep at low temperatures in the Oak Ridge Research Reactor. The customary assumption that the point defect concentrations are at steady state was not made; rather, the time dependence of the vacancy and interstitial concentrations and the creep rate were explicitly calculated. For temperatures below about 100 to 200{degree}C, the time required for the vacancy concentration to reach steady state exceeds the duration of the experiment. For example, if materials parameters typical of austenitic stainless steel are used, the calculated vacancy transient dose at 100{degree}C is about 100 dpa. At 550{degree}C this transient is over by 10{sup {minus}8} dpa. During the time that the vacancy population remains lower than its steady state value, dislocation climb is increased since defects of primarily one type are being absorbed. Using the time-dependent point defect concentrations, the dislocation climb velocity has been calculated as a function of time and a climb-enabled glide creep model had been invoked. The extended transient time for the vacancies leads to high creep rates at low temperatures. In agreement with the experimental observations, a minimum in the temperature dependence of creep is predicted at a temperature between 50 and 350{degree}C. The temperature at which the minimum occurs decreases as the irradiation dose increases. Predicted values of creep at 8 dpa are in good agreement with the results of the ORR-MFE-6J/7J experiment.

  7. Formation of nanocrystalline silicon in SiO x by soft X-ray irradiation at low temperature

    NASA Astrophysics Data System (ADS)

    Heya, Akira; Kusakabe, Fumito; Matsuo, Naoto; Kanda, Kazuhiro; Kohama, Kazuyuki; Ito, Kazuhiro

    2017-03-01

    The low-temperature formation of nanocrystalline Si (nc-Si) in SiO x film is one of the key technologies in the realization of Si-based photonics and memories. We proposed a low-temperature nc-Si formation method with soft X-ray irradiation. The nc-Si formation depended on the Si/O atomic ratio in the pristine SiO x film. The Si-rich regions in SiO x films with Si/O ratios higher than 0.67 were crystallized by atomic migration via electron excitation with soft X-ray irradiation at a photon energy near the core level of Si 2p. nc-Si with a mean size of 20 nm was formed by soft X-ray irradiation at a low temperature of 660 °C.

  8. Tensile and impact properties of vanadium-base alloys irradiated at low temperatures in the ATR-A1 experiment

    SciTech Connect

    Tsai, H.; Nowicki, L.J.; Billone, M.C.; Chung, H.M.; Smith, D.L.

    1998-03-01

    Subsize tensile and Charpy specimens made from several V-(4-5)Cr-(4-5)Ti alloys were irradiated in the ATR-A1 experiment to study the effects of low-temperature irradiation on mechanical properties. These specimens were contained in lithium-bonded subcapsules and irradiated at temperatures between {approx}200 and 300 C. Peak neutron damage was {approx}4.7 dpa. Postirradiation testing of these specimens has begun. Preliminary results from a limited number of specimens indicate a significant loss of work-hardening capability and dynamic toughness due to the irradiation. These results are consistent with data from previous low-temperature neutron irradiation experiments on these alloys.

  9. The photosynthetic properties of rice leaves treated with low temperature and high irradiance.

    PubMed

    Hirotsu, Naoki; Makino, Amane; Yokota, Satoshi; Mae, Tadahiko

    2005-08-01

    Photosynthetic characteristics in rice (Oryza sativa L.) leaves were examined after treatment with low temperature (15 degrees C) and high irradiance (1,500 micromol quanta m(-2) s(-1)). Decreases in quantum efficiencies in PSII (PhiPSII) and PSI (PhiPSI) and in the rate of CO2 assimilation were observed with a decrease in the maximal quantum efficiency of PSII (F(v)/F(m)) by simultaneous measurements of Chl fluorescence, P700+ absorbance and gas exchange. The decreases in PhiPSII were most highly correlated with those in CO2 assimilation. Although the initial (the activity immediately measured upon extraction) and total (the activity following pre-incubation with CO2 and Mg2+) activities of ribulose-1,5-bisphosphate (RuBP) carboxylase/oxygenase (Rubisco) decreased slightly, the maximal activity (the activity following treatment with SO4(2-)) of Rubisco remained almost constant. These results indicate that the decrease in CO2 assimilation rate with the decreasing F(v)/F(m) was not caused by a decrease in Rubisco activity but rather by a decrease in RuBP regeneration capacity which resulted from the decrease in the rate of the linear electron transport. On the other hand, the decrease in PhiPSI was very small and the ratio of PhiPSI to PhiPSII increased. The de-epoxidation state of xanthophyll cycle pigments also increased. Thus, the cyclic electron transport around PSI occurred in photoinhibited leaves.

  10. Response of Bacillus subtilis spores to dehydration and UV irradiation at extremely low temperatures.

    PubMed

    Dose, K; Klein, A

    1996-02-01

    Spores of Bacillus subtilis have been exposed to the conditions of extreme dehydration (argon/silica gel; simulated space vacuum) for up to 12 weeks at 298 K and 80 K in the dark. The inactivation has been correlated with the production of DNA-double strand-breaks. The temperature-dependence of the rate constants for inactivation or production of DNA-double strand-breaks is surprisingly low. Controls kept in the frozen state at 250 K for the same period of time showed no sign of deterioration. In another series of experiments the spores have been UV irradiated (253.7 nm) at 298 K, 200 K and 80 K after exposure to dehydrating conditions for 3 days. Fluence-effect relationships for inactivation, production of DNA-double strand-breaks and DNA-protein cross-links are presented. The corresponding F37-values for inactivation and production of DNA lesions are significantly increased only at 80 K (factor of 4 to 5). The data indicate that the low temperatures that prevail in the outer parts of the Solar System or at the nightside of Mars or the Moon are not sufficiently low to crucially inhibit inactivation by dehydration. Our data place further constraints on the panspermia hypothesis.

  11. Proton irradiation study of GFR candidate ceramics

    NASA Astrophysics Data System (ADS)

    Gan, Jian; Yang, Yong; Dickson, Clayton; Allen, Todd

    2009-06-01

    This work investigated the microstructural response of SiC, ZrC and ZrN irradiated with 2.6 MeV protons at 800 °C to a fluence of 2.75 × 10 19 protons/cm 2, corresponding to 0.71-1.8 displacement per atom (dpa), depending on the material. The change of lattice constant evaluated using HOLZ patterns is not observed. In comparison to Kr ion irradiation at 800 °C to 10 dpa from the previous studies, the proton irradiated ZrC and ZrN at 1.8 dpa show less irradiation damage to the lattice structure. The proton irradiated ZrC exhibits faulted loops which are not observed in the Kr ion irradiated sample. ZrN shows the least microstructural change from proton irradiation. The microstructure of 6H-SiC irradiated to 0.71 dpa consists of black dot defects at high density.

  12. Radiosterilisation of indomethacin PLGA/PEG-derivative microspheres: protective effects of low temperature during gamma-irradiation.

    PubMed

    Fernández-Carballido, Ana; Puebla, Patricia; Herrero-Vanrell, Rocío; Pastoriza, Pilar

    2006-04-26

    Currently, gamma-irradiation seems to be a good method for sterilising drug delivery systems made from biodegradable polymers. The gamma-irradiation of microspheres can cause several physicochemical changes in the polymeric matrix. These modifications are affected by the temperature, irradiation dose and nature of the encapsulated drug and additives. This study has aimed to evaluate the influence of temperature during the sterilisation process by gamma irradiation in indomethacin PLGA microspheres including a PEG-derivative. Microspheres were prepared by the solvent evaporation method from o/w emulsion and were then exposed to gamma-irradiation. A dose of 25 kGy was used to ensure effective sterilisation. Some microspheres were sterilised with dry ice protection that guaranteed a low temperature during the process whilst others were sterilised without such dry ice protection. The effects of gamma-irradiation on the characteristics of non-loaded PLGA/PEG-derivative and indomethacin loaded PLGA/PEG-derivative microspheres with and without protection were studied. Non-protected microspheres showed changes in their morphological surface, polymer glass transition temperature, molecular weight and release rate of indomethacin after sterilisation. However, microspheres sterilised with protection did not show significant differences after gamma-irradiation exposure. The sterilisation method was satisfactory when the indomethacin loaded microspheres including a PEG-derivative were exposed to gamma-irradiation at low temperature.

  13. Effect of Low Temperature Irradiation in ATR On The Mechanical Properties of Ternary V-Cr-Ti Alloys

    SciTech Connect

    Hamilton, Margaret L.; Toloczko, Mychailo B.; Oliver, Brian M.; Garner, Francis A.

    2000-09-01

    Tensile tests and shear punch teats were performed on a variety of vanadium alloys that were irradiated in the Advanced Test Reactor (ATR) at temperatures between 200 and 300 degrees C to doses between 3 and 5 dpa. Tests were performed at room temperature and the irradiation temperature. The results of both the tensile tests and the shear punch tests show that following low temperature irradiation, the yield strength increased by a factor of 3-4 while the ultimate strength increased by a factor of approximately 3.

  14. Proton irradiation of simple gas mixtures: Influence of irradiation parameters

    NASA Technical Reports Server (NTRS)

    Sack, Norbert J.; Schuster, R.; Hofmann, A.

    1990-01-01

    In order to get information about the influence of irradiation parameters on radiolysis processes of astrophysical interest, methane gas targets were irradiated with 6.5 MeV protons at a pressure of 1 bar and room temperature. Yields of higher hydrocarbons like ethane or propane were found by analysis of irradiated gas samples using gas chromatography. The handling of the proton beam was of great experimental importance for determining the irradiation parameters. In a series of experiments current density of the proton beam and total absorbed energy were shown to have a large influence on the yields of produced hydrocarbons. Mechanistic interpretations of the results are given and conclusions are drawn with regard to the chemistry and the simulation of various astrophysical systems.

  15. Production of organic molecules by proton irradiation

    NASA Technical Reports Server (NTRS)

    Scattergood, T.; Lesser, P.; Owen, T.

    1974-01-01

    Preliminary experiments were carried out to investigate the effectiveness of proton irradiation for producing organic chromophores. The source of the 2 MeV protons used in the experiments was a model Van de Graaff accelerator. The gas cells used were hollow aluminum cylinders. The test results show that energetic protons can be an effective energy source for the formation of complex molecules from simple ones. With the exception of sulfide compounds none of the molecules that were identified are colored. However, coloring agents could be contained in unresolvable fractions.

  16. Tonoplast lipid composition and proton pump of pineapple fruit during low-temperature storage and blackheart development.

    PubMed

    Zhou, Yuchan; Pan, Xiaoping; Qu, Hongxia; Underhill, Steven J R

    2014-05-01

    Vacuole represents a major storage organelle playing vital roles in pH homoeostasis and cellular detoxification. The chemical and functional properties of tonoplast in response to chilling temperature and their roles in chilling injury are largely unknown. In the current study, lipid composition of tonoplast and the activities of two vacuolar proton pumps, H?-ATPase (V-ATPase) and H?-pyrophosphatase (V-PPase), were investigated in accordance with the development of blackheart, a form of chilling injury in pineapple fruit (Ananas comosus). Chilling temperature at 10 °C for 1 week induced irreversible blackheart injury in concurrence with a substantial decrease in V-ATPase activity. By contrast, the activity was increased after 1 week at 25 °C. The activity of V-PPase was not changed under both temperatures. Level of total phospholipids of tonoplast decreased at 10 °C, but increased at 25 °C. There was no change at the level of total glycolipids under both temperatures. Thus, low temperature increased the ratio of total glycolipids vs. total phospholipids of tonoplast. Phosphatidylcholine and phosphatidylethanolamine were the predominant phospholipids of tonoplast. Low temperature increased the relative level of phosphatidic acid but decreased the percentage of both phosphatidylcholine and phosphatidylethanolamine. Unsaturated fatty acids accounted for over 60 % of the total tonoplast fatty acids, with C18:1 and C18:2 being predominant. Low temperature significantly decreased the percentage of C18:3. Modification of membrane lipid composition and its effect on the functional property of tonoplast at low temperature were discussed in correlation with their roles in the development of chilling injury in pineapple fruit.

  17. [A role of some intracellular signaling cascades in planarian regeneration activated under irradiation with low-temperature argon plasma].

    PubMed

    Ermakov, A M; Ermakova, O N; Maevskiĭ, E I

    2014-01-01

    Using inhibitory analysis the role of some intracellular signaling pathways in activation of planarian regeneration under the influence of low-temperature argon plasma (LTAP) has been investigated. Inactivation of specific inhibitors of intracellular signaling enzymes such as the receptor tyrosine kinase (EGFR), TGF β receptor, calmodulin, adenylate cyclase, phospholipase A2, phospholipase C, cyclin-dependent protein kinase, JAK2-protein kinase, JNK-protein kinase MEK-protein kinase led to inhibition of the head growth during its regeneration in planarians. Pretreatment with LTAP irradiation provided no inhibitory action of some cascades regulating proliferation. However, the inhibitors of the key regulators of regeneration: TGF β receptor, calmodulin and MEK-protein kinase completely suppressed the activating effect of plasma. Thus, by the example of regenerating planarians it is shown, that biological activity of low-temperature argon plasma LTAP is caused by modulation of a plurality of cellular signaling systems.

  18. Impact behavior of 9-Cr and 12-Cr ferritic steels after low-temperature irradiation

    SciTech Connect

    Klueh, R.L.; Vitek, J.M.; Corwin, W.R.; Alexander, D.J.

    1987-01-01

    Miniature Charpy impact specimens of 9Cr-1MoVNb and 12Cr-1MoVW steels and these steels with 1 and 2% Ni were irradiated in the High-Flux Isotope Reactor (HFIR) at 50/sup 0/C to displacement damage levels of up to 9 dpa. Nickel was added to study the effect of transmutation helium. Irradiation caused an increase in the ductile-brittle transition temperature (DBTT). The 9Cr-1MoVNb steels, with and without nickel, showed a larger shift than the 12Cr-1MoVW steels, with and without nickel. The results indicated that helium also increased the DBTT. The same steels were previously irradiated at higher temperatures. From the present and past tests, the effect of irradiation temperature on the DBTT behavior can be evaluated. For the 9Cr-1MoVNb steel, there is a continuous decrease in the magnitude of the DBTT increase up to an irradiation temperature of about 400/sup 0/C, after which the shift drops rapidly to zero at about 450/sup 0/C. The DBTT of the 12Cr-1MoVW steel shows a maximum increase at an irradiation temperature of about 400/sup 0/C and less of an increase at either higher or lower irradiation temperatures.

  19. Low temperature gamma ray irradiation effects on polymer materials (4)-gas analysis of GFRP and CFRP

    NASA Astrophysics Data System (ADS)

    Kudoh, H.; Kasai, N.; Sasuga, T.; Seguchi, T.

    1996-11-01

    Gas analysis was carried out at RT after gamma-irradiation at room temperature and 77K for glass fiber reinforced plastic (GFRP) and carbon fiber reinforced plastic (CFRP) having the same epoxy resin matrix. Gas yield from CFRP was less than that from GFRP at RT, but comparable at 77 K. The yields of CO and CO 2 showed a large dependence on the irradiation temperature, i.e. they were much less at 77 K. Radiation resistance of GFRP and CFRP towards 77 K irrdiation is expected to be higher than that towards RT irradiation.

  20. Low temperature FTIR spectroscopy provides new insights in the pH-dependent proton pathway of proteorhodopsin.

    PubMed

    Verhoefen, Mirka-Kristin; Schäfer, Gabriela; Shastri, Sarika; Weber, Ingrid; Glaubitz, Clemens; Mäntele, Werner; Wachtveitl, Josef

    2011-12-01

    In the presented study the low pH photocycle of proteorhodopsin is extensively investigated by means of low temperature FTIR spectroscopy. Besides the already well-known characteristics of the all-trans and 13-cis retinal vibrations the 77K difference spectrum at pH 5.1 shows an additional negative signal at 1744 cm(-1) which is interpreted as indicator for the L state. The subsequent photocycle steps are investigated at temperatures higher than 200K. The combination of visible and FTIR spectroscopy enabled us to observe that the deprotonation of the Schiff base is linked to the protonation of an Asp or Glu side chain - the new proton acceptor under acidic conditions. The difference spectra of the late intermediates are characterized by large amide I changes and two further bands ((-)1751 cm(-1)/(+)1725 cm(-1)) in the spectral region of the Asp/Glu ν(C=O) vibrations. The band position of the negative signature points to a transient deprotonation of Asp-97. In addition, the pH dependence of the acidic photocycle was investigated. The difference spectra at pH 5.5 show distinct differences connected to changes in the protonation state of key residues. Based on our data we propose a three-state model that explains the complex pH dependence of PR. 2011 Elsevier B.V. All rights reserved.

  1. Microstructural analysis of ferritic-martensitic steels irradiated at low temperature in HFIR

    SciTech Connect

    Hashimoto, N.; Robertson, J.P.; Rowcliffe, A.F.; Wakai, E.

    1998-09-01

    Disk specimens of ferritic-martensitic steel, HT9 and F82H, irradiated to damage levels of {approximately}3 dpa at irradiation temperatures of either {approximately}90 C or {approximately}250 C have been investigated by using transmission electron microscopy. Before irradiation, tempered HT9 contained only M{sub 23}C{sub 6} carbide. Irradiation at 90 C and 250 C induced a dislocation loop density of 1 {times} 10{sup 22} m{sup {minus}3} and 8 {times} 10{sup 21} m{sup {minus}3}, respectively. in the HT9 irradiated at 250 C, a radiation-induced phase, tentatively identified as {alpha}{prime}, was observed with a number density of less than 1 {times} 10{sup 20} m{sup {minus}3}. On the other hand, the tempered F82H contained M{sub 23}C{sub 6} and a few MC carbides; irradiation at 250 C to 3 dpa caused minor changes in these precipitates and induced a dislocation loop density of 2 {times} 10{sup 22} m{sup {minus}3}. Difference in the radiation-induced phase and the loop microstructure may be related to differences in the post-yield deformation behavior of the two steels.

  2. Evolution of radiation defects in nickel under low-temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Kozlov, A. V.; Panchenko, V. L.; Kozlov, K. A.; Russkikh, I. M.; Kozlov, An. V.

    2014-01-01

    Neutron irradiation of pure nickel samples in an IBB-2M research reactor has been performed at a temperature of 305 K to damaging doses of 0.0015 and 0.15 dpa. Radiation defects formed in the material under irradiation have been investigated using transmission electron microscopy. It has been established that the main types of defects are vacancy clusters and interstitial dislocation loops. Sizes of vacancy clusters have been measured, and histograms of the cluster-size distribution have been constructed. It has been shown that, after irradiation with a dose of 0.15 dpa, the average cluster size is nearly half of that for samples irradiated with a dose of 0.0015 dpa. In the framework of the model of the migration of point defects, their evolution under irradiation has been analyzed. It has been shown that, at a temperature of 305 K, vacancies in nickel are immobile and migrating interstitials falling into clusters recombine with vacancies in them, which results in the exhaustion of clusters. The average life span of clusters has been calculated, and average concentrations of vacancies and interstitials under irradiation have been estimated.

  3. Low-temperature formation of high-quality gate oxide by ultraviolet irradiation on spin-on-glass

    NASA Astrophysics Data System (ADS)

    Usuda, R.; Uchida, K.; Nozaki, S.

    2015-11-01

    Although a UV cure was found to effectively convert a perhydropolysilazane (PHPS) spin-on-glass film into a dense SiOx film at low temperature, the electrical characteristics were never reported in order to recommend the use of PHPS as a gate-oxide material that can be formed at low temperature. We have formed a high-quality gate oxide by UV irradiation on the PHPS film, and obtained an interface midgap trap density of 3.4 × 1011 cm-2 eV-1 by the UV wet oxidation and UV post-metallization annealing (PMA), at a temperature as low as 160 °C. In contrast to the UV irradiation using short-wavelength UV light, which is well known to enhance oxidation by the production of the excited states of oxygen, the UV irradiation was carried out using longer-wavelength UV light from a metal halide lamp. The UV irradiation during the wet oxidation of the PHPS film generates electron-hole pairs. The electrons ionize the H2O molecules and facilitate dissociation of the molecules into H and OH-. The OH- ions are highly reactive with Si and improve the stoichiometry of the oxide. The UV irradiation during the PMA excites the electrons from the accumulation layer, and the built-in electric field makes the electron injection into the oxide much easier. The electrons injected into the oxide recombine with the trapped holes, which have caused a large negative flat band voltage shift after the UV wet oxidation, and also ionize the H2O molecules. The ionization results in the electron stimulated dissociation of H2O molecules and the decreased interface trap density.

  4. Low-temperature formation of high-quality gate oxide by ultraviolet irradiation on spin-on-glass

    SciTech Connect

    Usuda, R.; Uchida, K.; Nozaki, S.

    2015-11-02

    Although a UV cure was found to effectively convert a perhydropolysilazane (PHPS) spin-on-glass film into a dense SiO{sub x} film at low temperature, the electrical characteristics were never reported in order to recommend the use of PHPS as a gate-oxide material that can be formed at low temperature. We have formed a high-quality gate oxide by UV irradiation on the PHPS film, and obtained an interface midgap trap density of 3.4 × 10{sup 11 }cm{sup −2} eV{sup −1} by the UV wet oxidation and UV post-metallization annealing (PMA), at a temperature as low as 160 °C. In contrast to the UV irradiation using short-wavelength UV light, which is well known to enhance oxidation by the production of the excited states of oxygen, the UV irradiation was carried out using longer-wavelength UV light from a metal halide lamp. The UV irradiation during the wet oxidation of the PHPS film generates electron-hole pairs. The electrons ionize the H{sub 2}O molecules and facilitate dissociation of the molecules into H and OH{sup −}. The OH{sup −} ions are highly reactive with Si and improve the stoichiometry of the oxide. The UV irradiation during the PMA excites the electrons from the accumulation layer, and the built-in electric field makes the electron injection into the oxide much easier. The electrons injected into the oxide recombine with the trapped holes, which have caused a large negative flat band voltage shift after the UV wet oxidation, and also ionize the H{sub 2}O molecules. The ionization results in the electron stimulated dissociation of H{sub 2}O molecules and the decreased interface trap density.

  5. On-line DLTS investigations of vacancy related defects in low-temperature electron irradiated, boron-doped Si

    NASA Astrophysics Data System (ADS)

    Zangenberg, N. R.; Nylandsted Larsen, A.

    2005-02-01

    Vacancy-related defects in Si are explored with deep level transient spectroscopy (DLTS). The measurements are performed on-line on irradiated p-type Si and a new trap with the signature (Epa, σpa) = (0.18 eV, 6.5×10-15 cm2) only present at cryogenic temperatures is studied. Furthermore, the bi-stable boron-vacancy complex is studied and it’s configuration at low temperatures is investigated and found to have the signature (Epa, σpa) = (0.11 eV, 8.2×10-15 cm2).

  6. Performance of Magnet Insulation Systems at Low Temperature and After Reactor Irradiation

    SciTech Connect

    Bittner-Rohrhofer, K.; Humer, K.; Fillunger, H.; Maix, R.K.; Weber, H.W.

    2004-06-28

    Advanced composite materials reinforced with boron-free glass fibers are candidate insulation materials for fusion magnets, in particular for ITER. Thus, these systems require an excellent performance and mechanical integrity after irradiation. The present innovative organic insulation system consists of R-glass fiber reinforced tapes impregnated with an advanced cyanate-ester/epoxy resin. This composite is suitable for vacuum-pressure impregnation. In order to assess the radiation resistance of the mechanical properties, the laminate was irradiated in the TRIGA reactor (Vienna) to the ITER design fluence level of 1x1022 m-2 (E>0.1 MeV). The blend was screened at 77 K using the static tensile and short-beam-shear test prior to and after irradiation. In addition, tension-tension fatigue measurements were done in order to investigate the material performance under pulsed operating conditions.

  7. EFFECT OF LOW TEMPERATURE IRRADIATION ON CHEMICAL AND SENSORY CHARACTERISTICS OF BEEF STEAKS

    DTIC Science & Technology

    Irradiation flavor intensity, organoleptic tenderness , quantity of mercaptan, extractable non-protein nitrogen and soluble collagen were shown to be...The pH values, total moisture, free water and total nitrogen were slightly higher in the utility grade steaks than in the choice grade steaks .

  8. Proton irradiation for peripapillary and parapapillary melanomas.

    PubMed

    Lane, Anne Marie; Kim, Ivana K; Gragoudas, Evangelos S

    2011-09-01

    To examine ocular outcomes and survival after proton irradiation in patients with peripapillary and parapapillary melanomas ineligible for the Collaborative Ocular Melanoma Study. A total of 573 patients who received proton irradiation from January 4, 1985, through December 24, 1997, for tumors located within 1 disc diameter of the optic nerve, and therefore ineligible for the Collaborative Ocular Melanoma Study, were evaluated. Cumulative rates of vision loss in the treated eye, eye loss, melanoma-related mortality, and tumor recurrence were estimated using the Kaplan-Meier method. Most (53.4%) tumors abutted the optic disc; median distance from the tumor to the macula was 0.5 disc diameters. By 5 years after proton therapy, radiation papillopathy had developed in 56.8% and maculopathy in 60.4% of patients. Of 450 patients with a baseline visual acuity of 20/200 or better in the treated eye, vision was retained in 54.9% at 2 years after irradiation. This decreased to 20.3% by 5 years after treatment, although 56.2% had visual acuity of counting fingers or better. Five- and 10-year rates of local recurrence were 3.3% and 6.0%, respectively. Enucleation rates were 13.3% at 5 years and 17.1% at 10 years after treatment. Melanoma-related mortality rates were similar to those in our larger cohort of patients (24.0% at 15 years). Proton irradiation should be considered for treating patients with tumors contiguous to the optic disc. Although visual acuity is compromised, some preservation is possible (counting fingers or better in many patients). Eye conservation is likely, with low rates of tumor recurrence and no increased risk of metastasis.

  9. AEM and AES of radiation-induced segregation in proton-irradiated stainless steels

    SciTech Connect

    Kenik, E.A.; Carter, R.D.; Damcott, D.L.; Atzmon, M.; Was, G.S.

    1994-06-01

    In order to avoid complications from long-term induced radioactivity of neutron-irradiated specimens, 4 type 304L alloys were irradiated to 1 dpa with 3.4 MeV protons at 400 C. Analytical electron microscopy and Auger electron spectrometry were used to measure composition at and near grain boundaries in controlled purity alloys. As a result of the narrow RIS profiles (<20 nm width) at grain boundaries induced in these materials by low temperature irradiation and the finite size of the excited volume for x-ray microanalysis, the measured profiles are convolutions of these two factors.

  10. Hardness of Carburized Surfaces in 316LN Stainless Steel after Low Temperature Neutron Irradiation

    SciTech Connect

    Byun, TS

    2005-01-31

    A proprietary surface carburization treatment is being considered to minimize possible cavitation pitting of the inner surfaces of the stainless steel target vessel of the SNS. The treatment gives a large supersaturation of carbon in the surface layers and causes substantial hardening of the surface. To answer the question of whether such a hardened layer will remain hard and stable during neutron irradiation, specimens of the candidate materials were irradiated in the High Flux Isotope Reactor (HFIR) to an atomic displacement level of 1 dpa. Considerable radiation hardening occurred in annealed 316LN stainless steel and 20% cold rolled 316LN stainless steel, and lesser radiation hardening in Kolsterised layers on these materials. These observations coupled with optical microscopy examinations indicate that the carbon-supersaturated layers did not suffer radiation-induced decomposition and softening.

  11. Irradiation-induced β to α SiC transformation at low temperature

    DOE PAGES

    Parish, Chad M.; Koyanagi, Takaaki; Kondo, Sosuke; ...

    2017-04-26

    Here, we observed that β-SiC, neutron irradiated to 9 dpa (displacements per atom) at ≈1440 °C, began transforming to α-SiC, with radiation-induced Frank dislocation loops serving as the apparent nucleation sites. 1440 °C is a far lower temperature than usual β → α phase transformations in SiC. SiC is considered for applications in advanced nuclear systems, as well as for electronic or spintronic applications requiring ion irradiation processing. β-SiC, preferred for nuclear applications, is metastable and undergoes a phase transformation at high temperatures (typically 2000 °C and above). Nuclear reactor concepts are not expected to reach the very high temperaturesmore » for thermal transformation. However, our results indicate incipient β → α phase transformation, in the form of small (~5–10 nm) pockets of α-SiC forming in the β matrix. In service transformation could degrade structural stability and fuel integrity for SiC-based materials operated in this regime. However, engineering this transformation deliberately using ion irradiation could enable new electronic applications.« less

  12. Single proton counting at the RIKEN cell irradiation facility

    SciTech Connect

    Mäckel, V. Puttaraksa, N.; Kobayashi, T.; Yamazaki, Y.

    2015-08-15

    We present newly developed tapered capillaries with a scintillator window, which enable us to count single protons at the RIKEN cell irradiation setup. Their potential for performing single proton irradiation experiments at our beamline setup is demonstrated with CR39 samples, showing a single proton detection fidelity of 98%.

  13. Irradiation effects on interlaminar shear strength of GFRP at low temperature

    SciTech Connect

    Tsukazaki, Y.; Nishijuma, S.; Ueno, S.

    1997-06-01

    The degradation of interlaminar shear strength (ILSS) of GFRPs has been evaluated after 77K electron and 20K reactor irradiation. The GFRPs used in this work were prepared using several matrix resins. Optical microscopic observations of the fracture surfaces were carried out to determine the degradation behavior of ILSS. The fiber exposed area of fracture (interfacial failure) surface was found to be larger with higher absorbed dose. It suggested that the degradation of ILSS was induced by the interface failure between fiber and matrix. The matrix resin was also found to be degraded along with the interface.

  14. Alkali-ion irradiated alpha-quartz: low-temperature cathodoluminescence after chemical epitaxy

    NASA Astrophysics Data System (ADS)

    Lieb, K.-P.; Gasiorek, S.; Keinonen, J.; Sahoo, P.-K.; Sajavaara, T.

    2008-09-01

    Even small fluences of implanted ions used for opto-doping alpha-quartz lead to amorphization of the matrix, but subsequent annealing in air or oxygen can restore its crystalline order (chemical epitaxy). Here we report on cathodoluminescence (CL) spectroscopy during chemical epitaxy of alpha-quartz irradiated with 50-keV Na-ions or 175-keV Rb ions and annealed in 18O2-gas. In particular, the variation of the CL spectra with the ion fluence will be discussed. The CL spectra at 10 K show an intense 2.90-2.95 eV blue band and differ greatly from the ones taken at 300 K. Finally we report on the observation of a spider-web surface structure after Rb implantation and annealing in lowpressure oxygen.

  15. Effects of low temperature neutron irradiation on deformation behavior of austenitic stainless steels

    SciTech Connect

    Pawel, J.E.; Rowcliffe, A.F.; Alexander, D.J.; Grossbeck, M.L.; Shiba, K.

    1996-04-01

    An austenitic stainless steel, designated 316LN-IG, has been chosen for the first wall/shield (FW/S) structure for the International Thermonuclear Experimental Reactor (ITER). The proposed operational temperature range for the structure (100 to 250{degree}C) is below the temperature regimes for void swelling (400-600{degree}C) and for helium embrittlement (500-700{degree}C). However, the proposed neutron dose is such that large changes in yield strength, deformation mode, and strain hardening capacity could be encountered which could significantly affect fracture properties. Definition of the irradiation regimes in which this phenomenon occurs is essential to the establishment of design rules to protect against various modes of failure.

  16. Low temperature intrinsic defects in x-irradiated hydroxyapatite synthetic single crystals

    SciTech Connect

    Close, D.M.; Mengeot, M.; Gilliam, O.R.

    1981-05-15

    ESR studies of radiation-induced defects have been conducted on synthetic calcium hydroxyapatite single crystals. For a room temperature x-irradiation a major defect (labeled A) was reported to be an O/sup -/ ion. X irradiation at 6 K shows defect A, trapped atomic hydrogen, and a nonaxial holelike center (labeled I). These new centers are stable at 6 K but anneal near 77 K. Observations at 9 and 35 GHz indicate that the I center is a spin-1/2 defect located in six inequivalent sites. In the ab plane, spectra exhibit an isotropic hyperfine doublet (approx.13 G splitting) and an anisotropic doublet (17--27 G splitting) in three symmetry-related sites. For other orientations additional site splitting and ''forbidden transitions'' make the spectra very complex. The hyperfine coupling tensor for the anisotropic doublet has diagonal elements -29.5, -19.2, and +3.11 G. The g tensor for this defect has diagonal elements 2.0068, 2.0032, and 2.0148. The sets of directional cosines associated with the minimum g value and the intermediate A value each indicate a direction corresponding approximately to that of the vector from an OH oxygen to a neighboring PO/sub 4//sup 3 -/ oxygen. The model proposed for the I center is a hole trapped by both an OH/sup -/ and a neighboring PO/sub 4//sup 3 -/. The anisotropic doublet is accounted for with 65% of the spin density on OH/sup -/. The remaining spin density is on a phosphate oxygen. This creates a PO/sup 2 -//sub 4/ defect with the isotropic coupling arising from hyperfine interaction with the /sup 31/P nucleus.

  17. Microstructure of V-4Cr-4Ti alloy after low-temperature irradiation by ions and neutrons

    SciTech Connect

    Gazda, J.; Meshii, M.; Chung, H.M.

    1998-03-01

    Mechanical properties of V-4Cr-4Ti alloy were investigated after low-temperature (<420 C) irradiation. The effects of fast neutrons at 390 C were investigated by irradiation to {approx}4 dpa in the X530 experiment in the EBR-II reactor; these tests were complemented by irradiation with single (4.5-MeV Ni{sup ++}) and dual ion beams (350-keV He{sup +} simultaneously with 4.5-MeV Ni{sup ++}). TEM observations showed the formation of a high density of point-defect clusters and dislocation loops (<30 nm diameter) distributed uniformly in the specimens. Mechanical-property testing showed embrittlement of the alloy. TEM investigations of deformed microstructures were used to determine the causes of embrittlement and yielded observation of dislocation channels propagating through the undeformed matrix. Channels are the sole slip paths and cause early onset of necking and loss of work-hardening in this alloy. Based on a review of the available literature, suggestions are made for further research of slip localization in V-base alloys.

  18. Altitude dependent Titan/fs atmospheric chemistry: UV irradiation experiments at low temperature combined with cold plasma irradiation

    NASA Astrophysics Data System (ADS)

    Imanaka, H.; Khare, B. N.; Bakes, E. L. O.; Sekine, Y.; McKay, C. P.; Cruikshank, D. P.; McGuigan, M.; Waite, J. H.; Sacks, R.

    2004-11-01

    Active organic chemistry in Titan/fs atmosphere forming organic haze and various gas species is induced by solar UV radiation and charged particle irradiations. The main available energy sources depend on altitude, so that the physical and chemical properties of the haze and the condensates of hydrocarbons and nitriles may depend on altitude. To understand Titan/fs atmospheric chemistry as a function of altitudes, we have conducted laboratory simulations using UV irradiation and/or charged particle irradiation as energy sources. We utilize GCMS for analyzing the chemical components of gas products, condensed ice mixtures, and pylorizates from tholins. First, the gas products and tholins were formed from methane-nitrogen gas mixture through cold plasma irradiation. This simulates the upper atmosphere of Titan where methane and nitrogen are dissociated by short UV and charge particle irradiations. The gas products were fractionally condensed by cold traps at several temperatures. More than 100 gas species were detected by GCMS, including saturated and unsaturated aliphatic hydrocarbons, substituted aromatics, nitriles, nitrogen heteroaromatics such as pyrrole, pyridine, pyrazine, pyrazole. Nitrogen containing compounds larger than (C+N)4 were mainly detected from ice mixture condensed at 196 K. Py-GCMS analysis of tholin revealed various alkanes, nitriles, and substituted aromatics as well as substituted pyrroles. In the lower stratosphere of Titan, various gas species diffused from the upper atmosphere may undergo further photolysis by long UV. To simulate the lower stratosphere, the gas products from cold plasma were further irradiated by long UV lights (> about 150 nm) at about 196 K and 1 mbar. The unsaturated hydrocarbons were reduced and formed the tholin materials, although the production rate was very small. Our results can be directly applied to the Huygens mission in 2005, which will measure gas compositions (GCMS) and aerosol particles (ACP-GCMS) at

  19. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    NASA Astrophysics Data System (ADS)

    Simos, N.; Nocera, P.; Zhong, Z.; Zwaska, R.; Mokhov, N.; Misek, J.; Ammigan, K.; Hurh, P.; Kotsina, Z.

    2017-07-01

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140-180 MeV, to peak fluence of ˜6.1 ×1020 p /cm2 and irradiation temperatures between 120 - 200 °C . The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pion target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young's modulus. The proton fluence level of ˜1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  20. Proton irradiated graphite grades for a long baseline neutrino facility experiment

    DOE PAGES

    Simos, N.; Nocera, P.; Zhong, Z.; ...

    2017-07-24

    In search of a low-Z pion production target for the Long Baseline Neutrino Facility (LBNF) of the Deep Underground Neutrino Experiment (DUNE) four graphite grades were irradiated with protons in the energy range of 140–180 MeV, to peak fluence of ~6.1×1020 p/cm2 and irradiation temperatures between 120–200 °C. The test array included POCO ZXF-5Q, Toyo-Tanso IG 430, Carbone-Lorraine 2020 and SGL R7650 grades of graphite. Irradiation was performed at the Brookhaven Linear Isotope Producer. Postirradiation analyses were performed with the objective of (a) comparing their response under the postulated irradiation conditions to guide a graphite grade selection for use as a pionmore » target and (b) understanding changes in physical and mechanical properties as well as microstructure that occurred as a result of the achieved fluence and in particular at this low-temperature regime where pion graphite targets are expected to operate. A further goal of the postirradiation evaluation was to establish a proton-neutron correlation damage on graphite that will allow for the use of a wealth of available neutron-based damage data in proton-based studies and applications. Macroscopic postirradiation analyses as well as energy dispersive x-ray diffraction of 200 KeV x rays at the NSLS synchrotron of Brookhaven National Laboratory were employed. The macroscopic analyses revealed differences in the physical and strength properties of the four grades with behavior however under proton irradiation that qualitatively agrees with that reported for graphite under neutrons for the same low temperature regime and in particular the increase of thermal expansion, strength and Young’s modulus. The proton fluence level of ~1020 cm-2 where strength reaches a maximum before it begins to decrease at higher fluences has been identified and it agrees with neutron-induced changes. X-ray diffraction analyses of the proton irradiated graphite revealed for the first time the similarity in

  1. Chemical ordering in ilmenite-hematite bulk ceramics through proton irradiation

    SciTech Connect

    Allen, D.M.; Navarrete, L.; Dou, J.; Schad, R.; Padmini, P.; Kale, P.; Pandey, R.K.; Shojah-Ardalan, S.; Wilkins, R.

    2004-12-13

    We demonstrated the capability of MeV proton irradiation to promote chemical ordering processes in a solid at low temperature. We used the ilmenite-hematite solid solution system which allows estimation of the degree of ordering through measurement of its magnetization. Normally, ordering through diffusion would require high temperature annealing. At high temperatures, however, the equilibrium state would be less ordered and thus the achievable ordering incomplete. High energetic protons continuously transfer energy to the sample through electronic interaction which locally deposits large quantities of energy without a general increase of the sample temperature. This promotes diffusion processes which allow the system to relax towards the ordered equilibrium state.

  2. Mechanistic interpretation of an observed rate dependence of low temperature swelling of irradiated uranium silicide dispersion fuels

    SciTech Connect

    Rest, J; Hofman, G L

    1990-06-01

    Recent experimental observations on low temperature swelling of irradiated uranium silicide dispersion fuels have indicated that the growth of fission gas bubbles appears to be affected by fission rate. The swelling curve of the material exhibits a distinct knee'' that shifts to higher fission density with increased fission rate due to higher enrichments. Current state-of-the-art models for fission gas behavior do not predict such a dependence. Indirect evidence from various experiments leads the present authors to speculate that a dense network of subgrain boundaries forms at a dose corresponding to the knee'' in the swelling curve, upon which gas bubbles nucleate and then grow at an accelerated rate compared to those in the bulk material. A theoretical formulation is presented wherein the stored energy in the material is concentrated on a network of crystallization'' sites which diminish with dose due to interaction with radiation produced defects (vacancy-impurity pairs). Recrystallization is induced by statistical fluctuations when the energy per site is high enough such that the creation of grain boundary surfaces is offset by the creation of strain free volumes with a resultant net decrease in the free energy of the material. This formulation is shown to provide a reasonable interpretation of the observed phenomena. 11 refs., 7 figs.

  3. Planetary quarantine in the solar system. Survival rates of some terrestrial organisms under simulated space conditions by proton irradiation

    NASA Astrophysics Data System (ADS)

    Koike, J.; Oshima, T.

    We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 × 10 -8 torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.

  4. Planetary quarantine in the solar system. Survival rates of some terrestrial organisms under simulated space conditions by proton irradiation.

    PubMed

    Koike, J; Oshima, T

    1993-08-01

    We have been studying the survival rates of some species of terrestrial unicellular and multicellular organism (viruses, bacteria, yeasts, fungi, algae, etc.) under simulated interstellar conditions, in connection with planetary quarantine. The interstellar environment in the solar system has been simulated by low temperature, high vacuum (77 K, 4 x 10(-8) torr), and proton irradiation from a Van de Graaff generator. After exposure to a barrage of protons corresponding to about 250 years of irradiation in solar space, tobacco mosaic virus, Bacillus subtilis spores, Staphylococcus aureus, Micrococcus flavus, Aspergillus niger spores, and Clostridium mangenoti spores showed survival rates of 82, 45, 74, 13, 28, and 25%, respectively.

  5. Effects of low-temperature annealing on the microstructure and grain boundary chemistry of irradiated type 304SS and correlations with IASCC resistance

    SciTech Connect

    Jacobs, A.J.; Dumbill, S.

    1995-12-31

    Low-temperature annealing (LTA) is a known technique for mitigating irradiation-assisted stress corrosion cracking (IASCC) in laboratory stress corrosion cracking tests. A combined transmission electron microscope (TEM)/scanning transmission electron microscope (STEM) study was undertaken to determine the microstructural and/or grain boundary compositional differences between an IASCC-resistant material, which had been mill-annealed, then irradiated and subjected to a low-temperature anneal; and an IASCC-susceptible material, which had been mill-annealed and irradiated only. The material used was commercial-purity Type 304SS from a control blade sheath. Stress corrosion resistance was measured in constant extension rate tensile (CERT) and constant deflection tests in a hot cell. Attempts were made to correlate microhardness data obtained from tested constant deflection specimens with dislocation density measured in the TEM and with IASCC resistance. Phosphorus and silicon segregation and chromium depletion are reported as a function of heat treatment and IASCC resistance.

  6. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Dr. Philip; Zhang, Yanwen; Moll, Sandra; Varga, Tamas; Namavar, Fereydoon; Weber, William J

    2012-01-01

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy.

  7. Anomalous grain growth in the surface region of a nanocrystalline CeO2 film under low-temperature heavy ion irradiation

    SciTech Connect

    Edmondson, Philip D.; Zhang, Yanwen; Moll, Sandra J.; Varga, Tamas; Namavar, Fereydoon; Weber, William J.

    2012-06-15

    Grain growth and phase stability of nanocrystalline ceria are investigated under ion irradiation at different temperatures. Irradiations at temperatures of 300 and 400 K result in uniform grain growth throughout the film. Anomalous grain growth is observed in thin films of nanocrystalline ceria under 3 MeV Au+ irradiation at 160 K. At this low temperature, significant grain growth is observed within 100 nm from the surface, no obvious growth is detected in the rest of the films. While the grain growth is attributed to a defect-stimulated mechanism at room temperature and above, a defect diffusion-limited mechanism is significant at low temperature with the primary defect responsible being the oxygen vacancy. The nanocrystalline grains remain in the cubic phase regardless of defect kinetics.

  8. Single crystals of L-O-serine phosphate X-irradiated at low temperatures: EPR, ENDOR, EIE, and DFT studies.

    PubMed

    Øhman, Kjell Tage; Sanderud, Audun; Hole, Eli Olaug; Sagstuen, Einar

    2006-08-10

    Single crystals of the phosphorylated amino acid L-O-serine phosphate were X-irradiated and studied at 10 K and at 77 K using EPR, ENDOR, and EIE techniques. Two radicals, R1(10 K) and R1(77 K), were detected and characterized as two different geometrical conformations of the protonated reduction product >CH-C(OH)(2). R1(10 K) is only observed after irradiation at 10 K, and upon heating to 40 K, R1(10 K) transforms rapidly and irreversibly into R1(77 K). The transition from R1(10 K) to R1(77 K) strongly increases the isotropic hyperfine coupling of the C-CH(beta) coupling (Delta = 32 MHz) and the major C-OH(beta) coupling (Delta = 47 MHz), in sharp contrast to the their much reduced anisotropic hyperfine couplings after the transition. An umbrella-like inversion of the carboxylic acid center, accompanied by minor geometrical adjustments, explains the changes of these observed isotropic and anisotropic couplings. DFT calculations were done on the reduced and protonated L-O-serine phosphate radical at the B3LYP/6-311+G(2df,p)//B3LYP/6-31+G(d) level of theory in order to support the experimental observations. Two different conformations of the anion radical, related by an inversion at the carboxylic center, could be found within the single molecule partial energy-optimization scheme. These two conformations reproduce the experimental hyperfine couplings from radicals R1(10 K) and R1(77 K). A third radical, radical R2, was observed experimentally at both 10 and 77 K and was shown to be due to the decarboxylated L-O-serine phosphate oxidation product, a conclusion fully supported from the DFT calculations. Upon thermal annealing from 77 to 295 K, radicals R1(77 K) and R2 disappeared and all three previously observed room-temperature radicals could be observed. No phosphate-centered radicals could be observed at any temperatures, indicating that the phosphate-ester bond break for one of the room-temperature radicals does not occur by dissociative electron capture at the

  9. [Reduction of radiation-induced vitamin E- and B1- losses by irradiation of foodstuffs at low temperature and by exclusion of atmospheric oxygen].

    PubMed

    Diehl, J F

    1979-10-01

    The protective effect of low temperatures during irradiation on vitamin B1 and E levels in foods is not abolished by subsequent storage or heating. Egg powder irradiated at 1 Mrad in the presence of air and stored for 4 months at ambient temperature lost 68% of its thiamin content when irradiated at 20 degrees C, 33% when irradiated at -30 degrees C. Sunflower oil irradiated at 3 Mrad in the presence of air and subsequently heated for 1 hour at 180 degrees C lost 98% of its alpha-tocopherol content when irradiated at 20 degrees C, 65% when irradiated at -30 degrees C. Exclusion of atmospheric oxygen by packaging under nitrogen reduced the loss of alpha-tocopherol in irradiated (0.1 Mrad) rolled oats after 8 months of storage from 56 to 5% and the loss of thiamin from 86 to 26%. Vacuum packaging was equally effective during the first 3 months and somewhat less effective during the following 5 months. Packaging under carbon dioxide showed no advantage over packaging in air. Sensory evaluation of rolled oats, raw or cooked, 1 and 3 months after irradiation with 0.1 Mrad indicated no significant quality difference between unirradiated and irradiated samples packaged under nitrogen.

  10. [Radiobiological effects of total mice irradiation with Bragg's peak protons].

    PubMed

    Ivanov, A A; Molokanov, A G; Ushakov, I B; Bulynina, T M; Vorozhtsova, S V; Abrosimova, A N; Kryuchkova, D M; Gaevsky, V N

    2013-01-01

    Outbred CD-1 female mice were irradiated in a proton beam (171 MeV, 5 Gy) on the phasotron at the Joint Institute of Nuclear Research (Dubna, Russia). Radiation was delivered in two points of the depth dose distribution: at the beam entry and on Bragg's peak. Technical requirements for studying the effects of Bragg's peak protons on organism of experimental animals were specified. It was recognized that protons with high linear energy transfer (mean LET = 1.6 keV/microm) cause a more severe damaging effect to the hemopoietic system and cytogenetic apparatus in bone marrow cells as compared with entry protons and 60Co gamma-quanta. It was shown that recovery of the main hemopoietic organs and immunity as well as elimination of chromosomal aberrations take more time following irradiation with Bragg's peak protons but not protons with the energy of 171 MeV.

  11. Enhanced proton treatment in mouse tumors through proton irradiated nanoradiator effects on metallic nanoparticles

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ki; Seo, Seung-Jun; Kim, Hong-Tae; Kim, Ki-Hong; Chung, Myung-Hwan; Kim, Kye-Ryung; Ye, Sung-Jun

    2012-12-01

    The impact of protons on metallic nanoparticles (MNPs) produces the potent release of MNP-induced secondary electrons and characteristic x-rays. To determine the ability of secondary radiations to enhance proton treatment, the therapeutic irradiation of tumors was investigated in mice receiving 100-300 mg MNPs/kg intravenously prior to single dose, 10-41 Gy, proton irradiation. A proton beam was utilized to irradiate nanoparticles with a single Bragg peak set to occur inside a tumor volume (fully absorbed) or to occur after the beam had traversed the entire body. The dose-dependent increase in complete tumor regression (CTR) was 37-62% in the fully-absorbed irradiation group or 50-100% in the traversing irradiation group, respectively, compared with the proton-alone control mice (p < 0.01). One year survival was 58-100% versus 11-13% proton alone. The dose-dependent increase of intracellular reactive oxygen species level was 12-36% at 10 Gy compared with the proton-alone control cell. Therapeutic effective drug concentration that led to 100% CTR with a proton dose of 31 Gy was measured either 41 µg Au/g tissue or 59 µg Fe/g tissue. MNP-based proton treatment increased not only percent CTR and survival in vivo but also ROS generation in vitro, suggesting tumor dose enhancement from secondary radiation as one potent pathway of therapeutic enhancement.

  12. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  13. Raman Microscopic Characterization of Proton-Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. L.; Davidson, J. L.; Lance, M. J.

    2004-01-01

    The microstructural effects of irradiating polycrystalline diamond films with proton dosages ranging from 10(exp 15) to 10(exp 17) H(+) per square centimeter was examined. Scanning Electron Microscopy and Raman microscopy were used to examine the changes in the diamond crystalline lattice as a function of depth. Results indicate that the diamond lattice is retained, even at maximum irradiation levels.

  14. Proton irradiation effects on beryllium – A macroscopic assessment

    SciTech Connect

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  15. Proton irradiation effects on beryllium - A macroscopic assessment

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-10-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  16. Proton irradiation effects on beryllium – A macroscopic assessment

    DOE PAGES

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less

  17. Proton irradiation effects on beryllium – A macroscopic assessment

    SciTech Connect

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando

    2016-07-01

    Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.

  18. Charging and Discharging Characteristic on PI Films Irradiated by Protons

    NASA Astrophysics Data System (ADS)

    Uchiyama, Ryo; Miyake, Hiroaki; Tanaka, Yasuhiro; Takada, Tatuo

    We evaluate the dielectric characteristic of polymeric materials for MLI (Multi Layer Insulator, a kind of thermal insulation material) for spacecraft under high energy proton irradiation using results of space charge distribution. Spacecrafts have a serious damage due to the electro-static discharge accident. The electric charges are accumulated in the polymeric materials due to radioactive rays, especially electrons and protons. The charge accumulation is the origin of aging and discharging phenomena, furthermore those become trigger for spacecraft operation anomaly. Therefore, we need to obtain the space charge distribution in the bulks. In this study, we especially focused polyimide films for MLI irradiated by high energy proton. We measured the space charge distribution in the bulks during and after proton beam irradiation. From the results, it is found that positive charges accumulate in the bulk at the position of proton penetration depth. We also obtained same tendency from the results of conductivity measurement treated by ASTM method. From the above reason, we have studied the dielectric characteristics of MLI materials irradiated by radioactive rays, especially we focused the condition of proton irradiation. In this paper, we discuss the dielectric phenomena and the relationship between conductivity and charge accumulation in bulks.

  19. Accumulation and annealing of radiation defects under low-temperature electron and neutron irradiation of ODS steel and Fe-Cr alloys

    NASA Astrophysics Data System (ADS)

    Arbuzov, V. L.; Goshchitskii, B. N.; Sagaradze, V. V.; Danilov, S. E.; Kar'kin, A. E.

    2010-10-01

    The processes of accumulation and annealing of radiation defects at low-temperature (77 K) electron and neutron irradiation and their effect on the physicomechanical properties of Fe-Cr alloys and oxide dispersion strengthened (ODS) steel have been studied. It has been shown that the behavior of radiation defects in ODS steel and Fe-Cr alloys is qualitatively similar. Above 250 K, radiation-induced processes of the solid solution decomposition become conspicuous. These processes are much less pronounced in ODS steel because of specific features of its microstructure. Processes related to the overlapping of displacement cascades under neutron irradiation have been considered. It has been shown that, in this case, it is the increase in the size of vacancy clusters, rather than the growth of their concentration, that is prevailing. Possible mechanisms of the radiation hardening of the ODS steel and the Fe-13Cr alloy upon irradiation and subsequent annealing have been discussed.

  20. Molecular Dynamics of Hexamethylbenzene at Low Temperatures: Evidence of Unconventional Magnetism Based on Rotational Motion of Protons.

    PubMed

    Yen, Fei; Zhao, Zhenzheng; Hu, Sixia; Chen, Lang

    2017-08-17

    The types of magnetism known to date are all mainly based on contributions from electron motion. We show how rotational motion of protons (H(+) ) within the methyl groups in hexamethylbenzene (C6 (CH3 )6 ) also contribute significantly to the magnetic susceptibility. Starting from below 118 K, as the rotational motion of the methyl groups set in, an associated magnetic moment positive in nature due to charge of the protons renders the susceptibility to become anomalously dependent on temperature. Starting from 20 K, the susceptibility diverges with decreasing temperature indicative of spin-spin interactions between methyl groups aligned in a previously unclassified type of anti-ferromagnetic configuration. Complementary dielectric constant measurements also show the existence of magneto-dielectric coupling. Our findings allow for the study of strongly correlated systems that are based on a species that possesses much slower dynamics. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. δ-KIO 3·HIO 3: crystal structure, proton disorder and low temperature phase transition

    NASA Astrophysics Data System (ADS)

    Engelen, B.; Gavrilko, T.; Panthöfer, M.; Puchkovskaya, G.; Sekirin, I.

    2000-05-01

    δ-KIO 3·HIO 3, obtained by slowly cooling a concentrated solution of KIO 3 and HIO 3, has been investigated by means of single crystal X-ray diffraction measurements at ambient temperature and temperature dependent powder X-ray diffraction, dielectric, calorimetric and FT-IR and FT-Raman measurements. From the single crystal X-ray measurements, the I-O bonding scheme of the iodine atoms and the hydrogen bond system were determined. The crystal structure of δ-KIO 3·HIO 3 was found to consist of [I 3O 9H 3/2] 3/2- ions possibly originating from occupationally disordered [I 3O 9H 2] - and [I 3O 9H] 2- anions. These ions are connected via hydrogen bonds to form plane grids parallel (100) with the K + ions placed between them. Thus δ-KIO 3·HIO 3 should be formulated as K 3/2[I 3O 9H 3/2]. The temperature dependent FT-IR data give an evidence for a dynamic proton disorder at room temperature and for a proton ordering below 220 K, which may be regarded as a structural phase transition in the proton sublattice.

  2. THE INFLUENCE OF NEUTRON-IRRADIATION AT LOW TEMPERATURES ON THE DIELECTRIC PARAMETERS OF 3C-SiC

    SciTech Connect

    J.A.A. Engelbrecht; G. Deyzel; E. Minnaar; W.E. Goosen; I. J. van Rooyen

    2014-04-01

    3C-SiC wafers were irradiated with neutrons of various fluences and at low (200 - 400 ?C) irradiation temperatures. Fourier Transform infrared (FTIR) reflectance spectra were obtained for the samples, and the spectra used to extract the dielectric parameters for each specimen, using statistical curve-fitting procedures. Analysis of all data revealed trends in reflectance peak heights as well as in the dielectric parameters. The surface roughness of the irradiated samples was measured by atomic force spectroscopy (AFM) and certain trends could be ascribed to surface roughness.

  3. Proton and neutron irradiation effect of Ti: Sapphires

    SciTech Connect

    Wang, G.; Zhang, J.; Yang, J.

    1999-07-01

    Various effects of proton and neutron irradiated Ti: sapphires were studied. Proton irradiation induced F, F{sup +} and V center in Ti: sapphires and 3310 cm{sup -1} infrared absorption, and made ultraviolet absorption edge shift to short wave. Neutron irradiation produced a number of F, F{sup +} and F{sub 2} centers and larger defects in Ti: sapphires, and changed Ti{sup 4+}into Ti{sup 3+} ions. Such valence state variation enhanced characteristic luminescence of Ti: sapphires, and no singular variances of intrinsic fluorescence spectra of Ti: sapphires took place with neutron flux of 1 x 10{sup 17}n/cm{sup 2}, but the fluorescence vanished with neutron flux of 1 x 10{sup 18}n/cm{sup 2} which means the threshold for the concentration of improving Ti{sup 3+} ions by neutron irradiation.

  4. Effect of high energy proton irradiation on InAs/GaAs quantum dots: Enhancement of photoluminescence efficiency (up to {approx}7 times) with minimum spectral signature shift

    SciTech Connect

    Sreekumar, R.; Mandal, A.; Gupta, S.K.; Chakrabarti, S.

    2011-11-15

    Graphical abstract: Authors demonstrate enhancement in photoluminescence efficiency (7 times) in single layer InAs/GaAs quantum dots using proton irradiation without any post-annealing treatment via either varying proton energy (a) or fluence (b). The increase in PL efficiency is explained by a proposed model before (c) and after irradiation (d). Highlights: {yields} Proton irradiation improved PL efficiency in InAs/GaAs quantum dots (QDs). {yields} Proton irradiation favoured defect and strain annihilation in InAs/GaAs QDs. {yields} Reduction in defects/non-radiative recombination improved PL efficiency. {yields} Protons could be used to improve PL efficiency without spectral shift. {yields} QD based devices will be benefited by this technique to improve device performance. -- Abstract: We demonstrate 7-fold increase of photoluminescence efficiency in GaAs/(InAs/GaAs) quantum dot hetero-structure, employing high energy proton irradiation, without any post-annealing treatment. Protons of energy 3-5 MeV with fluence in the range (1.2-7.04) x 10{sup 12} ions/cm{sup 2} were used for irradiation. X-ray diffraction analysis revealed crystalline quality of the GaAs cap layer improves on proton irradiation. Photoluminescence study conducted at low temperature and low laser excitation density proved the presence of non-radiative recombination centers in the system which gets eliminated on proton irradiation. Shift in photoluminescence emission towards higher wavelength upon irradiation substantiated the reduction in strain field existed between GaAs cap layer and InAs/GaAs quantum dots. The enhancement in PL efficiency is thus attributed to the annihilation of defects/non-radiative recombination centers present in GaAs cap layer as well as in InAs/GaAs quantum dots induced by proton irradiation.

  5. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  6. Radiation damage in proton irradiated indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, I.; Swartz, C. K.; Hart, R. E., Jr.; Yamaguchi, Masafumi

    1986-01-01

    Indium phosphide solar cells exposed to 10 MeV proton irradiations were found to have significantly greater radiation resistance than either GaAs or Si. Performance predictions were obtained for two proton dominated orbits and one in which both protons and electrons were significant cell degradation factors. Array specific power was calculated using lightweight blanket technology, a SEP array structure, and projected cell efficiencies. Results indicate that arrays using fully developed InP cells should out-perform those using GaAs or Si in orbits where radiation is a significant cell degradation factor.

  7. The radiolysis and racemization of leucine on proton irradiation

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Lemmon, R. M.; Conzett, H. E.

    1982-01-01

    D- and L-Leucine have been subjected to 39-55 percent radiolysis using 0.11 MeV protons, both with the proton beam passing through the sample or being absorbed by it and with quenching the sample immediately on completion of irradiation or after a 21-day interval. Racemization was small (1.1-1.7 percent) and comparable in all cases, suggesting that radioracemization and secondary degradative effects were not important factors in the recent unsuccessful attempts to induce optical activity in DL-Leucine by partial radiolysis using 0-11 MeV longitudinally polarized protons.

  8. The radiolysis and racemization of leucine on proton irradiation

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Lemmon, R. M.; Conzett, H. E.

    1982-01-01

    D- and L-Leucine have been subjected to 39-55 percent radiolysis using 0.11 MeV protons, both with the proton beam passing through the sample or being absorbed by it and with quenching the sample immediately on completion of irradiation or after a 21-day interval. Racemization was small (1.1-1.7 percent) and comparable in all cases, suggesting that radioracemization and secondary degradative effects were not important factors in the recent unsuccessful attempts to induce optical activity in DL-Leucine by partial radiolysis using 0-11 MeV longitudinally polarized protons.

  9. Effect of neutron irradiation at low temperature on the embrittlement of the reduced-activation ferritic steels

    NASA Astrophysics Data System (ADS)

    Rybin, V. V.; Kursevich, I. P.; Lapin, A. N.

    1998-10-01

    Effects of neutron irradiation to fluence of 2.0 × 10 24 n/m 2 ( E > 0.5 MeV) in temperature range 70-300°C on mechanical properties and structure of the experimental reduced-activation ferritic 0.1%C-(2.5-12)%Cr-(1-2)%W-(0.2-0.7)%V alloys were investigated. The steels were studied in different initial structural conditions obtained by changing the modes of heat treatments. Effect of neutron irradiation estimated by a shift in ductile-brittle transition temperature (ΔDBTT) and reduction of upper shelf energy (ΔUSE) highly depends on both irradiation condition and steel chemical composition and structure. For the steel with optimum chemical composition (9Cr-1.5WV) after irradiation to 2 × 10 24 n/m 2 ( E ⩾ 0.5 MeV) at 280°C the ΔDBTT does not exceed 25°C. The shift in DBTT increased from 35°C to 110°C for the 8Cr-1.5WV steel at a decrease in irradiation temperature from 300°C to 70°C. The CCT diagrams are presented for several reduced-activated steels.

  10. Electronic properties of deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    Deep level transient spectroscopy and capacitance voltage techniques as well as analysis of the forward current voltage (I-V) characteristics and SEM-EIC data were carried out for proton irradiated GaAs solar cells over a wide range of proton energies and proton fluences. Defect and recombination parameters such as defect energy levels and density, carrier capture cross sections and lifetimes as well as diffusion lengths in the undoped n-GaAs LPE layers were determined. Good correlation between these defect parameters and solar cell performance parameters was obtained for GaAs solar cells irradiated by 200 and 290 KeV protons. It was found that 200 to 290 KeV protons will produce the most defects and damages to the GaAs solar cell structure used. The influence of the low temperature (200 to 400 C) periodic thermal annealing on the deep level defects and the performance of the 200 KeV proton irradiated cells is discussed.

  11. Microbial survival rates of Escherichia coli and Deinococcus radiodurans under low temperature, low pressure, and UV-Irradiation conditions, and their relevance to possible Martian life.

    PubMed

    Diaz, Benjamin; Schulze-Makuch, Dirk

    2006-04-01

    Viability rates were determined for microbial populations of Escherichia coli and Deinococcus radiodurans under the environmental stresses of low temperature (-35 degrees C), low-pressure conditions (83.3 kPa), and ultraviolet (UV) irradiation (37 W/m(2)). During the stress tests the organisms were suspended in saltwater soil and freshwater soil media, at variable burial depths, and in seawater. Microbial populations of both organisms were most susceptible to dehydration stress associated with low-pressure conditions, and to UV irradiation. However, suspension in a liquid water medium and burial at larger depths (5 cm) improved survival rates markedly. Our results indicate that planetary surfaces that possess little to no atmosphere and have low water availability do not constitute a favorable environment for terrestrial microorganisms.

  12. Proton irradiation studies on Al and Al5083 alloy

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, P.; Gayathri, N.; Bhattacharya, M.; Gupta, A. Dutta; Sarkar, Apu; Dhar, S.; Mitra, M. K.; Mukherjee, P.

    2017-10-01

    The change in the microstructural parameters and microhardness values in 6.5 MeV proton irradiated pure Al and Al5083 alloy samples have been evaluated using different model based techniques of X-ray diffraction Line Profile Analysis (XRD) and microindendation techniques. The detailed line profile analysis of the XRD data showed that the domain size increases and saturates with irradiation dose both in the case of Al and Al5083 alloy. The corresponding microstrain values did not show any change with irradiation dose in the case of the pure Al but showed an increase at higher irradiation doses in the case of Al5083 alloy. The microindendation results showed that unirradiated Al5083 alloy has higher hardness value compared to that of unirradiated pure Al. The hardness increased marginally with irradiation dose in the case of Al5083, whereas for pure Al, there was no significant change with dose.

  13. Proton ordering in (NH4)3H(SO4)2 at low-temperature phase transitions.

    PubMed

    Sohn, Yoo Jung; Sparta, Karine M; Prinz, Sebastian; Meven, Martin; Roth, Georg; Heger, Gernot

    2013-08-01

    Single-crystal neutron diffraction was used to investigate the H-atom disorder in triammonium hydrogen disulfate (TAHS), (NH4)3H(SO4)2, below room temperature. Crystal structure analysis of the monoclinic phase III shows an increase of proton ordering with decreasing temperature in the (SO4)H(SO4) dimer. Moreover, the NH4(+) groups on a general position begin ordering in this phase. The monoclinic unit cell of TAHS-IV doubles in the b direction and a slight distortion of SO4(2-) and NH4(+) tetrahedra is observed. The order parameter introduced by Landau was determined for the second-order II/III and III/IV phase transitions from the intensities of the superstructure reflections. TAHS-V has a triclinic space group and the crystal structure seems to be completely ordered according to a structure analysis by single-crystal X-ray diffraction measurements. In addition, the decisive role of the dynamical disorder of different ammonium groups on successive phase transitions is discussed. Additional peaks were observed by X-ray powder diffraction measurements at ∼ 70 K on cooling, which refers to the V/VII phase transition. These additional peaks remained up to ∼ 85 K on heating. They were described with a doubling of the unit cell along all three principal crystallographic directions.

  14. Characterization of MeV proton irradiated PS films

    NASA Astrophysics Data System (ADS)

    Martínez-Pardo, Ma. Esther; Cardoso, J.; Vázquez, H.; Aguilar, M.; Rickards, J.; Andrade, E.

    1997-08-01

    Poly(styrene) PS thin films were irradiated under vacuum with protons of three different energies and fluences. Radiation can induce polycyclic structures formation, as could be observed by UV and NMR. To support these observations, H-NMR and C, H concentration measurements were performed. The film becomes more rigid due to the possible formation of cyclic chemical groups and crosslinking. PS is known for its great stability to ionizing radiation and other degradation processes. Indeed, we studied the mass loss during bombardment, measuring the C and H concentration by proton scattering (back and forward). With dose up to 510 MGy, no mass loss was observed. Based on the results obtained in this study, a free radicals mechanism for PS is suggested, with the goal to explain the modifications induced by MeV proton irradiation.

  15. Microstructure of V-4Cr-4Ti alloy after low-temperature irradiation by ions and neutrons.

    SciTech Connect

    Gazda, J.

    1998-04-01

    Recent interest in the application of a V-4Cr-4Ti alloy in the ITER prompted an investigation of the effects of low-to-moderate temperature irradiation (<420 C) on the alloy's mechanical properties. Two sets of experiments were conducted. The effects of fast neutron irradiation to {approx_equal}4 dpa at 390 C were investigated in the X530 experiment in the EBR-II reactor. Irradiation with single (4.5-MeV Ni{sup 2}) and dual ion beams (350-keV He{sup +} simultaneously with 4.5-MeV Ni{sup 2}) complemented this study. TEM observations showed the formation of a high density of point-defect clusters and dislocation loops (<30 nm diameter) distributed uniformly in both types of specimens. Mechanical property testing of neutron irradiated material showed embrittlement of the alloy. The deformed microstructure were examined by TEM to determine the causes of embrittlement and revealed dislocation channels propagating through the undeformed matrix. The channels are the sole slip paths and they cause early onset of necking and loss of work-hardening. Based on a review of the available literature, suggestions are made for further research of slip localization in V-4Cr-4Ti alloys.

  16. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    NASA Astrophysics Data System (ADS)

    Sarantopoulou, E.; Stefi, A.; Kollia, Z.; Palles, D.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Velentzas, A. D.; Kakabakos, S.; Cefalas, A. C.

    2014-09-01

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm-2) or vacuum-ultraviolet irradiation (110-180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  17. Viability of Cladosporium herbarum spores under 157 nm laser and vacuum ultraviolet irradiation, low temperature (10 K) and vacuum

    SciTech Connect

    Sarantopoulou, E. Stefi, A.; Kollia, Z.; Palles, D.; Cefalas, A. C.; Petrou, P. S.; Bourkoula, A.; Koukouvinos, G.; Kakabakos, S.; Velentzas, A. D.

    2014-09-14

    Ultraviolet photons can damage microorganisms, which rarely survive prolonged irradiation. In addition to the need for intact DNA, cell viability is directly linked to the functionality of the cell wall and membrane. In this work, Cladosporium herbarum spore monolayers exhibit high viability (7%) when exposed to 157 nm laser irradiation (412 kJm⁻²) or vacuum-ultraviolet irradiation (110–180 nm) under standard pressure and temperature in a nitrogen atmosphere. Spore viability can be determined by atomic-force microscopy, nano-indentation, mass, μ-Raman and attenuated reflectance Fourier-transform far-infrared spectroscopies and DNA electrophoresis. Vacuum ultraviolet photons cause molecular damage to the cell wall, but radiation resistance in spores arises from the activation of a photon-triggered signaling reaction, expressed via the exudation of intracellular substances, which, in combination with the low penetration depth of vacuum-ultraviolet photons, shields DNA from radiation. Resistance to phototoxicity under standard conditions was assessed, as was resistance to additional environmental stresses, including exposure in a vacuum, under different rates of change of pressure during pumping time and low (10 K) temperatures. Vacuum conditions were far more destructive to spores than vacuum-ultraviolet irradiation, and UV-B photons were two orders of magnitude more damaging than vacuum-ultraviolet photons. The viability of irradiated spores was also enhanced at 10 K. This work, in addition to contributing to the photonic control of the viability of microorganisms exposed under extreme conditions, including decontamination of biological warfare agents, outlines the basis for identifying bio-signaling in vivo using physical methodologies.

  18. Central nervous system effects of whole-body proton irradiation.

    PubMed

    Sweet, Tara Beth; Panda, Nirlipta; Hein, Amy M; Das, Shoshana L; Hurley, Sean D; Olschowka, John A; Williams, Jacqueline P; O'Banion, M Kerry

    2014-07-01

    Space missions beyond the protection of Earth's magnetosphere expose astronauts to an environment that contains ionizing proton radiation. The hazards that proton radiation pose to normal tissues, such as the central nervous system (CNS), are not fully understood, although it has been shown that proton radiation affects the neurogenic environment, killing neural precursors and altering behavior. To determine the time and dose-response characteristics of the CNS to whole-body proton irradiation, C57BL/6J mice were exposed to 1 GeV/n proton radiation at doses of 0-200 cGy and behavioral, physiological and immunohistochemical end points were analyzed over a range of time points (48 h-12 months) postirradiation. These experiments revealed that proton radiation exposure leads to: 1. an acute decrease in cell division within the dentate gyrus of the hippocampus, with significant differences detected at doses as low as 10 cGy; 2. a persistent effect on proliferation in the subgranular zone, at 1 month postirradiation; 3. a decrease in neurogenesis at doses as low as 50 cGy, at 3 months postirradiation; and 4. a decrease in hippocampal ICAM-1 immunoreactivity at doses as low as 10 cGy, at 1 month postirradiation. The data presented contribute to our understanding of biological responses to whole-body proton radiation and may help reduce uncertainty in the assessment of health risks to astronauts. These findings may also be relevant to clinical proton beam therapy.

  19. Electronic Excitation Dynamics in Liquid Water under Proton Irradiation

    PubMed Central

    Reeves, Kyle G.; Kanai, Yosuke

    2017-01-01

    Molecular behaviour of liquid water under proton irradiation is of great importance to a number of technological and medical applications. The highly energetic proton generates a time-varying field that is highly localized and heterogeneous at the molecular scale, and massive electronic excitations are produced as a result of the field-matter interaction. Using first-principles quantum dynamics simulations, we reveal details of how electrons are dynamically excited through non-equilibrium energy transfer from highly energetic protons in liquid water on the atto/femto-second time scale. Water molecules along the path of the energetic proton undergo ionization at individual molecular level, and the excitation primarily derives from lone pair electrons on the oxygen atom of water molecules. A reduced charge state on the energetic proton in the condensed phase of water results in the strongly suppressed electronic response when compared to water molecules in the gas phase. These molecular-level findings provide important insights into understanding the water radiolysis process under proton irradiation. PMID:28084420

  20. Electronic Excitation Dynamics in Liquid Water under Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle G.; Kanai, Yosuke

    2017-01-01

    Molecular behaviour of liquid water under proton irradiation is of great importance to a number of technological and medical applications. The highly energetic proton generates a time-varying field that is highly localized and heterogeneous at the molecular scale, and massive electronic excitations are produced as a result of the field-matter interaction. Using first-principles quantum dynamics simulations, we reveal details of how electrons are dynamically excited through non-equilibrium energy transfer from highly energetic protons in liquid water on the atto/femto-second time scale. Water molecules along the path of the energetic proton undergo ionization at individual molecular level, and the excitation primarily derives from lone pair electrons on the oxygen atom of water molecules. A reduced charge state on the energetic proton in the condensed phase of water results in the strongly suppressed electronic response when compared to water molecules in the gas phase. These molecular-level findings provide important insights into understanding the water radiolysis process under proton irradiation.

  1. Low-temperature low-dose neutron irradiation effects on Brush Wellman S65-C and Kawechi Berylco P0 beryllium

    SciTech Connect

    Snead, L.L.

    1998-09-01

    The mechanical property results for two high quality beryllium materials subjected to low temperature, low dose neutron irradiation in water moderated reactors are presented. Materials chosen were the S65-C ITER candidate material produced by Brush Wellman, and Kawecki Berylco Industries P0 beryllium. Both materials were processed by vacuum hot pressing. Mini sheet tensile and thermal diffusivity specimens were irradiated in the temperature range of {approximately}100--275 C from a fast (E > 0.1 MeV) neutron dose of 0.05 to 1.0 {times} 10{sup 25} n/m{sup 2} in the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory and the High Flux Beam Reactor (HFBR) at the Brookhaven National Laboratory. As expected from earlier work on beryllium, both materials underwent significant embrittlement with corresponding reduction in ductility and increased strength. Both thermal diffusivity and volumetric expansion were measured and found to be negligible in this temperature and fluence range. Of significance from this work is that while both materials rapidly embrittle at these ITER relevant irradiation conditions, some ductility (>1--2%) remains, which contrasts with a body of earlier work including recent work on the Brush-Wellman S65-C material irradiated to slightly higher neutron fluence.

  2. Low-temperature (<200 oC) solid-phase crystallization of high substitutional Sn concentration (˜10%) GeSn on insulator enhanced by weak laser irradiation

    NASA Astrophysics Data System (ADS)

    Moto, Kenta; Sugino, Takayuki; Matsumura, Ryo; Ikenoue, Hiroshi; Miyao, Masanobu; Sadoh, Taizoh

    2017-07-01

    Low temperature (<200 oC) crystallization of GeSn (substitutional Sn concentration: >8%) on insulating substrates is essential to realize next generation flexible electronics. To achieve this, a growth method of high quality GeSn films on insulating substrates by combination of laser irradiation and subsequent thermal annealing is developed. Here, the laser fluence is chosen as weak, which is below the critical fluence for crystallization of GeSn. It is clarified that for samples irradiated with weak laser fluence, complete crystallization of GeSn films is achieved by subsequent thermal annealing at ˜170 oC without incubation time. In addition, the quality of GeSn films obtained by this method is higher compared with conventional growth techniques such as melting growth by pulsed laser annealing or solid-phase crystallization (SPC) without pre-laser irradiation. Substitutional Sn concentrations in the grown layers estimated by Raman spectroscopy measurements are 8-10%, which far exceed thermal equilibrium solid-solubility of Sn in Ge (˜2%). These phenomena are explained by generation of a limited number of nuclei by weak laser irradiation and lateral SPC by subsequent thermal annealing. This method will facilitate realization of next-generation high performance devices on flexible insulating substrates.

  3. Mitochondrial-targeted human catalase affords neuroprotection from proton irradiation.

    PubMed

    Liao, Alicia C; Craver, Brianna M; Tseng, Bertrand P; Tran, Katherine K; Parihar, Vipan K; Acharya, Munjal M; Limoli, Charles L

    2013-07-01

    Significant past work has linked radiation exposure of the CNS to elevated levels of oxidative stress and inflammation. These secondary reactive processes are both dynamic and persistent and are believed to compromise the functionality of the CNS, in part, by disrupting endogenous neurogenesis in the hippocampus. While evidence has shown neurogenesis to be sensitive to irradiation and redox state, the mechanistic basis underlying these effects is incompletely understood. To clarify the role of reactive oxygen species (ROS) in mediating radiation-induced changes in neurogenesis we have analyzed transgenic mice that overexpress human catalase localized to the mitochondria. With this model, we investigated the consequences of low dose and clinically relevant proton irradiation on neurogenesis, and how that process is modified in response to genetic disruption of mitochondrial ROS levels. In unirradiated animals, basal neurogenesis was improved significantly by reductions in mitochondrial ROS. In animals subjected to proton exposure, hippocampal progenitor cell proliferation was attenuated significantly by overexpression of human catalase in the mitochondria. Furthermore, expression of the MCAT transgene significantly improved neurogenesis in WT animals after low-dose proton exposure (0.5 Gy), with similar trends observed at higher dose (2 Gy). Our report documents for the first time the impact of proton irradiation on hippocampal neurogenesis, and the neuroprotective properties of reducing mitochondrial ROS through the targeted overexpression of catalase. © 2013 by Radiation Research Society

  4. Developments for 230 MeV superconducting cyclotrons for proton therapy and proton irradiation

    NASA Astrophysics Data System (ADS)

    Zhang, Tianjue; Wang, Chuan; Li, Ming; Cui, Tao; Yin, Zhiguo; Ji, Bin; Lv, Yinlong; Guan, Fengping; Ge, Tao; Xing, Jiansheng; Yang, Jianjun; Jia, Xianlu; Yin, Meng; Zhang, Suping; Cao, Xuelong; An, Shizhong; Wei, Sumin; Lin, Jun; Cao, Lei; Zhang, Dongsheng; Hou, Shigang; Wang, Feng; Gong, Pengfei

    2017-09-01

    There are very strong demands for mid-energy proton machine in recent years due to the surging cancer patients and fast progress of the space science in China. For the applications of proton therapy and proton irradiation, the energy range of proton beam is usually from 200 MeV to 250 MeV, or even higher for astronavigation. Based on the R&D starting from 2009, a construction project of a 230 MeV superconducting cyclotron (CYCIAE-230) has been launched recently at China Institute of Atomic Energy (CIAE). It was started in Jan 2015, for the program of proton therapy and space science launched by China National Nuclear Corporation (CNNC). In this paper, the designs for the superconducting (SC) cyclotron and its key components, including the main magnet, SC coils, internal ion source and central region, extraction system, etc, and the construction progress of the machine CYCIAE-230 will be presented.

  5. Creation of carbon onions and coils at low temperature in near-critical benzene irradiated with an ultraviolet laser

    NASA Astrophysics Data System (ADS)

    Fukuda, Takahiro; Watabe, Nami; Whitby, Raymond; Maekawa, Toru

    2007-10-01

    Gas-liquid coexistence curves terminate at their critical points, where second-order phase transitions occur. The specific heat and compressibility increase greatly as the fluid systems approach their critical points. As a result, thermal diffusion is suppressed and the perturbations of the temperature, pressure and density propagate as acoustic waves. In this paper, we irradiate near-critical benzene with a laser beam of 266 nm in wavelength, the energy flux of which is 1.3 and 3.9 mW mm-2, and show that benzene is dissociated and various carbon nano/microstructures such as carbon onions and coils are created. Carbon onions are produced in both subcritical (200 °C) and supercritical (290 °C) benzene, whereas carbon coils are produced on an alloy catalyst composed of (Fe:Cr:Ni = 74:18:8) in supercritical benzene irradiated with a laser beam of 3.9 mW mm-2. The operational temperature of the present method is much lower than that used in conventional carbon structure synthesizing methods and a large number of carbon structures, such as carbon onions and coils, are produced in supercritical benzene.

  6. Dielectric strength, swelling and weight loss of the ITER Toroidal Field Model Coil insulation after low temperature reactor irradiation

    NASA Astrophysics Data System (ADS)

    Humer, K.; Weber, H. W.; Hastik, R.; Hauser, H.; Gerstenberg, H.

    2000-04-01

    The insulation system for the Toroidal Field Model Coil of ITER is a fiber reinforced plastic (FRP) laminate, which consists of a combined Kapton/R-glass-fiber reinforcement tape, vacuum-impregnated with an epoxy DGEBA system. Pure disk shaped laminates, FRP/stainless-steel sandwiches, and conductor insulation prototypes were irradiated at 5 K in a fission reactor up to a fast neutron fluence of 10 22 m -2 ( E>0.1 MeV) to investigate the radiation induced degradation of the dielectric strength of the insulation system. After warm-up to room temperature, swelling, weight loss, and the breakdown strength were measured at 77 K. The sandwich swells by 4% at a fluence of 5×10 21 m-2 and by 9% at 1×10 22 m-2. The weight loss of the FRP is 2% at 1×10 22 m-2. The dielectric strength remained unchanged over the whole dose range.

  7. Production of sodium-22 from proton irradiated aluminum

    DOEpatents

    Taylor, Wayne A.; Heaton, Richard C.; Jamriska, David J.

    1996-01-01

    A process for selective separation of sodium-22 from a proton irradiated minum target including dissolving a proton irradiated aluminum target in hydrochloric acid to form a first solution including aluminum ions and sodium ions, separating a portion of the aluminum ions from the first solution by crystallization of an aluminum salt, contacting the remaining first solution with an anion exchange resin whereby ions selected from the group consisting of iron and copper are selectively absorbed by the anion exchange resin while aluminum ions and sodium ions remain in solution, contacting the solution with an cation exchange resin whereby aluminum ions and sodium ions are adsorbed by the cation exchange resin, and, contacting the cation exchange resin with an acid solution capable of selectively separating the adsorbed sodium ions from the cation exchange resin while aluminum ions remain adsorbed on the cation exchange resin is disclosed.

  8. Radiation Sterilization of Prototype Military Foods: Low-Temperature Irradiation of Codfish Cake, Corned Beef, and Pork Sausage 1

    PubMed Central

    Anellis, Abe; Berkowitz, D.; Swantak, W.; Strojan, C.

    1972-01-01

    “Screening” packs comprising 10 lots each of codfish cake, corned beef, and pork sausage, each lot containing about 106 spores of a different strain (five type A and five type B) of Clostridium botulinum per can, were irradiated at −30 ± 10 C with a series of increasing doses (20 replicate cans/dose) of 60Co gamma rays. The cans were incubated for 3 months at 30 C and examined for swelling, toxin, and recoverable botulinal cells. Based on the latter criterion of spoilage, median lethal dose (LD50) and D values were estimated for each strain in each food. The most resistant strain in codfish cake, corned beef, and pork sausage was, respectively, 53B, 77A, and 41B. There was no clear-cut trend in the comparative order of resistance between the two antigenic types among the three foods. LD50 values gave essentially the same order of resistances as the D values and may be used interchangeably with the latter for the 10 test organisms. “Clearance” packs consisting of the most resistant strain (about 107 spores/can) with its respective food were irradiated with a variety of doses at −30 ± 10 C, using 100 replicate cans/dose (about 109 spores/dose). These packs were incubated for 6 months at 30 C and assayed for the three types of spoilage. Based on recoverable cells, the experimental sterilizing doses (ESD) for codfish cake, corned beef, and pork sausage were 2.5< ESD ≤ 3.0, 2.0 < ESD ≤ 2.5, and 1.5 < ESD ≤ 2.0 Mrad, in that order. Assuming exponential spore death, the 12D values, or minimal radiation doses (MRD), were 3.24, 2.44, and 2.65 Mrad, respectively. Estimation of the MRD values by a method which assumes that spore death in the cans follows a normal distribution, yielded 3.09, 2.57, and 2.39 Mrad, respectively. Weibull analyis of the pooled 10-strain viable cell spoilage data of the screening packs for codfish cake or corned beef suggested that spore death in the cans follows a normal distribution yielded 3.09, 2.57, pooled data were not

  9. Performance of candidate SEPS solar cells as a function of low temperature and low intensity exposure and 1 MeV electron irradiation

    NASA Technical Reports Server (NTRS)

    Whitaker, A. F.; Little, S. A.; Rives, C. J.; Wagner, P. E.

    1981-01-01

    The behavior of 144 high-performance shallow-junction silicon solar cells under conditions of low temperature and intensity was examined. The cells represented nine combinations of thickness, base resistivity, front surface texture, and rear surface treatment. At least 16 cells of each type were individually tested both as active elements under light levels between 0.04 and 1.0 solar constant and in the dark as passive rectifiers under external forward bias. One cell type was also irradiated with 1 MeV electrons up to 2.7 x 10 to the 15th e/sq cm. The inferior cells demonstrated high ohmic and/or non-ohmic shunting. No series resistance or Schottky barrier effects were observed. Fluences beyond 10 to the 13th e/sq cm lowered cell current, probably by increasing volume recombination.

  10. UV irradiation/cold shock-mediated apoptosis is switched to bubbling cell death at low temperatures

    PubMed Central

    Lin, Hsin-Ping; Huang, Shenq-Shyang; Sheu, Hamm-Ming; Hsu, Li-Jin; Chang, Nan-Shan

    2015-01-01

    When COS7 fibroblasts and other cells were exposed to UVC irradiation and cold shock at 4°C for 5 min, rapid upregulation and nuclear accumulation of NOS2, p53, WWOX, and TRAF2 occurred in 10–30 min. By time-lapse microscopy, an enlarging gas bubble containing nitric oxide (NO) was formed in the nucleus in each cell that finally popped out to cause “bubbling death”. Bubbling occurred effectively at 4 and 22°C, whereas DNA fragmentation was markedly blocked at 4°C. When temperature was increased to 37°C, bubbling was retarded and DNA fragmentation occurred in 1 hr, suggesting that bubbling death is switched to apoptosis with increasing temperatures. Bubbling occurred prior to nuclear uptake of propidium iodide and DAPI stains. Arginine analog Nω-LAME inhibited NO synthase NOS2 and significantly suppressed the bubbling death. Unlike apoptosis, there were no caspase activation and flip-over of membrane phosphatidylserine (PS) during bubbling death. Bubbling death was significantly retarded in Wwox knockout MEF cells, as well as in cells overexpressing TRAF2 and dominant-negative p53. Together, UV/cold shock induces bubbling death at 4°C and the event is switched to apoptosis at 37°C. Presumably, proapoptotic WWOX and p53 block the protective TRAF2 to execute the bubbling death. PMID:25779665

  11. Technique for sparing previously irradiated critical normal structures in salvage proton craniospinal irradiation

    PubMed Central

    2013-01-01

    Background Cranial reirradiation is clinically appropriate in some cases but cumulative radiation dose to critical normal structures remains a practical concern. The authors developed a simple technique in 3D conformal proton craniospinal irradiation (CSI) to block organs at risk (OAR) while minimizing underdosing of adjacent target brain tissue. Methods Two clinical cases illustrate the use of proton therapy to provide salvage CSI when a previously irradiated OAR required sparing from additional radiation dose. The prior radiation plan was coregistered to the treatment planning CT to create a planning organ at risk volume (PRV) around the OAR. Right and left lateral cranial whole brain proton apertures were created with a small block over the PRV. Then right and left lateral “inverse apertures” were generated, creating an aperture opening in the shape of the area previously blocked and blocking the area previously open. The inverse aperture opening was made one millimeter smaller than the original block to minimize the risk of dose overlap. The inverse apertures were used to irradiate the target volume lateral to the PRV, selecting a proton beam range to abut the 50% isodose line against either lateral edge of the PRV. Together, the 4 cranial proton fields created a region of complete dose avoidance around the OAR. Comparative photon treatment plans were generated with opposed lateral X-ray fields with custom blocks and coplanar intensity modulated radiation therapy optimized to avoid the PRV. Cumulative dose volume histograms were evaluated. Results Treatment plans were developed and successfully implemented to provide sparing of previously irradiated critical normal structures while treating target brain lateral to these structures. The absence of dose overlapping during irradiation through the inverse apertures was confirmed by film. Compared to the lateral X-ray and IMRT treatment plans, the proton CSI technique improved coverage of target brain tissue

  12. Proteomic Analysis of Proton Beam Irradiated Human Melanoma Cells

    PubMed Central

    Kedracka-Krok, Sylwia; Jankowska, Urszula; Elas, Martyna; Sowa, Urszula; Swakon, Jan; Cierniak, Agnieszka; Olko, Pawel; Romanowska-Dixon, Bozena; Urbanska, Krystyna

    2014-01-01

    Proton beam irradiation is a form of advanced radiotherapy providing superior distributions of a low LET radiation dose relative to that of photon therapy for the treatment of cancer. Even though this clinical treatment has been developing for several decades, the proton radiobiology critical to the optimization of proton radiotherapy is far from being understood. Proteomic changes were analyzed in human melanoma cells treated with a sublethal dose (3 Gy) of proton beam irradiation. The results were compared with untreated cells. Two-dimensional electrophoresis was performed with mass spectrometry to identify the proteins. At the dose of 3 Gy a minimal slowdown in proliferation rate was seen, as well as some DNA damage. After allowing time for damage repair, the proteomic analysis was performed. In total 17 protein levels were found to significantly (more than 1.5 times) change: 4 downregulated and 13 upregulated. Functionally, they represent four categories: (i) DNA repair and RNA regulation (VCP, MVP, STRAP, FAB-2, Lamine A/C, GAPDH), (ii) cell survival and stress response (STRAP, MCM7, Annexin 7, MVP, Caprin-1, PDCD6, VCP, HSP70), (iii) cell metabolism (TIM, GAPDH, VCP), and (iv) cytoskeleton and motility (Moesin, Actinin 4, FAB-2, Vimentin, Annexin 7, Lamine A/C, Lamine B). A substantial decrease (2.3 x) was seen in the level of vimentin, a marker of epithelial to mesenchymal transition and the metastatic properties of melanoma. PMID:24392146

  13. Proton irradiation of DNA nucleosides in the gas phase.

    PubMed

    Poully, Jean-Christophe; Miles, Jordan; De Camillis, Simone; Cassimi, Amine; Greenwood, Jason B

    2015-03-21

    The four DNA nucleosides guanosine, adenosine, cytidine and thymidine have been produced in the gas phase by a laser thermal desorption source, and irradiated by a beam of protons with 5 keV kinetic energy. The molecular ions as well as energetic neutrals formed have been analyzed by mass spectrometry in order to shed light on the ionization and fragmentation processes triggered by proton collision. A range of 8-20 eV has been estimated for the binding energy of the electron captured by the proton. Glycosidic bond cleavage between the base and sugar has been observed with a high probability for all nucleosides, resulting in predominantly intact base ions for guanosine, adenosine, and cytidine but not for thymidine where intact sugar ions are dominant. This behavior is influenced by the ionization energies of the nucleobases (G < A < C < T), which seems to determine the localization of the charge following the initial ionization. This charge transfer process can also be inferred from the production of protonated base ions, which have a similar dependence on the base ionization potential, although the base proton affinity might also play a role. Other dissociation pathways have also been identified, including further fragmentation of the base and sugar moieties for thymidine and guanosine, respectively, and partial breakup of the sugar ring without glycosidic bond cleavage mainly for adenosine and cytidine. These results show that charge localization following ionization by proton irradiation is important in determining dissociation channels of isolated nucleosides, which could in turn influence direct radiation damage in DNA.

  14. Crosslinking of polyamide-6 initiated by proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Porubská, Mária; Szöllös, Ondrej; Janigová, Ivica; Jomová, Klaudia; Chodák, Ivan

    2017-04-01

    Initiation of crosslinking of polyamide-6 (PA6) by proton beam irradiation was investigated for a virgin material as well as for PA6 containing up to 5 wt% of triallyl cyanurate (TAC) as a crosslinking coagent. The gel point was found to be 144 and 40 kGy for virgin PA6 and for PA6 with 1 wt% of TAC, while for higher TAC content gel content was determined to be around zero absorbed dose. The ratio between crosslinking and scission of macroradicals formed by irradiation was found to be around 0.65 regardless on presence or absence of TAC and its concentration. The more detailed discussion on chemical processes as well as on final structure formation after irradiation is based on data from differential scanning calorimetry, detecting a decrease of both lamellar thickness and crystalline portion, but an increase of glass transition temperature.

  15. Effect of proton irradiation on superconductivity in optimally doped BaFe2(As1-xPx)2 single crystals

    DOE PAGES

    Smylie, M. P.; Leroux, M.; Mishra, V.; ...

    2016-03-10

    In this paper, irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe2(As1-xPx)2, x = 0.33. The effect of disorder on the low-temperature behavior of the London penetration depth λ(T) and transition temperature Tc was investigated. In nearly optimally doped samples with Tc ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects. Finally, we attribute our findings tomore » anisotropic electron scattering caused by proton irradiation defects.« less

  16. Effect of proton irradiation on the normal-state low-energy excitations of Ba (Fe1-xRhx) 2As2 superconductors

    NASA Astrophysics Data System (ADS)

    Moroni, M.; Gozzelino, L.; Ghigo, G.; Tanatar, M. A.; Prozorov, R.; Canfield, P. C.; Carretta, P.

    2017-09-01

    We present a 75As nuclear magnetic resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x =0.068 ) and overdoped (x =0.107 ) Ba (Fe1-xRhx) 2As2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagnetic correlations coexisting with superconductivity at the nanoscale. 1 /T2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0 ,π ) and (π ,0) nematic ground states.

  17. Crack-free periodic porous thin films assisted by plasma irradiation at low temperature and their enhanced gas-sensing performance.

    PubMed

    Dai, Zhengfei; Jia, Lichao; Duan, Guotao; Li, Yue; Zhang, Hongwen; Wang, Jingjing; Hu, Jinlian; Cai, Weiping

    2013-09-27

    Homogenous thin films are preferable for high-performance gas sensors because of their remarkable reproducibility and long-term stability. In this work, a low-temperature fabrication route is presented to prepare crack-free and homogenous metal oxide periodic porous thin films by oxygen plasma irradiation instead of high temperature annealing by using a sacrificial colloidal template. Rutile SnO2 is taken as an example to demonstrate the validity of this route. The crack-free and homogenous porous thin films are successfully synthesized on the substrates in situ with electrodes. The SnO2 porous thin film obtained by plasma irradiation is rich in surface OH groups and hence superhydrophilic. It exhibits a more homogenous structure and lower resistance than porous films generated by annealing. More importantly, such thin films display higher sensitivity, a lower detection threshold (100 ppb to acetone) and better durability than those that have been directly annealed, resulting in enhanced gas-sensing performance. The presented method could be applied to synthesize other metal oxide homogenous thin films and to fabricate gas-sensing devices with high performances.

  18. EPR detected polarization transfer between Gd3+ and protons at low temperature and 3.3 T: The first step of dynamic nuclear polarization

    NASA Astrophysics Data System (ADS)

    Nagarajan, Vijayasarathi; Hovav, Yonatan; Feintuch, Akiva; Vega, Shimon; Goldfarb, Daniella

    2010-06-01

    Electron-electron double resonance pulsed electron paramagnetic resonance (EPR) at 95 GHz (3.3 T) is used to follow the dynamics of the electron spin polarization during the first stages of dynamic nuclear polarization in solids. The experiments were performed on a frozen solution of Gd+3 (S =7/2) in water/glycerol. Focusing on the central |-1/2⟩→|+1/2⟩ transition we measured the polarization transfer from the Gd3+ electron spin to the adjacent H1 protons. The dependence of the echo detected EPR signal on the length of the microwave irradiation at the EPR "forbidden" transition corresponding to an electron and a proton spin flip is measured for different powers, showing dynamics on the microsecond to millisecond time scales. A theoretical model based on the spin density matrix formalism is suggested to account for this dynamics. The central transition of the Gd3+ ion is considered as an effective S =1/2 system and is coupled to H1 (I =1/2) nuclei. Simulations based on a single electron-single nucleus four level system are shown to deviate from the experimental results and an alternative approach taking into account the more realistic multinuclei picture is shown to agree qualitatively with the experiments.

  19. Design of α-Al2O3/Cr2O3 nano-multilayered composite films with enhanced irradiation tolerance prepared by epitaxial growth at low temperature

    NASA Astrophysics Data System (ADS)

    Zou, Jianxiong; Dong, Yuming; Liu, Bo; Lin, Liwei; Zhu, Jingjun; Liu, Shifeng; Li, Qiran; Liu, Xiang

    2017-09-01

    In this paper, α-Al2O3/Cr2O3 nano-multilayered composite films were studied due to excellent properties of α-Al2O3 and template effect of Cr2O3 for the synthesis of α-Al2O3 at low temperature. SRIM code was used to simulate the irradiation damage of α-Al2O3/Cr2O3 multilayer films with different single layer thicknesses caused by 60 keV He+, in order to find out a better design of the structure of the multilayer film. α-Al2O3/Cr2O3 nano-multilayered films with different single layer thickness were deposited by RF magnetron reactive sputtering on Si (100) at 400 °C with Cr2O3 layers as crystallographic templates. The films were injected by 60 keV He+ with fluences of 0.5 × 1017, 1 × 1017 and 2 × 1017 He+/cm2 at temperature about 573 K to study the microstructural development and surface morphology evolution of α-Al2O3/Cr2O3 nano-multilayer films. The simulation results along with the SEM investigation indicated that to obtain better irradiation tolerance, one should design a multilayer with a high proportion of α-Al2O3 and more interfaces. The experimental results showed that the microstructures of the α-Al2O3 (100 nm)/Cr2O3 (60 nm) multilayers were nano-polycrystalline and remained stable even as the radiation fluences increase to 1 × 1017 He+/cm2. This suggests the excellent irradiation tolerance of α-Al2O3 (100 nm)/Cr2O3 (60 nm) nano-multilayered composite films.

  20. Head and neck tumors after energetic proton irradiation in rats

    NASA Astrophysics Data System (ADS)

    Wood, D.; Cox, A.; Hardy, K.; Salmon, Y.; Trotter, R.

    1994-10-01

    This is a two-year progress report on a life span dose-response study of brain tumor risk at moderate to high doses of energetic protons. It was initiated because a joint NASA/USAF life span study of rhesus monkeys that were irradiated with 55-MeV protons (average surface dose, 3.5 Gy) indicated that the incidence of brain tumors per unit surface absorbed dose was over 19 times that of the human tinea capitis patients whose heads were exposed to 100 kv x-rays. Examination of those rats that died in the two-year interval after irradiation of the head revealed a linear dose-response for total head and neck tumor incidence in the dose range of 0-8.5 Gy. The exposed rats had a greater incidence of pituitary chromophobe adenomas, epithelial and mesothelial cell tumors than the unexposed controls but the excessive occurrence of malignant gliomas that was observed in the monkeys was absent in the rats. The estimated dose required to double the number of all types of head and neck tumors was 5.2 Gy. The highest dose, 18 Gy, resulted in high mortality due to obstructive squamous metaplasia at less than 50 weeks, prompting a new study of the relative bological effectiveness of high energy protons in producing this lesion.

  1. Irradiation effects on magnetic properties in neutron and proton irradiated reactor pressure vessel steel

    SciTech Connect

    Park, D.G.; Hong, J.H.; Kim, I.S.; Kim, H.C.

    1999-09-01

    The effects of neutron and proton dose on the magnetic properties of a reactor pressure vessel (RPV) steel were investigated. The coercivity and maximum induction increased in two stages with respect to neutron dose, being nearly constant up to a dose of 1.5 x 10{sup {minus}7} dpa, followed by a rapid increase up to a dose of 1.5 x 10{sup {minus}5} dpa. The coercivity and maximum induction in the proton irradiated specimens also showed a two stage variation with respect to proton dose, namely a rapid increase up to a dose of 0.2 x 10{sup {minus}2} dpa, then a decrease up to 1.2 x 10{sup {minus}2} dpa. The Barkhausen noise (BN) amplitude in neutron irradiated specimens also varied in two stages in a reverse manner, the transition at the same dose of 1.5 x 10{sup {minus}7} dpa. The BN amplitude in proton irradiated specimens decreased by 60% up to 0.2 x 10{sup {minus}2} dpa followed by an increase up to 1.2 x 10{sup {minus}2} dpa. The results were in good accord with the one dimensional domain wall model considering the density of defects and wall energy.

  2. Ferromagnetism in proton irradiated 4H-SiC single crystal

    SciTech Connect

    Zhou, Ren-Wei; Wang, Hua-Jie; Chen, Wei-Bin; Li, Fei; Liu, Xue-Chao Zhuo, Shi-Yi; Shi, Er-Wei

    2015-04-15

    Room-temperature ferromagnetism is observed in proton irradiated 4H-SiC single crystal. An initial increase in proton dose leads to pronounced ferromagnetism, accompanying with obvious increase in vacancy concentration. Further increase in irradiation dose lowers the saturation magnetization with the decrease in total vacancy defects due to the defects recombination. It is found that divacancies are the mainly defects in proton irradiated 4H-SiC and responsible for the observed ferromagnetism.

  3. Charge dynamics in KH{sub 2}PO{sub 4} systematically modified by proton irradiation

    SciTech Connect

    Kweon, Jin Jung; Lee, Kyu Won; Lee, Cheol Eui; Lee, Kwang-Sei; Oh, In-Hwan

    2011-08-15

    Our systematic study employing high-resolution nuclear magnetic resonance measurements shows that the hydrogen bonds and proton transport in the KH{sub 2}PO{sub 4} (KDP) system may be tuned sensitively by proton irradiation. In particular, the hydrogen-bond length in KDP increased by a properly chosen dose of proton irradiation is shown to give rise to a minimum in the activation energy of proton hopping in the hydrogen-bond direction.

  4. 31P nuclear magnetic resonance study of the proton-irradiated KTiOPO4

    NASA Astrophysics Data System (ADS)

    Kim, Se-Hun; Lee, Cheol Eui

    2013-08-01

    31P nuclear magnetic resonance (NMR) was employed to study the effects of proton irradiation on KTiOPO4 (KTP) in view of the previously studied paramagnetic impurity doping effects. High-resolution 31P NMR measurements showed significant increase in the isotropic chemical shifts of the two inequivalent phosphorus sites in the proton-irradiated KTP system, indicating decrease in the electron density around the phosphorous nuclei. The 31P NMR linewidths of the KTP system manifested anomalies associated with the superionic transition and with the polaron formation, which became much weaker after proton irradiation. Besides, the activation energy of the charge carriers increased significantly after proton irradiation.

  5. Proton irradiation effects on the thermoelectric properties in single-crystalline Bi nanowires

    SciTech Connect

    Chang, Taehoo; Kim, Jeongmin; Song, Min-Jung; Lee, Wooyoung

    2015-05-15

    The effects of proton irradiation on the thermoelectric properties of Bi nanowires (Bi-NWs) were investigated. Single crystalline Bi-NWs were grown by the on-film formation of nanowires method. The devices based on individual Bi-NWs were irradiated with protons at different energies. The total number of displaced atoms was estimated using the Kinchin-Pease displacement model. The electric conductivity and Seebeck coefficient in the Bi-NW devices were investigated before and after proton irradiation at different temperatures. Although the Seebeck coefficient remained stable at various irradiation energies, the electrical conductivity significantly declined with increasing proton energy up to 40 MeV.

  6. Recovery behavior of high purity cubic SiC polycrystals by post-irradiation annealing up to 1673 K after low temperature neutron irradiation

    NASA Astrophysics Data System (ADS)

    Idris, Mohd Idzat; Yamazaki, Saishun; Yoshida, Katsumi; Yano, Toyohiko

    2015-10-01

    Two kinds of high purity cubic (β) SiC polycrystals, PureBeta-SiC and CVD-SiC, were irradiated in the BR2 reactor (Belgium) up to a fluence of 2.0-2.5 × 1024 (E > 0.1 MeV) at 333-363 K. Changes in macroscopic lengths were examined by post-irradiation thermal annealing using a precision dilatometer up to 1673 K with a step-heating method. The specimen was held at each temperature step for 6 h and the change in length of the specimen was recorded during each isothermal annealing step from 373 K to 1673 K with 50 K increments. The recovery curves were analyzed with the first order model, and rate constants at each annealing step were obtained. Recovery of defects, induced by neutron irradiation in high purity β-SiC, has four stages of different activation energies. At 373-573 K, the activation energy of PureBeta-SiC and CVD-SiC was in the range of 0.17-0.24 eV and 0.12-0.14 eV; 0.002-0.04 eV and 0.006-0.04 eV at 723-923 K; 0.20-0.27 eV and 0.26-0.31 eV at 923-1223 K; and 1.37-1.38 eV and 1.26-1.29 eV at 1323-1523 K, respectively. Below ∼1223 K the recombination occurred possibly for closely positioned C and Si Frenkel pairs, and no long range migration is deemed essential. Nearly three-fourths of recovery, induced by neutron irradiation, occur by this mechanism. In addition, at 1323-1523 K, recombination of slightly separated C Frenkel pairs and more long-range migration of Si interstitials may have occurred for PureBeta-SiC and CVD-SiC specimens. Migration of both vacancies may be restricted up to ∼1523 K. Comparing to hexagonal α-SiC, high purity β-SiC recovered more quickly in the lower annealing temperature range of less than 873 K, in particular less than 573 K.

  7. Optimized enzymatic dual functions of PaPrx protein by proton irradiation

    PubMed Central

    Park, Chul-Hong; Lee, Seung Sik; Kim, Kye Ryung; Jung, Myung Hwan; Lee, Sang Yeol; Cho, Eun Ju; Singh, Sudhir; Chung, Byung Yeoup

    2014-01-01

    We investigated the effects of proton irradiation on the function and structure of the Pseudomonas aeruginosa peroxiredoxin (PaPrx). Polyacrylamide gel demonstrated that PaPrx proteins exposed to proton irradiation at several doses exhibited simultaneous formation of high molecular weight (HMW) complexes and fragmentation. Size-exclusion chromatography (SEC) analysis revealed that the number of fragments and very low molecular weight (LMW) structures increased as the proton irradiation dose increased. The peroxidase activity of irradiated PaPrx was preserved, and its chaperone activity was significantly increased by increasing the proton irradiation dose. The chaperone activity increased about 3–4 fold after 2.5 kGy proton irradiation, compared with that of non-irradiated PaPrx, and increased to almost the maximum activity after 10 kGy proton irradiation. We previously obtained functional switching in PaPrx proteins, by using gamma rays and electron beams as radiation sources, and found that the proteins exhibited increased chaperone activity but decreased peroxidase activity. Interestingly, in this study we newly found that proton irradiation could enhance both peroxidase and chaperone activities. Therefore, we can suggest proton irradiation as a novel protocol for conserved 2-Cys protein engineering. PMID:23753570

  8. On-line DLTS investigations of the mono- and di-vacancy in p-type silicon after low temperature electron irradiation

    NASA Astrophysics Data System (ADS)

    Zangenberg, Nikolaj; Goubet, Jean-Jacques; Nylandsted Larsen, Arne

    2002-01-01

    Using deep level transient spectroscopy (DLTS) and Laplace-DLTS, we have investigated vacancy-related defects created in boron-doped epitaxial Si by 2 MeV electron irradiations at low temperatures (⩽ 40 K) . The vacancy level is found at E v+0.12 eV together with a DLTS peak at E v+0.20 eV which anneals at ˜140 K and is tentatively identified as a vacancy in a different configuration. The emission rate of the dominant vacancy-related deep level in the temperature range from 200 to 550 K, namely the (0/+) transition of the di-vacancy (V 2), displays a very large dependence of the emission rate on the electric field strength in the depletion region of the diodes. This dependence is unexpected in terms of the classical Poole-Frenkel effect, given the neutral charge state of V 2 before hole capture. The effect of high fields appears to be caused by phonon assisted tunneling. When V anneals around 200 K, a new complex assigned to a vacancy-boron pair gives rise to two charge states. Quenching experiments with reverse bias show that the complex is bistable. It anneals at 260 K.

  9. Deficiency in Homologous Recombination Renders Mammalian Cells More Sensitive to Proton Versus Photon Irradiation

    SciTech Connect

    Grosse, Nicole; Fontana, Andrea O.; Hug, Eugen B.; Lomax, Antony; Coray, Adolf; Augsburger, Marc; Paganetti, Harald; Sartori, Alessandro A.; Pruschy, Martin

    2014-01-01

    Purpose: To investigate the impact of the 2 major DNA repair machineries on cellular survival in response to irradiation with the 2 types of ionizing radiation. Methods and Materials: The DNA repair and cell survival endpoints in wild-type, homologous recombination (HR)-deficient, and nonhomologous end-joining-deficient cells were analyzed after irradiation with clinically relevant, low-linear energy transfer (LET) protons and 200-keV photons. Results: All cell lines were more sensitive to proton irradiation compared with photon irradiation, despite no differences in the induction of DNA breaks. Interestingly, HR-deficient cells and wild-type cells with small interfering RNA-down-regulated Rad51 were markedly hypersensitive to proton irradiation, resulting in an increased relative biological effectiveness in comparison with the relative biological effectiveness determined in wild-type cells. In contrast, lack of nonhomologous end-joining did not result in hypersensitivity toward proton irradiation. Repair kinetics of DNA damage in wild-type cells were equal after both types of irradiation, although proton irradiation resulted in more lethal chromosomal aberrations. Finally, repair kinetics in HR-deficient cells were significantly delayed after proton irradiation, with elevated amounts of residual γH2AX foci after irradiation. Conclusion: Our data indicate a differential quality of DNA damage by proton versus photon irradiation, with a specific requirement for homologous recombination for DNA repair and enhanced cell survival. This has potential relevance for clinical stratification of patients carrying mutations in the DNA damage response pathways.

  10. Standardized treatment planning methodology for passively scattered proton craniospinal irradiation

    PubMed Central

    2013-01-01

    Background As the number of proton therapy centers increases, so does the need for studies which compare proton treatments between institutions and with photon therapy. However, results of such studies are highly dependent on target volume definition and treatment planning techniques. Thus, standardized methods of treatment planning are needed, particularly for proton treatment planning, in which special consideration is paid to the depth and sharp distal fall-off of the proton distribution. This study presents and evaluates a standardized method of proton treatment planning for craniospinal irradiation (CSI). Methods We applied our institution’s planning methodology for proton CSI, at the time of the study, to an anatomically diverse population of 18 pediatric patients. We evaluated our dosimetric results for the population as a whole and for the two subgroups having two different age-specific target volumes using the minimum, maximum, and mean dose values in 10 organs (i.e., the spinal cord, brain, eyes, lenses, esophagus, lungs, kidneys, thyroid, heart, and liver). We also report isodose distributions and dose-volume histograms (DVH) for 2 representative patients. Additionally we report population-averaged DVHs for various organs. Results The planning methodology here describes various techniques used to achieve normal tissue sparing. In particular, we found pronounced dose reductions in three radiosensitive organs (i.e., eyes, esophagus, and thyroid) which were identified for optimization. Mean doses to the thyroid, eyes, and esophagus were 0.2%, 69% and 0.2%, respectively, of the prescribed dose. In four organs not specifically identified for optimization (i.e., lungs, liver, kidneys, and heart) we found that organs lateral to the treatment field (lungs and kidneys) received relatively low mean doses (less than 8% of the prescribed dose), whereas the heart and liver, organs distal to the treatment field, received less than 1% of the prescribed dose

  11. Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses

    PubMed Central

    Heo, Jaewon; Kim, Sunghwan; Ryu, Seunghwa; Jang, Dongchan

    2016-01-01

    Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though the usefulness of the latter approach has been successfully demonstrated in the past decades, the feasibility of the former has been incompletely proved with only marginal property improvements reported within experimentally-accessible atomic-level structural changes. Here, we report the significant enhancement of deformability in Zr-based monolithic metallic glass only through the atomic disordering by proton irradiation without altering any other structural traits. Metallic glass nanopillars that originally failed catastrophically without any notable plasticity become capable of attaining more than 30% uniaxial plastic strain accommodated by homogeneous deformation when irradiated to ~1 displacement per atom (DPA). We discuss the atomistic origin of this improved plasticity in terms of density and spatial distributions of icosahedral short range order influenced by irradiation. PMID:26988265

  12. Delocalized Plastic Flow in Proton-Irradiated Monolithic Metallic Glasses.

    PubMed

    Heo, Jaewon; Kim, Sunghwan; Ryu, Seunghwa; Jang, Dongchan

    2016-03-18

    Creating new materials with novel properties through structural modification is the Holy Grail of materials science. The range of targetable structures for amplification of mechanical properties in metallic glasses would include types of atomic short range orders at the smallest scale through compositions or morphologies of phases in composites. Even though the usefulness of the latter approach has been successfully demonstrated in the past decades, the feasibility of the former has been incompletely proved with only marginal property improvements reported within experimentally-accessible atomic-level structural changes. Here, we report the significant enhancement of deformability in Zr-based monolithic metallic glass only through the atomic disordering by proton irradiation without altering any other structural traits. Metallic glass nanopillars that originally failed catastrophically without any notable plasticity become capable of attaining more than 30% uniaxial plastic strain accommodated by homogeneous deformation when irradiated to ~1 displacement per atom (DPA). We discuss the atomistic origin of this improved plasticity in terms of density and spatial distributions of icosahedral short range order influenced by irradiation.

  13. Radiation damage of LSO crystals under γ- and 24 GeV protons irradiation

    NASA Astrophysics Data System (ADS)

    Auffray, E.; Barysevich, A.; Fedorov, A.; Korjik, M.; Koschan, M.; Lucchini, M.; Mechinski, V.; Melcher, C. L.; Voitovich, A.

    2013-09-01

    Irradiation damage of undoped and low Ce doped lutetium oxyorthosilicate has been investigated. Crystals were irradiated with both a 60Co γ-quanta source with an absorbed dose of 2000 Gy and, at CERN PS, a high-rate 24 GeV proton beam with a fluence of ˜3.6×1013 p/cm2. Both irradiations produced a similar set of induced absorption bands. However, a shift of the fundamental absorption spectrum cutoff appears after proton irradiation, but not in the case of the γ-irradiation. The observed shift of the band edge in the transmission spectrum following proton irradiation in lutetium oxyorthosilicate crystals indicates that this phenomenon is a general property of heavy crystalline materials. A possible proton-induced transmission damage mechanism is discussed.

  14. Proton irradiation of the CIS115 for the JUICE mission

    NASA Astrophysics Data System (ADS)

    Soman, M. R.; Allanwood, E. A. H.; Holland, A. D.; Winstone, G. P.; Gow, J. P. D.; Stefanov, K.; Leese, M.

    2015-09-01

    The CIS115 is one of the latest CMOS Imaging Sensors designed by e2v technologies, with 1504x2000 pixels on a 7 μm pitch. Each pixel in the array is a pinned photodiode with a 4T architecture, achieving an average dark current of 22 electrons pixel-1 s-1 at 21°C measured in a front-faced device. The sensor aims for high optical sensitivity by utilising e2v's back-thinning and processing capabilities, providing a sensitive silicon thickness approximately 9 μm to 12 μm thick with a tuned anti-reflective coating. The sensor operates in a rolling shutter mode incorporating reset level subtraction resulting in a mean pixel readout noise of 4.25 electrons rms. The full well has been measured to be 34000 electrons in a previous study, resulting in a dynamic range of up to 8000. These performance characteristics have led to the CIS115 being chosen for JANUS, the high-resolution and wide-angle optical camera on the JUpiter ICy moon Explorer (JUICE). The three year science phase of JUICE is in the harsh radiation environment of the Jovian magnetosphere, primarily studying Jupiter and its icy moons. Analysis of the expected radiation environment and shielding levels from the spacecraft and instrument design predict the End Of Life (EOL) displacement and ionising damage for the CIS115 to be equivalent to 1010 10 MeV protons cm-2 and 100 krad(Si) respectively. Dark current and image lag characterisation results following initial proton irradiations are presented, detailing the initial phase of space qualification of the CIS115. Results are compared to the pre-irradiation performance and the instrument specifications and further qualification plans are outlined.

  15. Physics of Double Pulse Irradiation of Targets For Proton Acceleration

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M.; Masud, R.; Manzoor, L.; Tiedje, H.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2016-10-01

    Experiments have been carried out on double-pulse irradiation of um-scale foil targets with varying preplasma conditions. Our experiment at the Titan Laser facility utilized two 700 fs, 1054 nm pulses, separated by 1 to 5 ps with a total energy of 100 J, and with 5-20% of the total energy contained within the first pulse. The proton spectra were measured with radiochromic film stacks and magnetic spectrometers. The prepulse energy was on the order of 10 mJ, which appears to have a moderating effect on the double pulse enhancement of proton beam. We have performed LSP PIC simulations to understand the double pulse enhancement mechanism, as well as the role of preplasma in modifying the interaction. A 1D parameter study was done to isolate various aspects of the interaction, while 2D simulations provide more detailed physical insight and a better comparison with experimental data. Work by the Univ. of Alberta was supported by the Natural Sciences and Engineering Research Council of Canada. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  16. Local mechanical stress relaxation of Gunn diodes irradiated by protons

    NASA Astrophysics Data System (ADS)

    Gradoboev, A. V.; Tesleva, E. P.

    2017-05-01

    The aim of the work is studying the impact of Gunn diodes thermocompression bonding conditions upon their resistance to being radiated with protons of various energies. It was established that the tough conditions of Gunn diodes thermocompression bonding results in local mechanic stresses introduced into the active layer of the device, reduction of electron mobility because of the faults introduction and, subsequently, to reduction of operating current, power of UHF generation, percentage of qualitative units production and general reduction of production efficiency of the devices with required characteristics. Irradiation of Gunn diodes produced under the tough conditions of thermocompression bonding with protons which energy is (40-60) MeV with an absorbed dose of (1-6)·102 Gy does not practically reduce the radiation resistance of Gunn diodes produced with application of the given technique. This technique can be recommended for all semiconductor devices on the base of GaAs, which parameters depend significantly upon the mobility of the electrons, to increase the efficiency of production.

  17. Hematological and TGF-beta variations after whole-body proton irradiation

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.

  18. Hematological and TGF-beta variations after whole-body proton irradiation

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on five bone-marrow-derived cell types and transforming growth factor-beta 1 (TGF-beta 1) were examined and compared to the effects of photons (60Co). C57BL/6 mice were exposed to 3 Gy (0.4 Gy/min) protons at spread-out Bragg peak (SOBP), protons at entry (E), or 60Co and euthanized on days 0.5-17 thereafter. 60Co-irradiated animals had decreased erythrocytes, hemoglobin and hematocrit at 12 hours post-exposure; depression was not noted in proton (SOBP or E)-irradiated groups until day 4. Significantly decreased leukocyte counts were observed at this same time in all irradiated groups, with lymphocyte loss being greater than that of monocytes, and the depression was generally maintained. In contrast, the levels of neutrophils and thrombocytes fluctuated, especially during the first week; significant differences were noted among irradiated groups in neutrophil levels. Plasma TGF-beta 1 was elevated on day 7 in the 60Co, but not proton, irradiated mice. Collectively, the data show that dramatic and persistent changes occurred in all irradiated groups. However, few differences in assay results were seen between animals exposed to protons (SOBP or E) or photons, as well as between the groups irradiated with either of the two regions of the proton Bragg curve.

  19. Trapping of noble gases in proton-irradiated silicate smokes

    NASA Technical Reports Server (NTRS)

    Nichols, R. H., Jr.; Nuth, J. A., III; Hohenberg, C. M.; Olinger, C. T.; Moore, M. H.

    1992-01-01

    We have measured Ne, Ar, Kr, and Xe in Si2O3 'smokes' that were condensed on Al substrates, vapor-deposited with various mixtures of CH4, NH3, H2O3 and noble gases at 10 K and subsequently irradiated with 1 MeV protons to simulate conditions during grain mantle formation in interstellar clouds. Neither Ne nor Ar is retained by the samples upon warming to room temperature, but Xe is very efficiently trapped and retained. Kr is somewhat less effectively retained, typically depleted by factors of about 10-20 relative to Xe. Isotopic fractionation favoring the heavy isotopes of Xe and Kr of about 5-10-percent/amu is observed. Correlations between the specific chemistry of the vapor deposition and heavy noble gas retention are most likely the result of competition by the various species for irradiation-produced trapping sites. The concentration of Xe retained by some of these smokes exceeds that observed in phase Q of meteorites and, like phase Q, they do not seem to be carriers of the light noble gases.

  20. Control of Refractive Index of Fluorinated Polyimide by Proton Beam Irradiation

    NASA Astrophysics Data System (ADS)

    Arai, Yukitaka; Ohki, Yoshimichi; Saito, Keisuke; Nishikawa, Hiroyuki

    2013-01-01

    To clarify the feasibility of controlling the refractive index of a polymer by proton beam irradiation, we irradiated 1.0 MeV protons to a fluorinated polyimide film. Before and after the proton irradiation at a fluence between 1×1014 and 7×1016 cm-2, the film surface was scanned by a profilometer. It was found that the depth of a dent, which increases with fluence, was induced by the irradiation. The refractive index of the ion-irradiated region was calculated using the Lorentz-Lorenz equation, substituting the depth of the dent and the projected range of the protons. When the fluorinated polyimide was irradiated at a fluence of 7×1016 cm-2, the refractive index increased by about 3.3%, which agrees with the increment in refractive index measured by spectroscopic ellipsometry. The increment in refractive index (0.21%) induced by the irradiation of protons at the fluence of 1×1015 cm-2 is comparable to the value (0.35%) observed when protons were irradiated to SiO2 glass at a similar fluence. Therefore, it is reasonable to assume that the ion irradiation to a polymer can be a good method for fabricating a high-performance polymer-based optical waveguide.

  1. Irradiation-induced effects of proton irradiation on zirconium carbides with different stoichiometries

    SciTech Connect

    Y. Huang; B.R. Maier; T.R. Allen

    2014-10-01

    Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carried out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.

  2. Transgenerational effects of proton beam irradiation on Caenorhabditis elegans germline apoptosis.

    PubMed

    Min, Hyemin; Sung, Minhee; Son, Miseol; Kawasaki, Ichiro; Shim, Yhong-Hee

    2017-08-26

    When treating cancer using radiation therapy, it is critical to increase patient survival rates and to reduce side effects. In this respect, proton beam radiation treatment performs better than other radiation treatments because of its high target specificity. However, complications still remain after proton beam radiation treatment. Among them, the risk to progeny after irradiation of their parents is a major concern. In this study, we analyzed the transgenerational effects of proton beam irradiation using the model organism Caenorhabditis. elegans. We found that germline apoptosis increased after proton beam irradiation and its effects were sustained transgenerationally. Moreover, we identified that a germline-specific histone methyltransferase component, SET-2, has a critical role in transmitting the transgenerational effect on germline apoptosis to the next generation after proton beam irradiation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Magnetism in C{sub 60} films induced by proton irradiation

    SciTech Connect

    Mathew, S.; Satpati, B.; Joseph, B.; Dev, B. N.; Nirmala, R.; Malik, S. K.; Kesavamoorthy, R.

    2007-02-15

    It is shown that polycrystalline fullerene thin films on hydrogen-passivated Si(111) substrates irradiated by 2 MeV protons display ferromagneticlike behavior at 5 K. At 300 K, both the pristine and the irradiated film show diamagnetic behavior. Magnetization data in the temperature range of 2-300 K in 1 T applied field, for the irradiated film show much stronger temperature dependence compared to the pristine film. Possible origins of ferromagneticlike signals in the irradiated films are discussed.

  4. {sup 55}Co separation from proton irradiated metallic nickel

    SciTech Connect

    Valdovinos, H. F. Graves, S. Barnhart, T. Nickles, R. J.

    2014-11-07

    {sup 55}Co with > 97% radionuclidic purity 24 hours after end of bombardment (EoB) was produced from the {sup 58}Ni(p,α) reaction using proton irradiations of 16 MeV on natural nickel. Two-hour irradiations with 25 μA on a 254 μm thick nickel foil generate 0.18 ± 0.01 GBq (n = 3) 24 hours after EoB. The separation of cobalt from the target material and other metallic contaminants present at trace levels is accomplished in HCl medium by two rounds of anion exchange chromatography (AG1-X8) using an automated module driven by a peristaltic pump. 80 ± 5 % (n = 3) of the activity generated at EoB is ready for labeling in 0.1 M HCl one hour after the start of separation. Using 99.999% pure Ni, the reactivity (decay corrected to EoB) with the bifunctional chelator (BFC) DOTA was 8.5 GBq/μmol; enough for radiolabeling BFC conjugated biomolecules at a nmol scale with > 90% yield. Using 99.9% pure Ni the reactivity with DOTA and NOTA was 0.19 +/− 0.09 GBq/μmol and 2.9 +/− 1.7 GBq/μmol (n = 2), respectively. Both cobalt complexes showed 100% in vitro stability in PBS and mouse serum over 41 hours at room temperature. MicroPET images of a miniature Derenzo phantom show excellent resolution where rods of 1.5 mm were separated by two times their diameter.

  5. 55Co separation from proton irradiated metallic nickel

    NASA Astrophysics Data System (ADS)

    Valdovinos, H. F.; Graves, S.; Barnhart, T.; Nickles, R. J.

    2014-11-01

    55Co with > 97% radionuclidic purity 24 hours after end of bombardment (EoB) was produced from the 58Ni ( p ,α) reaction using proton irradiations of 16 MeV on natural nickel. Two-hour irradiations with 25 μA on a 254 μm thick nickel foil generate 0.18 ± 0.01 GBq (n = 3) 24 hours after EoB. The separation of cobalt from the target material and other metallic contaminants present at trace levels is accomplished in HCl medium by two rounds of anion exchange chromatography (AG1-X8) using an automated module driven by a peristaltic pump. 80 ± 5 % (n = 3) of the activity generated at EoB is ready for labeling in 0.1 M HCl one hour after the start of separation. Using 99.999% pure Ni, the reactivity (decay corrected to EoB) with the bifunctional chelator (BFC) DOTA was 8.5 GBq/μmol; enough for radiolabeling BFC conjugated biomolecules at a nmol scale with > 90% yield. Using 99.9% pure Ni the reactivity with DOTA and NOTA was 0.19 +/- 0.09 GBq/μmol and 2.9 +/- 1.7 GBq/μmol (n = 2), respectively. Both cobalt complexes showed 100% in vitro stability in PBS and mouse serum over 41 hours at room temperature. MicroPET images of a miniature Derenzo phantom show excellent resolution where rods of 1.5 mm were separated by two times their diameter.

  6. Proton-irradiation-induced anomaly in the electrical conductivity of a hydrogen-bonded ferroelastic system

    SciTech Connect

    Kim, Se-Hun; Lee, Kyu Won; Lee, Cheol Eui; Lee, Kwang-Sei

    2009-11-01

    An anomalous abrupt drop in the electrical conductivity has been observed at the ferroelastic phase transition of a proton-irradiated system of hydrogen-bonded TlH{sub 2}PO{sub 4}. As a result of the high-resolution {sup 31}P NMR chemical-shift measurements, distinct changes in the atomic displacements due to the irradiation were identified in the ferroelastic and paraelastic phases. Besides, {sup 1}H NMR spin-spin relaxation measurements revealed a change due to the irradiation in the proton dynamics at the ferroelastic phase transition, apparently accounting for the much-reduced electrical conductivity in the paraelastic phase of the irradiated system.

  7. Luminescence imaging of water during proton-beam irradiation for range estimation

    SciTech Connect

    Yamamoto, Seiichi Okumura, Satoshi; Komori, Masataka; Toshito, Toshiyuki

    2015-11-15

    Purpose: Proton therapy has the ability to selectively deliver a dose to the target tumor, so the dose distribution should be accurately measured by a precise and efficient method. The authors found that luminescence was emitted from water during proton irradiation and conjectured that this phenomenon could be used for estimating the dose distribution. Methods: To achieve more accurate dose distribution, the authors set water phantoms on a table with a spot scanning proton therapy system and measured the luminescence images of these phantoms with a high-sensitivity, cooled charge coupled device camera during proton-beam irradiation. The authors imaged the phantoms of pure water, fluorescein solution, and an acrylic block. Results: The luminescence images of water phantoms taken during proton-beam irradiation showed clear Bragg peaks, and the measured proton ranges from the images were almost the same as those obtained with an ionization chamber. Furthermore, the image of the pure-water phantom showed almost the same distribution as the tap-water phantom, indicating that the luminescence image was not related to impurities in the water. The luminescence image of the fluorescein solution had ∼3 times higher intensity than water, with the same proton range as that of water. The luminescence image of the acrylic phantom had a 14.5% shorter proton range than that of water; the proton range in the acrylic phantom generally matched the calculated value. The luminescence images of the tap-water phantom during proton irradiation could be obtained in less than 2 s. Conclusions: Luminescence imaging during proton-beam irradiation is promising as an effective method for range estimation in proton therapy.

  8. Electric dipole moment in KH2PO4 systematically modified by proton irradiation

    NASA Astrophysics Data System (ADS)

    Jung Kweon, Jin; Eui Lee, Cheol; Noh, S. J.; Kim, H. S.

    2012-01-01

    We have carried out an impedance spectroscopy study on a series of proton-irradiated KH2PO4 (KDP) systems. A systematic modification was observed in the transverse dipole moment of the proton-irradiated KDP systems, associated with hydrogen-ion displacements, as obtained from dielectric constant measurements by using a mean-field approximation. Besides, intercorrelation of the charge transport with the dielectric properties was revealed, both having closely to do with the hydrogen-bond modification.

  9. Improved normal tissue protection by proton and X-ray microchannels compared to homogeneous field irradiation.

    PubMed

    Girst, S; Marx, C; Bräuer-Krisch, E; Bravin, A; Bartzsch, S; Oelfke, U; Greubel, C; Reindl, J; Siebenwirth, C; Zlobinskaya, O; Multhoff, G; Dollinger, G; Schmid, T E; Wilkens, J J

    2015-09-01

    The risk of developing normal tissue injuries often limits the radiation dose that can be applied to the tumour in radiation therapy. Microbeam Radiation Therapy (MRT), a spatially fractionated photon radiotherapy is currently tested at the European Synchrotron Radiation Facility (ESRF) to improve normal tissue protection. MRT utilizes an array of microscopically thin and nearly parallel X-ray beams that are generated by a synchrotron. At the ion microprobe SNAKE in Munich focused proton microbeams ("proton microchannels") are studied to improve normal tissue protection. Here, we comparatively investigate microbeam/microchannel irradiations with sub-millimetre X-ray versus proton beams to minimize the risk of normal tissue damage in a human skin model, in vitro. Skin tissues were irradiated with a mean dose of 2 Gy over the irradiated area either with parallel synchrotron-generated X-ray beams at the ESRF or with 20 MeV protons at SNAKE using four different irradiation modes: homogeneous field, parallel lines and microchannel applications using two different channel sizes. Normal tissue viability as determined in an MTT test was significantly higher after proton or X-ray microchannel irradiation compared to a homogeneous field irradiation. In line with these findings genetic damage, as determined by the measurement of micronuclei in keratinocytes, was significantly reduced after proton or X-ray microchannel compared to a homogeneous field irradiation. Our data show that skin irradiation using either X-ray or proton microchannels maintain a higher cell viability and DNA integrity compared to a homogeneous irradiation, and thus might improve normal tissue protection after radiation therapy.

  10. Recoverable degradation of blue InGaN-based light emitting diodes submitted to 3 MeV proton irradiation

    SciTech Connect

    De Santi, C.; Meneghini, M. Trivellin, N.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Meneghesso, G.; Zanoni, E.

    2014-11-24

    This paper reports on the degradation and recovery of two different series of commercially available InGaN-based blue light emitting diodes submitted to proton irradiation at 3 MeV and various fluences (10{sup 11}, 10{sup 13}, and 10{sup 14} p{sup +}/cm{sup 2}). After irradiation, we detected (i) an increase in the series resistance, in the sub-turn-on current and in the ideality factor, (ii) a spatially uniform drop of the output optical power, proportional to fluence, and (iii) a reduction of the capacitance of the devices. These results suggest that irradiation induced the generation of non-radiative recombination centers near the active region. This hypothesis is further confirmed by the results of the recovery tests carried out at low temperature (150 °C)

  11. Irradiation response of mobile protons in buried SiO{sub 2}

    SciTech Connect

    Vanheusden, K.; Karna, S.P.; Pugh, R.D.

    1997-03-01

    Trapping of mobile protons is observed in various SOI materials, but only upon irradiating under a positive top Si bias. Thermal detrapping shows that the proton traps are shallow and located near the substrate Si/SiO{sub 2} interface.

  12. Study of radiation induced deep-level defects and annealing effects in the proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1981-01-01

    The radiation induced deep-level defects and the recombination parameters in the proton irradiated AlGaAs-GaAs p-n junction solar cells were investigated over a wide range of proton energies (from 50 KeV to 10 MeV) and proton fluences (from 10 to the 10th to 10 to the 13th P/sq cm), using DLTS, I-V, C-V, and SEM-EMIC measurement techniques. The measurements were used to determine the defect and recombination parameters such as defect density and energy level, carrier lifetimes, and the hole diffusion lengths in the GaAs LPE layers. Results show that a good correlation was obtained between the measured defect parameters and the dark recombination current as well as the performance parameters of the solar cells. The most damages to the cell were produced by the 200 KeV protons. In addition, the effects of low temperatures (200 to 400 C) thermal annealing on the deep-level defects and the dark current of the 200 KeV proton irradiated samples were examined.

  13. Layer-structured LiNi0.8Co0.2O2: A new triple (H+/O2-/e-) conducting cathode for low temperature proton conducting solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Fan, Liangdong; Su, Pei-Chen

    2016-02-01

    Solid oxide fuel cells with proton conducting electrolytes (H-SOFCs) show great potential for more efficient energy conversion over their oxygen ionic conducting counterparts at temperatures below 650 °C, providing a comparably high performance cathode material can be available. A brief review of current development of cathode materials shows that materials with triple (oxygen ionic, protonic, and electronic) conducting properties are most promising for H-SOFCs. In this work, a triple-conducting LiNi0.8Co0.2O2 (LNCO) with layered structure, allowing simultaneous conduction of intrinsic oxygen ion and electron as well as the extrinsic proton, is proposed as a cathode material for H-SOFC. The electrochemical impedance spectroscopy analysis of LNCO shows the good oxygen reduction reaction (ORR) activity with a considerably low activation energy of 0.88 eV, and an evident water uptake capability those facilitate the cathode reaction process. Fuel cells using LNCO cathode on a BaZr0.1Ce0.7Y0.2O3 proton-conducting electrolyte render a peak power density of 410 mW cm-2 at 650 °C under H2/air condition, which is higher than most of the typical cathode materials reported with similar cell configurations. This work also demonstrated a new series of simple and low cost cathode materials simultaneously possessing interesting triple-conduction and good ORR activities for low temperature H-SOFCs.

  14. Particle LET spectra from microelectronics packaging materials subjected to neutron and proton irradiation

    NASA Astrophysics Data System (ADS)

    Browning, J. S.; Holtkamp, D. B.

    1988-12-01

    Cumulative fractions for LET spectra were measured for particles ejected from microelectronics packaging materials subjected to neutron and proton irradiation. The measurements for the neutron irradiation compare well with Monte Carlo theoretical calculations. The spectra can be used to access microelectronics vulnerabilities in strategic-nuclear- weapon, space-trapped, and neutral-beam directed-energy particle environments.

  15. High total dose proton irradiation effects on silicon NPN rf power transistors

    NASA Astrophysics Data System (ADS)

    Bharathi, M. N.; Praveen, K. C.; Pushpa, N.; Prakash, A. P. Gnana

    2014-04-01

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  16. High total dose proton irradiation effects on silicon NPN rf power transistors

    SciTech Connect

    Bharathi, M. N.; Praveen, K. C.; Prakash, A. P. Gnana; Pushpa, N.

    2014-04-24

    The effects of 3 MeV proton irradiation on the I-V characteristics of NPN rf power transistors were studied in the dose range of 100 Krad to 100 Mrad. The different electrical characteristics like Gummel, current gain and output characteristics were systematically studied before and after irradiation. The recovery in the I-V characteristics of irradiated NPN BJTs were studied by isochronal and isothermal annealing methods.

  17. Instrumentation for the in situ control of carrier recombination characteristics during irradiation by protons

    SciTech Connect

    Gaubas, E.; Uleckas, A.; Vaitkus, J.; Raisanen, J.; Tikkanen, P.

    2010-05-15

    Instrument and methods for the remote and in situ control of carrier recombination parameters during irradiation by protons of energy in the range of 3-8 MeV are presented. Direct techniques for measurements and separation of carrier recombination and trapping/generation characteristics based on the analysis of microwave probed photoconductivity transients during exposure on protons of different energies and irradiations at different temperatures are described. Simultaneously, a spectroscopy of activation energy of dominant traps has been performed before and just after irradiation by temperature scans of variation in the recombination parameters.

  18. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  19. Experimental Studies of Low Energy Proton Irradiation of Thin Vacuum Deposited Aluminum Layers

    NASA Astrophysics Data System (ADS)

    Renger, Thomas; Sznajder, Maciej; Geppert, Ulrich

    2014-06-01

    We present experimental studies of degradation effects caused by low energetic proton irradiation on thin Aluminum layers. The studies were performed by use the Complex Irradiation Facility (CIF) at the German Aerospace Center (DLR) in Bremen, Germany. Different proton doses and energies at two temperature levels of the samples were considered.The result of the irradiation tests is a formation of bubbles at the Aluminum surface. They are filled with molecular Hydrogen gas, which is created by the recombination processes of the metal free electrons and the incident protons. The average size of the bubbles increases with higher proton doses. As a consequence of the effect the metallic surface morphology is changed significantly.

  20. Effects of proton beam irradiation on mitochondrial biogenesis in a human colorectal adenocarcinoma cell line.

    PubMed

    Ha, Byung Geun; Jung, Sung Suk; Shon, Yun Hee

    2017-09-01

    Proton beam therapy has recently been used to improve local control of tumor growth and reduce side-effects by decreasing the global dose to normal tissue. However, the regulatory mechanisms underlying the physiological role of proton beam radiation are not well understood, and many studies are still being conducted regarding these mechanisms. To determine the effects of proton beams on mitochondrial biogenesis, we investigated: mitochondrial DNA (mtDNA) mass; the gene expression of mitochondrial transcription factors, functional regulators, and dynamic-related regulators; and the phosphorylation of the signaling molecules that participate in mitochondrial biogenesis. Both the mtDNA/nuclear DNA (nDNA) ratio and the mitochondria staining assays showed that proton beam irradiation increases mitochondrial biogenesis in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced aggressive HT-29 cells. Simultaneously, proton beam irradiation increases the gene expression of the mitochondrial transcription factors PGC-1α, NRF1, ERRα, and mtTFA, the dynamic regulators DRP1, OPA1, TIMM44, and TOM40, and the functional regulators CytC, ATP5B and CPT1-α. Furthermore, proton beam irradiation increases the phosphorylation of AMPK, an important molecule involved in mitochondrial biogenesis that is an energy sensor and is regulated by the AMP/ATP ratio. Based on these findings, we suggest that proton beam irradiation inhibits metastatic potential by increasing mitochondrial biogenesis and function in TPA-induced aggressive HT-29 cells.

  1. Radiograaff, a proton irradiation facility for radiobiological studies at a 4 MV Van de Graaff accelerator

    NASA Astrophysics Data System (ADS)

    Constanzo, J.; Fallavier, M.; Alphonse, G.; Bernard, C.; Battiston-Montagne, P.; Rodriguez-Lafrasse, C.; Dauvergne, D.; Beuve, M.

    2014-09-01

    A horizontal beam facility for radiobiological experiments with low-energy protons has been set up at the 4 MV Van de Graaff accelerator of the Institut de Physique Nucléaire de Lyon. A homogeneous irradiation field with a suitable proton flux is obtained by means of two collimators and two Au-scattering foils. A monitoring chamber contains a movable Faraday cup, a movable quartz beam viewer for controlling the intensity and the position of the initial incident beam and four scintillating fibers for beam monitoring during the irradiation of the cell samples. The beam line is ended by a thin aluminized Mylar window (12 μm thick) for the beam extraction in air. The set-up was simulated by the GATE v6.1 Monte-Carlo platform. The measurement of the proton energy distribution, the evaluation of the fluence-homogeneity over the sample and the calibration of the monitoring system were performed using a silicon PIPS detector, placed in air in the same position as the biological samples to be irradiated. The irradiation proton fluence was found to be homogeneous to within ±2% over a circular field of 20 mm diameter. As preliminary biological experiment, two Human Head and Neck Squamous Carcinoma Cell lines (with different radiosensitivities) were irradiated with 2.9 MeV protons. The measured survival curves are compared to those obtained after X-ray irradiation, giving a Relative Biological Efficiency between 1.3 and 1.4.

  2. Positron annihilation study of proton-irradiated reactor pressure vessel steels

    NASA Astrophysics Data System (ADS)

    Liu, Xiangbing; Wang, Rongshan; Ren, Ai; Huang, Ping; Wu, Yichu; Jiang, Jing; Zhang, Chonghong; Wang, Xitao

    2012-10-01

    The microstructures, irradiation-induced defects and changes of mechanical property of Chinese domestic A508-3 steels after proton irradiation were investigated by TEM, positron lifetime, slow positron beam Doppler broadening spectroscopy and hardness measurements. The defects were induced by 240 keV proton irradiation with fluences of 1.25×1017 ions cm-2 (0.26 dpa), 2.5×1017 ions cm-2 (0.5 dpa), and 5.0×1017 ions cm-2 (1.0 dpa). The TEM observation revealed that the as-received steel had typical bainitic-ferritic microstructures. It was also observed that Doppler broadening S-parameter and average lifetime increased with dose level owing to the formation of defects and voids induced by proton irradiation. The correlation between positron parameters and hardness was found.

  3. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice.

    PubMed

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2015-02-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  4. Whole-Body Proton Irradiation Causes Long-Term Damage to Hematopoietic Stem Cells in Mice

    PubMed Central

    Chang, Jianhui; Feng, Wei; Wang, Yingying; Luo, Yi; Allen, Antiño R.; Koturbash, Igor; Turner, Jennifer; Stewart, Blair; Raber, Jacob; Hauer-Jensen, Martin; Zhou, Daohong; Shao, Lijian

    2016-01-01

    Space flight poses certain health risks to astronauts, including exposure to space radiation, with protons accounting for more than 80% of deep-space radiation. Proton radiation is also now being used with increasing frequency in the clinical setting to treat cancer. For these reasons, there is an urgent need to better understand the biological effects of proton radiation on the body. Such improved understanding could also lead to more accurate assessment of the potential health risks of proton radiation, as well as the development of improved strategies to prevent and mitigate its adverse effects. Previous studies have shown that exposure to low doses of protons is detrimental to mature leukocyte populations in peripheral blood, however, the underlying mechanisms are not known. Some of these detriments may be attributable to damage to hematopoietic stem cells (HSCs) that have the ability to self-renew, proliferate and differentiate into different lineages of blood cells through hematopoietic progenitor cells (HPCs). The goal of this study was to investigate the long-term effects of low-dose proton irradiation on HSCs. We exposed C57BL/6J mice to 1.0 Gy whole-body proton irradiation (150 MeV) and then studied the effects of proton radiation on HSCs and HPCs in the bone marrow (BM) 22 weeks after the exposure. The results showed that mice exposed to 1.0 Gy whole-body proton irradiation had a significant and persistent reduction of BM HSCs compared to unirradiated controls. In contrast, no significant changes were observed in BM HPCs after proton irradiation. Furthermore, irradiated HSCs and their progeny exhibited a significant impairment in clonogenic function, as revealed by the cobblestone area-forming cell (CAFC) and colony-forming cell assays, respectively. These long-term effects of proton irradiation on HSCs may be attributable to the induction of chronic oxidative stress in HSCs, because HSCs from irradiated mice exhibited a significant increase in NADPH

  5. Pyrolytic carbon free-radical evolution and irradiation damage of polyimide under low-energy proton irradiation

    SciTech Connect

    Sun Chengyue; Wu Yiyong; Xiao Jingdong; Li Ruifeng; Yang Dezhuang; He Shiyu

    2011-12-15

    Ionization and displacement effects are basic phenomena in damage processes of materials under space-particle irradiation. In this paper, the damage behaviors were investigated on the polyimide under proton irradiation using electron paramagnetic resonance (EPR) spectra analysis and optical absorbance valuation. The results indicate that the proton irradiation induces the formation of pyrolytic carbon free-radical with a g value of 2.0025, and the population of free radicals increases with the irradiation fluence. The most important finding is that the irradiation-induced free-radical population increases linearly with the displacement damage dose, as does the optical degradation, whereas the ionization effect alone, during the irradiation, cannot induce the formation of pyrolytic carbon free radical. Furthermore, during the post storage, after irradiation, the free-radical population decreases following a sum of an exponential and a linear mode with the storage time. It is interesting that, during the post storage, the recovery of the degraded optical absorbance of the polyimide follows a similar mode to that of free radicals, and the characteristic time constant changes with the wavelength of the optical spectra.

  6. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils

    SciTech Connect

    Robinson, A. P. L; Gibbon, P.

    2007-01-15

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  7. Production of proton beams with narrow-band energy spectra from laser-irradiated ultrathin foils.

    PubMed

    Robinson, A P L; Gibbon, P

    2007-01-01

    Three-dimensional gridless particle simulations of proton acceleration via irradiation of a very thin foil by a short-pulse, high-intensity laser have been performed to evaluate recently proposed microstructured target configurations. It is found that a pure proton microdot target does not by itself result in a quasimonoenergetic proton beam. Such a beam can only be produced with a very lightly doped target, in qualitative agreement with one-dimensional theory. The simulations suggest that beam quality in current experiments could be dramatically improved by choosing microdot compositions with a 5-10 times lower proton fraction.

  8. The effects of 800 MeV proton irradiation on the corrosion of tungsten, tantalum, stainless steel, and gold

    SciTech Connect

    Lillard, R.S.; Butt, D.P.; Kanner, G.; Daemen, L.

    1997-12-01

    Real time electrochemical data were acquired for tungsten, tantalum, stainless steel 304L, and gold targets during proton irradiation at the LANSCE Weapons Neutron Research Facility. The goal of this research was to establish a better understanding of the corrosion properties of materials as a function of proton irradiation and gain insight into the mechanism of the observed phenomena. The following electrochemical observations were made during proton irradiation of W, Ta, SS304, and Au: (1) the open circuit potential of all materials increased with increasing proton fluence; (2) the corrosion rate (at the OCP) of W and SS304 increased with increasing proton fluence; (3) the passive dissolution rate for SS304 and Ta decreased with increasing proton fluence; (4) the anodic dissolution rate for W increased with increasing proton fluence; (5) the pitting potential for SS304 increased with proton fluence, which is an indication that the material is less susceptible to pitting attack during irradiation.

  9. Quasi-monoenergetic proton beam from a proton-layer embedded metal foil irradiated by an intense laser pulse

    SciTech Connect

    Kim, Kyung Nam; Lee, Kitae Kumar, Manoj; Kim, Ha-Na; Park, Seong Hee; Jeong, Young Uk; Vinokurov, Nikolay; Kim, Yong Gi

    2016-03-15

    A target structure, ion-layer embedded foil (ILEF) is proposed for producing a quasi-monoenergetic proton beam by utilizing a bulk electrostatic field, which is generated by irradiating the target with an ultra-intense laser pulse, inside the plasma. Compared with the case of a single metal foil in which the proton layer is initially present on the surface, in the ILEF target, the proton layer is initially located inside a metal foil. A two-dimensional particle-in-cell (PIC) simulation shows that the target generates a proton beam with a narrow energy spread. With a laser intensity of 2 × 10{sup 19 }W/cm{sup 2}, a 22-MeV proton beam with an energy spread of 8% at the full-width-half-maximum (FWHM) is obtained when the proton layer is located at 0.4 μm inside the rear surface of a 2.4 μm-thick copper foil. When the proton layer moves toward the front side, a proton beam with a flat-top energy distribution ranging from 15 MeV to 35 MeV is obtained. Further, with a higher laser intensity of 10{sup 21 }W/cm{sup 2}, a proton beam with the maximum energy of 345 MeV and FWHM energy spread of 7.2% is obtained. The analysis of the PIC simulation with an aid of a fluid analysis shows that the spectrum is affected by the initial position of the proton layer, its initial spread during the formation of the sheath field, and the space charge effect.

  10. Materials irradiation facilities at the high-power Swiss proton accelerator complex

    NASA Astrophysics Data System (ADS)

    Wagner, Werner; Dai, Yong; Glasbrenner, Heike; Aebersold, Hans-Ulrich

    2007-04-01

    Within the Swiss proton accelerator complex at the Paul-Scherrer-Institute (PSI), several irradiation facilities are operated for investigation of materials behavior under high-dose irradiation conditions as well as for neutron activation analysis and isotope production. In LiSoR (liquid solid reaction), a liquid metal loop connected to the 72 MeV proton accelerator Injector 1, steel samples are irradiated while being in contact with flowing lead-bismuth-eutectic (LBE) at elevated temperatures and under tensile stress. In the spallation neutron source SINQ, the STIP program (SINQ Target Irradiation Program) allows materials irradiation under realistic spallation conditions, i.e. in a mixed spectrum of 570 MeV protons and spallation neutrons. Hundreds of samples, mainly austenitic and ferritic-martensitic steels such as 316L, T91 or F82H, were irradiated to doses up to 20 dpa as part of STIP. These also included steel samples in contact with liquid Hg and liquid LBE. MEGAPIE (MEGAwatt PIlot Experiment), a liquid metal target employing LBE, operated in SINQ during the second half of 2006, can be taken as a materials irradiation facility on its own. Adjacent to the target position, SINQ houses a neutron irradiation rabbit system serving activation analysis and isotope production.

  11. High-energy proton irradiation of C57Bl6 mice under hindlimb unloading

    NASA Astrophysics Data System (ADS)

    Mendonca, Marc; Todd, Paul; Orschell, Christie; Chin-Sinex, Helen; Farr, Jonathan; Klein, Susan; Sokol, Paul

    2012-07-01

    Solar proton events (SPEs) pose substantial risk for crewmembers on deep space missions. It has been shown that low gravity and ionizing radiation both produce transient anemia and immunodeficiencies. We utilized the C57Bl/6 based hindlimb suspension model to investigate the consequences of hindlimb-unloading induced immune suppression on the sensitivity to whole body irradiation with modulated 208 MeV protons. Eight-week old C57Bl/6 female mice were conditioned by hindlimb-unloading. Serial CBC and hematocrit assays by HEMAVET were accumulated for the hindlimb-unloaded mice and parallel control animals subjected to identical conditions without unloading. One week of hindlimb-unloading resulted in a persistent, statistically significant 10% reduction in RBC count and a persistent, statistically significant 35% drop in lymphocyte count. This inhibition is consistent with published observations of low Earth orbit flown mice and with crewmember blood analyses. In our experiments the cell count suppression was sustained for the entire six-week period of observation and persisted for at least 7 days beyond the period of active hindlimb-unloading. C57Bl/6 mice were also irradiated with 208 MeV Spread Out Bragg Peak (SOBP) protons at the Midwest Proton Radiotherapy Institute at the Indiana University Cyclotron Facility. We found that at 8.5 Gy hindlimb-unloaded mice were significantly more radiation sensitive with 35 lethalities out of 51 mice versus 15 out of 45 control (non-suspended) mice within 30 days of receiving 8.5 Gy of SOBP protons (p =0.001). Both control and hindlimb-unloaded stocktickerCBC analyses of 8.5 Gy proton irradiated and control mice by HEMAVET demonstrated severe reductions in WBC counts (Lymphocytes and PMNs) by day 2 post-irradiation, followed a week to ten days later by reductions in platelets, and then reductions in RBCs about 2 weeks post-irradiation. Recovery of all blood components commenced by three weeks post-irradiation. CBC analyses of 8

  12. DNA double strand breaks and Hsp70 expression in proton irradiated living cells

    NASA Astrophysics Data System (ADS)

    Fiedler, Anja; Reinert, Tilo; Tanner, Judith; Butz, Tilman

    2007-07-01

    DNA double strand breaks (DSBs) in living cells can be directly provoked by ionising radiation. DSBs can be visualized by immunostaining the phosphorylated histone γH2AX. Our concern was to test the feasibility of γH2AX staining for a direct visualization of single proton hits. If single protons produce detectable foci, DNA DSBs could be used as "biological track detectors" for protons. Ionising radiation can also damage proteins indirectly by inducing free radicals. Heat shock proteins (Hsp) help to refold or even degrade the damaged proteins. The level of the most famous heat shock protein Hsp70 is increased by ionising radiation. We investigated the expression of γH2AX and Hsp70 after cross and line patterned irradiation with counted numbers of 2.25 MeV protons on primary human skin fibroblasts. The proton induced DSBs appear more delocalised than it was expected by the ion hit accuracy. Cooling the cells before the irradiation reduces the delocalisation of DNA DSBs, which is probably caused by the reduced diffusion of DNA damaging agents. Proton irradiation seems to provoke protein damages mainly in the cytoplasm indicated by cytoplasmic Hsp70 aggregates. On the contrary, in control heat shocked cells the Hsp70 was predominantly localized in the cell nucleus. However, the irradiated area could not be recognized, all cells on the Si 3N 4 window showed a homogenous Hsp70 expression pattern.

  13. Anti-angiogenic activity in metastasis of human breast cancer cells irradiated by a proton beam

    NASA Astrophysics Data System (ADS)

    Lee, Kyu-Shik; Shin, Jin-Sun; Nam, Kyung-Soo; Shon, Yun-Hee

    2012-07-01

    Angiogenesis is an essential process of metastasis in human breast cancer. We investigated the effects of proton beam irradiation on angiogenic enzyme activities and their expressions in MCF-7 human breast cancer cells. The regulation of angiogenic regulating factors, of transforming growth factor- β (TGF- β) and of vesicular endothelial growth factor (VEGF) expression in breast cancer cells irradiated with a proton beam was studied. Aromatase activity and mRNA expression, which is correlated with metastasis, were significantly decreased by irradiation with a proton beam in a dose-dependent manner. TGF- β and VEGF transcriptions were also diminished by proton beam irradiation. In contrast, transcription of tissue inhibitors of matrix metalloproteinases (TIMPs), also known as biological inhibitors of matrix metalloproteinases (MMPs), was dose-dependently enhanced. Furthermore, an increase in the expression of TIMPs caused th MMP-9 activity to be diminished and the MMP-9 and the MMP-2 expressions to be decreased. These results suggest that inhibition of angiogenesis by proton beam irradiation in breast cancer cells is closely related to inhibitions of aromatase activity and transcription and to down-regulation of TGF- β and VEGF transcription.

  14. Magnetic properties of proton irradiated BiFeO{sub 3}

    SciTech Connect

    Han, Seungkyu; Jin Kim, Sam; Sung Kim, Chul

    2013-05-07

    The crystal structure and magnetic properties of BiFeO{sub 3} samples, proton-irradiated with 0, 10, and 20 pC/{mu}m{sup 2}, were investigated with x-ray diffraction (XRD), vibrating sample magnetometer, and Moessbauer spectroscopy measurements. From the Rietveld refinement analysis of the XRD patterns, the crystal structure of BiFeO{sub 3} is determined to be rhombohedral with the space group of R3c. We have observed the decrease in the lattice constant and oxygen occupancy with proton irradiation. The magnetization hysteresis (M-H) curves show the appearance of the weak ferromagnetic behavior in the proton irradiated BiFeO{sub 3} samples. The Moessbauer spectra of proton irradiated BiFeO{sub 3} samples at 295 K were analyzed with two-sextets (B{sub 1} and B{sub 2}) and doublet. From the isomer shift ({delta}) values, ionic states were determined to be Fe{sup 3+}. Compared to non-irradiated sample, having the antiferromagnetic area ratio (two-sextets) of 45.47, 54.53% the antiferromagnetic and paramagnetic area ratios (doublet) of 10 and 20 pC/{mu}m{sup 2} proton irradiated BiFeO{sub 3} samples are 41.36, 51.26, and 7.38% and 41.03, 50.90, and 8.07%, respectively. Our experimental observation suggests that the increase in the paramagnetic area ratio is due to the disappearance of superexchange interaction, resulted from the removal of the oxygen with proton irradiation. Also, the appearance of the weak ferromagnetic behavior is caused by the breaking of the antiferromagnetic coupling.

  15. Effect of proton irradiation on the normal-state low-energy excitations of Ba(Fe1-xRhx)2As2 superconductors

    DOE PAGES

    Moroni, M.; Gozzelino, L.; Ghigo, G.; ...

    2017-09-19

    Here, we present a 75As nuclear magnetic resonance (NMR) and resistivity study of the effect of 5.5 MeV proton irradiation on the optimal electron doped (x = 0.068) and overdoped (x = 0.107) Ba(Fe1–xRhx)2As2 iron based superconductors. While the proton induced defects only mildly suppress the critical temperature and increase residual resistivity in both compositions, sizable broadening of the NMR spectra was observed in all the irradiated samples at low temperature. The effect is significantly stronger in the optimally doped sample where the Curie Weiss temperature dependence of the line width suggests the onset of ferromagnetic correlations coexisting with superconductivitymore » at the nanoscale. 1/T2 measurements revealed that the energy barrier characterizing the low energy spin fluctuations of these compounds is enhanced upon proton irradiation, suggesting that the defects are likely slowing down the fluctuations between (0,π) and (π,0) nematic ground states.« less

  16. Proton-induced polonium production in massive lead bismuth target irradiated by 660 MeV protons

    NASA Astrophysics Data System (ADS)

    Polanski, Aleksander; Petrochenkov, Sergey; Pohorecki, Wladyslaw

    2006-06-01

    The paper presents study of polonium production in bismuth foils placed in lead target. Proton-induced production of residual nuclei 206Po, 207Po, 208Po, 209Po, 210Po in 209Bi foils placed in lead target irradiated by 660 MeV protons was calculated. A comparison with calculated spatial distribution of polonium production using an MCNPX code and experimental results has been performed. The results of calculation will be useful for design of target of Subcritical Assembly in Dubna (SAD).

  17. Deterministic transport calculations of dose profiles due to proton beam irradiation

    SciTech Connect

    Filippone, W.L.; Smith, M.S.; Santoro, R.T.; Gabriel, T.A.; Alsmiller, R.G. Jr.

    1988-01-01

    Charged-particle transport calculations are most often carried out using the Monte Carlo technique. For example, the TIGER and EGS codes are used for electron transport calculations, while HETC models the transport of protons and heavy ions. In recent years there has been considerable progress in deterministic models of electron transport. Many of these models are also applicable to protons. In this paper we present discrete ordinates solutions to the Spencer-Lewis equation for protons. In its present form, our code calculates the energy deposition profile and primary proton flux in x-y geometry due to proton beam irradiation. Proton energies up to 0.4 GeV are permissible.

  18. Relative degradation of near infrared avalanche photodiodes from proton irradiation

    NASA Technical Reports Server (NTRS)

    Becker, Heidi; Johnston, Allan H.

    2004-01-01

    InGaAs and Ge avalanche photodiodes are compared for the effects of 63-MeV protons on dark current. Differences in displacement damage factors are discussed as they relate to structural differences between devices.

  19. Proton irradiation of stem cells: Radiation damage and chemical radioprotection

    NASA Technical Reports Server (NTRS)

    Riley, R. C.; Montour, J. L.; Gurney, C. W.

    1972-01-01

    Effects of high energy protons on erythropoietic stem cells and radioprotection by chemicals were investigated in NASA Space Radiation Effects Laboratory. The effects of a parallel beam of 600 MeV protons. The fluence, when converted to dose, were referenced to the synchrocyclotron beam monitors which were then used to administer radiation exposures. Mice were given graded doses to 300 rads to determine dose-response curve. Other mice received saline, AET, or 5-hydroxytryptamine 10 to 15 minutes before exposure.

  20. Single shot cell irradiations with laser-driven protons

    SciTech Connect

    Humble, N.; Schmid, T. E.; Zlobinskaya, O.; Wilkens, J. J.; Allinger, K.; Hilz, P.; Ma, W.; Reinhardt, S.; Bin, J.; Kiefer, D.; Schreiber, J.; Drexler, G. A.; Friedl, A.

    2013-07-26

    Ion beams are relevant for radiobiological studies in basic research and for application in tumor therapy. Here we present a method to generate nanosecond proton bunches with single shot doses of up to 7 Gray by a tabletop high-power laser. Although in their infancy, laser-ion accelerators allow studying fast radiobiological processes at small-scale laboratories as exemplarily demonstrated by measurements of the relative biological effectiveness of protons in human tumor cells.

  1. Attaining Low Temperatures

    ERIC Educational Resources Information Center

    Wheatley, John D.; Van Till, Howard J.

    1970-01-01

    Discusses the definition of temperature and the concept of order in non-mathematical terms. Describes the cooling techniques necessary in low temperature physics research, including magnetic cooling, the use of the Pomeranchuk Effect, and dilution refrigeration. Outlines the types of phenomena observed in matter within various temperature ranges…

  2. Low temperature fluid blender

    NASA Technical Reports Server (NTRS)

    Repas, G. A.

    1971-01-01

    Blender supplies hydrogen at temperatures from 289 deg K to 367 deg K. Hydrogen temperature is controlled by using blender to combine flow from liquid hydrogen tank /276 deg K/ and gaseous hydrogen cylinder /550 deg K/. Blenders are applicable where flow of controlled low-temperature fluid is desired.

  3. Attaining Low Temperatures

    ERIC Educational Resources Information Center

    Wheatley, John D.; Van Till, Howard J.

    1970-01-01

    Discusses the definition of temperature and the concept of order in non-mathematical terms. Describes the cooling techniques necessary in low temperature physics research, including magnetic cooling, the use of the Pomeranchuk Effect, and dilution refrigeration. Outlines the types of phenomena observed in matter within various temperature ranges…

  4. Imaging the Impact of Proton Irradiation on Edge Terminations in Vertical GaN pin Diodes

    DOE PAGES

    Collins, Kimberlee C.; King, Michael P.; Dickerson, Jeramy R.; ...

    2017-05-29

    Devices based on GaN have shown great promise for high power electronics, including their potential use as radiation tolerant components. An important step to realizing high power diodes is the design and implementation of an edge termination to mitigate field crowding, which can lead to premature breakdown. However, little is known about the effects of radiation on edge termination functionality. We experimentally examine the effects of proton irradiation on multiple field ring edge terminations in high power vertical GaN pin diodes using in operando imaging with electron beam induced current (EBIC). We find that exposure to proton irradiation influences fieldmore » spreading in the edge termination as well as carrier transport near the anode. By using depth-dependent EBIC measurements of hole diffusion length in homoepitaxial n-GaN we demonstrate that the carrier transport effect is due to a reduction in hole diffusion length following proton irradiation.« less

  5. An overview of the PIREX Proton Irradiation facility and its research program

    SciTech Connect

    Victoria, M.; Gavillet, D.

    1995-10-01

    The main design characteristics of PIREX (Proton Irradiation Experiment) are described. The facility is installed in the 590 MeV proton beam of the PSI accelerator system. Its main task is the irradiation and testing of fusion reactor candidate materials. Protons of this energy produce simultaneously in the target material displacement damage and impurities, amongst them helium. They can therefore simulate possible synergistic effects between helium and damage that would result from irradiations with the fusion neutrons. The research program being developed includes studies on both materials of technological interest, such as martensitic stainless steels and Mo - based alloys and basic radiation damage research on pure metals. The facility is also being used for actinide transmutation studies, in the so called ATHENA experiment. The main directions of the research program are described and examples of present results are given.

  6. Polonium formation in Pb-55.5Bi under proton irradiation

    NASA Astrophysics Data System (ADS)

    Glasbrenner, H.; Eikenberg, J.; Gröschel, F.; Zanini, L.

    2004-11-01

    Lead-bismuth eutectic (LBE) has been proposed both as spallation target and as coolant in a future accelerator driven system (ADS). The safety analyses require knowledge concerning the elements formed during proton irradiation, and their volatility. Discs of lead-bismuth eutectic (LBE) were irradiated with protons having 71 and 590 MeV energy resp. to analyse Po-isotopes formation. The generation of the isotopes Po 206 and 208 was clearly indicated. The ratio 206Po/ 208Po is dependent on the proton energy and as well on the beam intensity. In parallel to the analytical examinations calculations were carried out using the FLUKA Monte Carlo code to compare the analytical results with the calculations. The evaporation behaviour of irradiated LBE discs was examined as well whereby volatile Hg was found, but no Po evaporation was detected under the chosen conditions.

  7. The effects of proton irradiation on the reliability of InAlN/GaN high electron mobility transistors

    SciTech Connect

    Liu, L.; Lo, C. F.; Xi, Y. Y.; Wang, Y.l.; Kim, H.-Y.; Kim, J.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I; Ren, F.

    2012-01-01

    We have investigated the effect of proton irradiation on reliability of InAlN/GaN high electron mobility transistors (HEMTs). Devices were subjected to 5-15 MeV proton irradiations with a fixed dose of 5 1015 cm-2, or to a different doses of 2 1011, 5 1013 or 2 1015 cm-2 of protons at a fixed energy of 5 MeV. During off-state electrical stressing, the typical critical voltage for un-irradiated devices was 45 to 55 V. By sharp contrast, no critical voltage was detected for proton irradiated HEMTs up to 100 V, which was instrument-limited. After electrical stressing, no degradation was observed for the drain or gate current-voltage characteristics of the proton-irradiated HEMTs. However, the drain current decreased ~12%, and the reverse bias gate leakage current increased more than two orders of magnitude for un-irradiated HEMTs as a result of electrical stressing.

  8. Differential gene expression in primary fibroblasts induced by proton and cobalt-60 beam irradiation.

    PubMed

    Nielsen, Steffen; Bassler, Niels; Grzanka, Leszek; Swakon, Jan; Olko, Pawel; Andreassen, Christian Nicolaj; Overgaard, Jens; Alsner, Jan; Sørensen, Brita Singers

    2017-09-08

    Proton beam therapy delivers a more conformal dose distribution than conventional radiotherapy, thus improving normal tissue sparring. Increasing linear energy transfer (LET) along the proton track increases the relative biological effectiveness (RBE) near the distal edge of the Spread-out Bragg peak (SOBP). The severity of normal tissue side effects following photon beam radiotherapy vary considerably between patients. The dual study aim was to identify gene expression patterns specific to radiation type and proton beam position, and to assess whether individual radiation sensitivity influences gene expression levels in fibroblast cultures irradiated in vitro. The study includes 30 primary fibroblast cell cultures from patients previously classified as either radiosensitive or radioresistant. Cells were irradiated at three different positions in the proton beam profile: entrance, mid-SOBP and at the SOBP distal edge. Dose was delivered in three fractions × 3.5 Gy(RBE) (RBE 1.1). Cobalt-60 (Co-60) irradiation was used as reference. Real-time qPCR was performed to determine gene expression levels for 17 genes associated with inflammation response, fibrosis and angiogenesis. Differences in median gene expression levels were observed for multiple genes such as IL6, IL8 and CXCL12. Median IL6 expression was 30%, 24% and 47% lower in entrance, mid-SOBP and SOBP distal edge groups than in Co-60 irradiated cells. No genes were found to be oppositely regulated by different radiation qualities. Radiosensitive patient samples had the strongest regulation of gene expression; irrespective of radiation type. Our findings indicate that the increased LET at the SOBP distal edge position did not generally lead to increased transcriptive response in primary fibroblast cultures. Inflammatory factors were generally less extensively upregulated by proton irradiation compared with Co-60 photon irradiation. These effects may possibly influence the development of normal tissue

  9. Triphasic low-dose response in zebrafish embryos irradiated by microbeam protons.

    PubMed

    Choi, Viann Wing Yan; Yum, Emily Hoi Wa; Konishi, Teruaki; Oikawa, Masakazu; Cheng, Shuk Han; Yu, Kwan Ngok

    2012-01-01

    The microbeam irradiation system (Single-Particle Irradiation System to Cell, acronym as SPICE) at the National Institute of Radiological Sciences (NIRS), Japan, was employed to irradiate dechorionated zebrafish embryos at the 2-cell stage at 0.75 h post fertilization (hpf) by microbeam protons. Either one or both of the cells of the embryos were irradiated with 10, 20, 40, 50, 80, 100, 160, 200, 300 and 2000 protons each with an energy of 3.37 MeV. The embryos were then returned back to the incubator until 24 hpf for analyses. The levels of apoptosis in zebrafish embryos at 25 hpf were quantified through terminal dUTP transferase-mediated nick end-labeling (TUNEL) assay, with the apoptotic signals captured by a confocal microscope. The results revealed a triphasic dose-response for zebrafish embryos with both cells irradiated at the 2-cell stage, namely, (1) increase in apoptotic signals for < 200 protons (< 30 mGy), (2) hormesis to reduce the apoptotic signals below the spontaneous number for 200-400 protons (at doses of 30-60 mGy), and (3) increase in apoptotic signals again for > 600 protons (at doses > 90 mGy). The dose response for zebrafish embryos with only one cell irradiated at the 2-cell stage was also likely a triphasic one, but the apoptotic signals in the first zone (< 200 protons or < 30 mGy) did not have significant differences from those of the background. At the same time, the experimental data were in line with induction of radiation-induced bystander effect as well as rescue effect in the zebrafish embryos, particular in those embryos with unirradiated cells.

  10. Comparison of human lung cancer cell radiosensitivity after irradiations with therapeutic protons and carbon ions.

    PubMed

    Keta, Otilija D; Todorović, Danijela V; Bulat, Tanja M; Cirrone, Pablo Ga; Romano, Francesco; Cuttone, Giacomo; Petrović, Ivan M; Ristić Fira, Aleksandra M

    2017-05-01

    The aim of this study was to investigate effects of irradiations with the therapeutic proton and carbon ion beams in two non-small cell lung cancers, CRL5876 adenocarcinoma and HTB177 large cell lung carcinoma. The DNA damage response dynamics, cell cycle regulation, and cell death pathway activation were followed. Viability of both cell lines was lower after carbon ions compared to the therapeutic proton irradiations. HTB177 cells showed higher recovery than CRL5876 cells seven days following the treatments, but the survival rates of both cell lines were lower after exposure to carbon ions with respect to therapeutic protons. When analyzing cell cycle distribution of both CRL5876 and HTB177 cells, it was noticed that therapeutic protons predominantly induced G1 arrest, while the cells after carbon ions were arrested in G2/M phase. The results illustrated that differences in the levels of phosphorylated H2AX, a double-strand break marker, exist after therapeutic proton and carbon ion irradiations. We also observed dose- and time-dependent increase in the p53 and p21 levels after applied irradiations. Carbon ions caused larger increase in the quantity of p53 and p21 compared to therapeutic protons. These results suggested that various repair mechanisms were induced in the treated cells. Considering the fact that we have not observed any distinct change in the Bax/Bcl-2 ratio following irradiations, it seemed that different types of cell death were involved in the response to the two types of irradiations that were applied.

  11. Proton irradiation induced defects in GaN: Rutherford backscattering and thermally stimulated current studies

    NASA Astrophysics Data System (ADS)

    Nakamura, T.; Nishikata, N.; Kamioka, K.; Kuriyama, K.; Kushida, K.

    2016-03-01

    The proton irradiation induced defects in GaN are studied by combining elastic recoil detection analysis (ERDA), thermally stimulated current (TSC), and Rutherford backscattering spectroscopy (RBS) measurements. The proton irradiation (peak concentration: 1.0 × 1015 cm-2) into GaN films with a thickness of 3 μm is performed using a 500 keV implanter. The proton concentration by a TRIM simulation is maximum at 3600 nm in depth, which means that the proton beam almost passes through the GaN film. The carrier concentration decreases three orders of magnitude to 1015 cm-3 by the proton irradiation, suggesting the existence of the proton irradiation-induced defects. The ERDA measurements using the 1.5 MeV helium beam can evaluate hydrogen from the surface to ∼300 nm. The hydrogen concentration at ∼220 nm is ∼8.3 × 1013 cm-2 and ∼1.0 × 1014 cm-2 for un-irradiated and as-irradiated samples, respectively, suggesting that electrical properties are almost not affected by hydrogen. TSC measurements show a broad spectrum at around 110 K which can be divided into three traps, P1 (ionization energy 173 meV), P2 (251 meV), and P3 (330 meV). The peak intensity of P1 is much larger than that of P2 and P3. These traps are related to the N vacancy and/or complex involving N vacancy (P1), neutral Ga vacancy (VGa) (P2), and complex involving VGa (P3). The Ga displacement concentration evaluated by RBS measurements is 1.75 × 1019 cm-3 corresponding to 1/1000 of the Ga concentration in GaN. The observed Ga displacement may be origins of P2 and P3 traps.

  12. Effect of UV-C irradiation and low temperature storage on bioactive compounds, antioxidant enzymes and radical scavenging activity of papaya fruit.

    PubMed

    Rivera-Pastrana, Dulce M; Gardea, Alfonso A; Yahia, Elhadi M; Martínez-Téllez, Miguel A; González-Aguilar, Gustavo A

    2014-12-01

    Mature green 'Maradol' papaya fruits were exposed to ultraviolet (UV)-C irradiation (1.48 kJ·m(-2)) and stored at 5 or 14 °C. Changes in total phenols, total flavonoids, enzymatic activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), as well as the scavenging activity against 2,2-diphenyl-1picrylhydrazyl (DPPH) and 3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radicals were investigated in peel and flesh tissues at 0, 5, 10 and 15 days of storage. UV-C irradiation increased significantly (P < 0.05) the flavonoid content (2.5 and 26 %) and ABTS radical scavenging activity (5.7 and 6 %) in flesh and peel at 14 °C respectively; and CAT activity (16.7 %) in flesh at 5 °C. Flavonoid contents, CAT and SOD activities were positively affected under low storage temperature (5 °C). DPPH and ABTS radical scavenging activities increased in both control and UV-C treated papaya peel during storage at 5 °C. UV-C irradiation effect on radical scavenging of papaya peel could be attributed to increased flavonoid content. Papaya antioxidant system was activated by UV-C and cold storage by increasing phenolic content and antioxidant enzymatic activities as a defense response against oxidative-stress.

  13. Accumulation efficiency of cancer stem-like cells post γ-ray and proton irradiation

    NASA Astrophysics Data System (ADS)

    Quan, Yi; Wang, Weikang; Fu, Qibin; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Wang, Yugang

    2012-09-01

    Ionizing radiation (IR) has been proven to be a powerful medical treatment in cancer therapy. Rational and effective use of its killing power depends on understanding IR-mediated responses at the molecular, cellular and tissue levels. Increasing evidence supports that cancer stem-like cells (CSCs) play an important role in tumor regrowth and spread post radiotherapy, for they are resistant to various therapy methods including radiation. Presently, SW620 colon carcinoma monolayer culture cells were irradiated with γ-rays and protons of 2 Gy. Then apoptosis, clonogenic survival and the expression of CD133+ protein were examined. The results showed that there was no significantly difference either on long-term clonogenic survival or on short-term apoptosis ratio. However, compared with γ-rays, irradiation with protons was less efficient to accumulate CSCs at the same dose, although both protons and γ-rays can significantly accumulate the CD133+ CSCs subpopulation. In addition, the results of sphere formation assay also confirmed that proton irradiation is less efficient in CSCs accumulation, suggesting proton irradiation might have higher efficiency in CSCs elimination for cancer radiotherapy.

  14. Redistribution of components in the niobium-silicon system under high-temperature proton irradiation

    SciTech Connect

    Afonin, N. N.; Logacheva, V. A. Khoviv, A. M.

    2011-12-15

    The redistribution of components in the niobium-silicon system during magnetron-assisted sputtering of niobium, vacuum annealing, and high-temperature proton irradiation is studied. It is established that, during magnetron-assisted sputtering followed by vacuum annealing, silicon penetrates through the metal film to the outer boundary of the film. Under high-temperature proton irradiation, the suppression of the diffusion of niobium into silicon is observed. This effect is attributed to the high concentration of radiation vacancies in the region of the Nb/Si interphase boundary.

  15. Impact of proton irradiation on deep level states in n-GaN

    SciTech Connect

    Zhang, Z.; Arehart, A. R.; Cinkilic, E.; Ringel, S. A.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; McSkimming, B.; Speck, J. S.

    2013-07-22

    Deep levels in 1.8 MeV proton irradiated n-type GaN were systematically characterized using deep level transient spectroscopies and deep level optical spectroscopies. The impacts of proton irradiation on the introduction and evolution of those deep states were revealed as a function of proton fluences up to 1.1 × 10{sup 13} cm{sup −2}. The proton irradiation introduced two traps with activation energies of E{sub C} - 0.13 eV and 0.16 eV, and a monotonic increase in the concentration for most of the pre-existing traps, though the increase rates were different for each trap, suggesting different physical sources and/or configurations for these states. Through lighted capacitance voltage measurements, the deep levels at E{sub C} - 1.25 eV, 2.50 eV, and 3.25 eV were identified as being the source of systematic carrier removal in proton-damaged n-GaN as a function of proton fluence.

  16. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    SciTech Connect

    Korovin, Y.A.; Konobeyev, A.Y.; Pereslavtsev, P.E.

    1995-10-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclide transmutation. All calculations have been performed using the SNT code.

  17. Proton Irradiation-Induced Metal Voids in Gallium Nitride High Electron Mobility Transistors

    DTIC Science & Technology

    2015-09-01

    IRRADIATION-INDUCED METAL VOIDS IN GALLIUM NITRIDE HIGH ELECTRON MOBILITY TRANSISTORS by Michael G. Wade September 2015 Thesis Advisor: Todd...REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE PROTON IRRADIATION-INDUCED METAL VOIDS IN GALLIUM NITRIDE HIGH ELECTRON...were present. The gate-finger’s silicon nitride passivation layer and Au metallization layer were removed via focused ion beam stripping in order to

  18. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    NASA Astrophysics Data System (ADS)

    Korovin, Yu. A.; Konobeyev, A. Yu.; Pereslavtsev, P. E.

    1995-09-01

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclider transmutation. All calculations have been performed using the SNT code [1].

  19. Long-lived isotopes production in Pb-Bi target irradiated by high energy protons

    SciTech Connect

    Korovin, Yu. A.; Konobeyev, A. Yu.; Pereslavtsev, P. E.

    1995-09-15

    Concentration of long-lived isotopes has been calculated for lead and lead-bismuth targets irradiated by protons with energy 0.4, 0.8, 1.0 and 1.6 GeV. The time of irradiation is equal from 1 month up to 2 years. The data libraries BROND, ADL and MENDL have been used to obtain the rate of nuclider transmutation. All calculations have been performed using the SNT code.

  20. Observations of defect structure evolution in proton and Ni ion irradiated Ni-Cr binary alloys

    NASA Astrophysics Data System (ADS)

    Briggs, Samuel A.; Barr, Christopher M.; Pakarinen, Janne; Mamivand, Mahmood; Hattar, Khalid; Morgan, Dane D.; Taheri, Mitra; Sridharan, Kumar

    2016-10-01

    Two binary Ni-Cr model alloys with 5 wt% Cr and 18 wt% Cr were irradiated using 2 MeV protons at 400 and 500 °C and 20 MeV Ni4+ ions at 500 °C to investigate microstructural evolution as a function of composition, irradiation temperature, and irradiating ion species. Transmission electron microscopy (TEM) was applied to study irradiation-induced void and faulted Frank loops microstructures. Irradiations at 500 °C were shown to generate decreased densities of larger defects, likely due to increased barriers to defect nucleation as compared to 400 °C irradiations. Heavy ion irradiation resulted in a larger density of smaller voids when compared to proton irradiations, indicating in-cascade clustering of point defects. Cluster dynamics simulations were in good agreement with the experimental findings, suggesting that increases in Cr content lead to an increase in interstitial binding energy, leading to higher densities of smaller dislocation loops in the Ni-18Cr alloy as compared to the Ni-5Cr alloy.

  1. Comparison of proton microbeam and gamma irradiation for the radiation hardness testing of silicon PIN diodes

    NASA Astrophysics Data System (ADS)

    Jakšić, M.; Grilj, V.; Skukan, N.; Majer, M.; Jung, H. K.; Kim, J. Y.; Lee, N. H.

    2013-09-01

    Simple and cost-effective solutions using Si PIN diodes as detectors are presently utilized in various radiation-related applications in which excessive exposure to radiation degrades their charge transport properties. One of the conventional methods for the radiation hardness testing of such devices is time-consuming irradiation with electron beam or gamma-ray irradiation facilities, high-energy proton accelerators, or with neutrons from research reactors. Recently, for the purpose of radiation hardness testing, a much faster nuclear microprobe based approach utilizing proton irradiation has been developed. To compare the two different irradiation techniques, silicon PIN diodes have been irradiated with a Co-60 gamma radiation source and with a 6 MeV proton microbeam. The signal degradation in the silicon PIN diodes for both irradiation conditions has been probed by the IBIC (ion beam induced charge) technique, which can precisely monitor changes in charge collection efficiency. The results presented are reviewed on the basis of displacement damage calculations and NIEL (non-ionizing energy loss) concept.

  2. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    NASA Astrophysics Data System (ADS)

    Fuchs, J.; Antici, P.; d'Humières, E.; Lefebvre, E.; Borghesi, M.; Brambrink, E.; Cecchetti, C. A.; Kaluza, M.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Schreiber, J.; Toncian, T.; Pépin, H.; Audebert, P.

    2006-04-01

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of ˜200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  3. Scaling Laws for Proton Acceleration from the Rear Surface of Laser-Irradiated Thin Foils

    SciTech Connect

    Fuchs, J.; Antici, P.; D'Humieres, E.; Lefebvre, E.; Borghesi, M.; Cecchetti, C. A.; Brambrink, E.; Audebert, P.; Kaluza, M.; Schreiber, J.; Malka, V.; Manclossi, M.; Meyroneinc, S.; Mora, P.; Toncian, T.; Pepin, H.

    2006-04-07

    In the last few years, intense research has been conducted on the topic of laser-accelerated ion sources and their applications. Ultra-bright beams of multi-MeV protons are produced by irradiating thin metallic foils with ultra-intense short laser pulses. These sources open new opportunities for ion beam generation and control, and could stimulate development of compact ion accelerators for many applications, in particular proton therapy of deep-seated tumours. Here we show that scaling laws deduced from fluid models reproduce well the acceleration of proton beams for a large range of laser and target parameters. These scaling laws show that, in our regime, there is an optimum in the laser pulse duration of {approx}200 fs-1 ps, with a needed laser energy level of 30 to 100 J, in order to achieve e.g. 200 MeV energy protons necessary for proton therapy.

  4. The risk of developing a second cancer after receiving craniospinal proton irradiation

    PubMed Central

    Newhauser, Wayne D; Fontenot, Jonas D; Mahajan, Anita; Kornguth, David; Stovall, Marilyn; Zheng, Yuanshui; Taddei, Phillip J; Mirkovic, Dragan; Mohan, Radhe; Cox, James D; Woo, Shiao

    2014-01-01

    The purpose of this work was to compare the risk of developing a second cancer after craniospinal irradiation using photon versus proton radiotherapy by means of simulation studies designed to account for the effects of neutron exposures. Craniospinal irradiation of a male phantom was calculated for passively-scattered and scanned-beam proton treatment units. Organ doses were estimated from treatment plans; for the proton treatments, the amount of stray radiation was calculated separately using the Monte Carlo method. The organ doses were converted to risk of cancer incidence using a standard formalism developed for radiation protection purposes. The total lifetime risk of second cancer due exclusively to stray radiation was 1.5% for the passively scattered treatment versus 0.8% for the scanned proton beam treatment. Taking into account the therapeutic and stray radiation fields, the risk of second cancer from intensity-modulated radiation therapy and conventional radiotherapy photon treatments were 7 and 12 times higher than the risk associated with scanned-beam proton therapy, respectively, and 6 and 11 times higher than with passively scattered proton therapy, respectively. Simulations revealed that both passively scattered and scanned-beam proton therapies confer significantly lower risks of second cancers than 6MV conventional and intensity-modulated photon therapies. PMID:19305036

  5. The risk of developing a second cancer after receiving craniospinal proton irradiation.

    PubMed

    Newhauser, Wayne D; Fontenot, Jonas D; Mahajan, Anita; Kornguth, David; Stovall, Marilyn; Zheng, Yuanshui; Taddei, Phillip J; Mirkovic, Dragan; Mohan, Radhe; Cox, James D; Woo, Shiao

    2009-04-21

    The purpose of this work was to compare the risk of developing a second cancer after craniospinal irradiation using photon versus proton radiotherapy by means of simulation studies designed to account for the effects of neutron exposures. Craniospinal irradiation of a male phantom was calculated for passively-scattered and scanned-beam proton treatment units. Organ doses were estimated from treatment plans; for the proton treatments, the amount of stray radiation was calculated separately using the Monte Carlo method. The organ doses were converted to risk of cancer incidence using a standard formalism developed for radiation protection purposes. The total lifetime risk of second cancer due exclusively to stray radiation was 1.5% for the passively scattered treatment versus 0.8% for the scanned proton beam treatment. Taking into account the therapeutic and stray radiation fields, the risk of second cancer from intensity-modulated radiation therapy and conventional radiotherapy photon treatments were 7 and 12 times higher than the risk associated with scanned-beam proton therapy, respectively, and 6 and 11 times higher than with passively scattered proton therapy, respectively. Simulations revealed that both passively scattered and scanned-beam proton therapies confer significantly lower risks of second cancers than 6 MV conventional and intensity-modulated photon therapies.

  6. Water corrosion measurements on tungsten irradiated with high energy protons and spallation neutrons

    NASA Astrophysics Data System (ADS)

    Maloy, Stuart A.; Scott Lillard, R.; Sommer, Walter F.; Butt, Darryl P.; Gac, Frank D.; Willcutt, Gordon J.; Louthan, McIntyre R.

    2012-12-01

    A detailed analysis was performed on the degradation of a tungsten target under water cooling while being exposed to a 761 MeV proton beam at an average current of 0.867 mA to a maximum fluence of 1.3 × 1021 protons/cm2. The target consisted of 3 mm diameter tungsten rods arranged in bundles and cooled with deionized water flowing over their length. Degradation of the tungsten was measured through analyzing water resistivity, tungsten concentration in water samples that were taken during irradiation and through dimensional measurements on the rods after irradiation. Chemical analysis of irradiated water samples showed W concentrations up to 35 μg/ml. Gamma analysis showed increases in concentrations of many isotopes including W-178, Lu-171, Tm-167, Tm-166, Yb-169 and Hf-175. Dimensional measurements performed after irradiation on the W rods revealed a decrease in diameter as a function of position that followed closely the Gaussian proton beam profile along the rod length and indicated a definite beam-effect. A general decrease in diameter, especially on the coolant-water entrance point where turbulent flow was likely, also suggests a chemically and mechanically-driven corrosion effect. A method to estimate the apparent corrosion rate based on proton fluence is presented and application of this method estimates the material loss rate at about 1.9 W atoms/incident proton. From this result, the corrosion rate of tungsten in a 761 MeV, 0.867 mA proton beam was calculated to be 0.073 cm/full power year. of irradiation.

  7. Cognitive effects of proton irradiation at differing energy levels

    USDA-ARS?s Scientific Manuscript database

    During exploratory class missions to space outside of the magnetic field of the Earth, astronauts will be exposed to various forms of radiation including solar particle events (SPE) which are predominantly composed of protons. As such it is important to characterize the cognitive effects of exposure...

  8. Effect of annealing on proton irradiated AlGaN/GaN based micro-Hall sensors

    SciTech Connect

    Abderrahmane, A.; Takahashi, H.; Tashiro, T.; Ko, P. J.; Okada, H.; Sandhu, A.; Sato, S.; Ohshima, T.

    2014-02-20

    The effect of annealing at 673 K on irradiated micro-Hall sensors irradiated with protons at 380keV and fluences of 10{sup 14}, 10{sup 15} and 10{sup 16} protons/cm{sup 2} is reported. Cathodoluminescence measurements were carried out at room temperature before and after annealing and showed improvement in the band edge band emission of the GaN layer. After annealing a sensor irradiated by 10{sup 15} protons/cm{sup 2} the device became operational with improvements in its magnetic sensitivity. All irradiated sensors showed improvement in their electrical characteristics after annealing.

  9. Tensile properties of vanadium-base alloys irradiated in the Fusion-1 low-temperature experiment in the BOR-60 reactor

    SciTech Connect

    Tsai, H.; Gazda, J.; Nowicki, L.J.; Billone, M.C.; Smith, D.L.

    1998-09-01

    The irradiation has been completed and the test specimens have been retrieved from the lithium-bonded capsule at the Research Institute of Atomic Reactors (RIAR) in Russia. During this reporting period, the Argonne National Laboratory (ANL) tensile specimens were received from RIAR and initial testing and examination of these specimens at ANL has been completed. The results, corroborating previous findings showed a significant loss of work hardening capability in the materials. There appears to be no significant difference in behavior among the various heats of vanadium-base alloys in the V-(4-5)Cr-(4-5)Ti composition range. The variations in the preirradiation annealing conditions also produced no notable differences.

  10. Determination of the symmetry of the superconducting pairing state and formation of a low-temperature normal metallic state in YBCO by electron irradiation

    SciTech Connect

    Giapintzakis, J.; Ginsberg, D.M.; Kirk, M.A.

    1995-10-01

    A key difference between a d-wave and an anisotropic s-wave superconductor is the expected effect of nonmagnetic point defects on T{sub c}. T{sub c} of the former becomes zero whereas T{sub c} of the latter attains a nonzero constant value beyond a critical concentration of impurities. We report the first observation that T{sub c} of an YBCO single crystal becomes zero after 4.1% of the planar oxygens O(2,3) are displaced by 400keV electron irradiation along the c-axis. Our data therefore indicate that YBCO is a d-wave superconductor. We also report evidence of a disorder-induced superconductor-to-normal-metal transition.

  11. The modification of low-temperature magnetic properties of the Fe-based double-zigzag single-chain magnet under irradiation

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Shustin, M. S.

    2017-10-01

    An exact solution for a generalized Ising model describing single-chain magnet [ FeIII (Tp*)(CN)3 ] 2 FeII (bpmh) } · 2H2 O with alternating high-spin and low-spin iron ions and double-zigzag magnetic topology has been calculated making use of the transfer-matrix technique. The introduction of a statistical ensemble taking into account the presence of iron ions with high-spin (HS) and low-spin (LS) states made it possible to describe the modification of magnetic susceptibility under optical irradiation. It has been shown that joint implementation of iron ions with photoinduced magnetic states and non-magnetic intersite repulsion ions of these states is caused by the difference of the ionic radii of HSFeII and LSFeII leads to the quantum phase transitions in the system.

  12. Proton irradiation creep of Inconel 718 at 300°C

    NASA Astrophysics Data System (ADS)

    Scholz, R.; Matera, R.

    2000-12-01

    Torsional creep tests were conducted on Inconel 718 in the precipitation hardened condition under 17 MeV proton irradiation at 300°C upto a maximum dose of 0.35 dpa. The stress dependence of the irradiation creep rate was linear for the applied shear stresses which ranged from 150 to 450 MPa. The results are discussed in relation to the operating conditions of an ITER-like machine, where Inconel 718 bolts are used to mechanically attach the shielding blanket to the backplate. The irradiation creep induced stress relaxation amounted to about 30% after a dose of 0.35 dpa.

  13. Effects of proton beam irradiation on uveal melanomas: a comparative study of Ki-67 expression in irradiated versus non-irradiated melanomas

    PubMed Central

    Chiquet, C.; Grange, J.; Ayzac, L.; Chauvel, P.; Patricot, L.; Devouassoux-Shish..., M.

    2000-01-01

    AIMS—To assess the cellular proliferation using the monoclonal antibody Ki-67, in paraffin embedded uveal melanomas irradiated by proton beam, as well as in non-irradiated uveal melanomas.
METHODS—30 enucleated eyes were included for histopathological study and Ki-67 immunostaining. Patients were enucleated between 1991 and 1996 for uveal melanoma, 14 after proton beam irradiation and 16 without treatment (control group). The mean follow up period was 2.5 years after diagnosis and 1 year after enucleation.
RESULTS—A significant relation was found between Ki-67 score and mitotic index (r = 0.56, p = 0.001), histological largest tumour diameter (r = 0.38, p = 0.03), fibrosis (r = −0.35, p = 0.05), absence of tumoral pigmentation (p = 0.05), and presence of vascular thrombosis (p = 0.03). The Ki-67 score was significantly higher in the non-irradiated group (p = 0.01) and in the group of patients whose cause of enucleation was tumoral evolution (p = 0.005) compared with the group of patients enucleated after neovascular glaucoma. The Ki-67 score was very high in a case of orbital recurrence of uveal melanoma and metastatic death. 70% of metastasised tumours showed a Ki-67 score higher than the median value.
CONCLUSION—Ki-67 labelling is a reliable method of estimating the proliferative activity in uveal melanomas after proton beam irradiation. The Ki-67 score is significantly correlated with prognostic variables (mitotic index and histological largest tumour diameter), and with radiation effects after proton beam irradiation.

 PMID:10611107

  14. High-temperature annealing of proton irradiated beryllium – A dilatometry-based study

    DOE PAGES

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...

    2016-04-07

    S—200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm–2 peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was tomore » qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. Here, the study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.« less

  15. High-temperature annealing of proton irradiated beryllium - A dilatometry-based study

    NASA Astrophysics Data System (ADS)

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-08-01

    Ssbnd 200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm-2 peak fluence and irradiation temperatures in the range of 100-200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. The study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  16. Nano-scale chemical evolution in a proton-and neutron-irradiated Zr alloy

    NASA Astrophysics Data System (ADS)

    Harte, Allan; Topping, M.; Frankel, P.; Jädernäs, D.; Romero, J.; Hallstadius, L.; Darby, E. C.; Preuss, M.

    2017-04-01

    Proton-and neutron-irradiated Zircaloy-2 are compared in terms of the nano-scale chemical evolution within second phase particles (SPPs) Zr(Fe,Cr)2 and Zr2(Fe,Ni). This is accomplished through ultra-high spatial resolution scanning transmission electron microscopy and the use of energy-dispersive X-ray spectroscopic methods. Fe-depletion is observed from both SPP types after irradiation with both irradiative species, but is heterogeneous in the case of Zr(Fe,Cr)2, predominantly from the edge region, and homogeneously in the case of Zr2(Fe,Ni). Further, there is evidence of a delay in the dissolution of the Zr2(Fe,Ni) SPP with respect to the Zr(Fe,Cr)2. As such, SPP dissolution results in matrix supersaturation with solute under both irradiative species and proton irradiation is considered well suited to emulate the effects of neutron irradiation in this context. The mechanisms of solute redistribution processes from SPPs and the consequences for irradiation-induced growth phenomena are discussed.

  17. High-temperature annealing of proton irradiated beryllium – A dilatometry-based study

    SciTech Connect

    Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Ghose, Sanjit; Savkliyildiz, Ilyas

    2016-04-07

    S—200 F grade beryllium has been irradiated with 160 MeV protons up to 1.2 1020 cm–2 peak fluence and irradiation temperatures in the range of 100–200 °C. To address the effect of proton irradiation on dimensional stability, an important parameter in its consideration in fusion reactor applications, and to simulate high temperature irradiation conditions, multi-stage annealing using high precision dilatometry to temperatures up to 740 °C were conducted in air. X-ray diffraction studies were also performed to compliment the macroscopic thermal study and offer a microscopic view of the irradiation effects on the crystal lattice. The primary objective was to qualify the competing dimensional change processes occurring at elevated temperatures namely manufacturing defect annealing, lattice parameter recovery, transmutation 4He and 3H diffusion and swelling and oxidation kinetics. Further, quantification of the effect of irradiation dose and annealing temperature and duration on dimensional changes is sought. Here, the study revealed the presence of manufacturing porosity in the beryllium grade, the oxidation acceleration effect of irradiation including the discontinuous character of oxidation advancement, the effect of annealing duration on the recovery of lattice parameters recovery and the triggering temperature for transmutation gas diffusion leading to swelling.

  18. Laser-induced point-defect reaction in proton-irradiated SiC

    NASA Astrophysics Data System (ADS)

    Zimbone, M.; Litrico, G.; Barbera, M.; Baratta, G. A.; Foti, G.

    2009-01-01

    The defects produced in 4H-SiC epitaxial layers by irradiation with 200-keV H+ were characterized by low-temperature photoluminescence. These defects induce sharp luminescent lines, the so-called alphabet lines. Their intensity shows an evolution under UV-laser irradiation not previously observed. By monitoring the change in the resulting photoluminescence spectra versus time, we distinguish two original ‘families’ of peaks called PB1 and PB2. They display a different, and opposite, behaviour with laser irradiation but they are strongly correlated. In particular, the recovering rate of the PB1 family and the growth rate of the PB2 family are the same, indicating a structural rearrangement of defects.

  19. Low Temperature Powder Coating

    DTIC Science & Technology

    2011-02-09

    Patterson AFB, OH David Piatkowski, Chris Mahendra NAVAIR James Davila, Chris Geib SAIC Beavercreek, OH O G D E N A I R L O G I S T I C S C E N T...PUBLICATIONS Geib , C.W., Davila J.A., Patterson W., et al. “Low Temperature Cure Powder Coating, ESTCP Project WP-0614.” Joint Services Environmental...Management Conference, Columbus, Ohio. 21 – 24 May 2007. Geib , C.W., Davila J.A., Patterson W., et al. “Advances and Testing of Powder Coatings for Aerospace

  20. Developments, characterization and proton irradiation damage tests of AlN detectors for VUV solar observations

    NASA Astrophysics Data System (ADS)

    BenMoussa, A.; Soltani, A.; Gerbedoen, J.-C.; Saito, T.; Averin, S.; Gissot, S.; Giordanengo, B.; Berger, G.; Kroth, U.; De Jaeger, J.-C.; Gottwald, A.

    2013-10-01

    For next generation spaceborne solar ultraviolet radiometers, innovative metal-semiconductor-metal detectors based on wurtzite aluminum nitride are being developed and characterized. A set of measurement campaigns and proton irradiation damage tests was carried out to obtain their ultraviolet-to-visible characterization and degradation mechanisms. First results on large area prototypes up to 4.3 mm diameter are presented here. In the wavelength range of interest, this detector is reasonably sensitive and stable under brief irradiation with a negligible low dark current (3-6 pA/cm2). No significant degradation of the detector performance was observed after exposure to protons of 14.4 MeV energy, showing a good radiation tolerance up to fluences of 1 × 1011 protons/cm2.

  1. Effects of proton irradiation on nanocluster precipitation in ferritic steel containing fcc alloying additions

    SciTech Connect

    Zhang, Zhongwu; Liu, C T; Wang, Xun-Li; Miller, Michael K; Ma, Dong; Chen, Guang; Williams, J R; Chin, Bryan

    2012-01-01

    Newly-developed precipitate-strengthened ferritic steels with and without pre-existing nanoscale precipitates were irradiated with 4 MeV protons to a dose of ~5 mdpa at 50 C and subsequently examined by nanoindentation and atom probe tomography (APT). Irradiation-enhanced precipitation and coarsening of pre-existing nanoscale precipitates were observed. Copper partitions to the precipitate core along with a segregation of Ni, Al and Mn to the precipitate/matrix interface after both thermal aging and proton irradiation. Proton irradiation induces the precipitation reaction and coarsening of pre-existing nanoscale precipitates, and these results are similar to a thermal aging process. The precipitation and coarsening of nanoscale precipitates are responsible for the changes in hardness. The observation of the radiation-induced softening is essentially due to the coarsening of the pre-existing Cu-rich nanoscale precipitates. The implication of the precipitation on the embrittlement of reactor-pressure-vessel steels after irradiation is discussed.

  2. Enhanced critical currents of commercial 2G superconducting coated conductors through proton irradiation

    NASA Astrophysics Data System (ADS)

    Welp, Ulrich; Leroux, M.; Kihlstrom, K. J.; Kwok, W.-K.; Koshelev, A. E.; Miller, D. J.; Rupich, M. W.; Fleshler, S.; Malozemoff, A. P.; Kayani, A.

    2015-03-01

    We report on magnetization and transport measurements of the critical current density, Jc, of commercial 2G YBCO coated conductors before and after proton irradiation. The samples were irradiated along the c-axis with 4 MeV protons. Proton irradiation produces a mixed pinning landscape composed of pre-existing rare earth particles and a uniform distribution of irradiation induced nm-sized defects. This pinning landscape strongly reduces the suppression of Jc in magnetic fields resulting in a doubling of Jc in a field of ~ 4T. The irradiation dose-dependence of Jc is characterized by a temperature and field dependent sweat spot that at 5 K and 6 T occurs around 20x1016 p/cm2. Large-scale time dependent Ginzburg-Landau simulations yield a good description of our results. This work supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. D.O.E., Office of Science, Office of Basic Energy Sciences (KK, ML, AEK) and by the D.O.E, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357 (UW, WKK).

  3. Defocusing beam line design for an irradiation facility at the TAEA SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Gencer, A.; Demirköz, B.; Efthymiopoulos, I.; Yiğitoğlu, M.

    2016-07-01

    Electronic components must be tested to ensure reliable performance in high radiation environments such as Hi-Limu LHC and space. We propose a defocusing beam line to perform proton irradiation tests in Turkey. The Turkish Atomic Energy Authority SANAEM Proton Accelerator Facility was inaugurated in May 2012 for radioisotope production. The facility has also an R&D room for research purposes. The accelerator produces protons with 30 MeV kinetic energy and the beam current is variable between 10 μA and 1.2 mA. The beam kinetic energy is suitable for irradiation tests, however the beam current is high and therefore the flux must be lowered. We plan to build a defocusing beam line (DBL) in order to enlarge the beam size, reduce the flux to match the required specifications for the irradiation tests. Current design includes the beam transport and the final focusing magnets to blow up the beam. Scattering foils and a collimator is placed for the reduction of the beam flux. The DBL is designed to provide fluxes between 107 p /cm2 / s and 109 p /cm2 / s for performing irradiation tests in an area of 15.4 cm × 21.5 cm. The facility will be the first irradiation facility of its kind in Turkey.

  4. The influence of relative humidity on iron corrosion under proton irradiation

    NASA Astrophysics Data System (ADS)

    Lapuerta, S.; Bérerd, N.; Moncoffre, N.; Millard-Pinard, N.; Jaffrézic, H.; Crusset, D.; Féron, D.

    2008-03-01

    With regard to the storage for high-level radioactive waste and the reversible period of a geological repository, the influence of proton irradiation on the indoor atmospheric corrosion of iron has been investigated in relation to the relative humidity (RH) in the atmosphere. Irradiation experiments were performed using a 3-MeV extracted proton beam. Relative humidity varies from 0% to 85%. Before and after each irradiation, the surfaces of the sample were characterised by Rutherford backscattering spectrometry in order to determine oxygen concentrations in the metal. The maximum oxidation rate was observed for 45% RH in air under proton irradiation and was compared with literature data without irradiation where the maximum oxidation rate was observed at 95% RH. The experimental results are discussed on the basis of the Langmuir-Hinshelwood (LH) model: they are explained by the contrast between the adsorption of O 2 and H 2O species on the active cathodic sites of the iron surface and by the formation of H +(H 2O) n.

  5. A review of dosimetric and toxicity modeling of proton versus photon craniospinal irradiation for pediatrics medulloblastoma.

    PubMed

    Ho, Evangeline S Q; Barrett, Sarah A; Mullaney, Laura M

    2017-08-01

    Craniospinal irradiation (CSI) is the standard radiation therapy treatment for medulloblastoma. Conventional CSI photon therapy (Photon-CSI) delivers significant dose to surrounding normal tissue (NT). Research into pediatric CSI with proton therapy (Proton-CSI) has increased, with the aim of exploiting the potential to reduce NT dose and associated post-treatment complications. This review aims to compare treatment outcomes of pediatric medulloblastoma patients between Proton- and Photon-CSI treatments. A search and review of studies published between 1990 and 2016 comparing pediatric (2-18 years) medulloblastoma Proton- and Photon-CSI in three aspects - normal organ sparing and target coverage; normal organ dysfunction and second malignancy risks - was completed. Fifteen studies were selected for review and the results were directly compared. Proton-CSI reported improved out-of-field organ sparing while target coverage improvements were inconsistent. Normal organ dysfunction risks were predicted to be lower following Proton-CSI. Secondary malignancy risks (SMRs) were generally lower with Proton-CSI based on several different risk models. Proton-CSI conferred better treatment outcomes than Photon-CSI for pediatric medulloblastoma patients. This review serves to compare the current literature in the absence of long-term data from prospective studies.

  6. Rapid-melt-mediated recrystallization of ZnO thin films grown at low temperature by using KrF excimer laser irradiation

    NASA Astrophysics Data System (ADS)

    Oh, Min-Suk; Seo, Inseok

    2015-11-01

    ZnO thin films with thickness of 150 nm were grown on ITO/glass (ITO-coated glass) substrates by using the radio-frequency (RF) sputtering technique at 400 °C in an Ar atmosphere. An excimer laser irradiation (ELI) treatment was performed on the surface of ZnO thin films at different excimer laser energy densities of 150, 200, and 250 mJ/cm2 in a N2 atmosphere. The ELI treatment promoted the lateral recystallization of the surface area of the ZnO, resulting in a significant improvement of the crystallinity of the ZnO thin films without substrate damage. As-grown ZnO and ELI-treated ZnO thin films were characterized by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD). The analyses showed that the ZnO thin film treated with ELI at an excimer laser energy density of 150 mJ/cm2 exhibited the best structural properties.

  7. Low-dose total-body γ irradiation modulates immune response to acute proton radiation.

    PubMed

    Luo-Owen, Xian; Pecaut, Michael J; Rizvi, Asma; Gridley, Daila S

    2012-03-01

    Health risks due to exposure to low-dose/low-dose-rate radiation alone or when combined with acute irradiation are not yet clearly defined. This study quantified the effects of protracted exposure to low-dose/low-dose-rate γ rays with and without acute exposure to protons on the response of immune and other cell populations. C57BL/6 mice were irradiated with ⁵⁷Co (0.05 Gy at 0.025 cGy/h); subsets were subsequently exposed to high-dose/high-dose-rate proton radiation (250 MeV; 2 or 3 Gy at 0.5 Gy/min). Analyses were performed at 4 and 17 days postexposure. Spleen and thymus masses relative to body mass were decreased on day 4 after proton irradiation with or without pre-exposure to γ rays; by day 17, however, the decrease was attenuated by the priming dose. Proton dose-dependent decreases, either with or without pre-exposure to γ rays, occurred in white blood cell, lymphocyte and granulocyte counts in blood but not in spleen. A similar pattern was found for lymphocyte subpopulations, including CD3+ T, CD19+ B, CD4+ T, CD8+ T and NK1.1+ natural killer (NK) cells. Spontaneous DNA synthesis by leukocytes after proton irradiation was high in blood on day 4 and high in spleen on day 17; priming with γ radiation attenuated the effect of 3 Gy in both body compartments. Some differences were also noted among groups in erythrocyte and thrombocyte characteristics. Analysis of splenocytes activated with anti-CD3/anti-CD28 antibodies showed changes in T-helper 1 (Th1) and Th2 cytokines. Overall, the data demonstrate that pre-exposure of an intact mammal to low-dose/low-dose-rate γ rays can attenuate the response to acute exposure to proton radiation with respect to at least some cell populations.

  8. Proton irradiation damage of an annealed Alloy 718 beam window

    SciTech Connect

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  9. Proton irradiation damage of an annealed Alloy 718 beam window

    DOE PAGES

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; ...

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less

  10. Proton irradiation damage of an annealed Alloy 718 beam window

    NASA Astrophysics Data System (ADS)

    Bach, H. T.; Anderoglu, O.; Saleh, T. A.; Romero, T. J.; Kelsey, C. T.; Olivas, E. R.; Sencer, B. H.; Dickerson, P. O.; Connors, M. A.; John, K. D.; Maloy, S. A.

    2015-04-01

    Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cut into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ∼0.2-0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ∼34-120 °C with short excursion to be ∼47-220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (∼0.2-0.7 dpa) was the highest and attributed to the formation of γ″ precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (∼11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.

  11. Technique for comprehensive head and neck irradiation using 3-dimensional conformal proton therapy

    SciTech Connect

    McDonald, Mark W.; Walter, Alexander S.; Hoene, Ted A.

    2015-01-01

    Owing to the technical and logistical complexities of matching photon and proton treatment modalities, we developed and implemented a technique of comprehensive head and neck radiation using 3-dimensional (3D) conformal proton therapy. A monoisocentric technique was used with a 30-cm snout. Cervical lymphatics were treated with 3 fields: a posterior-anterior field with a midline block and a right and a left posterior oblique field. The matchline of the 3 cervical nodal fields with the primary tumor site fields was staggered by 0.5 cm. Comparative intensity-modulated photon plans were later developed for 12 previously treated patients to provide equivalent target coverage, while matching or improving on the proton plans' sparing of organs at risk (OARs). Dosimetry to OARs was evaluated and compared by treatment modality. Comprehensive head and neck irradiation using proton therapy yielded treatment plans with significant dose avoidance of the oral cavity and midline neck structures. When compared with the generated intensity-modulated radiation therapy (IMRT) plans, the proton treatment plans yielded statistically significant reductions in the mean and integral radiation dose to the oral cavity, larynx, esophagus, and the maximally spared parotid gland. There was no significant difference in mean dose to the lesser-spared parotid gland by treatment modality or in mean or integral dose to the spared submandibular glands. A technique for cervical nodal irradiation using 3D conformal proton therapy with uniform scanning was developed and clinically implemented. Use of proton therapy for cervical nodal irradiation resulted in large volume of dose avoidance to the oral cavity and low dose exposure to midline structures of the larynx and the esophagus, with lower mean and integral dose to assessed OARs when compared with competing IMRT plans.

  12. Persistent changes in neuronal structure and synaptic plasticity caused by proton irradiation.

    PubMed

    Parihar, Vipan K; Pasha, Junaid; Tran, Katherine K; Craver, Brianna M; Acharya, Munjal M; Limoli, Charles L

    2015-03-01

    Cranial radiotherapy is used routinely to control the growth of primary and secondary brain tumors, but often results in serious and debilitating cognitive dysfunction. In part due to the beneficial dose depth distributions that may spare normal tissue damage, the use of protons to treat CNS and other tumor types is rapidly gaining popularity. Astronauts exposed to lower doses of protons in the space radiation environment are also at risk for developing adverse CNS complications. To explore the consequences of whole body proton irradiation, mice were subjected to 0.1 and 1 Gy and analyzed for morphometric changes in hippocampal neurons 10 and 30 days following exposure. Significant dose-dependent reductions (~33 %) in dendritic complexity were found, when dendritic length, branching and area were analyzed 30 days after exposure. At equivalent doses and times, significant reductions in the number (~30 %) and density (50-75 %) of dendritic spines along hippocampal neurons of the dentate gyrus were also observed. Immature spines (filopodia, long) exhibited the greatest sensitivity (1.5- to 3-fold) to irradiation, while more mature spines (mushroom) were more resistant to changes over a 1-month post-irradiation timeframe. Irradiated granule cell neurons spanning the subfields of the dentate gyrus showed significant and dose-responsive reductions in synaptophysin expression, while the expression of postsynaptic density protein (PSD-95) was increased significantly. These findings corroborate our past work using photon irradiation, and demonstrate for the first time, dose-responsive changes in dendritic complexity, spine density and morphology and synaptic protein levels following exposure to low-dose whole body proton irradiation.

  13. Studies of proton-irradiated cometary-type ice mixtures

    SciTech Connect

    Moore, M.H.; Donn, B.; Khanna, R.

    1983-06-01

    Cometary ice mixtures are studied in a laboratory experiment designed to simulate the temperature, pressure and radiation environments of the interstellar Oort cloud region, in order to test the hypothesized radiation synthesis mechanism for changing the characteristics of the outer few meters of a comet stored in the Oort cloud for 4.6 billion years. All experiments conducted confirm the synthesis of new molecular species in solid phase mixtures at 20 K. When CH4 is present in the irradiated ice mixture, long chained, voltaile hydrocarbon and CO2 are synthesized together with high molecular weight C compounds present in the room temperature residue. Due to radiation synthesis, about 1 percent of the ice was converted into a nonvolatile residue containing complicated C compounds not present in the blank samples. These results suggest that initial molecular abundances can be altered, and new species created, as a result of radiation synthesis. Irradiated mixtures exhibited thermoluminescence and pressure enhancements during warming, showing the synthesis of reactive species. Outbursts in new comets resulting from similar irradiation-induced exothermic activity would be expected to begin occurring at distances of the order of 100 AU. 40 references.

  14. Studies of proton-irradiated cometary-type ice mixtures

    NASA Astrophysics Data System (ADS)

    Moore, M. H.; Donn, B.; Khanna, R.; A'Hearn, M. F.

    1983-06-01

    Cometary ice mixtures are studied in a laboratory experiment designed to simulate the temperature, pressure and radiation environments of the interstellar Oort cloud region, in order to test the hypothesized radiation synthesis mechanism for changing the characteristics of the outer few meters of a comet stored in the Oort cloud for 4.6 billion years. All experiments conducted confirm the synthesis of new molecular species in solid phase mixtures at 20 K. When CH4 is present in the irradiated ice mixture, long chained, voltaile hydrocarbon and CO2 are synthesized together with high molecular weight C compounds present in the room temperature residue. Due to radiation synthesis, about 1 percent of the ice was converted into a nonvolatile residue containing complicated C compounds not present in the blank samples. These results suggest that initial molecular abundances can be altered, and new species created, as a result of radiation synthesis. Irradiated mixtures exhibited thermoluminescence and pressure enhancements during warming, showing the synthesis of reactive species. Outbursts in new comets resulting from similar irradiation-induced exothermic activity would be expected to begin occurring at distances of the order of 100 AU.

  15. Adjuvant Ab Interno Tumor Treatment After Proton Beam Irradiation.

    PubMed

    Seibel, Ira; Riechardt, Aline I; Heufelder, Jens; Cordini, Dino; Joussen, Antonia M

    2017-06-01

    This study was performed to show long-term outcomes concerning globe preservation in uveal melanoma patients after proton beam therapy with the main focus on outcomes according to different adjuvant ab interno surgical procedures. Retrospective cohort study. All patients treated with primary proton beam therapy for choroidal or ciliary body melanoma between June 1998 and June 2015 were included. A total of 2499 patients underwent primary proton beam therapy, with local tumor control and globe preservation rates of 95.9% and 94.8% after 5 years, respectively. A total of 110 (4.4%) patients required secondary enucleation. Unresponsive neovascular glaucoma was the leading cause of secondary enucleation in 78 of the 2499 patients (3.1%). The 5-year enucleation-free survival rate was 94.8% in the endoresection group, 94.3% in the endodrainage group, and 93.5% in the comparator group. The log-rank test showed P = .014 (comparator group vs endoresection group) and P = .06 (comparator group vs endodrainage-vitrectomy group). Patients treated with endoresection or endodrainage-vitrectomy developed less radiation retinopathy (30.5% and 37.4% after 5 years, P = .001 and P = .048 [Kaplan-Meier], respectively) and less neovascular glaucoma (11.6% and 21.3% after 5 years, P = .001 and P = .01 [Kaplan-Meier], respectively) compared with the comparator group (52.3% radiation retinopathy and 57.8% neovascular glaucoma after 5 years). This study suggests that in larger tumors the enucleation and neovascular glaucoma rates might be reduced by adjuvant surgical procedures. Although endoresection is the most promising adjuvant treatment option, the endodrainage-vitrectomy is recommended in patients who are ineligible for endoresection. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Quasimonoenergetic proton bunches generation from doped foil targets irradiated by intense lasers

    SciTech Connect

    Cui Yunqian; Wang Weimin; Li Yutong; Sheng Zhengming; Zhang Jie

    2013-02-15

    We propose a scheme to generate 10 MeV-level quasimonoenergetic proton bunches using proton-doped heavy-ion targets irradiated by intense lasers via target normal sheath acceleration. The heavy substrate ions provide a long-life quasi-stable sheath field to accelerate the doped protons at the target rear and consequently a quasimonoenergetic proton bunch is produced. The scheme is demonstrated by two-dimensional particle-in-cell simulations. An exemplificative simulation with parameters of targets made by ion-implant technique, a kind of modern doping process, gives a quasimonoenergetic bunch with peak energy {approx}13MeV, energy spread {approx}24%, and {approx}nC charge at the focused laser intensity 10{sup 20}W/cm{sup 2}.

  17. Proton irradiation effects on tensile and bend-fatigue properties of welded F82H specimens

    NASA Astrophysics Data System (ADS)

    Saito, S.; Kikuchi, K.; Hamaguchi, D.; Usami, K.; Ishikawa, A.; Nishino, Y.; Endo, S.; Kawai, M.; Dai, Y.

    2010-03-01

    In several institutes, research and development for an accelerator-driven transmutation system (ADS) have been progressed. Ferritic/martensitic (FM) steels are the candidate materials for the beam window of ADS. To evaluate of the mechanical properties of the irradiated materials, the post irradiation examination (PIE) work of the SINQ (Swiss spallation neutron source) target irradiation program (STIP) specimens was carried out at JAEA. In present study, the results of PIE on FM steel F82H and its welded joint have been reported. The present irradiation conditions of the specimens were as follows: proton energy was 580 MeV. Irradiation temperatures were ranged from 130 to 380 °C, and displacement damage level was ranged from 5.7 to 11.8 dpa. The results of tensile tests performed at 22 °C indicated that the irradiation hardening occurred with increasing the displacement damage up to 10.1 dpa at 320 °C irradiation. At higher dose (11.8 dpa) and higher temperature (380 °C), irradiation hardening was observed, but degradation of ductility was relaxed in F82H welded joint. In present study, all specimens kept its ductility after irradiation and fractured in ductile manner. The results on bend-fatigue tests showed that the fatigue life ( Nf) of F82H base metal irradiated up to 6.3 dpa was almost the same with that of unirradiated specimens. The Nf of the specimens irradiated up to 9.1 dpa was smaller than that of unirradiated specimens. Though the number of specimen was limited, the Nf of F82H EB (15 mm) and EB (3.3 mm) welded joints seemed to increase after irradiation and the fracture surfaces of the specimens showed transgranular morphology. While F82H TIG welded specimens were not fractured by 10 7 cycles.

  18. Physiologic and Radiographic Evidence of the Distal Edge of the Proton Beam in Craniospinal Irradiation

    SciTech Connect

    Krejcarek, Stephanie C.; Grant, P. Ellen; Henson, John W.; Tarbell, Nancy J.; Yock, Torunn I. . E-mail: tyock@partners.org

    2007-07-01

    Purpose: Fatty replacement of bone marrow resulting from radiation therapy can be seen on T1-weighted magnetic resonance (MR) images. We evaluated the radiographic appearance of the vertebral bodies in children treated with proton craniospinal irradiation (CSI) to illustrate the distal edge effect of proton radiotherapy. Methods and Materials: The study cohort consisted of 13 adolescents aged 12-18 years who received CSI with proton radiotherapy at Massachusetts General Hospital. Ten of these patients had reached maximal or near-maximal growth. Proton beam radiation for these 10 patients was delivered to the thecal sac and exiting nerve roots only, whereas the remaining 3 patients had a target volume that included the thecal sac, exiting nerve roots, and entire vertebral bodies. Median CSI dose was 27 [range, 23.4-36] cobalt gray equivalent (CGE) given in 1.8-CGE fractions. Magnetic resonance images of the spine were obtained after completion of radiotherapy. Results: Magnetic resonance images of patients who received proton radiotherapy to the thecal sac only demonstrate a sharp demarcation of hyperintense T1-weighted signal in the posterior aspects of the vertebral bodies, consistent with radiation-associated fatty marrow replacement. Magnetic resonance images of the patients prescribed proton radiotherapy to the entire vertebral column had corresponding hyperintense T1-weighted signal involving the entire vertebral bodies. Conclusion: The sharp delineation of radiation-associated fatty marrow replacement in the vertebral bodies demonstrates the rapid decrease in energy at the edge of the proton beam. This provides evidence for a sharp fall-off in radiation dose and supports the premise that proton radiotherapy spares normal tissues unnecessary irradiation.

  19. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the

  20. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation: II. The role of connexin 32

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Tran, D. T.; Murray, D. K.; Rightnar, S. S.; Todd, S.; Nelson, G. A.

    2002-01-01

    The objective of this study was to determine whether connexin 32-type gap junctions contribute to the "contact effect" in follicular thyrocytes and whether the response is influenced by radiation quality. Our previous studies demonstrated that early-passage follicular cultures of Fischer rat thyroid cells express functional connexin 32 gap junctions, with later-passage cultures expressing a truncated nonfunctional form of the protein. This model allowed us to assess the role of connexin 32 in radiation responsiveness without relying solely on chemical manipulation of gap junctions. The survival curves generated after gamma irradiation revealed that early-passage follicular cultures had significantly lower values of alpha (0.04 Gy(-1)) than later-passage cultures (0.11 Gy(-1)) (P < 0.0001, n = 12). As an additional way to determine whether connexin 32 was contributing to the difference in survival, cultures were treated with heptanol, resulting in higher alpha values, with early-passage cultures (0.10 Gy(-1)) nearly equivalent to untreated late-passage cultures (0.11 Gy(-1)) (P > 0.1, n = 9). This strongly suggests that the presence of functional connexin 32-type gap junctions was contributing to radiation resistance in gamma-irradiated thyroid follicles. Survival curves from proton-irradiated cultures had alpha values that were not significantly different whether cells expressed functional connexin 32 (0.10 Gy(-1)), did not express connexin 32 (0.09 Gy(-1)), or were down-regulated (early-passage plus heptanol, 0.09 Gy(-1); late-passage plus heptanol, 0.12 Gy(-1)) (P > 0.1, n = 19). Thus, for proton irradiation, the presence of connexin 32-type gap junctional channels did not influence their radiosensitivity. Collectively, the data support the following conclusions. (1) The lower alpha values from the gamma-ray survival curves of the early-passage cultures suggest greater repair efficiency and/or enhanced resistance to radiation-induced damage, coincident with the

  1. In-situ proton irradiation and measurement of superconducting rf cavities under cryogenic conditions

    SciTech Connect

    Rusnak, B.; Haynes, W.B.; Chan, K.C.D.

    1997-08-01

    The Accelerator Production of Tritium (APT) Project is investigating using a superconducting linac for the high-energy portion of the accelerator. As this accelerator would be used to accelerate a high-current (100-mA) CW proton beam up to 1700 MeV, it is important to determine the effects of stray-beam impingement on the superconducting properties of a 700-MHz niobium cavity. To accomplish this, two 3000-MHz elliptical niobium cavities were placed in a cryostat, cooled to nominally 2 K in sub-atmospheric liquid helium, and irradiated with 798-MeV protons at up to 490 {pi}A average current. The elliptically shaped beam passed through the equatorial regions of both cavities in order to maximize sensitivity to any changes in the superconducting-surface resistance. Over the course of the experiment, 6x10{sup 16} protons were passed through the cavities. After irradiation, the cavities were warmed to 250 K, then recooled to investigate the effects of a room-temperature annealing cycle on the superconducting properties of the irradiated cavities. A detailed description of the experiment and the results shall be presented. These results are important to employing superconducting-rf technology to future high-intensity proton accelerators for use in research and transmutation technologies.

  2. Maximum likelihood estimation of proton irradiated field and deposited dose distribution.

    PubMed

    Inaniwa, Taku; Kohno, Toshiyuki; Yamagata, Fumiko; Tomitani, Takehiro; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki; Urakabe, Eriko

    2007-05-01

    In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy. In this study, we performed irradiation experiments with mono-energetic proton beams of 160 MeV and the spread-out Bragg peak beams to three kinds of targets. The annihilation events were detected with a positron camera for 500 s after the irradiation and the annihilation gamma ray distributions were obtained. In order to evaluate the range and the position of distal and proximal edges of the SOBP, the maximum likelihood estimation (MLE) method was applied to the detected distributions. The evaluated values with the MLE method were compared with those estimated from the measured dose distributions. As a result, the ranges were determined with the difference between the MLE range and the experimental range less than 1.0 mm for all targets. For the SOBP beams, the positions of distal edges were determined with the difference less than 1.0 mm. On the other hand, the difference amounted to 7.9 mm for proximal edges.

  3. Maximum likelihood estimation of proton irradiated field and deposited dose distribution

    SciTech Connect

    Inaniwa, Taku; Kohno, Toshiyuki; Yamagata, Fumiko; Tomitani, Takehiro; Sato, Shinji; Kanazawa, Mitsutaka; Kanai, Tatsuaki; Urakabe, Eriko

    2007-05-15

    In proton therapy, it is important to evaluate the field irradiated with protons and the deposited dose distribution in a patient's body. Positron emitters generated through fragmentation reactions of target nuclei can be used for this purpose. By detecting the annihilation gamma rays from the positron emitters, the annihilation gamma ray distribution can be obtained which has information about the quantities essential to proton therapy. In this study, we performed irradiation experiments with mono-energetic proton beams of 160 MeV and the spread-out Bragg peak beams to three kinds of targets. The annihilation events were detected with a positron camera for 500 s after the irradiation and the annihilation gamma ray distributions were obtained. In order to evaluate the range and the position of distal and proximal edges of the SOBP, the maximum likelihood estimation (MLE) method was applied to the detected distributions. The evaluated values with the MLE method were compared with those estimated from the measured dose distributions. As a result, the ranges were determined with the difference between the MLE range and the experimental range less than 1.0 mm for all targets. For the SOBP beams, the positions of distal edges were determined with the difference less than 1.0 mm. On the other hand, the difference amounted to 7.9 mm for proximal edges.

  4. External-Beam Accelerated Partial Breast Irradiation Using Multiple Proton Beam Configurations

    SciTech Connect

    Wang Xiaochun; Amos, Richard A.; Zhang Xiaodong; Taddei, Phillip J.; Woodward, Wendy A.; Hoffman, Karen E.; Yu, Tse Kuan; Tereffe, Welela; Oh, Julia; Perkins, George H.; Salehpour, Mohammad; Zhang, Sean X.; Sun, Tzou Liang; Gillin, Michael; Buchholz, Thomas A.; Strom, Eric A.

    2011-08-01

    Purpose: To explore multiple proton beam configurations for optimizing dosimetry and minimizing uncertainties for accelerated partial breast irradiation (APBI) and to compare the dosimetry of proton with that of photon radiotherapy for treatment of the same clinical volumes. Methods and Materials: Proton treatment plans were created for 11 sequential patients treated with three-dimensional radiotherapy (3DCRT) photon APBI using passive scattering proton beams (PSPB) and were compared with clinically treated 3DCRT photon plans. Monte Carlo calculations were used to verify the accuracy of the proton dose calculation from the treatment planning system. The impact of range, motion, and setup uncertainty was evaluated with tangential vs. en face beams. Results: Compared with 3DCRT photons, the absolute reduction of the mean of V100 (the volume receiving 100% of prescription dose), V90, V75, V50, and V20 for normal breast using protons are 3.4%, 8.6%, 11.8%, 17.9%, and 23.6%, respectively. For breast skin, with the similar V90 as 3DCRT photons, the proton plan significantly reduced V75, V50, V30, and V10. The proton plan also significantly reduced the dose to the lung and heart. Dose distributions from Monte Carlo simulations demonstrated minimal deviation from the treatment planning system. The tangential beam configuration showed significantly less dose fluctuation in the chest wall region but was more vulnerable to respiratory motion than that for the en face beams. Worst-case analysis demonstrated the robustness of designed proton beams with range and patient setup uncertainties. Conclusions: APBI using multiple proton beams spares significantly more normal tissue, including nontarget breast and breast skin, than 3DCRT using photons. It is robust, considering the range and patient setup uncertainties.

  5. Investigation on using high-energy proton beam for total body irradiation (TBI).

    PubMed

    Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J

    2016-09-08

    This work investigated the possibility of using proton beam for total body irradia-tion (TBI). We hypothesized the broad-slow-rising entrance dose from a monoen-ergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific com-pensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ± 7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and > 40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ± 8.9%, ± 9.0%, ± 9.6%, and ± 14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In con-clusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task.

  6. Investigation on using high-energy proton beam for total body irradiation (TBI).

    PubMed

    Zhang, Miao; Qin, Nan; Jia, Xun; Zou, Wei J; Khan, Atif; Yue, Ning J

    2016-09-01

    This work investigated the possibility of using proton beam for total body irradiation (TBI). We hypothesized the broad-slow-rising entrance dose from a monoenergetic proton beam can deliver a uniform dose to patient with varied thickness. Comparing to photon-based TBI, it would not require any patient-specific compensator or beam spoiler. The hypothesis was first tested by simulating 250 MeV, 275 MeV, and 300 MeV protons irradiating a wedge-shaped water phantom in a paired opposing arrangement using Monte Carlo (MC) method. To allow ±7.5% dose variation, the maximum water equivalent thickness (WET) of a treatable patient separation was 29 cm for 250 MeV proton, and >40 cm for 275 MeV and 300 MeV proton. The compared 6 MV photon can only treat patients with up to 15.5 cm water-equivalent separation. In the second step, we simulated the dose deposition from the same beams on a patient's whole-body CT scan. The maximum patient separation in WET was 23 cm. The calculated whole-body dose variations were ±8.9%,±9.0%, ±9.6%, and ±14% for 250 MeV proton, 275 MeV proton, 300 MeV proton, and 6 MV photon. At last, we tested the current machine capability to deliver a monoenergetic proton beam with a large uniform field. Experiments were performed on a compact double scattering single-gantry proton system. With its C-shaped gantry design, the source-to-surface distance (SSD) reached 7 m. The measured dose deposition curve had 22 cm relatively flat entrance region. The full width half maximum field size was measured 105 cm. The current scatter filter had to be redesigned to produce a uniform intensity at such treatment distance. In conclusion, this work demonstrated the possibility of using proton beam for TBI. The current commercially available proton machines would soon be ready for such task. PACS number(s): 87.53.Bn, 87.55.K-, 87.55.-x, 87.56.-v. © 2016 The Authors.

  7. Creation of 3D microsculptures in PMMA by multiple angle proton irradiation

    NASA Astrophysics Data System (ADS)

    Andrea, T.; Rothermel, M.; Reinert, T.; Koal, T.; Butz, T.

    2011-10-01

    In recent years the technique of proton beam writing has established itself as a versatile method for the creation of microstructures in resist materials. While these structures can be almost arbitrary in two dimensions, the creation of genuine 3D structures remains a challenge. At the LIPSION accelerator facility a new approach has been developed which combines aspects of ion beam tomography, so far solely an analysis method, with proton beam writing. Key element is the targeted irradiation from multiple angles in order to obtain a much broader range of 3D microstructures than has hitherto been possible. PMMA columns with a diameter of ∼90 μm were used as raw material and placed in an upright position on top of a rotational axis. Using 2.25 MeV protons patterns corresponding to the silhouettes of the desired structures were written from two or more directions. In a subsequent step of chemical etching irradiated portions were dissolved, leaving behind the finished 3D sculpture. Various objects have been created. For the demonstration of the method a 70 μm high model of the Eiffel tower has been sculpted by irradiation from two angles. Using irradiation from three angles a 40 μm wide screw with right-handed thread could be crafted which might find applications in micromachining. Also, a cage structure with a pore size of ca. 20 μm was written with the intention to use it as a scaffold for the growth of biological cells.

  8. Bi-directional and shared epigenomic signatures following proton and (56)Fe irradiation.

    PubMed

    Impey, Soren; Jopson, Timothy; Pelz, Carl; Tafessu, Amanuel; Fareh, Fatema; Zuloaga, Damian; Marzulla, Tessa; Riparip, Lara-Kirstie; Stewart, Blair; Rosi, Susanna; Turker, Mitchell S; Raber, Jacob

    2017-08-31

    The brain's response to radiation exposure is an important concern for patients undergoing cancer therapy and astronauts on long missions in deep space. We assessed whether this response is specific and prolonged and is linked to epigenetic mechanisms. We focused on the response of the hippocampus at early (2-weeks) and late (20-week) time points following whole body proton irradiation. We examined two forms of DNA methylation, cytosine methylation (5mC) and hydroxymethylation (5hmC). Impairments in object recognition, spatial memory retention, and network stability following proton irradiation were observed at the two-week time point and correlated with altered gene expression and 5hmC profiles that mapped to specific gene ontology pathways. Significant overlap was observed between DNA methylation changes at the 2 and 20-week time points demonstrating specificity and retention of changes in response to radiation. Moreover, a novel class of DNA methylation change was observed following an environmental challenge (i.e. space irradiation), characterized by both increased and decreased 5hmC levels along the entire gene body. These changes were mapped to genes encoding neuronal functions including postsynaptic gene ontology categories. Thus, the brain's response to proton irradiation is both specific and prolonged and involves novel remodeling of non-random regions of the epigenome.

  9. Projecting EOL dark current distribution of proton irradiated CCDs

    NASA Astrophysics Data System (ADS)

    Flores, James S.

    2005-09-01

    Space instrument programs occasionally need an estimate of how dark current distribution of a silicon CCD changes versus proton radiation exposure and temperature. The task that is the subject of this article was started by adopting a relevant gamma distribution model produced by M.S. Robbins [1] and estimating its parameters, α and β, by using data acquired by Demara [2]. The fortuitous result was that α was found to depend solely on damage displacement dose and β was found to be practically equal to the native bulk dark current of silicon. These implications were tested with information from three published articles. In comparison with the published results, the model was found to be accurate within a factor of two.

  10. Proton irradiation effects on 2Gb flash memory

    SciTech Connect

    Wester, William; Nelson, Charles; Marriner, John

    2004-08-18

    The authors report total ionizing dose and single event effects on 2Gb Samsung flash memory devices after exposure to 200 MeV protons to various doses up to 83 krad(Si). They characterize observed failures and single event upsets on 22 devices from two different lots. Devices from both lots are robust to greater than 20 krad(Si) although they see evidence for lot-to-lot variation where only one lot appears robust up to about 50 krad(Si). Single event upsets are observed at a relatively low rate and are consistent with single isolated bit flips within registers that transfer bits to and from the flash memory cells.

  11. Scanning irradiation device for mice in vivo with pulsed and continuous proton beams.

    PubMed

    Greubel, Christoph; Assmann, Walter; Burgdorf, Christian; Dollinger, Günther; Du, Guanghua; Hable, Volker; Hapfelmeier, Alexander; Hertenberger, Ralf; Kneschaurek, Peter; Michalski, Dörte; Molls, Michael; Reinhardt, Sabine; Röper, Barbara; Schell, Stefan; Schmid, Thomas E; Siebenwirth, Christian; Wenzl, Tatiana; Zlobinskaya, Olga; Wilkens, Jan J

    2011-08-01

    A technical set-up for irradiation of subcutaneous tumours in mice with nanosecond-pulsed proton beams or continuous proton beams is described and was successfully used in a first experiment to explore future potential of laser-driven particle beams, which are pulsed due to the acceleration process, for radiation therapy. The chosen concept uses a microbeam approach. By focusing the beam to approximately 100 × 100 μm(2), the necessary fluence of 10(9) protons per cm(2) to deliver a dose of 20 Gy with one-nanosecond shot in the Bragg peak of 23 MeV protons is achieved. Electrical and mechanical beam scanning combines rapid dose delivery with large scan ranges. Aluminium sheets one millimetre in front of the target are used as beam energy degrader, necessary for adjusting the depth-dose profile. The required procedures for treatment planning and dose verification are presented. In a first experiment, 24 tumours in mice were successfully irradiated with 23 MeV protons and a single dose of 20 Gy in pulsed or continuous mode with dose differences between both modes of 10%. So far, no significant difference in tumour growth delay was observed.

  12. The effects of oxide evolution on mechanical properties in proton- and neutron-irradiated Fe-9%Cr ODS steel

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Dolph, C. K.; Wharry, J. P.

    2016-10-01

    The objective of this study is to evaluate the effect of irradiation on the strengthening mechanisms of a model Fe-9%Cr oxide dispersion strengthened steel. The alloy was irradiated with protons or neutrons to a dose of 3 displacements per atoms at 500 °C. Nanoindentation was used to measure strengthening due to irradiation, with neutron irradiation causing a greater increase in yield strength than proton irradiation. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography (APT). Cluster analysis reveals solute migration from the Y-Ti-O-rich nanoclusters to the surrounding matrix after both irradiations, though the effect is more pronounced in the neutron-irradiated specimen. Because the dissolved oxygen atoms occupy interstitial sites in the iron matrix, they contribute significantly to solid solution strengthening. The dispersed barrier hardening model relates microstructure evolution to the change in yield strength, but is only accurate if solid solution contributions to strengthening are considered simultaneously.

  13. Nanoindentation and in situ microcompression in different dose regimes of proton beam irradiated 304 SS

    NASA Astrophysics Data System (ADS)

    Reichardt, A.; Lupinacci, A.; Frazer, D.; Bailey, N.; Vo, H.; Howard, C.; Jiao, Z.; Minor, A. M.; Chou, P.; Hosemann, P.

    2017-04-01

    Recent developments in micromechanical testing have allowed for the efficient evaluation of radiation effects in micron-scale volumes of ion-irradiated materials. In this study, both nanoindentation and in situ SEM microcompression testing are carried out on 10 dpa proton beam irradiated 304 stainless steel to assess radiation hardening and radiation-induced deformation mechanisms in the material. Using a focused ion beam (FIB), arrays of 2 μm × 2 μm cross-section microcompression pillars are fabricated in multiple dose regimes within the same grain, providing dose-dependent behavior in a single crystal orientation. Analysis of the microcompression load-displacement data and real-time SEM imaging during testing indicates significant hardening, as well as increased localization of deformation in the irradiated material. Although nanoindentation results suggest that irradiation hardening saturates at low doses, microcompression results indicate that the pillar yield stress continues to rise with dose above 10 dpa in the tested orientation.

  14. Synchrotron X-ray Microdiffraction Analysis of Proton Irradiated Polycrystalline Diamond Films

    NASA Technical Reports Server (NTRS)

    Newton, R. I.; Davidson, J. L.; Ice, G. E.; Liu, W.

    2004-01-01

    X-ray microdiffraction is a non-destructive technique that allows for depth-resolved, strain measurements with sub-micron spatial resolution. These capabilities make this technique promising for understanding the mechanical properties of MicroElectroMechanical Systems (MEMS). This investigation examined the local strain induced by irradiating a polycrystalline diamond thin film with a dose of 2x10(exp 17) H(+)per square centimeter protons. Preliminary results indicate that a measurable strain, on the order of 10(exp -3), was introduced into the film near the End of Range (EOR) region of the protons.

  15. Photoquenching phenomenon enhanced by proton irradiation in semi-insulating GaAs

    SciTech Connect

    Kuriyama, K.; Takahashi, H.; Kawahara, H. ); Hayashi, N.; Watanabe, H.; Sakamoto, I. ); Kohno, I. )

    1990-12-15

    In undoped semi-insulating GaAs, we have found that the quenching phenomena of photoconductance and infrared absorption are enhanced by proton irradiation above 10{sup 13} /cm{sup 2}, accompanied by an increase in near-band-edge infrared absorption. These phenomena disappear with the annihilation of the proton-induced near-band absorption by annealing at 350 {degree}C. It is suggested that the enhanced photoquenching phenomena arise from the increase in the quenchable component due to the transition from the ionized midgap electron trap (EL2{sup +}) to the neutral EL2{sup 0}.

  16. Development of a Ne gas target for {sup 22}Na production by proton irradiation

    SciTech Connect

    Mandal, Bidhan Ch. Pal, Gautam; Barua, Luna; Das, Sujata Saha

    2016-03-15

    The article presents the design and development of a neon gas target for the production of {sup 22}Na using a proton beam from the room temperature cyclotron in Variable Energy Cyclotron Centre, Kolkata. The target design is made to handle a beam power of 85 W (17 MeV, 5 μA). The design is based on simulation using the computer code FLUKA for the beam dump and CFD-CFX for target cooling. The target has been successfully used for the production of {sup 22}Na in a 6 day long 17 MeV, 5 μA proton irradiation run.

  17. RBE for late somatic effects in mice irradiated with 60 MeV protons relative to X-rays.

    NASA Technical Reports Server (NTRS)

    Darden, E. B., Jr.; Clapp, N. K.; Bender, R. S.; Jernigan, M. C.; Upton, A. C.

    1971-01-01

    Investigation of the relative biological effectiveness of energetic protons for the induction of somatic effects in a mammal (mice) following whole body irradiation. The proton energy used approximates the mean energy for proton spectra accompanying solar events. The effects on longevity and the incidence of major neoplastic diseases are summarized. The results obtained suggest that medium energy proton irradiation is no more effective, and on the whole, probably less effective, than conventional X radiation for the induction of late radiation effects in the mouse.

  18. Diffusion length damage coefficient and annealing studies in proton-irradiated InP

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Vargas-Aburto, Carlos; Bailey, Sheila G.; Williams, Wendell

    1993-01-01

    We report on the measurement of the diffusion length damage coefficient (K(sub L)) and the annealing characteristics of the minority carrier diffusion length (L(sub n)) in Czochralski-grown zinc-doped indium phosphide (InP), with a carrier concentration of 1 x 10(exp l8) cm(exp -3). In measuring K(sub L) irradiations were made with 0.5 MeV protons with fluences ranging from 1 x 10(exp 11) to 3 x 10(exp 13) cm(exp -2). Pre- and post-irradiation electron-beam induced current (EBIC) measurements allowed for the extraction of L(sub n) from which K(sub L) was determined. In studying the annealing characteristics of L(sub n) irradiations were made with 2 MeV protons with fluence of 5 x 10(exp 13) cm(exp -2). Post-irradiation studies of L(sub n) with time at room temperature, and with minority carrier photoinjection and forward-bias injection were carried out. The results showed that recovery under Air Mass Zero (AMO) photoinjection was complete. L(sub n) was also found to recover under forward-bias injection, where recovery was found to depend on the value of the injection current. However, no recovery of L(sub n) after proton irradiation was observed with time at room temperature, in contrast to the behavior of 1 MeV electron-irradiated InP solar cells reported previously.

  19. Effects of thermal annealing on the deep-level defects and I-V characteristics of 200 keV proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.; Schoenfeld, D. W.; Chiu, T. T.; Loo, R. Y.

    1980-01-01

    Detailed characterization of deep-level defects and analysis of dark I-V data in 200 keV proton irradiated AlGaAs-GaAs solar cells have been carried out for several proton fluences (5 x 10 to the 11th, 10 to the 12th, and 10 to the 13th P/sq cm), using DLTS, C-V, and I-V measurement techniques. To study the effect of low temperature thermal annealing on the deep-level defect properties, these irradiated samples were annealed in vacuum at 300 C for one hour. Comparison was then made on the measured defect parameters (i.e., defect energy levels and densities) and the dark I-V characteristics for both the annealed and unannealed samples.

  20. Magnetism in MoS{sub 2} induced by proton irradiation

    SciTech Connect

    Mathew, S.; Gopinadhan, K.; Dhar, S.; Venkatesan, T.; Chan, T. K.; Yu, X. J.; Zhan, D.; Shen, Z. X.; Cao, L.; Rusydi, A.; Breese, M. B. H.; Thong, John T. L.

    2012-09-03

    Molybdenum disulphide, a diamagnetic layered dichalcogenide solid, is found to show magnetic ordering at room temperature when exposed to a 2 MeV proton beam. The temperature dependence of magnetization displays ferrimagnetic behavior with a Curie temperature of 895 K. A disorder mode corresponding to a zone-edge phonon and a Mo valence higher than +4 has been detected in the irradiated samples using Raman and x-ray photoelectron spectroscopy, respectively. The possible origins of long-range magnetic ordering in irradiated MoS{sub 2} samples are discussed.

  1. Low-Temperature Supercapacitors

    NASA Technical Reports Server (NTRS)

    Brandon, Erik J.; West, William C.; Smart, Marshall C.

    2008-01-01

    An effort to extend the low-temperature operational limit of supercapacitors is currently underway. At present, commercially available non-aqueous supercapacitors are rated for a minimum operating temperature of -40 C. A capability to operate at lower temperatures would be desirable for delivering power to systems that must operate in outer space or in the Polar Regions on Earth. Supercapacitors (also known as double-layer or electrochemical capacitors) offer a high power density (>1,000 W/kg) and moderate energy density (about 5 to 10 Wh/kg) technology for storing energy and delivering power. This combination of properties enables delivery of large currents for pulsed applications, or alternatively, smaller currents for low duty cycle applications. The mechanism of storage of electric charge in a supercapacitor -- at the electrical double-layer formed at a solid-electrode/liquid-electrolyte interface -- differs from that of a primary or secondary electrochemical cell (i.e., a battery) in such a manner as to impart a long cycle life (typically >10(exp 6) charge/discharge cycles).

  2. Low Temperature Plasma Medicine

    NASA Astrophysics Data System (ADS)

    Graves, David

    2013-10-01

    Ionized gas plasmas near room temperature are used in a remarkable number of technological applications mainly because they are extraordinarily efficient at exploiting electrical power for useful chemical and material transformations near room temperature. In this tutorial address, I will focus on the newest area of low temperature ionized gas plasmas (LTP), in this case operating under atmospheric pressure conditions, in which the temperature-sensitive material is living tissue. LTP research directed towards biomedical applications such as sterilization, surgery, wound healing and anti-cancer therapy has seen remarkable growth in the last 3-5 years, but the mechanisms responsible for the biomedical effects have remained mysterious. It is known that LTP readily create reactive oxygen species (ROS) and reactive nitrogen species (RNS). ROS and RNS (or RONS), in addition to a suite of other radical and non-radical reactive species, are essential actors in an important sub-field of aerobic biology termed ``redox'' (or oxidation-reduction) biology. I will review the evidence suggesting that RONS generated by plasmas are responsible for their observed therapeutic effects. Other possible bio-active mechanisms include electric fields, charges and photons. It is common in LTP applications that synergies between different mechanisms can play a role and I will review the evidence for synergies in plasma biomedicine. Finally, I will address the challenges and opportunities for plasma physicists to enter this novel, multidisciplinary field.

  3. Low Temperature Rosseland Opacities

    NASA Astrophysics Data System (ADS)

    Alexander, D. R.

    1994-05-01

    A new, comprehensive set of low temperature opacity data for atoms and molecules has been assembled. From this basic data set, Rosseland and Planck mean opacities have been computed for temperatures between 12,500 K and 700 K. In addition to the standard continuous absorbers, atomic line absorption (with more than 8 million lines), molecular line absorption (with nearly 60 million lines), and grain absorption and scattering (by silicates, iron, carbon, and SiC) have been included. The absorption due to lines is computed monochromatically and included in the mean with the Opacity Sampling technique. Grains are assumed to form in chemical equilibrium and to form into a continuous distribution of ellipsoids which are randomly oriented. Agreement of these opacities with other recent tabulations of opacities (including OP (M. J. Seaton 1994, MNRAS, 266, 805) and OPAL (F. J. Rogers & C. A. Iglesias 1992, ApJS, 79, 507)) for temperatures above 5,000 K is excellent. It is shown that opacities which neglect molecules become unreliable for temperatures below 5,000 K. Similarly, grains must be included in the computation for temperatures below 1,000 - 1,700 K, depending upon the density. Opacity tables can be prepared for a wide variety of chemical compositions, and will be provided upon request. This research is supported by NSF grant AST-9217946.

  4. Prompt gamma-ray emission from biological tissues during proton irradiation: a preliminary study.

    PubMed

    Polf, J C; Peterson, S; Ciangaru, G; Gillin, M; Beddar, S

    2009-02-07

    In this paper, we present the results of a preliminary study of secondary 'prompt' gamma-ray emission produced by proton-nuclear interactions within tissue during proton radiotherapy. Monte Carlo simulations were performed for mono-energetic proton beams, ranging from 2.5 MeV to 250 MeV, irradiating elemental and tissue targets. Calculations of the emission spectra from different biological tissues and their elemental components were made. Also, prompt gamma rays emitted during delivery of a clinical proton spread-out Bragg peak (SOBP) in a homogeneous water phantom and a water phantom containing heterogeneous tissue inserts were calculated to study the correlation between prompt gamma-ray production and proton dose delivery. The results show that the prompt gamma-ray spectra differ significantly for each type of tissue studied. The relative intensity of the characteristic gamma rays emitted from a given tissue was shown to be proportional to the concentration of each element in that tissue. A strong correlation was found between the delivered SOBP dose distribution and the characteristic prompt gamma-ray production. Based on these results, we discuss the potential use of prompt gamma-ray emission as a method to verify the accuracy and efficacy of doses delivered with proton radiotherapy.

  5. Image analysis of single event transient effects on charge coupled devices irradiated by protons

    NASA Astrophysics Data System (ADS)

    Wang, Zujun; Xue, Yuanyuan; Liu, Jing; He, Baoping; Yao, Zhibin; Ma, Wuying

    2016-10-01

    The experiments of single event transient (SET) effects on charge coupled devices (CCDs) irradiated by protons are presented. The radiation experiments have been carried out at the accelerator protons with the energy of 200 MeV and 60 MeV.The incident angles of the protons are at 30°and 90° to the plane of the CCDs to obtain the images induced by the perpendicularity and incline incident angles. The experimental results show that the typical characteristics of the SET effects on a CCD induced by protons are the generation of a large number of dark signal spikes (hot pixels) which are randomly distributed in the "pepper" images. The characteristics of SET effects are investigated by observing the same imaging area at different time during proton radiation to verify the transient effects. The experiment results also show that the number of dark signal spikes increases with increasing integration time during proton radiation. The CCDs were tested at on-line and off-line to distinguish the radiation damage induced by the SET effects or DD effects. The mechanisms of the dark signal spike generation induced by the SET effects and the DD effects are demonstrated respectively.

  6. Proton-irradiation technology for high-frequency high-current silicon welding diode manufacturing

    NASA Astrophysics Data System (ADS)

    Lagov, P. B.; Drenin, A. S.; Zinoviev, M. A.

    2017-05-01

    Different proton irradiation regimes were tested to provide more than 20 kHz-frequency, soft reverse recovery “snap-less” behavior, low forward voltage drop and leakage current for 50 mm diameter 7 kA/400 V welding diode Al/Si/Mo structure. Silicon diode with such parameters is very suitable for high frequency resistance welding machines of new generation for robotic welding.

  7. Correlation of electron and proton irradiation-induced damage in InP solar cells

    NASA Technical Reports Server (NTRS)

    Walters, Robert J.; Summers, Geoffrey P.; Messenger, Scott R.; Burke, Edward A.

    1995-01-01

    When determining the best solar cell technology for a particular space flight mission, accurate prediction of solar cell performance in a space radiation environment is essential. The current methodology used to make such predictions requires extensive experimental data measured under both electron and proton irradiation. Due to the rising cost of accelerators and irradiation facilities, such extensive data sets are expensive to obtain. Moreover, with the rapid development of novel cell designs, the necessary data are often not available. Therefore, a method for predicting cell degradation based on limited data is needed. Such a method has been developed at the Naval Research Laboratory based on damage correlation using 'displacement damage dose' which is the product of the non-ionizing energy loss (NIEL) and the particle fluence. Displacement damage dose is a direct analog of the ionization dose used to correlate the effects of ionizing radiations. In this method, the performance of a solar cell in a complex radiation environment can be predicted from data on a single proton energy and two electron energies, or one proton energy, one electron energy, and Co(exp 60) gammas. This method has been used to accurately predict the extensive data set measured by Anspaugh on GaAs/Ge solar cells under a wide range of electron and proton energies. In this paper, the method is applied to InP solar cells using data measured under 1 MeV electron and 3 MeV proton irradiations, and the calculations are shown to agree well with the measured data. In addition to providing accurate damage predictions, this method also provides a basis for quantitative comparisons of the performance of different cell technologies. The performance of the present InP cells is compared to that published for GaAs/Ge cells. The results show InP to be inherently more resistant to displacement energy deposition than GaAs/Ge.

  8. Radiosensitization by PARP inhibition to proton beam irradiation in cancer cells

    SciTech Connect

    Hirai, Takahisa; Saito, Soichiro; Fujimori, Hiroaki; Matsushita, Keiichiro; Nishio, Teiji; Okayasu, Ryuichi; Masutani, Mitsuko

    2016-09-09

    The poly(ADP-ribose) polymerase (PARP)-1 regulates DNA damage responses and promotes base excision repair. PARP inhibitors have been shown to enhance the cytotoxicity of ionizing radiation in various cancer cells and animal models. We have demonstrated that the PARP inhibitor (PARPi) AZD2281 is also an effective radiosensitizer for carbon-ion radiation; thus, we speculated that the PARPi could be applied to a wide therapeutic range of linear energy transfer (LET) radiation as a radiosensitizer. Institutes for biological experiments using proton beam are limited worldwide. This study was performed as a cooperative research at heavy ion medical accelerator in Chiba (HIMAC) in National Institute of Radiological Sciences. HIMAC can generate various ion beams; this enabled us to compare the radiosensitization effect of the PARPi on cells subjected to proton and carbon-ion beams from the same beam line. After physical optimization of proton beam irradiation, the radiosensitization effect of the PARPi was assessed in the human lung cancer cell line, A549, and the pancreatic cancer cell line, MIA PaCa-2. The effect of the PARPi, AZD2281, on radiosensitization to Bragg peak was more significant than that to entrance region. The PARPi increased the number of phosphorylated H2AX (γ-H2AX) foci and enhanced G2/M arrest after proton beam irradiation. This result supports our hypothesis that a PARPi could be applied to a wide therapeutic range of LET radiation by blocking the DNA repair response. - Highlights: • Effective radiosensitizers for particle radiation therapy have not been reported. • PARP inhibitor treatment radiosensitized after proton beam irradiation. • The sensitization at Bragg peak was greater than that at entrance region. • DSB induction and G2/M arrest is involved in the sensitization mechanism.

  9. InGaAs/GaAs Quantum Dots: Effects of Ensemble Interactions, Interdiffusion, Segregation and Proton Irradiation

    NASA Technical Reports Server (NTRS)

    Leon, R.

    2000-01-01

    A sumary or recent experimental findings on the effects of interdiffusion, segregation, strained ensemble interactions and proton irradiation on the optical properties of InGaAs/GaAs quantum dots (QDs) are presented.

  10. Contribution of indirect effects to clustered damage in DNA irradiated with protons.

    PubMed

    Pachnerová Brabcová, K; Štěpán, V; Karamitros, M; Karabín, M; Dostálek, P; Incerti, S; Davídková, M; Sihver, L

    2015-09-01

    Protons are the dominant particles both in galactic cosmic rays and in solar particle events and, furthermore, proton irradiation becomes increasingly used in tumour treatment. It is believed that complex DNA damage is the determining factor for the consequent cellular response to radiation. DNA plasmid pBR322 was irradiated at U120-M cyclotron with 30 MeV protons and treated with two Escherichia coli base excision repair enzymes. The yields of SSBs and DSBs were analysed using agarose gel electrophoresis. DNA has been irradiated in the presence of hydroxyl radical scavenger (coumarin-3-carboxylic acid) in order to distinguish between direct and indirect damage of the biological target. Pure scavenger solution was used as a probe for measurement of induced OH· radical yields. Experimental OH· radical yield kinetics was compared with predictions computed by two theoretical models-RADAMOL and Geant4-DNA. Both approaches use Geant4-DNA for description of physical stages of radiation action, and then each of them applies a distinct model for description of the pre-chemical and chemical stage. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Electron spin coherence of silicon vacancies in proton-irradiated 4H-SiC

    NASA Astrophysics Data System (ADS)

    Embley, J. S.; Colton, J. S.; Miller, K. G.; Morris, M. A.; Meehan, M.; Crossen, S. L.; Weaver, B. D.; Glaser, E. R.; Carter, S. G.

    2017-01-01

    We report T2 spin coherence times for electronic states localized in Si vacancies in 4 H -SiC . Our spin coherence study included two SiC samples that were irradiated with 2 MeV protons at different fluences (1013 and 1014c m-2 ) in order to create samples with unique defect concentrations. Using optically detected magnetic resonance and spin echo, the coherence times for each sample were measured across a range of temperatures from 8 to 295 K. All echo experiments were done at a magnetic field strength of 0.371 T and a microwave frequency of 10.49 GHz. The longest coherence times were obtained at 8 K, being 270 ±61 μ s for the 1013c m-2 proton-irradiated sample and 104 ±17 μ s for the 1014c m-2 sample. The coherence times for both samples displayed unusual temperature dependencies; in particular, they decreased with temperature until 60 K, then increased until 160 K, then decreased again. This increase between 60 and 160 K is tentatively attributed to a motional Jahn-Teller effect. The consistently longer lifetimes for the 1013c m-2 sample suggest that a significant source of the spin dephasing can be attributed to dipole-dipole interactions between Si vacancies or with other defects produced by the proton irradiation. The lack of a simple exponential decay for our 1014c m-2 sample indicates an inhomogeneous distribution of defect spins.

  12. Simulated study on the InP/InGaAs DHBT under proton irradiation

    NASA Astrophysics Data System (ADS)

    Min, Liu; Yuming, Zhang; Hongliang, Lü; Yimen, Zhang

    2016-11-01

    A 3D model simulation of InP/InGaAs/InP DHBT is reported in this paper. A comprehensive set of built-in physical models are described, including Stratton's hydrodynamic model, high-fields mobility model and thermionic emission model. A mixed-mode environment is required for AC simulation instead of simulating an isolated HBT, in which the HBT is embedded in an external circuit, and the circuit voltage and current equations are solved along with the Poisson equation and transport equations. In AC simulation, simulator Sentaurus provides the computation of the small signal admittance Y matrix. From the results of Y matrix, the small signal equivalent circuit is constructed with the conductance and capacitance obtained from Y matrix, and the AC parameters, such as S-parameters, will be calculated. The small signal AC characteristics of InP/InGaAs DHBTs under proton irradiation are simulated with different fluences of proton irradiation. Simulation results show that the maximum oscillation frequency will be degraded when fluence of proton irradiation is increased. Project supported by the National Basic Research Program of China (No. 2010CB327505), Advance Research project of China (No. 51308xxxx06), and Advance Research Foundation of China (No. 9140A08xxxx11DZ111).

  13. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    NASA Astrophysics Data System (ADS)

    Wetteland, C. J.; Field, K. G.; Eiden, T. J.; Gerczak, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-04-01

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150μA of proton current from the source, with over 70μA on the target stage. However, beam fluxes above ˜1×1017/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  14. Optimal conditions for high current proton irradiations at the university of Wisconsin's ion beam laboratory

    SciTech Connect

    Wetteland, C. J.; Field, K. G.; Gerczak, T. J.; Eiden, T. J.; Maier, B. R.; Albakri, O.; Sridharan, K.; Allen, T. R.

    2013-04-19

    The National Electrostatics Corporation's (NEC) Toroidal Volume Ion Source (TORVIS) source is known for exceptionally high proton currents with minimal service downtime as compared to traditional sputter sources. It has been possible to obtain over 150{mu}A of proton current from the source, with over 70{mu}A on the target stage. However, beam fluxes above {approx}1 Multiplication-Sign 10{sup 17}/m2-s may have many undesirable effects, especially for insulators. This may include high temperature gradients at the surface, sputtering, surface discharge, cracking or even disintegration of the sample. A series of experiments were conducted to examine the role of high current fluxes in a suite of ceramics and insulating materials. Results will show the optimal proton irradiation conditions and target mounting strategies needed to minimize unwanted macro-scale damage, while developing a procedure for conducting preliminary radiation experiments.

  15. Measurement and calculation of characteristic prompt gamma ray spectra emitted during proton irradiation.

    PubMed

    Polf, J C; Peterson, S; McCleskey, M; Roeder, B T; Spiridon, A; Beddar, S; Trache, L

    2009-11-21

    In this paper, we present results of initial measurements and calculations of prompt gamma ray spectra (produced by proton-nucleus interactions) emitted from tissue equivalent phantoms during irradiations with proton beams. Measurements of prompt gamma ray spectra were made using a high-purity germanium detector shielded either with lead (passive shielding), or a Compton suppression system (active shielding). Calculations of the spectra were performed using a model of both the passive and active shielding experimental setups developed using the Geant4 Monte Carlo toolkit. From the measured spectra it was shown that it is possible to distinguish the characteristic emission lines from the major elemental constituent atoms (C, O, Ca) in the irradiated phantoms during delivery of proton doses similar to those delivered during patient treatment. Also, the Monte Carlo spectra were found to be in very good agreement with the measured spectra providing an initial validation of our model for use in further studies of prompt gamma ray emission during proton therapy.

  16. Supine craniospinal irradiation in pediatric patients by proton pencil beam scanning.

    PubMed

    Farace, Paolo; Bizzocchi, Nicola; Righetto, Roberto; Fellin, Francesco; Fracchiolla, Francesco; Lorentini, Stefano; Widesott, Lamberto; Algranati, Carlo; Rombi, Barbara; Vennarini, Sabina; Amichetti, Maurizio; Schwarz, Marco

    2017-04-01

    Proton therapy is the emerging treatment modality for craniospinal irradiation (CSI) in pediatric patients. Herein, special methods adopted for CSI at proton Therapy Center of Trento by pencil beam scanning (PBS) are comprehensively described. Twelve pediatric patients were treated by proton PBS using two/three isocenters. Special methods refer to: (i) patient positioning in supine position on immobilization devices crossed by the beams; (ii) planning field-junctions via the ancillary-beam technique; (iii) achieving lens-sparing by three-beams whole-brain-irradiation; (iv) applying a movable-snout and beam-splitting technique to reduce the lateral penumbra. Patient-specific quality assurance (QA) program was performed using two-dimensional ion chamber array and γ-analysis. Daily kilovoltage alignment was performed. PBS allowed to obtain optimal target coverage (mean D98%>98%) with reduced dose to organs-at-risk. Lens sparing was obtained (mean D1∼730cGyE). Reducing lateral penumbra decreased the dose to the kidneys (mean Dmean<600cGyE). After kilovoltage alignment, potential dose deviations in the upper and lower junctions were small (average 0.8% and 1.2% respectively). Due to imperfect modeling of range shifter, QA showed better agreements between measurements and calculations at depths >4cm (mean γ>95%) than at depths<4cm. The reported methods allowed to effectively perform proton PBS CSI. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue.

    PubMed

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-09-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to 'hallmark' processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age.

  18. Proton irradiation impacts age-driven modulations of cancer progression influenced by immune system transcriptome modifications from splenic tissue

    PubMed Central

    Wage, Justin; Ma, Lili; Peluso, Michael; Lamont, Clare; Evens, Andrew M.; Hahnfeldt, Philip; Hlatky, Lynn; Beheshti, Afshin

    2015-01-01

    Age plays a crucial role in the interplay between tumor and host, with additional impact due to irradiation. Proton irradiation of tumors induces biological modulations including inhibition of angiogenic and immune factors critical to ‘hallmark’ processes impacting tumor development. Proton irradiation has also provided promising results for proton therapy in cancer due to targeting advantages. Additionally, protons may contribute to the carcinogenesis risk from space travel (due to the high proportion of high-energy protons in space radiation). Through a systems biology approach, we investigated how host tissue (i.e. splenic tissue) of tumor-bearing mice was altered with age, with or without whole-body proton exposure. Transcriptome analysis was performed on splenic tissue from adolescent (68-day) versus old (736-day) C57BL/6 male mice injected with Lewis lung carcinoma cells with or without three fractionations of 0.5 Gy (1-GeV) proton irradiation. Global transcriptome analysis indicated that proton irradiation of adolescent hosts caused significant signaling changes within splenic tissues that support carcinogenesis within the mice, as compared with older subjects. Increases in cell cycling and immunosuppression in irradiated adolescent hosts with CDK2, MCM7, CD74 and RUVBL2 indicated these were the key genes involved in the regulatory changes in the host environment response (i.e. the spleen). Collectively, these results suggest that a significant biological component of proton irradiation is modulated by host age through promotion of carcinogenesis in adolescence and resistance to immunosuppression, carcinogenesis and genetic perturbation associated with advancing age. PMID:26253138

  19. Proton or photon irradiation for hemangiomas of the choroid? A retrospective comparison

    SciTech Connect

    Hoecht, Stefan . E-mail: stefan.hoecht@charite.de; Wachtlin, Joachim; Bechrakis, Nikolaos E.; Schaefer, Christiane; Heufelder, Jens; Cordini, Dino; Kluge, Heinz; Foerster, Michael; Hinkelbein, Wolfgang

    2006-10-01

    Purpose: The aim of this study was to compare, on a retrospective basis, the results of therapy in patients with uveal hemangioma treated with photon or proton irradiation at a single center. Methods and Materials: From 1993 to 2002 a total of 44 patients were treated. Until 1998 radiotherapy was given with 6 MV photons in standard fractionation of 2.0 Gy 5 times per week. In 1998 proton therapy became available and was used since then. A dose of 20 to 22.5 Cobalt Gray Equivalent (CGE) 68 MeV protons was given on 4 consecutive days. Progressive symptoms or deterioration of vision were the indications for therapy. Results: Of the 44 patients treated, 36 had circumscribed choroidal hemangiomas and 8 had diffuse choroidal hemangiomas (DCH) and Sturge-Weber syndrome. Of the patients, 19 were treated with photons with a total dose in the range of 16 to 30 Gy. A total of 25 patients were irradiated with protons. All patients with DCH but 1 were treated with photons. Stabilization of visual acuity was achieved in 93.2% of all patients. Tumor thickness decreased in 95.4% and retinal detachment resolved in 92.9%. Late effects, although generally mild or moderate, were frequently detected. In all, 40.9% showed radiation-induced optic neuropathy, maximum Grade I. Retinopathy was found in 29.5% of cases, but only 1 patient experienced more than Grade II severity. Retinopathy and radiation-induced optic neuropathy were reversible in some of the patients and in some resolved completely. No differences could be detected between patients with circumscribed choroidal hemangiomas treated with protons and photons. Treatment was less effective in DCH patients (75%). Conclusions: Radiotherapy is effective in treating choroidal hemangiomas with respect to visual acuity and tumor thickness but a benefit of proton therapy could not be detected. Side effects are moderate but careful monitoring for side effects should be part of the follow-up procedures.

  20. Resistivity changes in superconducting-cavity-grade Nb following high-energy proton irradiation

    SciTech Connect

    Snead, C.L. Jr.; Hanson, A.; Greene, G.A.

    1997-12-01

    Niobium superconducting rf cavities are proposed for use in the proton LINAC accelerators for spallation-neutron applications. Because of accidental beam loss and continual halo losses along the accelerator path, concern for the degradation of the superconducting properties of the cavities with accumulating damage arises. Residual-resistivity-ratio (RRR) specimens of Nb, with a range of initial RRR`s were irradiated at room temperature with protons at energies from 200 to 2000 MeV. Four-probe resistance measurements were made at room temperature and at 4.2 K both prior to and after irradiation. Nonlinear increases in resistivity simulate expected behavior in cavity material after extended irradiation, followed by periodic anneals to room temperature: For RRR = 316 material, irradiations to (2 - 3) x 10{sup 15} p/cm{sup 2} produce degradations up to the 10% level, a change that is deemed operationally acceptable. Without. periodic warming to room temperature, the accumulated damage energy would be up to a factor of ten greater, resulting in unacceptable degradations. Likewise, should higher-RRR material be used, for the same damage energy imparted, relatively larger percentage changes in the RRR will result.

  1. Ciliary body and choroidal melanomas treated by proton beam irradiation. Histopathologic study of eyes

    SciTech Connect

    Seddon, J.M.; Gragoudas, E.S.; Albert, D.M.

    1983-09-01

    Proton beam irradiation resulted in clinical and/or histopathological regression of large ciliary body and choroidal melanomas in three eyes. Enucleations were performed 6 1/2 weeks, five months, and 11 months after irradiation for angle-closure glaucoma from total retinal detachment, increase in retinal detachment, and neovascular glaucoma, respectively. A direct relationship was found between the length of the interval from irradiation to enucleation and the degree of histologic changes. Vascular changes in the tumors included endothelial cell swelling and decreased lumen size, basement membrane thickening, collapse of sinusoidal vessels, and thrombosis of vessels. Although apparently unaltered tumor cells remained, degenerative changes occurred in some melanoma cells, including lipid vacuoles in cytoplasm, pyknotic nuclei, and balloon cell formation. Patchy areas of necrosis and proteinaceous exudate were present. Pigment-laden macrophages were found near tumor vessels and all had a substantial chronic inflammatory infiltrate. The effect of proton beam irradiation on tumor vessels probably plays an important role in uveal melanoma regression.

  2. Irradiation effects in beryllium exposed to high energy protons of the NuMI neutrino source

    NASA Astrophysics Data System (ADS)

    Kuksenko, V.; Ammigan, K.; Hartsell, B.; Densham, C.; Hurh, P.; Roberts, S.

    2017-07-01

    A beryllium primary vacuum-to-air beam 'window' of the "Neutrinos at the Main Injector" (NuMI) beamline at Fermi National Accelerator Laboratory (Fermilab), Batavia, Illinois, USA, has been irradiated by 120 GeV protons over 7 years, with a maximum integrated fluence at the window centre of 2.06 1022 p/cm2 corresponding to a radiation damage level of 0.48 dpa. The proton beam is pulsed at 0.5 Hz leading to an instantaneous temperature rise of 40 °C per pulse. The window is cooled by natural convection and is estimated to operate at an average of around 50 °C. The microstructure of this irradiated material was investigated by SEM/EBSD and Atom Probe Tomography, and compared to that of unirradiated regions of the beam window and that of stock material of the same PF-60 grade. Microstructural investigations revealed a highly inhomogeneous distribution of impurity elements in both unirradiated and irradiated conditions. Impurities were mainly localised in precipitates, and as segregations at grain boundary and dislocation lines. Low levels of Fe, Cu, Ni, C and O were also found to be homogeneously distributed in the beryllium matrix. In the irradiated materials, up to 440 appm of Li, derived from transmutation of beryllium was homogeneously distributed in solution in the beryllium matrix.

  3. Initial results from a cryogenic proton irradiation of a p-channel CCD

    NASA Astrophysics Data System (ADS)

    Gow, J. P. D.; Wood, D.; Burt, D.; Hall, D. J.; Dryer, B.; Holland, A. D.; Murray, N. J.

    2015-08-01

    The displacement damage hardness that can be achieved using p-channel charge coupled devices (CCD) was originally demonstrated in 1997 and since then a number of other studies have demonstrated an improved tolerance to radiationinduced CTI when compared to n-channel CCDs. A number of recent studies have also shown that the temperature history of the device after the irradiation impacts the performance of the detector, linked to the mobility of defects at different temperatures. This study describes the initial results from an e2v technologies p-channel CCD204 irradiated at 153 K with a 10 MeV equivalent proton fluences of 1.24×109 and 1.24×1011 protons.cm-2. The number of defects identified using trap pumping, dark current and cosmetic quality immediately after irradiation and over a period of 150 hours after the irradiation with the device held at 153 K and then after different periods of time at room temperature are described. The device also exhibited a flatband voltage shift of around 30 mV per krad, determined by the reduction in full well capacity.

  4. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    NASA Astrophysics Data System (ADS)

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; Vo, Hi T.; Maloy, Stuart A.; Hosemann, Peter; Mara, Nathan A.

    2017-09-01

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current work focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-induced increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa-30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. The disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.

  5. Spherical nanoindentation of proton irradiated 304 stainless steel: A comparison of small scale mechanical test techniques for measuring irradiation hardening

    DOE PAGES

    Weaver, Jordan S.; Pathak, Siddhartha; Reichardt, Ashley; ...

    2017-06-27

    Experimentally quantifying the mechanical effects of radiation damage in reactor materials is necessary for the development and qualification of new materials for improved performance and safety. This can be achieved in a high-throughput fashion through a combination of ion beam irradiation and small scale mechanical testing in contrast to the high cost and laborious nature of bulk testing of reactor irradiated samples. The current paper focuses on using spherical nanoindentation stress-strain curves on unirradiated and proton irradiated (10 dpa at 360 °C) 304 stainless steel to quantify the mechanical effects of radiation damage. Spherical nanoindentation stress-strain measurements show a radiation-inducedmore » increase in indentation yield strength from 1.36 GPa to 2.72 GPa and a radiation-induced increase in indentation work hardening rate of 10 GPa–30 GPa. These measurements are critically compared against Berkovich nanohardness, micropillar compression, and micro-tension measurements on the same material and similar grain orientations. The ratio of irradiated to unirradiated yield strength increases by a similar factor of 2 when measured via spherical nanoindentation or Berkovich nanohardness testing. A comparison of spherical indentation stress-strain curves to uniaxial (micropillar and micro-tension) stress-strain curves was achieved using a simple scaling relationship which shows good agreement for the unirradiated condition and poor agreement in post-yield behavior for the irradiated condition. Finally, the disagreement between spherical nanoindentation and uniaxial stress-strain curves is likely due to the plastic instability that occurs during uniaxial tests but is absent during spherical nanoindentation tests.« less

  6. Hole transport through proton-irradiated p-type silicon wafers during electrochemical anodization

    SciTech Connect

    Breese, M. B. H.; Champeaux, F. J. T.; Bettiol, A. A.; Teo, E. J.; Blackwood, D. J.

    2006-01-15

    The hole current density flowing through and around proton-irradiated areas of p-type silicon during electrochemical anodization is simulated and studied experimentally using scanning electron microscopy and photoluminescence imaging. It is shown that for certain irradiation geometries the current flow may be either reduced or enhanced in areas adjacent to irradiated lines, resulting in enhanced or reduced rates of porous silicon formation and corresponding changes in photoluminescence intensity and feature height. The current flow to the surface is unaffected by both the beam straggle and the high defect density at the end of ion range, enabling feature dimensions of {approx}200 nm to be attained. This study has enabled fabrication of micromachined and patterned porous silicon structures in anodized wafers with accurate control of feature dimensions, layer thickness, and photoluminescence emission wavelength and intensity.

  7. Deep levels induced by high fluence proton irradiation in undoped GaAs diodes

    SciTech Connect

    Castaldini, A.; Cavallini, A.; Polenta, L.; Canali, C.; Nava, F.; Ferrini, R.; Galli, M.

    1998-12-31

    Semi-insulating liquid encapsulated Czochralski grown GaAs has been investigated after irradiation at high fluences of high-energy protons. Electron beam induced current observations of scanning electron microscopy evidenced a radiation stimulated ordering. An analysis has been carried out of the deep levels associated with defects as a function of the irradiation fluence, using complementary current transient spectroscopies. By increasing the irradiation fluence, the concentration of the native traps at 0.37 eV together with that of the EL2 defect significantly increases and, at the same time, two new electron traps at 0.15 eV and 0.18 eV arise and quickly increase in density.

  8. Effects of combined irradiation of 500 keV protons and atomic oxygen on polyimide films

    NASA Astrophysics Data System (ADS)

    Novikov, Lev; Chernik, Vladimir; Zhilyakov, Lev; Voronina, Ekaterina; Chirskaia, Natalia

    2016-07-01

    Polyimide films are widely used on the spacecraft surface as thermal control coating, films in different constuctions, etc. However, the space ionizing radiation of different types can alter the mechanical, optical and electrical properties of polyimide films. For example, it is well known that 20-100 keV proton irradiation causes breaking of chemical bonds and destruction of the surface layer in polyimide, deterioration of its optical properties, etc. In low-Earth orbits serious danger for polymeric materials is atomic oxygen of the upper atmosphere of the Earth, which is the main component in the range of heights of 200-800 km. Due to the orbital spacecraft velocity, the collision energy of oxygen atoms with the surface ( 5 eV) enhances their reactivity and opens additional pathways of their reaction with near-surface layers of materials. Hyperthermal oxygen atom flow causes erosion of the polyimide surface by breaking chemical bonds and forming of volatiles products (primarily, CO and CO _{2}), which leads to mass losses and degradation of material properties. Combined effect of protons and oxygen plasma is expected to give rise to synergistic effects enhancing the destruction of polyimide surface layers. This paper describes experimental investigation of polyimide films sequential irradiation with protons and oxygen plasma. The samples were irradiated by 500 keV protons at fluences of 10 ^{14}-10 ^{16} cm ^{-2} produced with SINP cascade generator KG-500 and 5-20 eV neutral oxygen atoms at fluence of 10 ^{20} cm ^{-2} generated by SINP magnetoplasmodynamics accelerator. The proton bombardment causes the decrease in optical transmission coefficient of samples, but their transmittance recovers partially after the exposure to oxygen plasma. The results of the comparative analysis of polyimide optical transmission spectra, Raman and XPS spectra obtained at different stages of the irradiation of samples, data on mass loss of samples due to erosion of the surface are

  9. Fractographic finger printing of proton-irradiation-induced disordering and amorphization of intermetallic compounds

    SciTech Connect

    Cheng, J.; Yuan, M.; Wagner, C. N. J.; Ardell, A. J.

    1989-05-01

    The intermetallic compounds NiTi, NiTi/sub 2/, CuZr, CuTi/sub 2/, and Zr/sub 3/Al were irradiated by 2 MeV protons at various temperatures between --175 /degree/C and --44 /degree/C to a fluence of 1.9/times/10/sup 22/ H/sup +//m/sup 2/. Transmission electron microscopy, electron diffraction, and x-ray diffraction were used to evaluate the extents of disordering and amorphization induced by irradiation in the samples. Both phenomena progressed to varying extents in the five compounds, depending on the irradiation temperature and dose. It was observed that the C-A transition began before the degree of long-range order was reduced significantly, and that the amorphous phase nucleated homogeneously throughout the crystalline matrix. A major finding of the current investigation is that the technique of scanning electron fractography provides a useful correlation between the features of the fractured surfaces and the microstructural alterations induced by the proton irradiations. When amorphization is complete the fracture surfaces are either featureless (e.g., NiTi/sub 2/) or contain branching features resembling river patterns. In some cases (especially in CuZr) these are similar to the markings seen on the surface of fractured amorphous ribbons produced by melt-spinning. In general, however, there is not a particularly good correlation between the features on the fracture surfaces of the irradiated and melt-spun ribbons. When the microstructure consists of amorphous regions embedded in a partially disordered crystalline matrix, there is consierable evidence for irradiation-induced ductility. In such cases, exemplified by the results on NiTi and Zr/sub 3/Al, the fracture surfaces contain dimples, characteristic of ductile fracture, suggesting that disordering promotes ductility.

  10. Evaluation of the relative biological effectiveness of spot-scanning proton irradiation in vitro.

    PubMed

    Maeda, Kenichiro; Yasui, Hironobu; Matsuura, Taeko; Yamamori, Tohru; Suzuki, Motofumi; Nagane, Masaki; Nam, Jin-Min; Inanami, Osamu; Shirato, Hiroki

    2016-06-01

    Variations in relative biological effectiveness (RBE) from a fixed value of 1.1 are critical in proton beam therapy. To date, studies estimating RBE at multiple positions relative to the spread-out Bragg peak (SOBP) have been predominantly performed using passive scattering methods, and limited data are available for spot-scanning beams. Thus, to investigate the RBE of spot-scanning beams, Chinese hamster fibroblast V79 cells were irradiated using the beam line at the Hokkaido University Hospital Proton Therapy Center. Cells were placed at six different depths, including the entrance of the proton beam and the proximal and distal part of the SOBP. Surviving cell fractions were analyzed using colony formation assay, and cell survival curves were obtained by the curve fitted using a linear-quadratic model. RBE10 and RBE37 were 1.15 and 1.21 at the center of the SOBP, respectively. In contrast, the distal region showed higher RBE values (1.50 for RBE10 and 1.85 for RBE37). These results are in line with those of previous studies conducted using passive scattering proton beams. Taken together, these data strongly suggest that variations in RBE should be considered during treatment planning for spot-scanning beams as well as for passive scattering proton beams.

  11. First-Principles Investigation of Electronic Excitation Dynamics in Water under Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Reeves, Kyle; Kanai, Yosuke

    2015-03-01

    A predictive and quantitative understanding of electronic excitation dynamics in water under proton irradiation is of great importance in many technological areas ranging from utilizing proton beam therapy to preventing nuclear reactor damages. Despite its importance, an atomistic description of the excitation mechanism has yet to be fully understood. Identifying how a high-energy proton dissipates its kinetic energy into the electronic excitation is crucial for predicting atomistic damages, later resulting in the formation of different chemical species. In this work, we use our new, large-scale first-principles Ehrenfest dynamics method based on real-time time-dependent density functional theory to simulate the electronic response of bulk water to a fast-moving proton. In particular, we will discuss the topological nature of the electronic excitation as a function of the proton velocity. We will employ maximally-localized functions to bridge our quantitative findings from first-principles simulations to a conceptual understanding in the field of water radiolysis.

  12. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  13. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution

    NASA Technical Reports Server (NTRS)

    Green, L. M.; Murray, D. K.; Bant, A. M.; Kazarians, G.; Moyers, M. F.; Nelson, G. A.; Tran, D. T.

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  14. Response of thyroid follicular cells to gamma irradiation compared to proton irradiation. I. Initial characterization of DNA damage, micronucleus formation, apoptosis, cell survival, and cell cycle phase redistribution.

    PubMed

    Green, L M; Murray, D K; Bant, A M; Kazarians, G; Moyers, M F; Nelson, G A; Tran, D T

    2001-01-01

    The RBE of protons has been assumed to be equivalent to that of photons. The objective of this study was to determine whether radiation-induced DNA and chromosome damage, apoptosis, cell killing and cell cycling in organized epithelial cells was influenced by radiation quality. Thyroid-stimulating hormone-dependent Fischer rat thyroid cells, established as follicles, were exposed to gamma rays or proton beams delivered acutely over a range of physical doses. Gamma-irradiated cells were able to repair DNA damage relatively rapidly so that by 1 h postirradiation they had approximately 20% fewer exposed 3' ends than their counterparts that had been irradiated with proton beams. The persistence of free ends of DNA in the samples irradiated with the proton beam implies that either more initial breaks or a quantitatively different type of damage had occurred. These results were further supported by an increased frequency of chromosomal damage as measured by the presence of micronuclei. Proton-beam irradiation induced micronuclei at a rate of 2.4% per gray, which at 12 Gy translated to 40% more micronuclei than in comparable gamma-irradiated cultures. The higher rate of micronucleus formation and the presence of larger micronuclei in proton-irradiated cells was further evidence that a qualitatively more severe class of damage had been induced than was induced by gamma rays. Differences in the type of damage produced were detected in the apoptosis assay, wherein a significant lag in the induction of apoptosis occurred after gamma irradiation that did not occur with protons. The more immediate expression of apoptotic cells in the cultures irradiated with the proton beam suggests that the damage inflicted was more severe. Alternatively, the cell cycle checkpoint mechanisms required for recovery from such damage might not have been invoked. Differences based on radiation quality were also evident in the alpha components of cell survival curves (0.05 Gy(-1) for gamma rays, 0

  15. Effect of proton irradiation on superconductivity in optimally doped BaFe2(As1-xPx)2 single crystals

    SciTech Connect

    Smylie, M. P.; Leroux, M.; Mishra, V.; Fang, L.; Taddei, K. M.; Chmaissem, O.; Claus, H.; Kayani, A.; Snezhko, A.; Welp, U.; Kwok, W. -K.

    2016-03-01

    Irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe 2 ( As 1 - x P x ) 2 , x = 0.33 . The effect of disorder on the low-temperature behavior of the London penetration depth λ ( T ) and transition temperature T c was investigated. In nearly optimally doped samples with T c ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects. We attribute our findings to anisotropic electron scattering caused by proton irradiation defects.

  16. Effect of proton irradiation on superconductivity in optimally doped BaFe2(As1-xPx)2 single crystals

    SciTech Connect

    Smylie, M. P.; Leroux, M.; Mishra, V.; Fang, L.; Taddei, K. M.; Chmaissem, O.; Claus, H.; Kayani, A.; Snezhko, A.; Welp, U.; Kwok, W. -K.

    2016-03-10

    In this paper, irradiation with 4 MeV protons was used to systematically introduce defects in single crystals of the iron-arsenide superconductor BaFe2(As1-xPx)2, x = 0.33. The effect of disorder on the low-temperature behavior of the London penetration depth λ(T) and transition temperature Tc was investigated. In nearly optimally doped samples with Tc ~ 29 K, signatures of a superconducting gap with nodes were observed. Contrary to previous reports on electron-irradiated crystals, we do not see a disorder-driven lifting of accidental nodes, and we observe that proton-induced defects are weaker pair breakers than electron-induced defects. Finally, we attribute our findings to anisotropic electron scattering caused by proton irradiation defects.

  17. Accelerated partial-breast irradiation using proton beams: Initial clinical experience

    SciTech Connect

    Kozak, Kevin R.; Smith, Barbara L.; Adams, Judith C.; Kornmehl, Ellen; Katz, Angela; Gadd, Michele; Specht, Michelle; Hughes, Kevin; Gioioso, Valeria; Lu, H.-M.; Braaten, Kristina; Recht, Abram; Powell, Simon N.; DeLaney, Thomas F.; Taghian, Alphonse G. . E-mail: ataghian@partners.org

    2006-11-01

    Purpose: We present our initial clinical experience with proton, three-dimensional, conformal, external beam, partial-breast irradiation (3D-CPBI). Methods and Materials: Twenty patients with Stage I breast cancer were treated with proton 3D-CPBI in a Phase I/II clinical trial. Patients were followed at 3 to 4 weeks, 6 to 8 weeks, 6 months, and every 6 months thereafter for recurrent disease, cosmetic outcome, toxicity, and patient satisfaction. Results: With a median follow-up of 12 months (range, 8-22 months), no recurrent disease has been detected. Global breast cosmesis was judged by physicians to be good or excellent in 89% and 100% of cases at 6 months and 12 months, respectively. Patients rated global breast cosmesis as good or excellent in 100% of cases at both 6 and 12 months. Proton 3D-CPBI produced significant acute skin toxicity with moderate to severe skin color changes in 79% of patients at 3 to 4 weeks and moderate to severe moist desquamation in 22% of patients at 6 to 8 weeks. Telangiectasia was noted in 3 patients. Three patients reported rib tenderness in the treated area, and one rib fracture was documented. At last follow-up, 95% of patients reported total satisfaction with proton 3D-CPBI. Conclusions: Based on our study results, proton 3D-CPBI offers good-to-excellent cosmetic outcomes in 89% to 100% of patients at 6-month and 12-month follow-up and nearly universal patient satisfaction. However, proton 3D-CPBI, as used in this study, does result in significant acute skin toxicity and may potentially be associated with late skin (telangiectasia) and rib toxicity. Because of the dosimetric advantages of proton 3D-CPBI, technique modifications are being explored to improve acute skin tolerance.

  18. Comparative Effects of 10.2 eV Photon and 200 keV Proton Irradiation on Condensed CO

    NASA Astrophysics Data System (ADS)

    Loeffler, M. J.; Baratta, G. A.; Palumbo, M. E.; Strazzulla, G.; Baragiola, R. A.

    2004-03-01

    We present results from experiments that use infrared spectroscopy to compare production rates of carbon dioxide formed by UV photolysis and 200 keV proton irradiation of carbon monoxide ice at 16 K. We find production rates to be similar for both types of irradiation.

  19. Degradation modeling of InGaP/GaAs/Ge triple-junction solar cells irradiated by protons

    NASA Astrophysics Data System (ADS)

    Maximenko, S. I.; Lumb, M. P.; Messenger, S. R.; Hoheisel, R.; Affouda, C.; Scheiman, D.; Gonzalez, M.; Lorentzen, J.; Jenkins, P. P.; Walters, R. J.

    2014-03-01

    Experimental results on triple-junction solar cells irradiated by 3 MeV proton irradiation to very high damage levels are presented. The minority carrier transport properties were obtained through quantum efficiency and EBIC measurements and an analytical drift-diffusion solver was used in understanding the results for different degradation levels where multiple damage mechanisms are evident.

  20. Energetic proton irradiation history of the HED parent body regolith and implications for ancient solar activity

    NASA Astrophysics Data System (ADS)

    Rao, M. N.; Garrison, D. H.; Palma, R. L.; Bogard, D. D.

    1997-07-01

    Previous studies have shown that the Kapoeta howardite, as well as several other meteorites, contain excess concentrations of cosmogenic neon in the darkened, solar-irradiated phase compared to the light, non-irradiated phase. The two explanations offered for the nuclear production of these Ne excesses in the parent body regolith are either from galactic particle (GCR) irradiation or from a greatly enhanced flux of energetic solar protons (SCR), as compared to the recent solar flux. Combining new isotopic data we obtained on acid-etched, separated feldspar from Kapoeta light and dark phases with literature data, we show that the cosmogenic 21Ne /22Ne ratio of light phase feldspar (0.80) is consistent with only GCR irradiation in space for ~3 Myr. However, the 21Ne/22Ne ratio (0.68) derived for irradiation of dark phase feldspar in the Kapoeta regolith indicates that cosmogenic Ne was produced in roughly equal proportions from galactic and solar protons. Considering a simple model of an immature Kapoeta parent body regolith, the duration of this early galactic exposure was only ~3-6 Myr, which would be an upper limit to the solar exposure time of individual grains. Concentrations of cosmogenic 21Ne in pyroxene separates and of cosmogenic 126Xe in both feldspar and pyroxene are consistent with this interpretation. The near-surface irradiation time of individual grains in the Kapoeta regolith probably varied considerably due to regolith mixing to an average GCR irradiation depth of ~10 cm. Because of the very different depth scales for production of solar ~Fe tracks, SCR Ne, and GCR Ne, the actual regolith exposure times for average grains probably differed correspondingly. However, both the SCR 21Ne and solar track ages appear to be longer because of enhanced production by early solar activity. The SCR/GCR production ratio of 21Ne inferred from the Kapoeta data is larger by a at least a factor of 10 and possibly as much as a factor of ~50 compared to recent solar

  1. Irradiation of thin diamond detectors and radiation hardness tests using MeV protons

    NASA Astrophysics Data System (ADS)

    Grilj, V.; Skukan, N.; Jakšić, M.; Kada, W.; Kamiya, T.

    2013-07-01

    Although numerous studies have confirmed the superb radiation hardness of diamond for high-energy (above 100 MeV) protons, almost no data have been reported in the MeV energy range. Because the interaction mechanism that dominates the displacement damage cross section is different for these two energy regimes, it could be misleading to simply extrapolate the results of previous papers down to low energies. Therefore, the radiation tolerance of a 50 μm thick single-crystal CVD diamond detector was tested by irradiating it with 4.5 MeV protons. The scanning microbeam allowed for the selective introduction of damage to a small area of the detector. The ion beam-induced current (IBIC) was used to monitor the charge collection efficiency (CCE) degradation due to the electrically active defects produced. The irradiation was stopped when a signal degradation of nearly 3% was observed. For comparison, the procedure was repeated on a 50 μm thick silicon surface barrier detector (SSBD), for which a significantly higher proton fluence was required to reach the same signal decrease as in the diamond detector. This result can be explained by the different recombination rates of the vacancies and interstitials created in the two materials. The transport properties of electrons and holes in the damaged and virgin areas of the diamond detector were also investigated by 500 keV protons and 6 MeV carbon ions as short-range IBIC probes. The mobility-lifetime products calculated for both charge carriers after fitting the single-carrier Hecht equation indicated that there was more pronounced electron trapping by the radiation-induced defects. The frequently reported effect of polarization in diamond was successfully avoided for 500 keV protons but still remained for 6 MeV carbon ions because an order of magnitude higher ionization rate.

  2. Energy from low temperature differences

    NASA Astrophysics Data System (ADS)

    Parsons, B. K.

    1985-05-01

    A number of energy conservation and alternative energy approaches utilize a low temperature heat source. Applications in this category include: solar ponds, ocean thermal energy conversion (OTEC), low temperature solar thermal, geothermal, and waste heat recovery and bottoming cycles. Low temperature power extraction techniques are presented and the differences between closed and open Rankine power cycles are discussed. Specific applications and technical areas of current research in OTEC along with a breakdown of plant operating conditions and a rough cost estimate illustrate how the use of low temperature power conversion technology can be cost effective.

  3. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    PubMed Central

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-01-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for white blood cell (WBC) loss, which are the body’s main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved white blood cell (WBC), specifically neutrophil, loss in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses. PMID:25909052

  4. Effects of a granulocyte colony stimulating factor, Neulasta, in mini pigs exposed to total body proton irradiation

    NASA Astrophysics Data System (ADS)

    Sanzari, Jenine K.; Krigsfeld, Gabriel S.; Shuman, Anne L.; Diener, Antonia K.; Lin, Liyong; Mai, Wilfried; Kennedy, Ann R.

    2015-04-01

    Astronauts could be exposed to solar particle event (SPE) radiation, which is comprised mostly of proton radiation. Proton radiation is also a treatment option for certain cancers. Both astronauts and clinical patients exposed to ionizing radiation are at risk for loss of white blood cells (WBCs), which are the body's main defense against infection. In this report, the effect of Neulasta treatment, a granulocyte colony stimulating factor, after proton radiation exposure is discussed. Mini pigs exposed to total body proton irradiation at a dose of 2 Gy received 4 treatments of either Neulasta or saline injections. Peripheral blood cell counts and thromboelastography parameters were recorded up to 30 days post-irradiation. Neulasta significantly improved WBC loss, specifically neutrophils, in irradiated animals by approximately 60% three days after the first injection, compared to the saline treated, irradiated animals. Blood cell counts quickly decreased after the last Neulasta injection, suggesting a transient effect on WBC stimulation. Statistically significant changes in hemostasis parameters were observed after proton radiation exposure in both the saline and Neulasta treated irradiated groups, as well as internal organ complications such as pulmonary changes. In conclusion, Neulasta treatment temporarily alleviates proton radiation-induced WBC loss, but has no effect on altered hemostatic responses.

  5. Strong hole-doping and robust resistance-decrease in proton-irradiated graphene

    PubMed Central

    Lee, Chul; Kim, Jiho; Kim, SangJin; Chang, Young Jun; Kim, Keun Soo; Hong, ByungHee; Choi, E. J.

    2016-01-01

    Great effort has been devoted in recent years to improve the electrical conductivity of graphene for use in practical applications. Here, we demonstrate the hole carrier density of CVD graphene on a SiO2/Si substrate increases by more than one order of magnitude to n = 3 × 1013 cm−2 after irradiation with a high energy 5 MeV proton beam. As a result, the dc-resistance (R) of graphene is reduced significantly by 60%. Only a negligible amount of defect is created by the irradiation. Also the hole-doped low resistance state of graphene remains robust against external perturbations. This carrier doping is achieved without requiring the bias-gate voltage as is the case for other field effect devices. We make two important observations, (i) occurrence of the doping after the irradiation is turned off (ii) indispensability of the SiO2-layer in the substrate, which leads to a purely electronic mechanism for the doping where electron-hole pair creation and interlayer Coulomb attraction play a major role. A flux-dependent study predicts that an ultrahigh doping may be obtained by longer irradiation. We expect the irradiation doping method could be applied to other atomically thin solids, facilitating the fundamental study and application of the 2d materials. PMID:26888197

  6. Simplified estimation method for dose distributions around field junctions in proton craniospinal irradiation.

    PubMed

    Yamashita, Haruo; Kase, Yuki; Murayama, Shigeyuki

    2017-03-01

    In radiotherapy involving craniospinal irradiation (CSI), field junctions of therapeutic beams are necessary, because a CSI target is generally several times larger than the maximum field size of the beams. The purpose of this study was to develop a simplified method for estimating dose uniformity around the field junctions in proton CSI. We estimated the dose profiles around the field junctions of proton beams using a simplified field-junction model, in which partial lateral dose distributions around the field edge were assumed to be approximated using the error function. We measured the lateral dose distributions of the proton beams planned for the CSI treatment using a two-dimensional (2D) ionization chamber array. Although dose hot spots and cold spots tend to be underestimated by a chamber array because of the partial volume effect of the sensitive volume and discrete chamber positions, the model estimation results were fairly consistent with the measurements obtained using a 2D chamber array subjected to CSI-simulated serial irradiation. The simplified junction model enabled us to estimate the dose distributions and dependence of the setup position gap on the dose uniformity around the field junctions on the basis of the field-by-field dose profiles measured using the 2D chamber array.

  7. The effect of irradiation with high-energy protons on 4H-SiC detectors

    SciTech Connect

    Kazukauskas, V. Jasiulionis, R.; Kalendra, V.; Vaitkus, J.-V.

    2007-03-15

    The effect of irradiation of 4H-SiC ionizing-radiation detectors with various doses (as high as 10{sup 16} cm{sup -2}) of 24-GeV protons is studied. Isotopes of B, Be, Li, He, and H were produced in the nuclear spallation reactions of protons with carbon. Isotopes of Al, Mg, Na, Ne, F, O, and N were produced in the reactions of protons with silicon. The total amount of the produced stable isotopes varied in proportion with the radiation dose from 1.2 x 10{sup 11} to 5.9 x 10{sup 13} cm{sup -2}. It is shown that, at high radiation doses, the contact characteristics of the detectors change appreciably. The potential-barrier height increased from the initial value of 0.7-0.75 eV to 0.85 eV; the rectifying characteristics of the Schottky contacts deteriorated appreciably. These effects are attributed to the formation of a disordered structure of the material as a result of irradiation.

  8. Proton irradiation energy dependence of dc and rf characteristics on InAlN/GaN high electron mobility transistors

    SciTech Connect

    Lo, C. F.; Liu, L.; Ren, F.; Pearton, S. J.; Gila, Brent P.; Kim, H.-Y.; Kim, J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2012-01-01

    The effects of proton irradiation energy on dc and rf characteristics of InAlN/GaN high electron mobility transistors (HEMTs) were investigated. A fixed proton dose of 51015 cm2 with 5, 10, and 15 MeV irradiation energies was used in this study. For the dc characteristics, degradation was observed for sheet resistance, transfer resistance, contact resistivity, saturation drain current, maximum transconductance, reverse-bias gate leakage current, and sub-threshold drain leakage current for all the irradiated HEMTs; however, the degree of the degradation was decreased as the irradiation energy increased. Similar trends were obtained for the rf performance of the devices, with 10% degradation of the unity gain cut-off frequency (fT) and maximum oscillation frequency ( fmax) for the HEMTs irradiated with 15 MeV protons but 30% for 5 MeV proton irradiation. The carrier removal rate was in the range 0.66 1.24 cm1 over the range of proton energies investigated

  9. Late cataractogenesis in rhesus monkeys irradiated with protons and radiogenic cataract in other species

    SciTech Connect

    Lett, J.T.; Lee, A.C.; Cox, A.B. )

    1991-05-01

    Rhesus monkeys (Macaca mulatta) which were irradiated at ca. 2 years of age with acute doses (less than or equal to 5 Gy) of protons (32-2300 MeV) are exhibiting the late progressive phase of radiation cataractogenesis 20-24 years after exposure, the period during which we have been monitoring the sequelae of irradiation of the lens. The median life span of the primate is approximately 24 years. Analogous late ocular changes also occur in a similar period of the lifetimes of New Zealand White (NZW) rabbits (Oryctolagus cuniculus) exposed at 8-10 weeks of age to 460-MeV {sup 56}Fe ions. In this experiment, which has been in progress for ca. 6 years, we are following the development of radiation-induced lenticular opacification (cataractogenic profiles) throughout the life span. The median life span of the lagomorph is 5-7 years. Cataractogenic profiles for NZW rabbits irradiated with {sup 20}Ne and {sup 40}Ar ions and {sup 60}Co gamma photons were obtained previously. Reference is also made to measurements of the cataractogenic profiles of a short-lived rodent, the Fischer 344 rat (Rattus norvegicus) during the first year after exposure at 8-10 weeks of age to spread-Bragg-peak protons of 55 MeV nominal energy. The median life span of the rodent is reported to be 2-3 years.

  10. The risk of enucleation after proton beam irradiation of uveal melanoma

    SciTech Connect

    Egan, K.M.; Gragoudas, E.S.; Seddon, J.M.; Glynn, R.J.; Munzenreider, J.E.; Goitein, M.; Verhey, L.; Urie, M.; Koehler, A. )

    1989-09-01

    Enucleation after proton beam irradiation of uveal melanomas occurred in 64 (6.4%) of 994 eyes with a median follow-up time of 2.7 years. The median time between irradiation and enucleation in the 64 enucleated eyes was 13 months. The probability of retaining the eye was 95 and 90%, 2 and 5 years postirradiation, respectively. Three percent of eyes were enucleated during posttreatment year 1, and the yearly rate was 1% by the fourth year. No patient had enucleation later than 5 1/2 years posttreatment. The complication most likely to result in enucleation was neovascular glaucoma although this was frequently managed without enucleation. Other common reasons for enucleation were documented or suspected tumor growth and complete retinal detachment with associated loss of vision. The leading risk factors for enucleation were anterior tumor margin involving the ciliary body, tumor height greater than 8 mm, and proximity of the tumor to the fovea. Based on the presence or absence of these factors, 5-year eye retention rates were 99, 92, and 76% for low-, moderate-, and high-risk groups, respectively. Thus, the probability of eye retention after proton beam irradiation is high even among those at greatest risk of enucleation.

  11. Molecular weight distribution of proton irradiated polystyrene studied by diffusion experiments

    NASA Astrophysics Data System (ADS)

    Delto, Ralf; Brenn, Ruediger

    2007-04-01

    MeV ion irradiation of polymers induces break-up or crosslinking of polymer chains. This leads to an ion-fluence dependent molecular weight (MW) distribution ranging from short scission fragments via larger chain clusters to the interconnected, immobile network fraction. We used diffusion experiments to obtain information about the MW distribution of the mobile chains in dependence of the ion fluence. Double layers of deuterated (dPS) and protonated (hPS) polystyrene on Si wafer substrates were irradiated by 1 MeV protons and annealed at 140 °C for various periods of time. The dPS diffusion depth profiles in the irradiation induced hPS network were measured by 3He nuclear reaction analysis. For calibration the strongly MW dependent diffusion coefficients of dPS chains in hPS networks were determined separately by analogous techniques. The depth profiles were fitted with MW dependent diffusion profiles convoluted with a parametrized MW distribution, and the resulting MW distribution was compared to theory.

  12. Development of a PET cyclotron based irradiation setup for proton radiobiology

    NASA Astrophysics Data System (ADS)

    Ghithan, Sharif; Crespo, Paulo; do Carmo, S. J. C.; Ferreira Marques, Rui; Fraga, F. A. F.; Simões, Hugo; Alves, Francisco; Rachinhas, P. J. B. M.

    2015-02-01

    An out-of-yoke irradiation setup using the proton beam from a cyclotron that ordinary produces radioisotopes for positron emission tomography (PET) has been developed, characterized, calibrated and validated. The current from a 20 μm thick aluminum transmission foil is readout by home-made transimpedance electronics, providing online dose information. The main monitoring variables, delivered in real-time, include beam current, integrated charge and dose rate. Hence the dose and integrated current delivered at a given instant to an experimental setup can be computer-controlled with a shutter. In this work, we report on experimental results and Geant4 simulations of a setup which exploits for the first time the 18 MeV proton beam from a PET cyclotron to irradiate a selected region of a target using the developed irradiation system. By using this system, we are able to deliver a homogeneous beam on targets with 18 mm diameter, allowing to achieve the controlled irradiation of cell cultures located in biological multi-well dishes of 16 mm diameter. We found that the magnetic field applied inside the cyclotron plays a major role for achieving the referred to homogeneity. The quasi-Gaussian curve obtained by scanning the magnet current and measuring the corresponding dose rate must be measured before any irradiation procedure, with the shutter closed. At the optimum magnet current, which corresponds to the center of the Gaussian, a homogenous dose is observed over the whole target area. Making use of a rotating disk with a slit of 0.5 mm at a radius of 150 mm, we could measure dose rates on target ranging from 500 mGy/s down to 5 mGy/s. For validating the developed irradiation setup, several Gafchromic® EBT2 films were exposed to different values of dose. The absolute dose in the irradiated films were assessed in the 2D film dosimetry system of the Department of Radiotherapy of Coimbra University Hospital Center with a precision better than 2%. In the future, we plan

  13. Low Temperature Distillation for Desalination

    NASA Astrophysics Data System (ADS)

    Schultz, William

    2013-11-01

    We examine a unique configuration that combines the evaporator and condenser in a low temperature distillation process. The low temperature (pressure) container is designed to use waste heat from a power plant as the hot source and a water reservoir as the cold source. Fresh and saline streams of droplets in close proximity create interesting hydrodynamic challenges for the directional stability of the droplets.

  14. Defect characterization of proton irradiated GaAs pn-junction diodes with layers of InAs quantum dots

    NASA Astrophysics Data System (ADS)

    Sato, Shin-ichiro; Schmieder, Kenneth J.; Hubbard, Seth M.; Forbes, David V.; Warner, Jeffrey H.; Ohshima, Takeshi; Walters, Robert J.

    2016-05-01

    In order to expand the technology of III-V semiconductor devices with quantum structures to both terrestrial and space use, radiation induced defects as well as native defects generated in the quantum structures should be clarified. Electrically active defects in GaAs p+n diodes with embedded ten layers of InAs quantum dots (QDs) are investigated using Deep Level Transient Fourier Spectroscopy. Both majority carrier (electron) and minority carrier (hole) traps are characterized. In the devices of this study, GaP layers are embedded in between the QD layers to offset the compressive stress introduced during growth of InAs QDs. Devices are irradiated with high energy protons for three different fluences at room temperature in order to characterize radiation induced defects. Seven majority electron traps and one minority hole trap are found after proton irradiation. It is shown that four electron traps induced by proton irradiation increase in proportion to the fluence, whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. These defects correspond to electron traps previously identified in GaAs. In addition, a 0.53 eV electron trap and a 0.14 eV hole trap are found in the QD layers before proton irradiation. It is shown that these native traps are also unaffected by irradiation. The nature of the 0.14 eV hole trap is thought to be Ga-vacancies in the GaP strain balancing layers.

  15. Characterizing the response of miniature scintillation detectors when irradiated with proton beams

    PubMed Central

    Archambault, Louis; Polf, Jerimy C.; Beaulieu, Luc; Beddar, Sam

    2014-01-01

    Designing a plastic scintillation detector for proton radiation therapy requires careful consideration. Most plastic scintillators should not perturb a proton beam if they are sufficiently small but may exhibit some energy dependence due to quenching effect. In this work, we studied the factors that would affect the performance of such scintillation detectors. We performed Monte Carlo simulations of proton beams with energies between 50 and 250 MeV to study signal amplitude, water equivalence, spatial resolution, and quenching of light output. Implementation of the quenching effect in the Monte Carlo simulations was then compared with prior experimental data for validation. The signal amplitude of a plastic scintillating fiber detector was on the order of 300 photons per MeV of energy deposited in the detector, corresponding to a power of about 30 pW at a proton dose rate of 100 cGy/min. The signal amplitude could be increased by up to a factor of 2 with reflective coating. We also found that Cerenkov light was not a significant source of noise. Dose deposited in the plastic scintillator was within 2% of the dose deposited in a similar volume of water throughout the whole depth-dose curve for protons with energies higher than 50 MeV. A scintillation detector with a radius of 0.5 mm offers a sufficient spatial resolution for use with a proton beam of 100 MeV or more. The main disadvantage of plastic scintillators when irradiated by protons was the quenching effect, which reduced the amount of scintillation and resulted in dose underestimation by close to 30% at the Bragg peak for beams of 150 MeV or more. However, the level of quenching was nearly constant throughout the proximal half of the depth-dose curve for all proton energies considered. We therefore conclude that it is possible to construct an effective detector to overcome the problems traditionally encountered in proton dosimetry. Scintillation detectors could be used for surface or shallow measurements

  16. Photoreaction of tyrosine-iodinated bacteriorhodopsin at low temperature.

    PubMed

    Iwasa, T; Takeda, K; Tokunaga, F; Scherrer, P S; Packer, L

    1982-11-01

    To elucidate the role of tyrosine residues in the shift of lambda max and the light-driven proton pump of bacteriorhodopsin, the photochemical reaction of tyrosine-iodinated bacteriorhodopsin (tyr-mod-bR) was investigated by low-temperature spectrophotometry. After 4-5 of 11 tyrosine residues of bacteriorhodopsin were iodinated, the meta-intermediate of tyr-mod-bR in 75% glycerol solution became so stable that its decay could be observed even at room temperature and it was stable in the dark for several hours at -65 degrees C. Four batho-intermediates were formed by irradiation with green light (500 nm) at -170 degrees C. Like native bacteriorhodopsin, these batho-intermediates were photoreversible at -170 degrees C. Four corresponding meta-intermediates were also formed by irradiation at -60 degrees C. Using the difference spectra between meta-intermediates and tyr-mod-bR, the absorption spectra of four kinds of tyr-mod-bRs, batho-intermediates, and meta-intermediates were estimated. Each was at shorter wavelengths than that of its corresponding type in native bacteriorhodopsin. The results indicate that two or more tyrosine residues have some role in determining color in native bacteriorhodopsin.

  17. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    NASA Astrophysics Data System (ADS)

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T.; Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D.

    2013-01-01

    We report an efficient and stable scheme to generate ˜200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0×1020 W/cm2. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  18. Proton Irradiation Facility and space radiation monitoring at the Paul Scherrer Institute.

    PubMed

    Hajdas, W; Zehnder, A; Adams, L; Buehler, P; Harboe-Sorensen, R; Daum, M; Nickson, R; Daly, E; Nieminen, P

    2001-01-01

    The Proton Irradiation Facility (PIF) has been designed and constructed, in cooperation between Paul Scherrer Institute (PSI) and European Space Agency (ESA), for terrestrial proton testing of components and materials for spacecraft. Emphasis has been given to generating realistic proton spectra encountered by space-flights at any potential orbit. The facility, designed in a user-friendly manner, can be readily adapted to the individual requirements of experimenters. It is available for general use serving also in testing of radiation monitors and for proton experiments in different scientific disciplines. The Radiation Environment Monitor REM has been developed for measurements of the spacecraft radiation conditions. Two instruments were launched into space, one into a Geo-stationary Transfer Orbit on board of the STRV-1b satellite and one into a Low Earth Orbit on the Russian MIR station. The next generation of monitors (SREMs--Standard REMs) is currently under development in partnership of ESA, PSI and Contraves-Space. They will operate both as minimum intrusive monitors, which provide radiation housekeeping data and alert the spacecraft when the radiation level crosses allowed limits and as small scientific devices measuring particle spectra and fluxes. Future missions as e.g. INTEGRAL, STRV-1c and PROBA will be equipped with new SREMs.

  19. LET-dependent radiosensitization effects of gold nanoparticles for proton irradiation

    NASA Astrophysics Data System (ADS)

    Li, Sha; Penninckx, Sébastien; Karmani, Linda; Heuskin, Anne-Catherine; Watillon, Kassandra; Marega, Riccardo; Zola, Jerome; Corvaglia, Valentina; Genard, Geraldine; Gallez, Bernard; Feron, Olivier; Martinive, Philippe; Bonifazi, Davide; Michiels, Carine; Lucas, Stéphane

    2016-11-01

    The development of new modalities and protocols is of major interest to improve the outcome of cancer treatment. Given the appealing physical properties of protons and the emerging evidence of biological relevance of the use of gold nanoparticles (GNPs), the radiosensitization effects of GNPs (5 or 10 nm) have been investigated in vitro in combination with a proton beam of different linear energy transfer (LET). After the incubation with GNPs for 24 h, nanoparticles were observed in the cytoplasm of A431 cells exposed to 10 nm GNPs, and in the cytoplasm as well as the nucleus of cells exposed to 5 nm GNPs. Cell uptake of 0.05 mg ml-1 of GNPs led to 0.78 pg Au/cell and 0.30 pg Au/cell after 24 h incubation for 10 and 5 nm GNPs respectively. A marked radiosensitization effect of GNPs was observed with 25 keV μm-1 protons, but not with 10 keV μm-1 protons. This effect was more pronounced for 10 nm GNPs than for 5 nm GNPs. By using a radical scavenger, a major role of reactive oxygen species in the amplification of the death of irradiated cell was identified. All together, these results open up novel perspectives for using high-Z metallic NPs in protontherapy.

  20. Neutron production by a 13C thick target irradiated by 20 90 MeV protons

    NASA Astrophysics Data System (ADS)

    Lhersonneau, G.; Malkiewicz, T.; Vakhtin, D.; Plokhoi, V.; Alyakrinskiy, O.; Barbui, M.; Brandenburg, S.; Dendooven, P.; Cinausero, M.; Kandiev, Ya.; Kettunen, H.; Khlebnikov, S.; Lyapin, V.; Penttilä, H.; Prete, G.; Rizzi, V.; Samarin, S.; Tecchio, L. B.; Trzaska, W. H.; Tyurin, G.

    2008-10-01

    Neutron production using an enriched 13C carbon converter has been measured during the design study of the italian RIB facility SPES. Energy and angular distributions of neutrons emitted by bombarding a 13C target of stopping length with protons in the range of 20 to 90 MeV have been measured by time-of-flight and activation and compared with the prediction of a Monte Carlo code developed at Snezhinsk. At the proton energy of 100 MeV, firstly envisaged for SPES, the gain with respect to a natural C target is less than a factor of two, while yields still compare well with those for 40 MeV deuterons on natural carbon adopted by SPIRAL-II. At energies near 30 MeV the 13C thick target is definitely more prolific than the target of natural carbon, but both yields with protons are clearly lower than the one with deuterons. At the energy of 20 MeV envisaged for a first stage of SPES it might be more efficient to irradiate the uranium target with protons rather than using the two-stage method with converter.

  1. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  2. Proton irradiation effects on advanced digital and microwave III-V components

    SciTech Connect

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R.; Sandoval, C.E.; Connors, M.P.; Sheridan, T.J.; Sexton, F.W.; Slayton, E.M.; Heise, J.A.; Foster, C.

    1994-09-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10{sup 10} to 2 {times} 10{sup 14} protons/cm{sup 2}. Large soft-error rates were measured for digital GaAs MESFET (3 {times} 10{sup {minus}5} errors/bit-day) and heterojunction bipolar circuits (10{sup {minus}5} errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-{mu}m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10{sup 14} protons/cm{sup 2} [equivalent to total doses in excess of 10 Mrad(GaAs)].

  3. Acute effects of whole-body proton irradiation on the immune system of the mouse

    NASA Technical Reports Server (NTRS)

    Kajioka, E. H.; Andres, M. L.; Li, J.; Mao, X. W.; Moyers, M. F.; Nelson, G. A.; Slater, J. M.; Gridley, D. S.

    2000-01-01

    The acute effects of proton whole-body irradiation on the distribution and function of leukocyte populations in the spleen and blood were examined and compared to the effects of photons derived from a (60)Co gamma-ray source. Adult female C57BL/6 mice were exposed to a single dose (3 Gy at 0.4 Gy/min) of protons at spread-out Bragg peak (SOBP), protons at the distal entry (E) region, or gamma rays and killed humanely at six different times thereafter. Specific differences were noted in the results, thereby suggesting that the kinetics of the response may be variable. However, the lack of significant differences in most assays at most times suggests that the RBE for both entry and peak regions of the Bragg curve was essentially 1.0 under the conditions of this study. The greatest immunodepression was observed at 4 days postexposure. Flow cytometry and mitogenic stimulation analyses of the spleen and peripheral blood demonstrated that lymphocyte populations differ in radiosensitivity, with B (CD19(+)) cells being most sensitive, T (CD3(+)) cells being moderately sensitive, and natural killer (NK1.1(+)) cells being most resistant. B lymphocytes showed the most rapid recovery. Comparison of the T-lymphocyte subsets showed that CD4(+) T helper/inducer cells were more radiosensitive than the CD8(+) T cytotoxic/suppressor cells. These findings should have an impact on future studies designed to maximize protection of normal tissue during and after proton-radiation exposure.

  4. Early irradiation of matter in the solar system - Magnesium /proton, neutron/ scheme

    NASA Technical Reports Server (NTRS)

    Heymann, D.; Dziczkaniec, M.

    1976-01-01

    The occurrence of positive and negative Mg-26 anomalies in inclusions of the Allende meteorite is explained in terms of proton bombardment of a gas of solar composition. A significant fraction of Mg-26 in the irradiated gas is stored temporarily in the form of radioactive Al-26 by the reaction Mg-26(p, n)Al-26. Proton fluxes of 10 to the 17th power to 10 to the 19th power protons per square centimeter per year at 1 million electron volts are inferred. Aluminum-rich materials condensing from the gas phase have positive Mg-26 anomalies, whereas magnesium-rich materials have negative Mg-26 anomalies. The proton flux required to account for the observed magnesium anomalies is used to investigate possible isotopic anomalies in the elements from oxygen to argon. Detectable isotopic anomalies are predicted only for neon. The anomalous neon is virtually pure Ne-22 from Na-22 decay. The predicted amount of anomalous Ne-22 is about 10 to the -8th power cubic centimeter (at standard temperature and pressure) per milligram of sodium.

  5. Proton irradiation effects on advanced digital and microwave III-V components

    SciTech Connect

    Hash, G.L.; Schwank, J.R.; Shaneyfelt, M.R. )

    1994-12-01

    A wide range of advanced III-V components suitable for use in high-speed satellite communication systems were evaluated for displacement damage and single-event effects in high-energy, high-fluence proton environments. Transistors and integrated circuits (both digital and MMIC) were irradiated with protons at energies from 41 to 197 MeV and at fluences from 10[sup 10] to 2 [times] 10[sup 14] protons/cm[sup 2]. Large soft-error rates were measured for digital GaAs MESFET (3 [times] 10[sup [minus]5] errors/bit-day) and heterojunction bipolar circuits (10[sup [minus]5] errors/bit-day). No transient signals were detected from MMIC circuits. The largest degradation in transistor response caused by displacement damage was observed for 1.0-[mu]m depletion- and enhancement-mode MESFET transistors. Shorter gate length MESFET transistors and HEMT transistors exhibited less displacement-induced damage. These results show that memory-intensive GaAs digital circuits may result in significant system degradation due to single-event upset in natural and man-made space environments. However, displacement damage effects should not be a limiting factor for fluence levels up to 10[sup 14] protons/cm[sup 2] [equivalent to total doses in excess of 10 Mrad (GaAs)].

  6. Electron and omnidirectional proton irradiations of AlGaAs-GaAs solar cells

    NASA Astrophysics Data System (ADS)

    Roux, M.; Reulet, R.; Bernard, J.; Suzuki, A.; Sugawara, K.

    Space use of GaAs solar cells is subordinated to a better knowledge of the degradation due to ionizing particles. Omnidirectional fluxes of 10-MeV protons are simulated in the experiments. I-V curves and DLTS measurements are carried out on the same device. Results obtained on AlGaAs-GaAs cells are compared with the degradation due to 1 and 2-MeV electrons. Challenge with silicon solar cells is discussed. 10-MeV proton irradiations give lower degradation of photovoltaic parameters in AlGaAs-GaAs solar cells than in Si solar cells. Electron damages are of the same order of magnitude. Coefficients of equivalence for Isc are deduced from these results.

  7. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    SciTech Connect

    Woods, D.H.; Hardy, K.A.; Cox, A.B.; Salmon, Y.L.; Yochmowitz, M.G.; Cordts, R.E. )

    1989-05-15

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  8. A method for depth-dose distribution measurements in tissue irradiated by a proton beam

    SciTech Connect

    Gambarini, G.; Birattari, C.; Bartolo, D. de

    1994-12-31

    The use of protons and heavy ions for the treatment of malignant and non-malignant disease has aroused a growing interest in the last decade. The notable advantage of heavy charged particles over photons in external beam radiotherapy lies in the possibility of irradiating a small localized region within the body, keeping a low value for the entrance dose. Owing to this high disuniformity of energy deposition, an essential requirement for treatment planning is a precise evaluation of the spatial distribution of absorbed dose. The proposed method for depth-dose distribution measurements utilizes a chemical dosimeter (ferrous sulphate solution plus sulfuric acid and eventually xylenol orange) incorporated in a gelatine, whose role is the maintenance of spatial information. Ionizing radiation causes a variation in some parameters of the system such as the proton relaxation rates in the solution (measurable by NMR analysis) or the optical absorption of the gel in the visible spectrum (measurable by spectrophotometry).

  9. Delayed effects of proton irradiation in Macaca Mulatta (22-year summary)

    NASA Astrophysics Data System (ADS)

    Woods, D. H.; Hardy, K. A.; Cox, A. B.; Salmon, Y. L.; Yochmowitz, M. G.; Cordts, R. E.

    1989-05-01

    Lifetime observations on a group of rhesus monkeys indicate that life expectancy loss from exposure to protons in the energy range encountered in the Van Allen belts and solar proton events can be correlated with the dose and energy of radiation. The primary cause of life shortening is nonleukemic cancers. Radiation also increased the rise of endometriosis (an abnormal proliferation of the lining of the uterus in females). Other effects associated with radiation exposures are lowered glucose tolerance and increased incidence of cataracts. Calculations of the relative risk of fatal cancers in the irradiated subjects reveal that the total body surface dose required to double the risk of death from cancer over a 20-year post exposure period varies with the linear energy transfer (LET) of the radiation. The ability to determine the integrated dose and LET spectrum in space radiation exposures of humans is, therefore, critical to the assessment of lifetime cancer risk.

  10. Investigation of the Geometric Accuracy of Proton Beam Irradiation in the Liver

    SciTech Connect

    Fukumitsu, Nobuyoshi; Hashimoto, Takayuki; Okumura, Toshiyuki; Mizumoto, Masashi; Tohno, Eriko; Fukuda, Kuniaki; Abei, Masato; Sakae, Takeji; Sakurai, Hideyuki

    2012-02-01

    Purpose: To investigate the geometric accuracy of proton beam irradiation to the liver by measuring the change in Hounsfield units (HUs) after irradiation. Methods and Materials: We examined 21 patients with liver tumors who were treated with respiratory-gated proton beam therapy (PBT). The radiation dose was 66 GyE in 12 patients and 72.6 GyE in 9 patients. Image registration and reslicing of the computed tomography (CT) results obtained within 1 month before and 3 months after PBT was performed, referring to the planning CT image. The resliced CT images obtained after PBT were subtracted from the images obtained before PBT. We investigated whether the area of the large HU change was consistent with the high-dose distribution area using the location of the largest change in HU around the tumor (peak) on the subtracted CT image and the 90% dose distribution area of the planning CT image. Results: The number of patients (n = 20) whose left-right peaks were within the 90% dose distribution area was significantly larger than the number of patients whose anterior-posterior peaks and superior-inferior peaks were within the 90% dose distribution area (n = 14, n = 13, p = 0.034, and p = 0.02, respectively). Twelve patients exhibited a peak within the 90% dose distribution area in all directions. Nine of the 11 patients with smaller 90% confidence intervals of the percent normalization of the beam cycle (BC; 90% BC) showed a peak within the 90% dose distribution area in six directions, and this percentage was higher than that among the patients with larger 90% BC (3/10, p = 0.03). Conclusion: The geometric accuracy of proton beam irradiation to the liver was higher in the left-right direction than in the other directions. Patients with an irregular respiratory rhythm have a greater risk of a reduced geometric accuracy of PBT in the liver.

  11. Deciphering the acute cellular phosphoproteome response to irradiation with X-rays, protons and carbon ions.

    PubMed

    Winter, Martin; Dokic, Ivana; Schlegel, Julian; Warnken, Uwe; Debus, Jürgen; Abdollahi, Amir; Schnölzer, Martina

    2017-03-16

    Radiotherapy is a cornerstone of cancer therapy. The recently established particle therapy with raster-scanning protons and carbon ions landmarks a new era in the field of high-precision cancer medicine. However, molecular mechanisms governing radiation induced intracellular signaling remain elusive. Here, we present the first comprehensive proteomic and phosphoproteomic study applying stable isotope labeling by amino acids in cell culture (SILAC) in combination with high-resolution mass spectrometry to decipher cellular response to irradiation with X-rays, protons and carbon ions. At protein expression level limited alterations were observed 2h post irradiation of human lung adenocarcinoma cells. In contrast, 181 phosphorylation sites were found to be differentially regulated out of which 151 sites were not hitherto attributed to radiation response as revealed by crosscheck with the PhosphoSitePlus database. Radiation-induced phosphorylation of the p(S/T)Q motif was the prevailing regulation pattern affecting proteins involved in DNA damage response signaling. Since radiation doses were selected to produce same level of cell kill and DNA double-strand breakage for each radiation quality, DNA damage responsive phosphorylation sites were regulated to same extent. However, differential phosphorylation between radiation qualities was observed for 55 phosphorylation sites indicating the existence of distinct signaling circuitries induced by X-ray versus particle (proton/carbon) irradiation beyond the canonical DNA damage response. This unexpected finding was confirmed in targeted spike-in experiments using synthetic isotope labeled phosphopeptides. Herewith, we successfully validated uniform DNA damage response signaling coexisting with altered signaling involved in apoptosis and metabolic processes induced by X-ray and particle based treatments. In summary, the comprehensive insight into the radiation-induced phosphoproteome landscape is instructive for the design of

  12. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation.

    PubMed

    Schumann, A; Petzoldt, J; Dendooven, P; Enghardt, W; Golnik, C; Hueso-González, F; Kormoll, T; Pausch, G; Roemer, K; Fiedler, F

    2015-05-21

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.

  13. Simulation and experimental verification of prompt gamma-ray emissions during proton irradiation

    NASA Astrophysics Data System (ADS)

    Schumann, A.; Petzoldt, J.; Dendooven, P.; Enghardt, W.; Golnik, C.; Hueso-González, F.; Kormoll, T.; Pausch, G.; Roemer, K.; Fiedler, F.

    2015-05-01

    Irradiation with protons and light ions offers new possibilities for tumor therapy but has a strong need for novel imaging modalities for treatment verification. The development of new detector systems, which can provide an in vivo range assessment or dosimetry, requires an accurate knowledge of the secondary radiation field and reliable Monte Carlo simulations. This paper presents multiple measurements to characterize the prompt γ-ray emissions during proton irradiation and benchmarks the latest Geant4 code against the experimental findings. Within the scope of this work, the total photon yield for different target materials, the energy spectra as well as the γ-ray depth profile were assessed. Experiments were performed at the superconducting AGOR cyclotron at KVI-CART, University of Groningen. Properties of the γ-ray emissions were experimentally determined. The prompt γ-ray emissions were measured utilizing a conventional HPGe detector system (Clover) and quantitatively compared to simulations. With the selected physics list QGSP_BIC_HP, Geant4 strongly overestimates the photon yield in most cases, sometimes up to 50%. The shape of the spectrum and qualitative occurrence of discrete γ lines is reproduced accurately. A sliced phantom was designed to determine the depth profile of the photons. The position of the distal fall-off in the simulations agrees with the measurements, albeit the peak height is also overestimated. Hence, Geant4 simulations of prompt γ-ray emissions from irradiation with protons are currently far less reliable as compared to simulations of the electromagnetic processes. Deviations from experimental findings were observed and quantified. Although there has been a constant improvement of Geant4 in the hadronic sector, there is still a gap to close.

  14. Production of organic molecules in the outer solar system by proton irradiation - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Scattergood, T.; Lesser, P.; Owen, T.

    1975-01-01

    Preliminary experiments to investigate the formation of colored polymers and other interesting molecules by the irradiation of gas mixtures with protons are discussed. As in previous experiments, colored polymers were produced. An important feature of the present work is the presence or absence of absorption at 5 microns in the different materials produced; Titan is quite dark at this wavelength and Io is fairly bright. Such features may provide criteria for accepting or rejecting various materials produced in these experiments as reasonable coloring agents for the outer solar system.

  15. Production of organic molecules in the outer solar system by proton irradiation - Laboratory simulations

    NASA Technical Reports Server (NTRS)

    Scattergood, T.; Lesser, P.; Owen, T.

    1975-01-01

    Preliminary experiments to investigate the formation of colored polymers and other interesting molecules by the irradiation of gas mixtures with protons are discussed. As in previous experiments, colored polymers were produced. An important feature of the present work is the presence or absence of absorption at 5 microns in the different materials produced; Titan is quite dark at this wavelength and Io is fairly bright. Such features may provide criteria for accepting or rejecting various materials produced in these experiments as reasonable coloring agents for the outer solar system.

  16. Nuclear excitation functions from 40 to 200 MeV proton irradiation of terbium

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Parker, Lauren A.; Jackman, Kevin R.; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2016-01-01

    Nuclear formation cross sections are reported for 26 radionuclides, measured with 40-200 MeV proton irradiations of terbium foils. These data provide the basis for the production of medically relevant radionuclides (e.g., 152Tb, 155Tb, 155Eu, and 156Eu) and 153Gd, a potential source used in ongoing efforts to characterize stellar nucleosynthesis routes. Computational predictions from the ALICE2011, CEM03.03, Bertini, and INCL + ABLA codes are compared with newly measured data to contribute to the ongoing process of code development, and yields are calculated for selected radionuclides using measured data.

  17. Size- and shape-controlled synthesis of Ag nanomaterials via proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Yeong-Joon; Song, Jae Hee

    2012-07-01

    We present a facile one-pot synthetic route for the production of silver nanocrystals via a simple proton beam irradiation process at room temperature. Size- and shape-controlled silver nanostructures were prepared in an aqueous phase-based solution without the addition of any harsh reductants just by changing the stabilizer and by controlling the molar concentration ratios of surfactants to metal precursors. We observed that the size of the resulting Ag nanocrystals was easily varied by changing the stabilizer from hexadecyltrimethylammonium bromide to sodium dodecyl sulfate. We also found that the size of the prepared silver nanocrystals decreased as the molar ratio of hexadecyltrimethylammonium bromide to silver ions was increased.

  18. A 20-Year Review of Mortality in Proton-Irradiated Monkeys

    DTIC Science & Technology

    1987-01-01

    PERSONAL AUTHOR(S) Yochmowitz MG; Wood DH; Salmon YL; Hardy KA 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115 PAGE...Mortality in Proton- rads and :55 MeV. Irradiated Monkeys, Michael G. Yochmowitz, 4. Death rates compared to controls began to increase David H. ; Wood ... Yolanda L. Salmon, Kenneth A. after -8 yr in 400 rads, after -2 yr in 500 to 600 rads, and Hardy (USA FSA ), invited -I yr in the 800-rad subjects. 5. Of

  19. Proton and gamma irradiation of Fabry-Perot quantum cascade lasers for space qualification

    DOE PAGES

    Myers, Tanya L.; Cannon, Bret D.; Brauer, Carolyn S.; ...

    2015-01-20

    Fabry-Perot quantum cascade lasers (QCLs) were characterized following irradiation by high energy (64 MeV) protons and Cobalt-60 gamma rays. Seven QCLs were exposed to radiation dosages that are typical for a space mission in which the total accumulated dosages from both radiation sources varied from 20 krad(Si) to 46.3 krad(Si). The QCLs did not show any measurable changes in threshold current or slope efficiency suggesting the suitability of QCLs for use in space-based missions.

  20. Analysis of the (148)Gd and (154)Dy Content in Proton-Irradiated Lead Targets.

    PubMed

    Talip, Z; Pfister, S; Dressler, R; David, J C; Vögele, A; Vontobel, P; Michel, R; Schumann, D

    2017-06-20

    This work presents the determination of the (148)Gd and (154)Dy content in Pb targets irradiated by 220-2600 MeV protons. It includes the chemical separation of lanthanides, followed by the preparation of proper samples, by molecular plating technique, for α-spectrometry measurements. The experimental cross section results were compared with theoretical predictions, calculated with the INCL++-ABLA07 code. The comparisons showed a satisfactory agreement for (148)Gd (less than within a factor two), while measured (154)Dy cross sections are higher than the theoretical values.

  1. Proposal for an irradiation facility at the TAEK SANAEM Proton Accelerator Facility

    NASA Astrophysics Data System (ADS)

    Demirköz, B.; Gencer, A.; Kiziloren, D.; Apsimon, R.

    2013-12-01

    Turkish Atomic Energy Authority's (TAEK's) Proton Accelerator Facility in Ankara, Turkey, has been inaugurated in May 2012 and is under the process of being certified for commercial radio-isotope production. Three of the four arms of the 30 MeV cyclotron are being used for radio-isotope production, while the fourth is foreseen for research and development of novel ideas and methods. The cyclotron can vary the beam current between 12 μA and 1.2 mA, sufficient for irradiation tests for semiconductor materials, detectors and devices. We propose to build an irradiation facility in the R&D room of this complex, open for use to the international detector development community.

  2. Proton driven acceleration by intense laser pulses irradiating thin hydrogenated targets

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Cutroneo, M.; Cavallaro, S.; Giuffrida, L.; Andò, L.; Cirrone, P.; Bertuccio, G.; Puglisi, D.; Calcagno, L.; Verona, C.; Picciotto, A.; Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Krousky, E.; Pfeiffer, M.; Skala, J.; Ullschmied, J.; Wolowski, J.; Badziak, J.; Rosinski, M.; Ryc, L.; Szydlowski, A.

    2013-05-01

    The Asterix iodine laser of the PALS laboratory in Prague, operating at 1315 nm fundamental frequency, 300 ps pulse duration, 600 J maximum pulse energy and 1016 W/cm2 intensity, is employed to irradiate thin hydrogenated targets placed in high vacuum. Different metallic and polymeric targets allow to generate multi-energetic and multi-specie ion beams showing peculiar properties. The plasma obtained by the laser irradiation is monitored, in terms of properties of the emitted charge particles, by using time-of-flight techniques and Thomson parabola spectrometer (TPS). A particular attention is given to the proton beam production in terms of the maximum energy, emission yield and angular distribution as a function of the laser energy, focal position (FP), target thickness and composition.

  3. Behavior of optical thin-film materials and coatings under proton and gamma irradiation.

    PubMed

    Di Sarcina, Ilaria; Grilli, Maria Luisa; Menchini, Francesca; Piegari, Angela; Scaglione, Salvatore; Sytchkova, Anna; Zola, Danilo

    2014-02-01

    Optical materials and coatings are exposed to the flux of energetic particles when used in either space applications or nuclear energy plants. The study of their behavior in such an environment is important to avoid failure of the optical components during their operation. The optical performance of several thin-film materials ((HfO2, Ta2O5, Nb2O5, TiO2, SiO2) and coatings, under irradiation with high-dose gamma rays (5.8 MGy) and exposure to low-energy (60 keV) protons, has been investigated. Some variations of optical properties have been detected in silicon oxide after irradiation, while the other materials are stable in such conditions.

  4. Wavelength shifting in GaAs quantum well lasers by proton irradiation

    SciTech Connect

    Tan, H.H.; Jagadish, C.

    1997-11-01

    Proton irradiation followed by rapid thermal annealing was used to selectively induce layer intermixing and thus shift the emission wavelengths of GaAs{endash}AlGaAs graded-index separate-confinement-heterostructure quantum well lasers. Up to 40 nm shifts were observed in 4 {mu}m ridge waveguide devices irradiated to a dose of 1.5{times}10{sup 16}cm{sup {minus}2}. Although the wavelength shifts were accompanied by some degradation in the lasing threshold current and differential quantum efficiency, they were still quite acceptable at moderate wavelength shifts. This technique provides a simple and promising postgrowth process of integrating lasers of different wavelengths for wavelength-division-multiplexing applications. {copyright} {ital 1997 American Institute of Physics.}

  5. {sup 1}H and {sup 31}P nuclear magnetic resonance study of proton-irradiated KH{sub 2}PO{sub 4}

    SciTech Connect

    Kim, Se-Hun; Lee, Kyu Won; Oh, B. H.; Lee, Cheol Eui; Hong, K. S.

    2007-11-01

    We have studied the microscopic structure and dynamics in a proton-irradiated KH{sub 2}PO{sub 4} single crystal. Our {sup 1}H and {sup 31}P nuclear magnetic resonance measurements indicate that proton irradiation gives rise to a decrease in the local dipolar order of the rigid lattice protons and an increase in interstitial protons as well as structural distortion of the PO{sub 4} tetrahedra.

  6. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  7. Dose and dose rate effects of whole-body proton-irradiation on lymphocyte blastogenesis and hematological variables: part II

    NASA Technical Reports Server (NTRS)

    Pecaut, Michael J.; Gridley, Daila S.; Smith, Anna L.; Nelson, Gregory A.

    2002-01-01

    The goal of part II of this study was to evaluate functional characteristics of leukocytes and circulating blood cell parameters after whole-body proton irradiation at varying doses and at low- and high-dose-rates (LDR and HDR, respectively). C57BL/6 mice (n=51) were irradiated and euthanized at 4 days post-exposure for assay. Significant radiation dose- (but not dose-rate-) dependent decreases were observed in splenocyte responses to T and B cell mitogens when compared to sham-irradiated controls (P<0.001). Spontaneous blastogenesis, also significantly dose-dependent, was increased in both blood and spleen (P<0.001). Red blood cell counts, hemoglobin concentration, and hematocrit were decreased in a dose-dependent manner (P<0.05), whereas thrombocyte numbers were only slightly affected. Comparison of proton- and gamma-irradiated groups (both receiving 3 Gy at HDR) showed a higher level of spontaneous blastogenesis in blood leukocytes and a lower splenocyte response to concanavalin A following proton irradiation (P<0.05). There were no dose rate effects. Collectively, the data demonstrate that the measurements in blood and spleen were largely dependent upon the total dose of proton radiation and that an 80-fold difference in the dose rate was not a significant factor. A difference, however, was found between protons and gamma-rays in the degree of change induced in some of the measurements.

  8. High Strain Fatigue Properties of the F82H Ferritic-Martensitic Steel under Proton Irradiation.

    SciTech Connect

    Marmy, P; Oliver, Brian M. )

    2003-05-15

    During the up and down cycles of a fusion reactor, the first wall is exposed concomitantly to a flux of energetic neutrons that generates radiation defects and to a neutron thermal flux that induces thermal stresses. The resulting strains may exceed the elastic limit and induce a plastic deformation in the material. A similar situation occurs in the window of a spallation liquid source target and results in the same type of damage. This particular loading has been simulated in F82H martensitic ferritic steel, using a device allowing a fatigue test to be carried out during irradiation with 590 MeV protons. All fatigue tests were carried out at 300?C, in a strain controlled test at strain levels around 0.8%. Two different signals have been used: a fully symmetrical triangle wave signal (R=-1) and a triangle ramp with 2 min tension holds. The fatigue was investigated under three different conditions: unirradiated , irradiated and post irradiation tested, and finally in beam tested. The main result is that the in beam tested specimens have the lowest life as compared to the post irradiation tested specimens and unirradiated specimens. Hydrogen is suspected to be the main contributor to the observed embrittlement.

  9. High strain fatigue properties of F82H ferritic martensitic steel under proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Oliver, B. M.

    2003-05-01

    During the up and down cycles of a fusion reactor, the first wall is exposed concomitantly to a flux of energetic neutrons that generates radiation defects and to a thermal flux that induces thermal stresses. The resulting strains may exceed the elastic limit and induce plastic deformation in the material. A similar situation occurs in the window of a spallation liquid source target and results in the same type of damage. This particular loading has been simulated in F82H ferritic-martensitic steel, using a device allowing a fatigue test to be carried out during irradiation with 590 MeV protons. All fatigue tests were carried out in a strain controlled test at strain levels around 0.8% and at 300 °C. Two different signals have been used: a fully symmetrical triangle wave signal ( R=-1) and a triangle ramp with 2 min tension holds. The fatigue was investigated under three different conditions: unirradiated, irradiated and post-irradiation tested, and finally in-beam tested. The main result is that the in-beam tested specimens have the lowest life as compared to the post-irradiation tested specimen and unirradiated specimen. Hydrogen is suspected to be the main contributor to the observed embrittlement.

  10. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation

    PubMed Central

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-01-01

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from 12C (4.44 MeV) and 16O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 107 oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from 16O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring 16O PG emission. PMID:23920051

  11. Measurement of characteristic prompt gamma rays emitted from oxygen and carbon in tissue-equivalent samples during proton beam irradiation.

    PubMed

    Polf, Jerimy C; Panthi, Rajesh; Mackin, Dennis S; McCleskey, Matt; Saastamoinen, Antti; Roeder, Brian T; Beddar, Sam

    2013-09-07

    The purpose of this work was to characterize how prompt gamma (PG) emission from tissue changes as a function of carbon and oxygen concentration, and to assess the feasibility of determining elemental concentration in tissues irradiated with proton beams. For this study, four tissue-equivalent water-sucrose samples with differing densities and concentrations of carbon, hydrogen, and oxygen were irradiated with a 48 MeV proton pencil beam. The PG spectrum emitted from each sample was measured using a high-purity germanium detector, and the absolute detection efficiency of the detector, average beam current, and delivered dose distribution were also measured. Changes to the total PG emission from (12)C (4.44 MeV) and (16)O (6.13 MeV) per incident proton and per Gray of absorbed dose were characterized as a function of carbon and oxygen concentration in the sample. The intensity of the 4.44 MeV PG emission per incident proton was found to be nearly constant for all samples regardless of their carbon concentration. However, we found that the 6.13 MeV PG emission increased linearly with the total amount (in grams) of oxygen irradiated in the sample. From the measured PG data, we determined that 1.64 × 10(7) oxygen PGs were emitted per gram of oxygen irradiated per Gray of absorbed dose delivered with a 48 MeV proton beam. These results indicate that the 6.13 MeV PG emission from (16)O is proportional to the concentration of oxygen in tissue irradiated with proton beams, showing that it is possible to determine the concentration of oxygen within tissues irradiated with proton beams by measuring (16)O PG emission.

  12. Gene Expression Changes in Mouse Intestinal Tissue Following Whole-Body Proton or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Zhang, Ye; Mangala, Lingegowda; Nie, Ying; Gridley, Daila; Hamilton, Stanley R.; Seidel, Derek V.; Wu, Honglu

    2014-01-01

    Crew members face potential consequences following exposure to the space radiation environment including acute radiation syndrome and cancer. The space radiation environment is ample with protons, and numerous studies have been devoted to the understanding of the health consequences of proton exposures. In this project, C57BL/6 mice underwent whole-body exposure to 250 MeV of protons at doses of 0, 0.1, 0.5, 2 and 6 Gy and the gastrointestinal (GI) tract of each animal was dissected four hours post-irradiation. Standard H&E staining methods to screen for morphologic changes in the tissue showed an increase in apoptotic lesions for even the lowest dose of 0.1 Gy, and the percentage of apoptotic cells increased with increasing dose. Results of gene expression changes showed consistent up- or down- regulation, up to 10 fold, of a number of genes across exposure doses that may play a role in proton-induced oxidative stress including Gpx2. A separate study in C57BL/6 mice using the same four hour time point but whole-body gamma-irradiation showed damage to the small intestine with lesions appearing at the smallest dose of 0.05 Gy and increasing with increasing absorbed dose. Expressions of genes associated with oxidative stress processes were analyzed at four hours and twenty-four hours after exposure to gamma rays. We saw a much greater number of genes with significant up- or down-regulation twenty-four hours post-exposure as compared to the four hour time point. At both four hours and twenty-four hours post-exposure, Duox1 and Mpo underwent up-regulation for the highest dose of 6 Gy. Both protons and gamma rays lead to significant variation in gene expressions and these changes may provide insight into the mechanism of injury seen in the GI tract following radiation exposure. We have also completed experiments using a BALB/c mouse model undergoing whole-body exposure to protons. Doses of 0, 0.1, 1 and 2 Gy were used and results will be compared to the work mentioned

  13. MECHANICAL PROPERTIES AND MICROSTRUCTURE IN LOW ACTIVATION MARTENSITIC STEELS F82H AND OPTIMAX AFTER 800 MEV PROTON IRRADIATION

    SciTech Connect

    Y. DAI; ET AL

    1999-10-01

    Low-activation martensitic steels, F82H (mod.) and Optimax-A, have been irradiated with 800-MeV protons up to 5.9 dpa. The tensile properties and microstructure have been studied. The results show that radiation hardening increases continuously with irradiation dose. F82H has lesser irradiation hardening as compared to Optimax-A in the present work and DIN1.4926 from a previous study. The irradiation embrittlement effects are evident in the materials since the uniform elongation is reduced sharply to less than 2%. However, all the irradiated samples ruptured in a ductile-fracture mode. Defect clusters have been observed. The size and the density of defect clusters increase with the irradiation dose. Precipitates are amorphous after irradiation.

  14. Visualization experiment of 30 MeV proton beam irradiated water target

    NASA Astrophysics Data System (ADS)

    Hwan Hong, Bong; Gun Yang, Tea; Su Jung, In; Soo Park, Yeun; Hee Cho, Hyung

    2011-11-01

    The nucleate boiling phenomena in a water target irradiated by 30 MeV proton beam were visualized experimentally. The beam size was 10 mm in diameter and beam current of 10, 15 and 20 μA were used, respectively. A target cavity of 4.5 cc in volume was filled with distilled water without atmosphere. A CMOS camera is used to record the phenomena through a side window. The temperature and pressure were measured during experiments. The depth of the Bragg peak was indicated by the blue light emission of the proton beam in the water target. In the case of 10 μA beam intensity, there was no visible phase change but fluxes by convection was observed at the Bragg peak and near the foil surface region. At 15 μA beam intensity, steam bubbles were generated by homogenous nuclear boiling at the Bragg peak and corrupted by cavitation at the upper region. The steam bubble generation point can be indicated by the blue light emission, which can show us the position of the Bragg peak. At 20 μΑ beam intensity, the steam bubbles were generated at Bragg peak and near the foil surface. The homogenous nucleate boiling at the Bragg peak was dominant and the heterogeneous nucleate boiling near the foil surface took place, occasionally. The cavitation of the steam bubble was also observed in the upper region within the target. The penetration depth of the proton beam was change along with the steam bubble formation. The blue light emission of the proton beam in water shows that the penetration depth of the proton beam becomes deeper when vapor bubbles are generated.

  15. WE-D-17A-04: Magnetically Focused Proton Irradiation of Small Volume Targets

    SciTech Connect

    McAuley, G; Slater, J; Wroe, A

    2014-06-15

    Purpose: To explore the advantages of magnetic focusing for small volume proton irradiations and the potential clinical benefits for radiosurgery targets. The primary goal is to create narrow elongated proton beams of elliptical cross section with superior dose delivery characteristics compared to current delivery modalities (eg, collimated beams). In addition, more general beam shapes are also under investigation. Methods: Two prototype magnets consisting of 24 segments of samarium-cobalt (Sm2Co17) permanent magnetic material adhered into hollow cylinders were manufactured for testing. A single focusing magnet was placed on a positioning track on our Gantry 1 treatment table and 15 mm diameter proton beams with energies and modulation relevant to clinical radiosurgery applications (127 to 186 MeV, and 0 to 30 mm modulation) were delivered to a terminal water tank. Beam dose distributions were measured using a PTW diode detector and Gafchromic EBT2 film. Longitudinal and transverse dose profiles were analyzed and compared to data from Monte Carlo simulations analogous to the experimental setup. Results: The narrow elongated focused beam spots showed high elliptical symmetry indicating high magnet quality. In addition, when compared to unfocused beams, peak-to-entrance depth dose ratios were 11 to 14% larger (depending on presence or extent of modulation), and minor axis penumbras were 11 to 20% smaller (again depending on modulation) for focused beams. These results suggest that the use of rare earth magnet assemblies is practical and could improve dose-sparing of normal tissue and organs at risk while delivering enhanced dose to small proton radiosurgery targets. Conclusion: Quadrapole rare earth magnetic assemblies are a promising and inexpensive method to counteract particle out scatter that tends to degrade the peak to entrance performance of small field proton beams. Knowledge gained from current experiments will inform the design of a prototype treatment

  16. Sensors for low temperature application

    DOEpatents

    Henderson, Timothy M.; Wuttke, Gilbert H.

    1977-01-01

    A method and apparatus for low temperature sensing which uses gas filled micro-size hollow glass spheres that are exposed in a confined observation area to a low temperature range (Kelvin) and observed microscopically to determine change of state, i.e., change from gaseous state of the contained gas to condensed state. By suitable indicia and classification of the spheres in the observation area, the temperature can be determined very accurately.

  17. Low Temperature Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Strayer, D.

    1993-01-01

    The recent flight of the Lambda Point Experiment has demonstrated the potential for performing precise tests of fundamental theories using low temperature techniques in Earth orbit. NASA's Microgravity Science and Applications Division has established a program of successor expermients to investigate other aspects of condensed matter physics using the same low temperature flight facility. This paper describes the new investigations that have been chosen for flight experiments, and those selected for ground-based studies that could lead to flight experiments later.

  18. Low Temperature Research in Microgravity

    NASA Technical Reports Server (NTRS)

    Strayer, D.

    1993-01-01

    The recent flight of the Lambda Point Experiment has demonstrated the potential for performing precise tests of fundamental theories using low temperature techniques in Earth orbit. NASA's Microgravity Science and Applications Division has established a program of successor expermients to investigate other aspects of condensed matter physics using the same low temperature flight facility. This paper describes the new investigations that have been chosen for flight experiments, and those selected for ground-based studies that could lead to flight experiments later.

  19. Engineering of silicon/HfO{sub 2} interface by variable energy proton irradiation

    SciTech Connect

    Maurya, Savita Maringanti, Radhakrishna; Tribedi, L. C.

    2014-08-18

    Surfaces and interfaces between materials are of paramount importance for various phenomena, such as painting a house, catalyst driven chemical reactions, intricate life processes, corrosion of materials, and fabrication of various semiconductor devices. Interface of silicon or other such substrates with any of the oxides has profound effect on the performance of metal oxide field effect transistors and other similar devices. Since a surface is an abrupt termination of a periodic crystal, surface atoms will have some unsaturated valence electrons and these unsaturated bonds at the semiconductor surface make it chemically highly reactive. Other than annealing, there is not much that can be done to manage these unsaturated bonds. This study was initiated to explore the possibility of repairing these unsaturated dangling bonds that are formed at the silicon and oxide interface during the deposition of oxide layer above silicon, by the use of proton irradiation. In order to improve the interface characteristics, we present a method to modify the interface of silicon and hafnium dioxide after its fabrication, through proton irradiation. Results of the study are promising and probably this method might be used along with other methods such as annealing to modify the interface, after its fabrication.

  20. Production of radionuclides in artificial meteorites irradiated isotropically with 600 MeV protons

    NASA Technical Reports Server (NTRS)

    Michel, R.; Dragovitsch, P.; Englert, P.; Herpers, U.

    1986-01-01

    The understanding of the production of cosmogenic nuclides in small meteorites (R is less than 40 cm) still is not satisfactory. The existing models for the calculation of depth dependent production rates do not distinguish between the different types of nucleons reacting in a meteorite. They rather use general depth dependent particle fluxes to which cross sections have to be adjusted to fit the measured radionuclide concentrations. Some of these models can not even be extended to zero meteorite sizes without logical contradictions. Therefore, a series of three thick target irradiations was started at the 600 MeV proton beam of the CERN isochronuous cyclotron in order to study the interactions of small stony meteorites with galactic protons. The homogeneous 4 pi irradiation technique used provides a realistic meteorite model which allows a direct comparison of the measured depth profiles with those in real meteorites. Moreover, by the simultaneous measurement of thin target production cross sections one can differentiate between the contributions of primary and secondary nucleons over the entire volume of the artificial meteorite.

  1. Molecular Hydrogen Bubbles Formation on Thin Vacuum Deposited Aluminum Layers After Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Sznajder, Maciej; Geppert, Ulrich

    2014-06-01

    Metals are the most common materials used in space technology. Metal structures, while used in space, are subjected to the full spectrum of the electromagnetic radiation together with particle irradiation. Hence, they undergo degradation. Future space missions are planned to proceed in the interplanetary space, where the protons of the solar wind play a very destructive role on metallic surfaces. Unfortunately, their real degradation behavior is to a great extent unknown.Our aim is to predict materials' behavior in such a destructive environment. Therefore both, theoretical and experimental studies are performed at the German Aerospace Center (DLR) in Bremen, Germany.Here, we report the theoretical results of those studies. We examine the process of H2-bubble formation on metallic surfaces. H2-bubbles are metal caps filled with Hydrogen molecular gas resulting from recombination processes of the metal free electrons and the solar protons. A thermodynamic model of the bubble growth is presented. Our model predicts e.g. the velocity of that growth and the reflectivity of foils populated by bubbles.Formation of bubbles irreversibly changes the surface quality of irradiated metals. Thin metallic films are especially sensitive for such degradation processes. They are used e.g. in the solar sail propulsion technology. The efficiency of that technology depends on the thermoptical properties of the sail materials. Therefore, bubble formation processes have to be taken into account for the planning of long-term solar sail missions.

  2. MeV single-ion beam irradiation of mammalian cells using the Surrey vertical nanobeam, compared with broad proton beam and X-ray irradiations

    NASA Astrophysics Data System (ADS)

    Prakrajang, K.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K.; Kirkby, N.; Thopan, P.; Yu, L. D.

    2013-07-01

    As a part of a systematic study on mechanisms involved in physical cancer therapies, this work investigated response of mammalian cells to ultra-low-dose ion beam irradiation. The ion beam irradiation was performed using the recently completed nanobeam facility at the Surrey Ion Beam Centre. A scanning focused vertical ion nano-beam was applied to irradiate Chinese hamster V79 cells. The V79 cells were irradiated in two different beam modes, namely, focused single ion beam and defocused scanning broad ion beam of 3.8-MeV protons. The single ion beam was capable of irradiating a single cell with a precisely controlled number of the ions to extremely low doses. After irradiation and cell incubation, the number of surviving colonies as a function of the number of the irradiating ions was measured for the cell survival fraction curve. A lower survival for the single ion beam irradiation than that of the broad beam case implied the hypersensitivity and bystander effect. The ion-beam-induced cell survival curves were compared with that from 300-kV X-ray irradiation. Theoretical studies indicated that the cell death in single ion irradiation mainly occurred in the cell cycle phases of cell division and intervals between the cell division and the DNA replication. The success in the experiment demonstrated the Surrey vertical nanobeam successfully completed.

  3. Atom redistribution and multilayer structure in NiTi shape memory alloy induced by high energy proton irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong

    2017-10-01

    The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.

  4. SPICE-NIRS Microbeam: a focused vertical system for proton irradiation of a single cell for radiobiological research

    PubMed Central

    Konishi, Teruaki; Oikawa, Masakazu; Suya, Noriyoshi; Ishikawa, Takahiro; Maeda, Takeshi; Kobayashi, Alisa; Shiomi, Naoko; Kodama, Kumiko; Hamano, Tsuyoshi; Homma-Takeda, Shino; Isono, Mayu; Hieda, Kotaro; Uchihori, Yukio; Shirakawa, Yoshiyuki

    2013-01-01

    The Single Particle Irradiation system to Cell (SPICE) facility at the National Institute of Radiological Sciences (NIRS) is a focused vertical microbeam system designed to irradiate the nuclei of adhesive mammalian cells with a defined number of 3.4 MeV protons. The approximately 2-μm diameter proton beam is focused with a magnetic quadrupole triplet lens and traverses the cells contained in dishes from bottom to top. All procedures for irradiation, such as cell image capturing, cell recognition and position calculation, are automated. The most distinctive characteristic of the system is its stability and high throughput; i.e. 3000 cells in a 5 mm × 5 mm area in a single dish can be routinely irradiated by the 2-μm beam within 15 min (the maximum irradiation speed is 400 cells/min). The number of protons can be set as low as one, at a precision measured by CR-39 detectors to be 99.0%. A variety of targeting modes such as fractional population targeting mode, multi-position targeting mode for nucleus irradiation and cytoplasm targeting mode are available. As an example of multi-position targeting irradiation of mammalian cells, five fluorescent spots in a cell nucleus were demonstrated using the γ-H2AX immune-staining technique. The SPICE performance modes described in this paper are in routine use. SPICE is a joint-use research facility of NIRS and its beam times are distributed for collaborative research. PMID:23287773

  5. A study on the effects of the proton flux on the irradiated degradation of GaAs/Ge solar cells

    NASA Astrophysics Data System (ADS)

    Jianmin, Hu; Yiyong, Wu; Dezhuang, Yang; Shiyu, He; Zhongwei, Zhang; Yong, Qian; Mengyan, Zhang

    2008-08-01

    Low-energy proton irradiation is one of the important factors which affect applications of GaAs solar cells in space. The proton flux encountered in orbit is much lower than that used during ground-base radiation experiments, thus ground-based experiments are a so-called accelerated simulating process. In this paper, effects of the proton flux on the degradation of GaAs/Ge solar cells using I- V measurements are investigated. The results indicate that low-energy irradiation seriously damages the solar cells. Regardless of the proton energy, the radiation flux shows no influence on the degradation process of the solar cell. The mechanisms for these effects are discussed in detail here.

  6. Characterization of MeV proton acceleration from double pulse irradiation of foil targets

    NASA Astrophysics Data System (ADS)

    Kerr, S.; Mo, M. Z.; Masud, R.; Tiedje, H. F.; Tsui, Y.; Fedosejevs, R.; Link, A.; Patel, P.; McLean, H. S.; Hazi, A.; Chen, H.; Ceurvorst, L.; Norreys, P.

    2014-10-01

    We report on the experimental characterization of proton acceleration from double-pulse irradiation of um-scale foil targets. Temporally separated sub-picosecond pulses have been shown to increase the conversion efficiency of laser energy to MeV protons. Here, two 700 fs, 1 ω pulses were separated by 1 to 5 ps; total beam energy was 100 J, with 5-20% of the total energy contained within the first pulse. In contrast to the ultraclean beams used in previous experiments, prepulse energies on the order of 10 mJ were present in the current experiments which appear to have a moderating effect on the enhancement. Proton beam measurements were made with radiochromic film stacks, as well as magnetic spectrometers. The effect on electron generation was measured using Kα emission from buried Cu tracer layers, while specular light diagnostics (FROG, reflection spectralon) indicated the laser coupling efficiency into the target. The results obtained will be presented and compared to PIC simulations. Work by LLNL was performed under the auspices of U.S. DOE under contract DE-AC52-07NA27344.

  7. Evaluation of irradiation effects of 16 MeV proton-irradiated 12Cr-1MoV steel by small punch (SP) tests

    SciTech Connect

    Chi, S.H.; Hong, J.H. ); Kim, I.S. . Dept. of Nuclear Engineering)

    1994-06-15

    Recently, interest in small-scale specimens for testing irradiated materials has arisen in conjunction with the need to develop materials for fusion reactor materials and to study irradiation effects using an ion irradiation facility. Several attempts have been made to evaluate material property changes due to irradiation using a small specimen technique. The SP (small punch) test is an example of small-scale specimen test techniques, originally developed by Baik et al. to estimate DBTT (ductile-to-brittle transition temperature) using broken standard CVN (Charpy 5-notch) specimens. The objective of the present study is to evaluate 16 MeV proton irradiation effects on a fusion reactor candidate material in terms of changes in energy up to failure and J[sub IC] fracture toughness (SP J[sub IC]) by using a SP test technique and a J[sub IC] - [bar [epsilon

  8. Electric dipole moment in KH{sub 2}PO{sub 4} systematically modified by proton irradiation

    SciTech Connect

    Jin Kweon, Jung; Lee, Cheol Eui; Noh, S. J.; Kim, H. S.

    2012-01-01

    We have carried out an impedance spectroscopy study on a series of proton-irradiated KH{sub 2}PO{sub 4} (KDP) systems. A systematic modification was observed in the transverse dipole moment of the proton-irradiated KDP systems, associated with hydrogen-ion displacements, as obtained from dielectric constant measurements by using a mean-field approximation. Besides, intercorrelation of the charge transport with the dielectric properties was revealed, both having closely to do with the hydrogen-bond modification.

  9. Recovery of damage in rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays

    NASA Technical Reports Server (NTRS)

    Brucker, G. J.; Van Gunten, O.; Stassinopoulos, E. G.; Shapiro, P.; August, L. S.; Jordan, T. M.

    1983-01-01

    This paper reports on the recovery properties of rad-hard MOS devices during and after irradiation by electrons, protons, alphas, and gamma rays. The results indicated that complex recovery properties controlled the damage sensitivities of the tested parts. The results also indicated that damage sensitivities depended on dose rate, total dose, supply bias, gate bias, transistor type, radiation source, and particle energy. The complex nature of these dependencies make interpretation of LSI device performance in space (exposure to entire electron and proton spectra) difficult, if not impossible, without respective ground tests and analyses. Complete recovery of n-channel shifts was observed, in some cases within hours after irradiation, with equilibrium values of threshold voltages greater than their pre-irradiation values. This effect depended on total dose, radiation source, and gate bias during exposure. In contrast, the p-channel shifts recovered only 20 percent within 30 days after irradiation.

  10. Response of cancer stem-like cells and non-stem cancer cells to proton and γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Fu, Qibin; Quan, Yi; Wang, Weikang; Mei, Tao; Wu, Jingwen; Li, Jia; Yang, Gen; Ren, Xiaotang; Xue, Jianming; Wang, Yugang

    2012-09-01

    Ionizing radiation is a widely used therapy for solid tumors. Compelling evidence indicates cancer stem-like cells (CSCs) exist in solid tumors, which is on the top of hierarchically organization and suggested to be involved in carcinogenesis, tumor invasion, recurrence and resistance to various forms of therapies. Understanding the response of CSCs to irradiation is of great importance to improve cancer curability. In present study, the response to proton and γ-ray irradiation of these cells, including DNA damage and apoptosis were investigated experimentally. The results show that CSCs have higher resistance than non-stem cancer cells (NSCCs) to either proton or γ-ray irradiation. In addition, compared with γ-ray, proton irradiation is more efficient to kill CSCs at the same dose with lower survival as well as higher DNA damages. The results suggest that proton irradiation may have greater capability of eliminating CSCs for cancer radiotherapy than γ-ray at the same dose, which in turn makes radiotherapy more efficient.

  11. Deep level transient spectroscopy (DLTS) study of defects introduced in antimony doped Ge by 2 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Nyamhere, C.; Das, A. G. M.; Auret, F. D.; Chawanda, A.; Pineda-Vargas, C. A.; Venter, A.

    2011-08-01

    Deep level transient spectroscopy (DLTS) and Laplace-DLTS have been used to investigate the defects created in Sb doped Ge after irradiation with 2 MeV protons having a fluence of 1×10 13 protons/cm 2. The results show that proton irradiation resulted in primary hole traps at E V +0.15 and E V +0.30 eV and electron traps at E C -0.38, E C -0.32, E C -0.31, E C -0.22, E C -0.20, E C -0.17, E C -0.15 and E C -0.04 eV. Defects observed in this study are compared with those introduced in similar samples after MeV electron irradiation reported earlier. E C -0.31, E C -0.17 and E C -0.04, and E V +0.15 eV were not observed previously in similar samples after high energy irradiation. Results from this study suggest that although similar defects are introduced by electron and proton irradiation, traps introduced by the latter are dose dependent.

  12. The corrosion of materials in water irradiated by 800 MeV protons

    NASA Astrophysics Data System (ADS)

    Lillard, R. S.; Pile, D. L.; Butt, D. P.

    2000-02-01

    A method for measuring the real-time corrosion rates for Alloy 718, stainless steels (SS) 304L and 316L nuclear grade (NG), aluminum alloys 5052 (Al5052) and 6061 (Al6061), copper (Cu), tantalum (Ta), and tungsten (W) in two separate water systems that were irradiated by 800 MeV protons is presented. The first water system was fabricated entirely of 304 SS, thoroughly cleaned before operation, and employed hydrogen water chemistry (HWC) to mitigate the formation of some of the radiolysis products. The samples were adequately shielded from the irradiation cavity such that only the effects of water chemistry were investigated. Over the course of that irradiation period the corrosion rates for 304L SS, 316L-NG SS, Alloy 718, and Ta were less than 0.12 μm/yr. For Al6061 and Al5052, the corrosion rates were of the order of 0.50-2.0 μm/yr. The corrosion rate of W was relatively high between 5.0 and 30 μm/yr. The second water system, fabricated from copper piping and steel components, was not cleaned prior to operation, and employed no HWC. In comparison to the other system, the corrosion rates in the copper/steel system were 1-3 orders of magnitude higher. These results are discussed in terms of water radiolysis and water impurity levels.

  13. Doubling the Critical Current Density of 2G-Coated Conductors through Proton Irradiation

    NASA Astrophysics Data System (ADS)

    Leroux, Maxime; Jia, Y.; Miller, D. J.; Wen, J. G.; Kwok, W. K.; Welp, U.; Rupich, M.; Fleshler, S.; Malozemoff, A.; Kayani, A.; Ayala-Valenzuela, O.; Civale, L.

    2014-03-01

    The in-field performance of production-line 2nd generation high temperature superconducting cable can be substantially improved by post-fabrication irradiation with 4 MeV protons. A dose of 8 .1016 p / cm2 nearly doubles the critical current in fields of 6 T // c at 27 K and more generally the suppression of Jc in magnetic field is reduced. A mixed pinning landscape composed of preexisting precipitates and twin boundaries and small, finely dispersed irradiation induced defects may account for the improved vortex pinning in high magnetic fields. Our current data-set indicates that there is significant head-room for further enhancements.This work was supported by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences (Y.J., M.L., W.K.K., U.W., O.A.V., L.C.) and by the Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-AC02- 06CH11357 (D.J.M., J.G.W.). Irradiations were carried out at the Western Michigan University accelerator laboratory. Microstructure was characterized in the Electron Microscopy Center at Argonne, supported by the Office of Science-Basic Energy Science.

  14. Small-Scale Mechanical Testing on Proton Beam-Irradiated 304 SS from Room Temperature to Reactor Operation Temperature

    NASA Astrophysics Data System (ADS)

    Vo, H.; Reichardt, A.; Howard, C.; Abad, M. D.; Kaoumi, D.; Chou, P.; Hosemann, P.

    2015-12-01

    Austenitic stainless steels are common structural components in light water reactors. Because reactor components are subjected to harsh conditions such as high operating temperatures and neutron radiation, they can undergo irradiation-induced embrittlement and related failure, which compromises reliable operation. Small-scale mechanical testing has seen widespread use as a testing method for both ion- and reactor-irradiated materials because it allows access to the mechanical properties of the ion beam-irradiated region, and for safe handling of a small amount of activated material. In this study, nanoindentation and microcompression testing were performed on unirradiated and 10 dpa proton-irradiated 304 SS, from 25°C to 300°C. Increases in yield stress (YS), critical resolved shear stress (CRSS) and hardness ( H) were seen in the irradiated region relative to the unirradiated region. Relationships between H, YS, and CRSS of irradiated and unirradiated materials are discussed over this temperature range.

  15. The tensile and fatigue properties of DIN 1.4914 martensitic stainless steel after 590 MeV proton irradiation

    NASA Astrophysics Data System (ADS)

    Marmy, P.; Victoria, M.

    1992-09-01

    Tensile and low cycle fatigue subsize specimens of DIN 1.4914 martensitic steel (MANET) have been irradiated with 590 MeV protons to doses up to 1 dpa and at temperatures between 363 and 703 K. The helium produced by spallation reactions was measured as 130 appm/dpa. A strong radiation hardening is found, which decreases as the irradiation temperature increases. The tensile elongation is reduced after irradiation, but the fracture mode is always ductile and transgranular. The radition hardening produced at low irradiation temperatures is recovered after annealing at higher temperatures. Continous softening is observed during low cycle fatigue testing. The rate of softening of the irradiated material is stonger than that of the unirradiated material and tends to reach the saturation level of the latter. The irradiation badly affects the fatigue life, particularly in the temperature domain of dynamic strain ageing between 553 and 653 K.

  16. The comparison of microstructure and nanocluster evolution in proton and neutron irradiated Fe-9%Cr ODS steel to 3 dpa at 500 °C

    NASA Astrophysics Data System (ADS)

    Swenson, M. J.; Wharry, J. P.

    2015-12-01

    A model Fe-9%Cr oxide dispersion strengthened (ODS) steel was irradiated with protons or neutrons to a dose of 3 displacements per atom (dpa) at a temperature of 500 °C, enabling a direct comparison of ion to neutron irradiation effects at otherwise fixed irradiation conditions. The irradiated microstructures were characterized using transmission electron microscopy and atom probe tomography including cluster analysis. Both proton and neutron irradiations produced a comparable void and dislocation loop microstructure. However, the irradiation response of the Ti-Y-O oxide nanoclusters varied. Oxides remained stable under proton irradiation, but exhibited dissolution and an increase in Y:Ti composition ratio under neutron irradiation. Both proton and neutron irradiation also induced varying extents of Si, Ni, and Mn clustering at existing oxide nanoclusters. Protons are able to reproduce the void and loop microstructure of neutron irradiation carried out to the same dose and temperature. However, since nanocluster evolution is controlled by both diffusion and ballistic impacts, protons are rendered unable to reproduce the nanocluster evolution of neutron irradiation at the same dose and temperature.

  17. Diffusion length variation in 0.5- and 3-MeV-proton-irradiated, heteroepitaxial indium phosphide solar cells

    NASA Technical Reports Server (NTRS)

    Jain, Raj K.; Weinberg, Irving; Flood, Dennis J.

    1993-01-01

    Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide (GaAs) and silicon (Si) solar cells, and their growth by heteroepitaxy offers additional advantages leading to the development of light weight, mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and 3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The base diffusion length versus proton fluence was calculated by simulating the cell performance. The diffusion length damage coefficient, K(sub L), was also plotted as a function of proton fluence.

  18. Proton irradiation induces persistent and tissue-specific DNA methylation changes in the left ventricle and hippocampus.

    PubMed

    Impey, Soren; Pelz, Carl; Tafessu, Amanuel; Marzulla, Tessa; Turker, Mitchell S; Raber, Jacob

    2016-03-31

    Proton irradiation poses a potential hazard to astronauts during and following a mission, with post-mitotic cells at most risk because they cannot dilute resultant epigenetic changes via cell division. Persistent epigenetic changes that result from environmental exposures include gains or losses of DNA methylation of cytosine, which can impact gene expression. In the present study, we compared the long-term epigenetic effects of whole body proton irradiation in the mouse hippocampus and left ventricle. We used an unbiased genome-wide DNA methylation study, involving ChIP-seq with antibodies to 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) to identify DNA regions in which methylation levels have changed 22 weeks after a single exposure to proton irradiation. We used DIP-Seq to profile changes in genome-wide DNA methylation and hydroxymethylation following proton irradiation. In addition, we used published RNAseq data to assess whether differentially methylated regions were linked to changes in gene expression. The DNA methylation data showed tissue-dependent effects of proton irradiation and revealed significant major pathway changes in response to irradiation that are related to known pathophysiologic processes. Many regions affected in the ventricle mapped to genes involved in cardiovascular function pathways, whereas many regions affected in the hippocampus mapped to genes involved in neuronal functions. In the ventricle, increases in 5hmC were associated with decreases in 5mC. We also observed spatial overlap for regions where both epigenetic marks decreased in the ventricle. In hippocampus, increases in 5hmC were most significantly correlated (spatially) with regions that had increased 5mC, suggesting that deposition of hippocampal 5mC and 5hmC may be mechanistically coupled. The results demonstrate long-term changes in DNA methylation patterns following a single proton irradiation, that these changes are tissue specific, and that they map to

  19. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  20. Dose and dose rate effects of whole-body proton irradiation on leukocyte populations and lymphoid organs: part I

    NASA Technical Reports Server (NTRS)

    Gridley, Daila S.; Pecaut, Michael J.; Dutta-Roy, Radha; Nelson, Gregory A.

    2002-01-01

    The goal of part I of this study was to evaluate the effects of whole-body proton irradiation on lymphoid organs and specific leukocyte populations. C57BL/6 mice were exposed to the entry region of the proton Bragg curve to total doses of 0.5 gray (Gy), 1.5 Gy, and 3.0 Gy, each delivered at a low dose rate (LDR) of 1 cGy/min and high dose rate (HDR) of 80 cGy/min. Non-irradiated and 3 Gy HDR gamma-irradiated groups were included as controls. At 4 days post-irradiation, highly significant radiation dose-dependent reductions were observed in the mass of both lymphoid organs and the numbers of leukocytes and T (CD3(+)), T helper (CD3(+)/CD4(+)), T cytotoxic (CD3(+)/CD8(+)), and B (CD19(+)) cells in both blood and spleen. A less pronounced dose effect was noted for natural killer (NK1.1(+) NK) cells in spleen. Monocyte, but not granulocyte, counts in blood were highly dose-dependent. The numbers for each population generally tended to be lower with HDR than with LDR radiation; a significant dose rate effect was found in the percentages of T and B cells, monocytes, and granulocytes and in CD4(+):CD8(+) ratios. These data indicate that mononuclear cell response to the entry region of the proton Bragg curve is highly dependent upon the total dose and that dose rate effects are evident with some cell types. Results from gamma- and proton-irradiated groups (both at 3 Gy HDR) were similar, although proton-irradiation gave consistently lower values in some measurements.

  1. The microstructure of the 1.4914 MANET martensitic steel before and after irradiation with 590 MeV protons

    NASA Astrophysics Data System (ADS)

    Gavillet, D.; Marmy, P.; Victoria, M.

    1992-09-01

    Optical and transmission electron microscope observations, together with SEM (scanning electron microscope) and ASTEM (analytical scanning transmission electron microscope) microanalysis have been performed in samples of the DIN 1.4914 martensitic steel (MANET cast), both before and after irradiation with 590 MeV protons to doses up to 1 dpa at temperatures between 363 and 703 K. The chemical composition of the different carbide geometries have been obtained. No substantial modification of the carbide and precipitate structure is observed after either deformation under fatigue or after irradiation to 1 dpa at 703 K. No bubbles have been observed in a specimen irradiated to 0.7 dpa, containing 87 appm He.

  2. Measurement of the displacement cross-section of copper irradiated with 125 MeV protons at 12 K

    NASA Astrophysics Data System (ADS)

    Iwamoto, Yosuke; Yoshiie, Toshimasa; Yoshida, Makoto; Nakamoto, Tatsushi; Sakamoto, Masaaki; Kuriyama, Yasutoshi; Uesugi, Tomonori; Ishi, Yoshihiro; Xu, Qiu; Yashima, Hiroshi; Takahashi, Fumiaki; Mori, Yoshiharu; Ogitsu, Toru

    2015-03-01

    To validate Monte Carlo codes for the prediction of radiation damage in metals irradiated by >100 MeV protons, the defect-induced electrical resistivity changes related to the displacement cross-section of copper were measured with 125 MeV proton irradiation at 12 K. The cryogenic irradiation system was developed with a Gifford-McMahon cryocooler to cool the sample via an oxygen-free high-conductivity copper plate by conduction cooling. The sample was a copper wire with a 250-μm diameter and 99.999% purity sandwiched between two aluminum nitride ceramic sheets. The electrical resistivity changes of the copper wire were measured using the four-probe technique. After 125 MeV proton irradiation with 1.45 × 1018 protons/m2 at 12 K, the total resistivity increase was 4.94 × 10-13 Ω m (resistance increase: 1.53 μΩ), while the resistivity of copper before irradiation was 9.44 × 10-12 Ω m (resistance: 29.41 μΩ). The resistivity increase did not change during annealing after irradiation below 15 K. The experimental displacement cross-section for 125 MeV irradiation shows similar results to the experimental data for 1.1 and 1.94 GeV. Comparison with the calculated results indicated that the defect production efficiency in Monte Carlo codes gives a good quantitative description of the displacement cross-section in the energy region >100 MeV.

  3. Defect characterization of proton irradiated GaAs pn-junction diodes with layers of InAs quantum dots

    SciTech Connect

    Sato, Shin-ichiro; Schmieder, Kenneth J.; Warner, Jeffrey H.; Walters, Robert J.; Hubbard, Seth M.; Forbes, David V.; Ohshima, Takeshi

    2016-05-14

    In order to expand the technology of III-V semiconductor devices with quantum structures to both terrestrial and space use, radiation induced defects as well as native defects generated in the quantum structures should be clarified. Electrically active defects in GaAs p{sup +}n diodes with embedded ten layers of InAs quantum dots (QDs) are investigated using Deep Level Transient Fourier Spectroscopy. Both majority carrier (electron) and minority carrier (hole) traps are characterized. In the devices of this study, GaP layers are embedded in between the QD layers to offset the compressive stress introduced during growth of InAs QDs. Devices are irradiated with high energy protons for three different fluences at room temperature in order to characterize radiation induced defects. Seven majority electron traps and one minority hole trap are found after proton irradiation. It is shown that four electron traps induced by proton irradiation increase in proportion to the fluence, whereas the EL2 trap, which appears before irradiation, is not affected by irradiation. These defects correspond to electron traps previously identified in GaAs. In addition, a 0.53 eV electron trap and a 0.14 eV hole trap are found in the QD layers before proton irradiation. It is shown that these native traps are also unaffected by irradiation. The nature of the 0.14 eV hole trap is thought to be Ga-vacancies in the GaP strain balancing layers.

  4. In situ micro-tensile testing on proton beam-irradiated stainless steel

    NASA Astrophysics Data System (ADS)

    Vo, H. T.; Reichardt, A.; Frazer, D.; Bailey, N.; Chou, P.; Hosemann, P.

    2017-09-01

    Small-scale mechanical testing techniques are currently being explored and developed for engineering applications. In particular, micro-tensile testing can add tremendous value, since the entire stress-strain curve, including the strain to failure, can be measured directly. In this work, 304 stainless steel specimens irradiated with 2 MeV protons to 10 dpa (full-cascade setting in the Stopping and Range of Ions in Matter, SRIM, software) at 360 °C was evaluated using micro-tensile testing. It was found that even on the micron scale, the measured strain corresponds well with macroscopic expectations. In addition, a new approach to analyzing sudden slip events is presented.

  5. Use of the point defect model to interpret the iron oxidation kinetics under proton irradiation

    SciTech Connect

    Lapuerta, S.; Moncoffre, N.; Jaffrezic, H.; Millard-Pinard, N.; Bererd, N.; Esnouf, C.; Crusset, D.

    2007-03-15

    This article concerns the study of iron corrosion in wet air under mega-electron-volt proton irradiation for different fluxes at room temperature and with a relative humidity fixed to 45%. Oxidized iron sample surfaces are characterized by ion beam analysis (Rutherford backscattering spectrometry and elastic recoil detection analysis), for the elemental analysis. The structural and physicochemical characterization is performed using the x-ray photoelectron spectroscopy and transmission electron microscopy techniques. We have also measured the iron oxidation kinetics. Radiation enhanced diffusion and transport processes have been evidenced. The modeling of the experimental data shows that the apparent oxygen diffusion coefficient increases whereas the oxygen transport velocity decreases as function of flux. Finally, the point defect model has been used to determine the electric field value in the samples. Results have shown that the transport process can be attributed to the presence of an electrical potential gradient.

  6. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, Glenn E.; Barnes, John W.

    1981-01-01

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H.sub.2 O.sub.2, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  7. Hot cell purification of strontium-82, 85 and other isotopes from proton irradiated molybdenum

    DOEpatents

    Bentley, G.E.; Barnes, J.W.

    1979-10-17

    A process suitable for producing curie quantities of quite pure Sr-82,85 is given. After a Mo target is irradiated with energetic protons having energies greater than about 200 MeV, thus producing a large number of radioactive species, the particular species of Sr-82,85 are substantially separated from the other products by a 6-step process. The process comprises dissolution of the target in H/sub 2/O/sub 2/, followed by use of several ion exchange resins, extraction with an organophosphorus compound, and several adjustments of pH values. Other embodiments include processes for producing relatively pure long-lived Rb isotopes, Y-88, and Zr-88.

  8. Interaction of defects and H in proton-irradiated GaN(Mg, H)

    SciTech Connect

    Myers, S.M.; Seager, C.H.

    2005-05-01

    Magnesium-doped, p-type GaN containing H was irradiated with MeV protons at room temperature and then annealed at a succession of increasing temperatures, with the behavior of defects and H in the material being followed through infrared absorption spectroscopy, nuclear-reaction analysis of the H, and photoluminescence. The results support the annihilation of Ga Frenkel pairs near room temperature, leaving the N interstitial and N vacancy to influence the elevated-temperature behavior. Multiple changes are observed with increasing temperature, ending with thermal release of the H above 700 deg. C. These effects are interpreted in terms of a succession of complexes involving Mg, the point defects, and H.

  9. Measurement of temperature-dependent defect diffusion in proton-irradiated GaN(Mg, H)

    SciTech Connect

    Fleming, R. M.; Myers, S. M.

    2006-08-15

    Deuterated p-type GaN(Mg,{sup 2}H) films were irradiated at room temperature with 1 MeV protons to create native point defects with a concentration approximately equal to the Mg doping (5x10{sup 19} cm{sup -3}). The samples were then annealed isothermally at a succession of temperatures while monitoring the infrared absorption due to the H local mode of the MgH defect. As the samples were annealed, the MgH absorption signal decreased and a new mode at slightly higher frequency appeared, which has been associated with the approach of a mobile nitrogen interstitial. We used the time dependence of the MgH absorption to obtain a diffusion barrier of the nitrogen interstitial in p-type GaN of 1.99 eV. This is in good agreement with theoretical calculations of nitrogen interstitial motion in GaN.

  10. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation

    PubMed Central

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N.; Rozanov, Alexei Y.; Krasavin, Eugene; Di Mauro, Ernesto

    2015-01-01

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy–based prebiotic scenarios and their possible boundary conditions, as discussed. PMID:25870268

  11. Mouse retinal adaptive response to proton irradiation: Correlation with DNA repair and photoreceptor cell death

    NASA Astrophysics Data System (ADS)

    Tronov, V. A.; Vinogradova, Yu. V.; Poplinskaya, V. A.; Nekrasova, E. I.; Ostrovsky, M. A.

    2015-01-01

    Emerging body of data indicate protecting effect of low level of stress (preconditioning) on retina. Our previous study revealed non-linear dose-response relationship for cytotoxicity of both ionizing radiation and N-methyl-N-nitrosourea (MNU) on mouse retina. Moreover, non cytotoxic dose of MNU increased tolerance of retina to following challenge dose of MNU. This result displays protection of retina through mechanism of recovery. In present study we used the mouse model for MNU-induced retinal degeneration to evaluate adaptive response of retina to proton irradiation and implication in it of glial Muller cells. The data showed that the recovery of retina after genotoxic agents has been associated with increased efficacy of DNA damage repair and lowered death of retinal photoreceptor cells.

  12. Meteorite-catalyzed syntheses of nucleosides and of other prebiotic compounds from formamide under proton irradiation.

    PubMed

    Saladino, Raffaele; Carota, Eleonora; Botta, Giorgia; Kapralov, Mikhail; Timoshenko, Gennady N; Rozanov, Alexei Y; Krasavin, Eugene; Di Mauro, Ernesto

    2015-05-26

    Liquid formamide has been irradiated by high-energy proton beams in the presence of powdered meteorites, and the products of the catalyzed resulting syntheses were analyzed by mass spectrometry. Relative to the controls (no radiation, or no formamide, or no catalyst), an extremely rich, variegate, and prebiotically relevant panel of compounds was observed. The meteorites tested were representative of the four major classes: iron, stony iron, chondrites, and achondrites. The products obtained were amino acids, carboxylic acids, nucleobases, sugars, and, most notably, four nucleosides: cytidine, uridine, adenosine, and thymidine. In accordance with theoretical studies, the detection of HCN oligomers suggests the occurrence of mechanisms based on the generation of radical cyanide species (CN·) for the synthesis of nucleobases. Given that many of the compounds obtained are key components of extant organisms, these observations contribute to outline plausible exogenous high-energy-based prebiotic scenarios and their possible boundary conditions, as discussed.

  13. Cross sections from proton irradiation of thorium at 800 MeV

    NASA Astrophysics Data System (ADS)

    Engle, Jonathan W.; Mashnik, Stepan G.; Weidner, John W.; Wolfsberg, Laura E.; Fassbender, Michael E.; Jackman, Kevin; Couture, Aaron; Bitteker, Leo J.; Ullmann, John L.; Gulley, Mark S.; Pillai, Chandra; John, Kevin D.; Birnbaum, Eva R.; Nortier, Francois M.

    2013-07-01

    Nuclear formation cross sections are reported for 65 nuclides produced from 800-MeV proton irradiation of thorium foils. These data are useful as benchmarks for computational predictions in the ongoing process of theoretical code development and also in the design of spallation-based radioisotope production currently being considered for multiple radiotherapeutic pharmaceutical agents. Measured data are compared with the predictions of three mcnp6 event generators and used to evaluate the potential for 800-MeV productions of radioisotopes of interest for medical radiotherapy. In only a few instances code predictions are discrepant from measured values by more than a factor of 2, demonstrating satisfactory predictive power across a large mass range. Similarly, agreement between measurements presented here and those previously reported is good, lending credibility to predictions of target yields and radioimpurities for high-energy accelerator-produced radionuclides.

  14. Biological cell irradiation at ultrahigh dose rate employing laser driven protons

    SciTech Connect

    Doria, D.; Kakolee, K. F.; Kar, S.; and others

    2012-07-09

    The ultrashort duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen's University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9}Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4{+-}0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  15. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix.

    PubMed

    Mastren, Tara; Radchenko, Valery; Owens, Allison; Copping, Roy; Boll, Rose; Griswold, Justin R; Mirzadeh, Saed; Wyant, Lance E; Brugh, Mark; Engle, Jonathan W; Nortier, Francois M; Birnbaum, Eva R; John, Kevin D; Fassbender, Michael E

    2017-08-15

    A new method has been developed for the isolation of (223,224,225)Ra, in high yield and purity, from a proton irradiated (232)Th matrix. Herein we report an all-aqueous process using multiple solid-supported adsorption steps including a citrate chelation method developed to remove >99.9% of the barium contaminants by activity from the final radium product. A procedure involving the use of three columns in succession was developed, and the separation of (223,224,225)Ra from the thorium matrix was obtained with an overall recovery yield of 91 ± 3%, average radiochemical purity of 99.9%, and production yields that correspond to physical yields based on previously measured excitation functions.

  16. First results on cell irradiation with laser-driven protons on the TARANIS system

    SciTech Connect

    Kar, S.; Doria, D.; Kakolee, K. F.; Prasad, R.; Litt, S.; Ahmed, H.; Nersisyan, G.; Lewis, C.; Zepf, M.; Borghesi, M.; Schettino, G.; Prise, K. M.; Fiorini, F.; Kirby, D.; Green, S.; Jeynes, J. C. G.; Merchant, M. J.; Kirkby, K. J.

    2013-07-26

    The ultra short duration of laser-driven multi-MeV ion bursts offers the possibility of radiobiological studies at extremely high dose rates. Employing the TARANIS Terawatt laser at Queen’s University, the effect of proton irradiation at MeV-range energies on live cells has been investigated at dose rates exceeding 10{sup 9} Gy/s as a single exposure. A clonogenic assay showed consistent lethal effects on V-79 live, cells, which, even at these dose rates, appear to be in line with previously published results employing conventional sources. A Relative Biological Effectiveness (RBE) of 1.4±0.2 at 10% survival is estimated from a comparison with a 225 kVp X-ray source.

  17. Simultaneous Separation of Actinium and Radium Isotopes from a Proton Irradiated Thorium Matrix

    DOE PAGES

    Mastren, Tara; Radchenko, Valery; Owens, Allison; ...

    2017-08-15

    A new method has been developed for the isolation of 223,224,225Ra, in high yield and purity, from a proton irradiated 232Th matrix. We report an all-aqueous process using multiple solid-supported adsorption steps including a citrate chelation method developed to remove >99.9% of the barium contaminants by activity from the final radium product. Moreover, we developed a procedure involving the use of three columns in succession, and the separation of 223,224,225Ra from the thorium matrix was obtained with an overall recovery yield of 91 ± 3%, average radiochemical purity of 99.9%, and production yields that correspond to physical yields based onmore » previously measured excitation functions.« less

  18. In-growth of an electrically active defect in high-purity silicon after proton irradiation

    SciTech Connect

    Nylandsted Larsen, A.; Juul Pedersen, H.; Christian Petersen, M.; Privitera, V.; Gurimskaya, Y.; Mesli, A.

    2013-12-14

    Defect-related energy levels in the lower half of the band gap of silicon have been studied with transient-capacitance techniques in high-purity, carbon and oxygen lean, plasma-enhanced chemical-vapor deposition grown, n-and p-type silicon layers after 2-MeV proton irradiations at temperatures at or just below room temperature. The in-growth of a distinct line in deep-level transient spectroscopy spectra, corresponding to a level in the band gap at E{sub V} + 0.357 eV where E{sub V} is the energy of the valence band edge, takes place for anneal temperatures at around room temperature with an activation energy of 0.95 ± 0.08 eV. The line disappears at an anneal temperature of around 450 K. The corresponding defect is demonstrated not to contain boron, carbon, oxygen, or phosphorus. Possible defect candidates are discussed.

  19. A proton irradiation test facility for space research in Ankara, Turkey

    NASA Astrophysics Data System (ADS)

    Gencer, Ayşenur; Yiǧitoǧlu, Merve; Bilge Demirköz, Melahat; Efthymiopoulos, Ilias

    2016-07-01

    Space radiation often affects the electronic components' performance during the mission duration. In order to ensure reliable performance, the components must be tested to at least the expected dose that will be received in space, before the mission. Accelerator facilities are widely used for such irradiation tests around the world. Turkish Atomic Energy Authority (TAEA) has a 15MeV to 30MeV variable proton cyclotron in Ankara and the facility's main purpose is to produce radioisotopes in three different rooms for different target systems. There is also an R&D room which can be used for research purposes. This paper will detail the design and current state of the construction of a beamline to perform Single Event Effect (SEE) tests in Ankara for the first time. ESA ESCC No.25100 Standard Single Event Effect Test Method and Guidelines is being considered for these SEE tests. The proton beam kinetic energy must be between 20MeV and 200MeV according to the standard. While the proton energy is suitable for SEE tests, the beam size must be 15.40cm x 21.55cm and the flux must be between 10 ^{5} p/cm ^{2}/s to at least 10 ^{8} p/cm ^{2}/s according to the standard. The beam size at the entrance of the R&D room is mm-sized and the current is variable between 10μA and 1.2mA. Therefore, a defocusing beam line has been designed to enlarge the beam size and reduce the flux value. The beam line has quadrupole magnets to enlarge the beam size and the collimators and scattering foils are used for flux reduction. This facility will provide proton fluxes between 10 ^{7} p/cm ^{2}/s and 10 ^{10} p/cm ^{2}/s for the area defined in the standard when completed. Also for testing solar cells developed for space, the proton beam energy will be lowered below 10MeV. This project has been funded by Ministry of Development in Turkey and the beam line construction will finish in two years and SEE tests will be performed for the first time in Turkey.

  20. Dosimetric Characteristics of a Two-Dimensional Diode Array Detector Irradiated with Passively Scattered Proton Beams

    PubMed Central

    Liengsawangwong, Praimakorn; Sahoo, Nanayan; Ding, Xiaoning; Lii, MingFwu; Gillin, Michale T.; Zhu, Xiaorong Ronald

    2015-01-01

    Purpose: To evaluate the dosimetric characteristics of a two-dimensional (2D) diode array detector irradiated with passively scattered proton beams. Materials and Methods: A diode array detector, MapCHECK (Model 1175, Sun Nuclear, Melbourne, FL, USA) was characterized in passive-scattered proton beams. The relative sensitivity of the diodes and absolute dose calibration were determined using a 250 MeV beam. The pristine Bragg curves (PBCs) measured by MapCHECK diodes were compared with those of an ion chamber using a range shift method. The water-equivalent thickness (WET) of the diode array detector’s intrinsic buildup also was determined. The inverse square dependence, linearity, and other proton dosimetric quantities measured by MapCHECK were also compared with those of the ion chambers. The change in the absolute dose response of the MapCHECK as a function of accumulated radiation dose was used as an indicator of radiation damage to the diodes. 2D dose distribution with and without the compensator were measured and compared with the treatment planning system (TPS) calculations. Results: The WET of the MapCHECK diode’s buildup was determined to be 1.7 cm. The MapCHECK-measured PBC were virtually identical to those measured by a parallel-plate ion chamber for 160, 180, and 250 MeV proton beams. The inverse square results of the MapCHECK were within ±0.4% of the ion chamber results. The linearity of MapCHECK results was within 1% of those from the ion chamber as measured in the range between 10 and 300 MU. All other dosimetric quantities were within 1.3% of the ion chamber results. The 2D dose distributions for non-clinical fields without compensator and the patient treatment fields with the compensator were consistent with the TPS results. The absolute dose response of the MapCHECK was changed by 7.4% after an accumulated dose increased by 170 Gy. Conclusions: The MapCHECK is a convenient and useful tool for 2D dose distribution measurements using passively

  1. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  2. Effects of proton irradiation on dc characteristics of InAlN/GaN high electron mobility transistors

    SciTech Connect

    Lo, C. F.; Liu, L.; Ren, F.; Kim, H.-Y.; Kim, J.; Pearton, S. J.; Laboutin, O.; Cao, Yu; Johnson, Wayne J.; Kravchenko, Ivan I

    2011-01-01

    The effects of proton irradiation on the dc characteristics of InAlN/GaN high electron mobility transistors were investigated. In this study we used 5 MeV protons with doses varying from 21011 to 21015 cm2. The transfer resistance and contact resistivity suffered more degradation as compared to the sheet resistance. With irradiation at the highest dose of 21015 cm2, both forward- and reverse-bias gate currents were increased after proton irradiation. A negative threshold-shift and reduction of the saturation drain current were also observed as a result of radiation-induced carrier scattering and carrier removal. Devices irradiated with doses of 21011 to 21015 cm2 exhibited minimal degradation of the saturation drain current and extrinsic trans- conductance. These results show that InAlN/GaN high electron mobility transistors are attractive for space-based applications when high-energy proton fluxes are present. VC 2011 American Vacuum Society. [DOI: 10.1116/1.3644480

  3. Changes in luminescence emission induced by proton irradiation: InGaAs/GaAs quantum wells and quantum dots

    NASA Technical Reports Server (NTRS)

    Leon, R.; Swift, G. M.; Magness, B.; Taylor, W. A.; Tang, Y. S.; Wang, K. L.; Dowd, P.; Zhang, Y. H.

    2000-01-01

    The photoluminescence emission from InGaAs/GaAs quantum-well and quantum-dot (QD) structures are compared after controlled irradiation with 1.5 MeV proton fluxes. Results presented here show a significant enhancement in radiation tolerance with three-dimensional quantum confinement.

  4. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Kyle, E. C. H.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.; Speck, J. S.; Arehart, A. R.; Ringel, S. A.

    2016-04-01

    The impact of proton irradiation on the threshold voltage (VT) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of VT was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 1014 cm-2. Silvaco Atlas simulations of VT shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different VT dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed VT shifts. The proton irradiation induced VT shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  5. Correlation of proton irradiation induced threshold voltage shifts to deep level traps in AlGaN/GaN heterostructures

    SciTech Connect

    Zhang, Z.; Cardwell, D.; Sasikumar, A.; Arehart, A. R.; Ringel, S. A.; Kyle, E. C. H.; Speck, J. S.; Chen, J.; Zhang, E. X.; Fleetwood, D. M.; Schrimpf, R. D.

    2016-04-28

    The impact of proton irradiation on the threshold voltage (V{sub T}) of AlGaN/GaN heterostructures is systematically investigated to enhance the understanding of a primary component of the degradation of irradiated high electron mobility transistors. The value of V{sub T} was found to increase monotonically as a function of 1.8 MeV proton fluence in a sub-linear manner reaching 0.63 V at a fluence of 1 × 10{sup 14} cm{sup −2}. Silvaco Atlas simulations of V{sub T} shifts caused by GaN buffer traps using experimentally measured introduction rates, and energy levels closely match the experimental results. Different buffer designs lead to different V{sub T} dependences on proton irradiation, confirming that deep, acceptor-like defects in the GaN buffer are primarily responsible for the observed V{sub T} shifts. The proton irradiation induced V{sub T} shifts are found to depend on the barrier thickness in a linear fashion; thus, scaling the barrier thickness could be an effective way to reduce such degradation.

  6. Catalysts for low temperature oxidation

    DOEpatents

    Toops, Todd J.; Parks, III, James E.; Bauer, John C.

    2016-03-01

    The invention provides a composite catalyst containing a first component and a second component. The first component contains nanosized gold particles. The second component contains nanosized platinum group metals. The composite catalyst is useful for catalyzing the oxidation of carbon monoxide, hydrocarbons, oxides of nitrogen, and other pollutants at low temperatures.

  7. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  8. Low temperature cross linking polyimides

    NASA Technical Reports Server (NTRS)

    Serafini, T. T.; Delvigs, P. (Inventor)

    1982-01-01

    A polyimide is formed by cross linking a prepolymer formed by reacting a polyfunctional ester, a polyfunctional amine, and an end-capping unit. By providing an end-capping unit, the prepolymer is curable at a relatively low temperature of about 175 to 245 C.

  9. Development of low temperature battery

    NASA Technical Reports Server (NTRS)

    Armstrong, G. M.

    1967-01-01

    Self-contained low temperature battery system consisting of a magnesium anode, potassium thiocyanate-ammonia electrolyte and a cathode composed of a mixture of sulfur, carbon, and mercuric sulfate operates for at least seventy-two hours within a discharge temperature range of plus 20 degrees C to minus 90 degrees C.

  10. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  11. A Comparison of Model Calculation and Measurement of Absorbed Dose for Proton Irradiation. Chapter 5

    NASA Technical Reports Server (NTRS)

    Zapp, N.; Semones, E.; Saganti, P.; Cucinotta, F.

    2003-01-01

    With the increase in the amount of time spent EVA that is necessary to complete the construction and subsequent maintenance of ISS, it will become increasingly important for ground support personnel to accurately characterize the radiation exposures incurred by EVA crewmembers. Since exposure measurements cannot be taken within the organs of interest, it is necessary to estimate these exposures by calculation. To validate the methods and tools used to develop these estimates, it is necessary to model experiments performed in a controlled environment. This work is such an effort. A human phantom was outfitted with detector equipment and then placed in American EMU and Orlan-M EVA space suits. The suited phantom was irradiated at the LLUPTF with proton beams of known energies. Absorbed dose measurements were made by the spaceflight operational dosimetrist from JSC at multiple sites in the skin, eye, brain, stomach, and small intestine locations in the phantom. These exposures are then modeled using the BRYNTRN radiation transport code developed at the NASA Langley Research Center, and the CAM (computerized anatomical male) human geometry model of Billings and Yucker. Comparisons of absorbed dose calculations with measurements show excellent agreement. This suggests that there is reason to be confident in the ability of both the transport code and the human body model to estimate proton exposure in ground-based laboratory experiments.

  12. Near monochromatic 20 Me V proton acceleration using fs laser irradiating Au foils in target normal sheath acceleration regime

    SciTech Connect

    Torrisi, L. Ceccio, G.; Cannavò, A.; Cutroneo, M.; Batani, D.; Boutoux, G.; Jakubowska, K.; Ducret, J. E.

    2016-04-15

    A 200 mJ laser pulse energy, 39 fs-pulse duration, 10 μm focal spot, p-polarized radiation has been employed to irradiate thin Au foils to produce proton acceleration in the forward direction. Gold foils were employed to produce high density relativistic electrons emission in the forward direction to generate a high electric field driving the ion acceleration. Measurements were performed by changing the focal position in respect of the target surface. Proton acceleration was monitored using fast SiC detectors in time-of-flight configuration. A high proton energy, up to about 20 Me V, with a narrow energy distribution, was obtained in particular conditions depending on the laser parameters, the irradiation conditions, and a target optimization.

  13. SU-D-304-02: Magnetically Focused Proton Irradiation of Small Field Targets

    SciTech Connect

    McAuley, GA; Slater, JM; Slater, JD; Wroe, AJ

    2015-06-15

    Purpose: To investigate the use of magnetic focusing for small field proton irradiations. It is hypothesized that magnetic focusing will provide significant dose distribution benefits over standard collimated beams for fields less than 10 mm diameter. Methods: Magnets consisting of 24 segments of radiation hard samarium-cobalt adhered into hollow cylinders were designed and manufactured. Two focusing magnets were placed on a positioning track on our Gantry 1 treatment table. Proton beams with energies of 127 and 157 MeV, 15 and 30 mm modulation, and 8 mm initial diameters were delivered to a water tank using single-stage scattering. Depth dose distributions were measured using a PTW PR60020 diode detector and transverse profiles were measured with Gafchromic EBT3 film. Monte Carlo simulations were also performed - both for comparison with experimental data and to further explore the potential of magnetic focusing in silica. For example, beam spot areas (based on the 90% dose contour) were matched at Bragg depth between simulated 100 MeV collimated beams and simulated beams focused by two 400 T/m gradient magnets. Results: Preliminary experimental results show 23% higher peak to entrance dose ratios and flatter spread out Bragg peak plateaus for 8 mm focused beams compared with uncollimated beams. Monte Carlo simulations showed 21% larger peak to entrance ratios and a ∼9 fold more efficient dose to target delivery compared to spot-sized matched collimated beams. Our latest results will be presented. Conclusion: Our results suggest that rare earth focusing magnet assemblies could reduce skin dose and beam number while delivering dose to nominally spherical radiosurgery targets over a much shorter time compared to unfocused beams. Immediate clinical applications include those associated with proton radiosurgery and functional radiosurgery of the brain and spine, however expanded treatment sites can be also envisaged.

  14. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    SciTech Connect

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; Zhong, Zhong; Simos, Nikolaos

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absence of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.

  15. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absencemore » of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  16. X-Ray Diffraction Studies of 145 MeV proton-irradiated AlBeMet 162

    DOE PAGES

    Elbakhshwan, Mohamed; McDonald, Kirk T.; Ghose, Sanjit; ...

    2016-08-03

    AlBeMet 162 (Materion Co., formerly Brush Wellman) has been irradiated with 145 MeV protons up to 1.2x1020 cm-2 fluence, with irradiation temperatures in the range of 100-220oC. Macroscopic postirradiation evaluation on the evolution of mechanical and thermal properties was integrated with a comprehensive X-ray- diffraction study using high-energy monochromatic and polychromatic X-ray beams, which offered a microscopic view of the irradiation damage effects on AlBeMet. The study confirmed the stability of the metal-matrix composite, its resistance to proton damage, and the continuing separation of the two distinct phases, fcc aluminum and hcp beryllium, following irradiation. Furthermore, based on the absencemore » of inter-planar distance change during proton irradiation, it was confirmed that the stacking faults and clusters on the Al (111) planes are stable, and thus can migrate from the cascade region and be absorbed at various sinks. XRD analysis of the unirradiated AlBeMet 162 showed clear change in the texture of the fcc phase with orientation especially in the Al (111) reflection which exhibits a “non-perfect” six-fold symmetry, implying lack of isotropy in the composite.« less

  17. Study of crosslinking onset and hydrogen annealing of ultra-high molecular weight polyethylene irradiated with high-energy protons

    NASA Astrophysics Data System (ADS)

    Wilson, John Ford

    1997-09-01

    Ultra high molecular weight polyethylene (UHMW-PE) is used extensively in hip and knee endoprostheses. Radiation damage from the sterilization of these endoprostheses prior to surgical insertion results in polymer crosslinking and decreased oxidative stability. The motivation for this study was to determine if UHMW-PE could be crosslinked by low dose proton irradiation with minimal radiation damage and its subsequent deleterious effects. I found that low dose proton irradiation and post irradiation hydrogen annealing did crosslink UHMW-PE and limit post irradiation oxidation. Crosslinking onset was investigated for UHMW-PE irradiated with 2.6 and 30 MeV H+ ions at low doses from 5.7 × 1011-2.3 × 1014 ions/cm2. Crosslinking was determined from gel permeation chromatography (GPC) of 1,2,4 trichlorobenzene sol fractions and increased with dose. Fourier transform infrared spectroscopy (FTIR) showed irradiation resulted in increased free radicals confirmed from increased carbonyl groups. Radiation damage, especially at the highest doses observed, also showed up in carbon double bonds and increased methyl end groups. Hydrogen annealing after ion irradiation resulted in 40- 50% decrease in FTIR absorption associated with carbonyl. The hydrogen annealing prevented further oxidation after aging for 1024 hours at 80oC. Hydrogen annealing was successful in healing radiation damage through reacting with the free radicals generated during proton irradiation. Polyethylenes, polyesters, and polyamides are used in diverse applications by the medical profession in the treatment of orthopedic impairments and cardiovascular disease and for neural implants. These artificial implants are sterilized with gamma irradiation prior to surgery and the resulting radiation damage can lead to accelerated deterioration of the implant properties. The findings in this study will greatly impact the continued use of these materials through the elimination of many problems associated with radiation

  18. Production of 230U/226Th for targeted alpha therapy via proton irradiation of 231Pa.

    PubMed

    Morgenstern, Alfred; Lebeda, Ondrej; Stursa, Jan; Bruchertseifer, Frank; Capote, Roberto; McGinley, John; Rasmussen, Gert; Sin, Mihaela; Zielinska, Barbara; Apostolidis, Christos

    2008-11-15

    (230)U and its daughter nuclide (226)Th are novel therapeutic nuclides for application in targeted alpha-therapy of cancer. We have investigated the feasibility of producing (230)U/(226)Th via proton irradiation of (231)Pa according to the reaction (231)Pa(p,2n)(230)U. The experimental excitation function for this reaction is reported for the first time. Cross sections were measured using thin targets of (231)Pa prepared by electrodeposition and (230)U yields were analyzed using alpha-spectrometry. Beam parameters (energy and intensity) were determined both by calculation using a mathematical model based on measured beam orbits and beam current integrator and by parallel monitor reactions on copper foils using high-resolution gamma-spectrometry and IAEA recommended cross-section data. The measured cross sections are in good agreement with model calculations using the EMPIRE-II code and are sufficiently high for the production of (230)U/(226)Th in clinically relevant amounts. A highly effective separation process was developed to isolate clinical grade (230)U from irradiated protactinium oxide targets. Product purity was assessed using alpha- and gamma-spectrometry as well as ICPMS.

  19. Energy related germination and survival rates of water-imbibed Arabidopsis seeds irradiated with protons

    NASA Astrophysics Data System (ADS)

    Qin, H. L.; Xue, J. M.; Lai, J. N.; Wang, J. Y.; Zhang, W. M.; Miao, Q.; Yan, S.; Zhao, W. J.; He, F.; Gu, H. Y.; Wang, Y. G.

    2006-04-01

    In order to investigate the influence of ion energy on the germination and survival rates, water-imbibed Arabidopsis seeds were irradiated with protons in atmosphere. The ion fluence used in this experiment was in the range of 4 × 109-1 × 1014 ions/cm2. The ion energy is from 1.1 MeV to 6.5 MeV. According to the structure of the seed and TRIM simulation, the ions with the energy of 6.5 MeV can irradiate the shoot apical meristem directly whereas the ions with the energy of 1.1 MeV cannot. The results showed that both the germination and survival rates decrease while increasing the ion fluence, and the fluence-respond curve for each energy has different character. Besides the shoot apical meristem (SAM), which is generally considered as the main radiobiological target, the existence of a secondary target around SAM is proposed in this paper.

  20. Proton-associated alpha-irradiation in the early solar system - A possible K-41 anomaly

    NASA Technical Reports Server (NTRS)

    Dwek, E.

    1978-01-01

    It is shown that alpha-particle fluences associated with proton fluences sufficiently high to produce the Al-correlated excess of Mg-26 found in the Allende meteorite produce equally significant amounts of Ca-41. The Ca-41 is produced by Ar-38(alpha,n)Ca-41 reactions occurring in the gas and condenses into the Ca-Al-rich grains forming at that time. After the decay of Ca-41, these grains will have a Ca-correlated excess of K-41. The question is considered whether the proposed scheme is capable of producing an observable excess of K-41. A calculation is conducted of the magnitude of the K-41 excess expected to be found in Ca-Al-rich grains for various ratios of Ca/K by developing an irradiation-condensation model. It is shown that on the basis of the currently available data it is not possible to come to firm conclusions regarding the validity of the irradiation model.

  1. The effects of irradiation and proton implantation on the density of mobile protons in SiO{sub 2} films

    SciTech Connect

    Vanheusden, K.; Fleetwood, D.M.; Schwank, J.R.; Shaneyfelt, M.R.; Meisenheimer, T.L.; Draper, B.L.

    1998-04-01

    Proton implantation into the buried oxide of Si/SiO{sub 2}/Si structures does not introduce mobile protons. The cross section for capture of radiation-induced electrons by mobile protons is two orders of magnitude smaller than for electron capture by trapped holes. The data provide new insights into the atomic mechanisms governing the generation and radiation tolerance of mobile protons in SiO{sub 2}. This can lead to improved techniques for production and radiation hardening of radiation tolerant memory devices.

  2. Isolation of the role of radiation-induced segregation in irradiation-assisted stress corrosion cracking of proton-irradiated austenitic stainless steels

    NASA Astrophysics Data System (ADS)

    Busby, Jeremy Todd

    2001-11-01

    The role of radiation-induced segregation (RIS) in irradiation-assisted stress corrosion cracking (IASCC) was studied in order to better understand the underlying mechanisms of IASCC. High-purity 304L (HP-304L), commercial purity 304 (CP-304) and commercial purity 316 (CP-316) stainless steel alloys were irradiated with 3.2 MeV protons at 400°C (HP-304L) and 360°C (CP-304 and CP-316) to doses ranging from 0.1 and 5.0 dpa. Grain boundary chemistry was measured using scanning transmission electron microscopy with energy-dispersive spectroscopy (STEM/EDS) in both unirradiated and irradiated samples. Unirradiated and irradiated samples of the two commercial purity alloys were also strained to failure in an aqueous environment representative of boiling water reactor cores. The cracking susceptibility and RIS in the proton-irradiated CP-304 is very similar to that from the neutron-irradiated samples. The CP-316 alloy did not crack. Radiation-induced segregation, cracking susceptibility, and dislocation loop microstructure developed at the same rate as a function of dose in the CP-304 alloy. To isolate the effects of RIS in IASCC, post-irradiation annealing was utilized. Simulations of post-irradiation annealing of RIS and dislocation loop microstructure show that dislocation loops are removed preferentially over RIS due to the density of vacancies required and kinetic considerations. Experimental anneals were conducted on HP-304L samples irradiated to 1.0 dpa and CP-304 samples irradiated to 1.0 and 2.5 dpa. Post-irradiation anneals were performed at temperatures ranging from 400°C to 650°C for times between 45 minutes and 5 hours. At all temperatures, the hardness and dislocation densities decreased with increasing annealing time much faster than RIS did. Annealing at 600°C for 90 minutes removed virtually all dislocation microstructure while leaving RIS intact. Cracking susceptibility in the CP-304 alloy was mitigated rapidly during post-irradiation annealing

  3. Use of primary cell cultures to measure the late effects in the skins of rhesus monkeys irradiated with protons

    NASA Astrophysics Data System (ADS)

    Cox, A. B.; Wood, D. H.; Lett, J. T.

    Previous pilot investigations of the uses of primary cell cultures to study late damage in stem cells of the skin of the New Zealand white (NZW) rabbit and the rhesus monkey /1-3/, have been extended to individual monkeys exposed to 55 MeV protons. Protons of this energy have a larger range in tissue of (~2.6 cm) than the 32 MeV protons (~0.9 cm) to which the animals in our earlier studies had been exposed. Although the primary emphases in the current studies were improvement and simplification in the techniques and logistics of transportation of biopsies to a central analytical facility, comparison of the quantitative measurements obtained thus far for survival of stem cells in the skins from animals irradiated 21 years ago reveals that the effects of both proton energies are similar.

  4. Efficient and stable proton acceleration by irradiating a two-layer target with a linearly polarized laser pulse

    SciTech Connect

    Wang, H. Y.; Yan, X. Q.; Chen, J. E.; He, X. T.; Ma, W. J.; Bin, J. H.; Schreiber, J.; Tajima, T.; Habs, D.

    2013-01-15

    We report an efficient and stable scheme to generate {approx}200 MeV proton bunch by irradiating a two-layer targets (near-critical density layer+solid density layer with heavy ions and protons) with a linearly polarized Gaussian pulse at intensity of 6.0 Multiplication-Sign 10{sup 20} W/cm{sup 2}. Due to self-focusing of laser and directly accelerated electrons in the near-critical density layer, the proton energy is enhanced by a factor of 3 compared to single-layer solid targets. The energy spread of proton is also remarkably reduced. Such scheme is attractive for applications relevant to tumor therapy.

  5. Low temperature selective absorber research

    NASA Astrophysics Data System (ADS)

    Herzenberg, S. A.; Silberglitt, R.

    1982-04-01

    Research carried out since 1979 on selective absorbers is surveyed, with particular attention given to the low-temperature coatings seen as promising for flat plate and evacuated tube applications. The most thoroughly investigated absorber is black chrome, which is highly selective and is the most durable low-temperature absorber. It is believed that other materials, because of their low cost and lower content of strategic materials, may eventually supplant black chrome. Among these candidates are chemically converted black nickel; anodically oxidized nickel, zinc, and copper composites; and nickel or other low-cost multilayer coatings. In reviewing medium and high-temperature research, black chrome, multilayer coatings and black cobalt are seen as best medium-temperature candidates. For high temperatures, an Al2O3/Pt-Al203 multilayer composite or the zirconium diboride coating is preferred.

  6. Reinforced ploymers at low temperatures

    SciTech Connect

    Hartwig, G.

    1982-01-01

    The low electrical and thermal conductivity, high specific strength, and excellent fatigue behavior of fiber-reinforced composites make them a necessary supplement and sometimes a favored alternative to metals for lowtemperature technology. This survey details these features and also examines the drawbacks of high brittleness and low interlaminar shear strength of such polymers as fiberglass, carbon-fiber, and Kevlar-fiber expoxies. Stress-strain curves, tables which list the stiffness, strength, fatigue, thermal-insular, electrical-insular, thermal contraction and workability properties at low temperatures, and microphotographs of those composites are presented. Among the results are the findings that carbon-fiber composites exhibit a very high mechanical stiffness or strength, comparable to or higher than that of steel, and that at low temperatures carbon-fiber composites have a much higher insulation capacity than steel. A combination of strong carbon-fibers and tough glass fibers results in a superior composite than either fiber alone.

  7. Innovative low temperature SOFCs and advanced materials

    NASA Astrophysics Data System (ADS)

    Zhu, B.; Yang, X. T.; Xu, J.; Zhu, Z. G.; Ji, S. J.; Sun, M. T.; Sun, J. C.

    High ionic conductivity, varying from 0.01 to 1 S cm -1 between 300 and 700 °C, has been achieved for the hybrid and nano-ceria-composite electrolyte materials, demonstrating a successful application for advanced low temperature solid oxide fuel cells (LTSOFCs). The LTSOFCs were constructed based on these new materials. The performance of 0.15-0.25 W cm -2 was obtained in temperature region of 320-400 °C for the ceria-carbonate composite electrolyte, and of 0.35-0.66 W cm -2 in temperature region of 500-600 °C for the ceria-lanthanum oxide composites. The cell could even function at as low as 200 °C. The cell has also undergone a life test for several months. A two-cell stack was studied, showing expected performance successfully. The excellent LTSOFC performance is resulted from both functional electrolyte and electrode materials. The electrolytes are two phase composite materials based on the oxygen ion and proton conducting phases, or two rare-earth oxides. The electrodes used were based on the same composite material system having excellent compatibility with the electrolyte. They are highly catalytic and conductive thus creating the excellent performances at low temperatures. These innovative LT materials and LTSOFC technologies would open the door for wide applications, not only for stationary but also for mobile power sources.

  8. Significantly Dense Two-Dimensional Hydrogen-Bond Network in a Layered Zirconium Phosphate Leading to High Proton Conductivities in Both Water-Assisted Low-Temperature and Anhydrous Intermediate-Temperature Regions.

    PubMed

    Gui, Daxiang; Zheng, Tao; Xie, Jian; Cai, Yawen; Wang, Yaxing; Chen, Lanhua; Diwu, Juan; Chai, Zhifang; Wang, Shuao

    2016-12-19

    A highly stable layered zirconium phosphate, (NH4)2[ZrF2(HPO4)2] (ZrP-1), was synthesized by an ionothermal method and contains an extremely dense two-dimensional hydrogen-bond network that is thermally stable up to 573 K, leading to combined ultrahigh water-assisted proton conductivities of 1.45 × 10(-2) S cm(-1) at 363 K/95% relative humidity and sustainable anhydrous proton conductivity of 1.1 × 10(-5) S cm(-1) at 503 K.

  9. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    PubMed Central

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2015-01-01

    Purpose Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a “priming” dose of protons on the cardiac cellular and molecular response to a “challenge” dose of 56Fe in a mouse model. Methods Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. PMID:26948008

  10. A priming dose of protons alters the early cardiac cellular and molecular response to 56Fe irradiation

    NASA Astrophysics Data System (ADS)

    Ramadan, Samy S.; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R.; Hauer-Jensen, Martin; Nelson, Gregory A.; Boerma, Marjan

    2016-02-01

    Purpose: Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a ;priming; dose of protons on the cardiac cellular and molecular response to a ;challenge; dose of 56Fe in a mouse model. Methods: Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of 56Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of 56Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Results: Exposure to 56Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before 56Fe prevented all of the responses to 56Fe. Conclusions: This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions.

  11. A priming dose of protons alters the early cardiac cellular and molecular response to (56)Fe irradiation.

    PubMed

    Ramadan, Samy S; Sridharan, Vijayalakshmi; Koturbash, Igor; Miousse, Isabelle R; Hauer-Jensen, Martin; Nelson, Gregory A; Boerma, Marjan

    2016-02-01

    Recent evidence suggests that the heart may be injured by ionizing radiation at lower doses than was previously thought. This raises concerns about the cardiovascular risks from exposure to radiation during space travel. Since space travel is associated with exposure to both protons from solar particle events and heavy ions from galactic cosmic rays, we here examined the effects of a "priming" dose of protons on the cardiac cellular and molecular response to a "challenge" dose of (56)Fe in a mouse model. Male C57BL/6 mice at 10 weeks of age were exposed to sham-irradiation, 0.1 Gy of protons (150 MeV), 0.5 Gy of (56)Fe (600 MeV/n), or 0.1 Gy of protons 24 hours prior to 0.5 Gy of (56)Fe. Hearts were obtained at 7 days post-irradiation and western-blots were used to determine protein markers of cardiac remodeling, inflammatory infiltration, and cell death. Exposure to (56)Fe caused an increase in expression of α-smooth muscle cell actin, collagen type III, the inflammatory cell markers mast cell tryptase, CD2 and CD68, the endothelial glycoprotein thrombomodulin, and cleaved caspase 3. Of all proteins investigated, protons at a dose of 0.1 Gy induced a small increase only in cleaved caspase 3 levels. On the other hand, exposure to protons 24 hours before (56)Fe prevented all of the responses to (56)Fe. This study shows that a low dose of protons may prime the heart to respond differently to a subsequent challenge dose of heavy ions. Further investigation is required to identify responses at additional time points, consequences for cardiac function, threshold dose levels, and mechanisms by which a proton priming dose may alter the response to heavy ions. Copyright © 2015 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.

  12. A two-parameter scintillation spectrometer system for measurement of secondary proton, deuteron, and triton distributions from materials under 558-MeV-proton irradiation

    NASA Technical Reports Server (NTRS)

    Beck, S. M.

    1975-01-01

    A two-parameter scintillation spectrometer system developed and used to obtain proton, deuteron, and triton double differential cross sections from materials under 558-MeV-proton irradiation is described. The system measures both the time of flight of secondary particles over a 488-cm flight path and the energy deposited in a scintillator, 12.7 cm in diameter and 30.48 cm long. The time resolution of the system is 0.39 nsec. The calculated energy resolution based on this time resolution varies with energy from 1.6 precent to 7.75 percent for 50- and 558-MeV protons. Various systematic and statistical errors are evaluated, and the double differential cross sections for secondary proton and deutron production at 20 deg from a 2.35 g/sq cm thick beryllium target are shown as an example of the results obtainable with this system. The uncertainly in the cross sections for secondary protons varies with particle energy from approximately + or - 9 percent at 50 MeV to approximately + or - 11 percent at 558 MeV.

  13. Irradiation with protons for the individualized treatment of patients with locally advanced rectal cancer: a planning study with clinical implications.

    PubMed

    Wolff, Hendrik Andreas; Wagner, Daniela Melanie; Conradi, Lena-Christin; Hennies, Steffen; Ghadimi, Michael; Hess, Clemens Friedrich; Christiansen, Hans

    2012-01-01

    Ongoing clinical trials aim to improve local control and overall survival rates by intensification of therapy regimen for patients with locally advanced rectal cancer. It is well known that whenever treatment is intensified, risk of therapy-related toxicity rises. An irradiation with protons could possibly present an approach to solve this dilemma by lowering the exposure to the organs-at-risk (OAR) without compromising tumor response. Twenty five consecutive patients were treated from 04/2009 to 5/2010. For all patients, four different treatment plans including protons, RapidArc, IMRT and 3D-conformal-technique were retrospectively calculated and analyzed according to dosimetric aspects. Detailed DVH-analyses revealed that protons clearly reduced the dose to the OAR and entire normal tissue when compared to other techniques. Furthermore, the conformity index was significantly better and target volumes were covered consistent with the ICRU guidelines. Planning results suggest that treatment with protons can improve the therapeutic tolerance for the irradiation of rectal cancer, particularly for patients scheduled for an irradiation with an intensified chemotherapy regimen and identified to be at high risk for acute therapy-related toxicity. However, clinical experiences and long-term observation are needed to assess tumor response and related toxicity rates. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  14. Changes in cellular response to the damage induced in PC-3 prostate cancer cells by proton microbeam irradiation.

    PubMed

    Lipiec, Ewelina W; Wiecheć, Anna; Dulińska-Litewka, Joanna; Kubica, Małgorzata; Lekki, Janusz; Stachura, Zbigniew; Wiltowska-Zuber, Joanna; Kwiatek, Wojciech M

    2012-03-01

    The aim of this research was to find out whether the passage number effect may influence on the PC-3 cells (the human prostate cancer line derived from bone metastases) response to proton radiation. 2 MeV horizontally focused proton microbeam was used as a radiation source. The cells were treated with a counted number of H(+) ions (50-8000) corresponding to doses of 1.3-209 Gy/cell. For comparison, cell death was also induced by UVC radiation. All cells were stained with Hoechst 33342 and propidium iodide and visualized under a fluorescence microscope. Necrosis was observed at: a) 8000 protons per cell (corresponding to ∼209 Gy/cell) after 2-4 passages, b) 3200 protons per cell (corresponding to ∼84 Gy/cell) for cells after 11-14 passages and c) only 800 protons per cell (corresponding to ∼2 Gy/cell ) after 47-50 passages. Apoptosis was efficiently induced, by protons, only in cells after 50 passages. The results showed that the laboratory conditions affected cellular response of PC-3 cell line to the proton irradiation. The cellular response to the radiation treatment strongly depends on number of passages.

  15. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  16. Total Dose Effects on Bipolar Integrated Circuits at Low Temperature

    NASA Technical Reports Server (NTRS)

    Johnston, A. H.; Swimm, R. T.; Thorbourn, D. O.

    2012-01-01

    Total dose damage in bipolar integrated circuits is investigated at low temperature, along with the temperature dependence of the electrical parameters of internal transistors. Bandgap narrowing causes the gain of npn transistors to decrease far more at low temperature compared to pnp transistors, due to the large difference in emitter doping concentration. When irradiations are done at temperatures of -140 deg C, no damage occurs until devices are warmed to temperatures above -50 deg C. After warm-up, subsequent cooling shows that damage is then present at low temperature. This can be explained by the very strong temperature dependence of dispersive transport in the continuous-time-random-walk model for hole transport. For linear integrated circuits, low temperature operation is affected by the strong temperature dependence of npn transistors along with the higher sensitivity of lateral and substrate pnp transistors to radiation damage.

  17. Repair rates of DNA double-strand breaks under different doses of proton and γ-ray irradiation

    NASA Astrophysics Data System (ADS)

    Wu, Jingwen; Fu, Qibin; Quan, Yi; Wang, Weikang; Mei, Tao; Li, Jia; Yang, Gen; Ren, Xiaotang; Xue, Jianming; Wang, Yugang

    2012-04-01

    It is known that DNA double-strand breaks (DSBs), which can be induced by a variety of treatments including ionizing radiation (IR), can cause most deleterious consequences among all kinds of DNA lesions. However, it is still under debate about whether DSBs repair is equally efficient after low and high-LET radiation, especially the basic biological responses after exposure to high-LET particles. In present study, synchronous fibroblast normal Human lung fibroblast (NHLF) cells were irradiated with graded doses of proton and γ-ray. Then γ-H2AX foci assay was used to monitor DSBs induction and repair at 0.5, 1, 2, 4, and 18 h post irradiation. The results showed that the γ-ray irradiation could produce more γ-H2AX foci than proton irradiation at the same dose. However, compared to low LET radiation with γ-ray, the results also showed a much slower DSBs repair rate after high LET radiation with protons, suggesting that the cellular ability to eliminate DSBs after low and high-LET ionizing radiation is quite different.

  18. Frequency of Early and Late Chromosome Aberrations in Different Types of Cells After Proton and Fe Ion Irradiation

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Wu, Honglu; Zhang, Ye; Yeshitla, Samrawit; Kadhim, Munira; Wilson, Bobby; Bowler, Deborah

    2016-07-01

    DNA damages induced by space radiation, consisting of protons and high-LET charged particles, can be complex in nature, which are often left unrepaired and cause chromosomal aberrations. Increased level of genomic instability is attributed to tumorigenesis and increased cancer risks. To investigate genomic instability induced by charged particles, human lymphocytes ex vivo, human fibroblasts, and human mammary epithelial cells, as well as mouse bone marrow stem cells isolated from CBA/CaH and C57BL/6 strains were exposed to high energy protons and Fe ions. Metaphase chromosome spreads at different cell divisions after radiation exposure were collected and, chromosome aberrations were analyzed with fluorescence in situ hybridization with whole chromosome-specific probes for human cells. With proton irradiation, levels of chromosome aberrations decreased by about 50% in both lymphocytes and epithelial cells after multiple cell divisions, compared to initial chromosome aberrations at 48 hours post irradiation in both cell types. With Fe ion irradiation, however, the frequency of chromosome aberrations in lymphocytes after multiple cell divisions was significantly lower than that in epithelial cells at comparable cell divisions, while their initial chromosome aberrations were at similar levels. Similar to the human cells, after Fe ion irradiation, the frequency of late chromosome aberrations was similar to that of the early damages for radio-sensitive CBA cells, but different for radio-resistant C57 cells. Our results suggest that relative biological effectiveness (RBE) values are dependent not only on radiation sources, but also on cell types and cell divisions.

  19. Coupling between the protons and PO4 tetrahedra in H+-ion-irradiated TlH2PO4

    NASA Astrophysics Data System (ADS)

    Han, Doug Young; Han, J. H.; Lee, Cheol Eui; Lee, Kwang-Sei; Kim, Se-Hun

    2012-11-01

    We studied hydrogen-bonded TlH2PO4 (TDP) ferroelectrics treated with proton-beam bombardment. The TDP material was irradiated with a 1-MeV proton beam at a dose of 1015/cm2. To analyze the local microscopic structure of TDP, we conducted 1H combined rotation and multiple pulse spectroscopy (CRAMPS), nuclear magnetic resonance (NMR), and high-resolution 31P NMR measurements. The isotropic chemical shifts of hydrogen and phosphor nuclei exhibited displacive features throughout the antiferroelectric, ferroelastic, and paraelastic phases that were attributed to the interplay of PO4 lattice deformation and the microscopic hydrogen bond network. The temperature dependence of the isotropic chemical shift σ iso in 1H and high resolution 31P NMR revealed that the electronic charge redistribution was induced by proton-beam irradiation and the material's elastic properties. We examined the proton-lattice relationship in terms of the proton's location in a local double minimum well and the displacive character of the PO4 lattice.

  20. Proton irradiation results for long-wave HgCdTe infrared detector arrays for Near-Earth Object Camera

    NASA Astrophysics Data System (ADS)

    Dorn, Meghan L.; Pipher, Judith L.; McMurtry, Craig; Hartman, Spencer; Mainzer, Amy; McKelvey, Mark; McMurray, Robert; Chevara, David; Rosser, Joshua

    2016-07-01

    HgCdTe detector arrays with a cutoff wavelength of ˜10 μm intended for the Near-Earth Object Camera (NEOCam) space mission were subjected to proton-beam irradiation at the University of California Davis Crocker Nuclear Laboratory. Three arrays were tested-one with 800-μm substrate intact, one with 30-μm substrate, and one completely substrate-removed. The CdZnTe substrate, on which the HgCdTe detector is grown, has been shown to produce luminescence in shorter wave HgCdTe arrays that causes an elevated signal in nonhit pixels when subjected to proton irradiation. This testing was conducted to ascertain whether or not full substrate removal is necessary. At the dark level of the dewar, we detect no luminescence in nonhit pixels during proton testing for both the substrate-removed detector array and the array with 30-μm substrate. The detector array with full 800-μm substrate exhibited substantial photocurrent for a flux of 103 protons/cm2 s at a beam energy of 18.1 MeV (˜750 e-/s) and 34.4 MeV (˜65 e-/s). For the integrated space-like ambient proton flux level measured by the Spitzer Space Telescope, the luminescence would be well below the NEOCam dark current requirement of <200 e-/s, but the pattern of luminescence could be problematic, possibly complicating calibration.

  1. Effects of proton irradiation on single-stranded DNA studied by using X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Lee, E.; Lee, Cheol Eui; Han, J. H.

    2016-08-01

    X-ray photoelectron spectroscopy (XPS) has been employed in order to study the effects of proton irradiation on herring sperm single-stranded DNA. Systematic changes of the chemical shifts in the C, N, O, and P XPS line components as functions of the irradiation dose were observed, indicative of the bonding configurations in the DNA system. While the C 1 s XPS lines showed weak blueshifts, the N 1 s, O 1 s, and P 2 p XPS lines showed blueshifts with a marked dependence on the irradiation dose in a prominent manner. Our results show that linear energy transfer by charged particles and photons may have distinct molecular-level effects as the C 1 s, N 1 s, O 1 s, and P 2 p XPS lines showed redshifts in our previous study of effects of the γ-ray irradiation on the same system.

  2. Spreading resistance and C-DLTS spectra of proton-irradiated mesa diodes made on thick epitaxial Si layers

    NASA Astrophysics Data System (ADS)

    Nossarzewska-Orłowska, E.; Kozłowski, R.; Brzozowski, A.

    1999-04-01

    High-resistivity, thick silicon epitaxial layers, deposited on Czochralski silicon (CZ Si) substrate were used as a material for test diodes. Resistivity profile as a function of depth and deep-level spectra were measured by spreading resistance method and deep-level transient spectroscopy (C-DLTS) on non-irradiated and proton irradiated mesa diodes. A deep level with activation energy E c-0.52 eV, attributed to V 2O defect, dominates in the non-irradiated diodes. After irradiation two levels, Ec-0.38 and Ec-0.45 eV, related to divacancies and the level Ec-0.17 eV corresponding to VO complex are distinguished.

  3. Low Temperature Waste Immobilization Testing Vol. I

    SciTech Connect

    Russell, Renee L.; Schweiger, Michael J.; Westsik, Joseph H.; Hrma, Pavel R.; Smith, D. E.; Gallegos, Autumn B.; Telander, Monty R.; Pitman, Stan G.

    2006-09-14

    The Pacific Northwest National Laboratory (PNNL) is evaluating low-temperature technologies to immobilize mixed radioactive and hazardous waste. Three waste forms—alkali-aluminosilicate hydroceramic cement, “Ceramicrete” phosphate-bonded ceramic, and “DuraLith” alkali-aluminosilicate geopolymer—were selected through a competitive solicitation for fabrication and characterization of waste-form properties. The three contractors prepared their respective waste forms using simulants of a Hanford secondary waste and Idaho sodium bearing waste provided by PNNL and characterized their waste forms with respect to the Toxicity Characteristic Leaching Procedure (TCLP) and compressive strength. The contractors sent specimens to PNNL, and PNNL then conducted durability (American National Standards Institute/American Nuclear Society [ANSI/ANS] 16.1 Leachability Index [LI] and modified Product Consistency Test [PCT]) and compressive strength testing (both irradiated and as-received samples). This report presents the results of these characterization tests.

  4. SU-E-T-337: Treatment Planning Study of Craniospinal Irradiation with Spot Scanning Proton Therapy

    SciTech Connect

    Tasson, A; Beltran, C; Laack, N; Childs, S; Tryggestad, E; Whitaker, T

    2014-06-01

    Purpose: To develop a treatment planning technique that achieves optimal robustness against systematic position and range uncertainties, and interfield position errors for craniospinal irradiation (CSI) using spot scanning proton radiotherapy. Methods: Eighteen CSI patients who had previously been treated using photon radiation were used for this study. Eight patients were less than 10 years old. The prescription dose was 23.4Gy in 1.8Gy fractions. Two different field arrangement types were investigated: 1 posterior field per isocenter and 2 posterior oblique fields per isocenter. For each field type, two delivery configurations were used: 5cm bolus attached to the treatment table and a 4.5cm range shifter located inside the nozzle. The target for each plan was the whole brain and thecal sac. For children under the age of 10, all plan types were repeated with an additional dose of 21Gy prescribed to the vertebral bodies. Treatment fields were matched by stepping down the dose in 10% increments over 9cm. Robustness against 3% and 3mm uncertainties, as well as a 3mm inter-field error was analyzed. Dose coverage of the target and critical structure sparing for each plan type will be considered. Ease of planning and treatment delivery was also considered for each plan type. Results: The mean dose volume histograms show that the bolus plan with posterior beams gave the best overall plan, and all proton plans were comparable to or better than the photon plans. The plan type that was the most robust against the imposed uncertainties was also the bolus plan with posterior beams. This is also the plan configuration that is the easiest to deliver and plan. Conclusion: The bolus plan with posterior beams achieved optimal robustness against systematic position and range uncertainties, as well as inter-field position errors.

  5. SU-E-T-533: LET Dependence Correction of Radiochromic Films for Application in Low Energy Proton Irradiation

    SciTech Connect

    Reinhardt, S; Wuerl, M; Assmann, W; Parodi, K; Greubel, C; Wilkens, J; Hillbrand, M; Mairani, A

    2015-06-15

    Purpose: Many cell irradiation experiments with low-energy laser-driven ions rely on radiochromic films (RCF), because of their dose-rate independent response and superior spatial resolution. RCF dosimetry in low-energy ion beams requires a correction of the LET dependent film response. The relative efficiency (RE), the ratio of photon to proton dose that yields the same film darkening, is a measure for the film’s LET dependence. A direct way of RE determination is RCF irradiation with low-energy mono-energetic protons and hence, well-defined LET. However, RE is usually determined using high energy proton depth dose measurements where RE corrections require knowledge of the average LET in each depth, which can be either track (tLET) or dose (dLET) averaged. The appropriate LET concept has to be applied to allow a proper film response correction. Methods: Radiochromic EBT2 and EBT3 films were irradiated in clinical photon and proton beams. For each depth of the 200 MeV proton depth dose curve, tLET and dLET were calculated by special user routines from the Monte Carlo code FLUKA. Additional irradiations with mono-energetic low energy protons (4–20 MeV) serve as reference for the RE determination. Results: The difference of dLET and tLET increases with depth, with the dLET being almost twice as large as the tLET for the maximum depth. The comparison with mono-energetic measurements shows a good agreement of the RE for the dLET concept, while a considerably steeper drop in RE is observed when applying the tLET. Conclusion: RCF can be used as reference dosimeter for biomedical experiments with low-energy proton beams if appropriate LET corrections are applied. When using depth dose measurements from clinical proton accelerators for these corrections, the concept of dLET has to be applied. Acknowledgement: This work was funded by the DFG Cluster of Excellence ‘Munich-Centre for Advanced Photonics’ (MAP). This work was funded by the DFG Cluster of Excellence

  6. Ultra-low temperature MAS-DNP

    NASA Astrophysics Data System (ADS)

    Lee, Daniel; Bouleau, Eric; Saint-Bonnet, Pierre; Hediger, Sabine; De Paëpe, Gaël

    2016-03-01

    Since the infancy of NMR spectroscopy, sensitivity and resolution have been the limiting factors of the technique. Regular essential developments on this front have led to the widely applicable, versatile, and powerful spectroscopy that we know today. However, the Holy Grail of ultimate sensitivity and resolution is not yet reached, and technical improvements are still ongoing. Hence, high-field dynamic nuclear polarization (DNP) making use of high-frequency, high-power microwave irradiation of electron spins has become very promising in combination with magic angle sample spinning (MAS) solid-state NMR experiments. This is because it leads to a transfer of the much larger polarization of these electron spins under suitable irradiation to surrounding nuclei, greatly increasing NMR sensitivity. Currently, this boom in MAS-DNP is mainly performed at minimum sample temperatures of about 100 K, using cold nitrogen gas to pneumatically spin and cool the sample. This Perspective deals with the desire to improve further the sensitivity and resolution by providing "ultra"-low temperatures for MAS-DNP, using cryogenic helium gas. Different designs on how this technological challenge has been overcome are described. It is shown that stable and fast spinning can be attained for sample temperatures down to 30 K using a large cryostat developed in our laboratory. Using this cryostat to cool a closed-loop of helium gas brings the additional advantage of sample spinning frequencies that can greatly surpass those achievable with nitrogen gas, due to the differing fluidic properties of these two gases. It is shown that using ultra-low temperatures for MAS-DNP results in substantial experimental sensitivity enhancements and according time-savings. Access to this temperature range is demonstrated to be both viable and highly pertinent.

  7. Effects of very low fluences of high-energy protons or iron ions on irradiated and bystander cells.

    PubMed

    Yang, H; Magpayo, N; Rusek, A; Chiang, I-H; Sivertz, M; Held, K D

    2011-12-01

    In space, astronauts are exposed to radiation fields consisting of energetic protons and high atomic number, high-energy (HZE) particles at very low dose rates or fluences. Under these conditions, it is likely that, in addition to cells in an astronaut's body being traversed by ionizing radiation particles, unirradiated cells can also receive intercellular bystander signals from irradiated cells. Thus this study was designed to determine the dependence of DNA damage induction on dose at very low fluences of charged particles. Novel techniques to quantify particle fluence have been developed at the NASA Space Radiation Biology Laboratory (NSRL) at Brookhaven National Laboratory (BNL). The approach uses a large ionization chamber to visualize the radiation beam coupled with a scintillation counter to measure fluence. This development has allowed us to irradiate cells with 1 GeV/nucleon protons and iron ions at particle fluences as low as 200 particles/cm(2) and quantify biological responses. Our results show an increased fraction of cells with DNA damage in both the irradiated population and bystander cells sharing medium with irradiated cells after low fluences. The fraction of cells with damage, manifest as micronucleus formation and 53BP1 focus induction, is about 2-fold higher than background at doses as low as ∼0.47 mGy iron ions (∼0.02 iron ions/cell) or ∼70 μGy protons (∼2 protons/cell). In the irradiated population, irrespective of radiation type, the fraction of damaged cells is constant from the lowest damaging fluence to about 1 cGy, above which the fraction of damaged cells increases with dose. In the bystander population, the level of damage is the same as in the irradiated population up to 1 cGy, but it does not increase above that plateau level with increasing dose. The data suggest that at fluences of high-energy protons or iron ions less than about 5 cGy, the response in irradiated cell populations may be dominated by the bystander response.

  8. Craniospinal Irradiation Techniques: A Dosimetric Comparison of Proton Beams With Standard and Advanced Photon Radiotherapy

    SciTech Connect

    Yoon, Myonggeun; Shin, Dong Ho; Kim, Jinsung; Kim, Jong Won; Kim, Dae Woong; Park, Sung Yong; Lee, Se Byeong; Kim, Joo Young; Park, Hyeon-Jin; Park, Byung Kiu; Shin, Sang Hoon

    2011-11-01

    Purpose: To evaluate the dosimetric benefits of advanced radiotherapy techniques for craniospinal irradiation in cancer in children. Methods and Materials: Craniospinal irradiation (CSI) using three-dimensional conformal radiotherapy (3D-CRT), tomotherapy (TOMO), and proton beam treatment (PBT) in the scattering mode was planned for each of 10 patients at our institution. Dosimetric benefits and organ-specific radiation-induced cancer risks were based on comparisons of dose-volume histograms (DVHs) and on the application of organ equivalent doses (OEDs), respectively. Results: When we analyzed the organ-at-risk volumes that received 30%, 60%, and 90% of the prescribed dose (PD), we found that PBT was superior to TOMO and 3D-CRT. On average, the doses delivered by PBT to the esophagus, stomach, liver, lung, pancreas, and kidney were 19.4 Gy, 0.6 Gy, 0.3 Gy, 2.5 Gy, 0.2 Gy, and 2.2 Gy for the PD of 36 Gy, respectively, which were significantly lower than the doses delivered by TOMO (22.9 Gy, 4.5 Gy, 6.1 Gy, 4.0 Gy, 13.3 Gy, and 4.9 Gy, respectively) and 3D-CRT (34.6 Gy, 3.6 Gy, 8.0 Gy, 4.6 Gy, 22.9 Gy, and 4.3 Gy, respectively). Although the average doses delivered by PBT to the chest and abdomen were significantly lower than those of 3D-CRT or TOMO, these differences were reduced in the head-and-neck region. OED calculations showed that the risk of secondary cancers in organs such as the stomach, lungs, thyroid, and pancreas was much higher when 3D-CRT or TOMO was used than when PBT was used. Conclusions: Compared with photon techniques, PBT showed improvements in most dosimetric parameters for CSI patients, with lower OEDs to organs at risk.

  9. Relativistic Sommerfeld Low Temperature Expansion

    NASA Astrophysics Data System (ADS)

    Lourenço, O.; Dutra, M.; Delfino, A.; Sá Martins, J. S.

    We derive a relativistic Sommerfeld expansion for thermodynamic quantities in many-body fermionic systems. The expansion is used to generate the equation of state of the Walecka model and its isotherms. We find that these results are in good agreement with numerical calculations, even when the expansion is truncated at its lowest order, in the low temperature regime, defined by T/xf ≪ 1. Although the interesting region near the liquid-gas phase transition is excluded by this criterion, the expansion may still find usefulness in the study of very cold nuclear matter systems, such as neutron stars.

  10. A Comparison of Molecular and Histopathological Changes in Mouse Intestinal Tissue Following Whole-Body Proton- or Gamma-Irradiation

    NASA Technical Reports Server (NTRS)

    Purgason, Ashley; Mangala, Lingegowda; Zhang, Ye; Hamilton, Stanley; Wu, Honglu

    2010-01-01

    There are many consequences following exposure to the space radiation environment which can adversely affect the health of a crew member. Acute radiation syndrome (ARS) involving nausea and vomiting, damage to radio-sensitive tissue such as the blood forming organs and gastrointestinal tract, and cancer are some of these negative effects. The space radiation environment is ample with protons and contains gamma rays as well. Little knowledge exists to this point, however, regarding the effects of protons on mammalian systems; conversely several studies have been performed observing the effects of gamma rays on different animal models. For the research presented here, we wish to compare our previous work looking at whole-body exposure to protons using a mouse model to our studies of mice experiencing whole-body exposure to gamma rays as part of the radio-adaptive response. Radio-adaptation is a well-documented phenomenon in which cells exposed to a priming low dose of radiation prior to a higher dose display a reduction in endpoints like chromosomal aberrations, cell death, micronucleus formation, and more when compared to their counterparts receiving high dose-irradiation only. Our group has recently completed a radio-adaptive experiment with C57BL/6 mice. For both this study and the preceding proton research, the gastrointestinal tract of each animal was dissected four hours post-irradiation and the isolated small intestinal tissue was fixed in formalin for histopathological examination or snap-frozen in liquid nitrogen for RNA isolation. Histopathologic observation of the tissue using standard H&E staining methods to screen for morphologic changes showed an increase in apoptotic lesions for even the lowest doses of 0.1 Gy of protons and 0.05 Gy of gamma rays, and the percentage of apoptotic cells increased with increasing dose. A smaller percentage of crypts showed 3 or more apoptotic lesions in animals that received 6 Gy of gamma-irradiation compared to mice

  11. A model for proton-irradiated GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Walker, G. H.; Outlaw, R. A.; Stock, L. V.

    1982-01-01

    A simple model for proton radiation damage in GaAs heteroface solar cells is developed. The model includes the effects of spatial nonuniformity of low energy proton damage. Agreement between the model and experimental proton damage data for GaAs heteroface solar cells is satisfactory. An extension of the model to include angular isotropy, as is appropriate for protons in space, is shown to result in significantly less cell damage than for normal proton incidence.

  12. [Manifestation of the adaptive response and bystander-effect of C3H10T1/2 fibroblasts irradiated by protons and gamma-rays].

    PubMed

    Voskanian, K Sh; Mitsyn, G V; Gaevskiĭ, V N

    2009-01-01

    Adaptive response and bystander-effect were studied in mice fibroblasts irradiated by gamma-rays and protons with the energy of 150 MeV Monolayer of fibroblasts cultivated on the wall of a plastic vial first were exposed to 2 and 4 cGy of ionizing radiation (presumably adaptive doses) and later, after 40-min. or 16-hr. period at 37 degrees C, to damaging 4 Gy. To study the bystander-effect, either the whole vial surface (25 cm2) or central area (1 cm2) were irradiated by a beam of protons. The results showed that the preliminary gamma-irradiation 40-min. or 16-hr. before exposure to the damaging dose equally alleviates the harmful effect of protons on fibroblasts. The adaptive response was observed as in the cells subjected to the direct irradiation by protons at 4 Gy, so in bystander-cells. When protons were used for adaptive irradiation, the response was visible only to the dose of 4 cGy in fibroblasts exposed to gamma-radiation 16 hrs. later. In all the rest cases, proton- and gamma-induced damages added together. Besides, the experiments showed that the adaptive effect of protons is passed on to bystander-cells. Adaptive and damaging gamma-irradiation evoked the response invariably.

  13. Effects of high energy x ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response

    NASA Astrophysics Data System (ADS)

    Bastani, Y.; Cortés-Peña, A. Y.; Wilson, A. D.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Bassiri-Gharb, N.

    2013-05-01

    The effects of irradiation by X rays and protons on the dielectric and piezoelectric response of highly (100)-textured polycrystalline Pb(ZrxTi1-x)O3 (PZT) thin films have been studied. Low-field dielectric permittivity, remanent polarization, and piezoelectric d33,f response all degraded with exposure to radiation, for doses higher than 300 krad. At first approximation, the degradation increased at higher radiation doses, and was stronger in samples exposed to X rays, compared to the proton-irradiated ones. Nonlinear and high-field dielectric characterization suggest a radiation-induced reduction of the extrinsic contributions to the response, attributed to increased pinning of the domain walls by the radiation-induced point defects.

  14. Effects of high energy x ray and proton irradiation on lead zirconate titanate thin films' dielectric and piezoelectric response

    SciTech Connect

    Bastani, Y.; Cortes-Pena, A. Y.; Wilson, A. D.; Gerardin, S.; Bagatin, M.; Paccagnella, A.; Bassiri-Gharb, N.

    2013-05-13

    The effects of irradiation by X rays and protons on the dielectric and piezoelectric response of highly (100)-textured polycrystalline Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} (PZT) thin films have been studied. Low-field dielectric permittivity, remanent polarization, and piezoelectric d{sub 33,f} response all degraded with exposure to radiation, for doses higher than 300 krad. At first approximation, the degradation increased at higher radiation doses, and was stronger in samples exposed to X rays, compared to the proton-irradiated ones. Nonlinear and high-field dielectric characterization suggest a radiation-induced reduction of the extrinsic contributions to the response, attributed to increased pinning of the domain walls by the radiation-induced point defects.

  15. Uveal melanomas near the optic disc or fovea. Visual results after proton beam irradiation

    SciTech Connect

    Seddon, J.M.; Gragoudas, E.S.; Egan, K.M.; Glynn, R.J.; Munzenrider, J.E.; Austin-Seymour, M.; Goitein, M.; Verhey, L.; Urie, M.; Koehler, A.

    1987-04-01

    Proximity to the disc and fovea is a risk factor for visual loss after proton beam irradiation of uveal melanomas. Of 562 eyes treated over a 10-year period with pretreatment visual acuity of 20/200 or better, 363 (64.6%) contained tumors within 2 disc diameters (DD) of the disc or fovea. Rates of visual loss after treatment to worse than 20/200 and causes of visual decline were evaluated using Kaplan-Meier analysis. Cumulative rates of visual loss among subjects with tumors near the disc or fovea were 33 and 47% 1 and 2 years after treatment compared to 17 and 28%, respectively, for subjects with tumors located farther from both structures. The leading cause of visual loss in the first year among eyes with tumors near the disc or fovea was retinal detachment. Controlling for other predictors of visual loss to worse than 20/200, location near the disc or fovea was independently related to visual loss primarily due to retinal detachment, cataract, and radiation retinopathy. Despite the unfavorable location of these tumors, over half of patients with 20/200 or better pretreatment visual acuity had useful vision 2 years after treatment.

  16. Pretreatment of rice straw by proton beam irradiation for efficient enzyme digestibility.

    PubMed

    Kim, Sung Bong; Kim, Jun Seok; Lee, Jong Ho; Kang, Seong Woo; Park, Chulhwan; Kim, Seung Wook

    2011-08-01

    Biomass was pretreated with proton beam irradiation (PBI) in order to enhance enzyme digestibility. Rice straw and soaking in aqueous ammonia (SAA)-treated rice straw were treated with 1-25 kGy doses of PBI at a beam energy of 45 MeV. The optimal doses of PBI for efficient sugar recovery were 15 and 3 kGy for rice straw and SAA-treated rice straw, respectively. When PBI was applied to rice straw at 15 kGy, the glucose conversion reached 68% of the theoretical maximum at 72 h. When 3 kGy of PBI was applied to SAA-treated rice straw, approximately 90% of the theoretical glucose conversion was obtained at 12 h compared to a 89% conversion at 48 h. After 2 h of enzymatic saccharification, the initial reaction rates of raw rice straw pretreated with 15 kGy of PBI and SAA-treated rice straw pretreated with 3 kGy of PBI were 1.4 × 10⁻⁴ and 9.7 × 10⁻⁴ g L⁻¹ s⁻¹, respectively. Further, the results of X-ray diffractometry support the effect of PBI on sugar recovery, whereas scanning electron microscopy images revealed a more rugged rice straw surface.

  17. Room temperature preparation of Pt-decorated MWCNTs by using proton beam irradiation

    NASA Astrophysics Data System (ADS)

    Kim, Yeong-Joon; Lee, Yoon Ji; Song, Jae Hee

    2016-09-01

    We present a facile one-pot preparation route for the production of multiwalled carbon nanotube (MWCNT)-Pt nanoparticle composites in an aqueous solution at room temperature by using proton beam irradiation process without the addition of any reducing reagents. We utilized hexade-cyltrimethylammonium bromide (CTAB)-stabilized pristine and thiol-functionalized MWCNTs for the synthesis of MWCNT-Pt nanoparticle composites and compared the deposition trends of the platinum nanoparticles onto the surfaces of pristine MWCNTs and surface-modified MWCNTs, respectively. Thiolated MWCNTs were densely and uniformly decorated with Pt nanoparticles while pristine MWCNTs were not. The Pt nanostructures on the surfaces of MWCNTs were spherical, and the average diameter was in the range of ~2 nm. Also, two different metal precursors, H2PtCl6 and Na2PtCl6, were used to find any distinguishable decoration patterns on the surface-modified MWCNTs; however, the deposition patterns were observed to be not very different.

  18. Niel Dose Dependence for Solar Cells Irradiated with Electrons and Protons

    NASA Astrophysics Data System (ADS)

    Baur, C.; Gervasi, M.; Nieminen, P.; Pensotti, S.; Rancoita, P. G.; Tacconi, M.

    2014-06-01

    The investigation of solar cells degradation and the prediction of its end-of-life performance is of primary importance in the preparation of a space mission. In the present work, we investigate the reduction of solar-cells' maximum power resulting from irradiations with electrons and protons. Both GaAs single junction and GalnP/GaAs/Ge triple junction solar cells were studied. The results obtained indicate how i) the dominant radiation damaging mechanism is due to atomic displacements, ii) the relative maximum power degradation is almost independent of the type of incoming particle, i.e., iii) to a first approximation, the fitted semi-empirical function expressing the decrease of maximum power depends only on the absorbed NIEL dose, and iv) the actual displacement threshold energy value (Ed = 21 eV) accounts for annealing treatments, mostly due to self-annealing induced effects. Thus, for a given type of solar cell, a unique maximum power degradation curve can be determined as a function of the absorbed NIEL dose. The latter expression allows one to predict the performance of those solar cells in space radiation environment.

  19. Guanine radical reaction processes: a computational description of proton transfer in X-irradiated 9-ethylguanine single crystals.

    PubMed

    Jayatilaka, Nayana; Nelson, William H

    2008-12-25

    Computational methods based on DFT procedures have been used to investigate proton-transfer processes in irradiated 9-ethylguanine crystals. Previous experimental results from X-irradiation and study of this system at 10 K found significant concentrations of two main products, R1, formed by N7-hydrogenation of the purine ring, and R2, the primary one-electron oxidation product (Jayatilaka, N.; Nelson, W. H. J. Phys. Chem. B 2007, 111, 7887). The objective of this work is to describe the processes leading to these products using computational methods that take into account molecular packing and bulk dielectric properties. The basic concept is that a proton will transfer following ionization if the net electronic energy of the system, consisting of the donor plus the acceptor plus any intervening molecules, becomes lower. Three approaches were used to investigate this concept, two based on energies computed for single molecules and one based on energies computed for two-molecule clusters arranged as in the crystals. The results are that the methods successfully predict the observed behavior, that it is energetically favorable on one-electron reduction for proton H1 to transfer from a neutral molecule to N7 of the neighbor, forming the N7-hydrogenated product, and that there is virtually no energy advantage for a proton to transfer upon one-electron oxidation. The results also support the proposal that the C8 H-addition radical, found only upon irradiation at 300 K, was the product of intramolecular transfer of the H7 proton to C8 in a process apparently requiring sufficient thermal energy for activation. Finally, the computations predict hyperfine couplings and tensors in very good agreement with those from experiment, thereby providing additional evidence for the success of the computations in describing the experimental observations.

  20. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation.

    PubMed

    Priegnitz, M; Helmbrecht, S; Janssens, G; Perali, I; Smeets, J; Vander Stappen, F; Sterpin, E; Fiedler, F

    2015-06-21

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  1. Measurement of prompt gamma profiles in inhomogeneous targets with a knife-edge slit camera during proton irradiation

    NASA Astrophysics Data System (ADS)

    Priegnitz, M.; Helmbrecht, S.; Janssens, G.; Perali, I.; Smeets, J.; Vander Stappen, F.; Sterpin, E.; Fiedler, F.

    2015-06-01

    Proton and ion beam therapies become increasingly relevant in radiation therapy. To fully exploit the potential of this irradiation technique and to achieve maximum target volume conformality, the verification of particle ranges is highly desirable. Many research activities focus on the measurement of the spatial distributions of prompt gamma rays emitted during irradiation. A passively collimating knife-edge slit camera is a promising option to perform such measurements. In former publications, the feasibility of accurate detection of proton range shifts in homogeneous targets could be shown with such a camera. We present slit camera measurements of prompt gamma depth profiles in inhomogeneous targets. From real treatment plans and their underlying CTs, representative beam paths are selected and assembled as one-dimensional inhomogeneous targets built from tissue equivalent materials. These phantoms have been irradiated with monoenergetic proton pencil beams. The accuracy of range deviation estimation as well as the detectability of range shifts is investigated in different scenarios. In most cases, range deviations can be detected within less than 2 mm. In close vicinity to low-density regions, range detection is challenging. In particular, a minimum beam penetration depth of 7 mm beyond a cavity is required for reliable detection of a cavity filling with the present setup. Dedicated data post-processing methods may be capable of overcoming this limitation.

  2. Synchrotron FTIR shows evidence of DNA damage and lipid accumulation in prostate adenocarcinoma PC-3 cells following proton irradiation

    NASA Astrophysics Data System (ADS)

    Lipiec, Ewelina; Bambery, Keith R.; Heraud, Phil; Hirschmugl, Carol; Lekki, Janusz; Kwiatek, Wojciech M.; Tobin, Mark J.; Vogel, Christian; Whelan, Donna; Wood, Bayden R.

    2014-09-01

    Synchrotron Radiation Fourier Transform Infrared (SR-FTIR) spectra of single human prostate adenocarcinoma PC-3 cells, irradiated with a defined number of 2 MeV protons generated by a proton microbeam along with non-irradiated control cells, were analysed using multivariate methods. A number of different Principal Component Analysis (PCA) models were tested and the spectral ranges associated with nucleic acids, proteins and lipids were analysed separately. The results show a dose dependent shift of the Osbnd Psbnd O asymmetric stretching mode from 1234 cm-1 to 1237 cm-1, consistent with local disorder in the B-DNA conformation along with a change in intensity of the Osbnd Psbnd O symmetric stretching band at 1083 cm-1 indicative of chromatin fragmentation - the natural consequence of a high number of DNA Double Strand Breaks (DSBs). 2D mapping of characteristic functional groups at the diffraction limit shows evidence of lipid deposition and chromatin condensation in cells exposed to protons indicative of cell apoptosis following irradiation. These studies lay the foundation for understanding the macromolecular changes that occur to cells in response to radiation therapy, which has important implications in the treatment of tumours.

  3. Cutaneous graft-versus-host disease after proton-based craniospinal irradiation for recurrent Philadelphia-positive acute lymphoblastic leukaemia.

    PubMed

    Sharp, Hadley; Grosshans, David; Kadia, Tapan; Dabaja, Bouthaina Shbib

    2012-07-11

    Treatment of recurrent acute lymphoblastic leukaemia (ALL) often involves allogeneic stem-cell transplantation (alloSCT) and disease recurrence in the central nervous system may require craniospinal irradiation. Although graft-versus-host disease (GVHD) is a known risk after alloSCT, cutaneous manifestation within radiation fields is rarely seen. The authors report a case of a 25-year-old man with Philadelphia+ALL recurring in the central nervous system after a homologous SCT. Craniospinal radiation was delivered with proton therapy to a total dose of 24 cobalt-Gray-equivalents in 12 fractions. Eight weeks after the proton therapy, significant cutaneous GVHD had developed within the radiation fields. This was treated successfully with tacrolimus (4 mg/day), a short course of methylprednisolone, and topical treatment with 0.1% triamcinolone cream, 0.05% clobetasol ointment. Cutaneous GVHD after SCT can be seen within proton radiation fields probably due to an inherent higher skin dose.

  4. Proton emission from thin hydrogenated targets irradiated by laser pulses at 1016 W/cm2a)

    NASA Astrophysics Data System (ADS)

    Torrisi, L.; Giuffrida, L.; Cutroneo, M.; Cirrone, P.; Picciotto, A.; Krasa, J.; Margarone, D.; Velyhan, A.; Laska, L.; Ullschmied, J.; Wolowski, J.; Badziak, J.; Rosinski, M.

    2012-02-01

    The iodine laser at PALS Laboratory in Prague, operating at 1315 nm fundamental harmonics and at 300 ps FWHM pulse length, is employed to irradiate thin hydrogenated targets placed in vacuum at intensities on the order of 1016 W/cm2. The laser-generated plasma is investigated in terms of proton and ion emission in the forward and backward directions. The time-of-flight technique, using ion collectors and semiconductor detectors, is used to measure the ion currents and the corresponding velocities and energies. Thomson parabola spectrometer is employed to separate the contribution of the ion emission from single laser shots. A particular attention is given to the proton production in terms of the maximum energy, emission yield, and angular distribution as a function of the laser energy, focal position, target thickness, and composition. Metallic and polymeric targets allow to generate protons with large energy range and different yield, depending on the laser, target composition, and target geometry properties.

  5. Study of radiation induced deep-level defects in proton irradiated AlGaAs-GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Li, S. S.

    1980-01-01

    Radiation induced deep-level defects (both electron and hole traps) in proton irradiated AlGaAs-GaAs p-n junction solar cells are investigated along with the correlation between the measured defect parameters and the solar cell performance parameters. The range of proton energies studied was from 50 KeV to 10 MeV and the proton fluence was varied from 10 to the 10th power to 10 to the 13th power P/sq cm. Experimental tools employed include deep-level transient spectroscopy, capacitance-voltage, current voltage, and SEM-EBIC methods. Defect and recombination parameters such as defect density and energy level, capture cross section, carrier lifetimes and effective hole diffusion lengths in n-GaAs LPE layers were determined from these measurements.

  6. Dominant front-side acceleration of energetic proton beams from plastic targets irradiated by an ultraintense laser pulse

    SciTech Connect

    Lee, K.; Park, S. H.; Cha, Y.-H.; Lee, Y. W.; Jeong, Y. U.; Lee, J. Y.; Kim, K. N.

    2011-01-15

    An experimental observation has been made by using aluminum-coated Mylar foils, which strongly supports that in the case of plastic target, the energetic part of the proton beam originates from the front-side of the target. When a 30 fs laser pulse with an intensity of 1.6x10{sup 19} W/cm{sup 2} was irradiated on the 12.5-{mu}m-thick Mylar side of the aluminum-coated Mylar foil, the maximum proton energy was reduced by a factor 5.5 as compared to that of 3.3 MeV observed from the single layer of the Mylar foil. With the help of a two-dimensional particle-in-cell simulation, these observations can be interpreted that in the case of plastic target, the energetic proton beam originates from the front-side of the target. In the case of an aluminum-coated 6-{mu}m-thick Mylar foil, more energetic proton beams of 4.7 MeV were also observed when the laser pulse was irradiated on the aluminum side as compared to those of 3.4 MeV from the single Mylar foil.

  7. Histologic effects of high energy electron and proton irradiation of rat brain detected with a silver-degeneration stain

    NASA Astrophysics Data System (ADS)

    Switzer, R. C.; Bogo, V.; Mickley, G. A.

    1994-10-01

    Application of the degeneration sensitive, cupric-silver staining method to brain sections of male Sprague-Dawley rats irradiated 4 days before sacrifice with 155 Mev protons, 2-8 Gy at 1 Gy/min (N=6) or 22-101Gy at 20 Gy/min (N=16) or with 18.6 Mev electrons, 32-67 Gy at 20 Gy/min (N=20), doses which elicit behavioral changes (accelerod or conditioned taste aversion), resulted in a display of degeneration of astrocyte-like cell profiles which were not uniformly distributed. Plots of `degeneration scores' (counts of profiles in 29 areas) vs. dose for the proton and electron irradiations displayed a linear dose response for protons in the range of 2-8 Gy. In the 20-100 Gy range, for both electrons and protons the points were distributed in a broad band suggesting a saturation curve. The dose range in which these astrocyte-like profiles becomes maximal corresponds well with the dose range for the X-ray eradication of a subtype of astrocytes, `beta astrocytes`.

  8. Dosimetric comparison between proton and photon beams in the moving gap region in cranio-spinal irradiation (CSI).

    PubMed

    Cheng, Chee-Wai; Das, Indra J; Srivastava, Shiv P; Zhao, Li; Wolanski, Mark; Simmons, Joseph; Johnstone, Peter A S; Buchsbaum, Jeffrey C

    2013-04-01

    To investigate the moving gap region dosimetry in proton beam cranio-spinal irradiation (CSI) to provide optimal dose uniformity across the treatment volume. Proton beams of ranges 11.6 cm and 16 cm are used for the spine and the brain fields, respectively. Beam profiles for a 30 cm snout are first matched at the 50% level (hot match) on the computer. Feathering is simulated by shifting the dose profiles by a known distance two successive times to simulate a 2 × feathering scheme. The process is repeated for 2 mm and 4 mm gaps. Similar procedures are used to determine the dose profiles in the moving gap for a series of gap widths, 0-10 mm, and feathering step sizes, 4-10 mm, for a Varian iX 6MV beam. The proton and photon dose profiles in the moving gap region are compared. The dose profiles in the moving gap exhibit valleys and peaks in both proton and photon beam CSI. The dose in the moving gap for protons is around 100% or higher for 0 mm gap, for both 5 and 10 mm feathering step sizes. When the field gap is comparable or larger than the penumbra, dose minima as low as 66% is obtained. The dosimetric characteristics for 6 MV photon beams can be made similar to those of the protons by appropriately combining gap width and feathering step size. The dose in the moving gap region is determined by the lateral penumbras, the width of the gap and the feathering step size. The dose decreases with increasing gap width or decreasing feathering step size. The dosimetric characteristics are similar for photon and proton beams. However, proton CSI has virtually no exit dose and is beneficial for pediatric patients, whereas with photon beams the whole lung and abdomen receive non-negligible exit dose.

  9. Binary nucleation at low temperatures

    NASA Technical Reports Server (NTRS)

    Zahoransky, R. A.; Peters, F.

    1985-01-01

    The onset of homogeneous condensation of binary vapors in the supersaturated state is studied in ethanol/n-propanol and water/ethanol via their unsteady expansion in a shock tube at temperatures below 273 K. Ethanol/n-propanol forms a nearly ideal solution, whereas water/ethanol is an example of a strongly nonideal mixture. Vapor mixtures of various compositions are diluted in dry air at small mole fractions and expanded in the driver section from room temperature. The onset of homogeneous condensation is detected optically and the corresponding thermodynamic state is evaluated. The experimental results are compared with the binary nucleation theory, and the particular problems of theoretical evaluation at low temperatures are discussed.

  10. Low temperature boron doped diamond

    NASA Astrophysics Data System (ADS)

    Zeng, Hongjun; Arumugam, Prabhu U.; Siddiqui, Shabnam; Carlisle, John A.

    2013-06-01

    Low temperature boron doped diamond (LT-BDD) film deposited under 600 °C (460 °C minimum) has been reported. Study reveals that the deposition temperature and boron dopant cause nanocrystalline diamond (NCD) instead of ultrananocrystalline diamond (UNCD®). Unlike conventional NCD, LT-BDD has faster renucleation rate, which ensures a low surface roughness (approximately 10 nm at 0.6 μm thickness). The overall characteristics of LT-BDD are mixed with the characteristics of conventional NCD and UNCD. Raman spectrum and electrochemical characterization prove that the quality of LT-BDD is similar to those grown under 650-900 °C. LT-BDD enables diamond applications on microelectromechanical systems, bio- and optical technologies.

  11. Photosynthesis, photoinhibition and low temperature acclimation in cold tolerant plants.

    PubMed

    Huner, N P; Oquist, G; Hurry, V M; Krol, M; Falk, S; Griffith, M

    1993-07-01

    Cold acclimation requires adjustment to a combination of light and low temperature, conditions which are potentially photoinhibitory. The photosynthetic response of plants to low temperature is dependent upon time of exposure and the developmental history of the leaves. Exposure of fully expanded leaves of winter cereals to short-term, low temperature shiftsinhibits whereas low temperature growthstimulates electron transport capacity and carbon assimilation. However, the photosynthetic response to low temperature is clearly species and cultivar dependent. Winter annuals and algae which actively grow and develop at low temperature and moderate irradiance acquire a resistance to irradiance 5- to 6-fold higher than their growth irradiance. Resistance to short-term photoinhibition (hours) in winter cereals is a reflection of the increased capacity to keep QA oxidized under high light conditions and low temperature. This is due to an increased capacity for photosynthesis. These characteristics reflect photosynthetic acclimation to low growth temperature and can be used to predict the freezing tolerance of cereals. It is proposed that the enhanced photosynthetic capacity reflects an increased flux of fixed carbon through to sucrose in source tissue as a consequence of the combined effects of increased storage of carbohydrate as fructans in the vacuole of leaf mesophyll cells and an enhanced export to the crown due to its increased sink activity. Long-term exposure (months) of cereals to low temperature photoinhibition indicates that this reduction of photochemical efficiency of PS II represents a stable, long-term down regulation of PS II to match the energy requirements for CO2 fixation. Thus, photoinhibition in vivo should be viewed as the capacity of plants to adjust photosynthetically to the prevailing environmental conditions rather than a process which necessarily results in damage or injury to plants. Not all cold tolerant, herbaceous annuals use the same

  12. Structural and property changes in poly (vinylidene fluoride trifluoroethylene) 70/30 mol % copolymer induced by proton irradiation

    NASA Astrophysics Data System (ADS)

    Lau, S. T.; Chan, H. L. W.; Choy, C. L.

    2005-02-01

    Poly(vinylidene fluoride trifluoroethylene) 70/30 mol % copolymer has been irradiated with 3 MeV protons at doses ranging from 43 to 200 Mrad. The effects of irradiation on the polarization hysteresis, dielectric properties, lattice spacing, phase transition behavior and electric-field-induced strain have been studied. The irradiated copolymer exhibits the characteristic behavior of a relaxor ferroelectric, including frequency dispersion of the dielectric constant, which follows the Vogel Fulcher rule. These results indicate that the proton irradiation breaks up the coherent polarization domains in the copolymer into nano-sized regions, thereby converting the copolymer to a relaxor ferroelectric. X-ray diffraction measurements show that the nano-sized regions are in the non-polar phase. Since the lattice spacing of the non-polar phase is substantially different from that of the polar phase, the local phase transformation between these two phases induced by an external electric field gives rise to a large lattice strain and hence a giant electrostrictive response.

  13. Low temperature diffusivity of self-interstitial defects in tungsten

    NASA Astrophysics Data System (ADS)

    Swinburne, Thomas D.; Ma, Pui-Wai; Dudarev, Sergei L.

    2017-07-01

    The low temperature diffusivity of nanoscale crystal defects, where quantum mechanical fluctuations are known to play a crucial role, are essential to interpret observations of irradiated microstructures conducted at cryogenic temperatures. Using density functional theory calculations, quantum heat bath molecular dynamics and open quantum systems theory, we evaluate the low temperature diffusivity of self-interstitial atom clusters in tungsten valid down to temperatures of 1 K. Due to an exceptionally low defect migration barrier, our results show that interstitial defects exhibit very high diffusivity of order {10}3 μ {{{m}}}2 {{{s}}}-1 over the entire range of temperatures investigated.

  14. Damaging and protective bystander cross-talk between human lung cancer and normal cells after proton microbeam irradiation.

    PubMed

    Desai, Sejal; Kobayashi, Alisa; Konishi, Teruaki; Oikawa, Masakazu; Pandey, Badri N

    2014-01-01

    Most of the studies of radiation-induced bystander effects (RIBE) have been focused on understanding the radiobiological changes observed in bystander cells in response to the signals from irradiated cells in a normal cell population with implications to radiation risk assessment. However, reports on RIBE with relevance to cancer radiotherapy especially investigating the bidirectional and criss-cross bystander communications between cancer and normal cells are limited. Hence, in present study employing co-culture approach, we have investigated the bystander cross-talk between lung cancer (A549) and normal (WI38) cells after proton-microbeam irradiation using γ-H2AX foci fluorescence as a measure of DNA double-strand breaks (DSBs). We observed that in A549-A549 co-cultures, irradiated A549 cells exert damaging effects in bystander A549 cells, which were found to be mediated through gap junctional intercellular communication (GJIC). However, in A549-WI38 co-cultures, irradiated A549 did not affect bystander WI38 cells. Rather, bystander WI38 cells induced inverse protective signalling (rescue effect) in irradiated A549 cells, which was independent of GJIC. On the other hand, in response to irradiated WI38 cells neither of the bystander cells (A549 or WI38) showed significant increase in γ-H2AX foci. The observed bystander signalling between tumour and normal cells may have potential implications in therapeutic outcome of cancer radiotherapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons

    NASA Astrophysics Data System (ADS)

    Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; Lewis, C. L. S.; Borghesi, M.

    2016-09-01

    The divergent and broadband proton beams produced by the target normal sheath acceleration mechanism provide the unique opportunity to probe, in a point-projection imaging scheme, the dynamics of the transient electric and magnetic fields produced during laser-plasma interactions. Commonly such experimental setup entails two intense laser beams, where the interaction produced by one beam is probed with the protons produced by the second. We present here experimental studies of the ultra-fast charge dynamics along a wire connected to laser irradiated target carried out by employing a 'self' proton probing arrangement - i.e. by connecting the wire to the target generating the probe protons. The experimental data shows that an electromagnetic pulse carrying a significant amount of charge is launched along the wire, which travels as a unified pulse of 10s of ps duration with a velocity close to speed of light. The experimental capabilities and the analysis procedure of this specific type of proton probing technique are discussed.

  16. The Low Temperature Microgravity Physics Facility Project

    NASA Technical Reports Server (NTRS)

    Chui, T.; Holmes, W.; Lai, A.; Croonquist, A.; Eraker, J.; Abbott, R.; Mills, G.; Mohl, J.; Craig, J.; Balachandra, B.; Gannon, J.

    2000-01-01

    We describe the design and development of the Low Temperature Microgravity Physics Facility, which is intended to provide a unique environment of low temperature and microgravity for the scientists to perform breakthrough investigations on board the International Space Station.

  17. The low temperature microgravity physics facility

    NASA Technical Reports Server (NTRS)

    Pensinger, J. F.; Croonquist, A P.; Liu, F. C.; Larson, M. E.; Chui, T. C.

    2002-01-01

    The Low Temperature Microgravity Physics Facility currently in the design phase is a multiple user and multiple flight facility intended to provide a long duration low temperature environment onboard the International Space Station.

  18. The Low Temperature Microgravity Physics Facility

    NASA Technical Reports Server (NTRS)

    Pensinger, J. F.; Chui, T.; Croonquist, A.; Larson, M.; Liu, F.

    2002-01-01

    The Low Temperature Microgravity Physics Facility currently in the design phase is a multiple user and multiple flight facility intended to provide a long duration low temperature environment onboard the International Space Station.

  19. Proton Beam Craniospinal Irradiation Reduces Acute Toxicity for Adults With Medulloblastoma

    SciTech Connect

    Brown, Aaron P.; Barney, Christian L.; Grosshans, David R.; McAleer, Mary Frances; Groot, John F. de; Puduvalli, Vinay K.; Tucker, Susan L.; Crawford, Cody N.; Khan, Meena; Khatua, Soumen; Gilbert, Mark R.; Brown, Paul D.; Mahajan, Anita

    2013-06-01

    Purpose: Efficacy and acute toxicity of proton craniospinal irradiation (p-CSI) were compared with conventional photon CSI (x-CSI) for adults with medulloblastoma. Methods and Materials: Forty adult medulloblastoma patients treated with x-CSI (n=21) or p-CSI (n=19) at the University of Texas MD Anderson Cancer Center from 2003 to 2011 were retrospectively reviewed. Median CSI and total doses were 30.6 and 54 Gy, respectively. The median follow-up was 57 months (range 4-103) for x-CSI patients and 26 months (range 11-63) for p-CSI. Results: p-CSI patients lost less weight than x-CSI patients (1.2% vs 5.8%; P=.004), and less p-CSI patients had >5% weight loss compared with x-CSI (16% vs 64%; P=.004). p-CSI patients experienced less grade 2 nausea and vomiting compared with x-CSI (26% vs 71%; P=.004). Patients treated with x-CSI were more likely to have medical management of esophagitis than p-CSI patients (57% vs 5%, P<.001). p-CSI patients had a smaller reduction in peripheral white blood cells, hemoglobin, and platelets compared with x-CSI (white blood cells 46% vs 55%, P=.04; hemoglobin 88% vs 97%, P=.009; platelets 48% vs 65%, P=.05). Mean vertebral doses were significantly associated with reductions in blood counts. Conclusions: This report is the first analysis of clinical outcomes for adult medulloblastoma patients treated with p-CSI. Patients treated with p-CSI experienced less treatment-related morbidity including fewer acute gastrointestinal and hematologic toxicities.

  20. Effects of proton irradiation on the performance of InP/GaAs solar cells

    NASA Technical Reports Server (NTRS)

    Weinberg, Irving; Swartz, C. K.; Brinker, David J.; Wilt, D. M.

    1991-01-01

    InP solar cells are known to be more radiation resistant than either GaAs or Si. In addition, AMO total area efficiencies approaching 19 percent were attained for InP. However, the present high substrate cost presents a barrier to the eventual widespread use of InP cells in space. In addition, if cell thinning becomes desirable, their relative fragility presents a problem. For these reasons, the NASA Lewis Research Center has initiated a program, aimed at producing thin InP cells, by heteroepitaxial deposition of InP on cheaper, more durable substrates. To date, a short term feasibility study as Spire has resulted in cells processed from InP heteroepitaxially deposited on Si substrates with an intervening thin GaAs layer (InP/GaAs/Si) and cells produced from InP deposited on GaAs (InP/GaAs). As a result of this short study efficiencies of over 7 and 9 percent were achieved for InP/GaAs/Si and InP/GaAs respectively. Although these efficiencies are low, they represent a modest and encouraging starting point for a more intensive program. Obviously, when considering economy and mechanical strength, cells processed on silicon substrates are preferred. However