High pressure–low temperature phase diagram of barium: Simplicity versus complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Desgreniers, Serge; Tse, John S., E-mail: John.Tse@usask.ca; State Key Laboratory of Superhard Materials, Jilin University, 130012 Changchun
2015-11-30
Barium holds a distinctive position among all elements studied upon densification. Indeed, it was the first example shown to violate the long-standing notion that high compression of simple metals should preserve or yield close-packed structures. From modest pressure conditions at room temperature, barium transforms at higher pressures from its simple structures to the extraordinarily complex atomic arrangements of the incommensurate and self-hosting Ba-IV phases. By a detailed mapping of the pressure/temperature structures of barium, we demonstrate the existence of another crystalline arrangement of barium, Ba-VI, at low temperature and high pressure. The simple structure of Ba-VI is unlike that ofmore » complex Ba-IV, the phase encountered in a similar pressure range at room temperature. First-principles calculations predict Ba-VI to be stable at high pressure and superconductive. The results illustrate the complexity of the low temperature-high pressure phase diagram of barium and the significant effect of temperature on structural phase transformations.« less
NASA Astrophysics Data System (ADS)
Llamazares, J. L. Sánchez; Quintana-Nedelcos, A.; Ríos-Jara, D.; Sánchez-Valdes, C. F.; García-Fernández, T.; García, C.
2016-03-01
We report the effect of low temperature vacuum annealing (823 K; 550 °C) on the elemental chemical composition, structural phase transition temperatures, phase structure, and magnetic properties of Ni50.6Mn36.3Sn13.1 as-solidified ribbons. Their elemental chemical composition, highly oriented columnar-like microstructure and single-phase character (L21-type crystal structure for austenite) remain unchanged after this low temperature annealing. Annealed ribbons show a reduction of interatomic distances which lead to a small change in the characteristic phase transition temperatures ( 3-6 K) but to a significant rise of 73 and 63% in the saturation magnetization of the martensite and austenite phases, respectively, that can be strictly ascribed to the strengthening of ferromagnetic interactions due to the change in interatomic distances.
Phase transition in crystalline benzil : an infrared study of vibrational excitons.
NASA Astrophysics Data System (ADS)
Le Roy, A.; Et-Tabti, O.; Guérin, R.
1993-03-01
The molecular crystal of benzil, [C 6 H 5 CO] 2, is known to undergo a phase transition at T c = 84 K. The phase transition is from a high temperature trigonal phase with space group D 43 (P3 121) to a low temperature monoclinic phase with space group C 32 (C 2). This paper reports a study of the exciton structure of the infrared bands of benzil as a function of temperature in the vicinity of T c = 84 K. The benzil molecule belongs to the C 2 molecular point group. Group theoretical analysis of the exciton structure of infrared bands predicts two components for molecular B modes and one component for molecular A modes in the high temperature phase. Below T c all the internal modes of benzil are expected to split into two components. Our experimental results show that the A molecular modes are resolved in a doublet structure in the low temperature phase whereas only one component is observed above T c. The doublet structure of infrared bands is studied as a function of temperature in the vicinity of T c. These splittings of crystal states in the low temperature phase are found to be described by a ¦T c - T¦ β law. The temperature dependence of the doublet structure of internal B modes is also studied below and above T c.
New insights into the structure, chemistry, and properties of Cu 4SnS 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman
The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less
New insights into the structure, chemistry, and properties of Cu 4SnS 4
Choudhury, Amitava; Mohapatra, Sudip; Yaghoobnejad Asl, Hooman; ...
2017-05-25
The ambient temperature structure of Cu 4SnS 4 has been revisited and the recently reported low temperature structure has been confirmed from single-crystal X-ray diffraction data. A structural phase transition from a large monoclinic unit cell at low temperature to a smaller orthorhombic unit cell at high temperature has been observed. The room temperature phase exhibited disorder in the two copper sites, which is a different finding from earlier reports. The low temperature monoclinic form crystallizes in P2 1/c space group, which is isostructural with Cu 4GeS 4. The phase transition has also been studied with variable temperature powder X-raymore » diffraction and 119Sn Mössbauer spectroscopy. The Seebeck coefficients and electrical resistivity of polycrystalline Cu 4SnS 4 are reported from 16 to 400 K on hot pressed pellets. Thermal conductivity measurements at high temperatures, 350 – 750 K exhibited very low thermal conductivities in the range 0.28 – 0.35 W K –1 m –1. In all the transport measurements the phase transition has been observed at around 232 K. Resistivity decreases, while Seebeck coefficient increases after the phase transition during warming up from low to high temperatures. This change in resistivity has been correlated with the results of first-principles electronic band structure calculations using highly-accurate screened-exchange local density approximation. It was found that both the low hole effective mass of 0.63 me for the Γ→Y crystallographic direction and small band gap, 0.49 eV, are likely to contribute to the observed higher conductivity of the orthorhombic phase. Cu 4SnS 4 is also electrochemically active and shows reversible reaction with lithium between 1.7 and 3.5 volts.« less
Simulations of submonolayer Xe on Pt(111): The case for a chaotic low temperature phase
NASA Astrophysics Data System (ADS)
Novaco, Anthony D.; Bavaresco, Jessica
2018-04-01
Molecular dynamics simulations are reported for the structural and thermodynamic properties of submonolayer xenon adsorbed on the (111) surface of platinum for temperatures up to the (apparently incipient) triple point and beyond. While the motion of the atoms in the surface plane is treated with a standard two-dimensional molecular dynamics simulation, the model takes into consideration the thermal excitation of quantum states associated with surface-normal dynamics in an attempt to describe the apparent smoothing of the corrugation with increasing temperature. We examine the importance of this thermal smoothing to the relative stability of several observed and proposed low-temperature structures. Structure factor calculations are compared to experimental results in an attempt to determine the low temperature structure of this system. These calculations provide strong evidence that, at very low temperatures, the domain wall structure of a xenon monolayer adsorbed on a Pt(111) substrate possesses a chaotic-like nature, exhibiting long-lived meta-stable states with pinned domain walls, these walls having narrow widths and irregular shapes. This result is contrary to the standard wisdom regarding this system, namely, that the very low temperature phase of this system is a striped incommensurate phase. We present the case for further experimental investigation of this and similar systems as possible examples of chaotic low temperature phases in two dimensions.
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-09
Transition metal dichalcogenide MoTe 2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe 2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric T d phase from vibrational spectroscopy, and suggest MoTe 2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-01-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition. PMID:27934874
NASA Astrophysics Data System (ADS)
Zhang, Kenan; Bao, Changhua; Gu, Qiangqiang; Ren, Xiao; Zhang, Haoxiong; Deng, Ke; Wu, Yang; Li, Yuan; Feng, Ji; Zhou, Shuyun
2016-12-01
Transition metal dichalcogenide MoTe2 is an important candidate for realizing the newly predicted type-II Weyl fermions, for which the breaking of the inversion symmetry is a prerequisite. Here we present direct spectroscopic evidence for the inversion symmetry breaking in the low-temperature phase of MoTe2 by systematic Raman experiments and first-principles calculations. We identify five lattice vibrational modes that are Raman-active only in the low-temperature noncentrosymmetric structure. A hysteresis is also observed in the peak intensity of inversion symmetry-activated Raman modes, confirming a temperature-induced structural phase transition with a concomitant change in the inversion symmetry. Our results provide definitive evidence for the low-temperature noncentrosymmetric Td phase from vibrational spectroscopy, and suggest MoTe2 as an ideal candidate for investigating the temperature-induced topological phase transition.
Magnetic and Structural Phase Transitions in Thulium under High Pressures and Low Temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Tsoi, Georgiy M.; Samudrala, Gopi K.
2017-10-01
The nature of 4f electrons in many rare earth metals and compounds may be broadly characterized as being either "localized" or "itinerant", and is held responsible for a wide range of physical and chemical properties. The pressure variable has a very dramatic effect on the electronic structure of rare earth metals which in turn drives a sequence of structural and magnetic transitions. We have carried out four-probe electrical resistance measurements on rare earth metal Thulium (Tm) under high pressures to 33 GPa and low temperatures to 10 K to monitor the magnetic ordering transition. These studies are complemented by anglemore » dispersive x-ray diffraction studies to monitor crystallographic phase transitions at high pressures and low temperatures. We observe an abrupt increase in magnetic ordering temperature in Tm at a pressure of 17 GPa on phase transition from ambient pressure hcp-phase to α-Sm phase transition. In addition, measured equation of state (EOS) at low temperatures show anomalously low thermal expansion coefficients likely linked to magnetic transitions.« less
On the polymorphism of benzocaine; a low-temperature structural phase transition for form (II).
Chan, Eric J; Rae, A David; Welberry, T Richard
2009-08-01
A low-temperature structural phase transition has been observed for form (II) of benzocaine (BZC). Lowering the temperature doubles the b-axis repeat and changes the space group from P2(1)2(1)2(1) to P112(1) with gamma now 99.37 degrees. The structure is twinned, the twin rule corresponding to a 2(1) screw rotation parallel to a. The phase transition is associated with a sequential displacement parallel to a of zigzag bi-layers of ribbons perpendicular to b*. No similar phase transition was observed for form (I) and this was attributed to the different packing symmetries of the two room-temperature polymorphic forms.
NASA Astrophysics Data System (ADS)
Kozvonin, V. A.; Shatsov, A. A.; Ryaposov, I. V.; Zakirova, M. G.; Generalova, K. N.
2016-08-01
Temper-resistant low-carbon Cr-Mn-Ni-Mo-V-Nb steels with concentrations of carbon of 0.15 and 0.27 wt % have been studied. It has been shown that, upon quenching, various morphological types of the α phase can be formed. The structure of the steels is stable in the course of heating below critical temperatures and remains a lath-type structure in the intercritical temperature range. Specific features of structural and phase transformations, as well as the dependence of the mechanical characteristics of the steels, on the tempering temperature have been determined.
Calcium with the β-tin structure at high pressure and low temperature
Li, Bing; Ding, Yang; Yang, Wenge; Wang, Lin; Zou, Bo; Shu, Jinfu; Sinogeikin, Stas; Park, Changyong; Zou, Guangtian; Mao, Ho-kwang
2012-01-01
Using synchrotron high-pressure X-ray diffraction at cryogenic temperatures, we have established the phase diagram for calcium up to 110 GPa and 5–300 K. We discovered the long-sought for theoretically predicted β-tin structured calcium with I41/amd symmetry at 35 GPa in a s mall low-temperature range below 10 K, thus resolving the enigma of absence of this lowest enthalpy phase. The stability and relations among various distorted simple-cubic phases in the Ca-III region have also been examined and clarified over a wide range of high pressures and low temperatures. PMID:23012455
Phase degradation in BxGa1-xN films grown at low temperature by metalorganic vapor phase epitaxy
NASA Astrophysics Data System (ADS)
Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; Allerman, Andrew A.; Lee, Stephen R.
2017-04-01
Using metalorganic vapor phase epitaxy, a comprehensive study of BxGa1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750-900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to 7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stacking faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at 362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. Only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Hernandez, J.; Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana; Lemus-Santana, A.A.
2010-01-15
The materials under study are pillared solids T[Ni(CN){sub 4}].xpyz with one and two (x=1,2) pyrazine (pyz) molecules and where T=Mn, Co, Ni, Zn, Cd. Stimulated by their structural features and potential role as prototype of porous solids for hydrogen storage, the structural stability under cryogenic conditions for this series of pillared solids was studied. At low temperature, in the 100-200 K range, the occurrence of a reversible structural transformation was found. For T=Mn, Co, Zn, Cd, with x=2, the structural transformation was observed to occur around 185 K, and the low temperature phase crystallizes with a monoclinic unit cell (spacemore » group Pc). This structure change results from certain charge redistribution on cooling within the involved ligands. For T=Ni with x=1, both the low and high temperature phases crystallize with unit cells of tetragonal symmetry, within the same space group but with a different unit cell volume. In this case the structure change is observed around 120 K. Above that temperature the rotational states for the pyrazine molecule are thermally excited and all the pyrazine molecules in the structure become equivalent. Under this condition the material structure is described using a smaller structural unit. The structural study using X-ray powder diffraction data was complemented with calorimetric and Raman spectroscopy measurements. For the low temperature phases the crystal structures were solved from Patterson methods and then refined using the Rietveld method. - Graphical abstract: Low temperature ordered structure for pyrazine in T[Ni(CN){sub 4}].pyz.« less
Magnetic Ordering of Erbium and Uranium NICKEL(2) SILICON(2) by Neutron Scattering
NASA Astrophysics Data System (ADS)
Lin, Hong
The magnetic ordering has been studied in UNi _2Si_2 and erbium single crystals by elastic neutron scattering. Abundant results are given regarding the magnetic structure, magnetic phase transitions, and the effect of a magnetic field on these properties. Three ordered phases are observed in UNi _2Si_2. They have been determined to be an incommensurate longitudinal spin density wave with a magnetic wave vector around q = 0.74c ^* in the high temperature phase, a simple body-centred antiferromagnet in the intermediate temperature phase, and a square wave in the low temperature phase. This square wave can be viewed equivalently as a longitudinal spin density wave with q = 2/3c ^* superimposed on a ferromagnetic component. Hysteresis and sample dependence are observed in the low-temperature phase transition. The two lower temperature phase transitions are both first order. The transition to paramagnetism is second order with a critical exponent beta = 0.35 +/- 0.03. When a magnetic field is applied along the c axis, the intermediate temperature phase is destabilised and disappears above a field of 3.5T. Although there is no new phase induced by the field, there exists a reentrant point where the three ordered phases can coexist. Erbium has three distinct ordered phases: the cone phase at low temperatures, the c-axis modulated (CAM) phase at higher temperatures, and the intermediate phase with moments modulated both along c and perpendicular to c. Within these phases the modulation of the moments may lock in to the lattice. The observed weak harmonics of the wave vector q in the basal plane for the cone phase and the q = 1/4c^* structure in the intermediate phase can be explained by a basal-plane spin slip model. The effect of magnetic field along the c axis on the magnetic structure is to stabilise the cone phase and to destabilise the intermediate phase. A new lock-in structure with q = 1/4c^* in the cone phase is induced by fields above 1.8T. The presence of the field also stabilises the lock-in structure with q = 2/7c^* in both the intermediate and the CAM phases.
NASA Astrophysics Data System (ADS)
Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.
2017-07-01
We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.
Steenbergen, Krista G; Gaston, Nicola
2015-02-09
Finite temperature analysis of cluster structures is used to identify signatures of the low-temperature polymorphs of gallium, based on the results of first-principle Born-Oppenheimer molecular dynamics simulations. Pre-melting structural transitions proceed from either the β- and/or the δ-phase to the γ- or δ-phase, with a size- dependent phase progression. We relate the stability of each isomer to the electronic structures of the different phases, giving new insight into the origin of polymorphism in this complicated element. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy
Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.; ...
2016-11-01
Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less
Phase degradation in B xGa 1–xN films grown at low temperature by metalorganic vapor phase epitaxy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gunning, Brendan P.; Moseley, Michael W.; Koleske, Daniel D.
Using metalorganic vapor phase epitaxy, a comprehensive study of B xGa 1-xN growth on GaN and AlN templates is described. BGaN growth at high-temperature and high-pressure results in rough surfaces and poor boron incorporation efficiency, while growth at low-temperature and low-pressure (750–900 °C and 20 Torr) using nitrogen carrier gas results in improved surface morphology and boron incorporation up to ~7.4% as determined by nuclear reaction analysis. However, further structural analysis by transmission electron microscopy and x-ray pole figures points to severe degradation of the high boron composition films, into a twinned cubic structure with a high density of stackingmore » faults and little or no room temperature photoluminescence emission. Films with <1% triethylboron (TEB) flow show more intense, narrower x-ray diffraction peaks, near-band-edge photoluminescence emission at ~362 nm, and primarily wurtzite-phase structure in the x-ray pole figures. For films with >1% TEB flow, the crystal structure becomes dominated by the cubic phase. As a result, only when the TEB flow is zero (pure GaN), does the cubic phase entirely disappear from the x-ray pole figure, suggesting that under these growth conditions even very low boron compositions lead to mixed crystalline phases.« less
Disordered Phase of the 3x3 Pb/Ge(111) structure at low temperature
NASA Astrophysics Data System (ADS)
Guo, Jiandong; Bolorizadeh, Mehdi; Plummer, E. W.
2003-03-01
* Dept. of Phys., Univ. of Tenn., Knoxville, TN 37996. ** Condensed Matter Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831. At a metal surface or a thin metallic film on a semiconductor there is a competition between the long-range adatom-adatom interactions and the local stress fields imposed by the substrate bulk structure. In interesting cases this leads to a structural phase transition. In this talk we present a STM investigation of the two-dimensional structure at different temperatures for the 1/3 monolayer of Pb on Ge(111) system. When the temperature is lowered the interface undergoes a (3x3)R30^o to (3x3) phase transition at roughly 110 K. Substitutional Ge defects play a crucial role in the phase transition as has been reported for the isoelectronic Sn/Ge system. However, unlike Sn/Ge, as the temperature is lowed below 80 K the (3x3) structure in Pb/Ge is broken and a disordered glassy-like structure is observed. This is very similar to the glassy phase predicted by Shi et al. in a model calculation for the Sn/Ge system. The question we address is, is this disordered low temperature phase inherent to the ideal Pb/Ge system or a consequence of the Ge substitutional defects? This work was funded by NSF DMR-0105232 and Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Dept. of Energy under contract DE-AC05-00OR22725.
Temperature-driven topological quantum phase transitions in a phase-change material Ge2Sb2Te5.
Eremeev, S V; Rusinov, I P; Echenique, P M; Chulkov, E V
2016-12-13
The Ge 2 Sb 2 Te 5 is a phase-change material widely used in optical memory devices and is a leading candidate for next generation non-volatile random access memory devices which are key elements of various electronics and portable systems. Despite the compound is under intense investigation its electronic structure is currently not fully understood. The present work sheds new light on the electronic structure of the Ge 2 Sb 2 Te 5 crystalline phases. We demonstrate by predicting from first-principles calculations that stable crystal structures of Ge 2 Sb 2 Te 5 possess different topological quantum phases: a topological insulator phase is realized in low-temperature structure and Weyl semimetal phase is a characteristic of the high-temperature structure. Since the structural phase transitions are caused by the temperature the switching between different topologically non-trivial phases can be driven by variation of the temperature. The obtained results reveal the rich physics of the Ge 2 Sb 2 Te 5 compound and open previously unexplored possibility for spintronics applications of this material, substantially expanding its application potential.
Magnetostructural phase transformations in Tb 1-x Mn 2
Zou, Junding; Paudyal, Durga; Liu, Jing; ...
2015-01-16
Magnetism and phase transformations in non-stoichiometric Tb 1-xMn 2 (x = 0.056, 0.039) have been studied as functions of temperature and magnetic field using magnetization, heat capacity, and X-ray powder diffraction measurements. Lowering the temperature, the compounds sequentially order ferrimagnetically and antiferromagnetically, and finally, exhibit spin reorientation transitions. Moreover, these structural distortions from room temperature cubic to low temperature rhombohedral structures occur at T N, and are accompanied by large volume changes reaching ~-1.27% and -1.42%, respectively. First principles electronic structure calculations confirm the phase transformation from the ferrimagnetic cubic structure to the antiferromagnetic rhombohedral structure in TbMn 2.
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
Crystal structure across the β to α phase transition in thermoelectric Cu 2–xSe
Eikeland, Espen; Blichfeld, Anders B.; Borup, Kasper A.; ...
2017-06-13
Here, the crystal structure uniquely imparts the specific properties of a material, and thus provides the starting point for any quantitative understanding of thermoelectric properties. Cu 2–xSe is an intensely studied high performing, non-toxic and cheap thermoelectric material, and here for the first time, the average structure of β-Cu 2–xSe is reported based on analysis of multi-temperature single-crystal X-ray diffraction data. It consists of Se–Cu layers with additional copper between every alternate layer. The structural changes during the peculiar zT enhancing phase transition mainly consist of changes in the inter-layer distance coupled with subtle Cu migration. Just prior to themore » transition the structure exhibits strong negative thermal expansion due to the reordering of Cu atoms, when approached from low temperatures. The phase transition is fully reversible and group–subgroup symmetry relations are derived that relate the low-temperature β-phase to the high-temperature α-phase. Weak superstructure reflections are observed and a possible Cu ordering is proposed. The structural rearrangement may have a significant impact on the band structure and the Cu rearrangement may also be linked to an entropy increase. Both factors potentially contribute to the extraordinary zT enhancement across the phase transition.« less
Shear induced structures in crystallizing cocoa butter
NASA Astrophysics Data System (ADS)
Mazzanti, Gianfranco; Guthrie, Sarah E.; Sirota, Eric B.; Marangoni, Alejandro G.; Idziak, Stefan H. J.
2004-03-01
Cocoa butter is the main structural component of chocolate and many cosmetics. It crystallizes in several polymorphs, called phases I to VI. We used Synchrotron X-ray diffraction to study the effect of shear on its crystallization. A previously unreported phase (phase X) was found and a crystallization path through phase IV under shear was observed. Samples were crystallized under shear from the melt in temperature controlled Couette cells, at final crystallization temperatures of 17.5^oC, 20^oC and 22.5^oC in Beamline X10A of NSLS. The formation of phase X was observed at low shear rates (90 s-1) and low crystallization temperature (17.5^oC), but was absent at high shear (720 s-1) and high temperature (20^oC). The d-spacing and melting point suggest that this new phase is a mixture rich on two of the three major components of cocoa butter. We also found that, contrary to previous reports, the transition from phase II to phase V can happen through the intermediate phase IV, at high shear rates and temperature.
Bendersky, L. A.; Roytburd, A.; Boettinger, W. J.
1993-01-01
Possible paths for the constant composition coherent transformation of BCC or B2 high temperature phases to low temperature HCP or Orthorhombic phases in the Ti-Al-Nb system are analyzed using a sequence of ciystallographic structural relationships developed from subgroup symmetry relations. Symmetry elements lost in each step of the sequence determine the possibilities for variants of the low symmetry phase and domains that can be present in the microstructure. The orientation of interdomain interfaces is determined by requiring the existence of a strain-free interface between the domains. Polydomain structures are also determined that minimize elastic energy. Microstructural predictions are made for comparison to experimental results given by Benderslcy and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 585 (1993)]. PMID:28053487
Whitfield, P. S.; Herron, N.; Guise, W. E.; ...
2016-10-21
Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdontceva, Margarita S.; Zolotarev, Andrey A.; Krivovichev, Sergey V., E-mail: s.krivovichev@spbu.ru
High-temperature phase transition of synthetic kogarkoite, Na{sub 3}SO{sub 4}F, has been studied by high-temperature X-ray powder and single-crystal diffraction. The temperature of the phase transition can be estimated as 112.5±12.5 °C. The low-temperature phase, α-Na{sub 3}SO{sub 4}F, at 293 K, is monoclinic, P2{sub 1}/m, a=18.065(3), b=6.958(1), c=11.446(1) Å, β=107.711(1)°, Z=12. The structure contains thirteen symmetrically independent Na sites with coordination numbers varying from 6 to 8, and six independent S sites. The high-temperature β-phase at 423 K is rhombohedral, R-3m, a=6.94(1), c=24.58(4) Å, Z=9. The crystal structure of both polymorphs of Na{sub 3}SO{sub 4}F can be described as a 9Rmore » antiperovskite polytype based upon triplets of face-sharing [FNa{sub 6}] octahedra linked into a three-dimensional framework by sharing corners. In the α-modification, the SO{sub 4} tetrahedra are completely ordered and located in the framework cavities. In the β-modification, there are only two symmetrically independent Na atoms in the structure. The main difference between the structures of the α- and β-phases is the degree of ordering of the SO{sub 4} tetrahedra: in the α-modification, they are completely ordered, whereas, in the β-modification, the complete disorder is observed, which is manifested in a number of low-occupied O sites around fully occupied S sites. The phase transition is therefore has an order–disorder character and is associated with the decrease of structural complexity measured as an information content per unit cell [577.528 bits for the low- (α) and 154.830 bits for the high- (β) temperature modifications]. - Graphical abstract: High-temperature phase transition of synthetic kogarkoite, Na{sub 3}SO{sub 4}F, revealed the existence of the monoclinic-to-rhombohedral phase transition at 112.5±12.5 °C. The phase transition has an order–disorder character and is associated with the decrease of structural complexity. - Highlights: • Phase transition in Na{sub 3}SO{sub 4}F (kogarkoite) has an order–disorder character. • Antiperovskite framework of F-centered octahedra has a high stability. • Information-based structural complexity decreases across the phase transition.« less
Low-temperature behavior of the quark-meson model
NASA Astrophysics Data System (ADS)
Tripolt, Ralf-Arno; Schaefer, Bernd-Jochen; von Smekal, Lorenz; Wambach, Jochen
2018-02-01
We revisit the phase diagram of strong-interaction matter for the two-flavor quark-meson model using the functional renormalization group. In contrast to standard mean-field calculations, an unusual phase structure is encountered at low temperatures and large quark chemical potentials. In particular, we identify a regime where the pressure decreases with increasing temperature and discuss possible reasons for this unphysical behavior.
Metallic behavior of lanthanum disilicide
NASA Technical Reports Server (NTRS)
Long, Robert G.; Bost, M. C.; Mahan, John E.
1988-01-01
Polycrystalline thin films of LaSi2 were prepared by reaction of sputter-deposited lanthanum layers with silicon wafers. Samples of the low-temperature tetragonal and the high-temperature orthorhombic phases were separately obtained. The room-temperature intrinsic resistivities were 24 and 57 microohm cm for the low- and high-temperature structures, respectively. Although lanthanum disilicide had been previously reported to be a semiconductor, classical metallic behavior was found for both phases.
Ordering-separation phase transitions in a Co3V alloy
NASA Astrophysics Data System (ADS)
Ustinovshchikov, Yu. I.
2017-01-01
The microstructure of the Co3V alloy formed by heat treatment at various temperatures is studied by transmission electron microscopy. Two ordering-separation phase transitions are revealed at temperatures of 400-450 and 800°C. At the high-temperature phase separation, the microstructure consists of bcc vanadium particles and an fcc solid solution; at the low-temperature phase separation, the microstructure is cellular. In the ordering range, the microstructure consists of chemical compound Co3V particles chaotically arranged in the solid solution. The structure of the Co3V alloy is shown not to correspond to the structures indicated in the Co-V phase diagram at any temperatures.
Phase investigation in Pt supported off-stoichiometric iron-platinum thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gupta, Rekha; Medwal, Rohit; Annapoorni, S., E-mail: annapoornis@yahoo.co.in
2013-10-15
Graphical abstract: - Highlights: • Low temperature FePt L1{sub 0} phase transformation using Pt/Fe{sub 3}Pt/Pt structure. • Temperature dependent FCC to FCT phase investigation using Rietveld refinement. • Estimation of soft and hard ferromagnetic contribution from demagnetization curve. • Interlayer diffusion and stoichiometry conformation of L1{sub 0} phase using RBS. • Correlation of structural, magnetic and RBS studies were successfully understood. - Abstract: The structural and magnetic phase transformation of Pt/Fe{sub 3}Pt/Pt films on Si <1 0 0> substrates prepared by DC magnetron sputtering is investigated as a function of annealing temperature. Pt diffusion driven low temperature phase transformation frommore » A1 to L1{sub 0} phase is achieved at 300 °C, attaining a very high coercivity of 9 kOe. At 300 °C, 85% L1{sub 0} phase transformation is observed using the X-ray diffraction profile fitting. The estimated phase content is also further verified by fitting the demagnetization curve. The underlayer promotes the ordering at lower temperature while overlayer induces growth along (0 0 1) preferred orientation. Rutherford back scattering study reveals interlayer diffusion and confirms the desired stoichiometry for L1{sub 0} phase. The presence of Pt under-overlayer provides the Pt source and further facilitates the Pt diffusion, which makes it effective in promoting the phase ordering at a lower temperature.« less
NASA Technical Reports Server (NTRS)
Mizan, Muhammad; Higgins, Thomas; Sturzebecher, Dana
1993-01-01
EPSD has designed, fabricated and tested, ultra-stable, low phase noise microwave dielectric resonator oscillators (DRO's) at S, X, Ku, and K-bands, for potential application to high dynamic range and low radar cross section target detection radar systems. The phase noise and the temperature stability surpass commercially available DROs. Low phase noise signals are critical for CW Doppler radars, at both very close-in and large offset frequencies from the carrier. The oscillators were built without any temperature compensation techniques and exhibited a temperature stability of 25 parts per million (ppm) over an extended temperature range. The oscillators are lightweight, small and low cost compared to BAW & SAW oscillators, and can impact commercial systems such as telecommunications, built-in-test equipment, cellular phone and satellite communications systems. The key to obtaining this performance was a high Q factor resonant structure (RS) and careful circuit design techniques. The high Q RS consists of a dielectric resonator (DR) supported by a low loss spacer inside a metal cavity. The S and the X-band resonant structures demonstrated loaded Q values of 20,300 and 12,700, respectively.
Structural stability and phase transition of Bi 2 Te 3 under high pressure and low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, J. L.; Zhang, S. J.; Zhu, J. L.
2017-09-01
Structural stability and phase transition of topological insulator Bi2Te3 were studied via angle-dispersive synchrotron radiation X-ray diffraction under high pressure and low temperature condition. The results manifest that the R-3m phase (phase I) is stable at 8 K over the pressure range up to 10 GPa and phase transition occurs between 8 K and 45 K at 8 GPa. According to the Birch-Murnaghan equation of state, the bulk modulus at ambient pressure B0 was estimated to be 45 ± 3 GPa with the assumption of B0' = 4. The structural robustness of phase I at 8 K suggests that themore » superconductivity below 10 GPa is related to phase I. Topological properties of superconducting Bi2Te3 phase under pressure were discussed.« less
Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...
2015-02-26
A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less
NASA Astrophysics Data System (ADS)
Sharma, Shivani; Shahee, Aga; Yadav, Poonam; da Silva, Ivan; Lalla, N. P.
2017-11-01
Low-temperature high-magnetic field (2 K, 8 T) (LTHM) powder X-ray diffraction (XRD) and time of flight powder neutron diffraction (NPD), low-temperature transmission electron microscopic (TEM), and resistivity and magnetization measurements have been carried out to investigate the re-entrant charge ordering (CO), field induced structural phase transitions, and metastability in phase-separated La0.175Pr0.45Ca0.375MnO3-δ (LPCMO). Low-temperature TEM and XRD studies reveal that on cooling under zero-field, paramagnetic Pnma phase transforms to P21/m CO antiferromagnetic (AFM) insulating phase below ˜233 K. Unlike reported literature, no structural signature of CO AFM P21/m to ferromagnetic (FM) Pnma phase-transition during cooling down to 2 K under zero-field was observed. However, the CO phase was found to undergo a re-entrant transition at ˜40 K. Neutron diffraction studies revealed a pseudo CE type spin arrangement of the observed CO phase. The low-temperature resistance, while cooled under zero-field, shows insulator to metal like transition below ˜105 K with minima at ˜25 K. On application of field, the CO P21/m phase was found to undergo field-induced transition to FM Pnma phase, which shows irreversibility on field removal below ˜40 K. Zero-field warming XRD and NPD studies reveal that field-induced FM Pnma phase is a metastable phase, which arise due to the arrest of kinetics of the first-order phase transition of FM Pnma to CO-AFM P21/m phase, below 40 K. Thus, a strong magneto-structural coupling is observed for this system. A field-temperature (H-T) phase-diagram has been constructed based on the LTHM-XRD, which matches very nicely with the reported H-T phase-diagram constructed based on magnetic measurements. Due to the occurrence of gradual growth of the re-entrant CO phase and the absence of a clear structural signature of phase-separation of CO-AFM P21/m and FM Pnma phases, the H-T minima in the phase-diagram of the present LPCMO sample has been attributed to the strengthening of AFM interaction during re-entrant CO transition and not to glass like "dynamic to frozen" transition.
Crystal growth and electronic structure of low-temperature phase SrMgF{sub 4}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Atuchin, Victor V.; Functional Electronics Laboratory, Tomsk State University, Tomsk 634050; Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk 630090
2016-04-15
Using the vertical Bridgman method, the single crystal of low temperature phase SrMgF{sub 4} is obtained. The crystal is in a very good optical quality with the size of 10×7×5 mm{sup 3}. Detailed photoemission spectra of the element core levels are determined by a monochromatic AlKa (1486.6 eV) X-ray source. Moreover, the first-principles calculations are performed to investigate the electronic structure of SrMgF{sub 4}. A good agreement between experimental and calculated results is achieved. It is demonstrated that almost all the electronic orbitals are strongly localized and the hybridization with the others is very small, but the Mg–F bonds covalencymore » is relatively stronger than that of Sr–F bonds. - Graphical abstract: Large size of low-temperature phase SrMgF{sub 4} crystal was obtained (right) and its electronic structure was investigated by X-ray photoelectron spectroscopy and first-principles calculation (left). - Highlights: • Large size single crystal of low-temperature phase SrMgF{sub 4} is obtained. • Electronic structure of SrMgF{sub 4} is measured by X-ray photoelectron spectroscopy. • Partial densities of states are determined by first-principles calculation. • Good agreement between experimental and calculated results is achieved. • Strong ionic characteristics of chemical bonds are exhibited in SrMgF{sub 4}.« less
Kaluarachchi, Udhara S.; Deng, Yuhang; Besser, Matthew F.; ...
2017-06-09
Transport and magnetic studies of PbTaSe 2 under pressure suggest the existence of two superconducting phases with the low temperature phase boundary at ~ 0.25 GPa that is defined by a very sharp, first order, phase transition. The first order phase transition line can be followed via pressure dependent resistivity measurements, and is found to be near 0.12 GPa near room temperature. Transmission electron microscopy and x-ray diffraction at elevated temperatures confirm that this first order phase transition is structural and occurs at ambient pressure near ~ 425 K. The new, high temperature/high pressure phase has a similar crystal structuremore » and slightly lower unit cell volume relative to the ambient pressure, room temperature structure. Based on first-principles calculations this structure is suggested to be obtained by shifting the Pb atoms from the 1 a to 1 e Wyckoff position without changing the positions of Ta and Se atoms. PbTaSe 2 has an exceptionally pressure sensitive, structural phase transition with Δ T s / Δ P ≈ -1400 K/GPa near room temperature, and ≈ -1700 K/GPa near 4 K. This first order transition causes a ~ 1 K (~ 25 % ) steplike decrease in T c as pressure is increased through 0.25 GPa.« less
Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.
2016-12-21
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vohra, Yogesh K.; Tsoi, Georgiy M.; Johnson, Craig R.
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating differentmore » magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.« less
NASA Astrophysics Data System (ADS)
Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.
2017-02-01
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Johnson, Craig R; Tsoi, Georgiy M; Vohra, Yogesh K
2017-02-15
Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm → dhcp → fcc/dist.fcc → hP3 structure sequence at high-pressures and low-temperatures.
Generalization of soft phonon modes
NASA Astrophysics Data System (ADS)
Rudin, Sven P.
2018-04-01
Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. Here, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system with N atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, PVM0, represents the 3 N -dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, PVM0 serves as a generalization of soft phonon modes. At low temperatures, PVM0 reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case PVM0 culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, PVM0 can be equally well calculated on either side of the structural phase transition. Two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the β phase of uranium, the higher-symmetry structure of which stabilizes with temperature.
Unconventional Magnetic Domain Structure in the Ferromagnetic Phase of MnP Single Crystals
NASA Astrophysics Data System (ADS)
Koyama, Tsukasa; Yano, Shin-ichiro; Togawa, Yoshihiko; Kousaka, Yusuke; Mori, Shigeo; Inoue, Katsuya; Kishine, Jun-ichiro; Akimitsu, Jun
2012-04-01
We have studied ferromagnetic (FM) structures in the FM phase of MnP single crystals by low-temperature Lorentz transmission electron microscopy and small-angle electron diffraction analysis. In Lorentz Fresnel micrographs, striped FM domain structures were observed at an external magnetic field less than 10 Oe in specimens with the ab-plane in their plane. From real- and reciprocal-space analyses, it was clearly identified that striped FM domains oriented to the c-axis appear with Bloch-type domain walls in the b-direction and order regularly along the a-axis with a constant separation less than 100 nm. Moreover, the magnetic chirality reverses in alternate FM domain walls. These specific spin configuration of striped FM domains will affect the magnetic phase transition from the FM phase to the proper screw spiral phase at low temperature or to the FAN phase in magnetic fields in MnP.
NASA Astrophysics Data System (ADS)
Ovchinnikov, S. G.; Ovchinnikova, T. M.; Plotkin, V. V.; Dyad'kov, P. G.
2015-11-01
Effect of high pressure induced spin crossover on the magnetic, electronic and structural properties of the minerals forming the Earth's low mantle is discussed. The low temperature P, T phase diagram of ferropericlase has the quantum phase transition point Pc = 56 GPa at T = 0 confirmed recently by the synchrotron Mössbauer spectroscopy. The LDA+GTB calculated phase diagram describes the experimental data. Its extension to the high temperature resulted earlier in prediction of the metallic properties of the Earth's mantle at the depth 1400 km < h < 1800 km. Estimation of the electrical conductivity based on the percolation theory is given. We discuss also the thermodynamic properties and structural anomalies resulting from the spin crossover and metal-insulator transition and compare them with the experimental seismic and geomagnetic field data.
Structural properties of Fe-doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Mori, Kazuhiro; Fukunaga, Toshiharu; Shibata, Koji; Iwase, Kenji; Harjo, Stefanus; Hoshikawa, Akinori; Itoh, Keiji; Kamiyama, Takashi; Ishigaki, Toru
2004-10-01
Structural characteristics of Fe-doped LaGaO3-δ were studied by differential scanning calorimeter, neutron and high-temperature X-ray powder diffraction measurements. It was found that a phase transition temperature increases in proportion to an amount of Fe. The crystal structure could be described as a low-temperature orthorhombic phase (Pnma) and a high-temperature rhombohedral one (R 3 bar c), respectively. Lattice parameters and bond lengths between M (=Ga/Fe) and O are monotonically expand with increasing Fe-content on both orthorhombic and rhombohedral phases. This means that a substitution of Ga3+ with Fe3+ leads to an electronic configuration of t2g3eg2 (high-spin state, HS).
Self-assembly in Dipolar Fluids
NASA Astrophysics Data System (ADS)
Ronti, Michela; Kantorovich, Sofia
We are studying low temperature structural transitions in dipolar hard spheres (DHS), combining grand-canonical Monte Carlo simulations and direct analytical theoretical calculations. DHS is characterized by long-range anisotropic interactions: it consists of a point dipole at the center of a hard sphere. We are interested in low temperature and low density phase behaviour of DHS systems. From a theoretical point of view the process of self-assembly is not responsible for a phase transition; this belief was completely reverted by theoretical studies showing that the process of self-assembly is alone capable to induce phase transition. On the other hand in the last years it was proved that no sign of critical behaviour is observed, implementing efficient and tailored Monte Carlo algorithms. Moreover a theoretical approach based on Density Functional Theory was developed: a series of structural transitions were discovered providing evidence of a hierarchy in the structures on cooling. We are performing free-energy calculations in order to draw the phase diagram of DHS model. Comparing the numerical results with the theoretical ones shed light on the scenario of temperature induced structural transitions in magnetic nanocolloids. Etn-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774).
Structural-Phase Transformations of CuZn Alloy Under Thermal-Impact Cycling
NASA Astrophysics Data System (ADS)
Potekaev, A. I.; Chaplygina, A. A.; Kulagina, V. V.; Chaplygin, P. A.; Starostenkov, M. D.; Grinkevich, L. S.
2017-02-01
Using the Monte Carlo method, special features of structural - phase transformations in β-brass are investigated during thermal impact using thermal cycling as an example (a number of successive order - disorder and disorder - order phase transitions in the course of several heating - cooling cycles). It is shown that a unique hysteresis is observed after every heating and cooling cycle, whose presence indicates irreversibility of the processes, which suggests a difference in the structural - phase states both in the heating and cooling stages. A conclusion is drawn that the structural - phase transformations in the heating and cooling stages occur within different temperature intervals, where the thermodynamic stimuli of one or the other structural - phase state are low. This is also demonstrated both in the plots of configurational energy, long- and short-range order parameter, atomic structure variations, and structural - phase state distributions. Simultaneously, there coexist ordered and disordered phases and a certain collection of superstructure domains. This implies the presence of low - stability states in the vicinity of the order - disorder phase transition. The results of investigations demonstrate that the structural - phase transitions within two successive heating and cooling cycles at the same temperature are different in both stages. These changes, though not revolutionary, occur in every cycle and decrease with the increasing cycle number. In fact, the system undergoes training with a tendency towards a certain sequence of structural - phase states.
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2017-06-01
The phase transition of ternary rare earth niobates Ln3NbO7 (Ln = Pr, Sm, Eu) was investigated by the measurements of high-temperature and low-temperature X-ray diffraction, differential scanning calorimetry (DSC) and differential thermal analysis (DTA). These compounds crystallize in an orthorhombic superstructure derived from the structure of cubic fluorite (space group Pnma for Ln = Pr; C2221 for Ln = Sm, Eu). Sm3NbO7 undergoes the phase transition when the temperature is increased through ca. 1080 K and above the transition temperature, its structure is well described with space group Pnma. For Eu3NbO7, the phase transition was not observed up to 1273 K Pr3NbO7 indicates the phase transition when the temperature is increased through ca. 370 K. The change of the phase transition temperature against the Ln ionic radius for Ln3NbO7 is quite different from those for Ln3MO7 (M = Mo, Ru, Re, Os, or Ir), i.e., no systematic relationship between the phase transition temperature and the Ln ionic radius has been observed for Ln3NbO7 compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Shivani; Shahee, Aga; Singh, Kiran
2016-05-23
The temperature (T) dependent x-ray diffraction (XRD) and resistivity measurements of La{sub 0.175}Pr{sub 0.45}Ca{sub 0.375}MnO{sub 3-δ} (LPCMO) have been performed down to 2 K to understand the structural and transport properties. From room temperature down to 220 K, LPCMO exists in orthorhombic phase with Pnma structure and at T~220 K, it transforms to charge ordered (CO) monoclinic phase with P2{sub 1}/m structure and remains as it is down to 2 K. The CO phase is evident from the occurrence of weak but well defined superlattice peaks in the XRD pattern. This structural transformation is of first order in nature asmore » evident from the phase coexistence across the transition region. These results thus clearly illustrate that LPCMO undergoes a first order structural phase transition from charge disordered orthorhombic phase to CO monoclinic phase at ~220 K, consistent with temperature dependent resistivity results. Our structural analysis of T dependent XRD data using Rietveld refinement infers that below 220 K, LPCMO forms commensurate CO monoclinic P2{sub 1}/m structure with four times structural modulation.« less
Why the Heyd-Scuseria-Ernzerhof hybrid functional description of VO2 phases is not correct
NASA Astrophysics Data System (ADS)
Grau-Crespo, Ricardo; Wang, Hao; Schwingenschlögl, Udo
2012-08-01
In contrast with recent claims that the Heyd-Scuseria-Ernzerhof (HSE) screened hybrid functional can provide a good description of the electronic and magnetic structures of VO2 phases [Eyert, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.016401 107, 016401 (2011)], we show here that the HSE lowest-energy solutions for both the low-temperature monoclinic (M1) phase and the high-temperature rutile (R) phase, which are obtained upon inclusion of spin polarization, are at odds with experimental observations. For the M1 phase the ground state is (but should not be) magnetic, while the ground state of the R phase, which is also spin polarized, is not (but should be) metallic. The energy difference between the low-temperature and high-temperature phases has strong discrepancies with the experimental latent heat.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoun, Bouchaib, E-mail: manounb@gmail.com; Tamraoui, Y.; Lazor, P.
2013-12-23
Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550 °C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100 °C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300 °C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) tomore » the cubic (Fm-3m) structure.« less
Room temperature metastable monoclinic phase in BaTiO3 crystals
NASA Astrophysics Data System (ADS)
Lummen, Tom; Wang, Jianjun; Holt, Martin; Kumar, Amit; Vlahos, Eftihia; Denev, Sava; Chen, Long-Qing; Gopalan, Venkatraman
2011-03-01
Low-symmetry monoclinic phases in ferroelectric materials are of considerable interest, due to their associated enhanced electromechanical coupling. Such phases have been found in Pb-based perovskite solid solutions such as lead zirconate titanate (PZT), where they form structural bridges between the rhombohedral and tetragonal ground states in compositional space. In this work, we directly image such a monoclinic phase in BaTi O3 crystals at room-temperature, using optical second harmonic generation, Raman, and X-ray microscopic imaging techniques. Phase-field modeling indicates that ferroelectric domain microstructures in BaTi O3 induce local inhomogeneous stresses in the crystals, which can effectively trap the transient intermediate monoclinic structure that occurs across the thermal orthorhombic-tetragonal phase boundary. The induced metastable monoclinic domains are ferroelectrically soft, being easily moved by electric fields as low as 0.5 kV cm-1 . Stabilizing such intermediate low-symmetry phases could very well lead to Pb-free materials with enhanced piezoelectric properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh
Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less
Kameche, Farid; Ngo, Anh-Tu; Salzemann, Caroline; Cordeiro, Marco; Sutter, Eli; Petit, Christophe
2015-11-14
Co(x)Pt(100-x) nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of the different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. This in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.
Pressure-induced amorphization of charge ordered spinel AlV{sub 2}O{sub 4} at low temperature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malavi, Pallavi S., E-mail: malavips@barc.gov.in; Karmakar, S., E-mail: malavips@barc.gov.in; Sharma, S. M.
2014-04-24
Structural properties of charge ordered spinel AlV{sub 2}O{sub 4} have been investigated under high pressure at low temperature (80K) by synchrotron based x-ray diffraction measurements. It is observed that upon increasing pressure the structure becomes progressively disordered due to the distortion of the AlO{sub 4} tetrahedral unit and undergoes amorphization above ∼12 GPa. While releasing pressure, the rhombohedral phase is only partially recovered at a much lower pressure (below 5 GPa). Within the stability of the rhombohedral phase, the distortion in the vanadium heptamer increases monotonically with pressure, suggesting enhanced charge ordering. This result is in sharp contrast with themore » recent observation of pressure-induced frustration in the charge ordered state leading to structural transition to the cubic phase at room temperature [JPCM 25, 292201, 2013].« less
Molecular dynamics simulation of shock-wave loading of copper and titanium
NASA Astrophysics Data System (ADS)
Bolesta, A. V.; Fomin, V. M.
2017-10-01
At extreme pressures and temperatures common materials form new dense phases with compacted atomic arrangements. By classical molecular dynamics simulation we observe that FCC copper undergo phase transformation to BCC structure. The transition occurs under shock wave loading at the pressures above 80 GPa and corresponding temperatures above 2000 K. We calculate phase diagram, show that at these pressures and low temperature FCC phase of copper is still stable and discuss the thermodynamic reason for phase transformation at high temperature shock wave regime. Titanium forms new hexagonal phase at high pressure as well. We calculate the structure of shock wave in titanium and observe that shock front splits in three parts: elastic, plastic and phase transformation. The possibility of using a phase transition behind a shock wave with further unloading for designing nanocrystalline materials with a reduced grain size is also shown.
Generalization of soft phonon modes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rudin, Sven P.
Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less
Generalization of soft phonon modes
Rudin, Sven P.
2018-04-27
Soft phonon modes describe a collective movement of atoms that transform a higher-symmetry crystal structure into a lower-symmetry crystal structure. Such structural transformations occur at finite temperatures, where the phonons (i.e., the low-temperature vibrational modes) and the static perfect crystal structures provide an incomplete picture of the dynamics. In this paper, principal vibrational modes (PVMs) are introduced as descriptors of the dynamics of a material system withmore » $N$ atoms. The PVMs represent the independent collective movements of the atoms at a given temperature. Molecular dynamics (MD) simulations, here in the form of quantum MD using density functional theory calculations, provide both the data describing the atomic motion and the data used to construct the PVMs. The leading mode, $${\\mathrm{PVM}}_{0}$$, represents the $3N$-dimensional direction in which the system moves with greatest amplitude. For structural phase transitions, $${\\mathrm{PVM}}_{0}$$ serves as a generalization of soft phonon modes. At low temperatures, $${\\mathrm{PVM}}_{0}$$ reproduces the soft phonon mode in systems where one phonon dominates the phase transformation. In general, multiple phonon modes combine to describe a transformation, in which case $${\\mathrm{PVM}}_{0}$$ culls these phonon modes. Moreover, while soft phonon modes arise in the higher-symmetry crystal structure, $${\\mathrm{PVM}}_{0}$$ can be equally well calculated on either side of the structural phase transition. Finally, two applications demonstrate these properties: first, transitions into and out of bcc titanium, and, second, the two crystal structures proposed for the $${\\beta}$$ phase of uranium, the higher-symmetry structure of which stabilizes with temperature.« less
NASA Astrophysics Data System (ADS)
Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.
2018-02-01
We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.
NASA Astrophysics Data System (ADS)
Dubinin, S. F.; Sokolov, V. I.; Parkhomenko, V. D.; Teploukhov, S. G.; Gruzdev, N. B.
2008-12-01
The magnetic state and the structure of a Zn1 - x Ni x Se ( x = 0.0025) bulk crystal were studied at low temperatures. It is revealed that the magnetic and crystal structures below T ≅ 15 K are dependent on the cooling rate of this dilute semiconductor. For example, on fast cooling to 4.2 K, about 10% hexagonal ferromagnetic phase is formed in the crystal. During heating, the phase disappears at T ≅ 15 K. The results obtained are discussed with allowance for the specific features of the Jahn-Teller distortions in this compound.
NASA Astrophysics Data System (ADS)
Vagadia, Megha; Hester, James; Nigam, A. K.
2018-04-01
We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.
Stability-to-instability transition in the structure of large-scale networks
NASA Astrophysics Data System (ADS)
Hu, Dandan; Ronhovde, Peter; Nussinov, Zohar
2012-12-01
We examine phase transitions between the “easy,” “hard,” and “unsolvable” phases when attempting to identify structure in large complex networks (“community detection”) in the presence of disorder induced by network “noise” (spurious links that obscure structure), heat bath temperature T, and system size N. The partition of a graph into q optimally disjoint subgraphs or “communities” inherently requires Potts-type variables. In earlier work [Philos. Mag.1478-643510.1080/14786435.2011.616547 92, 406 (2012)], when examining power law and other networks (and general associated Potts models), we illustrated that transitions in the computational complexity of the community detection problem typically correspond to spin-glass-type transitions (and transitions to chaotic dynamics in mechanical analogs) at both high and low temperatures and/or noise. The computationally “hard” phase exhibits spin-glass type behavior including memory effects. The region over which the hard phase extends in the noise and temperature phase diagram decreases as N increases while holding the average number of nodes per community fixed. This suggests that in the thermodynamic limit a direct sharp transition may occur between the easy and unsolvable phases. When present, transitions at low temperature or low noise correspond to entropy driven (or “order by disorder”) annealing effects, wherein stability may initially increase as temperature or noise is increased before becoming unsolvable at sufficiently high temperature or noise. Additional transitions between contending viable solutions (such as those at different natural scales) are also possible. Identifying community structure via a dynamical approach where “chaotic-type” transitions were found earlier. The correspondence between the spin-glass-type complexity transitions and transitions into chaos in dynamical analogs might extend to other hard computational problems. In this work, we examine large networks (with a power law distribution in cluster size) that have a large number of communities (q≫1). We infer that large systems at a constant ratio of q to the number of nodes N asymptotically tend towards insolvability in the limit of large N for any positive T. The asymptotic behavior of temperatures below which structure identification might be possible, T×=O[1/lnq], decreases slowly, so for practical system sizes, there remains an accessible, and generally easy, global solvable phase at low temperature. We further employ multivariate Tutte polynomials to show that increasing q emulates increasing T for a general Potts model, leading to a similar stability region at low T. Given the relation between Tutte and Jones polynomials, our results further suggest a link between the above complexity transitions and transitions associated with random knots.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiu, Wujie; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050; Lu, Ping
Quite a few interesting but controversial phenomena, such as simple chemical composition but complex structures, well-defined high-temperature cubic structure but intriguing phase transition, coexist in Cu{sub 2}Se, originating from the relatively rigid Se framework and “soft” Cu sublattice. However, the electrical transport properties are almost uninfluenced by such complex substructures, which make Cu{sub 2}Se a promising high-performance thermoelectric compound with extremely low thermal conductivity and good power factor. Our work reveals that the crystal structure of Cu{sub 2}Se at the temperature below the phase-transition point (∼400 K) should have a group of candidate structures that all contain a Se-dominated face-centered-cubic-likemore » layered framework but nearly random site occupancy of atoms from the “soft” Cu sublattice. The energy differences among those structures are very low, implying the coexistence of various structures and thus an intrinsic structure complexity with a Se-based framework. Detailed analyses indicate that observed structures should be a random stacking of those representative structure units. The transition energy barriers between each two of those structures are estimated to be zero, leading to a polymorphous phase transition of Cu{sub 2}Se at increasing temperature. Those are all consistent with experimental observations.« less
Structural and low temperature transport properties of Fe2B and FeB systems at high pressure
NASA Astrophysics Data System (ADS)
Kumar, P. Anand; Satya, A. T.; Reddy, P. V. Sreenivasa; Sekar, M.; Kanchana, V.; Vaitheeswaran, G.; Mani, Awadhesh; Kalavathi, S.; Shekar, N. V. Chandra
2017-10-01
The evolution of crystal structure and the ground state properties of Fe2B and FeB have been studied by performing high pressure X-ray diffraction up to a pressure of ∼24 GPa and temperature dependent (4.2-300 K range) high-pressure resistivity measurements up to ∼ 2 GPa. While a pressure induced reversible structural phase transition from tetragonal to orthorhombic structure is observed at ∼6.3 GPa in Fe2B, FeB has been found to be stable in its orthorhombic phase up to the pressure of 24 GPa. In the case of Fe2B, both parent and daughter phases coexist beyond the transition pressure. The bulk modulus of FeB and Fe2B (tetragonal) have been found to be 248 GPa and 235 GPa respectively. First principle electronic structure calculations have been performed using the present experimental inputs and the calculated ground state properties agree quite well with the major findings of the experiments. Debye temperature extracted from the analysis of low temperature resistivity data is observed to decrease with pressure indicating softening of phonons in both the systems.
Magnetic characteristics of polymorphic single crystal compounds DyIr2Si2
NASA Astrophysics Data System (ADS)
Uchima, Kiyoharu; Shigeoka, Toru; Uwatoko, Yoshiya
2018-05-01
We have confirmed that the tetragonal ternary compound DyIr2Si2 shows polymorphism; the ThCr2Si2-type structure as a low temperature phase (I-phase) and the CaBe2Ge2-type one as a high temperature phase (P-phase) exist. A comparative study on magnetic characteristics of the morphs was performed on the I- and P-phase single crystals in order to elucidate how magnetic properties are influenced by crystallographic symmetry. The magnetic behavior changes drastically depending on the structure. The DyIr2Si2(I) shows an antiferromagnetic ordering below TN = 30 K, additional magnetic transitions of T1 = 17 K and T2 = 10 K, and a strong uniaxial magnetic anisotropy with the easy [001] direction. The [001] magnetization shows four metamagnetic transitions at low temperatures. On the other hand, the DyIr2Si2(P) has comparatively low ordering temperature of TN1 = 9.4 K and an additional transition temperature of TN2 = 3.0 K, and exhibits an easy-plane magnetic anisotropy with the easy [110] direction. Two metamagnetic transitions appear in the basal plane magnetization processes. In both the morphs, the χ-T behavior suggests the existence of component-separated magnetic transitions. The ab-component of magnetic moments orders at the higher transition temperature TN1 for the P-phase compound, which is contrast to the I-phase behavior; the c-component orders firstly at TN. The crystalline electric field (CEF) analysis was made, and the difference in magnetic behaviors between both the morphs is explained by the CEF effects.
NASA Astrophysics Data System (ADS)
Milliron, Delia; Dahlman, Clayton; Leblanc, Gabriel; Bergerud, Amy
Vanadium dioxide (VO2) undergoes significant optical, electronic, and structural changes as it transforms between the low-temperature monoclinic and high-temperature rutile phases. The low-temperature state is insulating and transparent, while the high-temperature state is metallic and IR blocking. Alternative stimuli have been utilized to trigger insulator-to-metal transformations in VO2, including electrochemical gating. Here, VO2 nanocrystal films have been prepared by solution deposition of V2O3 nanocrystals followed by oxidative annealing. Nanocrystalline VO2 films are electrochemically reduced, inducing changes in their electronic and optical properties. We observe a reversible transition between infrared transparent insulating phases and a darkened metallic phase by in situ visible-near-infrared spectroelectrochemistry and correlate these observations with structural and electronic changes monitored by X-ray absorption spectroscopy, X-ray diffraction, Raman spectroscopy, and conductivity measurements. Reduction causes an initial transformation to a metallic, IR-colored distorted monoclinic phase. However, an unexpected reversible transition from conductive, reduced monoclinic VO2 to an infrared-transparent insulating phase is observed upon further reduction.
Phase Behavior and Equations of State of the Actinide Oxides
NASA Astrophysics Data System (ADS)
Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.
2017-12-01
The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.
Photo-induced Low Temperature Structural Transition in the "114" YbaFe 4O 7 oxide
Duffort, V.; Caignaert, Vincent; Pralong, V.; ...
2013-11-11
Synchrotron irradiation of the oxide YBaFe 4O 7.0 below 190 K converts the low temperature monoclinic structure to a higher symmetry tetragonal form analogous to the room temperature structure. This photo-induced metastable tetragonal form is stable even in the absence of irradiation over the range 4-60 K, however, above 60 K the photo-transition is reversible. These structural phenomena are correlated to the magnetic behaviour of this system, suggesting possible spin-lattice coupling. Lastly, a scenario explaining the low temperature photo-induced transition is proposed, based on the different distributions of the valence electrons in the iron sub-lattice of the monoclinic and tetragonalmore » phases.« less
NASA Astrophysics Data System (ADS)
Bučko, Tomáš; Šimko, František
2016-02-01
Ab initio molecular dynamics simulations in isobaric-isothermal ensemble have been performed to study the low- and the high-temperature crystalline and liquid phases of cryolite. The temperature induced transitions from the low-temperature solid (α) to the high-temperature solid phase (β) and from the phase β to the liquid phase have been simulated using a series of MD runs performed at gradually increasing temperature. The structure of crystalline and liquid phases is analysed in detail and our computational approach is shown to reliably reproduce the available experimental data for a wide range of temperatures. Relatively frequent reorientations of the AlF6 octahedra observed in our simulation of the phase β explain the thermal disorder in positions of the F- ions observed in X-ray diffraction experiments. The isolated AlF63-, AlF52-, AlF4-, as well as the bridged Al 2 Fm 6 - m ionic entities have been identified as the main constituents of cryolite melt. In accord with the previous high-temperature NMR and Raman spectroscopic experiments, the compound AlF5 2 - has been shown to be the most abundant Al-containing species formed in the melt. The characteristic vibrational frequencies for the AlFn 3 - n species in realistic environment have been determined and the computed values have been found to be in a good agreement with experiment.
NASA Astrophysics Data System (ADS)
Crepaldi, A.; Autès, G.; Gatti, G.; Roth, S.; Sterzi, A.; Manzoni, G.; Zacchigna, M.; Cacho, C.; Chapman, R. T.; Springate, E.; Seddon, E. A.; Bugnon, Ph.; Magrez, A.; Berger, H.; Vobornik, I.; Kalläne, M.; Quer, A.; Rossnagel, K.; Parmigiani, F.; Yazyev, O. V.; Grioni, M.
2017-12-01
MoTe2 has recently been shown to realize in its low-temperature phase the type-II Weyl semimetal (WSM). We investigated by time- and angle- resolved photoelectron spectroscopy (tr-ARPES) the possible influence of the Weyl points on the electron dynamics above the Fermi level EF, by comparing the ultrafast response of MoTe2 in the trivial and topological phases. In the low-temperature WSM phase, we report an enhanced relaxation rate of electrons optically excited to the conduction band, which we interpret as a fingerprint of the local gap closure when Weyl points form. By contrast, we find that the electron dynamics of the related compound WTe2 is slower and temperature independent, consistent with a topologically trivial nature of this material. Our results shows that tr-ARPES is sensitive to the small modifications of the unoccupied band structure accompanying the structural and topological phase transition of MoTe2.
NASA Astrophysics Data System (ADS)
Hermes, Wilfred; Dollé, Mickaël; Rozier, Patrick; Lidin, Sven
2013-03-01
The complex structural behavior of τ-[AgCu]˜0.92V4O10 has been elucidated by single crystal X-ray diffraction and thermal analysis. The τ-phase region is apparently composed of several distinct phases and this study identifies at least three: τ1rt, τ2rt and τlt. τ1rt and τ2rt have slightly different compositions and crystal habits. Both phases transform to τlt at low temperature. The room temperature modification τ1rt crystallizes in an incommensurately modulated structure with monoclinic symmetry C2(0β1/2) [equivalent to no 5.4, B2(01/2γ) in the Intnl. Tables for Crystallography, Volume C] and the cell parameters a=11.757(4) Å, b=3.6942(5) Å c=9.463(2) Å β=114.62(2)° and the q-vector (0 0.92 1/2), but it is more convenient to transform this to a setting with a non-standard centering X=(1/2 1/2 0 0; 0 0 1/2 1/2; 1/2 1/2 1/2 1/2;) and an axial q vector (0 0.92 0). The structure features a vanadate host lattice with Cu and Ag guests forming an incommensurate composite. The structural data indicates perfect Ag/Cu ordering. At low temperature this modification is replaced by a triclinic phase characterized by two independent q-vectors. The τ2rt phase is similar to the low temperature modification τlt but the satellite reflections are generally more diffuse.
Bendersky, L. A.; Boettinger, W. J.
1993-01-01
Possible transformation paths that involve no long range diffusion and their corresponding microstructural details were predicted by Bendersky, Roytburd, and Boettinger [J. Res. Natl. Inst. Stand. Technol. 98, 561 (1993)] for Ti-Al-Nb alloys cooled from the high temperature BCC/B2 phase field into close-packed orthorhombic or hexagonal phase fields. These predictions were based on structural and symmetry relations between the known phases. In the present paper experimental TEM results show that two of the predicted transformation paths are indeed followed for different alloy compositions. For Ti-25Al-12.5Nb (at%), the path includes the formation of intermediate hexagonal phases, A3 and DO19, and subsequent formation of a metastable domain structure of the low-temperature O phase. For alloys close to Ti-25Al-25Nb (at%), the path involves an intermediate B19 structure and subsequent formation of a translational domain structure of the O phase. The path selection depends on whether B2 order forms in the high temperature cubic phase prior to transformation to the close-packed structure. The paper also analyzes the formation of a two-phase modulated microstructure during long term annealing at 700 °C. The structure forms by congruent ordering of the DO19 phase to the O phase, and then reprecipitation of the DO19 phase, possibly by a spinodal mechanism. The thermodynamics underlying the path selection and the two-phase formation are also discussed. PMID:28053488
Marronnier, Arthur; Roma, Guido; Boyer-Richard, Soline; Pedesseau, Laurent; Jancu, Jean-Marc; Bonnassieux, Yvan; Katan, Claudine; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Even, Jacky
2018-04-24
Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI 3 , whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI 3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI 3 (γ, δ, β) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.
Effect of strain on the Curie temperature and band structure of low-dimensional SbSI
NASA Astrophysics Data System (ADS)
Wang, Yiping; Hu, Yang; Chen, Zhizhong; Guo, Yuwei; Wang, Dong; Wertz, Esther A.; Shi, Jian
2018-04-01
Photoferroelectric materials show great promise for developing alternative photovoltaics and photovoltaic-type non-volatile memories. However, the localized nature of the d orbital and large bandgap of most natural photoferroelectric materials lead to low electron/hole mobility and limit the realization of technologically practical devices. Antimony sulpho-iodide (SbSI) is a photoferroelectric material which is expected to have high electron/hole mobility in the ferroelectric state due to its non-local band dispersion and narrow bandgap. However, SbSI exhibits the paraelectric state close to room temperature. In this report, as a proof of concept, we explore the possibility to stabilize the SbSI ferroelectric phase above room temperature via mechanical strain engineering. We synthesized thin low-dimensional crystals of SbSI by chemical vapor deposition, confirmed its crystal structure with electron diffraction, studied its optical properties via photoluminescence spectroscopy and time-resolved photoluminescence spectroscopy, and probed its phase transition using temperature-dependent steady-state photoluminescence spectroscopy. We found that introducing external mechanical strain to these low-dimensional crystals may lead to an increase in their Curie temperature (by ˜60 K), derived by the strain-modified optical phase transition in SbSI and quantified by Kern formulation and Landau theory. The study suggests that strain engineering could be an effective way to stabilize the ferroelectric phase of SbSI at above room temperature, providing a solution enabling its application for technologically useful photoferroelectric devices.
NASA Astrophysics Data System (ADS)
Moreira, Roberto L.; Lobo, Ricardo P. S. M.; Ramos, Sérgio L. L. M.; Sebastian, Mailadil T.; Matinaga, Franklin M.; Righi, Ariete; Dias, Anderson
2018-05-01
The low-temperature vibrational properties of B a2ZnTe O6 double-perovskite ceramics obtained by the solid-state route were investigated by Raman scattering and Fourier-transform infrared reflectivity. We found that this material undergoes a reversible ferroelastic phase transition at around 140 K, well compatible with a recently proposed rhombohedral-to-monoclinic structural change that would occur below 165 K. Complementary calorimetric measurements showed that the phase transition has a first-order character, with an entropy jump compatible with a displacive mechanism. The vibrational spectra show clearly the splitting of the doubly degenerate E modes into nondegenerate representations of the low-symmetry phase. In particular, the lowest-frequency Raman mode presents soft-mode behavior and splits below the critical temperature, confirming the in-plane ferroelastic deformation in the low-temperature phase.
Ion Conduction Path and Low-Temperature Form:. Argyrodite-Type Superionic Conductors
NASA Astrophysics Data System (ADS)
Onoda, M.; Wada, H.; Sato, A.; Ishii, M.
2007-01-01
The structures of the orthorhombic room-temperature phase of Cu8GeS6 (phase II) and the monoclinic low-temperature phase of Ag7TaS6 (phase II) have been successfully refined based on X-ray diffraction data from 12-fold twinned (Cu8GeS6 II) and 24-fold twinned (Ag7TaS6 II) crystals. Respectively among 6 major and 6 minor twin domains of Cu8GeS6 II, or among 12 major and 12 minor twin domains of Ag7TaS6 II, the argyrodite-type frameworks, GeS6 or TaS6, can be superposed to each other in principle, and only Cu-Cu or Ag-Ag network directions differ. At higher temperature, the crystals were considered to be 2-fold twinned crystals of superionic-conductor phase I with a space group F 43m. On cooling, each domain transforms into 6 domains of orthorhombic Cu8GeS6 II or 12 domains of monoclinic Ag7TaS6 II. Superposed projections along 6 directions of the structure of Cu8GeS6 II and along 12 directions of the structure of Ag7TaS6 II seem to show approximate expressions for Cu-ion and Ag-ion conduction paths in superionic-conductor phases, Cu8GeS6 I and Ag7TaS6I.
Cordeiro, Marco; Kameche, Farid; Ngo, Anh -Tu; ...
2015-03-17
Co xPt 100–x nanoalloys have been synthesized by two different chemical processes either at high or at low temperature. Their physical properties and the order/disorder phase transition induced by annealing have been investigated depending on the route of synthesis. It is demonstrated that the chemical synthesis at high temperature allows stabilization of the fcc structure of the native nanoalloys while the soft chemical approach yields mainly poly or non crystalline structure. As a result the approach of the order/disorder phase transition is strongly modified as observed by high-resolution transmission electron microscopy (HR-TEM) studies performed during in situ annealing of themore » different nanoalloys. The control of the nanocrystallinity leads to significant decrease in the chemical ordering temperature as the ordered structure is observed at temperatures as low as 420 °C. Furthermore, this in turn preserves the individual nanocrystals and prevents their coalescence usually observed during the annealing necessary for the transition to an ordered phase.« less
NASA Astrophysics Data System (ADS)
He, Feng
The phase equilibrium, viscosity of melt-quenched glasses, and processing of sol-gel glasses of the alumina-silica-lanthanum phosphate system were studied. These investigations were directed towards serving the objective of synthesizing nano-structured ceramic-matrix-composites via controlled crystallization of glass precursors. The thermal stability, phase equilibrium, and liquidus temperatures of the alumina- and mullite-lanthanum phosphate systems are determined. An iridium wire heater was constructed to anneal samples up to 2200°C. Phosphorus evaporation losses were significant at high temperatures, especially over 1800°C. The tentative phase diagrams of the two quasi-binary systems were presented. The viscosity of the melt-quenched mullite-lanthanum phosphate glasses was measured by three different methods, including viscous sintering of glass powder compacts, neck formation between two Frenkel glass beads, and thermal analysis of the glass transition. Improved methodologies were developed for applying the interpretative mathematical models to the results of the sintered powder and thermal analytical experiments. Good agreement was found between all three methods for both absolute values and temperature dependence. A sol-gel process was developed as a low temperature route to producing glasses. A unique, single phase mullite gel capable of low temperature (575°C) mullitization was made from tetraethoxysilane and aluminum isopropoxide at room temperature in three days. Low temperature crystallization was attributed to the avoidance of phase segregation during gel formation and annealing. This was greatly enhanced by a combination of low temperature preheating in the amorphous state, a high heating rate during crystallization and low water content. The Al2O3 content in mullite (61-68 mol%) depended on the highest annealing temperature. Two mullite-lanthanum phosphate gels were made based upon modifying the chemical procedures used for the homogeneous single phase and heterogeneous diphasic mullite gels from same starting chemicals. Amorphous powders were obtained after optimized calcinations. Their different crystallization routes and sintering behavior were investigated and correlated with the different homogeneities of precursor gels. Structurally stable open, porous ceramics (up to 80% porosity) were produced from the single-phase gel derived powder, where gases exsolved during calcination caused foaming coincident with sintering. Translucent, dense glass ceramic was made from the calcined diphasic gel by hot-pressing.
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Low temperature synthesis of monolithic transparent Ta2O5 gels from hydrolysis of metal alkoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1993-01-01
Tantalum oxide gels in the form of transparent monoliths and powder were prepared from hydrolysis of tantalum pentaethoxide under controlled conditions using different mole ratios of Ta(OC2H5)5:C2H50H:H20:HCl. Alcohol acts as the mutual solvent and HCl as the deflocculating agent. For a fixed alkoxide:water:HCl ratio, time of gel formation increased with the alcohol to alkoxide mole ratio. Thermal evolution of the physical and structural changes in the gel was monitored by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. On heating to approximately 400 C, the amorphous gel crystallized into the low temperature orthorhombic phase Beta-Ta2O5, which transformed into the high temperature tetragonal phase Alpha-Ta2O5 when further heated to approximately 1450 C. The volume fraction of the crystalline phase increased with the firing temperature. The Alpha-Ta205 converted back into the low temperature phase, Beta-Ta2O5, on slow cooling through the transformation temperature of 1360 C indicating a slow but reversible transformation.
Synthesis of monoclinic IrTe 2 under high pressure and its physical properties
Li, X.; Yan, J. -Q.; Singh, D. J.; ...
2015-10-12
In a pressure-temperature (P-T) diagram for synthesizing IrTe 2 compounds, the well-studied trigonal (H) phase with the CdI 2-type structure is stable at low pressures. The superconducting cubic (C) phase can be synthesized under higher temperatures and pressures. A rhombohedral phase with the crystal structure similar to the C phase can be made at ambient pressure; but the phase contains a high concentration of Ir deficiency. Here, we report that a rarely studied monoclinic (M) phase can be stabilized in narrow ranges of pressure and temperature in this P-T diagram. Moreover, the peculiar crystal structure of the M-IrTe 2 eliminatesmore » the tendency to form Ir-Ir dimers found in the H phase. The M phase has been fully characterized by structural determination and measurements of electrical resistivity, thermoelectric power, DC magnetization, and specific heat. These physical properties have been compared with those in the H and C phases of Ir 1-xTe 2. Finally, we present magnetic and transport properties and specific heat of the M-IrTe 2 can be fully justified by calculations with the density-functional theory.« less
Paramagnetic centers in two phases of manganese-doped lanthanum gallate
NASA Astrophysics Data System (ADS)
Vazhenin, V. A.; Potapov, A. P.; Guseva, V. B.; Artyomov, M. Yu.
2009-05-01
An EPR study of two phases of manganese-doped lanthanum gallate (with a first-order structural transition occurring at 430 K) has revealed Gd3+, Fe3+, and Mn4+ centers at room temperature and 438 K. The parameters of spin Hamiltonians are determined for the Gd3+, Fe3+, and Mn4+ rhombohedral centers in the high-temperature phase (with no other centers found here) and for the monoclinic center Gd3+ in the low-temperature phase. Both in the orthorhombic and in the rhombohedral phase, crystallographic twins (or ferroelastic domains) are observed.
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions.
Lima, Thamires A; Paschoal, Vitor H; Faria, Luiz F O; Ribeiro, Mauro C C; Ferreira, Fabio F; Costa, Fanny N; Giles, Carlos
2016-06-14
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N1114][NTf2], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N1444][NTf2], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N1444][NTf2] experiences glass transition at low temperature, whereas [N1114][NTf2] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picture of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, J. W.; Goetz, K. P.; Obaid, A.
The use of organic semiconductors in high-performance organic field-effect transistors requires a thorough understanding of the effects that processing conditions, thermal, and bias-stress history have on device operation. Here, we evaluate the temperature dependence of the electrical properties of transistors fabricated with 2,8-difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene, a material that has attracted much attention recently due to its exceptional electrical properties. We have discovered a phase transition at T = 205 K and discuss its implications on device performance and stability. We examined the impact of this low-temperature phase transition on the thermodynamic, electrical, and structural properties of both single crystals and thin films of this material.more » Our results show that while the changes to the crystal structure are reversible, the induced thermal stress yields irreversible degradation of the devices.« less
Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4
NASA Astrophysics Data System (ADS)
Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin
2018-05-01
The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.
NASA Astrophysics Data System (ADS)
Dadami, Sunanda T.; Matteppanvar, Shidaling; Shivaraja, I.; Rayaprol, Sudhindra; Deshapande, S. K.; Angadi, Basavaraj
2018-05-01
In this paper the structural and low temperature dielectric properties of Pb0.8Bi0.2Fe0.6Nb0.4O3 (PBFNO) multiferroic solid solution were reported. PBFNO multiferroic was synthesized by single step solid state reaction method. Calcination was carried out at 700 °/2hr with different sintering temperature (800 °C, 850 °C, 900 °C, 950 °C, 1000 °C and 1050 °C for 1 hr) and time duration (800 °C for 1 to 5 hr). Single phase was confirmed through room temperature (RT) X-ray Diffraction (XRD). It was found that sintering carried out at 800°C/3 hr gives single phase. Rietveld refined lattice parameters using monoclinic structure are: a = 5.6663(1) Å, b = 5.6694(1) Å, c = 4.0112(1) Å and β = 90.038(1)° with the average grain size as 2.987 µm. The dielectric properties studied over a wide range of frequency (100 Hz - 5 MHz) and temperature (133 K - 293 K). Dielectric constant and loss tangent exhibits frequency dispersion nature at low frequency region. AC conductivity increases with increase in temperature corresponds to negative temperature coefficient of resistance (NTCR) behaviour.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik; ...
2016-11-09
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
Low Temperature Magnetic Ordering of the Magnetic Ionic Plastic Crystal, Choline[FeCl4
NASA Astrophysics Data System (ADS)
de Pedro, I.; García-Saiz, A.; Andreica, D.; Fernández Barquín, L.; Fernández-Díaz, M. T.; Blanco, J. A.; Amato, A.; Rodríguez Fernández, J.
2015-11-01
We report on the nature of the low temperature magnetic ordering of a magnetic ionic plastic crystal, Choline[FeCl4]. This investigation was carried out using heat capacity measurements, neutron diffraction experiments and muon spin relaxation (μSR) spectroscopy. The calorimetric measurements show the onset of an unusual magnetic ordering below 4 K with a possible second magnetic phase transition below 2 K. Low temperature neutron diffraction data reveal a three dimensional antiferromagnetic ordering at 2 K compatible with the previous magnetometry results. The analysis of μSR spectra indicates a magnetic phase transition below 2.2 K. At 1.6 K, the analysis of the shape of the μSR spectra suggests the existence of an additional magnetic phase with features of a possible incommensurate magnetic structure.
Ordering tendencies and electronic properties in quaternary Heusler derivatives
NASA Astrophysics Data System (ADS)
Neibecker, Pascal; Gruner, Markus E.; Xu, Xiao; Kainuma, Ryosuke; Petry, Winfried; Pentcheva, Rossitza; Leitner, Michael
2017-10-01
The phase stabilities and ordering tendencies in the quaternary full-Heusler alloys NiCoMnAl and NiCoMnGa have been investigated by in situ neutron diffraction, calorimetry, and magnetization measurements. NiCoMnGa was found to adopt the L 21 structure, with distinct Mn and Ga sublattices but a common Ni-Co sublattice. A second-order phase transition to the B 2 phase with disorder also between Mn and Ga was observed at 1160 K . In contrast, in NiCoMnAl slow cooling or low-temperature annealing treatments are required to induce incipient L 21 ordering, otherwise the system displays only B 2 order. Linked to L 21 ordering, a drastic increase in the magnetic transition temperature was observed in NiCoMnAl, while annealing affected the magnetic behavior of NiCoMnGa only weakly due to the low degree of quenched-in disorder. First principles calculations were employed to study the thermodynamics as well as order-dependent electronic properties of both compounds. It was found that a near half-metallic pseudogap emerges in the minority spin channel only for the completely ordered Y structure. However, this structure is energetically unstable compared to a tetragonal structure with alternating layers of Ni and Co, which is predicted to be the low-temperature ground state. The experimental inaccessibility of the totally ordered structures is explained by kinetic limitations due to the low ordering energies.
Low Temperature X-Ray Diffraction Study on CaFe2As2
NASA Astrophysics Data System (ADS)
Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team
For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas
Computational study of Li2OHCl as a possible solid state battery material
NASA Astrophysics Data System (ADS)
Howard, Jason; Holzwarth, N. A. W.
Preparations of Li2OHCl have recently been experimentally studied as solid state Li ion electrolytes. A disordered cubic phase is known to be stable at temperatures T >35o C. Following previous ideas, first principles supercells are constructed with up to 320 atoms to model the cubic phase. First principles molecular dynamics simulations of the cubic phase show Li ion diffusion occuring on the t =10-12 s time scale, at temperatures as low as T = 400 K. The structure of the lower temperature phase (T <35o C) is not known in detail. A reasonable model of this structure is developed by using the tetragonal ideal structure found by first principles simulations and a model Hamiltonian to account for alternative orientations of the OH groups. Supported by NSF Grant DMR-1507942. Thanks to Zachary D. Hood of GaTech and ORNL for introducing these materials to us.
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Study of structural and magnetic characterization of polycrystalline Y0.5Ho0.5CrO3
NASA Astrophysics Data System (ADS)
Mall, Ashish Kumar; Garg, Ashish; Gupta, Rajeev
2018-05-01
A polycrystalline ceramic sample of Y0.5Ho0.5CrO3 was studied using powder X-ray diffraction, Raman spectroscopic and dc magnetometry measurement to understand the structural and magnetic properties. The Rietveld refinement of X-ray data suggests sample crystallized in Pnma orthorhombic structure without formation of any secondary phases confirming their phase-pure nature. However, Raman study shows a prominent effect of Ho doping in low wavenumber Raman active phonon modes. Further, M-T measurement shows magnetic phase transition (TN) at 141 K and a negative value of Curie-Weiss temperature suggesting an antiferromagnetic system. Subsequent, the appearance of the clear opening in the M-H loop below TN is an evidence of the appearance of a weak ferromagnetic component in the low- temperature regime while the magnetization increases linearly in the high magnetic field regime suggest antiferromagnetic component.
Order-disorder phenomena in the low-temperature phase of BaTiO3
NASA Astrophysics Data System (ADS)
Völkel, G.; Müller, K. A.
2007-09-01
X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.
NASA Astrophysics Data System (ADS)
Mazet, T.; Ihou-Mouko, H.; Marêché, J.-F.; Malaman, B.
2010-04-01
We have studied pseudo-layered ZrMn6Sn6-xGax intermetallics (0.55 ≤ x ≤ 0.81) using magnetic, magnetoresistivity and powder neutron diffraction measurements. All the alloys studied have magnetic ordering temperatures in the 450-490 K temperature range. They present complex temperature-dependent partially disordered magnetic structures whose ferromagnetic component develops upon increasing the Ga content. ZrMn6Sn6-xGax alloys with x ≤ 0.69 are essentially collinear antiferromagnets at high-temperature and adopt antifan-like arrangements at low temperature. For x ≥ 0.75, the alloys order ferromagnetically and evolve to a fan-like structure upon cooling. The intermediate compositions (x = 0.71 and 0.73) present a canted fan-like order at high temperature and another kind of antifan-like arrangement at low temperature. The degree of short-range order tends to increase upon approaching the intermediate compositions. The (x, T) phase diagram contains two triple points (x ~ 0.70; T ~ 460 K and x ~ 0.74; T ~ 455 K), where the paramagnetic, an incommensurate and a commensurate phases meet, which possess some of the features of Lifshitz point. Irreversibilities manifest in the low-temperature magnetization curves at the antifan-fan or fan-ferromagnetic boundaries as well as inside the fan region. Giant magnetoresistance is observed, even above room temperature.
Crystal structures of η''-Cu3+xSi and η'''-Cu3+xSi.
Corrêa, Cinthia Antunes; Perez, Olivier; Kopeček, Jaromír; Brázda, Petr; Klementová, Mariana; Palatinus, Lukáš
2017-08-01
The binary phase diagram of Cu-Si is unexpectedly complex in the vicinity of Cu 3+x Si. The low-temperature region contains three closely related incommensurately modulated phases denoted, in order of increasing temperature of stability, η''', η'' and η'. The structure analysis of η' has been reported previously [Palatinus et al. (2011). Inorg. Chem. 50, 3743]. Here the structure model for the phases η'' and η''' is reported. The structures could be solved in superspace, but no superspace structure model could be constructed due to the complexity of the modulation functions. Therefore, the structures were described in a supercell approximation, which involved a 4 × 4 × 3 supercell for the η'' phase and a 14 × 14 × 3 supercell for the η''' phase. Both structures are very similar and differ only by a subtle symmetry lowering from η'' to η'''. A comparison of the structure models of η'' and η''' with the reported structure of η' suggests that the reported structure model of η' contains an incorrect assignment of atomic types.
Low-Temperature Crystal Structures of the Hard Core Square Shoulder Model.
Gabriëlse, Alexander; Löwen, Hartmut; Smallenburg, Frank
2017-11-07
In many cases, the stability of complex structures in colloidal systems is enhanced by a competition between different length scales. Inspired by recent experiments on nanoparticles coated with polymers, we use Monte Carlo simulations to explore the types of crystal structures that can form in a simple hard-core square shoulder model that explicitly incorporates two favored distances between the particles. To this end, we combine Monte Carlo-based crystal structure finding algorithms with free energies obtained using a mean-field cell theory approach, and draw phase diagrams for two different values of the square shoulder width as a function of the density and temperature. Moreover, we map out the zero-temperature phase diagram for a broad range of shoulder widths. Our results show the stability of a rich variety of crystal phases, such as body-centered orthogonal (BCO) lattices not previously considered for the square shoulder model.
NASA Astrophysics Data System (ADS)
Klimov, A.; Słysz, W.; Guziewicz, M.; Kolkovsky, V.; Wegrzecki, M.; Bar, J.; Marchewka, M.; Seredyński, B.
2016-12-01
Critical current and current-voltage characteristics of epitaxial Nb(Ti)N submicron ultrathin structures were measured as function of temperature. For 700-nm-wide bridge we found current-driven vortex de-pinning at low temperatures and thermally activated flux flow closer to the transition temperature, as the limiting factors for the critical current density. For 100-nm-wide meander we observed combination of phase-slip activation and vortex-anti-vortex pair (VAP) thermal excitation. Our Nb(Ti)N meander structure demonstrates high de-pairing critical current densities 107 A/cm2 at low temperatures, but the critical currents are much smaller due to presence of the local constrictions.
Time-resolved x-ray diffraction and calorimetric studies at low scan rates
Yao, Haruhiko; Hatta, Ichiro; Koynova, Rumiana; Tenchov, Boris
1992-01-01
The phase transitions of dipalmitoylphosphatidylethanolamine (DPPE) in excess water have been examined by low-angle time-resolved x-ray diffraction and calorimetry at low scan rates. The lamellar subgel/lamellar liquid-crystalline (Lc → Lα), lamellar gel/lamellar liquid-crystalline (Lβ → Lα), and lamellar liquid-crystalline/lamellar gel (Lα → Lβ) phase transitions proceed via coexistence of the initial and final phases with no detectable intermediates at scan rates 0.1 and 0.5°C/min. At constant temperature within the region of the Lβ → Lα transition the ratio of the two coexisting phases was found to be stable for over 30 min. The state of stable phase coexistence was preceded by a 150-s relaxation taking place at constant temperature after termination of the heating scan in the transition region. While no intermediate structures were present in the coexistence region, a well reproducible multipeak pattern, with at least four prominent heat capacity peaks separated in temperature by 0.4-0.5°C, has been observed in the cooling transition (Lα → Lβ) by calorimetry. The multipeak pattern became distinct with an increase of incubation time in the liquid-crystalline phase. It was also clearly resolved in the x-ray diffraction intensity versus temperature plots recorded at slow cooling rates. These data suggest that the equilibrium state of the Lα phase of hydrated DPPE is represented by a mixture of domains that differ in thermal behavior, but cannot be distinguished structurally by x-ray scattering. Imagesp689-aFIGURE 9 PMID:19431820
The stability of a crystal with diamond structure for patchy particles with tetrahedral symmetry.
Noya, Eva G; Vega, Carlos; Doye, Jonathan P K; Louis, Ard A
2010-06-21
The phase diagram of model anisotropic particles with four attractive patches in a tetrahedral arrangement has been computed at two different values of the range of the potential, with the aim of investigating the conditions under which a diamond crystal can be formed. We find that the diamond phase is never stable for our longer-ranged potential. At low temperatures and pressures, the fluid freezes into a body-centered-cubic solid that can be viewed as two interpenetrating diamond lattices with a weak interaction between the two sublattices. Upon compression, an orientationally ordered face-centered-cubic crystal becomes more stable than the body-centered-cubic crystal, and at higher temperatures, a plastic face-centered-cubic phase is stabilized by the increased entropy due to orientational disorder. A similar phase diagram is found for the shorter-ranged potential, but at low temperatures and pressures, we also find a region over which the diamond phase is thermodynamically favored over the body-centered-cubic phase. The higher vibrational entropy of the diamond structure with respect to the body-centered-cubic solid explains why it is stable even though the enthalpy of the latter phase is lower. Some preliminary studies on the growth of the diamond structure starting from a crystal seed were performed. Even though the diamond phase is never thermodynamically stable for the longer-ranged model, direct coexistence simulations of the interface between the fluid and the body-centered-cubic crystal and between the fluid and the diamond crystal show that at sufficiently low pressures, it is quite probable that in both cases the solid grows into a diamond crystal, albeit involving some defects. These results highlight the importance of kinetic effects in the formation of diamond crystals in systems of patchy particles.
Prediction of the As-Cast Structure of Al-4.0 Wt Pct Cu Ingots
NASA Astrophysics Data System (ADS)
Ahmadein, Mahmoud; Wu, M.; Li, J. H.; Schumacher, P.; Ludwig, A.
2013-06-01
A two-stage simulation strategy is proposed to predict the as-cast structure. During the first stage, a 3-phase model is used to simulate the mold-filling process by considering the nucleation, the initial growth of globular equiaxed crystals and the transport of the crystals. The three considered phases are the melt, air and globular equiaxed crystals. In the second stage, a 5-phase mixed columnar-equiaxed solidification model is used to simulate the formation of the as-cast structure including the distinct columnar and equiaxed zones, columnar-to-equiaxed transition, grain size distribution, macrosegregation, etc. The five considered phases are the extradendritic melt, the solid dendrite, the interdendritic melt inside the equiaxed grains, the solid dendrite, and the interdendritic melt inside the columnar grains. The extra- and interdendritic melts are treated as separate phases. In order to validate the above strategy, laboratory ingots (Al-4.0 wt pct Cu) are poured and analyzed, and a good agreement with the numerical predictions is achieved. The origin of the equiaxed crystals by the "big-bang" theory is verified to play a key role in the formation of the as-cast structure, especially for the castings poured at a low pouring temperature. A single-stage approach that only uses the 5-phase mixed columnar-equiaxed solidification model and ignores the mold filling can predict satisfactory results for a casting poured at high temperature, but it delivers false results for the casting poured at low temperature.
NASA Astrophysics Data System (ADS)
Zhuo, Yi; Chen, Zimin; Tu, Wenbin; Ma, Xuejin; Pei, Yanli; Wang, Gang
2017-10-01
Gallium oxide thin films of β and ε phase were grown on c-plane sapphire using metal-organic chemical vapor deposition and the phase compositions were analyzed using X-ray diffraction. The epitaxial phase diagram was constructed as a function of the growth temperature and VI/III ratio. A low growth temperature and low VI/III ratio were beneficial for the formation of hexagonal-type ε-Ga2O3. Further structure analysis revealed that the epitaxial relationship between ε-Ga2O3 and c-plane sapphire is ε-Ga2O3 (0001) || Al2O3 (0001) and ε-Ga2O3 || Al2O3 . The structural evolution of the mixed-phase sample during film thickening was investigated. By reducing the growth rate, the film evolved from a mixed phase to the energetically favored ε phase. Based on these results, a Ga2O3 thin film with a phase-pure ε-Ga2O3 upper layer was successfully obtained.
NASA Astrophysics Data System (ADS)
Mayabadi, A. H.; Waman, V. S.; Kamble, M. M.; Ghosh, S. S.; Gabhale, B. B.; Rondiya, S. R.; Rokade, A. V.; Khadtare, S. S.; Sathe, V. G.; Pathan, H. M.; Gosavi, S. W.; Jadkar, S. R.
2014-02-01
Nanocrystalline thin films of TiO2 were prepared on glass substrates from an aqueous solution of TiCl3 and NH4OH at room temperature using the simple and cost-effective chemical bath deposition (CBD) method. The influence of deposition time on structural, morphological and optical properties was systematically investigated. TiO2 transition from a mixed anatase-rutile phase to a pure rutile phase was revealed by low-angle XRD and Raman spectroscopy. Rutile phase formation was confirmed by FTIR spectroscopy. Scanning electron micrographs revealed that the multigrain structure of as-deposited TiO2 thin films was completely converted into semi-spherical nanoparticles. Optical studies showed that rutile thin films had a high absorption coefficient and a direct bandgap. The optical bandgap decreased slightly (3.29-3.07 eV) with increasing deposition time. The ease of deposition of rutile thin films at low temperature is useful for the fabrication of extremely thin absorber (ETA) solar cells, dye-sensitized solar cells, and gas sensors.
Electronic structure and electron-phonon coupling in TiH$$_2$$
Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.
2016-06-15
Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less
NASA Astrophysics Data System (ADS)
Lebovka, N.; Melnyk, V.; Mamunya, Ye.; Klishevich, G.; Goncharuk, A.; Pivovarova, N.
2013-08-01
The effects of multiwalled carbon nanotubes (NTs) on low-temperature phase transformations in 5CB were studied by means of differential scanning calorimetry (DSC), low-temperature photoluminescence and measurements of electrical conductivity. The concentration of NTs was varied within 0-1 wt% The experimental data, obtained for pure 5CB by DSC and measurements of photoluminescence in the heating mode, evidenced the presence of two crystallization processes at T≈229 K and T≈262 K, which correspond to C1a→C1b, and C1b→C2 phase transformations. Increase of temperature T from 10 K tо 229 K provoked the red shift of photoluminescence spectral band that was explained by flattening of 5CB molecule conformation. Moreover, the photoluminescence data allow to conclude that crystallization at T≈229 K results in conformation transition to non-planar 5CB structure characteristic to ideal crystal. The non-planar conformations were dominating in nematic phase, i.e., at T>297 K. Electrical conductivity data for 5CB-NT composites revealed supplementary anomaly inside the stable crystalline phase C2, identified earlier in the temperature range 229-296.8 K. It can reflect the influence of phase transformation of 5CB in interfacial layers on the transport of charge carriers between NTs.
Ab Initio Simulations of Temperature Dependent Phase Stability and Martensitic Transitions in NiTi
NASA Technical Reports Server (NTRS)
Haskins, Justin B.; Thompson, Alexander E.; Lawson, John W.
2016-01-01
For NiTi based alloys, the shape memory effect is governed by a transition from a low-temperature martensite phase to a high-temperature austenite phase. Despite considerable experimental and computational work, basic questions regarding the stability of the phases and the martensitic phase transition remain unclear even for the simple case of binary, equiatomic NiTi. We perform ab initio molecular dynamics simulations to describe the temperature-dependent behavior of NiTi and resolve several of these outstanding issues. Structural correlation functions and finite temperature phonon spectra are evaluated to determine phase stability. In particular, we show that finite temperature, entropic effects stabilize the experimentally observed martensite (B19') and austenite (B2) phases while destabilizing the theoretically predicted (B33) phase. Free energy computations based on ab initio thermodynamic integration confirm these results and permit estimates of the transition temperature between the phases. In addition to the martensitic phase transition, we predict a new transition between the B33 and B19' phases. The role of defects in suppressing these phase transformations is discussed.
Low-moment ferrimagnetic phase of the Heusler compound Cr2CoAl
NASA Astrophysics Data System (ADS)
Jamer, Michelle E.; Marshall, Luke G.; Sterbinsky, George E.; Lewis, Laura H.; Heiman, Don
2015-11-01
Synthesizing half-metallic fully compensated ferrimagnets that form in the inverse Heusler phase could lead to superior spintronic devices. These materials would have high spin polarization at room temperature with very little fringing magnetic fields. Previous theoretical studies indicated that Cr2CoAl should form in a stable inverse Heusler lattice due to its low activation energy. Here, stoichiometric Cr2CoAl samples were arc-melted and annealed at varying temperatures, followed by studies of their structural and magnetic properties. High-resolution synchrotron X-ray diffraction revealed a chemically ordered Heusler phase in addition to CoAl and Cr phases. Soft X-ray magnetic circular dichroism revealed that the Cr and Co magnetic moments are antiferromagnetically oriented leading to the observed low magnetic moment in Cr2CoAl.
Unusually sharp paramagnetic phase transition in thin film Fe3Pt invar
NASA Astrophysics Data System (ADS)
Drisko, Jasper; Cumings, John
2013-03-01
Invar alloys, typically 3d transition metal rich systems, are most commonly known for their extremely low coefficients of thermal expansion (CTE) over a wide range of temperatures close to room temperature. This anomalous behavior in the CTE lends Invar to a variety of important applications in precision mechanical devices, scientific instruments, and sensors, among others. Many theoretical models of Invar have been proposed over the years, the most promising of which is a system described by two coexisting phases, one high-spin high-volume and the other low-spin low-volume, that compete to stabilize the volume of the material as the temperature is changed. However, no theory has yet been able to explain all experimental observations across the range of Invar alloys, especially at finite temperature. We have fabricated thin films of a Fe3Pt Invar alloy and investigate them using Lorentz Transmission Electron Microscopy (TEM). 23nm films are deposited onto SiN membrane substrates via radio-frequency magnetron sputtering from a pure Fe target decorated with Pt pieces. We observe novel magnetic domain structures and an unusually sharp phase transition between ferromagnetic (FM) and paramagnetic (PM) regions of the film under a temperature gradient. This sharp transition suggests that the FM-to-PM transition may be first order, perhaps containing a structural-elastic component to the order parameter. However, electron diffraction reveals that both the FM and PM regions have the same FCC crystal structure.
NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
NASA Astrophysics Data System (ADS)
Sobachkin, A. V.; Loginova, M. V.; Sitnikov, A. A.; Yakovlev, V. I.; Filimonov, V. Yu; Gradoboev, A. V.
2018-03-01
In the present work, the influence of the irradiation with gamma-quanta 60Co upon the structural and phase state of the components of the mechanically activated powder composition of Ti+Al is investigated. The phase composition, structural parameters, and crystallinity are examined by means of X-ray diffractometry. It is found out that the irradiation with gamma-quanta changes the structure of the mechanically activated powder composition. The higher irradiation dose, the higher the structure crystallinity of both components with no change in phase state. At the same time, the parameters of Ti and Al crystal lattices approach to the initial parameters observed before the mechanical activation. The irradiation with gammaquanta leads to decrease of internal stresses in the mechanically activated powder composition while nanocrystallinity of the structure remains unchanged. Using of powder compositions exposed to the irradiation with gamma-quanta for the SH-synthesis helps to increase speed of the reaction, decrease the peak firing temperature and improve homogeneity, as well as the main phase of the produced material is TiAl.
Crystallographic and magnetic structure of HAVAR under high-pressure using diamond anvil cell (DAC)
NASA Astrophysics Data System (ADS)
Halevy, Itzhak; Haroush, Shlomo; Eisen, Yosef; Silberman, Ido; Moreno, Dany; Hen, Amir; Winterrose, Mike L.; Ghose, Sanjit; Chen, Zhiqiang
2010-04-01
Annealed (H1) and cold-rolled (H2) HAVAR has been studied using high-pressure synchrotron X-ray diffraction. A structural phase transformation was discovered at ˜13 GPa at ambient temperature, transforming from m - 3 m (S.G. 225) to P 63/m m c (S.G. 194) symmetry. The transition was not reversible on pressure release. The low-pressure cubic phase was found to be more compressible than the high-pressure hexagonal phase. Conventional Mössbauer and NFS shows that the HAVAR is not magnetic at room temperature and no splitting is observed. The SQUID indicates a huge difference in the temperature dependence of the magnetic susceptibility between the cold Rolled HAVAR compared to the annealed HAVAR.
NASA Astrophysics Data System (ADS)
Ćakιr, Aslι; Righi, Lara; Albertini, Franca; Acet, Mehmet; Farle, Michael; Aktürk, Selçuk
2013-11-01
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni50Mn50-xGax in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur in the sequences 7M→L10, 5M →7M, and 5M→7M→L10 with decreasing temperature. The L10 non-modulated structure is most stable at low temperature.
Suri, Lakshmi N M; McCaig, Lynda; Picardi, Maria V; Ospina, Olga L; Veldhuizen, Ruud A W; Staples, James F; Possmayer, Fred; Yao, Li-Juan; Perez-Gil, Jesus; Orgeig, Sandra
2012-07-01
The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from hibernation.
Atomic disorder, phase transformation, and phase restoration in Co3Sn2
NASA Astrophysics Data System (ADS)
di, L. M.; Zhou, G. F.; Bakker, H.
1993-03-01
The behavior of the intermetallic compound Co3Sn2 upon ball milling was studied by x-ray diffraction, high-field-magnetization measurements, and subsequently by differential scanning calorimetry. It turns out that starting from the stoichiometric-ordered compound, mechanical attrition of Co3Sn2 generates atomic disorder in the early stage of milling. The nonequilibrium phase transformation from the low-temperature phase with orthorhombic structure to the high-temperature phase with a hexagonal structure was observed in the intermediate stage of milling. It was accompanied by the creation of increasing atomic disorder. After long milling periods, the phase transformation was completed and the atomic disordering became saturated. All the physical parameters measured in the present work remained constant during this period. The above outcome was confirmed by comparison with the high-temperature phase thermally induced by quenching. The good agreement of the results obtained by different techniques proves that the ball milling generates well-defined metastable states in Co3Sn2.
Crystal structure and phase transition of thermoelectric SnSe.
Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo
2016-06-01
Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.
Magnetoresistance behavior in nanobulk assembled Bi2Se3 topological insulator
NASA Astrophysics Data System (ADS)
Bera, Sumit; Behera, P.; Mishra, A. K.; Krishnan, M.; Patidar, Manju Mishra; Singh, Durgesh; Venkatesh, R.; Phase, D. M.; Ganesan, V.
2018-05-01
Temperature and magnetic field dependent magnetoresistance (MR) including structural, morphological studies of Bi2Se3 nanoflower like structure synthesized by microwave assisted solvothermal method has been investigated. Powder X-ray diffraction (XRD) has confirmed the formation of single phase. Morphology of the material shows nanoflower kind of structures with edge to edge size of around 4 µm and such occurrences are quite high. The temperature dependent resistance invokes a metallic behavior up to a certain lower temperature, below which it follows -ln(T) behavior that has been elucidated in literature using electron-electron interaction and weak anti-localization effects. High temperature magnetoresistance is consistent with parabolic field dependence indicating a classical magnetoresistance in metals as a result of Lorenz force. In low temperature regime magnetoresistance as a function of magnetic field at different temperatures obeys power law near low field which indicates a three dimensional weak-antilocalization. A linear magnetoresistance at low temperature and high magnetic field shows the domination of surface state conduction.
Features of the electronic structure of FeTe compounds
NASA Astrophysics Data System (ADS)
Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.
2015-12-01
A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).
Comparing two tetraalkylammonium ionic liquids. II. Phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima, Thamires A.; Paschoal, Vitor H.; Faria, Luiz F. O.
Phase transitions of the ionic liquids n-butyl-trimethylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1114}][NTf{sub 2}], and methyl-tributylammonium bis(trifluoromethanesulfonyl)imide, [N{sub 1444}][NTf{sub 2}], were investigated by differential scanning calorimetry (DSC), X-ray diffraction (XRD) measurements, and Raman spectroscopy. XRD and Raman spectra were obtained as a function of temperature at atmospheric pressure, and also under high pressure at room temperature using a diamond anvil cell (DAC). [N{sub 1444}][NTf{sub 2}] experiences glass transition at low temperature, whereas [N{sub 1114}][NTf{sub 2}] crystallizes or not depending on the cooling rate. Both the ionic liquids exhibit glass transition under high pressure. XRD and low-frequency Raman spectra provide a consistent physical picturemore » of structural ordering-disordering accompanying the thermal events of crystallization, glass transition, cold crystallization, pre-melting, and melting. Raman spectra in the high-frequency range of some specific cation and anion normal modes reveal conformational changes of the molecular structures along phase transitions.« less
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Bull, Craig L.
2016-12-01
The thermoelastic and structural properties of SrZrO3 perovskite in the Pnma (Pbnm) phase have been studied using neutron powder diffraction at 82 temperatures between 11 K and 406 K at ambient pressure, and at sixteen pressures between 0.07 and 6.7 GPa at ambient temperature. The bulk modulus, derived by fitting the equation of state to a second order Birch-Murnaghan equation-of-state, 157(5) GPa, is in excellent agreement with that deduced in a recent resonant ultrasound investigation. Experimental axial compressional moduli are in agreement with those calculated from the elastic stiffness coefficients derived by ab-initio calculation, although the experimental bulk modulus is significantly softer than that calculated. Following low temperature saturation for temperatures less than 40 K, the unit cell monotonically increases with a predicted high temperature limit in the volume expansivity of ∼2.65 × 10-5 K-1. Axial linear thermal expansion coefficients are found to be in the order αb < αc < αa for all temperatures greater than 20 K with the b axis indicating a weak, low temperature negative expansion coefficient at low temperatures. The thermoelastic properties of SrZrO3 can be approximated by a two-term Debye model for the phonon density of states with Debye temperatures of 238(4) K and 713(6) K derived in a self-consistent manner by simultaneously fitting the isochoric heat capacity and the unit cell volume. Atomic displacement parameters have been fitted to a modified Debye model in which the zero-point term is an additional refinable variable and shows the cations and anions have well separated Debye temperatures, mirroring the need for two Debye-like distributions in the vibrational density of states. The temperature dependence of the crystal structure is presented in terms of the amplitudes of the seven symmetry-adapted basis vectors of the aristotype phase that are consistent with space group Pbnm, thus permitting a direct measure of the order parameter evolution in SrZrO3. The temperature variation of the in-phase tilt, which is lost at the phase transition at 973 K, is consistent with tricritical behaviour, in agreement with published results based on high temperature crystallographic data.
NASA Astrophysics Data System (ADS)
Thomas, Sarah; Montgomery, Jeffrey; Tsoi, Georgiy; Vohra, Yogesh; Weir, Samuel; Tulk, Christopher; Moreira Dos Santos, Antonio
2013-06-01
Neutron diffraction and electrical transport measurements have been carried out on the heavy rare earth metal terbium at high pressures and low temperatures in order to elucidate its transition from a helical antiferromagnetic to a ferromagnetic ordered phase as a function of pressure. The electrical resistance measurements using designer diamonds show a change in slope as the temperature is lowered through the ferromagnetic Curie temperature. The temperature of the ferromagnetic transition decreases at a rate of -16.7 K/GPa till 3.6 GPa, where terbium undergoes a structural transition from hexagonal close packed (hcp) to an α-Sm phase. Above this pressure, the electrical resistance measurements no longer exhibit a change in slope. In order to confirm the change in magnetic phase suggested by the electrical resistance measurements, neutron diffraction measurements were conducted at the SNAP beamline at the Oak Ridge National Laboratory. Measurements were made at pressures to 5.3 GPa and temperatures as low as 90 K. An abrupt increase in peak intensity in the neutron diffraction spectra signaled the onset of magnetic order below the Curie temperature. A magnetic phase diagram of rare earth metal terbium will be presented to 5.3 GPa and 90 K based on these studies.
Candidate Elastic Quantum Critical Point in LaCu 6 - x Au x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poudel, Lekh; May, Andrew F.; Koehler, Michael R.
2016-11-30
In this paper, the structural properties of LaCu 6-xAu x are studied using neutron diffraction, x-ray diffraction, and heat capacity measurements. The continuous orthorhombic-monoclinic structural phase transition in LaCu 6 is suppressed linearly with Au substitution until a complete suppression of the structural phase transition occurs at the critical composition x c=0.3. Heat capacity measurements at low temperatures indicate residual structural instability at x c. The instability is ferroelastic in nature, with density functional theory calculations showing negligible coupling to electronic states near the Fermi level. Finally, the data and calculations presented here are consistent with the zero temperature terminationmore » of a continuous structural phase transition suggesting that the LaCu 6-xAu x series hosts an elastic quantum critical point.« less
Experimental evidence of Cr magnetic moments at low temperature in Cr2A(A=Al, Ge)C.
Jaouen, M; Bugnet, M; Jaouen, N; Ohresser, P; Mauchamp, V; Cabioc'h, T; Rogalev, A
2014-04-30
From x-ray magnetic circular dichroism experiments performed at low temperature on Cr2AlC and Cr2GeC thin films, it is evidenced that Cr atoms carry a net magnetic moment in these ternary phases. It is shown that the Cr magnetization of the Al-based compound nearly vanished at 100 K in agreement with what has been recently observed on bulk. X-ray linear dichroism measurements performed at various angles of incidence and temperatures clearly demonstrate the existence of a charge ordering along the c axis of the structure of Cr2AlC. All these experimental observations support, in part, theoretical calculations claiming that Cr dd correlations have to be considered to correctly describe the structure and properties of these Cr-based ternary phases.
Structural phase transitions in yttrium under ultrahigh pressures
NASA Astrophysics Data System (ADS)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Vohra, Yogesh K.
2012-09-01
X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.
Structural phase transitions in yttrium under ultrahigh pressures.
Samudrala, Gopi K; Tsoi, Georgiy M; Vohra, Yogesh K
2012-09-12
X-ray diffraction studies were carried out on the rare earth metal yttrium up to 177 GPa in a diamond anvil cell at room temperature. Yttrium was compressed to 37% of its initial volume at the highest pressure. The rare earth crystal structure sequence hcp → Sm type → dhcp → mixed(dhcp + fcc) → distorted fcc (dfcc) is observed in yttrium below 50 GPa. The dfcc (hR24) phase has been observed to persist in the pressure range of 50-95 GPa. A structural transition from dfcc to a low symmetry phase has been observed in yttrium at 99 ± 4 GPa with a volume change of - 2.6%. This low symmetry phase has been identified as a monoclinic C2/m phase, which has also been observed in other rare earth elements under high pressures. The appearance of this low symmetry monoclinic phase in yttrium shows that its electronic structure under extreme conditions resembles that of heavy rare earth metals, with a significant increase in d-band character of the valence electrons and possibly some f-electron states near the Fermi level.
Thermal conductivity of solid monohydroxyl alcohols in polyamorphous states
NASA Astrophysics Data System (ADS)
Krivchikov, A. I.; Korolyuk, O. A.; Sharapova, I. V.
2012-01-01
New measurements of the thermal conductivity of solid ethyl alcohol C2H5OH in the interval from 2 K to the melting temperature are presented. An annealing effect in the thermal conductivity of the orientationally ordered phase of the alcohol has been observed over a wide range of temperatures. This phase was obtained as a result of an irreversible first-order phase transition from an orientationally disordered crystal with a cubic structure at T = 109 K. The thermal conductivity was observed to increase as the monoclinic lattice changed from a less stable phase to a more stable one. The growth may be due to the improved quality of the completely ordered crystal. A comparative analysis of the temperature dependences of the thermal conductivity κ(T) is made for the solid monohydroxyl alcohols CH3OH, C2H5OH, С2D5OD, C3H7OH, and C4H9OH in their disordered orientational and structural states. At low temperatures the thermal conductivity of the series of monohydroxyl structural glasses of the alcohols increases linearly with the mass of the alcohol molecule.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shanmugavel, T., E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Raj, S. Gokul, E-mail: gokulrajs@hotmail.com, E-mail: shanmugavelnano@gmail.com; Rajarajan, G.
2015-06-24
Combustion synthesis of single phase Nickel ferrite was successfully achieved at low temperature regime. The obtained powders were calcinated to increase the crystallinity and their characterization change due to calcinations is investigated in detail. Citric acid used as a chelating agent for the synthesis of nickel ferrite. Pure single phase nickel ferrites were found at this low temperature. The average crystalline sizes were measured by using powder XRD measurements. Surface morphology was investigated through Transmission Electron Microscope (TEM). Particle size calculated in XRD is compared with TEM results. Magnetic behaviour of the samples is analyzed by using Vibrating Sample Magnetometermore » (VSM). Saturation magnetization, coercivity and retentivity are measured and their results are discussed in detail.« less
Titration of submonolayer Au growth on Si(111)
NASA Astrophysics Data System (ADS)
Kautz, J.; Copel, M. W.; Gordon, M. S.; Tromp, R. M.; van der Molen, S. J.
2014-01-01
We study and analyze the growth of submonolayers of Au on Si(111) by a complementary set of surface techniques. Specifically, we focus on the 5×2 and the α√3 ×√3 structures. We determine the gold coverage of these structures as a function of temperature by means of low energy electron diffraction (LEED) and low energy electron microscopy (LEEM). These results are independently calibrated by ex-situ ion scattering experiments. This allows us to present a phase diagram for this system. Remarkably, for all temperatures considered (820-1040 K), we find a coverage for the 5×2 phase that is significantly (≈10%) higher than the value of 0.6 monolayers which is assumed in the latest structural models. Therefore, a further refinement of the present picture of the quasi-one-dimensional 5×2 structure is required.
Solar steam generation by heat localization.
Ghasemi, Hadi; Ni, George; Marconnet, Amy Marie; Loomis, James; Yerci, Selcuk; Miljkovic, Nenad; Chen, Gang
2014-07-21
Currently, steam generation using solar energy is based on heating bulk liquid to high temperatures. This approach requires either costly high optical concentrations leading to heat loss by the hot bulk liquid and heated surfaces or vacuum. New solar receiver concepts such as porous volumetric receivers or nanofluids have been proposed to decrease these losses. Here we report development of an approach and corresponding material structure for solar steam generation while maintaining low optical concentration and keeping the bulk liquid at low temperature with no vacuum. We achieve solar thermal efficiency up to 85% at only 10 kW m(-2). This high performance results from four structure characteristics: absorbing in the solar spectrum, thermally insulating, hydrophilic and interconnected pores. The structure concentrates thermal energy and fluid flow where needed for phase change and minimizes dissipated energy. This new structure provides a novel approach to harvesting solar energy for a broad range of phase-change applications.
Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H
2014-10-14
Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.
Magneto-structural correlation in Co0.8Cu0.2Cr2O4 cubic spinel
NASA Astrophysics Data System (ADS)
Kumar, Ram; Rayaprol, S.; Siruguri, V.; Xiao, Y.; Ji, W.; Pal, D.
2018-05-01
Neutron and X-ray diffraction, magnetic susceptibility, and specific heat measurements have been used to investigate the magneto-structural phase transitions in 20% Cu substituted multiferroic CoCr2O4 spinel. The Jahn-Teller active Cu2+ ion in the tetrahedral A-site of the spinel configuration induces the Jahn-Teller distortion slightly above the Néel temperature. In this compound, we observe a Jahn-Teller distortion of the crystal structure at 90 K. It was further observed that the high temperature cubic (Fd 3 ‾ m) structure coexists with the low temperature orthorhombic (Fddd) structure till the lowest temperature of measurement.
Transformation Paths from Cubic to Low-Symmetry Structures in Heusler Ni2MnGa Compound.
Zelený, Martin; Straka, Ladislav; Sozinov, Alexei; Heczko, Oleg
2018-05-08
In order to explain the formation of low-temperature phases in stoichiometric Ni 2 MnGa magnetic shape memory alloy, we investigate the phase transformation paths from cubic austenite with Heusler structure to low-symmetry martensitic structures. We used ab initio calculations combined with the generalized solid state nudged elastic band method to determine the minimum energy path and corresponding changes in crystal lattice. The four-, five-, and seven-layered modulated phases of martensite (4O, 10M, and 14M) are built as the relaxed nanotwinned non-modulated (NM) phase. Despite having a total energy larger than the other martensitic phases, the 10M phase will spontaneously form at 0 K, because there is no energy barrier on the path and the energy decreases with a large negative slope. Moreover, a similar negative slope in the beginning of path is found also for the transformation to the 6M premartensite, which appears as a local minimum on the path leading further to 10M martensite. Transformation paths to other structures exhibit more or less significant barriers in the beginning hindering such a transformation from austenite. These findings correspond to experiment and demonstrates that the kinetics of the transformation is decisive for the selection of the particular low-symmetry structure.
Low-Frequency Raman Modes of 2H-TaSe2 in the Charge Density Wave Phase
NASA Astrophysics Data System (ADS)
Chowdhury, Sugata; Simpson, J.; Einstein, T. L.; Hight Walker, A. R.; Theoretical Collaboration
With changes in temperatures, tantalum diselenide (2H-TaSe2) , a layered, transition metal chalcogenides (TMD) exhibits unique super-lattice structures. The metallic ground state changes to an incommensurate charge density wave (CDW) state at 122?K followed by a commensurate CDW state at 90?K, and eventually a superconducting state 0.14 K. These phase transitions are driven by strong electron-phonon coupling and favored by the particular form of the Fermi surface of these systems. Here we theoretically studied the structural origin of low-frequency Raman modes of bulk 2H-TaSe2\\ in the CDW phases. Our calculations reveal that changes observed in the Raman modes are associated with the thermal expansion in the basal plane of 2H-TaSe2. The Grüneisen parameters of these two Raman modes increase in the CDW phases. Changes in the lattice parameter ``a'' are large compared to ``c'' which induces strain along the a-axis. We compared our results with experimental data which show low-frequency Raman phonon modes are very sensitive to temperature and are not observed in the metallic room-temperature state. In addition, we found that cation displacement is more than anion in CDW phase. Our results may shed more light on exact nature of the CDW instability and optical properties in this system.
High- and low-Am RE inclusion phases in a U-Np-Pu-Am-Zr alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Janney, Dawn E.; Madden, James W.; O'Holleran, Thomas P.
2015-03-01
Structural, microstructural, and microchemical data were collected from rare-earth inclusions in an as-cast U-Pu-Zr alloy with ~3 at% Am, 2% Np, and 9% rare-earth elements (La, Ce, Pr, and Nd). Two RE phases with different concentrations of Am were identified. The composition of high-Am RE inclusions is ~2-5 at% La, 15-20 % Ce, 5-10% Pr, 25-45% Nd, 1% Np, 5-10% Pu, and 10-20% Am. Some areas also have O, although this does not appear to be an essential part of the high-Am RE phase. The inclusions have a face-centered cubic structure with a lattice parameter a ~ 0.54 nm. Themore » composition of the only low-Am RE inclusion studied in detail is ~~35-40 at% O, 40-45 % Nd, 1-2% Zr, 4-5% La, 9-10% Ce, and 6-7% Pr. This inclusion is an oxide with a crystal structure similar to the room-temperature structure of Nd 2O 3. Microstructural features suggest that oxidation occurred during casting, and that early crystallization of high-temperature oxides led to formation of two distinct RE phases.« less
Strain Phase Diagram of SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
He, Feizhou; Shapiro, S. M.
2005-03-01
SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).
Cubic γ-phase U-Mo alloys synthesized by splat-cooling
NASA Astrophysics Data System (ADS)
Kim-Ngan, Nhu-T. H.; Tkach, I.; Mašková, S.; Havela, L.; Warren, A.; Scott, T.
2013-09-01
U-Mo alloys are the most promising materials fulfilling the requirements of using low enriched uranium (LEU) fuel in research reactors. From a fundamental standpoint, it is of interest to determine the basic thermodynamic properties of the cubic γ-phase U-Mo alloys. We focus our attention on the use of Mo doping together with ultrafast cooling (with high cooling rates ⩾106 K s-1), which helps to maintain the cubic γ-phase in U-Mo system to low temperatures and on determination of the low-temperature properties of these γ-U alloys. Using a splat cooling method it has been possible to maintain some fraction of the high-temperature γ-phase at room temperature in pure uranium. U-13 at.% Mo splat clearly exhibits the pure γ-phase structure. All the splats become superconducting with Tc in the range from 1.24 K (pure U splat) to 2.11 K (U-15 at.% Mo). The γ-phase in U-Mo alloys undergoes eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and tetragonal γ‧-phase upon annealing at 500 °C, while annealing at 800 °C has stabilized the initial γ phase. The α-U easily absorbs a large amount of hydrogen (UH3 hydride), while the cubic bcc phase does not absorb any detectable amount of hydrogen at pressures below 1 bar and at room temperature. At 80 bar, the U-15 at.% Mo splat becomes powder consisting of elongated particles of 1-2 mm, revealing amorphous state.
The phase transition of Pb8F14I2.
Weil, Matthias
2017-01-01
The reversible phase transition of Pb 8 F 14 I 2 is of continuous type and takes place at about 107 °C as monitored by temperature-dependent single crystal and powder X-ray diffraction measurements, optical microscopy, and differential scanning calorimetry. The low-temperature ferroelastic phase crystallizes in the orthorhombic crystal system (23 °C, Bmmb , Z = 2, a = 6.0699(6) Å, b = 6.0165(6) Å, c = 25.077(2) Å, 1487 structure factors, 41 parameter, R ( F 2 ) = 0.0346, wR ( F 2 ) = 0.0771) and changes its symmetry to the tetragonal crystal system into the high-temperature paraelastic phase (130 °C, I 4/ mmm , Z = 1, a = 4.2667(12) Å, c = 25.388(7) Å, 430 structure factors, 303 parameter, R ( F 2 ) = 0.0575, wR ( F 2 ) = 0.1564). Group-subgroup relationships between the two structures and a hypothetical intermediate structure are presented.
NASA Astrophysics Data System (ADS)
Han, Myung-Soo; Kim, Dae Hyeon; Ko, Hang Ju; Shin, Jae Chul; Kim, Hyo Jin; Kim, Do Gun
2014-06-01
In this work, a novel fabrication method for VOx-ZnO multilayers with mixed phase of the VO2 and V2O3 through the diffusion of oxygen by annealing at low temperature is presented. A stable sandwich structure of a VOx/ZnO/VOx multilayer was deposited at room temperature, through the oxygen gas flow rate, by RF sputtering system, and the mixed phase was formed through oxygen diffusion by annealing at O2 atmosphere. The results show that the single phase like multilayer formed by this process has a high TCR of more than -2.5%/K and low resistance of about 100 kohm at room temperature. XRD results for the as-deposited VOx/ZnO/VOx multilayer.
Can low-temperature thermoluminescence cast light on the nature of ultra-high dilutions?
Rey, Louis
2007-07-01
Low-temperature thermoluminescence has been used in attempt to understand the particular structure of ultra high dilutions. Samples are activated by irradiation after freezing at the temperature of liquid nitrogen (77 degrees K). Experimental results show that, in the course of rewarming, the thermoluminescent glow is susbtantially different between dilutions of different substances. It is suggested that the dispersed gas phase might play a role in this process.
NASA Astrophysics Data System (ADS)
Trukhanov, A. V.; Trukhanov, S. V.; Panina, L. V.; Kostishyn, V. G.; Kazakevich, I. S.; Trukhanov, An. V.; Trukhanova, E. L.; Natarov, V. O.; Turchenko, V. A.; Salem, M. M.; Balagurov, A. M.
2017-03-01
M-type BaFe11.9Al0.1O19 hexaferrite was successfully synthesized by solid state reactions. Precision investigations of crystal and magnetic structures of BaFe11.9Al0.1O19 powder by neutron diffraction in the temperature range 4.2-730 K have been performed. Magnetic and electrical properties investigations were carried out in the wide temperature range. Neutron powder diffraction data were successfully refined in approximation for both space groups (SG): centrosymmetric #194 (standard non-polar phase) and non-centrosymmetric #186 (polar phase). It has been shown that at low temperatures (below room temperature) better fitting results (value χ2) were for the polar phase (SG: #186) or for the two phases coexistence (SG: #186 and SG: #194). At high temperatures (400-730 K) better fitting results were for SG: #194. It was established coexistence of the dual ferroic properties (specific magnetization and spontaneous polarization) at room temperature. Strong correlation between magnetic and electrical subsystems was demonstrated (magnetoelectrical effect). Temperature dependences of the spontaneous polarization, specific magnetization and magnetoelectrical effect were investigated.
NASA Astrophysics Data System (ADS)
Shankaraiah, N.; Murthy, K. P. N.; Lookman, T.; Shenoy, S. R.
2015-06-01
Entropy barriers and aging states appear in martensitic structural-transition models, slowly re-equilibrating after temperature quenches, under Monte Carlo dynamics. Concepts from protein folding and aging harmonic oscillators turn out to be useful in understanding these nonequilibrium evolutions. We show how the athermal, nonactivated delay time for seeded parent-phase austenite to convert to product-phase martensite arises from an identified entropy barrier in Fourier space. In an aging state of low Monte Carlo acceptances, the strain structure factor makes constant-energy searches for rare pathways to enter a Brillouin zone "golf hole" enclosing negative-energy states, and to suddenly release entropically trapped stresses. In this context, a stress-dependent effective temperature can be defined, that re-equilibrates to the quenched bath temperature.
Umar, Ahmad; Hahn, Yoon-Bong; Al-Hajry, A; Abaker, M
2014-06-01
Aligned ZnO nanorods were grown on ZnO/Si substrate via simple aqueous solution process at low-temperature of - 65 degrees C by using zinc nitrate and hexamethylenetetramine (HMTA). The detailed morphological and structural properties measured by FESEM, XRD, EDS and TEM confirmed that the as-grown nanorods are vertically aligned, well-crystalline possessing wurtzite hexagonal phase and grown along the [0001] direction. The room-temperature photoluminescence spectrum of the grown nanorods exhibited a strong and broad green emission and small ultraviolet emission. The as-prepared ZnO nanorods were post-annealed in nitrogen (N2) and oxygen (O2) environments and further characterized in terms of their morphological, structural and optical properties. After annealing the nanorods exhibit well-crystallinity and wurtzite hexagonal phase. Moreover, by annealing the PL spectra show the enhancement in the UV emission and suppression in the green emission. The presented results demonstrate that simply by post-annealing process, the optical properties of ZnO nanostructures can be controlled.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less
High pressure synthesis of a new phase of YbAg 2: Structure, valence of Yb and properties
Tsvyashchenko, A. V.; Menushenkov, A. P.; Sidorov, V. A.; ...
2015-08-05
The new phase of YbAg 2 was obtained using high-pressure and high-temperature reaction. YbAg 2 crystallizes in the MgZn 2 structure (the space group P6 3/mmc space group, No 194) with a = 5.68153(3) Å and c = 9.31995(7) Å and the unit cell volume V = 260.54(3) Å 3. The XANES analysis showed that the valence state of Yb is +2.8. The low-temperature dependences of the electrical resistivity and magnetic susceptibility can be adequately described by a T 2 term that supports the Fermi-liquid picture. Furthermore, the Kadowaki–Woods relation gives a low value of the degeneracy (N = 2).
Comprehensive phase diagram of two-dimensional space charge doped Bi2Sr2CaCu2O8+x.
Sterpetti, Edoardo; Biscaras, Johan; Erb, Andreas; Shukla, Abhay
2017-12-12
The phase diagram of hole-doped high critical temperature superconductors as a function of doping and temperature has been intensively studied with chemical variation of doping. Chemical doping can provoke structural changes and disorder, masking intrinsic effects. Alternatively, a field-effect transistor geometry with an electrostatically doped, ultra-thin sample can be used. However, to probe the phase diagram, carrier density modulation beyond 10 14 cm -2 and transport measurements performed over a large temperature range are needed. Here we use the space charge doping method to measure transport characteristics from 330 K to low temperature. We extract parameters and characteristic temperatures over a large doping range and establish a comprehensive phase diagram for one-unit-cell-thick BSCCO-2212 as a function of doping, temperature and disorder.
NASA Astrophysics Data System (ADS)
Jin, H.; Amirkhiz, B. Shalchi; Lloyd, D. J.
2018-03-01
The mechanical properties of fully annealed Al-4.6 wt pct Mg alloys with different levels of Mn and Fe have been characterized at room and superplastic forming (SPF) temperatures. The effects of Mn and Fe on the intermetallic phase, grain structure, and cavitation were investigated and correlated to the formability at different temperatures. Although both Mn and Fe contribute to the formation of Al6(Mn,Fe) phase, which refines the grain structure by particle-stimulated nucleation and Zener pinning, their effects are different. An increasing Mn reduces the room temperature formability due to the increasing number of intermetallic particles, but significantly improves the superplasticity by fine grain size-induced grain boundary sliding. Meanwhile, the Fe makes the constituent particles very coarse, resulting in reduced formability at all temperatures due to extensive cavitation. A combination of high Mn and low Fe is therefore beneficial to SPF, while low levels of both elements are good for cold forming. Consequently, the superplasticity of high-Mg aluminum alloys can be significantly improved by modifying the chemical composition with sacrifice of some room temperature formability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadoh, Taizoh, E-mail: sadoh@ed.kyushu-u.ac.jp; Chikita, Hironori; Miyao, Masanobu
2015-09-07
Ultra-low temperature (≤300 °C) growth of Ge-rich SiGe on Si substrates is strongly desired to realize advanced electronic and optical devices, which can be merged onto Si large-scale integrated circuits (LSI). To achieve this, annealing characteristics of a-GeSn/c-Si structures are investigated under wide ranges of the initial Sn concentrations (0%–26%) and annealing conditions (300–1000 °C, 1 s–48 h). Epitaxial growth triggered by SiGe mixing is observed after annealing, where the annealing temperatures necessary for epitaxial growth significantly decrease with increasing initial Sn concentration and/or annealing time. As a result, Ge-rich (∼80%) SiGe layers with Sn concentrations of ∼2% are realized by ultra-low temperature annealingmore » (300 °C, 48 h) for a sample with the initial Sn concentration of 26%. The annealing temperature (300 °C) is in the solid-liquid coexisting temperature region of the phase diagram for Ge-Sn system. From detailed analysis of crystallization characteristics and composition profiles in grown layers, it is suggested that SiGe mixing is generated by a liquid-phase reaction even at ultra-low temperatures far below the melting temperature of a-GeSn. This ultra-low-temperature growth technique of Ge-rich SiGe on Si substrates is expected to be useful to realize next-generation LSI, where various multi-functional devices are integrated on Si substrates.« less
Stable room-temperature ferromagnetic phase at the FeRh(100) surface
Pressacco, Federico; Uhlir, Vojtech; Gatti, Matteo; ...
2016-03-03
Interfaces and low dimensionality are sources of strong modifications of electronic, structural, and magnetic properties of materials. FeRh alloys are an excellent example because of the first-order phase transition taking place at ~400 K from an antiferromagnetic phase at room temperature to a high temperature ferromagnetic one. It is accompanied by a resistance change and volume expansion of about 1%. We have investigated the electronic and magnetic properties of FeRh(100) epitaxially grown on MgO by combining spectroscopies characterized by different probing depths, namely X-ray magnetic circular dichroism and photoelectron spectroscopy. Furthermore, we find that the symmetry breaking induced at themore » Rh-terminated surface stabilizes a surface ferromagnetic layer involving five planes of Fe and Rh atoms in the nominally antiferromagnetic phase at room temperature. First-principles calculations provide a microscopic description of the structural relaxation and the electron spin-density distribution that support the experimental findings.« less
Phase transformation strengthening of high-temperature superalloys
Smith, T. M.; Esser, B. D.; Antolin, N.; Carlsson, A.; Williams, R. E. A.; Wessman, A.; Hanlon, T.; Fraser, H. L.; Windl, W.; McComb, D. W.; Mills, M. J.
2016-01-01
Decades of research has been focused on improving the high-temperature properties of nickel-based superalloys, an essential class of materials used in the hot section of jet turbine engines, allowing increased engine efficiency and reduced CO2 emissions. Here we introduce a new ‘phase-transformation strengthening' mechanism that resists high-temperature creep deformation in nickel-based superalloys, where specific alloying elements inhibit the deleterious deformation mode of nanotwinning at temperatures above 700 °C. Ultra-high-resolution structure and composition analysis via scanning transmission electron microscopy, combined with density functional theory calculations, reveals that a superalloy with higher concentrations of the elements titanium, tantalum and niobium encourage a shear-induced solid-state transformation from the γ′ to η phase along stacking faults in γ′ precipitates, which would normally be the precursors of deformation twins. This nanoscale η phase creates a low-energy structure that inhibits thickening of stacking faults into twins, leading to significant improvement in creep properties. PMID:27874007
Resolving phase stability in the Ti-O binary with first-principles statistical mechanics methods
NASA Astrophysics Data System (ADS)
Gunda, N. S. Harsha; Puchala, Brian; Van der Ven, Anton
2018-03-01
The Ti-O system consists of a multitude of stable and metastable oxides that are used in wide ranging applications. In this work we investigate phase stability in the Ti-O binary from first principles. We perform a systematic search for ground state structures as a function of oxygen concentration by considering oxygen-vacancy and/or titanium-vacancy orderings over four parent crystal structures: (i) hcp Ti, (ii) ω -Ti, (iii) rocksalt, and (iv) hcp oxygen containing interstitial titanium. We explore phase stability at finite temperature using cluster expansion Hamiltonians and Monte Carlo simulations. The calculations predict a high oxygen solubility in hcp Ti and the stability of suboxide phases that undergo order-disorder transitions upon heating. Vacancy ordered rocksalt phases are also predicted at low temperature that disorder to form an extended solid solution at high temperatures. Predicted stable and metastable phase diagrams are qualitatively consistent with experimental observations, however, important discrepancies are revealed between first-principles density functional theory predictions of phase stability and the current understanding of phase stability in this system.
Stability of CO2 hydrate under very high pressure and low temperature
NASA Astrophysics Data System (ADS)
Hirai, H.; Honda, M.; Kawamura, T.; Yamamoto, Y.; Yagi, T.
2009-12-01
CO2 hydrate is a clathrate compound and the crystal structure type is sI at low pressure. CO2-reduction in the atmosphere is one of the most urgent subjects for mankind. Some technical developments to seclude CO2 as CO2 hydrate in ocean floor have been proceeded. Looking around the solar system, existence of CO2 hydrate in and beneath Martian permafrost has been predicted from spacecraft probes and theoretical studies. Thus, its stability and properties under high pressures and low temperatures are of great interest for fundamental understanding of clathrate hydrate, for the ocean sequestration technology, and for planetary science. CO2 hydrate exhibits characteristic properties different from those of other gas hydrate such as methane hydrate. For example, phase boundary between hydrate and gas + water for many gas hydrates shows positive slope in pressure versus temperature field, and the gas hydrates are kept at pressures up to several GPa at room temperature. On the other hand, for CO2 hydrate, the phase boundary turns to negative slope from positive one at a certain critical point [Nakano et al., 1998], and it can exist only at low temperature regions. And, a theoretical study predicted that CO2 hydrate decompose at low temperature region [Longhi, 2005]. In this study, high pressure and low temperature experiments were performed to examine stability and phase changes of CO2 hydrate using diamond anvil cell in a pressure range from 0.1 to 2.5 GPa and a the temperature range from 65 to 265 K. X-ray diffractometry and Raman spectroscopy revealed that the known phase boundary was extended into lower temperature region, and that CO2 hydrate was kept at low temperature regions at least 65 K despite the theoretical prediction of decomposition. References [1] S. Nakano, M. Moritoki, K. Ohgaki, J. Chem. Eng. Data, 43, 807 (1998). [2] J. Longhi, Geochim. Cosmochim. Acta, 69, 529 (2005)
Solar flare impulsive phase emission observed with SDO/EVE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kennedy, Michael B.; Milligan, Ryan O.; Mathioudakis, Mihalis
2013-12-10
Differential emission measures (DEMs) during the impulsive phase of solar flares were constructed using observations from the EUV Variability Experiment (EVE) and the Markov-Chain Monte Carlo method. Emission lines from ions formed over the temperature range log T{sub e} = 5.8-7.2 allow the evolution of the DEM to be studied over a wide temperature range at 10 s cadence. The technique was applied to several M- and X-class flares, where impulsive phase EUV emission is observable in the disk-integrated EVE spectra from emission lines formed up to 3-4 MK and we use spatially unresolved EVE observations to infer the thermalmore » structure of the emitting region. For the nine events studied, the DEMs exhibited a two-component distribution during the impulsive phase, a low-temperature component with peak temperature of 1-2 MK, and a broad high-temperature component from 7 to 30 MK. A bimodal high-temperature component is also found for several events, with peaks at 8 and 25 MK during the impulsive phase. The origin of the emission was verified using Atmospheric Imaging Assembly images to be the flare ribbons and footpoints, indicating that the constructed DEMs represent the spatially average thermal structure of the chromospheric flare emission during the impulsive phase.« less
Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3
NASA Astrophysics Data System (ADS)
Chen, Chien-Hung; Tracy, Cameron L.; Wang, Chenxu; Lang, Maik; Ewing, Rodney C.
2018-02-01
The atomic-scale evolution of lanthanide sesquioxides Gd2O3 and Lu2O3 irradiated with 1 MeV Kr ions at room temperature and 120 K, up to fluences of 1 × 1016 ions/cm2 (˜20 dpa), has been characterized by in situ transmission electron microscopy. At room temperature, both oxides exhibited high radiation tolerance. Irradiation did not cause any observable structural change in either material, likely due to the mobility of irradiation-induced point defects, causing efficient defect annihilation. For Gd2O3, having the larger cation ionic radius of the two materials, an irradiation-induced stacking fault structure appeared at low fluences in the low temperature irradiation. As compared with the cubic-to-monoclinic phase transformations known to result from higher energy (˜GeV) ion irradiation, Kr ions of lower energies (˜MeV) yield much lower rates of damage accumulation and thus less extensive structural modification. At a fluence of 2.5 × 1015 ions/cm2, only the initial stages of the cubic-to-monoclinic (C to B) phase transformation process, consisting of the formation and aggregation of defects, have been observed.
Infrared nanoscopy down to liquid helium temperatures
NASA Astrophysics Data System (ADS)
Lang, Denny; Döring, Jonathan; Nörenberg, Tobias; Butykai, Ádám; Kézsmárki, István; Schneider, Harald; Winnerl, Stephan; Helm, Manfred; Kehr, Susanne C.; Eng, Lukas M.
2018-03-01
We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, R., E-mail: zhang@mosfet.t.u-tokyo.ac.jp; Department of Information Science and Electronic Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027; Huang, P.-C.
2016-02-01
We have demonstrated a low temperature formation (300 °C) of higher-k HfO{sub 2} using atomic layer deposition (ALD) on an in-situ thermal oxidation GeO{sub x} interfacial layer. It is found that the cubic phase is dominant in the HfO{sub 2} film with an epitaxial-like growth behavior. The maximum permittivity of 42 is obtained for an ALD HfO{sub 2} film on a 1-nm-thick GeO{sub x} form by the in-situ thermal oxidation. It is suggested from physical analyses that the crystallization of cubic phase HfO{sub 2} can be induced by the formation of six-fold crystalline GeO{sub x} structures in the underlying GeO{sub x}more » interfacial layer.« less
Temperature-dependent μ-Raman investigation of struvite crystals.
Prywer, Jolanta; Kasprowicz, D; Runka, T
2016-04-05
The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.
Diamond-anvil cell observations of a new methane hydrate phase in the 100-MPa pressure range
Chou, I.-Ming; Sharma, A.; Burruss, R.C.; Hemley, R.J.; Goncharov, A.F.; Stern, L.A.; Kirby, S.H.
2001-01-01
A new high-pressure phase of methane hydrate has been identified based on its high optical relief, distinct pressure-temperature phase relations, and Raman spectra. In-situ optical observations were made in a hydrothermal diamond-anvil cell at temperatures between -40?? and 60 ??C and at pressures up to 900 MPa. Two new invariant points were located at -8.7 ??C and 99 MPa for the assemblage consisting of the new phase, structure I methane hydrate, ice Ih, and water, and at 35.3 ??C and 137 MPa for the new phase-structure I methane hydrate-water-methane vapor. Existence of the new phase is critical for understanding the phase relations among the hydrates at low to moderate pressures, and may also have important implications for understanding the hydrogen bonding in H2O and the behavior of water in the planetary bodies, such as Europa, of the outer solar system.
Lewis, R N; McElhaney, R N
2000-01-01
The thermotropic phase behavior of lipid bilayer model membranes composed of the even-numbered, N-saturated 1,2-diacyl phosphatidylserines was studied by differential scanning calorimetry and by Fourier-transform infrared and (31)P-nuclear magnetic resonance spectroscopy. At pH 7.0, 0.1 M NaCl and in the absence of divalent cations, aqueous dispersions of these lipids, which have not been incubated at low temperature, exhibit a single calorimetrically detectable phase transition that is fully reversible, highly cooperative, and relatively energetic, and the transition temperatures and enthalpies increase progressively with increases in hydrocarbon chain length. Our spectroscopic observations confirm that this thermal event is a lamellar gel (L(beta))-to-lamellar liquid crystalline (L(alpha)) phase transition. However, after low temperature incubation, the L(beta)/L(alpha) phase transition of dilauroyl phosphatidylserine is replaced by a higher temperature, more enthalpic, and less cooperative phase transition, and an additional lower temperature, less enthalpic, and less cooperative phase transition appears in the longer chain phosphatidylserines. Our spectroscopic results indicate that this change in thermotropic phase behavior when incubated at low temperatures results from the conversion of the L(beta) phase to a highly ordered lamellar crystalline (L(c)) phase. Upon heating, the L(c) phase of dilauroyl phosphatidylserine converts directly to the L(alpha) phase at a temperature slightly higher than that of its original L(beta)/L(alpha) phase transition. Calorimetrically, this process is manifested by a less cooperative but considerably more energetic, higher-temperature phase transition, which replaces the weaker L(beta)/L(alpha) phase transition alluded to above. However, with the longer chain compounds, the L(c) phase first converts to the L(beta) phase at temperatures some 10-25 degrees C below that at which the L(beta) phase converts to the L(alpha) phase. Our results also suggest that shorter chain homologues form L(c) phases that are structurally related to, but more ordered than, those formed by the longer chain homologues, but that these L(c) phases are less ordered than those formed by other phospholipids. These studies also suggest that polar/apolar interfaces of the phosphatidylserine bilayers are more hydrated than those of other glycerolipid bilayers, possibly because of interactions between the polar headgroup and carbonyl groups of the fatty acyl chains. PMID:11023908
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dubinskiy, S.; National University of Science and Technology “MISIS”, 4, Leninskiy prosp., Moscow 119049; Prokoshkin, S.
2014-02-15
Phase and structure transformations in biomedical Ti–21.8Nb–6.0Zr (TNZ) and Ti–19.7Nb–5.8Ta (TNT) shape memory alloys (at.%) under and without load in the − 150 to 100 °S temperature range are studied in situ using an original tensile module for a low-temperature chamber of an X-ray diffractometer. Alpha″- and beta-phase lattice parameters, the crystallographic resource of recovery strain, phase and structure transformation sequences, and microstress appearance and disappearance are examined, compared and discussed. For both alloys, the crystallographic resource of recovery strain decreases with temperature increase to become 4.5% for TNZ and 2.5% for TNT alloy (at RT). Loading at low temperaturesmore » leads to additional α″-phase formation and reorientation. Heating under load, as compared to strain-free heating, affects the reverse transformation sequence of both alloys in different ways. For TNZ alloy, strain-free heating results in simultaneous ω→β and α″→β transformations, whereas during heating under stress, they are sequential: β + ω→α″ precedes α″→β. For TNT alloy, strain-free heating results in reverse α″→β transformation, whereas during heating under stress, α″→β transformation is preceded by α″-phase reorientation. - Highlights: • Comparative in situ XRD analysis of Ti–Nb–Zr(Ta) shape memory alloys is realized. • Lattice parameters of β- and α″-phases are calculated in the − 150 to + 100 °C range. • The higher the temperature, the lower the α″→β transformation strain. • Loading at low temperatures results in α″-phase formation and reorientation. • Transformation sequences upon heating with and without loading are different.« less
Raman spectra and phase transitions in Rb{sub 2}KInF{sub 6} elpasolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A. S.; Krylova, S. N., E-mail: slanky@iph.krasn.ru; Vtyurin, A. N.
2011-01-15
The Raman spectra of Rb{sub 2}KInF{sub 6} elpasolite crystal have been studied in a wide temperature range, including two phase transitions: from the cubic phase to the tetragonal phase and then to the monoclinic phase. Several anomalies of internal modes of InF{sub 6} octahedra and low-frequency lattice vibrations, which are related to the structural changes at the transition points, have been found and quantitatively analyzed. The results of a quantitative analysis of the temperature dependences of the parameters of spectral lines are in good agreement with the thermodynamic data on the phase transitions.
Phase field modeling of rapid crystallization in the phase-change material AIST
NASA Astrophysics Data System (ADS)
Tabatabaei, Fatemeh; Boussinot, Guillaume; Spatschek, Robert; Brener, Efim A.; Apel, Markus
2017-07-01
We carry out phase field modeling as a continuum simulation technique in order to study rapid crystallization processes in the phase-change material AIST (Ag4In3Sb67Te26). In particular, we simulate the spatio-temporal evolution of the crystallization of a molten area of the phase-change material embedded in a layer stack. The simulation model is adapted to the experimental conditions used for recent measurements of crystallization rates by a laser pulse technique. Simulations are performed for substrate temperatures close to the melting temperature of AIST down to low temperatures when an amorphous state is involved. The design of the phase field model using the thin interface limit allows us to retrieve the two limiting regimes of interface controlled (low temperatures) and thermal transport controlled (high temperatures) dynamics. Our simulations show that, generically, the crystallization velocity presents a maximum in the intermediate regime where both the interface mobility and the thermal transport, through the molten area as well as through the layer stack, are important. Simulations reveal the complex interplay of all different contributions. This suggests that the maximum switching velocity depends not only on material properties but also on the precise design of the thin film structure into which the phase-change material is embedded.
NASA Astrophysics Data System (ADS)
Yan, X.; Chen, Xing-Qiu; Michor, H.; Wolf, W.; Witusiewicz, V. T.; Bauer, E.; Podloucky, R.; Rogl, P.
2018-03-01
By combining theoretical density functional theory (DFT) and experimental studies, structural and magnetic phase stabilities and electronic structural, elastic, and vibrational properties of the Laves-phase compound NbMn2 have been investigated for the C14, C15, and C36 crystal structures. At low temperatures C14 is the ground-state structure, with ferromagnetic and antiferromagnetic orderings being degenerate in energy. The degenerate spin configurations result in a rather large electronic density of states at Fermi energy for all magnetic cases, even for the spin-polarized DFT calculations. Based on the DFT-derived phonon dispersions and densities of states, temperature-dependent free energies were derived for the ferromagnetic and antiferromagnetic C14 phase, demonstrating that the spin-configuration degeneracy possibly exists up to finite temperatures. The heat of formation Δ298H0=-45.05 ±3.64 kJ (molf .u .NbMn2) -1 was extracted from drop isoperibolic calorimetry in a Ni bath. The DFT-derived enthalpy of formation of NbMn2 is in good agreement with the calorimetric measurements. Second-order elastic constants for NbMn2 as well as for related compounds were calculated.
Combined effects of Sr substitution and pressure on the ground states in CaFe2As2
NASA Astrophysics Data System (ADS)
Knöner, S.; Gati, E.; Köhler, S.; Wolf, B.; Tutsch, U.; Ran, S.; Torikachvili, M. S.; Bud'ko, S. L.; Canfield, P. C.; Lang, M.
2016-10-01
We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe2As2 . Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P ≤2 GPa, were performed on Ca1 -xSrxFe2As2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure, which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x =0 and low Sr concentration levels. For x =0.177 , we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe2As2 . Our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.
Low-temperature structure transition in hexagonal LuFeO3
NASA Astrophysics Data System (ADS)
Xu, Xiaoshan; Wang, Wenbin; Wang, Xiao; Zhu, Leyi; Kim, Jong-Woo; Ryan, Phillip; Keavney, David; Ward, Thomas; Shen, Jian; Cheng, Xuemei
2014-03-01
The structural change of h-LuFeO3 films at low temperature has been studied using x-ray diffraction and x-ray absorption experiments. The results are analyzed using the displacements of three phonon modes that are related to the P63/mmc to P63cm structural transition. The data indicate that the in-plane motion of the Fe and apex oxygen are responsible for the observed anomaly in both x-ray absorption and diffraction experiments. This subtle structural transition may be an origin of the low temperature magnetic phase transition at TR=130 K. Research supported by US DOE, Office of Basic Energy Sciences, Materials Science and Engineering Division. Work at BMC is supported by NSF Career award (DMR 1053854). Work at ANL is supported by US-DOE, Office of Science, BES (No. DE-AC02-06CH11357).
A Brief Review of Recent Superconductivity Research at NIST
Lundy, D. R.; Swartzendruber, L. J.; Bennett, L. H.
1989-01-01
A brief overview of recent superconductivity research at NIST is presented. Emphasis is placed on the new high-temperature oxide superconductors, though mention is made of important work on low-temperature superconductors, and a few historical notes are included. NIST research covers a wide range of interests. For the new high-temperature superconductors, research activities include determination of physical properties such as elastic constants and electronic structure, development of new techniques such as magnetic-field modulated microwave-absorption and determination of phase diagrams and crystal structure. For the low-temperature superconductors, research spans studying the effect of stress on current density to the fabrication of a new Josephson junction voltage standard. PMID:28053408
Crystal structure and chemical bonding of the high-temperature phase of AgN3.
Schmidt, Carsten L; Dinnebier, Robert; Wedig, Ulrich; Jansen, Martin
2007-02-05
The crystal structure of silver azide (AgN3) in its high-temperature (HT) modification was determined from X-ray powder diffraction data, recorded at T = 170 degrees C and was further refined by the Rietveld method. The structure is monoclinic (P21/c (No. 14), a = 6.0756(2) A, b = 6.1663(2) A, c = 6.5729(2) A, beta = 114.19(0) degrees, V = 224.62(14) A3, Z = 4) and consists of two-dimensional Ag and N containing layers in which the silver atoms are coordinated by four nitrogen atoms exhibiting a distorted square coordination environment. These sheets are linked together by weaker perpendicular Ag-N contacts, thus forming a 4 + 2 coordination geometry around the silver atoms. The phase transition has been characterized by DTA, DSC, and measurement of the density, as well as of the ionic conductivity. Both, the room-temperature and the HT phase are electrically insulating. This fact is getting support by DFT band structure calculations within the generalized gradient approximation, using the PBE functional. On the basis of the DFT band structure, the bonding characteristics of both phases are essentially the same. Finally, the implication of the existence of a low-symmetry HT-phase in a crystalline explosive concerning decomposition mechanisms is discussed.
Growth of epitaxial orthorhombic YO{sub 1.5}-substituted HfO{sub 2} thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori
YO{sub 1.5}-substituted HfO{sub 2} thin films with various substitution amounts were grown on (100) YSZ substrates by the pulsed laser deposition method directly from the vapor phase. The epitaxial growth of film with different YO{sub 1.5} amounts was confirmed by the X-ray diffraction method. Wide-area reciprocal lattice mapping measurements were performed to clarify the crystal symmetry of films. The formed phases changed from low-symmetry monoclinic baddeleyite to high-symmetry tetragonal/cubic fluorite phases through an orthorhombic phase as the YO{sub 1.5} amount increased from 0 to 0.15. The additional annular bright-field scanning transmission electron microscopy indicates that the orthorhombic phase has polarmore » structure. This means that the direct growth by vapor is of polar orthorhombic HfO{sub 2}-based film. Moreover, high-temperature X-ray diffraction measurements showed that the film with a YO{sub 1.5} amount of 0.07 with orthorhombic structure at room temperature only exhibited a structural phase transition to tetragonal phase above 450 °C. This temperature is much higher than the reported maximum temperature of 200 °C to obtain ferroelectricity as well as the expected temperature for real device application. The growth of epitaxial orthorhombic HfO{sub 2}-based film helps clarify the nature of ferroelectricity in HfO{sub 2}-based films (186 words/200 words)« less
Selevou, Aristoula; Papamokos, George; Steinhart, Martin; Floudas, George
2017-08-03
The effect of oxygen substitution is studied in two homologous compounds of n-cyanobiphenyls with n = 8 in the bulk and under confinement within self-ordered nanoporous alumina (AAO). Oxygen substitution in 8OCB increases the dipole moment and stabilizes the crystalline, smectic, and nematic phases to higher temperatures relative to 8CB. Within their smectic- A (SmA) phase both 8CB and 8OCB behave as weak viscoelastic solids with low shear moduli reflecting the underlying supramolecular defect structure. Dielectric spectroscopy assisted by DFT calculations identified strong dipolar associations within the isotropic phases characterized by a Kirkwood-Fröhlich interaction parameter, g ∼ 0.36. Dielectric spectroscopy further identified a slow process (∼ kHz) of low dielectric strength. The proximity of this process to the rheology time scale suggests as common origin a cooperative relaxation of the defect structure. Confinement alters the phase diagram by stabilizing certain crystalline phases and by reducing the N-I transition temperature in agreement with surface tension effects. However, the N-I transition seems to retain its first order character. Surface treatment with n-decyltrichlorosilane results in destabilization of the SmA phase at the expense of the N phase. This is consistent with a picture of surface anchored LC molecules at the pore walls that stabilize the nematic phase.
NCI calculations for understanding a physical phase transition in (C6H14N2)[Mn(H2O)6](SeO4)2
NASA Astrophysics Data System (ADS)
Naïli, Houcine; François, Michel; Norquist, Alexander J.; Rekik, Walid
2017-12-01
An organically templated manganese selenate, (C6H14N2)[Mn(H2O)6](SeO4)2, has been synthesized by slow evaporation and crystallographically characterized. The title compound crystallizes at room temperature in the monoclinic centrosymmetric space group P21/n, with the following unit cell parameters: a = 7.2373(4) Å; b = 12.5600(7) Å; c = 10.1945(7) Å; β = 91.155(4)°, V = 926.50(10) Å3and Z = 2. Its crystal structure is built of manganese(II) cations coordinated by six water molecules in octahedral geometry, disordered dabcodiium cations and selenate anions, resulting in an extensive hydrogen-bonding network. Differential scanning calorimetry (DSC) measurement indicated that the precursor undergoes a reversible phase transition at about 216 and 218 K during the cooling and heating processes respectively. Below this temperature the title compound is noncentrosymmetric with space group P21 and lattice parameters a = 7.2033(8) Å; b = 12.4981(13) Å; c = 10.0888(11) Å; β = 91.281(2)°, V = 908.04(17) Å3 and Z = 2. The disorder-order transformation of the C atoms of (C6H14N2)2+ cation may drive the structural phase transition. The low temperature phase obtained by breaking symmetry presents a fully ordered structure. The noncovalent interaction (NCI) method was used not only to locate, quantify, and visualize intermolecular interactions in the high and low temperature phases but also to confirm the phase transition detected by DSC measurement. The thermal decomposition of this new compound proceeds through four stages giving rise to the manganese oxide as final product at 850 °C.
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.; ...
2017-10-30
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Phase Transition of H 2 in Subnanometer Pores Observed at 75 K
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olsen, Raina J.; Gillespie, Andrew K.; Contescu, Cristian I.
In this paper, we report a phase transition in H 2 adsorbed in a locally graphitic Saran carbon with subnanometer pores 0.5–0.65 nm in width, in which two layers of hydrogen can just barely squeeze, provided they pack tightly. The phase transition is observed at 75 K, temperatures far higher than other systems in which an adsorbent is known to increase phase transition temperatures: for instance, H 2 melts at 14 K in the bulk, but at 20 K on graphite because the solid H 2 is stabilized by the surface structure. Here we observe a transition at 75 Kmore » and 77–200 bar: from a low-temperature, low-density phase to a high-temperature, higher density phase. We model the low-density phase as a monolayer commensurate solid composed mostly of para-H 2 (the ground nuclear spin state, S = 0) and the high-density phase as an orientationally ordered bilayer commensurate solid composed mostly of ortho-H 2 (S = 1). We attribute the increase in density with temperature to the fact that the oblong ortho-H 2 can pack more densely. The transition is observed using two experiments. The high-density phase is associated with an increase in neutron backscatter by a factor of 7.0 ± 0.1. Normally, hydrogen produces no backscatter (scattering angle >90°). This backscatter appears along with a discontinuous increase in the excitation mass from 1.2 amu to 21.0 ± 2.3 amu, which we associate with collective nuclear spin excitations in the orientationally ordered phase. Film densities were measured using hydrogen adsorption. Finally, no phase transition was observed in H 2 adsorbed in control activated carbon materials.« less
Advanced ordered intermetallic alloy deployment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, C.T.; Maziasz, P.J.; Easton, D.S.
1997-04-01
The need for high-strength, high-temperature, and light-weight materials for structural applications has generated a great deal of interest in ordered intermetallic alloys, particularly in {gamma}-based titanium aluminides {gamma}-based TiAl alloys offer an attractive mix of low density ({approximately}4g/cm{sup 3}), good creep resistance, and high-temperature strength and oxidation resistance. For rotating or high-speed components. TiAl also has a high damping coefficient which minimizes vibrations and noise. These alloys generally contain two phases. {alpha}{sub 2} (DO{sub 19} structure) and {gamma} (L 1{sub 0}), at temperatures below 1120{degrees}C, the euticoid temperature. The mechanical properties of TiAl-based alloys are sensitive to both alloy compositionsmore » and microstructure. Depending on heat-treatment and thermomechanical processing, microstructures with near equiaxed {gamma}, a duplex structure (a mix of the {gamma} and {alpha}{sub 2} phases) can be developed in TiAl alloys containing 45 to 50 at. % Al. The major concern for structural use of TiAl alloys is their low ductility and poor fracture resistance at ambient temperatures. The purpose of this project is to improve the fracture toughness of TiAl-based alloys by controlling alloy composition, microstructure and thermomechanical treatment. This work is expected to lead to the development of TiAl alloys with significantly improved fracture toughness and tensile ductility for structural use.« less
NASA Astrophysics Data System (ADS)
Ling, Chris D.; Rowda, Budwy; Avdeev, Maxim; Pullar, Robert
2009-03-01
We present a complete temperature-composition phase diagram for Ba 3BSb 2O 9, B=Mg, Ca, Sr, Ba, along with their electrical behavior as a function of B. These compounds have long been recognized as 6H-type perovskites, but (with the exception of B=Mg) their exact structures and properties were unknown due to their low symmetries, temperature-dependent phase transitions, and difficulties in synthesizing pure samples. The full range of possible space group symmetries is observed, from ideal hexagonal P6 3/ mmc to monoclinic C2/ c to triclinic P1¯. Direct second-order transitions between these phases are plausible according to group theory, and no evidence was seen for any further intermediate phases. The phase diagram with respect to temperature and the effective ionic radius of B is remarkably symmetrical for B=Mg, Ca, and Sr. For B=Ba, a first-order phase transition to a locally distorted phase allows a metastable hexagonal phase to persist to lower temperatures than expected before decomposing around 600 K. Electrical measurements revealed that dielectric permittivity corrected for porosity does not change significantly as a function of B and is in a good agreement with the values predicted by the Clausius-Mossotti equation.
NASA Astrophysics Data System (ADS)
Klassen, Nikolay V.; Shmurak, Semion Z.; Shmyt'ko, Ivan M.; Strukova, Galina K.; Derenzo, Stephen E.; Weber, Marvin J.
2005-01-01
Lutetium and yttrium borates doped with europium, terbium, gadolinium, etc. have been synthesized by dissolving initial oxides and nitrates in ammonium nitrate melt and thermal decomposition of the solvent. Annealings in the range of 500-1100°C modified the dimensions of the grains from 2 to 3 nm to more than 100 nm. Significant dependence of the structure of lutetium borate on slight doping with rare earth ions has been found: terbium makes high-temperature vaterite phase preferential at room temperature, whereas europium stabilizes low-temperature calcite phase. Influence of the structure of the borates on the pattern of the luminescence spectra of europium dopant was observed. Possibilities for manufacturing of scintillating lutetium borate ceramics by means of this method of synthesis are discussed.
Conformational and orientational order and disorder in solid polytetrafluoroethylene
NASA Astrophysics Data System (ADS)
Sprik, Michiel; Rothlisberger, Ursula; Klein, Michael L.
The low pressure phase diagram of solid polytetrafluoroethylene (PTFE/Teflon) has been investigated using constant temperature-constant pressure molecular dynamics techniques and a new all-atom potential model for fluorocarbons. The simulation was started in an ordered low temperature phase in which the molecules are parallel and have a helical conformation with a pitch of uniform magnitude and sign (chirality). In accordance with experiment, a transition to an orientationally disordered state is observed upon heating. The coherent helical winding of CF2 groups also disappears abruptly at the transition but short helical segments remain and become equally distributed between left and right chirality with increasing temperature. The orientational and conformational disorder is accompanied by translational diffusion along the chain direction. At a still higher temperature melting sets in. On cooling, the disordered solid phase is recovered and its structure is shown to be identical to that generated on heating. On further cooling, a spontaneous ordering transition is observed but the system fails to recover a uniform helical ground state. Instead, the high pressure ordered monoclinic all- trans (alkane-like) structure is obtained: an observation that indicates a deficiency in the potential model.
Golf-course and funnel energy landscapes: Protein folding concepts in martensites
NASA Astrophysics Data System (ADS)
Shankaraiah, N.
2017-06-01
We use protein folding energy landscape concepts such as golf course and funnel to study re-equilibration in athermal martensites under systematic temperature quench Monte Carlo simulations. On quenching below a transition temperature, the seeded high-symmetry parent-phase austenite that converts to the low-symmetry product-phase martensite, through autocatalytic twinning or elastic photocopying, has both rapid conversions and incubation delays in the temperature-time-transformation phase diagram. We find the rapid (incubation delays) conversions at low (high) temperatures arises from the presence of large (small) size of golf-course edge that has the funnel inside for negative energy states. In the incubating state, the strain structure factor enters into the Brillouin-zone golf course through searches for finite transitional pathways which close off at the transition temperature with Vogel-Fulcher divergences that are insensitive to Hamiltonian energy scales and log-normal distributions, as signatures of dominant entropy barriers. The crossing of the entropy barrier is identified through energy occupancy distributions, Monte Carlo acceptance fractions, heat emission, and internal work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Çakir, Asli; Aktürk, Selçuk; Righi, Lara
2013-11-14
Martensitic transitions in shape memory Ni-Mn-Ga Heusler alloys take place between a high temperature austenite and a low temperature martensite phase. However, intermartensitic transformations have also been encountered that occur from one martensite phase to another. To examine intermartensitic transitions in magnetic shape memory alloys in detail, we carried out temperature dependent magnetization, resistivity, and x-ray diffraction measurements to investigate the intermartensitic transition in Ni{sub 50}Mn{sub 50–x}Ga{sub x} in the composition range 12≤x≤25 at. %. Rietveld refined x-ray diffraction results are found to be consistent with magnetization and resistivity data. Depending on composition, we observe that intermartensitic transitions occur inmore » the sequences 7M→L1{sub 0}, 5M→7M, and 5M→7M→L1{sub 0} with decreasing temperature. The L1{sub 0} non-modulated structure is most stable at low temperature.« less
Novel Electronic Structures of Ru-pnictides RuPn (Pn = P, As, Sb)
NASA Astrophysics Data System (ADS)
Goto, H.; Toriyama, T.; Konishi, T.; Ohta, Y.
Density-functional-theory-based electronic structure calculations are made to consider the novel electronic states of Ru-pnictides RuP and RuAs where the intriguing phase transitions and superconductivity under doping of Rh have been reported. We find that there appear nearly degenerate flat bands just at the Fermi level in the high-temperature metallic phase of RuP and RuAs; the flat-band states come mainly from the 4dxy orbitals of Ru ions and the Rh doping shifts the Fermi level just above the flat bands. The splitting of the flat bands caused by their electronic instability may then be responsible for the observed phase transition to the nonmagnetic insulating phase at low temperatures. We also find that the band structure calculated for RuSb resembles that of the doped RuP and RuAs, which is consistent with experiment where superconductivity occurs in RuSb without Rh doping.
High-temperature magnetostructural transition in van der Waals-layered α - MoCl 3
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; ...
2017-11-07
Here, the crystallographic and magnetic properties of the cleavable 4d 3 transition metal compound α–MoCl 3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagneticmore » at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.« less
High-temperature magnetostructural transition in van der Waals-layered α -MoCl3
NASA Astrophysics Data System (ADS)
McGuire, Michael A.; Yan, Jiaqiang; Lampen-Kelley, Paula; May, Andrew F.; Cooper, Valentino R.; Lindsay, Lucas; Puretzky, Alexander; Liang, Liangbo; KC, Santosh; Cakmak, Ercan; Calder, Stuart; Sales, Brian C.
2017-11-01
The crystallographic and magnetic properties of the cleavable 4 d3 transition metal compound α -MoCl3 are reported, with a focus on the behavior above room temperature. Crystals were grown by chemical vapor transport and characterized using temperature dependent x-ray diffraction, Raman spectroscopy, and magnetization measurements. A structural phase transition occurs near 585 K, at which the Mo-Mo dimers present at room temperature are broken. A nearly regular honeycomb net of Mo is observed above the transition, and an optical phonon associated with the dimerization instability is identified in the Raman data and in first-principles calculations. The crystals are diamagnetic at room temperature in the dimerized state, and the magnetic susceptibility increases sharply at the structural transition. Moderately strong paramagnetism in the high-temperature structure indicates the presence of local moments on Mo. This is consistent with results of spin-polarized density functional theory calculations using the low- and high-temperature structures. Above the magnetostructural phase transition the magnetic susceptibility continues to increase gradually up to the maximum measurement temperature of 780 K, with a temperature dependence that suggests two-dimensional antiferromagnetic correlations.
Significant increase of Curie temperature in nano-scale BaTiO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yueliang; Liao, Zhenyu; Fang, Fang
2014-11-03
The low Curie temperature (T{sub c} = 130 °C) of bulk BaTiO{sub 3} greatly limits its applications. In this work, the phase structures of BaTiO{sub 3} nanoparticles with sizes ranging from 2.5 nm to 10 nm were studied at various temperatures by using aberration-corrected transmission electron microscopy (TEM) equipped with an in-situ heating holder. The results implied that each BaTiO{sub 3} nanoparticle was composed of different phases, and the ferroelectric ones were observed in the shells due to the complicated surface structure. The ferroelectric phases in BaTiO{sub 3} nanoparticles remained at 600 °C, suggesting a significant increase of T{sub c}. Based on the in-situ TEM resultsmore » and the data reported by others, temperature-size phase diagrams for BaTiO{sub 3} particles and ceramics were proposed, showing that the phase transition became diffused and the T{sub c} obviously increased with decreasing size. The present work sheds light on the design and fabrication of advanced devices for high temperature applications.« less
Low-Temperature Criticality of Martensitic Transformations of Cu Nanoprecipitates in α-Fe
NASA Astrophysics Data System (ADS)
Erhart, Paul; Sadigh, Babak
2013-07-01
Nanoprecipitates form during nucleation of multiphase equilibria in phase segregating multicomponent systems. In spite of their ubiquity, their size-dependent physical chemistry, in particular, at the boundary between phases with incompatible topologies, is still rather arcane. Here, we use extensive atomistic simulations to map out the size-temperature phase diagram of Cu nanoprecipitates in α-Fe. The growing precipitates undergo martensitic transformations from the body-centered cubic (bcc) phase to multiply twinned 9R structures. At high temperatures, the transitions exhibit strong first-order character and prominent hysteresis. Upon cooling, the discontinuities become less pronounced and the transitions occur at ever smaller cluster sizes. Below 300 K, the hysteresis vanishes while the transition remains discontinuous with a finite but diminishing latent heat. This unusual size-temperature phase diagram results from the entropy generated by the soft modes of the bcc-Cu phase, which are stabilized through confinement by the α-Fe lattice.
Ferri-magnetic order in Mn induced spinel Co3-xMnxO4 (0.1≤x≤1.0) ceramic compositions
NASA Astrophysics Data System (ADS)
Meena, P. L.; Sreenivas, K.; Singh, M. R.; Kumar, Ashok; Singh, S. P.; Kumar, Ravi
2016-04-01
We report structural and magnetic properties of spinel Co3-xMnxO4 (x=0.1-1.0) synthesized by solid state reaction technique. Rietveld refinement analysis of X-ray diffraction (XRD) data, revealed the formation of polycrystalline single phase Co3-xMnxO4 without any significant structural change in cubic crystal symmetry with Mn substitution, except change in lattice parameter. Temperature dependent magnetization data show changes in magnetic ordering temperature, indicating formation of antiferromagnetic (AFM) and ferrimagnetic (FM) phase at low Mn concentration (x≤0.3) and well-defined FM phase at high Mn concentration (x≥0.5). The isothermal magnetization records established an AFM/FM mixed phase for composition ranging 0.1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalentyeva, I. L.; Vikhrova, O. V., E-mail: istery@rambler.ru; Danilov, Yu. A.
2016-11-15
The effects of isochronal thermal annealing (at 325–725°C) on the radiative properties of InGaAs/GaAs nanoheterostructures containing a low-temperature GaAs layer δ-doped with Mn grown by laser deposition are studied. A decrease in the photoluminescence intensity and increase in the ground transition energy are observed upon thermal impact for quantum wells located near the low-temperature GaAs layer. The distribution of Mn atoms in the initial and annealed structures is obtained by secondary-ion mass spectrometry. A qualitative model of the observed effects of thermal annealing on the radiative properties of the structures is discussed; this model takes into account two main processes:more » diffusion of point defects (primarily gallium vacancies) from the GaAs coating layer deep into the structure and Mn diffusion in both directions by the dissociation mechanism. Magnetization studies show that, as a result of thermal annealing, an increase in the proportion of the ferromagnetic phase at room temperature (presumably, MnAs clusters) in the low-temperature GaAs coating layer takes place.« less
Liquid petroleum gas sensing application of ZnO/CdO:ZnO nanocomposites at low temperature
NASA Astrophysics Data System (ADS)
Rajput, Jeevitesh K.; Pathak, T. K.; Kumar, V.; Swart, H. C.; Purohit, L. P.
2018-04-01
ZnO and CdO:ZnO nanoparticles are synthesized by sol-gel precipitation method. The structural analysis shows composite structure for CdO:ZnO nanoparticles with (002) and (111) phase. The SEM images show wedge like morphology and 3-D hexagonal morphology with ˜110 nm in size. The uniform growth of CdO:ZnO nanoparticles were observed in EDS element mapping image. LPG sensing was observed for CdO:ZnO nanoparticle with rapid sensing response 8.69% at operating temperature 50°C. This sensing response can be accounted due by absorption ions reactions at low operating temperature.
Templated Sphere Phase Liquid Crystals for Tunable Random Lasing
Chen, Ziping; Hu, Dechun; Chen, Xingwu; Zeng, Deren; Lee, Yungjui; Chen, Xiaoxian; Lu, Jiangang
2017-01-01
A sphere phase liquid crystal (SPLC) composed of three-dimensional twist structures with disclinations among them exists between isotropic phase and blue phase in a very narrow temperature range, about several degrees centigrade. A low concentration polymer template is applied to improve the thermal stability of SPLCs and broadens the temperature range to more than 448 K. By template processing, a wavelength tunable random lasing is demonstrated with dye doped SPLC. With different polymer concentrations, the reconstructed SPLC random lasing may achieve more than 40 nm wavelength continuous shifting by electric field modulation. PMID:29140283
The formation and structure of Fe-Mn-Ni-Si solute clusters and G-phase precipitates in steels
NASA Astrophysics Data System (ADS)
King, D. J. M.; Burr, P. A.; Middleburgh, S. C.; Whiting, T. M.; Burke, M. G.; Wenman, M. R.
2018-07-01
Solute clustering and G-phase precipitation cause hardening phenomena observed in some low alloy and stainless steels, respectively. Density functional theory was used to investigate the energetic driving force for the formation of these precipitates, capturing temperature effects through analysis of the system's configurational and magnetic entropies. It is shown that enrichment of Mn, Ni and Si is thermodynamically favourable compared to the dilute ferrite matrix of a typical A508 low alloy steel. We predict the ordered G-phase to form preferentially rather than a structure with B2-type ordering when the Fe content of the system falls below 10-18 at. %. The B2 → G-phase transformation is predicted to occur spontaneously when vacancies are introduced into the B2 structure in the absence of Fe.
The Influence of Alloying and Processing on the Microstructure and Properties of Beta-NiAl.
1998-09-30
transformation , such as the Heusler alloys .’J. 9 ] It is the purpose of this article to report crystal structure of the parent and martensite phases and...additions, thermal and constitutional vacancies, deviations from stoichiometry, processing defects/inhomogeneities and precipitate phases on both the low ...Mn-Al Heusler alloys aged at phase , in the Ni-Al-Mn alloys quenched from high tern- low temperatures. peratures over 1000 °C.t41 In these specimens
Pressure-induced effects and phase relations in Mg2NiH4
NASA Astrophysics Data System (ADS)
Gavra, Z.; Kimmel, G.; Gefen, Y.; Mintz, Moshe H.
1985-05-01
The low-temperature (<210 °C) crystallographic structure, electrical conductivity, and thermal stability of Mg2NiH4 powders compacted under isostatic pressures of up to 10 kbar were studied. A comparison is made with the corresponding properties of the noncompressed material. It has been concluded that under stress-free hydriding conditions performed below 210 °C, a two-phase hydride mixture is formed. Each of the hydride particles consists of an inner core composed of an hydrogen-deficient monoclinic phase coated by a layer of a stoichiometric orthorhombic phase. The monoclinic phase has a metalliclike electrical conductivity while the orthorhombic phase is insulating. High compaction pressures cause the transformation of the orthorhombic structure into the monoclinic one, thereby resulting in a pressure-induced insulator-to-conductor transition. Reduced decomposition temperatures are obtained for the compressed hydrides. This reduction is attributed to kinetic factors rather than to a reduced thermodynamic stability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA
Bi 21.2(1)(Mn 1–xCo x ) 20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangementmore » of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less
Crystalline Structure and Vacancy Ordering across a Surface Phase Transition in Sn/Cu(001).
Martínez-Blanco, J; Joco, V; Quirós, C; Segovia, P; Michel, E G
2018-01-18
We report a surface X-ray diffraction study of the crystalline structure changes and critical behavior across the (3√2 × √2)R45° → (√2 × √2)R45° surface phase transition at 360 K for 0.5 monolayers of Sn on Cu(100). The phase transition is of the order-disorder type and is due to the disordering of the Cu atomic vacancies present in the low temperature phase. Two different atomic sites for Sn atoms, characterized by two different heights, are maintained across the surface phase transition.
NASA Astrophysics Data System (ADS)
Artioli, G.; Davoli, G.
1994-12-01
Crystal structural refinements of one orthorhombic (Pbca) and two monoclinic (P21/c) single crystals, from chondrules of low-Ca pyroxenes from unequilibrated chondritic meteorites of the LL group, were carried out. The intracrystalline Fe-Mg distribution between the M1 and M2 crystallographic sites of the Parnallee (LL-3) orthoenstatite is suggestive of very rapid cooling, whereas both the structural state and intracrystalline Fe-Mg distribution in the Soko Banja (LL-4) and Jolomba (LL-6) clinoenstaties indicate rapid cooling from the high temperature polymorphs, with no significant re-equilibration at lower temperatures. These results imply that thermal metamorphism in the parent body, if present, was insufficient to allow re-equilibration of the pyroxene minerals to low temperature, ordered crystal structures. The data also indicate that, assuming low or mild pressure and shock effects, there is no well defined correlation between equilibrium temperature of the mineral phases and the alleged petrologic type of the meteorites. This evidence is consistent with a rubble pile model for the parent body accretional history, or with an onion shell model with very low thermal peak metamorphism, as is assumed for a very small object.
NASA Astrophysics Data System (ADS)
Frankel, Dana J.
The development of non-surgical transcatheter aortic valve implantation (TAVI) techniques, which utilize collapsible artificial heart valves with shape memory alloy (SMA)-based frames, pushes performance requirements for biomedical SMAs beyond those for well-established vascular stent applications. Fatigue life for these devices must extend into the ultra-high cycle fatigue (UHCF) regime (>600M cycles) with zero probability of failure predicted at applied strain levels. High rates of Ni-hypersensitivity raise biocompatibility concerns, driving the development of low-Ni and Ni-free SMAs. This work focuses on the development of biocompatible, precipitation-strengthened, fatigue-resistant PdTi-based SMAs for biomedical applications. Functional and structural fatigue are both manifestations of cyclic instability resulting in accumulation of slip and eventual structural damage. While functional fatigue is easily experimentally evaluated, structural fatigue is more difficult to measure without the proper equipment. Therefore, in this work a theoretical approach using a model well validated in steels is utilized to investigate structural fatigue behavior in NiTi in the UHCF regime, while low cycle functional fatigue is evaluated in order to monitor the core phenomena of the cyclic instability. Results from fatigue simulations modeling crack nucleation at non-metallic inclusions in commercial NiTi underscore the importance of increasing yield strength for UHCF performance. Controlled precipitation of nanoscale, low-misfit, L21 Heusler aluminides can provide effective strengthening. Phase relations, precipitation kinetics, transformation temperature, transformation strain, cyclic stability, and mechanical properties are characterized in both Ni-free (Pd,Fe)(Ti,Al) and low-Ni high-strength "hybrid" (Pd,Ni)(Ti,Zr,Al) systems. Atom probe tomography is employed to measure phase compositions and particle sizes used to calibrate LSW models for coarsening kinetics and Gibbs-Thompson models for composition trajectories for systems under evolving unstable equilibrium. Mechanical and thermal cyclic stability are investigated using compression testing and differential scanning calorimetry. Mechanical properties are characterized using room temperature and high temperature Vickers microhardness as well as nanoindentation. A superelastic Ni-free (Pd,Fe)(Ti,Al) alloy with near-ambient transformation temperatures, low hysteresis, a highly stable cyclic response, and reversible transformation strains of 3.2% was designed. Due to Pd softening, the addition of Zr is considered to improve strength in a low-Ni "hybrid" (Pd,Ni)(Ti,Zr,Al) alloy. Aging studies at 600°C result in unusually fast coarsening kinetics, while low-temperature aging studies at 500-530°C reveal the presence of a Zr-rich phase in association with the matrix and Heusler phase. A strengthening study on a nontransforming hybrid prototype shows lower than expected precipitation strengthening at 600°C but significant strengthening when aged at 500°C due to the Zr-rich phase. Transformation temperatures, transformation strain, and cyclic stability are characterized in a set of transforming hybrid prototypes.
Taufour, Valentin; Thimmaiah, Srinivasa; March, Stephen; ...
2015-07-28
The article addresses the possibility of alloy elements in MnBi which may modify the thermodynamic stability of the NiAs-type structure without significantly degrading the magnetic properties. The addition of small amounts of Rh and Mn provides an improvement in the thermal stability with some degradation of the magnetic properties. The small amounts of Rh and Mn additions in MnBi stabilize an orthorhombic phase whose structural and magnetic properties are closely related to the ones of the previously reported high-temperature phase of MnBi (HT MnBi). The properties of the HT MnBi, which is stable between 613 and 719 K, have notmore » been studied in detail because of its transformation to the stable low-temperature MnBi (LT MnBi), making measurements near and below its Curie temperature difficult. The Rh-stabilized MnBi with chemical formula Mn 1.0625–xRh xBi [x=0.02(1)] adopts a new superstructure of the NiAs/Ni 2In structure family. It is ferromagnetic below a Curie temperature of 416 K. The critical exponents of the ferromagnetic transition are not of the mean-field type but are closer to those associated with the Ising model in three dimensions. The magnetic anisotropy is uniaxial; the anisotropy energy is rather large, and it does not increase when raising the temperature, contrary to what happens in LT MnBi. The saturation magnetization is approximately 3μB/f.u. at low temperatures. Thus, while this exact composition may not be application ready, it does show that alloying is a viable route to modifying the stability of this class of rare-earth-free magnet alloys.« less
Low temperature nucleation of Griffiths Phase in Co doped LaMnO3 nanostructures
NASA Astrophysics Data System (ADS)
Adeela, N.; Khan, U.; Naz, S.; Iqbal, M.; Irfan, M.; Cheng, Y.
2017-11-01
We have reported magnetic properties of La1-xCoxMnO3 nanostructures synthesized by hydrothermal route. The crystal structure has been characterized by X-ray diffraction (XRD) technique, which shows rhombohedral perovskite structure at room temperature. Scanning electron microscope (SEM) and energy dispersive X-ray spectroscopy (EDS) have been used to analyse morphology and chemical composition of prepared nanoparticles. Magnetic hysteresis loops of all the samples exhibit ferromagnetic behaviour at 10 K. Inverse susceptibility graphs as a function of temperature represent deviation from Curie Weiss law. The indication for short range ferromagnetic clusters well above Curie temperature is observed due to the Griffiths Phase (GP). It is proposed that the presence of GP arises from induced size effects of La and Co ions.
The low-temperature structural behavior of sodium 1-carba-closo-decaborate: NaCB{sub 9}H{sub 10}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Hui, E-mail: hui.wu@nist.gov; Tang, Wan Si; Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742-2115
2016-11-15
Two ordered phases of the novel solid superionic conductor sodium 1-carba-closo-decaborate (NaCB{sub 9}H{sub 10}) were identified via synchrotron x-ray powder diffraction in combination with first-principles calculations and neutron vibrational spectroscopy. A monoclinic packing of the large ellipsoidal CB{sub 9}H{sub 10}{sup −} anions prevails at the lowest temperatures, but a first-order transformation to a slightly modified orthorhombic packing is largely complete by 240 K. The CB{sub 9}H{sub 10}{sup −} anion orientational alignments and Na{sup +} cation interstitial sitings in both phases are arranged so as to minimize the cation proximities to the uniquely more positive C-bonded H atoms of the anions.more » These results provide valuable structural information pertinent to understanding the relatively low-temperature, entropy-driven, order-disorder phase transition for this compound. - Graphical abstract: Ordered monoclinic and orthorhombic NaCB{sub 9}H{sub 10} phases were determined by XRD and DFT computations and corroborated by neutron vibrational spectroscopy. - Highlights: • Two T-dependent ordered structures of Na(1-CB{sub 9}H{sub 10}) were determined by XRD. • The lower-T monoclinic to higher-T orthorhombic transition occurs from 210 to 240 K. • The main structural differences involve changes in the canting of the CB{sub 9}H{sub 10}{sup −} anions. • DFT and neutron vibrational spectroscopy corroborate the lower-T monoclinic structure. • The results are important for understanding the nature of this superionic conductor.« less
Structure and property correlations in FeS
NASA Astrophysics Data System (ADS)
Kuhn, S. J.; Kidder, M. K.; Parker, D. S.; dela Cruz, C.; McGuire, M. A.; Chance, W. M.; Li, Li; Debeer-Schmitt, L.; Ermentrout, J.; Littrell, K. C.; Eskildsen, M. R.; Sefat, A. S.
2017-03-01
For iron-sulfide (FeS), we investigate the correlation between the structural details, including its dimensionality and composition, with its magnetic and superconducting properties. We compare, theoretically and experimentally, the two-dimensional (2D) layered tetragonal (;t-FeS;) phase with the 3D hexagonal ("h-FeS") phase. X-ray diffraction reveals iron-deficient chemical compositions of t-Fe0.93(1)S and h-Fe0.84(1)S that show no low-temperature structural transitions. First-principles calculations reveal a high sensitivity of the 2D structure to the electronic and magnetic properties, predicting marginal antiferromagnetic instability for our compound (sulfur height of zS = 0.252) with an ordering energy of about 11 meV/Fe, while the 3D phase is magnetically stable. Experimentally, h-Fe0.84S orders magnetically well above room temperature, while t-Fe0.93S shows coexistence of antiferromagnetism at TN = 116 and filamentary superconductivity below Tc = 4 K. Low temperature neutron diffraction data reveals antiferromagnetic commensurate ordering with wave vector km = (0.25,0.25,0) and 0.46(2) μB/Fe. Additionally, neutron scattering measurements were used to find the particle size and iron vacancy arrangement of t-FeS and h-FeS. The structure of iron sulfide has a delicate relationship with the superconducting transition; while our sample with a = 3.6772(7) Å is a filamentary superconductor coexisting with an antiferromagnetic phase, previously reported samples with a > 3.68 Å are bulk superconductors with no magnetism, and those with a ≈ 3.674 Å show magnetic properties.
Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure
NASA Astrophysics Data System (ADS)
Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi
2016-03-01
Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30-70 K in pressure range of 100-170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50-70 K in pressure range of 100-150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system.
Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy
NASA Astrophysics Data System (ADS)
Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.
2018-06-01
A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0 → 5 T. The most interesting observation is the ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.
Bid, Aveek; Raychaudhuri, A K
2016-11-11
We report a detailed experimental study of the resistance fluctuations measured at low temperatures in high quality metal nanowires ranging in diameter from 15-200 nm. The wires exhibit co-existing face-centered-cubic and 4H hcp phases of varying degrees as determined from the x-ray diffraction data. We observe the appearance of a large non-Gaussian noise for nanowires of diameter smaller than 50 nm over a certain temperature range around ≈30 K. The diameter range ∼30 nm, where the noise has maxima coincides with the maximum volume fraction of the co-existing 4H hcp phase thus establishing a strong link between the fluctuation and the phase co-existence. The resistance fluctuation in the same temperature range also shows a deviation of [Formula: see text] behavior at low frequency with appearance of single frequency Lorentzian type contribution in the spectral power density. The fluctuations are thermally activated with an activation energy [Formula: see text] meV, which is of same order as the activation energy of creation of stacking fault in FCC metals that leads to the co-existing crystallographic phases. Combining the results of crystallographic studies of the nanowires and analysis of the resistance fluctuations we could establish the correlation between the appearance of the large resistance noise and the onset of phase co-existence in these nanowires.
Kanno, H; Kajiwara, K; Miyata, K
2010-05-21
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for T(H) (homogeneous ice nucleation temperature) and T(m) (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the T(H) curve for a DMSO solution of R=20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at P(c2)= approximately 200 MPa and at T(c2)<-100 degrees C (P(c2): pressure of SCP, T(c2): temperature of SCP). The presence of two T(H) peaks for DMSO solutions (R=15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R
NASA Astrophysics Data System (ADS)
Kanno, H.; Kajiwara, K.; Miyata, K.
2010-05-01
Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2<-100 °C (Pc2: pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (<-90 °C). The pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez-Villacorta, F; Marion, JL; Oldham, JT
2014-01-21
Magnetic and structural aspects of the annealing-induced transformation of rapidly-solidified Mn55Al45 ribbons from the as-quenched metastable antiferromagnetic (AF) epsilon-phase to the target ferromagnetic (FM) L1(0) tau-phase are investigated. The as-solidified material exhibits a majority hexagonal epsilon-MnAl phase revealing a large exchange bias shift below a magnetic blocking temperature T-B similar to 95 K (H-ex similar to 13 kOe at 10 K), ascribed to the presence of compositional fluctuations in this antiferromagnetic phase. Heat treatment at a relatively low annealing temperature T-anneal approximate to 568 K (295 degrees C) promotes the nucleation of the metastable L1(0) tau-MnAl phase at the expensemore » of the parent epsilon-phase, donating an increasingly hard ferromagnetic character. The onset of the epsilon ->tau transformation occurs at a temperature that is similar to 100 K lower than that reported in the literature, highlighting the benefits of applying rapid solidification for synthesis of the rapidly-solidified parent alloy.« less
NASA Astrophysics Data System (ADS)
Tovpinets, A. O.; Leytsin, V. N.; Dmitrieva, M. A.; Ivonin, I. V.; Ponomarev, S. V.
2017-12-01
The solution of the tasks in the field of creating and processing materials for additive technologies requires the development of a single theory of materials for various applications and processes. A separate class of materials that are promising for use in additive technologies includes materials whose consolidation is ensured by the presence of low-melting components in the initial mixture which form a matrix at a temperature not exceeding the melting point, recrystallization or destruction of any of the responsible refractory components of the initial dispersion. The study of the contribution of the binder thermal destruction to the structure and phase composition of the initial compact of the future composite is essential for the development of modern technologies for the synthesis of low-temperature ceramics. This paper investigates the effect of the thermal destruction of a binder on the formation of a green compact of low-temperature ceramics and the structural-mechanical characteristics of sintered ceramics. The approach proposed in Ref. [1] for evaluating the structure and physical characteristics of sintered low-temperature ceramics is improved to clarify the structure of green compacts obtained after thermal destruction of the polymer binder, with taking into account the pores formed and the infusible residue. The obtained results enable a more accurate prediction of thermal stresses in the matrix of sintered ceramics and serve as a basis for optimization.
NASA Astrophysics Data System (ADS)
Rahaman, Sabina; Sunil, M. Anantha; Shaik, Habibuddin; Ghosh, Kaustab
2018-05-01
Deposition of Cu2SnS3 (CTS) thin films is successfully carried out on soda lime glass substrate using low cost ultrasonic spray pyrolysis technique. Vacuum annealing of CTS films is carried out at different temperatures 350°C, 400°C and 450°C. The present work is to study the effect of annealing temperature on the crystal structure, surface morphology and optical properties of CTS thin films. Structural studies confirm the formation of CTS phase. Raman analysis is carried out to study presence of defects with annealing temperature. Optical studies confirm that film prepared at 450°C temperature is suitable as absorber material for photovoltaic applications.
Magnetic characterization of mixed phases in FeVO4sbnd Co3V2O8 system
NASA Astrophysics Data System (ADS)
Guskos, N.; Zolnierkiewicz, G.; Pilarska, M.; Typek, J.; Berczynski, P.; Blonska-Tabero, A.; Aidinis, K.
2018-04-01
Dynamic and static magnetic properties of four nFeVO4/(1-n)Co3V2O8 composites obtained in reactions between nFeVO4 and (1-n)Co3V2O8 (n = 0.82, 0.80, 0.78 and 0.76) have been investigated by dc magnetometry and electron paramagnetic resonance (EPR). All samples were diphase containing both the howardevansite-type and the lyonsite-type phases in different proportions. Dc magnetic susceptibility study showed the Curie-Weiss paramagnetic behavior with strong antiferromagnetic (AFM) interaction in the high-temperature range and the phase transition to the AFM state at low temperatures. The calculated effective magnetic moment could be justified by the presence of high spin Fe3+ and Co2+ ions. The appearance of hysteresis loop in isothermal magnetisation at low temperature indicates the existence of the ferromagnetic component in all four samples, but only 0.5% of all magnetic ions are involved in this phase. EPR spectra recorded in high-temperature range (T > 90 K) consisted of a single broad line centred at ∼3.2 kG. The fitting of observed spectra with two Gaussian lineshape functions allowed to study the temperature dependence of EPR parameters (resonance field, linewidth, integrated intensity). This analysis suggests that EPR signal arises from two spin subsystems: paramagnetic Fe3+ ions subjected to AFM interaction and AFM spin pairs/clusters of iron/cobalt visible only at high temperatures. At low temperatures two transitions to AFM states, due to the mixture of two structural phases, are registered in magnetic susceptibility measurements.
Thimmaiah, Srinivasa; Taufour, Valentin; Iowa State Univ., Ames, IA; ...
2016-11-15
Bi 21.2(1)(Mn 1–xCo x ) 20 is a new metastable phase which is synthesized via Bi self-flux, adopts a highly fibrous morpholo-gy, and decomposes endothermically near 168 °C. It crystallizes in the orthorhombic space group Imma with unit cell parameters α = 19.067(4) Å, $b$ = 4.6071(10) Å and c = 11.583(4) Å, adopting a low-temperature modification of BiNi-type structure by forming columns along the b-axis. Wave-length-dispersive X-ray spectroscopy (WDS) confirms the presence of Co in the structure, which is found to be 7 at.%. In each column, the transition metal (T) and Bi atoms construct a double-walled nanotubular arrangementmore » of atoms around the disordered central Bi atoms. Electronic structure calculations (LMTO-ASA, LSDA) show that the calculated Fermi level falls into a pseudogap and also indicate a possible low-temperature magnetic ordering in the phase.« less
Combined effects of Sr substitution and pressure on the ground states in CaFe 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoner, S.; Gati, E.; Kohler, S.
2016-10-21
Here, we present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe 2As 2. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P ≤ 2 GPa, were performed on Ca 1–xSr xFe 2As 2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure,more » which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x = 0 and low Sr concentration levels. For x = 0.177, we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe 2As 2. Lastly, our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.« less
Dong, Bo; Zhou, Da-Peng; Wei, Li; Liu, Wing-Ki; Lit, John W Y
2008-11-10
A novel lateral force sensor based on a core-offset multi-mode fiber (MMF) interferometer is reported. High extinction ratio can be obtained by misaligning a fused cross section between the single-mode fiber (SMF) and MMF. With the variation of the lateral force applied to a short section of the MMF, the extinction ratio changes while the interference phase remains almost constant. The change of the extinction ratio is independent of temperature variations. The proposed force sensor has the advantages of temperature- and phase-independency, high extinction ratio sensitivity, good repeatability, low cost, and simple structure. Moreover, the core-offset MMF interferometer is expected to have applications in fiber filters and tunable phase-independent attenuators.
Crystal structure and superconducting properties of KSr2Nb3O10
NASA Astrophysics Data System (ADS)
Kawaguchi, T.; Horigane, K.; Itoh, Y.; Kobayashi, K.; Horie, R.; Kambe, T.; Akimitsu, J.
2018-05-01
We performed X-ray diffraction (XRD) and DC magnetic susceptibility measurements to elucidate the crystal structure and superconducting properties of KSr2Nb3O10. From the diffraction pattern indexing, it was found that KSr2Nb3O10 crystallizes with monoclinic symmetry, space group P21/m(11). We succeeded in preparing high temperature (HT) and low temperature (LT) phases of KSr2Nb3O10 powder samples synthesized by a conventional solid state reaction and an ion-exchange reaction, respectively. Superconductivity was observed at 4 K by Li intercalation and it was found that the superconducting volume fraction of the LT phase ( 1.4%) is clearly larger than that of the HT phase (0.07%).
Cañadillas-Delgado, Laura; Fabelo, Oscar; Rodríguez-Velamazán, J Alberto; Lemée-Cailleau, Marie-Hélène; Mason, Sax A; Pardo, Emilio; Lloret, Francesc; Zhao, Jiong-Peng; Bu, Xian-He; Simonet, Virginie; Colin, Claire V; Rodríguez-Carvajal, Juan
2012-12-05
Neutron diffraction studies have been carried out to shed light on the unprecedented order-disorder phase transition (ca. 155 K) observed in the mixed-valence iron(II)-iron(III) formate framework compound [NH(2)(CH(3))(2)](n)[Fe(III)Fe(II)(HCOO)(6)](n). The crystal structure at 220 K was first determined from Laue diffraction data, then a second refinement at 175 K and the crystal structure determination in the low temperature phase at 45 K were done with data from the monochromatic high resolution single crystal diffractometer D19. The 45 K nuclear structure reveals that the phase transition is associated with the order-disorder of the dimethylammonium counterion that is weakly anchored in the cavities of the [Fe(III)Fe(II)(HCOO)(6)](n) framework. In the low-temperature phase, a change in space group from P31c to R3c occurs, involving a tripling of the c-axis due to the ordering of the dimethylammonium counterion. The occurrence of this nuclear phase transition is associated with an electric transition, from paraelectric to antiferroelectric. A combination of powder and single crystal neutron diffraction measurements below the magnetic order transition (ca. 37 K) has been used to determine unequivocally the magnetic structure of this Néel N-Type ferrimagnet, proving that the ferrimagnetic behavior is due to a noncompensation of the different Fe(II) and Fe(III) magnetic moments.
NASA Astrophysics Data System (ADS)
Sreelalitha, K.; Thyagarajan, K.
2016-01-01
In the present study, we investigate the structural, morphological and magnetic properties of sol-gel spin-coated PZT thin films on alumina substrate. The morphotropic phase boundary (MPB) of PZT [Pb (Zr1-xTix)03] between the tetragonal and rhombohedral phases occurs at the Zr/Ti ratio of 52/48. At the MPB the physical properties of PZT are of far-reaching importance due to their possible crystalline phases. In this study Pb(Zr0.52Ti0.48)03 sols are prepared at room temperature and at 125 °C. The gels are coated onto alumina substrate using a spin-coating unit as two and three layers. The structural studies using XRD confirm the perovskite phase formation at an annealing temperature of 660 °C for both films. The structural parameter grain size, dislocation density, lattice parameters and strain were dependent on the sol temperature. The SEM morphology of the samples represents well-developed dense grain structure and thickness in micrometer ranges. The VSM analysis shows diamagnetic and ferromagnetic hysteresis loop. The ferromagnetism at low fields in PZT films is confirmed by studying the magnetic properties of powder made of the same gel. The effect of heat treatment on the gel preparation is observed on structural, morphological and magnetic properties of PZT thin films. The ferromagnetism in PZT can be attributed to oxygen vacancies. The squareness ratio of the films shows the application of the films as a high-density recording medium.
NASA Astrophysics Data System (ADS)
Machon, D.; McMillan, P. F.; San-Miguel, A.; Barnes, P.; Hutchins, P. T.
In situ studies have provided valuable new information on the synthesis mechanisms, low temperature properties and high pressure behavior of semiconductor clathrates. Here we review work using synchrotron and laboratory X-ray diffraction and Raman scattering used to study mainly Si-based clathrates under a variety of conditions. During synthesis of the Type I clathrate Na8Si46 by metastable thermal decomposition from NaSi in vacuum, we observe an unusual quasi-epitaxial process where the clathrate structure appears to nucleate and grow directly from the Na-deficient Zintl phase surface. Low temperature X-ray studies of the guest-free Type II clathrate framework Si136 reveal a region of negative thermal expansion behavior as predicted theoretically and analogous to that observed for diamond-structured Si. High pressure studies of Si136 lead to metastable production of the β-Sn structured Si-II phase as well as perhaps other metastable crystalline materials. High pressure investigations of Type I clathrates show evidence for a new class of apparently isostructural densification transformations followed by amorphization in certain cases.
Structural phase transition and phonon instability in Cu 12Sb 4S 13
May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; ...
2016-02-08
In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu 12Sb 4S 13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transitionmore » coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu 12Sb 4S 13 and Cu 10Zn 2Sb 4S 13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu 12Sb 4S 13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less
New transformations between crystalline and amorphous ice
NASA Technical Reports Server (NTRS)
Hemley, R. J.; Chen, L. C.; Mao, H. K.
1989-01-01
High-pressure optical and spectroscopic techniques were used to obtain directly the ice I(h) - hda-ice transformation in a diamond-anvil cell, and the stability of the amorphous form is examined as functions of pressure and temperature. It is demonstrated that hda-ice transforms abruptly at 4 GPa and 77 K to a crystalline phase close in structure to orientationally disordered ice-VII and to a more highly ordered, ice-VIII-like structure at higher temperatures. This is the first time that an amorphous solid is observed to convert to a crystalline solid at low temperatures by compression alone. Phase transitions of this type may be relevant on icy planetary satellites, and there may also be implications for the high-pressure behavior of silica.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less
Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
2014-01-13
We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less
Effect of point defects and disorder on structural phase transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toulouse, J.
1997-06-01
Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods tomore » study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.« less
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Tsuchiya, T.; Ohishi, Y.
2011-12-01
The inner-core and the outer-core, which make up the center of the Earth, are thought to be composed predominantly of a solid and liquid iron alloying with 5 to 15 % nickel, respectively. Determination of the physical properties of iron alloy at extremely high pressures found in the deep Earth's core (>300 GPa) is a fundamental issue for understanding the thermal and dynamical state of the Earth's core. According to seismological observations, it is widely accepted that the Earth's inner-core is elastically anisotropic; the compressional wave in the inner-core propagates 3~4 % faster along its rotational axis than in the equatorial direction. A number of models on core dynamics have been proposed to explain the origin of the inner-core anisotropy, but all of them are based on the idea of the crystal preferred orientation of iron. The phase relation of iron at high pressures has been extensively studied using LH-DACs. At relatively low temperatures, around room temperature, the phase relations are already well established; a low pressure phase with a bcc structure transforms into an hcp structure above ~10 GPa and it persists above 300 GPa. In contrast, the phase relations of iron at high temperatures are highly controversial. Some experiments assigned different crystal structures including orthorhombic, dhcp, fcc, and bcc as candidate stable crystal structures, whereas others suggested that the hcp structure remains stable at high temperatures. Despite considerable attention on these new phases, there is, however, no experimental reproducibility. The lack of plausible data is mainly because of the substantial difficulties associated with high-temperature experiments at multimegabar pressures. In order to overcome these difficulties, we have developed experimental techniques using a laser-heated diamond-anvil cell for the past decade and succeeded in obtaining excellent quality data under extremely high-pressure and high-temperature conditions. In order to investigate the nature of the Earth's inner core, we conducted a series of high P-T experiments on various iron-rich iron-alloys using laser-heated diamond anvil cells on the basis of in-situ x-ray diffraction measurements at SPring-8, Japan, along with ab-initio density functional simulations, under the Earth's core condition. Here we will present a mineralogical model of the observed anisotropy in the inner core based on the experimental and theoretical studies on the phase relations and physical properties of iron-alloys.
Localized to itinerant transition of f electrons in ordered Ce films on W(110)
NASA Astrophysics Data System (ADS)
Chen, Q. Y.; Feng, W.; Xie, D. H.; Lai, X. C.; Zhu, X. G.; Huang, L.
2018-04-01
A key issue to understand the driving force and underlying physics in the isostructural γ -α transition in Cerium is the character of the 4 f states, whether it is localized or itinerant. Here the surface topography and electronic structure of the well-ordered Ce metal films on a W(110) substrate were investigated by using scanning tunneling microscopy, angle-resolved photoemission spectroscopy and density functional theory, and single-site dynamical mean-field theory calculations. Three nearly flat f bands can be observed, and a weakly dispersive quasiparticle band near the Fermi level has been directly observed at low temperature, indicating the hybridization between f electrons and conduction electrons in the low-temperature α phase. The hybridization strength becomes weaker upon increasing temperature, and the f electrons become almost fully localized at 300 K in the high-temperature γ phase. The observed localized-to-itinerant transition of the f electrons with decreasing temperature gives direct experimental proof for the changes of the 4 f character in the isostructural γ -α phase transition. Our results suggest that the character of the f electrons plays a crucial role during the γ -α phase transition.
Influences of P doping on magnetic phase transition and structure in MnCoSi ribbon
NASA Astrophysics Data System (ADS)
Du, Qian-Heng; Chen, Guo-Fu; Yang, Wen-Yun; Hua, Mu-Xin; Du, Hong-Lin; Wang, Chang-Sheng; Liu, Shun-Quan; Hang, Jing-Zhi; Zhou, Dong; Zhang, Yan; Yan, Jin-Bo
2015-06-01
The structure and magnetic properties of MnCoSi1- x Px (x = 0.05-0.50) are systematically investigated. With P content increasing, the lattice parameter a increases monotonically while both b and c decrease. At the same time, the temperature of metamagnetic transition from a low-temperature non-collinear ferromagnetic state to a high-temperature ferromagnetic state decreases and a new magnetic transition from a higher-magnetization ferromagnetic state to a lower-magnetization ferromagnetic state is observed in each of these compounds for the first time. This is explained by the changes of crystal structure and distance between Mn and Si atoms with the increase of temperature according to the high-temperature XRD result. The metamagnetic transition is found to be a second-order magnetic transition accompanied by a low inversed magnetocaloric effect (1.0 J·kg-1·K-1 at 5 T) with a large temperature span (190 K at 5 T) compared with the scenario of MnCoSi. The changes in the order of metamagnetic transition and structure make P-doped MoCoSi compounds good candidates for the study of magnetoelastic coupling and the modulation of magnetic phase transition. Project supported by the National Natural Science Foundation of China (Grant No. 11275013), the Fund from the National Physics Laboratory, China Academy of Engineering Physics (Grant No. 2013DB01), and the National Key Basic Research Program of China (Grant No. 2010CB833104).
Order in dense hydrogen at low temperatures
Edwards, B.; Ashcroft, N. W.
2004-01-01
By increase in density, impelled by pressure, the electronic energy bands in dense hydrogen attain significant widths. Nevertheless, arguments can be advanced suggesting that a physically consistent description of the general consequences of this electronic structure can still be constructed from interacting but state-dependent multipoles. These reflect, in fact self-consistently, a disorder-induced localization of electron states partially manifesting the effects of proton dynamics; they retain very considerable spatial inhomogeneity (as they certainly do in the molecular limit). This description, which is valid provided that an overall energy gap has not closed, leads at a mean-field level to the expected quadrupolar coupling, but also for certain structures to the eventual emergence of dipolar terms and their coupling when a state of broken charge symmetry is developed. A simple Hamiltonian incorporating these basic features then leads to a high-density, low-temperature phase diagram that appears to be in substantial agreement with experiment. In particular, it accounts for the fact that whereas the phase I–II phase boundary has a significant isotope dependence, the phase II–III boundary has very little. PMID:15028839
Absence of pressure-induced amorphization in LiKSO4.
Machon, D; Pinheiro, C B; Bouvier, P; Dmitriev, V P; Crichton, W A
2010-08-11
Angle-resolved synchrotron radiation diffraction was used to investigate lithium potassium sulfate (LiKSO(4)) crystals under high pressure. We confirm that the title compound undergoes three phase transitions, α →β, β → γ and γ →δ, observed at around 0.8 GPa, 4.0 GPa and 7.0 GPa, respectively. Two competitive structures are proposed for the β-phase after powder diffraction data Rietveld refinements: an orthorhombic (space group Cmc 2(1)) or a monoclinic (space group Cc) structure. These structures correspond to the models of the low temperature phases. The γ-phase is indexed by a monoclinic structure. Finally, the δ-phase is found to be highly disordered. No evidence of any pressure-induced amorphous phase was observed up to 24 GPa, even under imposed highly non-hydrostatic conditions, contrary to previous propositions.
Geometry in transition in four dimensions: A model of emergent geometry in the early universe
NASA Astrophysics Data System (ADS)
Ydri, Badis; Khaled, Ramda; Ahlam, Rouag
2016-10-01
We study a six matrix model with global S O (3 )×S O (3 ) symmetry containing at most quartic powers of the matrices. This theory exhibits a phase transition from a geometrical phase at low temperature to a Yang-Mills matrix phase with no background geometrical structure at high temperature. This is an exotic phase transition in the same universality class as the three matrix model but with important differences. The geometrical phase is determined dynamically, as the system cools, and is given by a fuzzy sphere background SN2×SN2, with an Abelian gauge field which is very weakly coupled to two normal scalar fields.
Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A
2012-10-31
The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority phase does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority phase amounts to 8-10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller than the one of the main phase at T = 2 K and has quite different temperature dependence. The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature T(P) = 475 K. The spatial dimensions of the phase domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main phase that were separated by the second phase at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority phase.
Singh, Shivam; Li, Cheng; Panzer, Fabian; Narasimhan, K L; Graeser, Anna; Gujar, Tanaji P; Köhler, Anna; Thelakkat, Mukundan; Huettner, Sven; Kabra, Dinesh
2016-08-04
In this Letter, we investigate the temperature dependence of the optical properties of methylammonium lead iodide (MAPbI3 = CH3NH3PbI3) from room temperature to 6 K. In both the tetragonal (T > 163 K) and the orthorhombic (T < 163 K) phases of MAPbI3, the band gap (from both absorption and photoluminescence (PL) measurements) decreases with decrease in temperature, in contrast to what is normally seen for many inorganic semiconductors, such as Si, GaAs, GaN, etc. We show that in the perovskites reported here, the temperature coefficient of thermal expansion is large and accounts for the positive temperature coefficient of the band gap. A detailed analysis of the exciton line width allows us to distinguish between static and dynamic disorder. The low-energy tail of the exciton absorption is reminiscent of Urbach absorption. The Urbach energy is a measure of the disorder, which is modeled using thermal and static disorder for both the phases separately. The static disorder component, manifested in the exciton line width at low temperature, is small. Above 60 K, thermal disorder increases the line width. Both these features are a measure of the high crystal quality and low disorder of the perovskite films even though they are produced from solution.
Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yuto; Matsushita, Yoshitaka; Oda, Migaku
Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by amore » weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.« less
NASA Astrophysics Data System (ADS)
Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.
Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.
NASA Astrophysics Data System (ADS)
Zieliński, P.; More, M.; Cochon, E.; Lefebvre, J.
1996-03-01
The molecule of benzil (diphenylethanedione, C14H10O2) has been approximated by a system of rigid segments to model the lowest-frequency part of its vibrational spectrum. The interactions of internal degrees of freedom have been described with the use of phenomenological force constants. The structure of the trigonal (P3121) phase has then been modelled by means of a temperature-dependent atom-atom potential based on thermal motions of atoms. The potential gives the correct account of the softening of an E-symmetry, zone-center mode which underlies the phase transition to the low-temperature monoclinic phase (P21). The low-frequency modes at the zone center, supposed until now to be difference overtones, have been shown to result from a coupling between internal and external degrees of freedom. A low-frequency soft mode at the point M of the zone border has been found, which explains the behavior of observed peaks in diffuse x-ray scattering experiments. The values and the temperature evolution of the effective elastic constants calculated within the model are in a very good agreement with the results of ultrasonic and Brillouin scattering data. The model has been shown insufficient in the description of dielectric and piezoelectric properties of benzil.
NASA Astrophysics Data System (ADS)
Wu, Tai-Lung; Whittaker, Luisa; Patridge, C. J.; Banerjee, S.; Sambandamurthy, G.
2011-03-01
Vanadium oxide is a well-know material to study the metal-insulator transition (MIT) in correlated electron systems. Upon heating to about 340 K, VO2 undergoes orders of magnitude drop in resistance from an insulating phase (I) to a metallic phase (M) and accompanies a lattice structural phase transition from a low-temperature monoclinical phase (M1) to a high-temperature tetragonal phase (R). We present results from combined electrical transport and Raman spectroscopic measurements to discern the effects of doping in controllably tuning the MIT in individual nanowires of single crystal WxV1 - xO2 . The MIT temperature (Tc) in our WxV1 - xO2 nanowires can be tuned through a wide range from 280 to 330 K by controlling the dopant concentration. The M-I transition can also driven electrically in these nanowires. Our simultaneous measurement of electrical transport and Raman spectroscopic measurement help us understand the role of structural transition in affecting the macroscopic electrical transition in individual wires.
Popuri, S R; Artemenko, A; Decourt, R; Villesuzanne, A; Pollet, M
2017-03-01
Layered vanadium oxides have been extensively explored due to their interesting metal-insulator transitions and energy conversion/storage applications. In the present study, we have successfully synthesized VO 2 (A) polymorph powder samples by a single-step hydrothermal synthesis process and consolidated them using spark plasma sintering. The structural and electronic properties of VO 2 (A) are measured over a large temperature range from liquid helium, across the structural transition (400-440 K) and up to 500 K. The structural analysis around this transition reveals an antiferrodistorsive to partially ferrodistorsive ordering upon cooling. It is followed by a progressive antiferromagnetic spin pairing which fully settles at about 150 K. The transport measurements show that, in contrast to the rutile archetype VO 2 (R/M1), the structural transition comes with a transition from semiconductor to band-type insulator. Under these circumstances, we propose a scenario with a high temperature antiferrodistorsive paramagnetic semiconducting phase, followed by an intermediate regime with a partially ferrodistorsive paramagnetic semiconducting phase, and finally a low temperature partially ferrodistorsive antiferromagnetic band insulator phase with a possible V-V Peierls-type pairing.
Importance of many-body dispersion and temperature effects on gas-phase gold cluster (meta)stability
NASA Astrophysics Data System (ADS)
Goldsmith, Bryan R.; Gruene, Philipp; Lyon, Jonathan T.; Rayner, David M.; Fielicke, André; Scheffler, Matthias; Ghiringhelli, Luca M.
Gold clusters in the gas phase exhibit many structural isomers that are shown to intercovert frequently, even at room temperature. We performed ab initio replica-exchange molecular dynamics (REMD) calculations on gold clusters (of sizes 5-14 atoms) to identify metastable states and their relative populations at finite temperature, as well as to examine the importance of temperature and van der Waals (vdW) on their isomer energetic ordering. Free energies of the gold cluster isomers are optimally estimated using the Multistate Bennett Acceptance Ratio. The distribution of bond coordination numbers and radius of gyration are used to address the challenge of discriminating isomers along their dynamical trajectories. Dispersion effects are important for stabilizing three-dimensional structures relative to planar structures and brings isomer energetic predictions to closer quantitative agreement compared with RPA@PBE calculations. We find that higher temperatures typically stabilize metastable three-dimensional structures relative to planar/quasiplanar structures. Computed IR spectra of low free energy Au9, Au10, and Au12 isomers are in agreement with experimental spectra obtained by far-IR multiple photon dissociation in a molecular beam at 100 K.
NASA Astrophysics Data System (ADS)
Mitrofanov, K. V.; Kolobov, A. V.; Fons, P.; Krbal, M.; Shintani, T.; Tominaga, J.; Uruga, T.
2014-10-01
AIVBVI crystals are believed to possess a rhombohedral (ferroelectric) structure at low temperature that changes to the rocksalt (paraelectric) structure above the Curie temperature. For GeTe it has been recently demonstrated that locally the structure retains the subsets of the shorter and longer bonds across the ferroelectric-to-paraelectric transition despite acquiring the cubic structure on average. Nothing is known about the existence of local distortions in SnTe, a prototypical topological crystalline insulator, where the crystal symmetry plays a crucial role. In this work we report the results of x-ray absorption measurements. We find that the structure is locally rhombohedrally distorted, and the distortions increase at T >100K, breaking the rocksalt average symmetry. Our density functional theory simulations performed at 0 K indicate that the role of spin-orbit coupling in the formation of the local structure of SnTe at low temperature is negligibly small. The small stochastic distortions do not affect the intrinsic band inversion of SnTe.
Shatnawi, Mouath; Bozin, Emil S.; Mitchell, J. F.; ...
2016-04-25
Evolution of the average and local crystal structure of Ca-doped LaMnO 3 has been studied across the metal to insulator (MI) and the orthorhombic to rhombohedral (OR) structural phase transitions over a broad temperature range for two Ca concentrations (x = 0.18,0.22). Combined Rietveld and high real space resolution atomic pair distribution function (PDF) analysis of neutron total scattering data was carried out with aims of exploring the possibility of nanoscale phase separation (PS) in relation to MI transition, and charting the evolution of local Jahn-Teller (JT) distortion of MnO 6 octahedra across the OR transition at T S~720 K.more » The study utilized explicit two-phase PDF structural modeling, revealing that away from T MI there is no evidence for nanoscale phase coexistence. The local JT distortions disappear abruptly upon crossing into the metallic regime both with doping and temperature, with only a small temperature-independent signature of quenched disorder being observable at low temperature as compared to CaMnO 3. The results hence do not support the percolative scenario for the MI transition in La 1–xCa xMnO 3 based on PS, and question its ubiquity in the manganites. In contrast to LaMnO 3 that exhibits long-range orbital correlations and sizable octahedral distortions at low temperature, the doped samples with compositions straddling the MI boundary exhibit correlations (in the insulating regime) limited to only ~1 nm with observably smaller distortions. In the x = 0.22 sample local JT distortions are found to persist across the OR transition and deep into the R phase (up to ~1050 K), where they are crystallographically prohibited. As a result, their magnitude and subnanometer spatial extent remain unchanged.« less
Revealing the hidden structural phases of FeRh
NASA Astrophysics Data System (ADS)
Kim, Jinwoong; Ramesh, R.; Kioussis, Nicholas
2016-11-01
Ab initio electronic structure calculations reveal that tetragonal distortion has a dramatic effect on the relative stability of the various magnetic structures (C-, A-, G-, A'-AFM, and FM) of FeRh giving rise to a wide range of novel stable/metastable structures and magnetic phase transitions between these states. We predict that the cubic G-AFM structure, which was believed thus far to be the ground state, is metastable and that the tetragonally expanded G-AFM is the stable structure. The low energy barrier separating these states suggests phase coexistence at room temperature. We propose an A'-AFM phase to be the global ground state among all magnetic phases which arises from the strain-induced tuning of the exchange interactions. The results elucidate the underlying mechanism for the recent experimental findings of electric-field control of magnetic phase transition driven via tetragonal strain. The magnetic phase transitions open interesting prospects for exploiting strain engineering for the next-generation memory devices.
Forbidden phonon: Dynamical signature of bond symmetry breaking in the iron chalcogenides
Fobes, David M.; Zaliznyak, Igor A.; Tranquada, John M.; ...
2016-09-01
Investigation of the inelastic neutron scattering spectra in Fe 1+yTe 1₋xSe x near a signature wave vector Q=(1,0,0) for the bond-order wave (BOW) formation of parent compound Fe 1+yTe reveals an acoustic-phonon-like dispersion present in all structural phases. While a structural Bragg peak accompanies the mode in the low-temperature phase of Fe 1+yTe, it is absent in the high-temperature tetragonal phase, where Bragg scattering at this Q is forbidden by symmetry. Notably, this mode is also observed in superconducting FeTe 0.55Se 0.45, where structural and magnetic transitions are suppressed, and no BOW has been observed. Lastly, the presence of thismore » “forbidden” phonon indicates that the lattice symmetry is dynamically or locally broken by magneto-orbital BOW fluctuations, which are strongly coupled to lattice in these materials.« less
NASA Astrophysics Data System (ADS)
Lorenc, J.; Bryndal, I.; Syska, W.; Wandas, M.; Marchewka, M.; Pietraszko, A.; Lis, T.; Mączka, M.; Hermanowicz, K.; Hanuza, J.
2010-08-01
New organic-organic salt, 2-amino-4-methyl-3-nitropyridinium trifluoroacetate, has been synthesised and characterised by FT-IR, FT-Raman, DSC and single crystal X-ray crystallography. The 2-amino-4-methyl-3-nitropyridinium trifluoroacetate undergoes a reversible phase transition at ˜162 K. The X-ray structures, vibrational spectra and quantum chemical DFT calculations (B3LYP/6-31G(d,p) approach) have been analysed for high-temperature and low-temperature modifications of the compound, which both crystallize in orthorhombic space group Pbca with two non-equivalent cations and two anions in the asymmetric unit. Their crystal and molecular structures have been compared and the role of the intermolecular interactions in these crystals has been analysed. The mechanisms of the phase transition have been proposed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Irshad, Muneeb; Siraj, Khurram, E-mail: razahussaini786@gmail.com, E-mail: khurram.uet@gmail.com; Javed, Fayyaz
Nanocomposites Samarium doped Ceria (SDC), Gadolinium doped Ceria (GDC), core shell SDC amorphous Na{sub 2}CO{sub 3} (SDCC) and GDC amorphous Na{sub 2}CO{sub 3} (GDCC) were synthesized using co-precipitation method and then compared to obtain better solid oxide electrolytes materials for low temperature Solid Oxide Fuel Cell (SOFCs). The comparison is done in terms of structure, crystallanity, thermal stability, conductivity and cell performance. In present work, XRD analysis confirmed proper doping of Sm and Gd in both single phase (SDC, GDC) and dual phase core shell (SDCC, GDCC) electrolyte materials. EDX analysis validated the presence of Sm and Gd in bothmore » single and dual phase electrolyte materials; also confirming the presence of amorphous Na{sub 2}CO{sub 3} in SDCC and GDCC. From TGA analysis a steep weight loss is observed in case of SDCC and GDCC when temperature rises above 725 °C while SDC and GDC do not show any loss. The ionic conductivity and cell performance of single phase SDC and GDC nanocomposite were compared with core shell GDC/amorphous Na{sub 2}CO{sub 3} and SDC/ amorphous Na{sub 2}CO{sub 3} nanocomposites using methane fuel. It is observed that dual phase core shell electrolytes materials (SDCC, GDCC) show better performance in low temperature range than their corresponding single phase electrolyte materials (SDC, GDC) with methane fuel.« less
Phase structure of NJL model with weak renormalization group
NASA Astrophysics Data System (ADS)
Aoki, Ken-Ichi; Kumamoto, Shin-Ichiro; Yamada, Masatoshi
2018-06-01
We analyze the chiral phase structure of the Nambu-Jona-Lasinio model at finite temperature and density by using the functional renormalization group (FRG). The renormalization group (RG) equation for the fermionic effective potential V (σ ; t) is given as a partial differential equation, where σ : = ψ bar ψ and t is a dimensionless RG scale. When the dynamical chiral symmetry breaking (DχSB) occurs at a certain scale tc, V (σ ; t) has singularities originated from the phase transitions, and then one cannot follow RG flows after tc. In this study, we introduce the weak solution method to the RG equation in order to follow the RG flows after the DχSB and to evaluate the dynamical mass and the chiral condensate in low energy scales. It is shown that the weak solution of the RG equation correctly captures vacuum structures and critical phenomena within the pure fermionic system. We show the chiral phase diagram on temperature, chemical potential and the four-Fermi coupling constant.
Superconductivity in highly disordered dense carbon disulfide.
Dias, Ranga P; Yoo, Choong-Shik; Struzhkin, Viktor V; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav
2013-07-16
High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ~6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity.
Development of a composite geodetic structure for space construction, phase 1A
NASA Technical Reports Server (NTRS)
1980-01-01
The development of a geodetic beam and beam builder for on orbit construction of large truss type space structures is discussed. The geodetic beam is a lightweight, open lattice structure composed of an equilateral gridwork of crisscrossing rods. The beam provides a high degree of stiffness and minimizes structural distortion, due to temperature gradients, through the incorporation of a new graphite and glass reinforced thermoplastic composite material with a low coefficient of thermal expansion. A low power consuming, high production rate, beam builder automatically fabricates the geodetic beams in space using rods preprocessed on Earth. Three areas of the development are focused upon; (1) geodetic beam designs for local attachment of equipment or beam to beam joining in a parallel or crossing configurations, (2) evaluation of long life pultruded rods capable of service temperatures higher than possible with the HMS/P1700 rod material, and (3) evalaution of high temperature joint encapsulant materials.
Determination of the structural phase and octahedral rotation angle in halide perovskites
NASA Astrophysics Data System (ADS)
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simpraditpan, Athapon; Wirunmongkol, Thanakorn; Pavasupree, Sorapong, E-mail: sorapongp@yahoo.com
2013-09-01
Graphical abstract: - Highlights: • Nanofibers were prepared from low-cost ilmenite mineral via simple hydrothermal. • High photocatalyst nanofibers were prepared via post heat treatment method. • The nanofibers calcined at 100–700 °C for 2 h maintained nanofiber structure. • The calcined nanofibers at 400 °C showed the highest photocatalytic activity. - Abstract: Titanate nanofibers were synthesized via the hydrothermal method (120 °C for 72 h) using natural ilmenite mineral (FeTiO{sub 3}) as the starting material. The samples were characterized by X-ray diffraction (XRD), X-ray fluorescent (XRF), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Brunauer–Emmett–Teller (BET) for specificmore » surface area. The nanofibers were 20–90 nm in diameter and 2–7 μm in length. The as-synthesized nanofibers calcined at 300–400 °C showed TiO{sub 2} (B) whereas the nanofibers calcined at 500 °C revealed a mixture of two phases of TiO{sub 2} (B) and anatase. The nanofibers calcined at high temperature of 600–1000 °C showed a mixture of tri-crystalline of anatase, rutile, and Fe{sub 2}O{sub 3}. The rutile phase increased with increasing calcination temperature. The nanofibers calcined at 300–700 °C maintained their structure while the morphology of the nanofibers calcined at 800–1000 °C transformed into submicron rod-like structure. This increase of calcination temperature led to the phase transformation from thermodynamically metastable anatase to the most stable form of rutile phase. The crystallite size of prepared samples increased with increasing calcination temperature. Interestingly, with increasing calcination temperature, the absorption edge of the prepared samples shows an obvious shift to visible light region due to the change of crystallite phase and increased crystallite size. Therefore, the band gap energy of the prepared samples became narrower with increasing calcination temperature. Furthermore, the photocatalytic activity of the nanofibers calcined at 400 °C for 2 h was found to be not merely higher than those of the commercially available TiO{sub 2} nanoparticles powders (P-25, JRC-01, and JRC-03) but also the highest of all the samples in this study.« less
NASA Astrophysics Data System (ADS)
Poojary, Thrapthi; Babu, P. D.; Sanil, Tejaswini; Daivajna, Mamatha D.
2018-07-01
In the present investigation structural, magneto-transport, magnetic and thermo-power measurements of Gadolinium (Gd) doped Pr0.8-xGdxSr0.2MnO3 (0, 0.2, 0.25 and 0.3) manganites have been done. All the samples are single phased with orthorhombic structure. Temperature variation of resistance exhibits a high temperature transition occurring at 156 K and a low temperature cusp at around 95 K for pristine sample. With Gd doping resistance behavior shows insulating behavior throughout the whole temperature range. Magneto-Resistance (MR%) increases with Gd doping. A huge increase in thermo-electric power is observed with Gd doping.
Superconducting H5S2 phase in sulfur-hydrogen system under high-pressure
Ishikawa, Takahiro; Nakanishi, Akitaka; Shimizu, Katsuya; Katayama-Yoshida, Hiroshi; Oda, Tatsuki; Suzuki, Naoshi
2016-01-01
Recently, hydrogen sulfide was experimentally found to show the high superconducting critical temperature (Tc) under high-pressure. The superconducting Tc shows 30–70 K in pressure range of 100–170 GPa (low-Tc phase) and increases to 203 K, which sets a record for the highest Tc in all materials, for the samples annealed by heating it to room temperature at pressures above 150 GPa (high-Tc phase). Here we present a solid H5S2 phase predicted as the low-Tc phase by the application of the genetic algorithm technique for crystal structure searching and first-principles calculations to sulfur-hydrogen system under high-pressure. The H5S2 phase is thermodynamically stabilized at 110 GPa, in which asymmetric hydrogen bonds are formed between H2S and H3S molecules. Calculated Tc values show 50–70 K in pressure range of 100–150 GPa within the harmonic approximation, which can reproduce the experimentally observed low-Tc phase. These findings give a new aspect of the excellent superconductivity in compressed sulfur-hydrogen system. PMID:26983593
Low temperature IR spectroscopic study of torsional vibrations of taurine
NASA Astrophysics Data System (ADS)
Bajaj, Naini; Bhatt, Himal; Vishwakarma, S. R.; Thomas, Susy; Murli, C.; Deo, M. N.
2018-04-01
The hydrogen bonding network in amino acids can give information about the structural stability under varying thermodynamic conditions such as temperature and pressure. We have carried out low temperature IR spectroscopic studies on Taurine, an amino acid with various bio-chemical applications in physiology and synthesis, in order to observe the behaviour of torsional modes, i.e. τ(CSH) and τ(NH3), which are very sensitive to the hydrogen bonding interactions. It was observed that the CSH torsional mode showed splitting at low temperature of nearly 250 K and the bandwidth shows linear temperature dependence, which can be attributed to anharmonicity. Another torsional mode, τ(NH3) showed no splitting, but the bandwidth has non-linear temperature dependence. This can be due to orientational changes at low temperature. These observations are strong evidences for a hydrogen bond reorientation induced phase transition at 250 K.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuepferling, M., E-mail: m.kuepferling@inrim.it; Basso, V.; Bennati, C.
2014-05-07
We investigate the temperature induced ferromagnetic to paramagnetic phase transition in Co substituted La(Fe{sub x}Co{sub y}Si{sub 1−x−y}){sub 13} with x = 0.9 and low Co content of y = 0.015 (T{sub c}≃200 K) by means of magneto-optical imaging with indicator film and by calorimetry at very low temperature rates. We were able to visualize the motion of the ferromagnetic (FM)/paramagnetic (PM) front which is forming reproducible patterns independently of the temperature rate. The average velocity of the FM/PM front was calculated to be 10{sup −4} m/s during the continuous propagation and 4×10{sup −3} m/s during an avalanche. The heat flux was measured at low temperature rates bymore » a differential scanning calorimeter and shows a reproducible sequence of individual and separated avalanches which occurs independently of the rate. We interpret the observed effects as the result of the athermal character of the phase transition.« less
NASA Astrophysics Data System (ADS)
Goossens, D. J.; Wu, Xiaodong; Prior, M.
2005-12-01
The ferroelectric phase transition in deuterated benzil, C 14H 10O 2, has been studied using capacitance measurements and neutron powder diffraction. Hydrogenous benzil shows a phase transition at 83.5 K from a high temperature P3 121 phase to a cell-doubled P2 1 phase. The phase transition in d-benzil occurs at 88.1 K, a small isotope effect. Neutron powder diffraction was consistent with a low temperature phase of space group P2 1. Upon deuteration the transition remained first-order and the dynamics of the phenyl ring dominated the behaviour. The isotope effect can be attributed to the difference in mass and moment of inertia between C 6H 5 and C 6D 5.
NASA Astrophysics Data System (ADS)
Lazar, G.; Bouchet-Fabre, B.; Zellama, K.; Clin, M.; Ballutaud, D.; Godet, C.
2008-10-01
The structural properties of nitrogenated amorphous carbon deposited by radiofrequency magnetron sputtering of graphite in pure N2 plasma are investigated as a function of the substrate temperature and radiofrequency discharge power. The film composition is derived from x-ray photoemission spectroscopy, nuclear reaction analysis and elastic recoil detection measurements and the film microstructure is discussed using infrared, Raman, x-ray photoemission and near edge x-ray absorption fine structure spectroscopic results. At low deposition temperature and low radiofrequency power, the films are soft, porous, and easily contaminated with water vapor and other atmospheric components. The concentration of nitrogen in the films is very large for low deposition temperatures (˜33.6at.% N at 150°C) but decreases strongly when the synthesis temperature increases (˜15at.% N at 450°C). With increasing deposition temperature and discharge power values, the main observed effects in amorphous carbon nitride alloys are a loss of nitrogen atoms, a smaller hydrogen and oxygen contamination related to the film densification, an increased order of the aromatic sp2 phase, and a strong change in the nitrogen distribution within the carbon matrix. Structural changes are well correlated with modifications of the optical and transport properties.
RSRM nozzle fixed housing cooldown test
NASA Technical Reports Server (NTRS)
Bolieau, D. J.
1989-01-01
Flight 5 aft segments with nozzles were exposed to -17 F temperatures while awaiting shipment to KSC in February, 1989. No records were found which show that any previous nozzles were exposed to air temperatures as low as those seen by the Flight 5 nozzles. Thermal analysis shows that the temperature of the fixed housing, and forward and aft exit cone components dropped as low as -10 F. Structural analysis of the nozzles at these low temperatures show the forward and aft exit cone adhesive bonds to have a positive margin of safety, based on a 2.0 safety factor. These analyses show the normal and shear stresses in the fixed housing bond as low values. However, the hoop and meridinal stresses were predicted to be in the 4000 psi range; the failure stress allowable of EA913NA adhesive at -7 F. If the bonds did break in directions perpendicular to the surfaces, called bond crazing, no normal bond strength would be lost. Testing was conducted in two phases, showing that no degradation to the adhesive bonds occurred while the Flight 5 nozzles were subjected to subzero temperatures. The results of these tests are documented. Phase 1 testing cooled a full-scale RSRM insulated fixed housing to -13 F, with extensive bondline inspections. Phase 2 testing cooled the witness panel adhesive tensile buttions to -13 F, with failure strengths recorded before, during, and after the cooldown.
Spin order in FeV2O4 determined by single crystal Mössbauer spectroscopy in applied magnetic field
NASA Astrophysics Data System (ADS)
Nakamura, Shin; Kobayashi, Yasuhiro; Kitao, Shinji; Seto, Makoto
2018-05-01
In order to clarify the spin order of FeV2O4, 57Fe Mössbauer spectroscopy has been conducted by using a single crystal specimen. A measurement in applied magnetic field has been also conducted. By applying a slight compression in the sample plane, almost single domain state was achieved in the low temperature phases. The spectra consist of Fe2+ spectra ( 85%) and Fe2.5+ spectra ( 15%), corresponding to the A- and B-site Fe ions, respectively. The B-site spectrum well represents the local structure and the magnetic structure of V3+ ion on the B-site. Notable changes in the Mössbauer parameters are recognized at 140, 110, and 65 K, where the successive phase transitions take place. The feature well represents the orbital and spin order. In the orthorhombic phase below 110 K, Fe2+ and V3+ spins form a collinear ferrimagnetic order along the a-axis. Below 65 K in the low temperature tetragonal phase, however, both spins incline from the c-axis to form a canted ferrimagnetic structure. The canting angles are about 17° and 52° at 4.2 K for Fe2+ and V3+ spins, respectively.
Liao, Wei-Qiang; Ye, Heng-Yun; Fu, Da-Wei; Li, Peng-Fei; Chen, Li-Zhuang; Zhang, Yi
2014-10-20
The one-dimensional organic-inorganic hybrid compound bis(cyclohexylammonium) tetrachlorocadmate(II) (1), in which the adjacent infinite [CdCl4]n(-) chains are connected to each other though Cd···Cl weak interactions to form perovskite-type layers of corner-sharing CdCl6 octahedra separated by cyclohexylammonium cation bilayers, was synthesized. It undergoes two successive structural phase transitions, at 215 and 367 K, which were confirmed by systematic characterizations including differential scanning calorimetry (DSC) measurements, variable-temperature structural analyses, and dielectric and second harmonic generation (SHG) measurements. A precise structural analysis discloses that the phase transition at 215 K is induced by the disorder-order transition of cyclohexylammonium cations, while the phase transition at 367 K derives from changes in the relative location of Cd atoms. Emphatically, both the dielectric constant and SHG intensity of 1 show a striking change between low and high states at around 367 K, which reveals that 1 might be considered as a potential dielectric and nonlinear optical (NLO) switch with high-temperature response characterization, excellent reversibility, and obvious change of states.
NASA Astrophysics Data System (ADS)
Ravat, B.; Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F.
2009-09-01
In order to investigate the martensitic transformation, an isothermal hold at -130 °C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct δ → α' + δ phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the δ-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the δ and α' phases. The amount of α'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the δ-grain edges and the α'-phase had a plate-like morphology.
S. -H. Baek; Gu, G. D.; Utz, Y.; ...
2015-10-26
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. -H. Baek; Gu, G. D.; Utz, Y.
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb
NASA Astrophysics Data System (ADS)
Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.
2013-08-01
The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.
Growth and phase transformations of Ir on Ge(111)
NASA Astrophysics Data System (ADS)
Mullet, C. H.; Stenger, B. H.; Durand, A. M.; Morad, J. A.; Sato, Y.; Poppenheimer, E. C.; Chiang, S.
2017-12-01
The growth of Ir on Ge(111) as a function of temperature between 23 °C and 820 °C is characterized with low energy electron microscopy (LEEM), low energy electron diffraction (LEED), scanning tunneling microscopy (STM), and x-ray photoemission spectroscopy (XPS). Deposition onto a substrate at 350 °C revealed a novel growth mode consisting of multilayer Ir islands with (√3 × √3)R30° (abbreviated as √3) structure interconnected by ;bridges; of single-layer Ir several atoms wide. For deposition onto substrates above 500 °C, the √3 Ir phase grows with dendritic morphology, and substrate step bunches act as barriers to √3 Ir growth. LEEM images showed Stranski-Krastanov growth for 650-820 °C: after the √3 phase covers the surface, corresponding to 2 monolayers (ML) Ir coverage, multilayer hexagonal-shaped Ir islands form, surrounded by regions of IrGe alloy. Hexagonal-shaped Ir islands also formed upon heating 1.2 ML of √3 Ir beyond 830 °C, which resulted in the elimination of √3 structure from the surface. The transformation from √3 to (1 × 1) structure upon heating to 830 °C was an irreversible surface phase transition. Annealing > 2.0 ML of Ir in the √3 phase above the 830 °C disorder temperature, followed by cooling, produced a (3 × 1) structure. Subsequent heating and cooling through 830 °C give evidence for a reversible (3 × 1) to (1 × 1) phase transition.
Water's quantum structures and life.
Germano, Roberto
2015-01-01
This article discusses several clues pointing to the spontaneous quantum origin of the recently discovered dissipative structures induced in liquid water by low-energy physical perturbations. These structures show an astonishing permanence, so much that large ponderal quantities of supramolecular aggregates of water - at ambient pressure and temperature - subsist even in the solid phase, strongly suggesting the possibility that these structures are the matrix itself of life.
Design and development of advanced castable refractory materials
NASA Astrophysics Data System (ADS)
Davis, Robert Bruce
New formulations of castable refractory composite materials were studied. This technology is used to produce low cost composite concrete structures designed for high temperature stability, superior wear resistance and improved strength. An in situ fired, castable cement installation is a heterogeneous structure divided into three zones according to the temperature history and microstructure. The properties of each zone depend on the predominant bonding mode between constituents. Each zone has a characteristic microstructure that influences the integrity of the monolith. The hot side may have a highly dense and developed network of ceramic bonds between constituent particles while the cold side may never reach temperatures sufficient to drive off free water. The thermal, structural and tribological properties depend on the microstructure and the type of bonding that holds the monolith together. The phase distributions are defined by sets of metastable phase conditions driven by the local hydrated chemistry, nearest neighbor oxide compounds, impurities and sintering temperature. Equilibrium phase diagrams were used to select optimum compositions based on higher melting point phases. The phase diagrams were also used to target high temperature phase fields that are stable over wide temperature and stoichiometric ranges. Materials selection of candidate hydraulic clinkers, high temperature oxides, and reinforcement phases were based on requirements for high temperature stability. The calcium aluminate (CaO-Al2O3) and calcium dialuminate (CaO-(Al2O3)2) are common refractory clinkers used in castable refractory cements. The thermodynamics and kinetics of cement hydrate formation are well studied and suited to become the building block of a design for a superior refractory castable cement. The inert oxides mixed with the calcium aluminate clinkers are magnesia (MgO), alumina (Al 2O3), spinel (MgAl2O4) and chromic (Cr2O3). The bulk of the experiments concentrated in the Al2O3--MgO--CaO ternary system. Materials selection criteria for reinforcement materials was based on improved high temperature stability, increased strength, reduced thermal expansion mismatch, low thermal conductivity and increasing wear resistance. The reinforcement phases selected for this investigation are zircon (ZrSiO4), zirconia (ZrO2), spinel (MgAl2O4) and dead burnt magnesia (MgO). Batches of the formulations were tested for thermal conductivity, wear resistance and mechanical strength. Relative rankings of the formulations against commercial products indicate improved or similar performance with increased maximum temperature limits and improved thermal insulating power. The new cement formulations proved to exhibit superior high temperature stability with an increasing volume fraction of high temperature oxides. The addition of reinforcement aggregates and powder sizing to offset the loss of strength. The room temperature compression strength and wear resistance of the optimized formulations exceeded the properties of conventional refractory, brick and castable cement tested concurrently.
Low-temperature synthesis and structural properties of ferroelectric K 3WO 3F 3 elpasolite
NASA Astrophysics Data System (ADS)
Atuchin, V. V.; Gavrilova, T. A.; Kesler, V. G.; Molokeev, M. S.; Aleksandrov, K. S.
2010-06-01
Low-temperature ferroelectric G2 polymorph of K 3WO 3F 3 has been prepared by chemical synthesis. Structural and chemical properties of the final product have been evaluated with X-ray powder diffraction (XRD), scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Structure parameters of G2-K 3WO 3F 3 are refined by the Rietveld method from XRD data measured at room temperature (space group Cm, Z = 2, a = 8.7350(3) Å, b = 8.6808(5) Å, c = 6.1581(3) Å, β = 135.124(3) Å, V = 329.46(3) Å 3; RB = 2.47%). Partial ordering of oxygen and fluorine atoms has been found over anion positions. Mechanism of ferroelectric phase transition in A 2BMO 3F 3 oxyfluorides is discussed.
NASA Astrophysics Data System (ADS)
Mackie, Cameron J.; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L.; Buma, Wybren Jan; Lee, Timothy J.; Tielens, Alexander G. G. M.
2016-08-01
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
Mackie, Cameron J; Candian, Alessandra; Huang, Xinchuan; Maltseva, Elena; Petrignani, Annemieke; Oomens, Jos; Mattioda, Andrew L; Buma, Wybren Jan; Lee, Timothy J; Tielens, Alexander G G M
2016-08-28
The study of interstellar polycyclic aromatic hydrocarbons (PAHs) relies heavily on theoretically predicted infrared spectra. Most earlier studies use scaled harmonic frequencies for band positions and the double harmonic approximation for intensities. However, recent high-resolution gas-phase experimental spectroscopic studies have shown that the harmonic approximation is not sufficient to reproduce experimental results. In our previous work, we presented the anharmonic theoretical spectra of three linear PAHs, showing the importance of including anharmonicities into the theoretical calculations. In this paper, we continue this work by extending the study to include five non-linear PAHs (benz[a]anthracene, chrysene, phenanthrene, pyrene, and triphenylene), thereby allowing us to make a full assessment of how edge structure, symmetry, and size influence the effects of anharmonicities. The theoretical anharmonic spectra are compared to spectra obtained under matrix isolation low-temperature conditions, low-resolution, high-temperature gas-phase conditions, and high-resolution, low-temperature gas-phase conditions. Overall, excellent agreement is observed between the theoretical and experimental spectra although the experimental spectra show subtle but significant differences.
The Jahn-Teller distortion influenced ferromagnetic order in Pr1-xLaxMnO3
NASA Astrophysics Data System (ADS)
He, Feifei; Mao, Zhongquan; Tang, Lingyun; Zhang, Jiang; Chen, Xi
2018-06-01
The structural and magnetic properties of Pr1-xLaxMnO3 (0 ≤ x ≤ 1) polycrystalline powders are investigated. A structural phase transition from a large Jahn-Teller (J-T) distorted orthorhombic structure to a small J-T distorted orthorhombic phase is found at x = 0.70, while the LaMnO3 is showed to have a rhombohedral structure. All the samples exhibit ferromagnetic ordering, and meanwhile, a reentrant spin glass behavior at low temperature. The relationship between J-T distortions and the ferromagnetic order is discussed.
NASA Astrophysics Data System (ADS)
Kim, Sun-Woo; Kim, Hyun-Jung; Ming, Fangfei; Jia, Yu; Zeng, Changgan; Cho, Jun-Hyung; Zhang, Zhenyu
2015-05-01
It was recently proposed that the stress state of a material can also be altered via electron or hole doping, a concept termed electronic stress (ES), which is different from the traditional mechanical stress (MS) due to lattice contraction or expansion. Here we demonstrate the equivalence of ES and MS in structural stabilization, using In wires on Si(111) as a prototypical example. Our systematic density-functional theory calculations reveal that, first, for the same degrees of carrier doping into the In wires, the ES of the high-temperature metallic 4 ×1 structure is only slightly compressive, while that of the low-temperature insulating 8 ×2 structure is much larger and highly anisotropic. As a consequence, the intrinsic energy difference between the two phases is significantly reduced towards electronically phase-separated ground states. Our calculations further demonstrate quantitatively that such intriguing phase tunabilities can be achieved equivalently via lattice-contraction induced MS in the absence of charge doping. We also validate the equivalence through our detailed scanning tunneling microscopy experiments. The present findings have important implications for understanding the underlying driving forces involved in various phase transitions of simple and complex systems alike.
Structural study of polymorphism in methylprednisolone aceponate
NASA Astrophysics Data System (ADS)
Knyazev, A. V.; Somov, N. V.; Shipilova, A. S.; Gusarova, E. V.; Knyazeva, S. S.; Stepanova, O. V.; Chuprunov, E. V.
2017-08-01
The crystal structures of methylprednisolone aceponate were determined by X-ray diffraction analysis at temperatures 90 K and 150 K: space group P212121, a = 14.8592(2), b = 19.6844(5), c = 26.1626(4) Å, Z = 12; R = 0.0598 (T = 90 K); space group P212121, a = 6.57348(14), b = 14.8295(3), c = 26.2214(5) Å, Z = 4; R = 0.0518 (T = 150 K). Features of structural changes in the phase transition were revealed. The abrupt change in the unit cell parameters in the phase transition was shown by low-temperature X-ray powder. The methods of degree of invariance of crystal electron density and molecular Voronoi-Dirichlet polyhedra were used for the analysis of polymorphism in methylprednisolone aceponate. The atomic structure at 90 K have a translational pseudosymmetry of electron density η = 0.329(1). The decrease of number of intermolecular contacts in the high-temperature modification due to rupture of intermolecular non-valence contacts C/O was observed.
Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique
NASA Astrophysics Data System (ADS)
Goyal, Ankit; Lakhotia, Harish
2013-06-01
Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.
Nb-doped SrTiO3 glass-ceramics as high temperature stable n-type oxide thermoelectrics
NASA Astrophysics Data System (ADS)
Lingner, Julian; Jakob, Gerhard; Letz, Martin
2012-06-01
Niobium doped SrTiO3 is known for its high potential as an oxide thermoelectric material and is one of the possible candidates for the n-type site in an oxidic thermoelectric module. The high thermal conductivity [1] and the lack of high-temperature stability of the oxygen vacancies [2] limit its properties in the ceramic systems. Glass-ceramics are intrinsic nano-structured systems and provide crystal phases densely embedded in a glass matrix which prevents the material from detoriation at high temperatures. In particular, the glass-matrix prevents an uncontrolled reoxidization as well as an uncontrolled grain growth therefore retaining the nano-structure even at high temperatures. Here, measurements and results of first glass-ceramic systems are presented, which show a low thermal conductivity due to the residue glass phase. Furthermore a stable thermal cycling up to 650 °C is demonstrated.
Surface alloying in Sn/Au(111) at elevated temperature
NASA Astrophysics Data System (ADS)
Sadhukhan, Pampa; Singh, Vipin Kumar; Rai, Abhishek; Bhattacharya, Kuntala; Barman, Sudipta Roy
2018-04-01
On the basis of x-ray photoelectron spectroscopy, we show that when Sn is deposited on Au(111) single crystal surface at a substrate temperature TS=373 K, surface alloying occurs with the formation of AuSn phase. The evolution of the surface structure and the surface morphology has been studied by low energy electron diffraction and scanning tunneling microscopy, respectively as a function of Sn coverage and substrate temperatures.
B2+L2{sub 1} ordering in Co{sub 2}MnAl Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinesh, A., E-mail: attatappa85@gmail.com; Sudheesh, V. D.; Lakshmi, N.
Magnetic and structural properties of B2 ordered Co{sub 2}MnAl Heusler alloy have been studied by X-ray diffraction and DC magnetization techniques. X-ray diffractogram shows the structure is of B2 type with preferential site disorder between Mn and Al atoms and presence of a small L2{sub 1} phase. DC magnetization studies at low temperature establish that the antiferromagnetic nature arises mainly due to the antiparallel coupling of spin moments of 3d electrons of Co with Mn atoms. Curie temperature (T{sub c}) is 733 K which is close to T{sub c} of the L2{sub 1} phase.
Distinguishing magnetic blocking and surface spin-glass freezing in nickel ferrite nanoparticles
NASA Astrophysics Data System (ADS)
Nadeem, K.; Krenn, H.; Traussing, T.; Letofsky-Papst, I.
2011-01-01
Nickel ferrite nanoparticles dispersed in SiO2 matrix have been synthesized by sol-gel method. Structural analysis has been performed by using x-ray diffraction and transmission electron microscopy. Magnetic properties have been investigated by using superconducting quantum interference device magnetometry. In addition to the average blocking temperature peak at TB=120 K measured by a zero field cooled temperature scan of the dc susceptibility, an additional hump near 15 K is observed. Temperature dependent out-of-phase ac susceptibility shows the same features: one broad peak at high temperature and a second narrow peak at low temperature. The high temperature peak corresponds to magnetic blocking of individual nanoparticles, while the low temperature peak is attributed to surface spin-glass freezing which becomes dominant for decreasing particle diameter. To prove the dynamics of the spin (dis)order in both regimes of freezing and blocking, the frequency dependent ac susceptibility is investigated under a biasing dc field. The frequency shift in the "frozen" low-temperature ac susceptibility peak is fitted to a dynamic scaling law with a critical exponent zv=7.5, which indicates a spin-glass phase. Exchange bias is turned on at low temperature which signifies the existence of a strong core-shell interaction. Aging and memory effects are further unique fingerprints of a spin-glass freezing on the surface of isolated magnetic nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bindi, Luca; Garavelli, Anna; Pinto, Daniela
2008-02-15
To study the temperature-dependent structural changes and to analyze the crystal chemical behavior of the halogens as a function of temperature, a crystal of the recently discovered mineral mutnovskite, ideally Pb{sub 2}AsS{sub 3}(I,Cl,Br), has been investigated by X-ray single-crystal diffraction methods at 300 and 110 K. At room temperature (RT) mutnovskite was confirmed to possess a centrosymmetric structure-type, space group Pnma, while at low temperature (110 K) it adopts a non-centrosymmetric orthorhombic structure-type, space group Pnm2{sub 1}, with a=11.5394(9) A, b=6.6732(5) A, c=9.3454(7) A, V=719.64(9) A{sup 3} and Z=2. Mutnovskite reconverts to the centrosymmetric-type upon returning to RT thus indicatingmore » that the phase transition is completely reversible in character. The refinement of the LT-structure leads to a residual factor R=0.0336 for 1827 independent observed reflections [F{sub o}>4{sigma}(F{sub o})] and 80 variables. The crystal structure of cooled mutnovskite is topologically identical to that observed at RT and the slight structural changes occurring during the phase transition Pnma{yields}Pnm2{sub 1} are mainly restricted to the coordination polyhedra around Pb. The structure solution revealed that I and Cl are ordered into two specific sites. Indeed, the unique mixed (I,Cl) position in the RT-structure (Wyckoff position 4c) transforms into two 2a Wyckoff positions in the LT-structure hosting I and Cl, respectively. - Graphical abstract: In the crystal structure of mutnovskite at 110 K the two halogens I and Cl are ordered into two specific sites and only slight changes in the coordination environment around Pb atoms occur during the phase transition Pnma{yields}Pnm2{sub 1} from the RT-structure to the LT-structure. Two kinds of layers alternating along a are present in the LT-structure: Layer I contains Cl atoms and [001] columns of Pb1 and Pb4 prisms, layer II contains I atoms and [001] columns of Pb2 and Pb3 prisms.« less
Effect of NiO substitution on the structural and dielectric behaviour of NaNbO3
NASA Astrophysics Data System (ADS)
George, R. T.; Joshi, D. C.; Nayak, S.; Tiwari, N.; Chauhan, R. N.; Pramanik, P.; Dar, T. A.; Ghosh, S.; Thota, S.
2018-02-01
The structural and dielectric properties of NiO substituted NaNbO3 ceramics are reported. The orthorhombic (Pmna) crystal structure of NaNbO3 transforms to a lower symmetry monoclinic phase (Pbma) after the dilute dispersion of NiO. X-ray photoelectron spectroscopy reveals pentavalent "Nb," monovalent "Na," and divalent "Ni" states along with the signatures of non-local screening effects. The antiferroelectric to paraelectric transition (TAFE) accompanied by a structural change from the orthorhombic to the tetragonal phase shifts by 55 °C toward the low-temperature side, whereas the morphotropic phase boundary (TO-M) moves toward a higher temperature by 28 °C for nominal substitutions ( x ≤0.10 ). The generalized Lyddane-Sachs-Teller expression (ε0/-S'ε∞)= (ωl/ωt ) 2 and thermodynamic free energy models are employed to explain the anomalous behaviour of the temperature dependence of relative dielectric permittivity ( εr (T)) across TAFE and TO-M. The frequency dependence of ac-conductivity σac(ω) follows the Jonscher power law (σac = σ(0) + Aωs), suggesting the dominance of the phonon-assisted hopping mechanism, whereas the frequency independent term (σ(0)) was explained by Funke's Jump-Relaxation Model.
Crystal structure stability and electronic properties of the layered nickelate La4Ni3O10
NASA Astrophysics Data System (ADS)
Puggioni, Danilo; Rondinelli, James M.
2018-03-01
We investigate the crystal structure and the electronic properties of the trilayer nickelate La4Ni3O10 by means of quantum-mechanical calculations in the framework of the density-functional theory. We find that, at low temperature, La4Ni3O10 undergoes a hitherto unreported structural phase transition and transforms to a new monoclinic P 21/a phase. This phase exhibits electronic properties in agreement with recent angle-resolved photoemission spectroscopy data reported in H. Li et al., [Nat. Commun. 8, 704 (2017), 10.1038/s41467-017-00777-0] and should be considered in models focused on explaining the observed ˜140 K metal-to-metal phase transition.
Phase diagram of supercooled water confined to hydrophilic nanopores
NASA Astrophysics Data System (ADS)
Limmer, David T.; Chandler, David
2012-07-01
We present a phase diagram for water confined to cylindrical silica nanopores in terms of pressure, temperature, and pore radius. The confining cylindrical wall is hydrophilic and disordered, which has a destabilizing effect on ordered water structure. The phase diagram for this class of systems is derived from general arguments, with parameters taken from experimental observations and computer simulations and with assumptions tested by computer simulation. Phase space divides into three regions: a single liquid, a crystal-like solid, and glass. For large pores, radii exceeding 1 nm, water exhibits liquid and crystal-like behaviors, with abrupt crossovers between these regimes. For small pore radii, crystal-like behavior is unstable and water remains amorphous for all non-zero temperatures. At low enough temperatures, these states are glasses. Several experimental results for supercooled water can be understood in terms of the phase diagram we present.
Electron-electron correlations in Raman spectra of VO2
NASA Astrophysics Data System (ADS)
Goncharuk, I. N.; Ilinskiy, A. V.; Kvashenkina, O. E.; Shadrin, E. B.
2013-01-01
It has been shown that, in single crystals and films of a strongly correlated material, namely, vanadium dioxide, upon a thermally stimulated phase transition from the low-temperature monoclinic phase to the high-temperature tetragonal phase, the narrow-line Raman spectrum of the insulating (monoclinic) phase transforms into the broad-band Raman spectrum, which contains two peaks at 500 and 5000 cm-1 with widths of 400 and 3500 cm-1, respectively. It has been found that, as the temperature of the monoclinic phase approaches the structural phase transition temperature (340 K), the line profile of soft-mode phonons at a frequency of 149 cm-1 with A g symmetry and the line profile of phonons at a frequency of 201 cm-1 with A g symmetry acquire an asymmetric shape with a Fano antiresonance that is characteristic of the interaction of a single phonon vibration with a continuum of strongly correlated electrons. It has been demonstrated that the thermal transformation of peaks in the Raman spectra of the VO2 metallic phase is in quantitative agreement with the theory of Raman scattering in strongly correlated materials.
Förster, G; Schwieger, C; Faber, F; Weber, T; Blume, A
2007-04-01
The interaction between the negatively charged phospholipid DPPG and positively charged poly(L: -lysine) (PLL) of different lengths was studied by X-ray scattering in the SAXS and WAXS region. As a reference pure DPPG (Na salt) was investigated over a wide temperature range (-30 to 70 degrees C). The phase behavior of DPPG in aqueous and in buffer/salt dispersions showed a metastable subgel phase at low temperatures and a recrystallization upon heating before reaching the liquid-crystalline phase. The presence of additional salt stabilizes the bilayer structure and decreases the recrystallization temperature. Large changes in the SAXS region are not connected with changes in chain packing. In DPPG/PLL samples, the PLL is inserted between adjacent headgroup layers and liberates counterions which give rise to a freezing point depression. In the complex with DPPG PLL form an alpha-helical secondary structure at pH 7 and temperatures below the gel to liquid-crystalline phase transition. This prevents DPPG from recrystallization and strongly increases the stacking order. The lamellar repeat distance is decreased and fixed by the helix conformation of PLL in the gel phase. PLL with n = 14 is too short to form helices and is squeezed out reversibly from the interbilayer space upon cooling by freezing of trapped water. In dispersions with longer PLLs (n > 400) at -20 degrees C a 1D crystallization of PLL alpha-helices in the aqueous layer between the headgroups takes place. A structural model is presented for the lateral periodic complex, which is similar to the known cationic lipid/DNA complex.
Temperature induced phase transition of CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} phosphate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orlova, Maria, E-mail: maria.p.orlova@gmail.com; Perfler, Lukas; Tribus, Martina
2016-03-15
In this work we investigated the structural behaviour of a CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3}. Due to the presence of divalent Mn{sup 2+} cations this compound can possess interesting luminescence properties. It was recently understood that this phosphate undergoes a temperature induced irreversible phase transition in the range of 800–875 °C. It has also been shown that the 3d–3d luminescence of Mn{sup 2+} increases 10 fold for the high temperature polymorph. To determine the Mn environment structural investigations of both phases have been performed by the X-ray powder diffraction and Raman spectroscopy methods. The low temperature modification adopts the trigonalmore » NZP structure type with a slightly lower symmetry (space group R32, a=8.7850(2) Å, c=22.6496(7) Å, V=1514.8(1) Å{sup 3}). The high temperature form in turn has orthorhombic symmetry (space group Pnma, a=6.2350(3) Å, b=6.6281(3) Å, c=14.4731(6) Å, V=598.13(5) Å{sup 3}). Both structures were solved ab-initio from powder data and structural analysis was performed. In-situ and RT Raman spectra are consistent with the XRD derived structural model. Mn{sup 2+} cations occupy different types of positions in these structures and a change in Mn coordination number (6 for LT phase, 7 for HT phase) results in different Mn–O bond lengths. These differences may explain the change in the optical properties between the polymorphs. - Graphical abstract: The compound CaMn{sub 0.5}Zr{sub 1.5}(PO{sub 4}){sub 3} was synthesized in order to create a material with enhanced luminescent properties. The goal of present studies is to define Mn{sup 2+} environment and its changes due to the structural transformations of the phosphate along phase transition at the T range of 800–875 °C. It was found that LT modification adopts the trigonal NZP structure type, sp.gr. R32, the HT form in turn exhibits orthorhombic symmetry sp.gr. Pnma. Mn2+ cations occupy different types of positions in those structures and a change in coordination number of Mn (6 for LT phase, 7 for HT phase) results in a change in Mn–O bond lengths.« less
High-Capacity, High-Voltage Composite Oxide Cathode Materials
NASA Technical Reports Server (NTRS)
Hagh, Nader M.
2015-01-01
This SBIR project integrates theoretical and experimental work to enable a new generation of high-capacity, high-voltage cathode materials that will lead to high-performance, robust energy storage systems. At low operating temperatures, commercially available electrode materials for lithium-ion (Li-ion) batteries do not meet energy and power requirements for NASA's planned exploration activities. NEI Corporation, in partnership with the University of California, San Diego, has developed layered composite cathode materials that increase power and energy densities at temperatures as low as 0 degC and considerably reduce the overall volume and weight of battery packs. In Phase I of the project, through innovations in the structure and morphology of composite electrode particles, the partners successfully demonstrated an energy density exceeding 1,000 Wh/kg at 4 V at room temperature. In Phase II, the team enhanced the kinetics of Li-ion transport and electronic conductivity at 0 degC. An important feature of the composite cathode is that it has at least two components that are structurally integrated. The layered material is electrochemically inactive; however, upon structural integration with a spinel material, the layered material can be electrochemically activated and deliver a large amount of energy with stable cycling.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
NASA Astrophysics Data System (ADS)
Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu
2011-02-01
1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.
Phase coexistence and electric-field control of toroidal order in oxide superlattices.
Damodaran, A R; Clarkson, J D; Hong, Z; Liu, H; Yadav, A K; Nelson, C T; Hsu, S-L; McCarter, M R; Park, K-D; Kravtsov, V; Farhan, A; Dong, Y; Cai, Z; Zhou, H; Aguado-Puente, P; García-Fernández, P; Íñiguez, J; Junquera, J; Scholl, A; Raschke, M B; Chen, L-Q; Fong, D D; Ramesh, R; Martin, L W
2017-10-01
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3 /SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1 /a 2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Phase coexistence and electric-field control of toroidal order in oxide superlattices
NASA Astrophysics Data System (ADS)
Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; Liu, H.; Yadav, A. K.; Nelson, C. T.; Hsu, S.-L.; McCarter, M. R.; Park, K.-D.; Kravtsov, V.; Farhan, A.; Dong, Y.; Cai, Z.; Zhou, H.; Aguado-Puente, P.; García-Fernández, P.; Íñiguez, J.; Junquera, J.; Scholl, A.; Raschke, M. B.; Chen, L.-Q.; Fong, D. D.; Ramesh, R.; Martin, L. W.
2017-10-01
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO3/SrTiO3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a1/a2 phase. At room temperature, the coexisting vortex and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Our findings suggest new cross-coupled functionalities.
Phase coexistence and electric-field control of toroidal order in oxide superlattices
Damodaran, A. R.; Clarkson, J. D.; Hong, Z.; ...
2017-08-07
Systems that exhibit phase competition, order parameter coexistence, and emergent order parameter topologies constitute a major part of modern condensed-matter physics. Here, by applying a range of characterization techniques, and simulations, we observe that in PbTiO 3/SrTiO 3 superlattices all of these effects can be found. By exploring superlattice period-, temperature- and field-dependent evolution of these structures, we observe several new features. First, it is possible to engineer phase coexistence mediated by a first-order phase transition between an emergent, low-temperature vortex phase with electric toroidal order and a high-temperature ferroelectric a 1/a 2 phase. At room temperature, the coexisting vortexmore » and ferroelectric phases form a mesoscale, fibre-textured hierarchical superstructure. The vortex phase possesses an axial polarization, set by the net polarization of the surrounding ferroelectric domains, such that it possesses a multi-order-parameter state and belongs to a class of gyrotropic electrotoroidal compounds. Finally, application of electric fields to this mixed-phase system permits interconversion between the vortex and the ferroelectric phases concomitant with order-of-magnitude changes in piezoelectric and nonlinear optical responses. Here, our findings suggest new cross-coupled functionalities.« less
A Liquid-Liquid Transition in an Undercooled Ti-Zr-Ni Liquid
NASA Technical Reports Server (NTRS)
Lee, G. W.; Gangopadhyay, A. K.; Kelton, K. F.; Hyers, R. W.; Rathz, T. J.; Rogers, J. R.
2003-01-01
If crystallization can be avoided, liquids enter a metastable (undercooled) state below their equilibrium liquidus temperatures, TI, finally freezing into a glass below a characteristic temperature called the glass transition temperature, T,. In rare cases, the undercooled liquid may undergo a liquid-liquid phase transition (liquid polymorphism) before entering the glassy state. This has been suggested from experimental studies of HzO and Si4. Such phase transitions have been predicted in some stable liquids, i.e. above TI at atmospheric pressure, for Si02 and BeF;, but these have not been verified experimentally. They have been observed in liquids of P7, Sis and C9, but only under high pressure. All of these transitions are driven by an anomalous density change, i.e. change in local structure, with temperature or pressure. In this letter we present the first experimental evidence for a phase transition in a low viscosity liquid that is not driven by an anomalous density change, but by an approach to a constant configuration state. A maximum in the specific heat at constant pressure, similar to what is normally observed near T,, is reported here for undercooled low viscosity liquids of quasicrystal- forming Ti-Zr-Ni alloys. that includes cooperativity, by incorporating a temperature dependent excitation energy fits the data well, signaling a phase transition.
Role of RuO2(100) in surface oxidation and CO oxidation catalysis on Ru(0001).
Flege, Jan Ingo; Lachnitt, Jan; Mazur, Daniel; Sutter, Peter; Falta, Jens
2016-01-07
We have studied the oxidation of the Ru(0001) surface by in situ microscopy during exposure to NO2, an efficient source of atomic oxygen, at elevated temperatures. In a previous investigation [Flege et al., Phys. Rev. B: Condens. Matter Mater. Phys., 2008, 78, 165407], at O coverages exceeding 1 monolayer, using the combination of intensity-voltage (I(V)) low-energy electron microscopy (LEEM) and multiple scattering calculations for the (00) beam in the very-low-energy range (E≤ 50 eV) we identified three surface components during the initial Ru oxidation: a (1 × 1)-O chemisorption phase, the RuO2(110) oxide phase, and a surface oxide structure characterized by a trilayer O-Ru-O stacking. Here, we use dark-field LEEM imaging and micro-illumination low-energy electron diffraction in the range of 100 to 400 eV to show that this trilayer phase is actually a RuO2(100)-(1 × 1) phase with possibly mixed O and Ru surface terminations. This identification rationalizes the thermodynamic stability of this phase at elevated temperatures and is consistent with the observation of catalytic activity of the phase in CO oxidation.
Direct measurement of the low temperature spin state transitions in La1-xSrxCoO3 (0.05 < x < 0.3)
NASA Astrophysics Data System (ADS)
Gulec, A.; Klie, R. F.
2014-12-01
Sr-doped LaCoO3 has a complex magnetic phase diagram, which is believed to be directly correlated to changes in the crystal structure and ordering of the Co3+ spin states. In this work, we study the low temperature Co3+-ion spin state transitions in Sr-doped LaCoO3 around the critical doping concentration where a metal to insulator transition has been observed using electron energy-loss spectroscopy of the O K-edge combined with the Co L-edge fine structure. We measure the local spin state of the Co3+-ions and we demonstrate that the Co3+ spin-state transition only occurs in La0.95Sr0.05CoO3 single-crystal materials in the temperature range accessible by LN2 in-situ cooling, while no structural symmetry change is observed. The presence of this low-temperature spin-state transition in La1-xSrxCoO3 (x < 0.17) has been proposed as the origin of the percolative magnetic ordering in doped LaCoO3.
Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer
Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH 3NH 3PbI 3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition.more » For CH 3NH 3PbI 3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH 3NH 3+) inside the perovskite crystal structure.« less
Effect of annealing on optical properties and structure of the vanadium dioxide thin films
NASA Astrophysics Data System (ADS)
Zhu, Huiqun; Li, Yi; Li, Yuming; Huang, Yize; Tong, Guoxiang; Fang, Baoying; Zheng, Qiuxin; Li, Liu; Shen, Yujian
2012-10-01
VO2 thin films were prepared on soda-lime glass substrates by DC magnetron sputtering at room temperature using vanadium target and post annealing in air. X-ray diffraction and FTIR spectroscopy analyses showed that the films obtained at the optimized parameters have high VO2 (011) orientation. Both low temperature deposition and post annealing method were beneficial to grow the nano-films with pure VO2 phase-structure and composition. Metalinsulator transition properties of the VO2 films in terms of infrared transmittance, transmittance variation and film thickness were investigated under varying annealing temperature. Results showed that infrared transmittance variation and transition temperature of the nano-films were significantly improved and reduced respectively. Therefore, this study was able to develop practical low-cost preparation methods for high-performance intelligent energy-saving thin films.
Phase transformations of 4,4'-biphenyldicarboxylic acid on Cu(001)
NASA Astrophysics Data System (ADS)
Schwarz, Daniel; van Gastel, Raoul; Zandvliet, Harold J. W.; Poelsema, Bene
2012-06-01
The growth and structure of 4,4'-biphenyldicarboxylic-acid (BDA) on Cu(001) at temperatures between 300 and 400 K was studied by low energy electron microscopy and μ-LEED. First, the adsorbed BDA molecules form a disordered dilute phase. Once this phase reaches a sufficiently high density, a crystalline phase nucleates, in which the molecules form a hydrogen-bonded two-dimensional (2D) supramolecular c(8×8) network. By a careful analysis of the bright-field image intensity, we can measure the density in the dilute phase, which is up to 30% of that in the crystalline phase. From the respective equilibrium densities at different temperatures, we determine the 2D phase diagram and extract a cohesive energy of 0.35 eV. We also analyze the island decay behavior and estimate the BDA molecule diffusion constants. Steps are found to be highly transparent for diffusing BDA molecules. In the temperature range of 362-400 K, we find chemical diffusion constants between 850-1700nm2s-1.
Femtosecond resolution of soft mode dynamics in structural phase transitions
NASA Technical Reports Server (NTRS)
Dougherty, Thomas P.; Wiederrecht, Gary P.; Nelson, Keith A.; Garrett, Mark H.; Jensen, Hans P.; Warde, Cardinal
1992-01-01
The microscopic pathway along which ions or molecules in a crystal move during structural phase transition can often be described in terms of a collective vibrational mode of the lattice. In many cases, this mode, called a 'soft' phonon mode because of its characteristically low frequency near the phase transition temperature, is difficult to characterize through conventional frequency-domain spectroscopies such as light or neutron scattering. A femtosecond time-domain analog of light-scattering spectroscopy called impulsive stimulated Raman scattering (ISRS) has been used to examine the soft modes of two perovskite ferroelectric crystals. The low-frequency lattice dynamics of KNbO3 and BaTiO3 are clarified in a manner that permits critical evaluation of microscopic models for their ferroelectric transitions. The results illustrate the advantages of ISRS over conventional Raman spectroscopy of low-frequency, heavily damped soft modes.
NASA Astrophysics Data System (ADS)
Ogruc Ildiz, G.; Konarska, J.; Fausto, R.
2018-05-01
Structural transformations of 3-fluorobenzaldehyde (C7H5FO; 3FBA) and 3-fluoro-4-methoxybenzaldehyde (C8H7FO2; 3F4MBA), taking place in different solid phase environments and at low temperature, were investigated by infrared spectroscopy, complemented by quantum chemistry calculations undertaken at the DFT(B3LYP)/6-311++G(d,p) level of approximation. The studied compounds were isolated from gas phase into cryogenic inert matrices (Ar, Xe), allowing to characterize their equilibrium conformational composition in gas-phase at room temperature. In both cases, two conformers differing by the orientation of the aldehyde moiety (with the carbonyl aldehyde bond cis or trans in relation to the aromatic ring fluorine substituent) were found to coexist, with the cis conformer being slightly more populated than the trans form. In situ narrowband UV irradiation of the as-deposited matrices led either to preferential isomerization of the cis conformer into the trans form or decarbonylation of both conformers, depending on the used excitation wavelength. Deposition of the vapours of 3F4MBA only, onto the cold (15 K) substrate, produced an amorphous solid containing also both the cis and trans conformers of the compound. Subsequent heating of the amorphous phase up to 268 K led to crystallization of the compound, which is accompanied by conformational selection, the cis form being the single species present in the crystal. The experimentally observed transformations of the studied compounds, together with the structural and vibrational results obtained from the performed quantum chemical calculations, allowed a detailed structural and vibrational characterization of the individual conformers.
NASA Astrophysics Data System (ADS)
Gálisová, Lucia
2018-05-01
Ground-state properties of a hybrid double-tetrahedral chain, in which the localized Ising spins regularly alternate with triangular plaquettes occupied by a variable number of mobile electrons, are exactly investigated. We demonstrate that the zero-temperature phase diagram of the model involves several non-degenerate, two-fold degenerate and macroscopically degenerate chiral phases. Low-temperature dependencies of the entropy and specific heat are also examined in order to gain a deeper insight into the degeneracy of individual ground-state phases and phase transitions. It is shown that a diversity of the ground-state degeneracy manifests itself in multiple-peak structures of both thermodynamic quantities. A remarkable temperature dependencies of the specific heat with two and three Schottky-type maxima are discussed in detail.
NASA Astrophysics Data System (ADS)
Grave, Daniel A.
Gadolinium oxide (Gd2O3) is an attractive material for solid state neutron detection due to gadolinium's high thermal neutron capture cross section. Development of neutron detectors based on Gd2 O3 requires sufficiently thick films to ensure neutron absorption. In this dissertation work, the process-structure-property relationships of micron thick Gd2O3 films deposited by reactive electron-beam physical vapor deposition (EB-PVD) were studied. Through a systematic design of experiments, fundamental studies were conducted to determine the effects of processing conditions such as deposition temperature, oxygen flow rate, deposition rate, and substrate material on Gd2O3 film crystallographic phase, texture, morphology, grain size, density, and surface roughness. Films deposited at high rates (> 5 A/s) were examined via x-ray diffraction (XRD) and Raman spectroscopy. Quantitative phase volume calculations were performed via a Rietveld refinement technique. All films deposited at high rates were found to be fully monoclinic or mixed cubic/monoclinic phase. Generally, increased deposition temperature and increased oxygen flow resulted in increased cubic phase volume. As film thickness increased, monoclinic phase volume increased. Grazing incidence x-ray diffraction (GIXRD) depth profiling analysis showed that cubic phase was only present under large incidence angle (large penetration depth) measurements, and after a certain point, only monoclinic phase was grown. This was confirmed by transmission electron microscopy (TEM) analysis with selected area diffraction (SAD). Based on this information, a large compressive stress was hypothesized to cause the formation of the monoclinic phase and this hypothesis was confirmed by demonstrating the existence of a stress induced phase transition. An experiment was designed to introduce compressive stress into the Gd2O 3 films via ion beam assisted deposition (IBAD). This allowed for systematic increase in compressive stress while keeping a large adatom diffusion length on the film surface. Crystallographic texture evolution in the Gd2O3 films was investigated for different substrate types. At high rates, it was shown that films deposited on different substrates (quartz, silicon, sapphire, and GaN) all had similar theta-2theta diffraction patterns, suggesting that films grew similarly on different substrates due to the low adatom mobility. However, significant differences in texture were observed for films deposited at low rates (< 1 A/s) and high temperature (650°C) on different substrates. For evaluation of in-plane texture in the Gd2O 3 films, pole figure analysis was performed. Mixed phase films deposited at high rates and low temperature showed weak out-of-plane texture and random in-plane texture. Mixed phase films deposited at high temperatures possessed a fiber texture (strong out-of-plane texture), but lacked the necessary adatom mobility to develop in-plane texture. For single phase cubic films grown under low rates of deposition, out-of-plane texture was observed on quartz substrates. However, weak and strong in-plane textures were observed for sapphire and GaN substrates, respectively. The use of ion bombardment resulted in the formation of moderate biaxial texture for films grown on quartz. For films grown on sapphire, a very strong biaxial texture was achieved with ion bombardment which adds additional energy to the system. The effects of processing on the structure, composition, and interfacial chemistry of the Gd2O3 films were investigated. The results showed that films primarily adhered to the Structure-Zone models with a few exceptions. The deviation from the Structure-Zone model was explained by the combined effects of columnar growth, shadowing, and adatom mobility. At low deposition temperatures, decreasing oxygen flow resulted in increased film density due to higher adatom mobility. Films deposited at this temperature were characterized by small (10-15 nm) nanocrystalline grains with some porous disordered regions. The dielectric properties of Si(111)/Gd2O3/Ti/Au MOS capacitors were investigated. Moisture absorption in Gd2O 3 films was found to result in both increased dielectric loss (10x) and inflated dielectric constant values ( 40 %). Heat treatment of the films at 100 °C resulted in outgassing of moisture, reduction in dielectric constant, and excellent frequency dispersion of the dielectric constant over a range of 10 kHz-1 MHz. The effect of film processing on the dielectric constant was systematically investigated. Tuning of the dielectric constant from a value of 11 to a value of 24 was possible by manipulating the structure and crystallographic phase of the material via the processing conditions. Capacitance-voltage (C-V) and conductance-voltage (G-V) characteristics of GaN/AlGaN/Gd2O3/Ti/Au MOS capacitors were investigated. The effects of processing on fixed oxide charge, trapped oxide charge, and density of interface states were evaluated. Single phase cubic films deposited at low rates with near heteroepitaxial growth were shown to have the lowest density of trapped charge. (Abstract shortened by ProQuest.).
Isotropic–Nematic Phase Transitions in Gravitational Systems. II. Higher Order Multipoles
NASA Astrophysics Data System (ADS)
Takács, Ádám; Kocsis, Bence
2018-04-01
The gravitational interaction among bodies orbiting in a spherical potential leads to the rapid relaxation of the orbital planes’ distribution, a process called vector resonant relaxation. We examine the statistical equilibrium of this process for a system of bodies with similar semimajor axes and eccentricities. We extend the previous model of Roupas et al. by accounting for the multipole moments beyond the quadrupole, which dominate the interaction for radially overlapping orbits. Nevertheless, we find no qualitative differences between the behavior of the system with respect to the model restricted to the quadrupole interaction. The equilibrium distribution resembles a counterrotating disk at low temperature and a spherical structure at high temperature. The system exhibits a first-order phase transition between the disk and the spherical phase in the canonical ensemble if the total angular momentum is below a critical value. We find that the phase transition erases the high-order multipoles, i.e., small-scale structure in angular momentum space, most efficiently. The system admits a maximum entropy and a maximum energy, which lead to the existence of negative temperature equilibria.
Superconductivity in highly disordered dense carbon disulfide
Dias, Ranga P.; Yoo, Choong-Shik; Struzhkin, Viktor V.; Kim, Minseob; Muramatsu, Takaki; Matsuoka, Takahiro; Ohishi, Yasuo; Sinogeikin, Stanislav
2013-01-01
High pressure plays an increasingly important role in both understanding superconductivity and the development of new superconducting materials. New superconductors were found in metallic and metal oxide systems at high pressure. However, because of the filled close-shell configuration, the superconductivity in molecular systems has been limited to charge-transferred salts and metal-doped carbon species with relatively low superconducting transition temperatures. Here, we report the low-temperature superconducting phase observed in diamagnetic carbon disulfide under high pressure. The superconductivity arises from a highly disordered extended state (CS4 phase or phase III[CS4]) at ∼6.2 K over a broad pressure range from 50 to 172 GPa. Based on the X-ray scattering data, we suggest that the local structural change from a tetrahedral to an octahedral configuration is responsible for the observed superconductivity. PMID:23818624
An Nmr Study of Supercooled Water Under Nanoconfinement by Hydrophobic Surfaces
NASA Astrophysics Data System (ADS)
Ling, Yan-Chun
The main focus of this dissertation is studying the properties of bulk water, confined water, and interfacial water. The thermodynamics, dynamics and state of water are investigated by DSC and 1H NMR methods. Hydrophobic slit-shaped pores with tunable pore size from 0.5 nm to 1.6 nm are applied as confinement media in our experiments. By confining water in nanopores, we are able to cool the water lower than its homogeneous nucleation temperature 235 K at ambient pressure and access the "no man's land". Both experimental and simulation results show water has heterogeneity property, with two "phases", one is high-density liquid (HDL) "phase" which has dense-packing structure, the other is low-density liquid (LDL) "phase" which has more tetrahedral structure. At room temperature, HDL and LDL two "phases" can coexist in millisecond time scale and 10 nanometer length scale. The room temperature water structure is dominated by HDL structure. By decreasing the temperature, HDL could convert to LDL gradually. At 200 K, LDL dominates the liquid state of water. It is of importance to emphasis, for water confined in nanopores there is no crystallization above 200 K. A dynamic crossover at 225 K in the liquid state is observed in our hydrophobic system, similar to that observed in hydrophilic system. This proves such dynamic crossover is not induced by crystallization or surface effect, but originally from the intrinsic properties of water. At 190 K, we find a second change of rotational correlation time, which resembles the glassification process of supercooled confined water, suggesting a higher rotational glass transition temperature for bulk water. In the lower temperature range 145 K water. In the lower temperature range 145 K < T < 165 K, the interfacial water induced glass transition is observed. At sufficient low temperature, confinement plays an important role for the induced glass transition. We also study the properties of interfacial water by confining water in smaller hydrophobic pores. It shows the interfacial water remains liquid state at 140 K. There is an Arrhenius to Arrhenius dynamic crossover at 170 K due to the rotational motion slowing down. Comparing to bulk water, interfacial water has fast rotation but effectively immobile. Our studies thus provide a complete picture for the rather controversial supercooled region and also differentiate the properties of bulk water, confined water and interfacial water using different techniques.
NASA Astrophysics Data System (ADS)
Wu, Jiagang; Xiao, Dingquan; Wang, Yuanyu; Zhu, Jianguo; Yu, Ping; Jiang, Yihang
2007-12-01
(1-x)(K0.42Na0.58)NbO3-xLiSbO3 [(1-x)KNN-xLS] lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was identified in the composition range of 0.04
Crystal structure and thermal expansion of CsCaI3:Eu and CsSrBr3:Eu scintillators
NASA Astrophysics Data System (ADS)
Loyd, Matthew; Lindsey, Adam; Patel, Maulik; Koschan, Merry; Melcher, Charles L.; Zhuravleva, Mariya
2018-01-01
The distorted-perovskite scintillator materials CsCaI3:Eu and CsSrBr3:Eu prepared as single crystals have shown promising potential for use in radiation detection applications requiring a high light yield and excellent energy resolution. We present a study using high temperature powder X-ray diffraction experiments to examine a deleterious high temperature phase transition. High temperature phases were identified through sequential diffraction pattern Rietveld refinement in GSAS II. We report the linear coefficients of thermal expansion for both high and low temperature phases of each compound. Thermal expansion for both compositions is greatest in the [0 0 1] direction. As a result, Bridgman growth utilizing a seed oriented with the [0 0 1] along the growth direction should be used to mitigate thermal stress.
Cu-Au Alloys Using Monte Carlo Simulations and the BFS Method for Alloys
NASA Technical Reports Server (NTRS)
Bozzolo, Guillermo; Good, Brian; Ferrante, John
1996-01-01
Semi empirical methods have shown considerable promise in aiding in the calculation of many properties of materials. Materials used in engineering applications have defects that occur for various reasons including processing. In this work we present the first application of the BFS method for alloys to describe some aspects of microstructure due to processing for the Cu-Au system (Cu-Au, CuAu3, and Cu3Au). We use finite temperature Monte Carlo calculations, in order to show the influence of 'heat treatment' in the low-temperature phase of the alloy. Although relatively simple, it has enough features that could be used as a first test of the reliability of the technique. The main questions to be answered in this work relate to the existence of low temperature ordered structures for specific concentrations, for example, the ability to distinguish between rather similar phases for equiatomic alloys (CuAu I and CuAu II, the latter characterized by an antiphase boundary separating two identical phases).
NASA Astrophysics Data System (ADS)
Mishra, S. K.; Jauhari, Mrinal; Mittal, R.; Krishna, P. S. R.; Reddy, V. R.; Chaplot, S. L.
2018-04-01
We have carried out systematic temperature-dependent neutron diffraction measurements in conjunction with dielectric spectroscopy from 6 to 300 K for sodium niobate based compounds (1-x) NaNbO3-xBaTiO3 (NNBTx). The dielectric constant is measured as a function of both temperature and frequency. It shows an anomaly at different temperatures in cooling and heating cycles and exhibits a large thermal hysteresis of ˜150 K for the composition x = 0.03. The dielectric constant is found to be dispersive in nature and suggests a relaxor ferroelectric behavior. In order to explore structural changes as a function of temperature, we analyzed the powder neutron diffraction data for the compositions x = 0.03 and 0.05. Drastic changes are observed in the powder profiles near 2θ ˜ 30.6°, 32.1°, and 34.6° in the diffraction pattern below 200 K during cooling and above 190 K in heating cycles, respectively. The disappearance of superlattice reflection and splitting in main perovskite peaks provide a signature for structural phase transition. We observed stabilization of a monoclinic phase (Cc) at low temperature. This monoclinic phase is believed to provide a flexible polarization rotation and considered to be directly linked to the high performance piezoelectricity in materials. The thermal hysteresis for composition x = 0.03 is larger than that for x = 0.05. This suggests that the addition of BaTiO3 to NaNbO3 suppresses the thermal hysteresis. It is also observed that the structural phase transition temperature decreases upon increasing the dopant concentration.
NASA Astrophysics Data System (ADS)
Zou, Min
A systematic study of single crystalline Tb5Si2.2Ge1.8, including magnetic field induced crystallographic and magnetic phase transformations, magnetocaloric effect, ferromagnetic short-range correlations, electrical resistivity, magnetoresistance, and spontaneous generation of voltage (SGV) has been presented. A study of SGV in single crystalline Gd5Si2Ge2 and Gd has also been included. The metamagnetic-like transitions and giant magnetocaloric effect were observed with the magnetic field applied parallel to the a- and c-axes, but not the b-axis in a Tb5Si 2.2Ge1.8 single crystal. The in-situ x-ray powder diffraction study indicates that these metamagnetic-like transitions are coupled to a crystallographic phase transformation occurring via strong magnetoelastic interactions. The magnetocrystalline anisotropy plays an important role in this system. Magnetic fields less than 40 kOe can not drive either the magnetic or the crystallographic phase transition to completion for Tb5Si2.2Ge1.8 powder due to the strong single ion anisotropy of Tb. Magnetic field dependencies of the critical temperatures of magnetic phase transitions of Tb5Si2.2Ge1.8 are highly anisotropic for both the main magnetic ordering process occurring around 120 K and a spin reorientation transition at ~70 K. Magnetic-field-induced phase transitions occur with the magnetic field applied isothermally along the a-and b-axes (but not along the c-axis) between 1.8 and 70 K in fields below 70 kOe. Strongly anisotropic thermal irreversibility is observed in the Griffiths phase regime between 120 and 200 K with applied fields ranging from 10 to 1000 Oe. Our data: (1) show that the magnetic and structural phase transitions around 120 K are narrowly decoupled; (2) uncover the anisotropy of ferromagnetic short-range order in the Griffiths phase; and (3) reveal some unusual magnetic domain effects in the long-range ordered state of the Tb5Si2.2Ge1.8 compound. The temperature-magnetic field phase diagrams with field applied along the three major crystallographic directions have been constructed. The positive colossal magnetoresistance (CMR) with a magnitude of ~150% was observed with the magnetic field applied parallel to the a-axis, but not the b- and c-axes in Tb5Si 2.2Ge1.8 single crystals. The electrical resistivity shows a low-temperature high-resistivity behavior (i.e. the resistivity at low temperature is higher after the transformation to the low temperature phase than the resistivity of the phase before the transition) along the a-axis, contrary to those along the b- and c-axes. The positive CMR effect originates from an intrinsic crystallographic phase coexistence state frozen below the Curie Temperature (TC). The differences in the temperature dependencies of electrical resistivities and longitudinal magnetoresistance along the a-axis and those along the b- and c-axes can be explained by the geometry of the phase boundaries at low temperatures, and the inability of the external magnetic field to induce the crystallographic phase transformation along the b- and c-axes. Temperature-induced SGVs were observed along all three principal crystallographic axes of Tb5Si2.2Ge1.8, but not in Gd. Field-induced SGVs were observed with magnetic fields less than 40 kOe applied along the a-axis of Tb5Si2.2Ge1.8, and the c-axis of Gd. The absence of the temperature induced SGV in Gd indicates the key role first-order phase transformations play in the appearance of the effect when temperature varies. The anisotropy of magnetic field induced SGV in Tb5Si2.2Ge1.8 and the existence of field induced SGV in Gd, highlight the importance of the magnetocaloric effect in bringing about the SGV. In single crystal and polycrystalline Gd5Si 2Ge2 during the coupled magneto-structural transformations, reversible and repeatable SGV responses of the materials to the temperature and magnetic field have been observed. The parameters of the response and the magnitude of the signal are anisotropic and rate dependent. The magnitude of the SGV signal, and the critical temperatures and critical magnetic fields at which the SGV occurs vary with the rate of temperature and magnetic field changes.
NASA Astrophysics Data System (ADS)
Makarov, A. V.; Skorynina, P. A.; Yurovskikh, A. S.; Osintseva, A. L.
2017-12-01
The effect of the multiplicity of frictional loading with a sliding synthetic diamond indenter at room temperature in an argon medium and the temperature of loading in the range of -196 to +250°C on the phase composition, fine structure, and micromechanical properties of the surface layer of metastable austenitic chromium-nickel steel has been studied. It has been established that the completeness of the strain-induced martensitic γ → α' transformation in the surface layer of steel is determined by the loading multiplicity and temperature, as well as the level of strengthening grows with an increase in the frictional loading multiplicity, but weakly depends on the frictional treatment temperature. According to the microindentation data, the characteristics of the surface layer strength and resistance to elastic and plastic deformation are improved with an increase in the frictional loading multiplicity. Frictional treatment by scanning with a synthetic diamond indenter at room and negative temperatures provides high quality for the treated surface with a low roughness parameter ( Ra = 80.115 nm), and an increase in the frictional loading temperature to 150-250°C leads to the development of a seizure and growth in Ra to 195-255 nm. Using transmission electron microscopy (TEM), it has been shown that frictional treatment results in the formation of nanocrystalline and fragmented submicrocrystalline structures of strain-induced α'-martensite (at a loading temperature of -196°C) and austenite (at a loading temperature of +250°C) in the surface layer of steel alongside with two-phase martensitic-austenitic structures (at a loading temperature of +20°C).
Effects of Shear on the Smectic A Phase of Thermotropic Liquid Crystals
NASA Astrophysics Data System (ADS)
Panizza, Pascal; Archambault, Pascal; Roux, Didier
1995-02-01
The rheological behaviour of the smectic A phase of the thermotropic liquid crystal 4-cyano-4'-octylbiphenyl (8CB) is examined. X-ray scattering studies under shear flow were performed to probe changes of structures. We found that in a certain range of temperatures two states of orientation of lamellae exist. These two steady states of orientation are separated by a first order dynamic transition that becomes continuous at T_c (a temperature different from that of the smectic/nematic transition). At low shear rates, the smectic A phase is non-Newtonian: its viscosity η varies as (T_c-T)^{1/2}.dot{γ}^{-1/2} (where dot{γ} is the shear rate and T the temperature). In this regime, the structure of the system is compatible with multilamellar cylinders oriented along the flow direction. At high shear rates, the system becomes Newtonian, its layers are then oriented perpendicular to the shearing plates (as already noticed by Safinya et al. [1]).
Crystal Structure Studies of Low-Ca Pyroxenes from LL-Group Chondritic Meteorites
NASA Astrophysics Data System (ADS)
Artioli, G.; Davoli, G.; Sighinolfi, G. P.
1993-07-01
One orthorhombic (Pbca) and two monoclinic (P2(sub)1/c) single crystals of low-Ca pyroxenes were extracted from unequilibrated chondritic meteorites of the LL-group. The results of the crystal structure refinements performed using x-ray diffraction data indicate that: (1) the intracrystalline Fe-Mg distribution over the M1 and M2 crystallographic sites of the Parnallee (LL-3) orthoenstatite is consistent with a temperature of 960 degrees C for the closure of the exchange equilibrium process; and (2) the structural state and intracristalline Fe-Mg order in the Soko Banja (LL-4) and Jolomba (LL-6) clinoenstatites indicate a closing temperature of at least 1000-1100 degrees C, with no significant reequilibration at lower temperatures. The present data represent the first detailed crystallographic investigation of pyroxenes from LL-chondrites and support the hypothesis that the chondrule pyroxenes bear a distinct memory of rapid cooling in the solar nebular and that thermal metamorphism in the parent body, if present, was totally unsufficient to allow reequilibration of the pyroxene minerals to the low-temperature ordered crystal structures. The data also indicate that, assuming low or mild pressure and shock effects, there is no well-defined correlation between equilibrium temperature of the mineral phases and the alleged petrologic type of the meteorites. This evidence is consistent with a rubble-pile model for the parent body accretional history, or with an onion-shell model with very low thermal-peak metamorphism, as it is assumed for a very small object.
Synthesis and Characterization of A2Mo3O 12 Materials
NASA Astrophysics Data System (ADS)
Young, Lindsay Kay
Negative thermal expansion (NTE) materials have attracted considerable research interest in recent decades. These unique materials shrink when heated, offering a potential means to control the overall thermal expansion of composites. Several families of materials display this behavior, the largest of which is the A2Mo3O12 family (also called the scandium tungstate family), in which A is a trivalent cation and M is molybdenum or tungsten. These materials show NTE in an orthorhombic structure, but many members transform to a monoclinic structure with positive expansion at low temperatures. Many properties of these materials are dependent on their elemental composition, especially the identity of the A3+ cation. This includes the magnitude of NTE, as well as the phase transition behavior as a function of temperature and pressure. It is also possible to create "mixed site" cation A2Mo3O12 materials, in which the A site is occupied by two different cations. These are described as AxA'2-xM3O12 materials, as the composition A:A' can vary. Creating these new compositions may result in different phase transition properties or the ability to tune the NTE properties of these materials. In this work, the focus was on synthesis and characterization of indium gallium molybdate (InxGa2-xM3O12). The non-hydrolytic sol-gel (NHSG) method was used to synthesize indium gallium molybdate while exploring a variety of reaction parameters. While the goal was to create stoichiometric, homogenous materials, it was found that this could not be accomplished using easily accessible parameters during NHSG reactions. However, it was discovered that certain conditions allowed unusually low temperature (230 °C) crystallization of these materials. Similar conditions were explored for single cation A2Mo3O12 materials, and it was determined that crystallization of indium molybdate, iron molybdate, and scandium molybdate was possible at temperatures of 230 or 300 °C. This extremely low temperature crystallization may provide the opportunity for exploring the in situ synthesis of polymer composites containing these materials, as the crystallization temperatures are compatible with many polymer systems. In the second part of this thesis, the high pressure behavior of a number of A2Mo3O12 and AA'Mo3O12 materials was studied. The open frameworks of NTE compounds are generally prone to pressure induced phase transitions. NTE materials may have to withstand high pressures during production or regular use of composites, thus understanding the high pressure behavior of these materials is necessary for effective application. Irreversible transitions to new phases or amorphization at high pressures could lead to failure of composites, as these phases are not expected to exhibit any NTE properties. Studies were carried out at the Advanced Photon Source at Argonne National Laboratory at pressures up to 5-7 GPa using a diamond anvil cell. The materials investigated could be divided into three groups based on distinct types of high pressure behavior. The room temperature monoclinic Group1 compounds (A2 = Al2, Fe2, FeAl, AlGa) underwent a similar sequence of reversible subtle phase transitions before undergoing a major structural transition to a common high pressure structure. The unit cell of this high pressure phase was successfully indexed, and the transition was found to be reversible upon decompression. Phase transition pressures increased with decreasing A-site cation radius. In contrast, Group2 materials (A = Cr, Y) retained their low temperature monoclinic structures up to the highest pressures investigated. The remaining materials (A2 = In2, InGa) underwent a different sequence of subtle transitions followed by an irreversible transition at higher pressures. The patterns belonging to these high pressure phases are unlike those of the first group. No patterns similar to InGaMo3O12 were found in the literature, while In2Mo3O12 may transform to the same high pressure polymorph as In2W3O12. The classification of A2Mo3O12 materials into several groups with distinct high pressure behavior adds pertinent knowledge to the field that may help elucidate the structures of previously studied materials, and ultimately may help predict the behavior of compositions that have not yet been explored.
Advanced materials and design for low temperature SOFCs
Wachsman, Eric D.; Yoon, Heesung; Lee, Kang Taek; Camaratta, Matthew; Ahn, Jin Soo
2016-05-17
Embodiments of the invention are directed to SOFC with a multilayer structure comprising a porous ceramic cathode, optionally a cathodic triple phase boundary layer, a bilayer electrolyte comprising a cerium oxide comprising layer and a bismuth oxide comprising layer, an anion functional layer, and a porous ceramic anode with electrical interconnects, wherein the SOFC displays a very high power density at temperatures below 700.degree. C. with hydrogen or hydrocarbon fuels. The low temperature conversion of chemical energy to electrical energy allows the fabrication of the fuel cells using stainless steel or other metal alloys rather than ceramic conductive oxides as the interconnects.
NASA Technical Reports Server (NTRS)
Gao, Xin-Hai; Yu, Wen-Bi; Stanford, John L.
1987-01-01
Four years of satellite-derived microwave and infrared radiances are analyzed for the three-dimensional and seasonal variation of semiannual oscillations (SAO) in stratospheric temperatures, with particular focus on high latitudes, to investigate the effect of stratospheric warmings on SAO. Separate analyses of individual seasons in each hemisphere reveal that the strongest SAO in temperature occur in the Northern Hemisphere (NH) winter polar upper stratosphere. These results, together with the latitudinal structure of the temperature SAO and the fact that the NH polar SAO is nearly out of phase with the lower latitude SAO, are consistent with the existence of a global-scale, meridional circulation on the SAO time scale. The results suggest that polar stratospheric warmings are an important source of SAO in both high and low latitude stratospheric temperature fields. Interannual variations, three-dimensional phase structure, and zonal asymmetry of SAO are also detailed. The SH stratospheric SAO is dominated by a localized feature in the high-latitude, eastern hemisphere which tilts westward with height.
Pt silicide/poly-Si Schottky diodes as temperature sensors for bolometers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yuryev, V. A., E-mail: vyuryev@kapella.gpi.ru; Chizh, K. V.; Chapnin, V. A.
Platinum silicide Schottky diodes formed on films of polycrystalline Si doped by phosphorus are demonstrated to be efficient and manufacturable CMOS-compatible temperature sensors for microbolometer detectors of radiation. Thin-film platinum silicide/poly-Si diodes have been produced by a CMOS-compatible process on artificial Si{sub 3}N{sub 4}/SiO{sub 2}/Si(001) substrates simulating the bolometer cells. Layer structure and phase composition of the original Pt/poly-Si films and the Pt silicide/poly-Si films synthesized by a low-temperature process have been studied by means of the scanning transmission electron microscopy; they have also been explored by means of the two-wavelength X-ray structural phase analysis and the X-ray photoelectron spectroscopy.more » Temperature coefficient of voltage for the forward current of a single diode is shown to reach the value of about −2%/ °C in the temperature interval from 25 to 50 °C.« less
Gaudin; Petricek; Boucher; Taulelle; Evain
2000-12-01
The crystal structure of the third polymorph of the Cu(7)PSe(6) argyrodite compound, alpha-Cu(7)PSe(6), heptacopper phosphorus hexaselenide, is determined by means of single-crystal diffraction from twinned crystals and X-ray powder diffraction, with the help of extensive NMR measurements. In the low-temperature form, i.e. below the last phase transition, alpha-Cu(7)PSe(6) crystallizes in orthorhombic symmetry, space group Pna2(1), with a = 14.3179 (4), b = 7.1112 (2), c = 10.1023 (3) A, V = 1028.590 (9) A(3) (deduced from powder data, T = 173 K) and Z = 4. Taking into account a twinning by reticular merohedry, the refinement of the alpha-Cu(7)PSe(6) structure leads to the residual factors R = 0.0466 and wR = 0.0486 for 127 parameters and 3714 observed, independent reflections (single-crystal data, T = 173 K). A full localization of the Cu(+)d(10) element is reached with one twofold-, one threefold- and five fourfold-coordinated Cu atoms. The observation of two phase transitions for Cu(7)PSe(6), to be compared with only one for Ag(7)PSe(6), is attributed to the d(10) element stability in a low coordination environment, copper being less prone to lower coordination sites than silver, especially at low temperature.
NASA Astrophysics Data System (ADS)
Reschke, S.; Wang, Zhe; Mayr, F.; Ruff, E.; Lunkenheimer, P.; Tsurkan, V.; Loidl, A.
2017-10-01
We report on THz time-domain spectroscopy on multiferroic GeV4S8 , which undergoes orbital ordering at a Jahn-Teller transition at 30.5 K and exhibits antiferromagnetic order below 14.6 K. The THz experiments are complemented by dielectric experiments at audio and radio frequencies. We identify a low-lying excitation close to 0.5 THz, which is only weakly temperature dependent and probably corresponds to a molecular excitation within the electronic level scheme of the V4 clusters. In addition, we detect complex temperature-dependent behavior of a low-lying phononic excitation, closely linked to the onset of orbitally driven ferroelectricity. In the high-temperature cubic phase, which is paramagnetic and orbitally disordered, this excitation is of relaxational character becomes an overdamped Lorentzian mode in the orbitally ordered phase below the Jahn-Teller transition, and finally appears as well-defined phonon excitation in the antiferromagnetic state. Abrupt changes in the real and imaginary parts of the complex dielectric permittivity show that orbital ordering appears via a structural phase transition with strong first-order character and that the onset of antiferromagnetic order is accompanied by significant structural changes, which are of first-order character, too. Dielectric spectroscopy documents that at low frequencies, significant dipolar relaxations are present in the orbitally ordered, paramagnetic phase only. In contrast to the closely related GaV4S8 , this relaxation dynamics that most likely mirrors coupled orbital and polar fluctuations does not seem to be related to the dynamic processes detected in the THz regime.
Dynamics of Mantle Plume Controlled by both Post-spinel and Post-garnet Phase Transitions
NASA Astrophysics Data System (ADS)
Liu, H.; Leng, W.
2017-12-01
Mineralogical studies indicate that two major phase transitions occur near 660 km depth in the Earth's pyrolitic mantle: the ringwoodite (Rw) to perovskite (Pv) + magnesiowüstite (Mw) and majorite (Mj) to perovskite (Pv) phase transitions. Seismological results also show a complicated phase boundary structure for plume regions at this depth, including broad pulse, double reflections and depressed 660 km discontinuity beneath hot regions etc… These observations have been attributed to the co-existence of these two phase transformations. However, previous geodynamical modeling mainly focused on the effects of Rw-Pv+Mw phase transition on the plume dynamics and largely neglected the effects of Mj-Pv phase transition. Here we develop a 3-D regional spherical geodynamic model to study the influence of the combination of Rw - Pv+Mw and Mj - Pv phase transitions on plume dynamics, including the topography fluctuation of 660 km discontinuity, plume shape and penetration capability of plume. Our results show that (1) a double phase boundary occurs at the hot center area of plume while for other regions with relatively lower temperature the phase boundary is single and flat, which respectively corresponds to the double reflections in the seismic observations and a high velocity prism-like structure at the top of 660 km discontinuity; (2) a large amount of low temperature plume materials could be trapped to form a complex trapezoid overlying the 660 km depth; (3) Mj - Pv phase change strongly enhances the plume penetration capability at 660 km depth, which significantly increases the plume mass flux due to the increased plume radius, but significantly reduces plume heat flux due to the decreased plume temperature in the upper mantle. Our model results provide new enlightenments for better constraining seismic structure and mineral reactions at 660 km phase boundaries.
Evidence for a second-order phase transition around 350 K in Ce3Rh4Sn13
NASA Astrophysics Data System (ADS)
Kuo, C. N.; Chen, W. T.; Tseng, C. W.; Hsu, C. J.; Huang, R. Y.; Chou, F. C.; Kuo, Y. K.; Lue, C. S.
2018-03-01
We report an observation of a phase transition in Ce3Rh4Sn13 with the transition temperature T*≃350 K by means of synchrotron x-ray powder diffraction, specific heat, electrical resistivity, Seebeck coefficient, thermal conductivity, as well as 119Sn nuclear magnetic resonance (NMR) measurements. The phase transition has been characterized by marked features near T* in all measured physical quantities. The lack of thermal hysteresis in the specific heat indicates a second-order phase transition in nature. From the NMR analysis, the change in the transferred hyperfine coupling constant for two tin sites has been resolved. The obtained result has been associated with the reduction in the averaged interatomic distance between Ce and Sn atoms, particularly for the Sn2 atoms. It indicates that the movement of the Sn2 atoms, which deforms the high-temperature structure, shortens the Ce-Sn2 bond length at low temperatures. We therefore provide a concise picture that the observed second-order phase transition at T* of Ce3Rh4Sn13 should be characterized by a structural modulation essentially due to lattice distortions arising from phonon instability.
Characteristics of 5M modulated martensite in Ni-Mn-Ga magnetic shape memory alloys
NASA Astrophysics Data System (ADS)
Ćakır, A.; Acet, M.; Righi, L.; Albertini, F.; Farle, M.
2015-09-01
The applicability of the magnetic shape memory effect in Ni-Mn-based martensitic Heusler alloys is closely related to the nature of the crystallographically modulated martensite phase in these materials. We study the properties of modulated phases as a function of temperature and composition in three magnetic shape memory alloys Ni49.8Mn25.0Ga25.2, Ni49.8Mn27.1Ga23.1 and Ni49.5Mn28.6Ga21.9. The effect of substituting Ga for Mn leads to an anisotropic expansion of the lattice, where the b-parameter of the 5M modulated structure increases and the a and c-parameters decrease with increasing Ga concentration. The modulation vector is found to be both temperature and composition dependent. The size of the modulation vector corresponds to an incommensurate structure for Ni49.8Mn25.0Ga25.2 at all temperatures. For the other samples the modulation is incommensurate at low temperatures but reaches a commensurate value of q ≈ 0.400 close to room temperature. The results show that commensurateness of the 5M modulated structure is a special case of incommensurate 5M at a particular temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
New insights on SOI Tunnel FETs with low-temperature process flow for CoolCube™ integration
NASA Astrophysics Data System (ADS)
Diaz Llorente, C.; Le Royer, C.; Batude, P.; Fenouillet-Beranger, C.; Martinie, S.; Lu, C.-M. V.; Allain, F.; Colinge, J.-P.; Cristoloveanu, S.; Ghibaudo, G.; Vinet, M.
2018-06-01
This paper reports the fabrication and electrical characterization of planar SOI Tunnel FETs (TFETs) made using a Low-Temperature (LT) process designed for 3D sequential integration. These proof-of-concept TFETs feature junctions obtained by Solid Phase Epitaxy Regrowth (SPER). Their electrical behavior is analyzed and compared to reference samples (regular process using High-Temperature junction formation, HT). Dual ID-VDS measurements verify that the TFET structures present Band-to-Band tunnelling (BTBT) carrier injection and not Schottky Barrier tunnelling. P-mode operating LT TFETs deliver an ON state current similar to that of the HT reference, opening the door towards optimized devices operating with very low threshold voltage VTH and low supply voltage VDD.
The El Teniente porphyry Cu-Mo deposit from a hydrothermal rutile perspective
NASA Astrophysics Data System (ADS)
Rabbia, Osvaldo M.; Hernández, Laura B.; French, David H.; King, Robert W.; Ayers, John C.
2009-11-01
Mineralogical, textural, and chemical analyses (EPMA and PIXE) of hydrothermal rutile in the El Teniente porphyry Cu-Mo deposit help to better constrain ore formation processes. Rutile formed from igneous Ti-rich phases (sphene, biotite, Ti-magnetite, and ilmenite) by re-equilibration and/or breakdown under hydrothermal conditions at temperatures ranging between 400°C and 700°C. Most rutile nucleate and grow at the original textural position of its Ti-rich igneous parent mineral phase. The distribution of Mo content in rutile indicates that low-temperature (˜400-550°C), Mo-poor rutile (5.4 ± 1.1 ppm) is dominantly in the Mo-rich mafic wallrocks (high-grade ore), while high-temperature (˜550-700°C), Mo-rich rutile (186 ± 20 ppm) is found in the Mo-poor felsic porphyries (low-grade ore). Rutile from late dacite ring dikes is a notable exception to this distribution pattern. The Sb content in rutile from the high-temperature potassic core of the deposit to its low-temperature propylitic fringe remains relatively constant (35 ± 3 ppm). Temperature and Mo content of the hydrothermal fluids in addition to Mo/Ti ratio, modal abundance and stability of Ti-rich parental phases are key factors constraining Mo content and provenance in high-temperature (≥550°C) rutile. The initial Mo content of parent mineral phases is controlled by melt composition and oxygen fugacity as well as timing and efficiency of fluid-melt separation. Enhanced reduction of SO2-rich fluids and sulfide deposition in the Fe-rich mafic wallrocks influences the low-temperature (≤550°C) rutile chemistry. The data are consistent with a model of fluid circulation of hot (>550°C), oxidized (ƒO2 ≥ NNO + 1.3), SO2-rich and Mo-bearing fluids, likely exsolved from deeper crystallizing parts of the porphyry system and fluxed through the upper dacite porphyries and related structures, with metal deposition dominantly in the Fe-rich mafic wallrocks.
Field-induced magnetic phase transitions and metastable states in Tb3Ni
NASA Astrophysics Data System (ADS)
Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.; Suslov, A. V.; Podlesnyak, A.; Prokhnenko, O.; Prokeš, K.; Yokaichiya, F.; Keller, L.; Baranov, N. V.
2018-04-01
In this paper we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compound Tb3Ni . The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group P 1121/a 1'(a b 0 ) 0 s s and propagation vector kIC=[" close="]1/2 ,1/2 ,0 ]">0.506 ,0.299 ,0 was found to emerge just below Néel temperature TN=61 K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of k1=[1/2 ,0 ,0 ] below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. The forced ferromagnetic state induced after application of an external magnetic field along the b and c crystallographic axes was found to be irreversible below 3 and 8 K, respectively.
Pressure-temperature phase behavior of mixtures of natural sphingomyelin and ceramide extracts.
Barriga, Hanna M G; Parsons, Edward S; McCarthy, Nicola L C; Ces, Oscar; Seddon, John M; Law, Robert V; Brooks, Nicholas J
2015-03-31
Ceramides are a group of sphingolipids that act as highly important signaling molecules in a variety of cellular processes including differentiation and apoptosis. The predominant in vivo synthetic pathway for ceramide formation is via sphingomyelinase catalyzed hydrolysis of sphingomyelin. The biochemistry of this essential pathway has been studied in detail; however, there is currently a lack of information on the structural behavior of sphingomyelin- and ceramide-rich model membrane systems, which is essential for developing a bottom-up understanding of ceramide signaling and platform formation. We have studied the lyotropic phase behavior of sphingomyelin-ceramide mixtures in excess water as a function of temperature (30-70 °C) and pressure (1-200 MPa) by small- and wide-angle X-ray scattering. At low ceramide concentrations the mixtures form the ripple gel phase (P(β)') below the gel transition temperature for sphingomyelin, and this observation has been confirmed by atomic force microscopy. Formation of the ripple gel phase can also be induced at higher temperatures via the application of hydrostatic pressure. At high ceramide concentration an inverse hexagonal phase (HII) is formed coexisting with a cubic phase.
NASA Astrophysics Data System (ADS)
Mumtaz, M.; Baig, Mirza Hassan; Waqee-ur-Rehman, M.; Nasir Khan, M.
2018-05-01
Solid-state reaction method was used to synthesize Cu0.5Tl0.5Ba2Ca2Cu3O10-δ (CuTl-1223) superconducting phase and sol-gel method was used to prepare cobalt oxide (Co3O4) magnetic nanoparticles. These Co3O4 nanoparticles were added in CuTl-1223 superconducting matrix to get (Co3O4)x/CuTl-1223; x = 0-2.00 wt.% nanoparticles-superconductor composites. The effects of Co3O4 nanoparticles on crystal structure, phase formation, phase purity and infield superconducting transport properties of CuTl-1223 phase were investigated at different operating temperatures and external applied magnetic fields. The crystal structure and phase formation of Co3O4 nanoparticles and CuTl-1223 superconductor were determined by X-ray diffraction (XRD) technique. XRD peaks of Co3O4 nanoparticles were well indexed according to FCC crystal structure and the average particle size of 70 nm was calculated by using Debye-Scherer's formula. The unaltered crystal structure of host CuTl-1223 superconducting phase (i.e. Tetragonal) with the addition of Co3O4 nanoparticles indicated the dispersion of nanoparticles at inter-granular sites. Temperature dependent magneto-transport superconducting properties of (Co3O4)x/CuTl-1223 composites were investigated by zero field cooled (ZFC) and field cooled (FC) magnetic moment versus temperature (M-T) measurements. The onset transition temperatures {TcOnset (K)} was decreased along with the suppression of diamagnetic amplitude of CuTl-1223 superconducting phase with the addition of magnetic Co3O4 nanoparticles. Temperature dependent magnetic hysteresis (M-H loops) measurements of (Co3O4)x/CuTl-1223 composites were carried out at different operating temperatures from 5 K to 150 K. Critical current density (Jc) was calculated from M-H loops measurements by using Bean's model. Like the suppression of TcOnset (K) values, Jc was also decreased with the inclusion of Co3O4 nanoparticles. It was also observed that variation of Jc with H followed the power law Jc = βH-α at low operating temperatures 5 K and 20 K only.
Graphene Reinforced Glassy Carbon (GRGC) Beam Windows
DOE Office of Scientific and Technical Information (OSTI.GOV)
Renomeron, Lynda L.
Secondary particle beams require beam windows that isolate the target (usually in air) from the primary particle beam vacuum. Advanced beam window solutions are needed that can withstand anticipated increases in beam power and intensity that will result in higher thermal shock on the window and increased oxidative erosion rates on the air-side caused by increased temperatures. Carbon-based windows, in particular, glassy carbon windows are of interest to minimize interaction with the beam. The attractive properties of glassy carbon are: 1. Low atomic number 2. Low thermal expansion 3. High strength and low Young's modulus 4. Low gas permeability andmore » low outgassing for ultrahigh vacuum use The one liability of glassy carbon is its low thermal conductivity, nominally 5 W/mK, which will exacerbate temperature rise, oxidation, and thermal shock concerns as beam powers increase. TA&T proposes the development of graphene reinforced glassy carbon (GRGC) composites to increase the thermal conductivity and address this Achilles heel of glassy carbon. Graphene as a reinforcing phase has shown the capability to increase the thermal conductivity of the matrix material by up to two orders of magnitude. For beam windows this would substantially increase heat spreading away from the beam zone of the window and improve thermal shock resistance, and reduce maximum temperature and air-side oxidation of the window. Increased thermal conductivity would also improve the effectiveness of edge-cooling schemes to minimize temperature increase. In the Phase I effort, graphene oxide (GO) particles were dispersed into glassy carbon precursor at different content levels and cast into solid shapes. The goal was to determine the effect of graphene concentration on the mechanical properties (flexure strength), and thermal (thermal conductivity). The Phase I results indicated that addition of graphene did have a significant effect on thermal conductivity; however the microstructural properties of the composite need further improvement. The Phase II work is designed to address the processing issues found during Phase I, so as to fully realize the benefits of GO within the glassy carbon In addition to enabling improved windows for high energy particle beam experiments, the reinforced glassy carbon material will find various other applications such as thruster bodies for rocket propulsion, more durable carbon-based electrodes for electrochemistry applications, bi-polar plates for advanced batteries, catalyst support structures, and structural bio-implants.« less
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...
2018-02-12
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra.
Molokeev, Maxim; Misjul, S V; Flerov, I N; Laptash, N M
2014-12-01
An unusual phase transition P4/mnc → Pa\\bar 3 has been detected after cooling the (NH4)3TiF7 compound. Some TiF6 octahedra, which are disordered in the room-temperature tetragonal structure, become ordered in the low-temperature cubic phase due to the disappearance of the fourfold axis. Other TiF6 octahedra undergo large rotations resulting in huge displacements of the F atoms by 1.5-1.8 Å that implies a reconstructive phase transition. It was supposed that phases P4/mbm and Pm\\bar 3m could be a high-temperature phase and a parent phase, respectively, in (NH4)3TiF7. Therefore, the sequence of phase transitions can be written as Pm\\bar 3m → P4/mbm → P4/mnc → Pa\\bar 3. The interrelation between (NH4)3TiF7, (NH4)3GeF7 and (NH4)3PbF7 is found, which allows us to suppose phase transitions in relative compounds.
Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems.
Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A; Alavi, Saman; Ripmeester, John A
2012-09-11
There is interest in the role of ammonia on Saturn's moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons' atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods.
Ammonia clathrate hydrates as new solid phases for Titan, Enceladus, and other planetary systems
Shin, Kyuchul; Kumar, Rajnish; Udachin, Konstantin A.; Alavi, Saman; Ripmeester, John A.
2012-01-01
There is interest in the role of ammonia on Saturn’s moons Titan and Enceladus as the presence of water, methane, and ammonia under temperature and pressure conditions of the surface and interior make these moons rich environments for the study of phases formed by these materials. Ammonia is known to form solid hemi-, mono-, and dihydrate crystal phases under conditions consistent with the surface of Titan and Enceladus, but has also been assigned a role as water-ice antifreeze and methane hydrate inhibitor which is thought to contribute to the outgassing of methane clathrate hydrates into these moons’ atmospheres. Here we show, through direct synthesis from solution and vapor deposition experiments under conditions consistent with extraterrestrial planetary atmospheres, that ammonia forms clathrate hydrates and participates synergistically in clathrate hydrate formation in the presence of methane gas at low temperatures. The binary structure II tetrahydrofuran + ammonia, structure I ammonia, and binary structure I ammonia + methane clathrate hydrate phases synthesized have been characterized by X-ray diffraction, molecular dynamics simulation, and Raman spectroscopy methods. PMID:22908239
Phase structure of higher spin black hole
NASA Astrophysics Data System (ADS)
Chen, Bin; Long, Jiang; Wang, Yi-Nan
2013-03-01
In this paper, we investigate the phase structure of the black holes with one single higher spin hair, focusing specifically on the spin 3 and spin widetilde{4} black holes. Based on dimensional analysis and the requirement of thermodynamic consistency, we derive a universal formula relating the entropy with the conserved charges for arbitrary AdS 3 higher spin black holes. Then we use it to study the phase structure of the higher spin black holes. We find that there are six branches of solutions in the spin 3 gravity, eight branches of solutions in the spin widetilde{4} gravity and twelve branches of solutions in the G 2 gravity. In each case, all the branches are related by a simple angle shift in the entropy functions. In the spin 3 case, we reproduce all the results found before. In the spin widetilde{4} case, we find that at low temperature it lies in the BTZ branch while at high temperature it undergoes a phase transition to one of the two other branches, depending on the signature of the chemical potential, a reflection of charge conjugate asymmetry found before.
Mott-to-Goodenough insulator-insulator transition in LiVO2
NASA Astrophysics Data System (ADS)
Subedi, Alaska
2017-06-01
I critically examine Goodenough's explanation for the experimentally observed phase transition in LiVO2 using microscopic calculations based on density functional and dynamical mean field theories. The high-temperature rhombohedral phase exhibits both magnetic and dynamical instabilities. Allowing a magnetic solution for the rhombohedral structure does not open an insulating gap, and an explicit treatment of the on-site Coulomb U interaction is needed to stabilize an insulating rhombohedral phase. The non-spin-polarized phonon dispersions of the rhombohedral phase show two unstable phonon modes at the wave vector (1/3 ,-1/3 ,0 ) that corresponds to the experimentally observed trimer forming instability. A full relaxation of the supercell corresponding to this instability yields a nonmagnetic state containing V3 trimers. These results are consistent with Goodenough's suggestion that the high-temperature phase is in the localized-electron regime and the transition to the low-temperature phase in the itinerant-electron regime is driven by V-V covalency.
Understanding Phase-Change Memory Alloys from a Chemical Perspective
NASA Astrophysics Data System (ADS)
Kolobov, A. V.; Fons, P.; Tominaga, J.
2015-09-01
Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.
Understanding Phase-Change Memory Alloys from a Chemical Perspective.
Kolobov, A V; Fons, P; Tominaga, J
2015-09-01
Phase-change memories (PCM) are associated with reversible ultra-fast low-energy crystal-to-amorphous switching in GeTe-based alloys co-existing with the high stability of the two phases at ambient temperature, a unique property that has been recently explained by the high fragility of the glass-forming liquid phase, where the activation barrier for crystallisation drastically increases as the temperature decreases from the glass-transition to room temperature. At the same time the atomistic dynamics of the phase-change process and the associated changes in the nature of bonding have remained unknown. In this work we demonstrate that key to this behavior is the formation of transient three-center bonds in the excited state that is enabled due to the presence of lone-pair electrons. Our findings additionally reveal previously ignored fundamental similarities between the mechanisms of reversible photoinduced structural changes in chalcogenide glasses and phase-change alloys and offer new insights into the development of efficient PCM materials.
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
NASA Astrophysics Data System (ADS)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; Vohra, Yogesh K.
2014-10-01
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Sm-type → dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GPa and a temperature of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.
Dimerization in honeycomb Na2RuO3 under pressure: a DFT study
NASA Astrophysics Data System (ADS)
Gazizova, D. D.; Ushakov, A. V.; Streltsov, S. V.
2018-04-01
The structural properties of Na2RuO3 under pressure are studied using density functional theory within the nonmagnetic generalized gradient approximation (GGA). We found that one may expect a structural transition at ˜3 GPa. This structure at the high-pressure phase is exactly the same as the low-temperature structure of Li2RuO3 (at ambient pressure) and is characterized by the P21/m space group. Ru ions form dimers in this phase and one may expect strong modification of the electronic and magnetic properties in Na2RuO3 at pressure higher than 3 GPa.
Competing magnetostructural phases in a semiclassical system
NASA Astrophysics Data System (ADS)
O'Neal, Kenneth R.; Lee, Jun Hee; Kim, Maeng-Suk; Manson, Jamie L.; Liu, Zhenxian; Fishman, Randy S.; Musfeldt, Janice L.
2017-11-01
The interplay between charge, structure, and magnetism gives rise to rich phase diagrams in complex materials with exotic properties emerging when phases compete. Molecule-based materials are particularly advantageous in this regard due to their low energy scales, flexible lattices, and chemical tunability. Here, we bring together high pressure Raman scattering, modeling, and first principles calculations to reveal the pressure-temperature-magnetic field phase diagram of Mn[N(CN)2]2. We uncover how hidden soft modes involving octahedral rotations drive two pressure-induced transitions triggering the low → high magnetic anisotropy crossover and a unique reorientation of exchange planes. These magnetostructural transitions and their mechanisms highlight the importance of spin-lattice interactions in establishing phases with novel magnetic properties in Mn(II)-containing systems.
Singh, Alok
2014-01-01
The occurrence of a stable icosahedral (i-) phase, which is quasicrystalline with an icosahedral (fivefold) symmetry, on the equilibrium phase diagram of Mg–Zn–RE (RE = Y, Gd, Tb, Dy, Ho or Er) alloys opened up an interesting possibility of developing a new series of magnesium alloys for structural applications. Alloys based on the i-phase have been studied for the past 14 years. Ultra-high strengths combined with good ductility have been shown. Here we show two strategies for tailoring microstructures for very high strengths in Mg–Zn–Y alloys. One of them involves strengthening by a fine distribution of rod-like precipitates, where the matrix grain size is not critical. The alloy is solutionized at a high temperature of 480 °C to dissolve a large part of the i-phase, followed by a high temperature extrusion (∼430 °C) and a low temperature ageing to reprecipitate phases with fine size distribution. At first, phase transformations involved in this procedure are described. The closeness of the structure of the precipitates to the i-phase is brought out. By this procedure, tensile yield strengths of over 370 MPa are obtained in grain sizes of 20 μm. In another strategy, the alloys are chill cast and then extruded at low temperatures of about 250 °C. Ultra-fine grains are produced by enhanced recrystallization due to presence of the i-phase. At the same time nano-sized precipitates are precipitated dynamically during extrusion from the supersaturated matrix. Ultra-high tensile strengths of up to 400 MPa are obtained in combination with ductility of 12 to 16%. Analysis of the microstructure shows that strengthening by the i-phase occurs by enhanced recrystallization during extrusion. It produces ultra-fine grain sizes to give very high strengths, and moderate texture for good ductility. Fine distribution of the i-phase and precipitates contribute to strengthening and provide microstructre stability. Ultra-high strength over a very wide range of grain sizes is thus demonstrated, by utilizing different strengthening effects. PMID:27877701
Magnetic properties of Y3+ doped Bi4-xTi2FeO12 aurivillius phase ceramics
NASA Astrophysics Data System (ADS)
Tirupathi, Patri; Reddy, H. Satish Kumar; Babu, P. D.
2018-05-01
In the present paper reports a comprehensive investigation of structural, microstructural and magnetic phase transition in Y3+ doped BITF Aurivillius phase compounds. The study of surface morphology by scanning electron microscope reveals the growth of plate-like grains and further the grain size increase with increasing Y3+ composition. Low temperature magnetic studies reveals enhanced magnetic property with doping of Y3+ in BITF. It was explained by considering exchange interaction between the neighboring Fe+3 ions via electron trapped electrons at oxygen vacancies. Temperature dependent dc-magnetic studies exhibit a magnetic transitions TC = 750 K for x=0.0 TC ˜ 674 K for x=1.0 & TC ˜ 645 K for x=1.50 ceramics respectively in high temperature magnetization studies
NASA Astrophysics Data System (ADS)
Greve, Benjamin K.
This thesis explores the thermal expansion and high pressure behavior of some materials with the ReO3 structure type. This structure is simple and has, in principle, all of the features necessary for negative thermal expansion (NTE) arising from the transverse thermal motion of the bridging anions and the coupled rotation of rigid units; however, ReO 3 itself only exhibits mild NTE across a narrow temperature range at low temperatures. ReO3 is metallic because of a delocalized d-electron, and this may contribute to the lack of NTE in this material. The materials examined in this thesis are all based on d 0 metal ions so that the observed thermal expansion behavior should arise from vibrational, rather than electronic, effects. In Chapter 2, the thermal expansion of scandium fluoride, ScF3 , is examined using a combination of in situ synchrotron X-ray and neutron variable temperature diffraction. ScF3 retains the cubic ReO3 structure across the entire temperature range examined (10 - 1600 K) and exhibits pronounced negative thermal expansion at low temperatures. The magnitude of NTE in this material is comparable to that of cubic ZrW2O8, which is perhaps the most widely studied NTE material, at room temperature and below. This is the first report of NTE in an ReO3 type structure across a wide temperature range. Chapter 3 presents a comparison between titanium oxyfluoride, TiOF 2, and a vacancy-containing titanium hydroxyoxyfluoride, Ti x(O/OH/F)3. TiOF2 was originally reported to adopt the cubic ReO3 structure type under ambient conditions, therefore the initial goal for this study was to examine the thermal expansion of this material and determine if it displayed interesting behavior such as NTE. During the course of the study, it was discovered that the original synthetic method resulted in Tix(O/OH/F)3, which does adopt the cubic ReO3 structure type. The chemical composition of the hydroxyoxyfluoride is highly dependent upon synthesis conditions and subsequent heat treatments. This material readily pyrohydrolyizes at low temperatures (≈350 K). It was also observed that TiOF does not adopt the cubic ReO 3 structure; at room temperature it adopts a rhombohedrally distorted variant of the ReO3 structure. Positive thermal expansion was observed for TiOF2 from 120 K through decomposition into TiO2. At ≈400 K, TiOF2 undergoes a structural phase transition from rhombohedral to cubic symmetry. High pressure diffraction studies revealed a cubic to rhombohedral phase transition for Tix(O/OH/F) 3 between 0.5-1 GPa. No phase transitions were observed for TiOF 2 on compression. In Chapter 4, an in situ variable pressure-temperature diffraction experiment examining the effects of pressure on the coefficients of thermal expansion (CTE) for ScF3 and TaO2F is presented. In the manufacture and use of composites, which is a possible application for low and NTE materials, stresses may be experienced. Pressure was observed to have a negligible effect on cubic ScF3's CTE; however, for TaO 2F the application of modest pressures, such as those that might be experienced in the manufacture or use of composites, has a major effect on its CTE. This effect is associated with a pressure-induced phase transition from cubic to rhombohedral symmetry upon compression. TaO2F was prepared from the direct reaction of Ta2O5 with TaF 5 and from the digestion of Ta2O5 in hot hydrofluoric acid. The effects of pressure on the two samples of TaO2F were qualitatively similar. The slightly different properties for the samples are likely due to differences in their thermal history leading to differing arrangements of oxide and fluoride in these disordered materials. In Chapter 5, the local structures of TiOF2 and TaO2 F are examined using pair distribution functions (PDFs) obtained from X-ray total scattering experiments. In these materials, the anions (O/F) are disordered over the available anion positions. While traditional X-ray diffraction provides detailed information about the average structures of these materials, it is not sufficient to fully understand their thermal expansion. Fits of simple structural models to the low r portions of PDFs for these materials indicate the presence of geometrically distinct M -X-M (M = Ti, Ta; X = O, F) linkages, and a simple analysis of the TaO2F variable temperature PDFs indicates that these distinct links respond differently to temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kobas, Miroslav; Weber, Thomas; Steurer, Walter
The three-dimensional (3D) difference Patterson (autocorrelation) function of a disordered quasicrystal (Edagawa phase) has been analyzed. 3D diffuse x-ray diffraction data were collected in situ at 300, 1070, and 1120 K. A method, the punch-and-fill technique, has been developed for separating diffuse scattering and Bragg reflections. Its potential and limits are discussed in detail. The different Patterson maps are interpreted in terms of intercluster correlations as a function of temperature. Both at high and low temperatures, the clusters decorate the vertices of the same quasiperiodic covering. At low temperatures, for the disordered part of the structure, short-range intercluster correlations aremore » present, whereas at higher temperatures, medium-range intercluster correlations are formed. This indicates disorder mainly inside clusters at low temperatures, whereas at higher temperatures disorder takes place inside larger superclusters. Qualitatively, the Patterson maps may be interpreted by intercluster correlations mainly inside pentagonal superclusters below 1120 K, and inside the larger decagonal superclusters at 1120 K. The results of our diffraction study are published in two parts. Part I focuses on the 3D Patterson analysis based on experimental data, Part II reports modeling of structural disorder in decagonal Al-Co-Ni.« less
On the Nature of Disorder in Solid 4He
NASA Astrophysics Data System (ADS)
Krainyukova, N. V.
2010-02-01
We apply a modified Debye approach to calculate the Gibbs free energy for different structural phases and crystallite sizes in 4He. Atoms are assumed to interact via the Aziz potential. We have found that some intermediate (between hcp and bcc) phase predicted previously is more favorable than hcp at low temperatures and for small sizes. We show that it can exist in a wide pressure range up to 60 bar in 4He for crystallite sizes about 3,000 atoms. For larger sizes (10,000 atoms or more) this phase becomes unfavorable. In multidomain structures the intermediate phase competes with hcp and metastable fcc that can be a reason for disorder in solid 4He.
NASA Technical Reports Server (NTRS)
Lau, K-M.; Wu, H-T.
2010-01-01
This study investigates the evolution of cloud and rainfall structures associated with Madden Julian oscillation (MJO) using Tropical Rainfall Measuring Mission (TRMM) data. Two complementary indices are used to define MJO phases. Joint probability distribution functions (PDFs) of cloud-top temperature and radar echo-top height are constructed for each of the eight MJO phases. The genesis stage of MJO convection over the western Pacific (phases 1 and 2) features a bottom-heavy PDF, characterized by abundant warm rain, low clouds, suppressed deep convection, and higher sea surface temperature (SST). As MJO convection develops (phases 3 and 4), a transition from the bottom-heavy to top-heavy PDF occurs. The latter is associated with the development of mixed-phase rain and middle-to-high clouds, coupled with rapid SST cooling. At the MJO convection peak (phase 5), a top-heavy PDF contributed by deep convection with mixed-phase and ice-phase rain and high echo-top heights (greater than 5 km) dominates. The decaying stage (phases 6 and 7) is characterized by suppressed SST, reduced total rain, increased contribution from stratiform rain, and increased nonraining high clouds. Phase 7, in particular, signals the beginning of a return to higher SST and increased warm rain. Phase 8 completes the MJO cycle, returning to a bottom-heavy PDF and SST conditions similar to phase 1. The structural changes in rain and clouds at different phases of MJO are consistent with corresponding changes in derived latent heating profiles, suggesting the importance of a diverse mix of warm, mixed-phase, and ice-phase rain associated with low-level, congestus, and high clouds in constituting the life cycle and the time scales of MJO.
Hetmańczyk, Joanna; Hetmańczyk, Lukasz; Migdał-Mikuli, Anna; Mikuli, Edward; Florek-Wojciechowska, Małgorzata; Harańczyk, Hubert
2014-04-24
Vibrational-reorientational dynamics of H2O ligands in the high- and low-temperature phases of [Sr(H2O)6]Cl2 was investigated by Raman Spectroscopy (RS), proton magnetic resonance ((1)H NMR), quasielastic and inelastic incoherent Neutron Scattering (QENS and IINS) methods. Neutron powder diffraction (NPD) measurements, performed simultaneously with QENS, did not indicated a change of the crystal structure at the phase transition (detected earlier by differential scanning calorimetry (DSC) at TC(h)=252.9 K (on heating) and at TC(c)=226.5K (on cooling)). Temperature dependence of the full-width at half-maximum (FWHM) of νs(OH) band at ca. 3248 cm(-1) in the RS spectra indicated small discontinuity in the vicinity of phase transition temperature, what suggests that the observed phase transition may be associated with a change of the H2O reorientational dynamics. However, an activation energy value (Ea) for the reorientational motions of H2O ligands in both phases is nearly the same and equals to ca. 8 kJ mol(-1). The QENS peaks, registered for low temperature phase do not show any broadening. However, in the high temperature phase a small QENS broadening is clearly visible, what implies that the reorientational dynamics of H2O ligands undergoes a change at the phase transition. (1)H NMR line is a superposition of two powder Pake doublets, differentiated by a dipolar broadening, suggesting that there are two types of the water molecules in the crystal lattice of [Sr(H2O)6]Cl2 which are structurally not equivalent average distances between the interacting protons are: 1.39 and 1.18 Å. However, their reorientational dynamics is very similar (τc=3.3⋅10(-10) s). Activation energies for the reorientational motion of these both kinds of H2O ligands have nearly the same values in an experimental error limit: and equal to ca. 40 kJ mole(-1). The phase transition is not seen in the (1)H NMR spectra temperature dependencies. Infrared (IR), Raman (RS) and inelastic incoherent neutron scattering (IINS) spectra were calculated by the DFT method and quite a good agreement with the experimental data was obtained. Copyright © 2014 Elsevier B.V. All rights reserved.
Platinum-Modulated Cobalt Nanocatalysts for Low-Temperature Aqueous-Phase Fischer Tropsch Synthesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hang; Zhou, Wu; Liu, JinXun
2013-01-01
Fischer Tropsch synthesis (FTS) is an important catalytic process for liquid fuel generation, which converts coal/shale gas/biomass-derived syngas (a mixture of CO and H2) to oil. While FTS is thermodynamically favored at low temperature, it is desirable to develop a new catalytic system that could allow working at a relatively low reaction temperature. In this article, we present a one-step hydrogenation reduction route for the synthesis of Pt Co nanoparticles (NPs) which were found to be excellent catalysts for aqueous-phase FTS at 433 K. Coupling with atomic-resolution scanning transmission electron microscopy (STEM) and theoretical calculations, the outstanding activity is rationalizedmore » by the formation of Co overlayer structures on Pt NPs or Pt Co alloy NPs. The improved energetics and kinetics from the change of the transition states imposed by the lattice mismatch between the two metals are concluded to be the key factors responsible for the dramatically improved FTS performance.« less
NASA Astrophysics Data System (ADS)
Howard, Jason; Hood, Zachary D.; Holzwarth, N. A. W.
2017-12-01
Solid-state electrolytes that are compatible with high-capacity electrodes are expected to enable the next generation of batteries. As a promising example, Li2OHCl was reported to have good ionic conductivity and to be compatible with a lithium metal anode even at temperatures above 100 ∘C . In this work, we explore the fundamental properties of Li2OHCl by comparing simulations and experiments. Using calculations based on density functional theory, including both static and dynamic contributions through the quasiharmonic approximation, we model a tetragonal ground state, which is not observed experimentally. An ordered orthorhombic low-temperature phase was also simulated, agreeing with experimental structural analysis of the pristine electrolyte at room temperature. In addition, comparison of the ordered structures with simulations of the disordered cubic phase provide insight into the mechanisms associated with the experimentally observed abrupt increase in ionic conductivity as the system changes from its ordered orthorhombic to its disordered cubic phase. A large Haven ratio for the disordered cubic phase is inferred from the computed tracer diffusion coefficient and measured ionic conductivity, suggesting highly correlated motions of the mobile Li ions in the cubic phase of Li2OHCl . We find that the OH bond orientations participate in gating the Li ion motions which might partially explain the predicted Li-Li correlations.
NASA Astrophysics Data System (ADS)
Galdun, L.; Ryba, T.; Prida, V. M.; Zhukova, V.; Zhukov, A.; Diko, P.; Kavečanský, V.; Vargova, Z.; Varga, R.
2018-05-01
Large scale production of single crystalline phase of Heusler Co2FeSi alloy microwire is reported. The long microwire (∼1 km) with the metallic nucleus diameter of about 2 μm is characterized by well oriented monocrystalline structure (B2 phase, with the lattice parameter a = 5.615 Å). Moreover, the crystallographic direction [1 0 1] is parallel to the wire's axis along the entire length. Additionally, the wire is characterized by exhibiting a high Curie temperature (Tc > 800 K) and well-defined magnetic anisotropy mainly governed by shape. Electrical resistivity measurement reveals the exponential suppression of the electron-magnon scattering which provides strong evidence on the half-metallic behaviour of this material in the low temperature range.
Ternary Phase-Separation Investigation of Sol-Gel Derived Silica from Ethyl Silicate 40
Wang, Shengnan; Wang, David K.; Smart, Simon; Diniz da Costa, João C.
2015-01-01
A ternary phase-separation investigation of the ethyl silicate 40 (ES40) sol-gel process was conducted using ethanol and water as the solvent and hydrolysing agent, respectively. This oligomeric silica precursor underwent various degrees of phase separation behaviour in solution during the sol-gel reactions as a function of temperature and H2O/Si ratios. The solution composition within the immiscible region of the ES40 phase-separated system shows that the hydrolysis and condensation reactions decreased with decreasing reaction temperature. A mesoporous structure was obtained at low temperature due to weak drying forces from slow solvent evaporation on one hand and formation of unreacted ES40 cages in the other, which reduced network shrinkage and produced larger pores. This was attributed to the concentration of the reactive sites around the phase-separated interface, which enhanced the condensation and crosslinking. Contrary to dense silica structures obtained from sol-gel reactions in the miscible region, higher microporosity was produced via a phase-separated sol-gel system by using high H2O/Si ratios. This tailoring process facilitated further condensation reactions and crosslinking of silica chains, which coupled with stiffening of the network, made it more resistant to compression and densification. PMID:26411484
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP 2O 7 family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV 2O 7 and HfV 2O 7 were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV 2O 7 and HfV 2O 7 exhibited a very strong dependence on pressure (~700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV 2O 7 was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively).« less
Composite electrolyte with proton conductivity for low-temperature solid oxide fuel cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Raza, Rizwan, E-mail: razahussaini786@gmail.com; Department of Energy Technology, Royal Institute of Technology, KTH, Stockholm 10044; Ahmed, Akhlaq
In the present work, cost-effective nanocomposite electrolyte (Ba-SDC) oxide is developed for efficient low-temperature solid oxide fuel cells (LTSOFCs). Analysis has shown that dual phase conduction of O{sup −2} (oxygen ions) and H{sup +} (protons) plays a significant role in the development of advanced LTSOFCs. Comparatively high proton ion conductivity (0.19 s/cm) for LTSOFCs was achieved at low temperature (460 °C). In this article, the ionic conduction behaviour of LTSOFCs is explained by carrying out electrochemical impedance spectroscopy measurements. Further, the phase and structure analysis are investigated by X-ray diffraction and scanning electron microscopy techniques. Finally, we achieved an ionic transport numbermore » of the composite electrolyte for LTSOFCs as high as 0.95 and energy and power density of 90% and 550 mW/cm{sup 2}, respectively, after sintering the composite electrolyte at 800 °C for 4 h, which is promising. Our current effort toward the development of an efficient, green, low-temperature solid oxide fuel cell with the incorporation of high proton conductivity composite electrolyte may open frontiers in the fields of energy and fuel cell technology.« less
Trimethylamine alane for low-pressure MOVPE growth of AlGaAs-based materials and device structures
NASA Astrophysics Data System (ADS)
Schneider, R. P.; Bryan, R. P.; Jones, E. D.; Biefield, R. M.; Olbright, G. R.
The use of trimethylamine alane (TMAA1) as an alternative to trimethylaluminum (TMA1) for low-pressure metalorganic vapor-phase epitaxy (MOVPE) of AlGaAs thin films as well as complex optoelectronic device structures has been studied in detail. AlGaAs layers were grown in a horizontal reaction chamber at 20 - 110 mbar with growth temperatures in the range 650 C less than or equal to T(sub G) less than or equal to 750 C. Wafer thickness uniformity is strongly dependent on growth pressure, and is acceptable only for the highest linear flow velocities. The 12 K photoluminescence (PL) spectra of AlGaAs layers grown using TMAA1 and TEGa exhibit uniformly intense and narrow bound-exciton emission throughout the growth temperature range investigated. To assess the viability of this new source for the low-pressure OMVPE growth of advanced optoelectronic devices, several optically-pumped vertical-cavity surface-emitting laser (VCSEL) structures were grown using TMAA1 extensively. Room temperature lasing at 850 nm was reproducibly obtained from the VCSEL structures, with a threshold pumping power comparable to similar structures grown by molecular beam epitaxy in our laboratories.
NASA Astrophysics Data System (ADS)
Adams, James M.; Ivanov, Alexandre S.; Johnson, Mark R.; Stride, John A.
2004-07-01
An everyday laboratory chemical, hexamethylbenzene (HMB) has assumed an important role in the history of molecular structure and crystallography. It was one of the first organic crystal structures to be solved and provided direct experimental proof for the hypothesis of planarity in aromatic systems. Very soon after this, HMB was found to undergo a phase transition at 117K, resulting in crystal shattering. Since then, many attempts have been made to obtain the low-temperature structure, but none have succeeded until now. Making use of the unique properties of the neutron, we have performed powder diffraction measurements to obtain the low-temperature crystal structure and inelastic measurements to determine the dynamics of the system. These experiments have been augmented by the use of ab initio calculations and molecular modelling to obtain a complete picture of HMB in the solid state.
An x-ray absorption spectroscopy study of Ni-Mn-Ga shape memory alloys.
Sathe, V G; Dubey, Aditi; Banik, Soma; Barman, S R; Olivi, L
2013-01-30
The austenite to martensite phase transition in Ni-Mn-Ga ferromagnetic shape memory alloys was studied by extended x-ray absorption fine structure (EXAFS) and x-ray absorption near-edge structure (XANES) spectroscopy. The spectra at all the three elements', namely, Mn, Ga and Ni, K-edges in several Ni-Mn-Ga samples (with both Ni and Mn excess) were analyzed at room temperature and low temperatures. The EXAFS analysis suggested a displacement of Mn and Ga atoms in opposite direction with respect to the Ni atoms when the compound transforms from the austenite phase to the martensite phase. The first coordination distances around the Mn and Ga atoms remained undisturbed on transition, while the second and subsequent shells showed dramatic changes indicating the presence of a modulated structure. The Mn rich compounds showed the presence of antisite disorder of Mn and Ga. The XANES results showed remarkable changes in the unoccupied partial density of states corresponding to Mn and Ni, while the electronic structure of Ga remained unperturbed across the martensite transition. The post-edge features in the Mn K-edge XANES spectra changed from a double peak like structure to a flat peak like structure upon phase transition. The study establishes strong correlation between the crystal structure and the unoccupied electronic structure in these shape memory alloys.
Effect of pressure on the tetragonal distortion in TiH2: a first-principles study
NASA Astrophysics Data System (ADS)
de Coss, R.; Quijano, R.; Singh, D. J.
2009-03-01
The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.
Microstructural stability of fine-grained fully lamellar XD TiAl alloys by step aging
NASA Astrophysics Data System (ADS)
Zhu, Hanliang; Maruyama, K.; Seo, D. Y.; Au, P.
2005-05-01
XD TiAl alloys (Ti-45 and 47Al-2Nb-2Mn+0.8 vol pct TiB2) (at. pct) were oil quenched to produce fine-grained fully lamellar (FGFL) structures, and aging treatments at different temperatures for different durations were carried out to stabilize the FGFL structures. Microstructural examinations show that the aging treatments cause phase transformation of α 2 to γ, resulting in stabilization of the lamellar structure, as indicated by a significant decrease in α 2 volume fraction. However, several degradation processes are also introduced. After aging, within lamellar colonies, the α 2 lamellae become finer due to dissolution, whereas most of the γ lamellae coarsen. The dissolution of α 2 involves longitudinal dissolution and lateral dissolution. In addition, at lamellar colony boundaries, lamellar termination migration, nucleation and growth of γ grains, and discontinuous coarsening occur. With the exception of longitudinal dissolution, all the other transformation modes are considered as degradation processes as they result in a reduction in α 2/ γ interfaces. Different phase transformation modes are present to varying degrees in the aged FGFL structures, depending on aging conditions and Al content. A multiple step aging reduces the drive force for phase transformation at high temperature by promoting phase transformation via longitudinal dissolution at low temperatures. As a result, this aging procedure effectively stabilizes the lamellar structure and suppresses other degradation processes. Therefore, the multiple step aging is suggested to be an optimal aging condition for stabilizing FGFL XD TiAl alloys.
Temperature characteristics and magnetization mechanism of Fe1.2Co films
NASA Astrophysics Data System (ADS)
Dong, Dashun; Fang, Qingqing; Wang, Wenwen; Yang, Jingjing
2017-11-01
Fe1.2Co films with various thicknesses were prepared on glass substrates by pulsed laser deposition (PLD). The Fe1.2Co crystal structure exhibited a preferred orientation in the <1 1 0> direction. Also, we found that changing the film thickness affected its magnetic properties and the formation of its reversed nucleus. By measuring magnetism-temperature (M-T) curves under applied field cooling (FC) and zero-field cooling (ZFC), we found that the mechanism of the formation and growth of the reversed nucleus played a main role in blocking the motion of domain walls: the mechanism was competition between a ferromagnetic phase (FM) and an anti-ferromagnetic phase (AFM) at 10-300 K. Moreover, we found that the reversed nucleus blocked the motion of magnetic domains more at 10 K than at 300 K. We suggest that the reversed nucleus affects the magnetism more at low temperatures, which causes the coercivity to be higher at low temperature than at room temperature. These results will help us to understand the magnetic properties and temperature characteristics of FeCo thin films.
Pivot method for global optimization: A study of structures and phase changes in water clusters
NASA Astrophysics Data System (ADS)
Nigra, Pablo Fernando
In this thesis, we have carried out a study of water clusters. The research work has been developed in two stages. In the first stage, we have investigated the properties of water clusters at zero temperature by means of global optimization. The clusters were modeled by using two well known pairwise potentials having distinct characteristics. One is the Matsuoka-Clementi-Yoshimine potential (MCY) that is an ab initio fitted function based on a rigid-molecule model, the other is the Sillinger-Rahman potential (SR) which is an empirical function based on a flexible-molecule model. The algorithm used for the global optimization of the clusters was the pivot method, which was developed in our group. The results have shown that, under certain conditions, the pivot method may yield optimized structures which are related to one another in such a way that they seem to form structural families. The structures in a family can be thought of as formed from the aggregation of single units. The particular types of structures we have found are quasi-one dimensional tubes built from stacking cyclic units such as tetramers, pentamers, and hexamers. The binding energies of these tubes form sequences that span smooth curves with clear asymptotic behavior; therefore, we have also studied the sequences applying the Bulirsch-Stoer (BST) algorithm to accelerate convergence. In the second stage of the research work, we have studied the thermodynamic properties of a typical water cluster at finite temperatures. The selected cluster was the water octamer which exhibits a definite solid-liquid phase change. The water octamer also has several low lying energy cubic structures with large energetic barriers that cause ergodicity breaking in regular Monte Carlo simulations. For that reason we have simulated the octamer using paralell tempering Monte Carlo combined with the multihistogram method. This has permited us to calculate the heat capacity from very low temperatures up to T = 230 K. We have found the melting temperature to be 178.5 K. In addition, we have been able to estimate at 12 K the onset temperature of a solid-solid phase change between the two lowest energy lying isomers.
Effects of Nickel Doping on the Multiferroic and Magnetic Phases of MnWO 4
Poudel, N.; Lorenz, B.; Lv, B.; ...
2015-12-15
There are various orders in multiferroic materials with a frustrated spiral spin modulation inducing a ferroelectric state are extremely sensitive to small perturbations such as magnetic and electric fields, external pressure, or chemical substitutions. A classical multiferroic, the mineral Hubnerite with chemical formula MnWO 4, shows three different magnetic phases at low temperature. The intermediate phase between 7.5K < T < 12.7K is multiferroic and ferroelectricity is induced by an inversion symmetry breaking spiral Mn-spin order and strong spin-lattice interactions. Furthermore, the substitution of Ni 2+ (spin 1) for Mn 2+ (spin 5/2) in MnWO 4 and its effects onmore » the magnetic and multiferroic phases are studied. The ferroelectric phase is stabilized for low Ni content (up to 10%). Upon further Ni doping, the polarization in the ferroelectric phase is quickly suppressed while a collinear and commensurate magnetic phase, characteristic of the magnetic structure in NiWO 4, appears first at higher temperature, gradually extends to lower temperature, and becomes the ground state above 30% doping. Between 10% and 30%, the multiferroic phase coexists with the collinear commensurate phase. In this concentration region, the spin spiral plane is close to the a-b plane which explains the drop of the ferroelectric polarization. Finally, the phase diagram of Mn 1-xNi xWO 4 is derived by a combination of magnetic susceptibility, specific heat, electric polarization, and neutron scattering measurements.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab
2014-09-15
Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gallington, Leighanne C.; Hester, Brett R.; Kaplan, Benjamin S.
Low or negative thermal expansion (NTE) has been previously observed in members of the ZrP{sub 2}O{sub 7} family at temperatures higher than their order-disorder phase transitions. The thermoelastic properties and phase behavior of the low temperature superstructure and high temperature negative thermal expansion phases of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} were explored via in situ variable temperature/pressure powder x-ray diffraction measurements. The phase transition temperatures of ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} exhibited a very strong dependence on pressure (∼700 K GPa), with moderate compression suppressing the formation of their NTE phases below 513 K. Compression alsomore » reduced the magnitude of the coefficients of thermal expansion in both the positive and negative thermal expansion phases. Additionally, the high temperature NTE phase of ZrV{sub 2}O{sub 7} was found to be twice as stiff as the low temperature positive thermal expansion superstructure (24 and 12 GPa respectively). - Graphical abstract: The temperature at which ZrV{sub 2}O{sub 7} transforms to a phase displaying negative thermal expansion is strongly pressure dependent. The high temperature form of ZrV{sub 2}O{sub 7} is elastically stiffer than the low temperature form. - Highlights: • The order-disorder phase transition temperatures in ZrV{sub 2}O{sub 7} and HfV{sub 2}O{sub 7} are strongly pressure dependent (∼700 K.GPa). • The high temperature (disordered) phase of ZrV{sub 2}O{sub 7} is much stiffer than the ambient temperature (ordered) phase. • Compression reduces the magnitude of the negative thermal expansion in the high temperature phase of ZrV{sub 2}O{sub 7}.« less
NASA Astrophysics Data System (ADS)
Dufour, C.; Dumesnil, K.; Mangin, Ph
2006-07-01
Rare earths exhibit complex magnetic phase diagrams resulting from the competition between various contributions to the magnetic energy: exchange, anisotropy and magnetostriction. The epitaxy of a rare-earth film on a substrate induces (i) a clamping to the substrate and (ii) pseudomorphic strains. Both these effects are shown to lead to modifications of the magnetic properties in (0 0 1)Dy, (0 0 1)Tb and (1 1 0)Eu films. In Dy and Tb films, spectacular variations of the Curie temperature have been evidenced. Additionally, Tb films exhibit a new large wavelength magnetic modulation. In Eu films, one of the helical magnetic domains disappears at low temperature whereas the propagation vectors of the other helices are tilted. The link between structural and magnetic properties is underlined via magnetoelastic models. Moreover, molecular beam epitaxy permits the growth of Sm in a metastable dhcp phase. The magnetic structure of dhcp Sm has been elucidated for the first time. In this review, neutron scattering is shown to be a powerful technique to reveal the magnetic structures of rare-earth films.
Adsorption of O_{2} on Ag(111): Evidence of Local Oxide Formation.
Andryushechkin, B V; Shevlyuga, V M; Pavlova, T V; Zhidomirov, G M; Eltsov, K N
2016-07-29
The atomic structure of the disordered phase formed by oxygen on Ag(111) at low coverage is determined by a combination of low-temperature scanning tunneling microscopy and density functional theory. We demonstrate that the previous assignment of the dark objects in STM to chemisorbed oxygen atoms is incorrect and incompatible with trefoil-like structures observed in atomic-resolution images in current work. In our model, each object is an oxidelike ring formed by six oxygen atoms around the vacancy in Ag(111).
NASA Astrophysics Data System (ADS)
Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.
2017-10-01
We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.
NASA Astrophysics Data System (ADS)
Francillon, Wesley
This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).
Investigation of transport properties of FeTe compound
NASA Astrophysics Data System (ADS)
Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.
The THS Experiment: Simulating Titans Atmospheric Chemistry at Low Temperature (200K)
NASA Technical Reports Server (NTRS)
Sciamma-O'Brien, Ella; Upton, Kathleen; Beauchamp, Jack L.; Salama, Farid; Contreras, Cesar Sanchez; Bejaoui, Salma; Foing, Bernard; Pascale, Ehrenfreund
2015-01-01
In Titan's atmosphere, composed mainly of N2 (95-98%) and CH4 (2-5%), a complex chemistry occurs at low temperature, and leads to the production of heavy organic molecules and subsequently solid aerosols. Here, we used the Titan Haze Simulation (THS) experiment, an experimental setup developed at the NASA Ames COSmIC simulation facility to study Titan's atmospheric chemistry at low temperature. In the THS, the chemistry is simulated by plasma in the stream of a supersonic expansion. With this unique design, the gas is cooled to Titan-like temperature ( approximately 150K) before inducing the chemistry by plasma, and remains at low temperature in the plasma discharge (approximately 200K). Different N2-CH4-based gas mixtures can be injected in the plasma, with or without the addition of heavier precursors present as trace elements on Titan, in order to monitor the evolution of the chemical growth. Both the gas- and solid phase products resulting from the plasma-induced chemistry can be monitored and analyzed using a combination of complementary in situ and ex situ diagnostics. A recent mass spectrometry[1] study of the gas phase has demonstrated that the THS is a unique tool to probe the first and intermediate steps of Titan's atmospheric chemistry at Titan-like temperature. In particular, the mass spectra obtained in a N2-CH4-C2H2-C6H6 mixture are relevant for comparison to Cassini's CAPS-IBS instrument. The results of a complementary study of the solid phase are consistent with the chemical growth evolution observed in the gas phase. Grains and aggregates form in the gas phase and can be jet deposited on various substrates for ex situ analysis. Scanning Electron Microscopy images show that more complex mixtures produce larger aggregates. A mass spectrometry analysis of the solid phase has detected the presence of aminoacetonitrile, a precursor of glycine, in the THS aerosols. X-ray Absorption Near Edge Structure (XANES) measurements also show the presence of imine and nitrile functional groups, showing evidence of nitrogen chemistry. These complementary studies show the high potential of THS to better understand Titan's chemistry and the origin of aerosol formation.
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.
2016-06-01
A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.
NASA Astrophysics Data System (ADS)
Aizawa, T.; Yoshihara, S.-I.
2018-06-01
The austenitic stainless steels have been widely utilized as a structural component and member as well as a die and mold substrate for stamping. AISI316 dies and molds require for the surface treatment to accommodate the sufficient hardness and wear resistance to them. In addition, the candidate treatment methods must be free from toxicity, energy consumption and inefficiency. The low temperature plasma nitriding process has become one of the most promising methods to make solid-solution hardening by the nitrogen super-saturation. In the present paper, the high density RF/DC plasma nitriding process was applied to form the uniform nitrided layer in the AISI316 matrix and to describe the essential mechanism of inner nitriding in this low temperature nitriding process. In case of the nitrided AISI316 at 673 K for 14.4ks, the nitrided layer thickness became 60 μm with the surface hardness of 1700 HV and the surface nitrogen content of 7 mass %. This inner nitriding process is governed by the synergetic interrelation among the nitrogen super-saturation, the lattice expansion, the phase transformation, the plastic straining, the microstructure refinement and the acceleration of nitrogen diffusion. As far as this interrelation is sustained during the nitriding process, the original austenitic microstructure is homogeneously nitrided to have fine grains with the average size of 0.1 μm and the high crystallographic misorientation angles and to have two phase (γ + α’) structures with the plateau of nitrogen content by 5 mass%. Once this interrelation does not work anymore, the homogeneous microstructure changed itself to the heterogeneous one. The plastic straining took place in the selected coarse grains; they were partially refined into subgrains. This plastic localization accompanied the localized phase transformation.
Temperature and composition phase diagram in the iron-based ladder compounds Ba 1 - x Cs x Fe 2 Se 3
Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; ...
2015-05-28
We investigated the iron-based ladder compounds (Ba,Cs)Fe₂Se₃. Their parent compounds BaFe₂Se₃ and CsFe₂Se₃ have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe₂Se₃ is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe₂Se₃ is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe₂Se₃, but interladder spin configuration is different. Intermediatemore » compounds show insulating behavior, nevertheless a finite T-linear contribution in specific heat was obtained at low temperatures.« less
Temperature and composition phase diagram in the iron-based ladder compounds Ba1-xCsxFe2Se3
NASA Astrophysics Data System (ADS)
Hawai, Takafumi; Nambu, Yusuke; Ohgushi, Kenya; Du, Fei; Hirata, Yasuyuki; Avdeev, Maxim; Uwatoko, Yoshiya; Sekine, Yurina; Fukazawa, Hiroshi; Ma, Jie; Chi, Songxue; Ueda, Yutaka; Yoshizawa, Hideki; Sato, Taku J.
2015-05-01
We investigated the iron-based ladder compounds (Ba,Cs ) Fe2Se3 . Their parent compounds BaFe2Se3 and CsFe2Se3 have different space groups, formal valences of Fe, and magnetic structures. Electrical resistivity, specific heat, magnetic susceptibility, x-ray diffraction, and powder neutron diffraction measurements were conducted to obtain a temperature and composition phase diagram of this system. Block magnetism observed in BaFe2Se3 is drastically suppressed with Cs doping. In contrast, stripe magnetism observed in CsFe2Se3 is not so fragile against Ba doping. A new type of magnetic structure appears in intermediate compositions, which is similar to stripe magnetism of CsFe2Se3 , but interladder spin configuration is different. Intermediate compounds show insulating behavior, nevertheless a finite T -linear contribution in specific heat was obtained at low temperatures.
NASA Astrophysics Data System (ADS)
Zheng, R. K.; Zhu, C. F.; Xie, J. Q.; Li, X. G.
2001-01-01
Ultrasonic sound velocity and attenuation have been measured in polycrystalline manganese oxide La1-xCaxMnO3 (x=0.5,0.83,1.0) at a frequency of 10 MHz. For x=0.5, on cooling down from high temperature, a slight softening of the sound velocity above the charge ordering transition temperature TCO and dramatic stiffening below TCO coincided with big attenuation peaks for both longitudinal and transverse waves were observed. It was found that these ultrasonic anomalies near TCO are correlated with the fine structure (i.e., the lattice parameters) change caused by the Jahn-Teller effect. For x=0.83, the sound velocity starts to soften dramatically with decreasing temperature from higher temperature to TS (180 K), and stiffens dramatically below TS. The large softening and stiffening of the sound velocity accompanied by a big attenuation peak are strongly correlated with a cubic-to-tetragonal structural phase transition at TS, which is confirmed by the low-temperature powder x-ray diffraction measurements. It is suggested that this structural phase transition be due to the Jahn-Teller distortion of the Mn3+O6 octahedra and related to the charge ordering transition. For CaMnO3, the anomaly in sound velocity is small.
Novel penta-graphene nanotubes: strain-induced structural and semiconductor–metal transitions
Wang, Zhanyu; Cao, Xinran; Qiao, Chong; ...
2017-11-17
Research into novel one-dimensional (1D) materials and associated structural transitions is of significant scientific interest. It is widely accepted that a 1D system with a short-range interaction cannot have 1D phase transition at finite temperature. In this paper, we propose a series of new stable carbon nanotubes by rolling up penta-graphene sheets, which exhibit fascinating well-defined 1D phase transitions triggered by axial strain. Our first-principles calculations show that such penta-graphene nanotubes (PGNTs) are dynamically stable by phonon calculations, but transform from a tri-layer structure to a highly defective single-walled nanotube at low temperature in molecular dynamics simulations. We show thatmore » moderate compressive strains can drive structural transitions of (4,4), (5,5), and (6,6) PGNTs, during which the distances of neighboring carbon dimers in the inner shell have a sudden drop, corresponding to dimer–dimer nonbonding to bonding transitions. After such transition, the tubes become much more thermally stable and undergo semiconductor–metal transitions under increasing strain. The band gaps of PGNTs are not sensitive to chirality whereas they can be tuned effectively from visible to short-wavelength infrared by appropriate strain, making them appealing materials for flexible nano-optoelectronics. In conclusion, these findings provide useful insight into unusual phase transitions in low-dimensional systems.« less
Novel penta-graphene nanotubes: strain-induced structural and semiconductor–metal transitions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Zhanyu; Cao, Xinran; Qiao, Chong
Research into novel one-dimensional (1D) materials and associated structural transitions is of significant scientific interest. It is widely accepted that a 1D system with a short-range interaction cannot have 1D phase transition at finite temperature. In this paper, we propose a series of new stable carbon nanotubes by rolling up penta-graphene sheets, which exhibit fascinating well-defined 1D phase transitions triggered by axial strain. Our first-principles calculations show that such penta-graphene nanotubes (PGNTs) are dynamically stable by phonon calculations, but transform from a tri-layer structure to a highly defective single-walled nanotube at low temperature in molecular dynamics simulations. We show thatmore » moderate compressive strains can drive structural transitions of (4,4), (5,5), and (6,6) PGNTs, during which the distances of neighboring carbon dimers in the inner shell have a sudden drop, corresponding to dimer–dimer nonbonding to bonding transitions. After such transition, the tubes become much more thermally stable and undergo semiconductor–metal transitions under increasing strain. The band gaps of PGNTs are not sensitive to chirality whereas they can be tuned effectively from visible to short-wavelength infrared by appropriate strain, making them appealing materials for flexible nano-optoelectronics. In conclusion, these findings provide useful insight into unusual phase transitions in low-dimensional systems.« less
Pressure-induced quantum phase transition in the quantum antiferromagnet CsFeCl3
NASA Astrophysics Data System (ADS)
Hayashida, Shohei; Zaharko, Oksana; Kurita, Nobuyuki; Tanaka, Hidekazu; Hagihala, Masato; Soda, Minoru; Itoh, Shinichi; Uwatoko, Yoshiya; Masuda, Takatsugu
2018-04-01
We have studied the pressure-induced quantum phase transition in the singlet-ground-state antiferromagnet CsFeCl3. Neutron diffraction experiments under pressure evidence the magnetic long-range order at low temperatures. Magnetic structure analysis reveals a 120∘ structure with a propagation vector of kmag=(1 /3 ,1 /3 ,0 ) . The estimated critical exponent of the order parameter suggests that CsFeCl3 belongs to the universality class of U (1 ) ×Z2 symmetry which is expected to realize the chiral liquid state.
NASA Astrophysics Data System (ADS)
Kazei, Z. A.; Snegirev, V. V.; Kozeeva, L. P.; Kameneva, M. Yu.
2016-01-01
We have experimentally studied the structural and elastic characteristics of rare-earth cobaltites RBaCo4- x M x O7 (R = Dy-Er, Yb, Y), in which cobalt ions are partly substituted by diamagnetic Al or Zn ions. It was found that small substitution of Co3+ ions by Al3+ ions in the YbRBaCo4- x M x O7 system ( x = 0.1, 0.2, 0.5) leads to a rapid decrease and smearing of Δ E( T) /E 0 anomalies of the Young's modulus in the region of the structural phase transition, which is accompanied by increasing hysteresis. Pure rare-earth cobaltites RBaCo4O7 (R = Dy-Er, Y) exhibit a correlation between the room-temperature structure distortion and hysteresis on the Δ E( T)/ E 0 curve in a temperature interval of 80-280 K. In Zn-substituted cobaltites RBaCoZn3O7, both the hysteresis and Δ E( T)/ E 0 anomalies disappear, as do low-temperature sound absorption maxima. This behavior is evidence of the suppression of structural and magnetic phase transitions and the retention of only short-range correlations of the order parameter in Zn-substituted samples.
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.; ...
2014-11-07
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less
Structural and magnetic phase transitions in gadolinium under high pressures and low temperatures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samudrala, Gopi K.; Tsoi, Georgiy M.; Weir, Samuel T.
High pressure structural transition studies have been carried out on rare earth metal gadolinium in a diamond anvil cell at room temperature to 169 GPa. Gadolinium has been compressed to 38% of its initial volume at this pressure. With increasing pressure, a crystal structure sequence of hcp → Smtype→ dhcp → fcc → dfcc → monoclinic has been observed in our studies on gadolinium. The measured equation of state of gadolinium is presented to 169 GPa at ambient temperature. Magnetic ordering temperature of gadolinium has been studied using designer diamond anvils to a pressure of 25 GP and a temperaturemore » of 10 K. The magnetic ordering temperature has been determined from the four-point electrical resistivity measurements carried out on gadolinium. Furthermore, our experiments show that the magnetic transition temperature decreases with increasing pressure to 19 GPa and then increases when gadolinium is subjected to higher pressures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ren, Zhibo; Liu, Ning; Chen, Biaohua
Understanding the structural stability and dynamics at the interface between the solid metal oxide and aqueous phase is significant in a variety of industrial applications including heterogeneous catalysis and environmental remediation. In the present work, the stabilities of three low-index ceria (CeO2) surfaces, i.e., (111), (110) and (100) in vapor and aqueous phases were studied using ab initio molecular dynamics simulations and density functional theory (DFT) calculations. Gibbs surface free energies as a function of temperature, water partial pressure, and water coverages were calculated using DFT based atomistic thermodynamic approach. On the basis of surface free energies, the morphology andmore » exposed surface structures of the CeO2 nanoparticle were predicted using Wulff construction principle. It is found that the partially hydroxylated (111) and (100) are two major surface structures of CeO2 nanoparticles in vapor phase at ambient temperature (300 K). As the temperature increases, the fully dehydrated (111) surface gradually becomes the most dominant surface structure. While in aqueous phase, the exposed surface of the CeO2 nanoparticle is dominated by the hydroxylated (110) structure at 393 K. Finally, the morphology and stability of a cuboctahedron Pt13 nanocluster supported on CeO2 surfaces in both gas and aqueous phases were investigated. In gas phase, the supported Pt13 nanocluster has the tendency to wetting the CeO2 surface due to the strong metal-support interaction. The calculated interaction energies suggest the CeO2(110) surface provides the best stability for the Pt13 nanocluster. The CeO2 supported Pt13 nanoclusters are oxidized. Compared to the gas phase, the morphology of the CeO2 supported Pt13 nanocluster is less distorted due to the solvation effect provided by surrounding water molecules in aqueous phase. More electrons are transferred from the Pt13 nanocluster to the CeO2 support, implying the supported Pt13 nanocluster is further oxidized in aqueous phase.« less
NASA Astrophysics Data System (ADS)
Jauhari, Mrinal; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.
2017-12-01
We present results obtained from a combination of dielectric and x-ray diffraction measurements for compositional design of (1 -x )NaNb O3-x BaTi O3(NNBT x ) , which can induce interferroelectric phase transitions. Anomalies are observed in dielectric measurements performed for various compositions at 300 K, as well as at different temperatures for NNBT03. We observed the appearance(disappearance) of the superlattice reflections along with change in the intensities of the main perovskite peaks in the powder x-ray diffraction data, which provide clear evidences for structural phase transitions with composition and temperature. We found that increasing the concentration of BaTi O3 leads to the suppression of out-of-phase rotation of octahedra and an increment in tetragonality (c /a ratio), which promotes the polar mode at room temperature. The temperature-dependent powder diffraction study shows that the ferroelectric rhombohedral phase of pure sodium niobate gets suppressed for the composition x =0.03 , and the monoclinic phase C c gets stabilized at low temperature. The monoclinic phase is believed to provide for a flexible polarization rotation and is considered to be directly linked to the high-performance piezoelectricity in materials due to presence of more easy axes for spontaneous polarizations than the rhombohedral phase.
High-pressure phases of Mg2Si from first principles
NASA Astrophysics Data System (ADS)
Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.
2016-03-01
First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.
Structural and phase transformations in Hadfield steel upon frictional loading in liquid nitrogen
NASA Astrophysics Data System (ADS)
Korshunov, L. G.; Sagaradze, V. V.; Chernenko, N. L.
2016-08-01
Structural transformations that occur in 110G13 steel (Hadfield) upon sliding friction in liquid nitrogen (-196°C) have been investigated by metallographic, electron-microscopic, and X-ray diffraction methods. The frictional action was performed through the reciprocating sliding of a cylindrical indenter of quenched 110G13 steel over a plate of the studied steel. A like friction pair was immersed into a bath with liquid nitrogen. It has been shown that the Hadfield steel quenched from 1100°C under the given temperature conditions of frictional loading retains the austenitic structure completely. The frictional action forms in a surface layer up to 10 μm thick the nanocrystalline structure with austenite grains 10-50 nm in size and a hardness 6 GPa. Upon subsequent low-temperature friction, the tempering of steel at 400°C (3 h) and at 600°C (5 min and 5 h) brings about the formation of a large amount (tens of vol %) of ɛ (hcp) martensite in steel. The formation of this phase under friction is supposedly a consequence of the reduction in the stacking fault energy of Hadfield steel, which is achieved due to the combined action of the following factors: low-temperature cooling, a decrease in the carbon content in the austenite upon tempering, and the presence of high compressive stresses in the friction-contact zone.
Tian, Zhengfang; Duan, Haibao; Ren, Xiaoming; Lu, Changsheng; Li, Yizhi; Song, You; Zhu, Huizhen; Meng, Qingjin
2009-06-18
Two quasi-one-dimensional (quasi-1D) compounds, [4'-CH(3)Bz-4-RPy][Ni(mnt)(2)] (mnt(2-) = maleonitriledithiolate), where 4'-CH(3)Bz-4-RPy(+) = 1-(4'-methylbenzyl)pyridinium (denoted as compound 1) and 1-(4'-methylbenzyl)-4-aminopyridinium (denoted as compound 2), show a spin-Peierls-like transition with T(C) approximately 182 K for 1 and T(C) approximately 155 K for 2. The enthalpy changes for the transition are estimated to be DeltaH = 316.6 J.mol(-1) for 1 and 1082.1 J.mol(-1) for 2. From fits to the magnetic susceptibility, the magnetic exchange constants in the gapless state are calculated to be J = 166(2) K with g = 2.020(23) for 1 versus J = 42(0) K with g = 2.056(5) for 2. In the high-temperature (HT) phase, 1 and 2 are isostructural and crystallize in the monoclinic space group P2(1)/c. The nonmagnetic cations and paramagnetic anions form segregated columns with regular anionic and cationic stacks. In the low-temperature (LT) phase, the crystals of the two compounds undergo a transformation to the triclinic space group P-1, and both anionic and cationic stacks dimerize. In the transformation from the HT to LT phases, the two compounds exhibit divergent structural features, with lattice compression for 1 but lattice expansion for 2, due to intermolecular slippage. Combined with our previous studies, it is also noted that the transition temperature, T(C), is qualitatively related to the cell volume in the HT phase for the series of compounds [1-(4'-R-benzylpyridinium][Ni(mnt)(2)] (where R represents the substituent). When there is a single substituent in the para position of benzene, giving a larger cell volume, the transition temperature increases.
Temperature dependent x-ray diffraction and dielectric studies of multiferroic GaFeO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kumar, Rajeev; Mall, Ashish Kumar, E-mail: ashishm@iitk.ac.in; Gupta, Rajeev
2016-05-06
Polycrystalline GaFeO{sub 3} (GFO) samples were synthesized by sol-gel method. The structural and dielectric properties of GaFeO{sub 3} ceramic have been investigated by a combination of XRD and permittivity measurement. The X-ray diffraction spectra shows single phase orthorhombically distorted perovskite structure with Pc2{sub 1}n symmetry over a wide range of temperature 300 K to 600 K, with no evidence of any phase transition. Refined lattice parameters (a, b, c and V) increases with increasing temperature. Temperature dependent dielectric properties were investigated in the frequency range from 100Hz–5MHz. Impedance spectroscopy study on the sample showed that the dielectric constant and acmore » conductivity with frequency increases on increasing the temperature. Cole-Cole plots suggest that the response from grain is dominant at low temperature whereas grain boundary response overcomes as temperature increases. The relaxation activation energy (calculated from Cole-Cole plots) value is found to be 0.32 eV for the grain boundary. We believe that the oxygen ion vacancies play an important role in conduction processes at higher temperatures.« less
Physical Properties of Phase Pure 4C Pyrrhotite (Fe7S8) during its Low Temperature Besnus Transition
NASA Astrophysics Data System (ADS)
Volk, M.; Feinberg, J. M.; McCalla, E.; Leighton, C.; Voigt, B.
2017-12-01
Of all magnetic minerals that play a role in recording terrestrial and extraterrestrial magnetic fields, the low temperature phase transition of monoclinic Fe7S8 is the least well understood. At room temperature an array of ordered vacancies gives rise to ferrimagnetism in pyrrhotite. The mineral's physical properties change dramatically at ≈30 K during what is known as the Besnus transition. The mechanism driving these changes, however, is not fully understood. Several explanations have been proposed, including changes in crystalline anisotropy, a transformation of the crystal symmetry, and magnetic interactions within in a two-phase (4C/5C*) system among them. To better understand the transition we studied magnetic, electric and structural properties as well as the heat capacity of a large, phase pure monoclinic crystal (Fe6.8±0.1S8). The single-phase sample shows a clear peak at 32 K in the heat capacity associated with a second order phase transition. Zero field cooling of 2.5 T saturating isothermal remanent magnetizations acquired at 300 and 20 K, as well electrical conductivity exhibit sudden changes between 30-33 K. Susceptibility shows a secondary peak within the same temperature interval. These phenomena can be related to the peak in heat capacity, indicating that the changes are related to the phase transition. In-field measurements show that the magnetic and electric transitions are mildly field dependent. Repeated measurements on different instruments show that the transition temperature for susceptibility is 1 K higher when measured parallel to the crystallographic c-axis as compared to within the c-plane. Similar trends could be found in magnetoresistivity, which is negative (≈ -2%) in the c-plane and larger and positive (≈ 5%) along the c-axis. While this comprehensive data set is not able to unambiguously explain the mechanism driving the transition, it indicates the coupling of structural and magnetocrystalline properties and suggests that the Besnus transition is an intrinsic phenomenon for pure 4C pyrrhotite.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Alexander, Malcolm; Cranswick, Lachlan M. D.; Swainson, Ian P.
2007-12-01
The cell dimensions and crystal structures of the fluoroperovskite NaMgF3 (neighborite), synthesized by solid state methods, have been determined by powder neutron diffraction and Rietveld refinement over the temperature range 300 3.6 K using Pt metal as an internal standard for calibration of the neutron wavelength. These data show that Pbnm NaMgF3 does not undergo any phase transitions to structures of lower symmetry with decreasing temperature. The cell dimensions and atomic coordinates together with polyhedron volumes and distortion indices are given for Pbnm NaMgF3 at 25 K intervals from 300 to 3.6 K. Decreases in the a and c cell dimensions reach a saturation point at 50 K, whereas the b dimension becomes saturated at 150 K. The distortion of the structure of Pbnm NaMgF3 from the aristotype cubic Pmifmmodeexpandafterbarelseexpandafter\\=fi{3}m structure is described in terms of the tilting of the MgF6 octahedra according to the tilt scheme a - a - c + . With decreasing temperature the antiphase tilt ( a -) increases from 14.24° to 15.39°, whereas the in-phase tilt ( c + ) remains effectively constant at ˜10.7°. Changes in the tilt angles are insufficient to cause changes in the coordination sphere of Na that might induce a low temperature phase transition. The structure of Pbnm NaMgF3 is also described in terms of normal mode analysis and displacements of the condensed normal modes are compared with those of Pbnm KCaF3.
Kondo necklace model in approximants of Fibonacci chains
NASA Astrophysics Data System (ADS)
Reyes, Daniel; Tarazona, H.; Cuba-Supanta, G.; Landauro, C. V.; Espinoza, R.; Quispe-Marcatoma, J.
2017-11-01
The low energy behavior of the one dimensional Kondo necklace model with structural aperiodicity is studied using a representation for the localized and conduction electron spins, in terms of local Kondo singlet and triplet operators at zero temperature. A decoupling scheme on the double time Green's functions is used to find the dispersion relation for the excitations of the system. We determine the dependence between the structural aperiodicity modulation and the spin gap in a Fibonacci approximant chain at zero temperature and in the paramagnetic side of the phase diagram.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2017-11-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2018-06-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
High pressure and temperature induced structural and elastic properties of lutetium chalcogenides
NASA Astrophysics Data System (ADS)
Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh
2018-04-01
The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
Anelasticity maps for acoustic dissipation associated with phase transitions in minerals
NASA Astrophysics Data System (ADS)
Carpenter, Michael A.; Zhang, Zhiying
2011-07-01
Acoustic dissipation due to structural phase transitions in minerals could give rise to large seismic attenuation effects superimposed on the high temperature background contribution from dislocations and grain boundaries in the Earth. In addition to the possibility of a sharp peak actually at a transition point for both compressional and shear waves, significant attenuation might arise over wider temperature intervals due to the mobility of transformation twins or other defects associated with the transition. Attenuation due to structural phase transitions in quartz, pyroxenes, perovskites, stishovite and hollandite, or to spin state transitions of Fe2+ in magnesiowüstite and perovskite and the hcp/bcc transition in iron-nickel (Fe-Ni) alloy, are reviewed from this perspective. To these can be added possible loss behaviour associated with reconstructive transitions which might occur by a ledge mechanism on topotactic interfaces (orthopyroxene/clinopyroxene, olivine/spinel and perovskite/postperovskite), with impurities (Snoek effect) or with mobility of protons. There are experimental difficulties associated with measuring dissipation effects in situ at simultaneous high pressures and temperatures, so reliance is currently placed on investigation of analogue phases such as LaCoO3 for spin-state behaviour and LaAlO3 for the dynamics of ferroelastic twin walls. Similarly, it is not possible to measure loss dynamics simultaneously at the low stresses and low frequencies that pertain in seismic waves, so reliance must be placed on combining different techniques, such as dynamic mechanical analysis (low frequency, relatively high stress) and resonant ultrasound spectroscopy (high frequency, low stress), to extrapolate acoustic loss behaviour over wide frequency, temperature and stress intervals. In this context 'anelasticity maps' provide a convenient means of representing different loss mechanisms. Contouring of the inverse mechanical quality factor, Q-1, can be achieved if the appropriate constitutive laws are known. The overall approach is illustrated using the examples of spin-state transitions of Co3+ in LaCoO3 and twin mobility in single crystals of the rhombohedral phase of LaAlO3. Anelasticity maps of this type should give seismologists a clearer view of the characteristic patterns of seismic velocity and attenuation that could be used to detect (or rule out) the presence of particular phase transitions or loss behaviour in the core and mantle.
Designing shape-memory Heusler alloys from first-principles
NASA Astrophysics Data System (ADS)
Siewert, M.; Gruner, M. E.; Dannenberg, A.; Chakrabarti, A.; Herper, H. C.; Wuttig, M.; Barman, S. R.; Singh, S.; Al-Zubi, A.; Hickel, T.; Neugebauer, J.; Gillessen, M.; Dronskowski, R.; Entel, P.
2011-11-01
The phase diagrams of magnetic shape-memory Heusler alloys, in particular, ternary Ni-Mn-Z and quarternary (Pt, Ni)-Mn-Z alloys with Z = Ga, Sn, have been addressed by density functional theory and Monte Carlo simulations. Finite temperature free energy calculations show that the phonon contribution stabilizes the high-temperature austenite structure while at low temperatures magnetism and the band Jahn-Teller effect favor the modulated monoclinic 14M or the nonmodulated tetragonal structure. The substitution of Ni by Pt leads to a series of magnetic shape-memory alloys with very similar properties to Ni-Mn-Ga but with a maximal eigenstrain of 14%.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice.
Lin, Chuanlong; Yong, Xue; Tse, John S; Smith, Jesse S; Sinogeikin, Stanislav V; Kenney-Benson, Curtis; Shen, Guoyin
2017-09-29
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ∼1 Pa, to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
NASA Astrophysics Data System (ADS)
Lin, Chuanlong; Yong, Xue; Tse, John S.; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kenney-Benson, Curtis; Shen, Guoyin
2017-09-01
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transition to low-density amorphous ice at 96 K and ˜1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.
Kinetically Controlled Two-Step Amorphization and Amorphous-Amorphous Transition in Ice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Chuanlong; Yong, Xue; Tse, John S.
We report the results of in situ structural characterization of the amorphization of crystalline ice Ih under compression and the relaxation of high-density amorphous (HDA) ice under decompression at temperatures between 96 and 160 K by synchrotron x-ray diffraction. The results show that ice Ih transforms to an intermediate crystalline phase at 100 K prior to complete amorphization, which is supported by molecular dynamics calculations. The phase transition pathways show clear temperature dependence: direct amorphization without an intermediate phase is observed at 133 K, while at 145 K a direct Ih-to-IX transformation is observed; decompression of HDA shows a transitionmore » to low-density amorphous ice at 96 K and ~ 1 Pa , to ice Ic at 135 K and to ice IX at 145 K. These observations show that the amorphization of compressed ice Ih and the recrystallization of decompressed HDA are strongly dependent on temperature and controlled by kinetic barriers. Pressure-induced amorphous ice is an intermediate state in the phase transition from the connected H-bond water network in low pressure ices to the independent and interpenetrating H-bond network of high-pressure ices.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azadi, Sam, E-mail: s.azadi@ucl.ac.uk; Cohen, R. E.; Department of Earth- and Environmental Sciences, Ludwig Maximilians Universität, Munich 80333
We studied the low-pressure (0–10 GPa) phase diagram of crystalline benzene using quantum Monte Carlo and density functional theory (DFT) methods. We performed diffusion quantum Monte Carlo (DMC) calculations to obtain accurate static phase diagrams as benchmarks for modern van der Waals density functionals. Using density functional perturbation theory, we computed the phonon contributions to the free energies. Our DFT enthalpy-pressure phase diagrams indicate that the Pbca and P2{sub 1}/c structures are the most stable phases within the studied pressure range. The DMC Gibbs free-energy calculations predict that the room temperature Pbca to P2{sub 1}/c phase transition occurs at 2.1(1)more » GPa. This prediction is consistent with available experimental results at room temperature. Our DMC calculations give 50.6 ± 0.5 kJ/mol for crystalline benzene lattice energy.« less
Microstructure, microstructural stability and mechanical properties of sand-cast Mg–4Al–4RE alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rzychoń, Tomasz, E-mail: tomasz.rzychon@polsl.pl; Kiełbus, Andrzej; Lityńska-Dobrzyńska, Lidia
2013-09-15
This paper presents a methodology for assessing the phase composition and the results of structural stability tests of the sand-cast Mg–4Al–4RE alloy after annealing it at 175 and 250 °C for 3000 h. The microstructure was analyzed with optical, scanning electron, and transmission electron microscopy. The phase composition was determined with X-ray diffraction. The structure of the Mg–4Al–4RE (AE44) alloy is composed of large grains of α-Mg solid solution, needle-shaped precipitates of the Al{sub 11}RE{sub 3}phase, polyhedral precipitates of the Al{sub 2}RE phase and Al{sub 10}RE{sub 2}Mn{sub 7} phase. After annealing at 175 °C for 3000 h, no changes inmore » the alloy structure are observed, whereas after annealing at 250 °C the precipitates of the Al{sub 11}RE{sub 3} phase are found to be in the initial stages of spheroidization. The coarse-grained structure and unfavorable morphology of the intermetallic phases in the sand-cast AE44 alloy, which are caused by low solidification rates, result in low creep resistance up to 200 °C and low mechanical properties at ambient temperature and at 175 °C. - Highlights: • Complement the knowledge about the microstructure of Mg-Al-RE alloys. • Clarify the mechanism of formation of Mg17Al12 phase above 180 °C. • Applying a chemical dissolution of the α-Mg in order to phase identification. • Applying a statistical test to assess the spheroidization of precipitates. • Quantitative description of microstructure of Mg-Al-RE alloys.« less
NASA Astrophysics Data System (ADS)
Braun, Jens; Leonhardt, Marc; Pospiech, Martin
2018-04-01
Nambu-Jona-Lasinio-type models are often employed as low-energy models for the theory of the strong interaction to analyze its phase structure at finite temperature and quark chemical potential. In particular, at low temperature and large chemical potential, where the application of fully first-principles approaches is currently difficult at best, this class of models still plays a prominent role in guiding our understanding of the dynamics of dense strong-interaction matter. In this work, we consider a Fierz-complete version of the Nambu-Jona-Lasinio model with two massless quark flavors and study its renormalization group flow and fixed-point structure at leading order of the derivative expansion of the effective action. Sum rules for the various four-quark couplings then allow us to monitor the strength of the breaking of the axial UA(1 ) symmetry close to and above the phase boundary. We find that the dynamics in the ten-dimensional Fierz-complete space of four-quark couplings can only be reduced to a one-dimensional space associated with the scalar-pseudoscalar coupling in the strict large-Nc limit. Still, the interacting fixed point associated with this one-dimensional subspace appears to govern the dynamics at small quark chemical potential even beyond the large-Nc limit. At large chemical potential, corrections beyond the large-Nc limit become important, and the dynamics is dominated by diquarks, favoring the formation of a chirally symmetric diquark condensate. In this regime, our study suggests that the phase boundary is shifted to higher temperatures when a Fierz-complete set of four-quark interactions is considered.
Electronic and structural ground state of heavy alkali metals at high pressure
Fabbris, G.; Lim, J.; Veiga, L. S. I.; ...
2015-02-17
Here, alkali metals display unexpected properties at high pressure, including emergence of low symmetry crystal structures, that appear to occur due to enhanced electronic correlations among the otherwise nearly-free conduction electrons. We investigate the high pressure electronic and structural ground state of K, Rb, and Cs using x-ray absorption spectroscopy and x-ray diffraction measurements together with ab initio theoretical calculations. The sequence of phase transitions under pressure observed at low temperature is similar in all three heavy alkalis except for the absence of the oC84 phase in Cs. Both the experimental and theoretical results point to pressure-enhanced localization of themore » valence electrons characterized by pseudo-gap formation near the Fermi level and strong spd hybridization. Although the crystal structures predicted to host magnetic order in K are not observed, the localization process appears to drive these alkalis closer to a strongly correlated electron state.« less
Temperature effects on the atomic structure and kinetics in single crystal electrochemistry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gründer, Yvonne; Markovic, Nenad M.; Thompson, Paul
2015-01-01
The influence of temperature on the atomic structure at the electrochemical interface has been studied using in-situ surface x-ray scattering (SXS) during the formation of metal monolayers on a Au(111) electrode. For the surface reconstruction of Au(111), higher temperatures increase the mobility of surface atoms in the unreconstructed phase which then determines the surface ordering during the formation of the reconstruction. For the underpotential deposition (UPD) systems, the surface diffusion of the depositing metal adatoms is significantly reduced at low temperatures which results in the frustration of ordered structures in the case of Cu UPD, occurring on a Br-modified surface,more » and in the formation of a disordered Ag monolayer during Ag UPD. The results indicate that temperature changes affect the mass transport and diffusion of metal adatoms on the electrode surface. This demonstrates the importance of including temperature as a variable in studying surface structure and reactions at the electrochemical interface.« less
NASA Astrophysics Data System (ADS)
Alam, Khan
As a part of my Ph.D research, initially I was involved in construction and calibration of an ultra-high vacuum thin film facility, and later on I studied structural, electronic, and magnetic properties of GaN, CrN, Fe/CrN bilayers, and Fe islands on CrN thin films. All of these films were grown by molecular beam epitaxy and characterized with a variety of state-of-the-art techniques including variable temperature reflection high energy electron diffraction, low temperature scanning tunneling microscopy and spectroscopy, variable temperature vibrating sample magnetometry, variable temperature neutron diffraction and reflectometry, variable temperature x-ray diffraction, x-ray reflectometry, Rutherford backscattering, Auger electron spectroscopy, and cross-sectional tunneling electron microscopy. The experimental results are furthermore understood by comparing with numerical calculations using generalized gradient approximation, local density approximation with Hubbard correction, Refl1D, and data analysis and visual environment program. In my first research project, I studied Ga gas adatoms on GaN surfaces. We discovered frozen-out gallium gas adatoms on atomically smooth c(6x12) GaN(0001¯) surface using low temperature scanning tunneling microscopy. We identified adsorption sites of the Ga adatoms on c(6x12) reconstructed surface. Their bonding is determined by measuring low unoccupied molecular orbital level. Absorption sites of the Ga gas adatoms on centered 6x12 are identified, and their asymmetric absorption on the chiral domains is investigated. In second project, I investigated magneto-structural phase transition in chromium nitride (CrN) thin films. The CrN thin films are grown by molecular beam epitaxy. Structural and magnetic transition are studied using variable temperature reflection high energy electron diffraction and variable temperature neutron diffraction. We observed a structural phase transition at the surface at 277+/-2 K, and a sharp, first-order magnetic phase transition from paramagnetic (room temperature) to antiferromagnetic (low temperature) at 280+/-3 K. Our experiments suggest that the structural transition in CrN thin films occur in out-of-plane direction, and epitaxial constraints suppress the in-plane transition; therefore, the low temperature crystal structure of CrN is tetragonal. This new model explains our structural and magnetic data at low temperatures, but it is different than the previously published orthorhombic model. In third project, I studied exchange bias and exchange spring effect in MBE grown Fe/CrN bilayer thin films. We grew Fe/CrN bilayer thin films on MgO(001) substrate by molecular beam epitaxy, and studied them using variable temperature vibrating sample magnetometry, polarized neutron reflectometry, x-ray reflectivity, and cross-sectional transmission electron microscopy. We observed exchange bias and exchange spring effect in all bilayer thin films. We studied the relationship of exchange bias, blocking temperature, and coercivity with Fe and CrN layers thicknesses. We used polarized neutron beam reflectometry to see if spins at Fe/CrN interface are pinned. We found a thin ferromagnetically ordered CrN layer at the interface. In my final project, I studied growth of submonolayer Fe islands on CrN thin films. These films are prepared in two stages: first, a CrN layer is grown by MBE and then a submonolayer Fe is deposited at room temperature from a carefully degassed e-beam evaporator. The films are studied at liquid helium temperature using low temperature scanning tunneling microscopy and spectroscopy. Islands are seen in STM images, after the Fe deposition, at the edges as well as at the center of atomically flat CrN terraces. However, numerical calculations performed by our collaborator Ponce-P'erez from Benem'erita Universidad Aut'onoma de Puebla show that the Fe islands are energetically unstable on the surface. The Fe atoms substitute Cr atoms in the surface layer and the Cr atoms comes out and form islands. In order to find out elemental composition of the islands, we attempted to map local density of state by measuring differential conductance spectra as a function of bias voltage using LT-STS. We observed three characteristically different spectra; one in the CrN substrate and two in the islands. The CrN substrate curve has a "U" shape near Fermi level and a peak at ≈ 105 mV. The islands spectra show Kondo-like resonances at Fermi level; some islands produce a peak whereas others produce a dip the dI/dV curves near Fermi level. Further investigations are needed to determine the origin of the peak and dip in the island curves, as well as to find the composition of the islands.
High pressure-temperature polymorphism of 1,1-diamino-2,2-dinitroethylene
NASA Astrophysics Data System (ADS)
Bishop, M. M.; Chellappa, R. S.; Liu, Z.; Preston, D. N.; Sandstrom, M. M.; Dattelbaum, D. M.; Vohra, Y. K.; Velisavljevic, N.
2014-05-01
1,1-diamino-2,2-dinitroethylene (FOX-7) is a low sensitivity energetic material with performance comparable to commonly used secondary explosives such as RDX and HMX. At ambient pressure, FOX-7 exhibits complex polymorphism with at least three structurally distinct phases (α, β, and γ). In this study, we have investigated the high pressure-temperature stability of FOX-7 polymorphs using synchrotron mid-infrared (MIR) spectroscopy. At ambient pressure, our MIR spectra and corresponding differential scanning calorimetry (DSC) measurements confirmed the known α → β (~110 °C) and α → β (~160 °C) structural phase transitions; as well as, indicated an additional transition γ → (~210 °C), with the δ phase being stable up to ~251 °C prior to decomposition. In situ MIR spectra obtained during isobaric heating at 0.9 GPa, revealed a potential α → β transition that could occur as early as 180 °C, while β → β+δ phase transition shifted to ~300 °C with suppression of γ phase. Decomposition was observed slightly above 325 °C at 0.9 GPa.
Andersson, D A; Baldinozzi, G; Desgranges, L; Conradson, D R; Conradson, S D
2013-03-04
Formation of hyperstoichiometric uranium dioxide, UO2+x, derived from the fluorite structure was investigated by means of density functional theory (DFT) calculations. Oxidation was modeled by adding oxygen atoms to UO2 fluorite supercells. For each compound ab initio molecular dynamics simulations were performed to allow the ions to optimize their local geometry. A similar approach was used for studying the reduction of U3O8. In agreement with the experimental phase diagram we identify stable line compounds at the U4O9-y and U3O7 stoichiometries. Although the transition from fluorite to the layered U3O8 structure occurs at U3O7 (UO2.333) or U3O7.333 (UO2.444), our calculated low temperature phase diagram indicates that the fluorite derived compounds are favored up to UO2.5, that is, as long as the charge-compensation for adding oxygen atoms occurs via formation of U(5+) ions, after which the U3O8-y phase becomes more stable. The most stable fluorite UO2+x phases at low temperature (0 K) are based on ordering of split quad-interstitial oxygen clusters. Most existing crystallographic models of U4O9 and U3O7, however, apply the cuboctahedral cluster. To better understand these discrepancies, the new structural models are analyzed in terms of existing neutron diffraction data. DFT calculations were also performed on the experimental cuboctahedral based U4O9-y structure, which enable comparisons between the properties of this phase with the quad-interstitial ones in detail.
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
2015-10-28
The thermal conversion of chemically delithiated layered Li 0.5Ni 1–yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
The thermal conversion of chemically delithiated layered Li 0.5Ni 1–yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2–yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated in this paper. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied inmore » lithium-ion cells. A bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. Finally, the study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kan, Wang Hay; Huq, Ashfia; Manthiram, Arumugam
The thermal conversion of chemically delithiated layered Li 0.5Ni 1-yMn yO 2 (0.2 ≤ y ≤ 0.5) into spinel-like LiNi 2-yMn yO 4 (0.4 ≤ y ≤ 1) has been systematically investigated. The formed spinel-like phases are metastable and cannot be accessed by a conventional high-temperature solid-state method. The layered-to-spinel transformation mechanism has been studied by the Rietveld refinement of in situ neutron diffraction as a function of temperature (25–300 °C). In particular, the ionic diffusion of Li and M ions is quantified at different temperatures. Electrochemistry of the metastable spinel-like phases obtained has been studied in lithium-ion cells. Amore » bond valence sum map has been performed to understand the ionic diffusion of lithium ions in the Ni-rich layered, spinel, and rock-salt structures. The study can aid the understanding of the possible phases that could be formed during the cycling of Ni-rich layered oxide cathodes.« less
Petrović, Miloš; Ye, Tao; Chellappan, Vijila; Ramakrishna, Seeram
2017-12-13
Low-temperature optoelectrical studies of perovskite solar cells using MAPbI 3 and mixed-perovskite absorbers implemented into planar and mesoporous architectures reveal fundamental charge transporting properties in fully assembled devices operating under light bias. Both types of devices exhibit inverse correlation of charge carrier lifetime as a function of temperature, extending carrier lifetimes upon temperature reduction, especially after exposure to high optical biases. Contribution of bimolecular channels to the overall recombination process should not be overlooked because the density of generated charge surpasses trap-filling concentration requirements. Bimolecular charge recombination coefficient in both device types is smaller than Langevin theory prediction, and its mean value is independent of the applied illumination intensity. In planar devices, charge extraction declines upon MAPbI 3 transition from a tetragonal to an orthorhombic phase, indicating a connection between the trapping/detrapping mechanism and temperature. Studies on charge extraction by linearly increasing voltage further support this assertion, as charge carrier mobility dependence on temperature follows multiple-trapping predictions for both device structures. The monotonously increasing trend following the rise in temperature opposes the behavior observed in neat perovskite films and indicates the importance of transporting layers and the effect they have on charge transport in fully assembled solar cells. Low-temperature phase transition shows no pattern of influence on thermally activated electron/hole transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
dos Reis, Roberto; Yang, Hao; Ophus, Colin
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Physical properties of V 1-xTi xO₂ (0 < x < 0.187) single crystals
Kong, Tai; Masters, Morgan W.; Bud’ko, Sergey L.; ...
2015-02-13
Free standing, low strain, single crystals of pure and titanium doped VO₂ were grown out of an excess of V ₂O₅ using high temperature solution growth techniques. At T MI ~ 340 K, pure VO₂ exhibits a clear first-order phase transition from a high-temperature paramagnetic tetragonal phase (R) to a low-temperature non-magnetic monoclinic phase (M1). With Ti doping, another monoclinic phase (M2) emerges between the R and M1 phases. The phase transition temperature between R and M2 increases with increasing Ti doping while the transition temperature between M2 and M1 decreases.
Flow properties of liquid crystal phases of the Gay-Berne fluid
NASA Astrophysics Data System (ADS)
Sarman, Sten
1998-05-01
We have calculated the viscosities of a variant of the Gay-Berne fluid as a function of the temperature by performing molecular dynamics simulations. We have evaluated the Green-Kubo relations for the various viscosity coefficients. The results have been cross-checked by performing shear flow simulations. At high temperatures there is a nematic phase that is transformed to a smectic A phase as the temperature is decreased. The nematic phase is found to be flow stable. Close to the nematic-smectic transition point the liquid crystal model system becomes flow unstable. This is in agreement with the theoretical predictions by Jähnig and Brochard [F. Jähnig and F. Brochard, J. Phys. 35, 301 (1974)]. In a planar Couette flow one can define the three Miesowicz viscosities or effective viscosities η1, η2, and η3. The coefficient η1 is the viscosity when the director is parallel to the streamlines, η2 is the viscosity when the director is perpendicular to the shear plane, and η3 is the viscosity when the director is perpendicular to the vorticity plane. In the smectic phase η1 is undefined because the strain rate field is incommensurate with the smectic layer structure when the director is parallel to the streamlines. The viscosity η3 is found to be fairly independent of the temperature. The coefficient η2 increases with the temperature. This is unusual because the viscosity of most isotropic liquids decreases with the temperature. This anomaly is due to the smectic layer structure that is present at low temperatures. This lowers the friction because the layers can slide past each other fairly easily.
Electron-transfer dynamics of photosynthetic reaction centers in thermoresponsive soft materials.
Laible, Philip D; Kelley, Richard F; Wasielewski, Michael R; Firestone, Millicent A
2005-12-15
Poly(ethylene glycol)-grafted, lipid-based, thermoresponsive, soft nanostructures are shown to serve as scaffolding into which reconstituted integral membrane proteins, such as the bacterial photosynthetic reaction centers (RCs) can be stabilized, and their packing arrangement, and hence photophysical properties, can be controlled. The self-assembled nanostructures exist in two distinct states: a liquid-crystalline gel phase at temperatures above 21 degrees C and a non-birefringent, reduced viscosity state at lower temperatures. Characterization of the effect of protein introduction on the mesoscopic structure of the materials by 31P NMR and small-angle X-ray scattering shows that the expanded lamellar structure of the protein-free material is retained. At reduced temperatures, however, the aggregate structure is found to convert from a two-dimensional normal hexagonal structure to a three-dimensional cubic phase upon introduction of the RCs. Structural and functional characteristics of the RCs were determined by ground-state and femtosecond transient absorption spectroscopy. Time-resolved results indicate that the kinetics of primary electron transfer for the RCs in the low-viscosity cold phase of the self-assembled nanostructures are identical to those observed in a detergent-solubilized state in buffered aqueous solutions (approximately 4 ps) over a wide range of protein concentrations and experimental conditions. This is also true for RCs held within the lamellar gel phase at low protein concentrations and at short sample storage times. In contrast are kinetics from samples that are prepared with high RC concentrations and stored for several hours, which display additional kinetic components with extended electron-transfer times (approximately 10-12 ps). This observation is tentatively attributed to energy transfer between RCs that have laterally (in-plane) organized within the lipid bilayers of the lamellar gel phase prior to charge separation. These results not only demonstrate the use of soft nanostructures as a matrix in which to stabilize and organize membrane proteins but also suggest the possibility of using them to control the interactions between proteins and thus to tune their collective optical/electronic properties.
Prediction of A2 to B2 Phase Transition in the High Entropy Alloy Mo-Nb-Ta-W
NASA Astrophysics Data System (ADS)
Huhn, William; Widom, Michael
2014-03-01
In this talk we show that an effective Hamiltonian fit with first principles calculations predicts an order/disorder transition occurs in the high entropy alloy Mo-Nb-Ta-W. Using the Alloy Theoretic Automated Toolset, we find T=0K enthalpies of formation for all binaries containing Mo, Nb, Ta, and W, and in particular we find the stable structures for binaries at equiatomic concentrations are close in energy to the associated B2 structure, suggesting that at intermediate temperatures a B2 phase is stabilized in Mo-Nb-Ta-W. Our ``hybrid Monte Carlo/molecular dynamics'' results for the Mo-Nb-Ta-W system are analyzed to identify certain preferred chemical bonding types. A mean field free energy model incorporating nearest neighbor bonds will be presented, allowing us to predict the mechanism of the order/disorder transition. We find the temperature evolution of the system is driven by strong Mo-Ta bonding. Comparison of the free energy model and our MC/MD results suggest the existence of additional low-temperature phase transitions in the system likely ending with phase segregation into binary phases. We would like to thank DOD-DTRA for funding this research under contract number DTRA-11-1-0064.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Wenfei; Yang, Jing, E-mail: jyang@ee.ecnu.edu.cn, E-mail: xdtang@sist.ecnu.edu.cn; Bai, Wei
2015-05-07
Crystal structure and magnetic properties of multiferroic Y-type hexaferrites Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){sub 12}O{sub 22} (x = 0, 0.04, 0.08, and 0.12) were investigated. The Z- and M-type impurity phases decrease with increasing Al content, and the pure phase samples can be obtained by modulating Al-doping. Lattice distortion exists in Al-doped samples due to the different radius of Al ion (0.535 Å) and Fe ion (0.645 Å). The microstructural morphologies show that the hexagonal shape grains can be observed in all the samples, and grain size decreases with increasing Al content. As for magnetic properties of Ba{sub 0.5}Sr{sub 1.5}Zn{sub 2}(Fe{sub 1−x}Al{sub x}){submore » 12}O{sub 22}, there exist rich thermal- and field-driven magnetic phase transitions. Temperature dependence of zero-field cooling magnetization curves from 5 K to 800 K exhibit three magnetic phase transitions involving conical spin phase, proper-screw spin phase, ferromagnetic phase, and paramagnetic phase, which can be found in all the samples. Furthermore, the phase-transition temperatures can be modulated by varying Al content. In addition, four kinds of typical hysteresis loops are observed in pure phase sample at different temperatures, which reveal different magnetization processes of above-motioned magnetic spin structures. Typically, triple hysteresis loops in low magnetic field range from 0 to 0.5 T can be observed at 5 K, which suggests low-field driven magnetic phase transitions from conical spin order to proper-screw spin order and further to ferrimagnetic spin order occur. Furthermore, the coercive field (H{sub C}) and the saturation magnetization (M{sub S}) enhance with increasing Al content from x = 0 to 0.08, and drop rapidly at x = 0.12, which could be attribute to that in initial Al-doped process the pitch of spin helix increases and therefore magnetization enhances, but conical spin phase eventually collapses in higher-concentration Al-doping.« less
Regularities in Low-Temperature Phosphatization of Silicates
NASA Astrophysics Data System (ADS)
Savenko, A. V.
2018-01-01
The regularities in low-temperature phosphatization of silicates are defined from long-term experiments on the interaction between different silicate minerals and phosphate-bearing solutions in a wide range of medium acidity. It is shown that the parameters of the reaction of phosphatization of hornblende, orthoclase, and labradorite have the same values as for clayey minerals (kaolinite and montmorillonite). This effect may appear, if phosphotization proceeds, not after silicate minerals with a different structure and composition, but after a secondary silicate phase formed upon interaction between silicates and water and stable in a certain pH range. Variation in the parameters of the reaction of phosphatization at pH ≈ 1.8 is due to the stability of the silicate phase different from that at higher pH values.
Tunable Microwave Components for Ku- and K-Band Satellite Communications
NASA Technical Reports Server (NTRS)
Miranada, F. A.; VanKeuls, F. W.; Romanofsky, R. R.; Subramanyam, G.
1998-01-01
The use of conductor/ferroelectric/dielectric thin film multilayer structures for frequency and phase agile components at frequencies at and above the Ku-band will be discussed. Among these components are edge coupled filters, microstripline ring resonators, and phase shifters. These structures were implemented using SrTiO3 (STO) ferroelectric thin films, with gold or YBa2Cu3O7-d (YBCO) high temperature superconducting (HTS) microstrip fines deposited by laser ablation on LaAlO3 (LAO) substrates. The performance of these structures in terms of tunability, operating temperature, frequency, and dc bias will be presented. Because of their small size, light weight, and low loss, these tunable microwave components are being studied very intensely at NASA as well as the commercial communication industry. An assessment of the progress made so far, and the issues yet to be solved for the successful integration of these components into the aforementioned communication systems will be presented.
NASA Astrophysics Data System (ADS)
Song, Yang; Hemley, Russell J.; Liu, Zhenxian; Somayazulu, Maddury; Mao, Ho-kwang; Herschbach, Dudley R.
2003-07-01
The properties of nitrosonium nitrate (NO+NO3-) were investigated following synthesis by laser heating of N2O and N2O4 under high pressures in a diamond anvil cell. Synchrotron infrared absorption spectra of NO+NO3- were measured at pressures up to 32 GPa at room temperature. Raman spectra were obtained at pressures up to 40 GPa at room temperature and up to 14 GPa at temperatures down to 80 K. For both lattice and intramolecular vibrational modes, a smooth evolution of spectral bands with pressure indicates that NO+NO3- forms a single phase over a broad range above 10 GPa, whereas marked changes, particularly evident in the Raman spectra at low temperature, indicate a phase transition occurs near 5 GPa. NO+NO3- could be recovered at atmospheric pressure and low temperature, persisting to 180 K. The Raman and IR spectroscopic data suggest that the NO+NO3- produced by laser heating of N2O followed by decompression may differ in structure or orientational order-disorder from that produced by autoionization of N2O4.
Stabilities and defect-mediated lithium-ion conduction in a ground state cubic Li 3 N structure
Nguyen, Manh Cuong; Hoang, Khang; Wang, Cai-Zhuang; ...
2016-01-07
A stable ground state structure with cubic symmetry of Li 3N (c-Li 3N) is found by ab initio initially symmetric random-generated crystal structure search method. Gibbs free energy, calculated within quasi-harmonic approximation, shows that c-Li 3N is the ground state structure for a wide range of temperature. The c-Li 3N structure has a negative thermal expansion coefficient at temperatures lower than room temperature, due mainly to two transverse acoustic phonon modes. This c-Li 3N phase is a semiconductor with an indirect band gap of 1.90 eV within hybrid density functional calculation. We also investigate the migration and energetics of nativemore » point defects in c-Li 3N, including lithium and nitrogen vacancies, interstitials, and anti-site defects. Lithium interstitials are found to have a very low migration barrier (~0.12 eV) and the lowest formation energy among all possible defects. Thus, the ionic conduction in c-Li 3N is expected to occur via an interstitial mechanism, in contrast to that in the well-known α-Li 3N phase which occurs via a vacancy mechanism.« less
Nonequiatomic NiTi Alloy Produced by Self Propagating High Temperature Synthesis
NASA Astrophysics Data System (ADS)
Bassani, P.; Bassani, E.; Tuissi, A.; Giuliani, P.; Zanotti, C.
2014-07-01
Shape memory alloy NiTi in porous form is of high interest as implantable material, as low apparent elastic modulus, comparable to that of bone, can be achieved. This condition, combined with proper pore size, allows good osteointegration. Porous NiTi can be produced by self propagating high temperature synthesis (SHS), starting from mixed powders of pure Ni and Ti. Process parameters, among which powder compaction degree and preheating temperature, strongly influence the reaction temperature and the resulting product: at low reaction temperatures, high quantity of secondary phases are formed, which are generally considered detrimental for biocompatibility. On the contrary, at higher reaction temperatures, the powders melt and crystallize in ingots. The porous structure is lost and huge pores are formed. Mechanical activation of powders through ball milling and addition of TiH x are investigated as means to reduce reaction temperature and overheating, in order to preserve high porosity and limit secondary phases content. Both processes affect SHS reaction, and require adjustment of parameters such as heating rate. Changes in porous shape and size were observed especially for TiH x additions: the latter could be a promising route to obtain shaped porous products of improved quality.
Lattice dynamics and the nature of structural transitions in organolead halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.
Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remarkable optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic x-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our findings confirm the displacive nature of the cubic-to-tetragonal phase transition, which is further shown, using neutron and x-ray diffraction, to be close to a tricritical point. Lastly, we detect quasistatic symmetry-breaking nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These findings reveal key structural properties of these materials, and also bearmore » important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.« less
SFG spectroscopy from 10 -8 to 1000 mbar: less-ordered CO structures and coadsorption on Pd (1 1 1)
NASA Astrophysics Data System (ADS)
Morkel, Matthias; Unterhalt, Holger; Salmeron, Miquel; Rupprechter, Günther; Freund, Hans-Joachim
2003-06-01
Vibrational sum frequency generation spectroscopy was employed to study "less-ordered" phases resulting from low-temperature CO exposure on Pd(1 1 1). Such imperfect structures may also occur under catalytic reaction conditions up to 1000 mbar and originate from the superposition of ordered structures when the CO mobility and flux were insufficient. The effect of coadsorbed hydrogen and water was also examined.
Note: Low phase noise programmable phase-locked loop with high temperature stability.
Michálek, Vojtěch; Procházka, Ivan
2017-03-01
The design and construction of low jitter programmable phase-locked loop with low temperature coefficient of phase are presented. It has been designed for demanding high precision timing applications, especially as a clock source for event timer with subpicosecond precision. The phase-locked loop itself has a jitter of few hundreds of femtoseconds. It produces square wave with programmable output frequency from 100 MHz to 500 MHz and programmable amplitude of 0.25 V to 1.2 V peak-to-peak, which is locked to 5 MHz or 10 MHz reference frequency common for disciplined oscillators and highly stable clocks such as hydrogen maser. Moreover, it comprises an on-board temperature compensated crystal oscillator for stand-alone usage. The device provides temperature coefficient of the phase lock of 0.9 ps/K near room temperature.
The effects of different heat treatment annealing on structural properties of LaFe11.5Si1.5 compound
NASA Astrophysics Data System (ADS)
Norizan, Yang Nurhidayah Asnida; Din, Muhammad Faiz Md; Zamri, Wan Fathul Hakim W.; Hashim, Fakroul Ridzuan; Jusoh, Mohd Taufik; Rahman, Mohd Rashid Abdul
2018-02-01
The cubic NaZn13-type LaFe13-xSix based compounds have been studied systematically and has become one of the most interesting systems for exploring large MCE. Its magnetic properties are strongly doping dependent and provides many of advantage compare to other as magnetic materials for magnetic refrigerator application. In other to produce high quality of cubic NaZn13-type structure, the structural properties of LaFe11.5Si1.5 compounds annealed at different temperature have been investigated. The LaFe11.5Si1.5 compounds was prepared by arc melting and annealed at two different heat treatment which are 1323 K for 14 days and 1523 K for 4 hour. The powder X-ray diffraction (XRD) shows that a short time and high temperature annealing process has benefits for the formation of the NaZn13-type phase compared to a long time and low temperature annealing process. This is shown by the weight fraction of cubic NaZn13- type structure increases from 80% for low temperature annealing to 83% for high temperature annealing. At the same time, high temperature annealing increase the main structure and decrease the impurity (α-Fe and LaFeSi). Furthermore, it can be clearly seen in the Rietveld refinement results that the lattice parameter is increase at the high temperature annealing because of more cubic NaZn13 is formed at higher temperature.
Structural and impurity phase transitions of LiNaSO4:RE probed using cathodo-thermoluminescence
NASA Astrophysics Data System (ADS)
Maghrabi, M.; Finch, A. A.; Townsend, P. D.
2008-11-01
Spectrally resolved cathodo-thermoluminescence spectra of rare earth (RE) doped LiNaSO4 measured from 20 to 673 K reveal several anomalies in the RE emission lines and intensities. The low (20-300 K) temperature data show a discontinuous change in intensity at ~170 K that is either a marked intensity enhancement or a drop truncating the entire spectrum. Such an effect on the host luminescence has previously been assigned to a transition between cubic and hexagonal polymorphs of ice nanoparticle inclusions. Similar, but less profound anomalies are seen above room temperature (300-673 K) where the changes take the form of either a discontinuity in intensity at ~480 K or reduced intensity in the range 430-530 K. There are changes in the relative intensities of different emission lines of the same dopant in this temperature range. Such high temperature variations are ascribed to structural phase changes within the LiNaSO4 crystals. The behaviours may result from Li-poor surfaces or twin boundaries behaving like Na2SO4. This phase change is suggested in the open literature for LiNaSO4 but not yet fully documented, perhaps because the effects span a wide range of temperatures or due to experimental features inherent in most luminescence facilities.
NASA Technical Reports Server (NTRS)
Yang, H.; Prewitt, C. T.; Liu, Z.
2002-01-01
The synthesis and characterization of Fe-bearing phase E and phase E' demonstrate that the phase E-type structures can be rather compliant and complex, and that as we further explore the temperature-pressure-composition space, other types of structures that are similar to or related to the structure of phase E may be discovered.
Stress-Induced Cubic-to-Hexagonal Phase Transformation in Perovskite Nanothin Films.
Cao, Shi-Gu; Li, Yunsong; Wu, Hong-Hui; Wang, Jie; Huang, Baoling; Zhang, Tong-Yi
2017-08-09
The strong coupling between crystal structure and mechanical deformation can stabilize low-symmetry phases from high-symmetry phases or induce novel phase transformation in oxide thin films. Stress-induced structural phase transformation in oxide thin films has drawn more and more attention due to its significant influence on the functionalities of the materials. Here, we discovered experimentally a novel stress-induced cubic-to-hexagonal phase transformation in the perovskite nanothin films of barium titanate (BaTiO 3 ) with a special thermomechanical treatment (TMT), where BaTiO 3 nanothin films under various stresses are annealed at temperature of 575 °C. Both high-resolution transmission electron microscopy and Raman spectroscopy show a higher density of hexagonal phase in the perovskite thin film under higher tensile stress. Both X-ray photoelectron spectroscopy and electron energy loss spectroscopy does not detect any change in the valence state of Ti atoms, thereby excluding the mechanism of oxygen vacancy induced cubic-to-hexagonal (c-to-h) phase transformation. First-principles calculations show that the c-to-h phase transformation can be completed by lattice shear at elevated temperature, which is consistent with the experimental observation. The applied bending plus the residual tensile stress produces shear stress in the nanothin film. The thermal energy at the elevated temperature assists the shear stress to overcome the energy barriers during the c-to-h phase transformation. The stress-induced phase transformation in perovskite nanothin films with TMT provides materials scientists and engineers a novel approach to tailor nano/microstructures and properties of ferroelectric materials.
NASA Astrophysics Data System (ADS)
Willa, K.; Diao, Z.; Campanini, D.; Welp, U.; Divan, R.; Hudl, M.; Islam, Z.; Kwok, W.-K.; Rydh, A.
2017-12-01
Recent advances in electronics and nanofabrication have enabled membrane-based nanocalorimetry for measurements of the specific heat of microgram-sized samples. We have integrated a nanocalorimeter platform into a 4.5 T split-pair vertical-field magnet to allow for the simultaneous measurement of the specific heat and x-ray scattering in magnetic fields and at temperatures as low as 4 K. This multi-modal approach empowers researchers to directly correlate scattering experiments with insights from thermodynamic properties including structural, electronic, orbital, and magnetic phase transitions. The use of a nanocalorimeter sample platform enables numerous technical advantages: precise measurement and control of the sample temperature, quantification of beam heating effects, fast and precise positioning of the sample in the x-ray beam, and fast acquisition of x-ray scans over a wide temperature range without the need for time-consuming re-centering and re-alignment. Furthermore, on an YBa2Cu3O7-δ crystal and a copper foil, we demonstrate a novel approach to x-ray absorption spectroscopy by monitoring the change in sample temperature as a function of incident photon energy. Finally, we illustrate the new insights that can be gained from in situ structural and thermodynamic measurements by investigating the superheated state occurring at the first-order magneto-elastic phase transition of Fe2P, a material that is of interest for magnetocaloric applications.
The effects of liquid-phase oxidation of multiwall carbon nanotubes on their surface characteristics
NASA Astrophysics Data System (ADS)
Burmistrov, I. N.; Muratov, D. S.; Ilinykh, I. A.; Kolesnikov, E. A.; Godymchuk, A. Yu; Kuznetsov, D. V.
2016-01-01
The development of new sorbents based on nanostructured carbon materials recently became a perspective field of research. Main topic of current study is to investigate the effect of different regimes of multiwall carbon nanotubes (MWCNT) surface modification process on their structural characteristics. MWCNT samples were treated with nitric acid at high temperature. Structural properties were studied using low temperature nitrogen adsorption and acid-base back titration methods. The study showed that diluted nitric acid does not affect MWCNT structure. Concentrated nitric acid treatment leads to formation of 2.8 carboxylic groups per 1 nm2 of the sample surface.
Phase Relations of Iron and Iron-Nickel Alloys up to 3 Mbars
NASA Astrophysics Data System (ADS)
Kuwayama, Y.; Hirose, K.; Sata, N.; Ohishi, Y.
2007-12-01
Iron is believed to be the major component of the Earth's core because it is the most abundant element that satisfies the observed seismic densities. Based on cosmochemical models and the studies of iron meteorites, it is generally accepted that the Earth's core also contains substantial amounts of nickel. Therefore, the high pressure behaviour of iron-nickel alloys is crucially important for interpreting and constraining geophysical and geochemical models of the Earth's core. The phase relation of iron at relatively low pressure has been well established. α-Fe with bcc structure at ambient condition transforms to γ-Fe at high temperature and to ɛ-Fe with hcp structure at above ~ 10 GPa. In contrast, the phase relation and the crystal structure at high pressure and temperature are still highly controversial. The phase relations of iron-nickel alloys were also studied in an externally-heated diamond-anvil cell (Huang et al. 1988, 1992) and in a laser-heated diamond-anvil cell (Lin et al. 2002, Mao et al. 2005, Dubrovinsky et al. 2007), but these experiments were limited to the pressure of 225 GPa. Applications of the previous results to the Earth's inner core conditions required significant extrapolations. In this study, we have investigated the phase relations of iron and a number of iron-nickel alloys in a wide range of pressures (>300 GPa), temperatures (>2000 K) and compositions (0-80 wt% Ni) using a laser-heated diamond-anvil cell with synchrotron x-ray diffraction. For iron, in-situ x-ray diffraction studies showed a wide range of stability of ɛ-Fe with an hcp structure up to 300 GPa and 2000 K and up to 343 GPa at room temperature. No evidence for the existence of phases other than ɛ-Fe, such as β-Fe with a dhcp structure (suggested by Dubrovinsky et al. 2000) or orthorhombic structure (suggested by Andrault et al. 1997), was observed. For iron-nickel alloys, high pressure and temperature experiments were conducted on Fe-18.4 wt% Ni, Fe-24.9 wt% Ni, Fe-35.7 wt% Ni, Fe-50.0 wt% Ni and Fe-80.0 wt% Ni up to 300 GPa. The experimental results indicate that the iron-nickel alloys strongly favour an fcc structure under multimegabar pressures. Our results can directly apply to the Earth's inner core pressures and the phase relations of iron- nickel alloys may interpret seismically observed anisotropy and discontinuity in the Earth's inner core.
Hode, Tomas; von Dalwigk, Ilka; Broman, Curt
2003-01-01
The Siljan ring structure (368 +/- 1.1 Ma) is the largest known impact structure in Europe. It isa 65-km-wide, eroded, complex impact structure, displaying several structural units, including a central uplifted region surrounded by a ring-shaped depression. Associated with the impact crater are traces of a post-impact hydrothermal system indicated by precipitated and altered hydrothermal mineral assemblages. Precipitated hydrothermal minerals include quartz veins and breccia fillings associated with granitic rocks at the outer margin of the central uplift, and calcite, fluorite, galena, and sphalerite veins associated with Paleozoic carbonate rocks located outside the central uplift. Two-phase water/gas and oil/gas inclusions in calcite and fluorite display homogenization temperatures between 75 degrees C and 137 degrees C. With an estimated erosional unloading of approximately 1 km, the formation temperatures were probably not more than 10-15 degrees C higher. Fluid inclusion ice-melting temperatures indicate a very low salt content, reducing the probability that the mineralization was precipitated during the Caledonian Orogeny. Our findings suggest that large impacts induce low-temperature hydrothermal systems that may be habitats for thermophilic organisms. Large impact structures on Mars may therefore be suitable targets in the search for fossil thermophilic organisms.
NASA Astrophysics Data System (ADS)
Collin, E.; Kofler, J.; Lakhloufi, S.; Pairis, S.; Bunkov, Yu. M.; Godfrin, H.
2010-06-01
We present mechanical measurements performed at low temperatures on cantilever-based microelectromechanical structures coated with a metallic layer. Two very different coatings are presented in order to illustrate the capabilities of the present approach, namely (soft) aluminum and (hard) niobium oxide. The temperature is used as a control parameter to access materials properties. We benefit from low temperature techniques to extract a phase-resolved measurement of the first mechanical resonance mode in cryogenic vacuum. By repeating the experiment on the same samples, after multiple metallic depositions, we can determine accurately the contribution of the coating layers to the mechanical properties in terms of surface stress, additional mass, additional elasticity, and damping. Analytic theoretical expressions are derived and used to fit the data. Taking advantage of the extremely broad dynamic range provided by the technique, we can measure the anelasticity of the thin metallic film. The key parameters describing the metals' dynamics are analyzed in an original way in order to provide new experimental grounds for future theoretical modelings of the underlying mechanisms.
Synthesis and characterization of some low and negative thermal expansion materials
NASA Astrophysics Data System (ADS)
Varga, Tamas
2005-12-01
The high-pressure behavior of several negative thermal expansion materials was studied by different methods. In-situ high-pressure x-ray and neutron diffraction studies on several compounds of the orthorhombic Sc 2W3O12 structure revealed an unusual "bulk modulus collapse" at the orthorhombic to monoclinic phase transition. In some members of the A2M3O12 family, a second phase transition and/or pressure-induced amorphization were also seen at higher pressure. The mechanism for volume contraction on compression is different from that on heating. A combined in-situ high pressure x-ray diffraction and absorption spectroscopic study has been carried out for the first time. The pressure-induced amorphization in cubic ZrW2O8 and ZrMo 2O8 was studied by following the changes in the local coordination environments of the metals. A significant change in the average tungsten coordination was found in ZrW2O8, and a less pronounced change in the molybdenum coordination in ZrMo2O8 on amorphization. A kinetically frustrated phase transition to a high-pressure crystalline phase or a kinetically hindered decomposition, are likely driving forces of the amorphization. A complementary ex-situ study confirmed the greater distortion of the framework tetrahedra in ZrW2O8, and revealed a similar distortion of the octahedra in both compounds. The possibility of stabilizing the low thermal expansion high-temperature structure in AM2O7 compounds to lower temperatures through stuffing of ZrP2O7 was explored. Although the phase transition temperature was suppressed in MIxZr 1-xMIIIxP2O7 compositions, the chemical modification employed was not successful in stabilizing the high-temperature structure to around room temperature. An attempt has been made to control the thermal expansion properties in materials of the (MIII0.5MV 0.5)P2O7-type through the choice of the metal cations and through manipulating the ordering of the cations by different heat treatment conditions. Although controlled heat treatment resulted in only short-range cation ordering, the choice of the MIII cation had a marked effect on the thermal expansion behavior of the materials. Different grades of fluorinert were examined as pressure-transmitting media for high-pressure diffraction studies. All of the fluorinerts studied became nonhydrostatic at relatively low pressures (˜1 GPa).
Ito, Yuki; Okawa, Takahisa; Fukumoto, Takahiro; Tsurumi, Akiko; Tatsuta, Mitsuhiro; Fujii, Takamasa; Tanaka, Junko; Tanaka, Masahiro
2016-10-01
Zirconia exhibits excellent strength and high biocompatibility in technological applications and it is has therefore been investigated for clinical applications and research. Before setting prostheses, a crown prosthesis inner surface is sandblasted with alumina to remove contaminants and form small cavities. This alumina sandblasting causes stress-induced phase transition of zirconia. Atmospheric-pressure low-temperature plasma has been applied in the dental industry, particularly for adhesives, as a surface treatment to activate the surface energy and remove contaminants. The purpose of this study was to examine the influence of atmospheric-pressure low-temperature plasma treatment on the shear bond strength between zirconia and adhesive resin cement. The surface treatment method was classified into three groups: untreated (Cont group), alumina sandblast treatment (Sb group), and atmospheric-pressure low-temperature plasma treatment (Ps group). Adhesive resin cement was applied to stainless steel and bonded to zirconia. Shear adhesion tests were performed after complete hardening of the cement. Multiple comparisons were performed using a one-way analysis of variance and the Bonferroni method. X-ray diffractometry was used to examine the change in zirconia crystal structure. Statistically significant differences were noted between the control and Sb groups and between the control and Ps groups. In contrast, no statistically significant differences were noted for the Ps and Sb bond strength. Atmospheric-pressure low-temperature plasma treatment did not affect the zirconia crystal structure. Atmospheric-pressure low-temperature plasma treatment improves the bonding strength of adhesive resin cement as effectively as alumina sandblasting, and does not alter the zirconia crystal structure. Copyright © 2016 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.
Hydrothermal synthesis of barium strontium titanate and bismuth titanate materials
NASA Astrophysics Data System (ADS)
Xu, Huiwen
Hydrothermal processing facilitates the synthesis of crystalline ceramic materials of varying composition or complex crystal structure. The present work can be divided into two parts. First is to study the low temperature hydrothermal synthesis of bismuth titanate. Second is to study both thermodynamic and kinetic aspects of the hydrothermally synthesized barium strontium titanate. A chelating agent was used to form a Bi-Ti gel precursor. By hydrothermally treating the Bi-Ti gel, crystalline bismuth titanate has been synthesized at 160°C for the first time. Microstructural evolution during the low temperature synthesis of bismuth titanate can be divided into two stages, including condensation of Bi-Ti gel particles and crystallization of bismuth titanate. Crystallization of bismuth titanate occurred by an in situ transformation mechanism at an early stage followed by a dissolution-reprecipitation mechanism. Phase separation was observed in hydrothermally synthesized barium strontium titanate (BST). By hydrothermally treating BST powders between 250°C--300°C, an asymmetrical miscibility gap was found in the BaTiO3-SrTiO 3 system at low temperatures (T ≤ 320°C). A subregular solid solution model was applied to calculate the equilibrium compositions and the Gibbs free energy of formation of BST solid solution at low temperatures (T ≤ 320°C). The Gibbs free energy of formation of Sr-rich BST phase is larger than that of Ba-rich BST phase. Kinetic studies of single phase BST solid solution at 80°C show that, compared to the BaTiO3 or Ba-rich BST, SrTiO3 and Sr-rich BST powders form at lower reaction rates.
Nature of the first-order liquid-liquid phase transition in supercooled silicon
NASA Astrophysics Data System (ADS)
Zhao, G.; Yu, Y. J.; Tan, X. M.
2015-08-01
The first-order liquid-liquid phase transition in supercooled Si is revisited by long-time first-principle molecular dynamics simulations. As the focus of the present paper, its nature is revealed by analyzing the inherent structures of low-density liquid (LDL) and high-density liquid (HDL). Our results show that it is a transition between a sp3-hybridization LDL and a white-tin-like HDL. This uncovers the origin of the semimetal-metal transition accompanying it and also proves that HDL is the metastable extension of high temperature equilibrium liquid into the supercooled regime. The pressure-temperature diagram of supercooled Si thus can be regarded in some respects as shifted reflection of its crystalline phase diagram.
Laser interferometer used for nanometer vibration measurements
NASA Astrophysics Data System (ADS)
Sun, Jiaxing; Yang, Jun; Liu, Zhihai; Yuan, Libo
2007-01-01
A novel laser interferometer which adopts alternating modulation phase tracking homodyne technique is proposed. The vibration of nanometer-accuracy is measured with the improved Michelson interferometer by adding cat's eye moving mirror and PZT phase modulation tracking structure. The working principle and the structure of the interferometer are analyzed and the demodulation scheme of alternating phase modulation and tracking is designed. The signal detection is changed from direct current detecting to alternating current detecting. The signal's frequency spectrum transform is achieved, the low-frequency noise jamming is abated, the Signal-to-Noise of the system is improved and the measured resolution is enhanced. Phase tracking technique effectively suppresses the low-frequency noise which is caused by outside environment factors such as temperature and vibration, and the stability of the system is enhanced. The experimental results indicate that for the signal with the frequency of 100Hz and the amplitude of 25nm, the output Signal-to-Noise is 30dB and the measured resolution is 1nm.
Lummen, Tom T. A.; Leung, J.; Kumar, Amit; ...
2017-06-19
The design of new or enhanced functionality in materials is traditionally viewed as requiring the discovery of new chemical compositions through synthesis. Large property enhancements may however also be hidden within already well-known materials, when their structural symmetry is deviated from equilibrium through a small local strain or field. Here, the discovery of enhanced material properties associated with a new metastable phase of monoclinic symmetry within bulk KNbO 3 is reported. This phase is found to coexist with the nominal orthorhombic phase at room temperature, and is both induced by and stabilized with local strains generated by a network ofmore » ferroelectric domain walls. While the local microstructural shear strain involved is only ≈0.017%, the concurrent symmetry reduction results in an optical second harmonic generation response that is over 550% higher at room temperature. Moreover, the meandering walls of the low-symmetry domains also exhibit enhanced electrical conductivity on the order of 1 S m -1. In conclusion, this discovery reveals a potential new route to local engineering of significant property enhancements and conductivity through symmetry lowering in ferroelectric crystals.« less
Field-induced magnetic phase transitions and metastable states in Tb 3 Ni
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.
In this study we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compoundmore » $${\\mathrm{Tb}}_{3}\\mathrm{Ni}$$. The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group $$P{112}_{1}/a{1}^{{'}}(ab0)0ss$$ and propagation vector $${\\mathbf{k}}_{\\mathrm{IC}}=\\left[0.506,0.299,0\\right]$$ was found to emerge just below Néel temperature $${T}_{\\mathrm{N}}=61$$ K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{\\mathrm{IC}}$$ in the temperature range 51 < T < 58 K; (ii) a mixed magnetic state of $${\\mathbf{k}}_{\\mathrm{IC}}, {\\mathbf{k}}_{1}$$, and $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ with the partially locked-in incommensurate component in the temperature range 48 < T < 51 K; and (iii) a low-temperature magnetic structure that is described by the intersection of two isotropy subgroups associated with the irreducible representations of two coupled primary order parameters (OPs) $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ and $${\\mathbf{k}}_{3}=\\left[\\frac{1}{2},\\frac{1}{3},0\\right]$$ and involves irreducible representations of the secondary OPs $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{4}=\\left[\\frac{1}{2},0,0\\right]$$ below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. Finally, the forced ferromagnetic state induced after application of an external magnetic field along the $b$ and $c$ crystallographic axes was found to be irreversible below 3 and 8 K, respectively.« less
Field-induced magnetic phase transitions and metastable states in Tb 3 Ni
Gubkin, A. F.; Wu, L. S.; Nikitin, S. E.; ...
2018-04-26
In this study we report the detailed study of magnetic phase diagrams, low-temperature magnetic structures, and the magnetic field effect on the electrical resistivity of the binary intermetallic compoundmore » $${\\mathrm{Tb}}_{3}\\mathrm{Ni}$$. The incommensurate magnetic structure of the spin-density-wave type described with magnetic superspace group $$P{112}_{1}/a{1}^{{'}}(ab0)0ss$$ and propagation vector $${\\mathbf{k}}_{\\mathrm{IC}}=\\left[0.506,0.299,0\\right]$$ was found to emerge just below Néel temperature $${T}_{\\mathrm{N}}=61$$ K. Further cooling below 58 K results in the appearance of multicomponent magnetic states: (i) a combination of $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{\\mathrm{IC}}$$ in the temperature range 51 < T < 58 K; (ii) a mixed magnetic state of $${\\mathbf{k}}_{\\mathrm{IC}}, {\\mathbf{k}}_{1}$$, and $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ with the partially locked-in incommensurate component in the temperature range 48 < T < 51 K; and (iii) a low-temperature magnetic structure that is described by the intersection of two isotropy subgroups associated with the irreducible representations of two coupled primary order parameters (OPs) $${\\mathbf{k}}_{2}=\\left[\\frac{1}{2},\\frac{1}{4},0\\right]$$ and $${\\mathbf{k}}_{3}=\\left[\\frac{1}{2},\\frac{1}{3},0\\right]$$ and involves irreducible representations of the secondary OPs $${\\mathbf{k}}_{1}=\\left[\\frac{1}{2},\\frac{1}{2},0\\right]$$ and $${\\mathbf{k}}_{4}=\\left[\\frac{1}{2},0,0\\right]$$ below 48 K. An external magnetic field suppresses the complex low-temperature antiferromagnetic states and induces metamagnetic transitions towards a forced ferromagnetic state that are accompanied by a substantial magnetoresistance effect due to the magnetic superzone effect. Finally, the forced ferromagnetic state induced after application of an external magnetic field along the $b$ and $c$ crystallographic axes was found to be irreversible below 3 and 8 K, respectively.« less
NASA Astrophysics Data System (ADS)
Ezzatpour, S.; Sharifzadegan, L.; Sarvari, F.; Sedghi, H.
2018-06-01
In this study the high temperature superconductor YBa2-xPbxCu3O7-δ with doping x = ,0.05,0.1,0.15 were prepared by the standard solid-state reaction method. The effect of Pb substitution on Ba site of YBCO superconducting system, structural, electrical and superconducting properties of Y-based superconductor has been investigated. The measurements of dc resisitivity were performed on all samples with four-probe method using low frequency/lowAC current (4 mA) . The superconducting temperature, Tc, were determined from the resistivity versus temperature (R-T) curves. Results show that Pb doping reduced the cirtical temperature(Tc) and superconductivity properties of our samples. The maximum and the minimum Tc were observed for the samples with x = 0.15 and x = 0.1 respectively. The structure and phase purity of samples were examined by the X-ray powder diffraction technique (XRD) performed by means of D8 Advance Bruker diffractometer with Cu kα radiation. The grain morphology of surface of the samples was analyzed by sacanning electron microscopy (SEM). XRD patterns of polycrystalline materials of composition YBa2-xPbxCu3O7-δ revealed that all prepared samples are orthorhombic. All of the peaks of YBCO and YBa2-xPbxCu3O7-δ have been used for the estimation of volume fractions of the phases and ignored the void peaks.
NASA Astrophysics Data System (ADS)
Keraudy, J.; Boyd, R. D.; Shimizu, T.; Helmersson, U.; Jouan, P.-Y.
2018-10-01
The precise control of the growth nanostructured thin films at low temperature is critical for the continued development of microelectronic enabled devices. In this study, nanocomposite Ni-Si-N thin films were deposited at low temperature by reactive high-power impulse magnetron sputtering. A composite Ni-Si target (15 at.% Si) in combination with a Ar/N2 plasma were used to deposit films onto Si(0 0 1) substrates, without any additional substrate heating or any post-annealing. The films microstructure changes from a polycrystalline to nanocomposite structure when the nitrogen content exceeds 16 at.%. X-ray diffraction and (scanning) transmission electron microscopy analyses reveal that the microstructure consists of nanocrystals, NixSi (x > 1) 7-8 nm in size, embedded in an amorphous SiNx matrix. It is proposed that this nanostructure is formed at low temperatures due to the repeated-nucleation of NixSi nanocrystals, the growth of which is restricted by the formation of the SiNx phase. X-ray photoelectron spectroscopy revealed the trace presence of a ternary solid solution mainly induced by the diffusion of Ni into the SiNx matrix. Four-probe electrical measurements reveal all the deposited films are electrically conducting.
Fabrication and analysis of Cr-doped ZnO nanoparticles from the gas phase.
Schneider, L; Zaitsev, S V; Jin, W; Kompch, A; Winterer, M; Acet, M; Bacher, G
2009-04-01
High quality Cr-doped ZnO nanoparticles from the gas phase were prepared and investigated with respect to their structural, optical and magnetic properties. The extended x-ray absorption fine structure and the x-ray absorption near edge structure of the particles verify that after nanoparticle preparation Cr is incorporated as Cr3+ ) at least partially on sites with a 4-fold oxygen configuration, most likely on a Zn site, into the wurtzite lattice. Despite the fact that Cr is known to act as an efficient non-radiative loss centre for near band gap emission (NBE), a pronounced NBE is obtained up to room temperature even for a nominal Cr concentration of 10 at.%. Annealing at 1000 degrees C results in a significant improvement of the photoluminescence efficiency and a reduced PL linewidth down to 2.9 meV at low temperatures while the structural and magnetic data indicate the formation of ZnCr2O4 clusters.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jie; Huang, Rong; Wei, Fenfen
2014-11-17
The phase transition of Bi-doped (∼3 at. %) GeTe nanowires from a rhombohedral (R) to a face-centered cubic (C) structure was observed in in situ high-temperature X-ray diffraction. The promotion of high-temperature R-C phase transition by a doping approach was revealed. Ab initio energy calculations of doped GeTe at various Bi doping concentrations were performed to interpret the promoted temperature-induced phase transitions. Those results indicated that the total energy differences between R and C structures of doped GeTe decreased as Bi doping concentrations increased, which facilitated R-C phase transitions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less
NASA Astrophysics Data System (ADS)
Erice, B.; Pérez-Martín, M. J.; Cendón, D. A.; Gálvez, F.
2012-05-01
A series of quasi-static and dynamic tensile tests at varying temperatures were carried out to determine the mechanical behaviour of Ti-45Al-2Nb-2Mn+0.8vol.% TiB2 XD as-HIPed alloy. The temperature for the tests ranged from room temperature to 850 ∘C. The effect of the temperature on the ultimate tensile strength, as expected, was almost negligible within the selected temperature range. Nevertheless, the plastic flow suffered some softening because of the temperature. This alloy presents a relatively low ductility; thus, a low tensile strain to failure. The dynamic tests were performed in a Split Hopkinson Tension Bar, showing an increase of the ultimate tensile strength due to the strain rate hardening effect. Johnson-Cook constitutive relation was used to model the plastic flow. A post-testing microstructural of the specimens revealed an inhomogeneous structure, consisting of lamellar α2 + γ structure and γ phase equiaxed grains in the centre, and a fully lamellar structure on the rest. The assessment of the duplex-fully lamellar area ratio showed a clear relationship between the microstructure and the fracture behaviour.
Evidence for pressure-tuned quantum structural fluctuations in KCuF3
NASA Astrophysics Data System (ADS)
Yuan, S.; Kim, M.; Seeley, J.; Lal, S.; Abbamonte, P.; Cooper, S. L.
2012-02-01
Frustrated magnetic systems are currently of great interest because of the possibility that these materials exhibit novel ground states such as orbital and spin liquids. We provide evidence in the orbital-ordering material KCuF3 for pressure-tuned quantum melting of a static structural phase to a phase that dynamically fluctuates even near T ˜ 0K.[1] Pressure-dependent Raman scattering measurements show that applied pressure above P* ˜ 7kbar reverses a low temperature structural distortion in KCuF3, resulting in the development of a φ ˜ 0 fluctuational (quasielastic) response near T ˜ 0K. This pressure-induced fluctuational response is temperature independent and exhibits a characteristic fluctuation rate that is much larger than the temperature, γ >> KBT, consistent with quantum fluctuations of the CuF6 octahedra. We show that a previous developed model of pseudospin-phonon coupling qualitatively describes both the temperature- and pressure-dependent evolution of the Raman spectra of KCuF3. Work supported by the U.S. Department of Energy under Award No. DE-FG02-07ER46453 and by the National Science Foundation under Grant NSF DMR 08-56321. [4pt] [1] S. Yuan et al., arXiv:1107.1433 (2011).
Study of ultrasound-assisted radio-frequency plasma discharges in n-dodecane
NASA Astrophysics Data System (ADS)
Camerotto, Elisabeth; De Schepper, Peter; Nikiforov, Anton Y.; Brems, Steven; Shamiryan, Denis; Boullart, Werner; Leys, Christophe; De Gendt, Stefan
2012-10-01
This paper investigates the generation of a stable plasma phase in a liquid hydrocarbon (n-dodecane) by means of ultrasound (US) and radio-frequency (RF) or electromagnetic radiation. It is demonstrated for the first time that ultrasonic aided RF plasma discharges can be generated in a liquid. Plasma discharges are obtained for different gas mixtures at a pressure of 12 kPa and at low ignition powers (100 W for RF and 2.4 W cm-2 for US). Direct carbon deposition from the liquid precursor on Cu, Ni, SiO2 and Si substrates has been obtained and no apparent compositional or structural difference among the substrate materials was observed. Characterization of the deposited solid phase revealed an amorphous structure. In addition, structural changes in the liquid precursor after plasma treatment have been analysed. Optical emission spectroscopy (OES) allowed the estimation of several plasma characteristic temperatures. The plasma excitation temperature was estimated to be about 2.3-2.4 eV. The rotational and vibrational temperatures of the discharge in n-dodecane with Ar as a feed gas were 1400 K and 6500 K, respectively. In Ar/O2 plasma, an increased rotational (1630 K) and vibrational temperature (7200 K) were obtained.
Structure refinement for tantalum nitrides nanocrystals with various morphologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Lianyun; School of Science, Beijing Jiaotong University, 3 Shang Yuan Cun, Haidian District, Beijing 100044; Huang, Kai
2012-07-15
Graphical abstract: Tantalum nitrides nanocrystals with various phases and morphologies for the first time have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. Highlights: ► The spherical TaN, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. ► The crystal structures of different tantalum nitrides were determined by Rietveld refinement on the X-ray diffraction data and the examinations of electron microcopies. ► The specific surface area of the tantalum nitrides powders was around 10 m{supmore » 2} g{sup −1}. ► Tantalum nitrides powders could be suitable for capacitor with high specific capacitance. -- Abstract: Tantalum nitrides (TaN{sub x}) nanocrystals with different phase and morphology have been synthesized through homogenous sodium reduction under low temperature with the subsequent annealing process under high vacuum. The crystal structures of tantalum nitrides were determined by Rietveld refinement based on the X-ray diffraction data. The morphologies of various tantalum nitrides nanocrystals in high quality were analyzed through the electron microcopies examinations. The spherical TaN nanoparticles, cuboidal TaN{sub 0.83} and TaN{sub 0.5} nanocrystals have been selectively prepared at different annealing temperatures. In addition, the specific surface areas of the tantalum nitrides nanocrystals measured by BET method were around 9.87–11.64 m{sup 2} g{sup −1}, indicating that such nano-sized tantalum nitrides could be suitable for capacitor with high specific capacitance.« less
Low-temperature elastic properties of YbSbPt probed by ultrasound measurements
NASA Astrophysics Data System (ADS)
Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.
2018-03-01
The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.
Hess, Nancy J; Schenter, Gregory K; Hartman, Michael R; Daemen, Luc L; Proffen, Thomas; Kathmann, Shawn M; Mundy, Christopher J; Hartl, Monika; Heldebrant, David J; Stowe, Ashley C; Autrey, Tom
2009-05-14
The structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was observed leading to the alignment of the B-N bond near parallel to the c-axis. The orthorhombic to tetragonal structural phase transition at 225 K is marked by dramatic change in the dynamics of both the amine and borane group. The resulting hydrogen disorder is problematic to extract from the metrics provided by Rietveld refinement but is readily apparent in molecular dynamics simulation and in difference Fourier transform maps. At the phase transition, Rietveld refinement does indicate a disruption of one of two dihydrogen bonds that link adjacent ammonia borane molecules. Metrics determined by Rietveld refinement are in excellent agreement with those determined from molecular simulation. This study highlights the valuable insights added by coupled experimental and computational studies.
NASA Astrophysics Data System (ADS)
Prades, Marta; Beltrán, Héctor; Masó, Nahum; Cordoncillo, Eloisa; West, Anthony R.
2008-11-01
The ferroelectric tetragonal tungsten bronze (TTB) phases, Ba2RETi2Nb3O15:RE=Nd,Sm, were prepared by low temperature solvothermal synthesis. The permittivity versus temperature data of sintered ceramics show two unusual features: first, a hysteresis of 50-100 °C between values of the Curie temperature Tc on heat-cool cycles and second: a huge depression in the Curie-Weiss temperature T0. Both effects are attributed to the complex nature of their TTB-related crystal structures with different superstructures above and below Tc and the difficulty in nucleating ferroelectric domains on cooling through Tc. Several factors may contribute to the latter difficulty: first, the structures contain two sets of crystallographic sites for the "active" Ti, Nb ions; second, the distribution of Ti and Nb over these two sets of sites is not random but partially ordered; and third, below Tc a weak commensurate superstructure perpendicular to the polar c&barbelow; axis is present, but above Tc a weak incommensurate superstructure in a similar orientation is present. Hence the formation of the ferroelectric structure on cooling requires both nucleation of polar domains involving two sets of cation sites and structural change from an incommensurate to a commensurate supercell.
Simulation studies of GST phase change alloys
NASA Astrophysics Data System (ADS)
Martyna, Glenn
2008-03-01
In order to help drive post-Moore's Law technology development, switching processes involving novel materials, in particular, GeSbTe (GST) alloys are being investigated for use in memory and eFuse applications. An anneal/quench thermal process crystallizes/amorphosizes a GST alloy which then has a low/high resistance and thereby forms a readable/writeable bit; for example, a ``one'' might be the low resistance, conducting crystalline state and a ``zero'' might be the high resistance, glassy state. There are many open questions about the precise nature of the structural transitions and the coupling to electronic structure changes. Computational and experimental studies of the effect of pressure on the GST materials were initiated in order to probe the physics behind the thermal switching process. A new pathway to reversible phase change involving pressure-induced structural metal insulator transitions was discovered. In a binary GS system, a room-temperature, direct, pressure-induced transformation from the high resistance amorphous phase to the low resistance crystalline phase was observed experimentally while the reverse process under tensile load was demonstrated via ab initio MD simulations performed on IBM's Blue Gene/L enabled by massively parallel software. Pressure induced transformations of the ternary material GST-225 (Ge2Sb2Te5) were, also, examined In the talk, the behavior of the two systems will be compared and insight into the nature of the phase change given.
Phase relations in the system Fe-Si determined in an internally-resistive heated DAC
NASA Astrophysics Data System (ADS)
Komabayashi, T.; Antonangeli, D.; Morard, G.; Sinmyo, R.; Mezouar, N.
2015-12-01
It is believed that the iron-rich Earth's core contains some amounts of light elements on the basis of the density deficit of 7 % compared to pure iron. The identification of the kinds and amounts of the light elements in the core places constraints on the origin, formation, and evolution of the Earth because dissolution of light elements into an iron-rich core should place important constraints on the thermodynamic conditions (pressure (P), temperature (T), and oxygen fugacity) of the equilibration between liquid silicate and liquid iron during the core formation. Among potential light elements, silicon has been attracting attentions because it is abundant in the mantle, partitioned into both solid and liquid irons, and very sensitive to the oxygen fugacity. An important phase relation in iron alloy is a transition between the face-centred cubic (FCC) structure and hexagonal close-packed (HCP) structure. This boundary is a key to infer the stable structure in the inner core and is used to derive thermodynamic properties of the phases (Komabayashi, 2014). In the Fe-Si system, previous reports were based on experiments in laser-heated diamond anvil cells (DAC), which might have included large termperature uncertainties. We have revisited this boundary in the system Fe-Si using an internally resistive-heated DAC combined with synchrotron X-ray diffraction at the beamline ID27, ESRF. The internally-heated DAC (Komabayashi et al., 2009; 2012) provides much more stable heating than the laser-heated DAC and much higher temperature than externally resistive-heated DAC, which enables us to place tight constraints on the P-T locations of the boundaries. Also because the minimum measurable temperature is as low as 1000 K due to the stable electric heating, the internal heating is able to examine the low temperature phase stability which was not studied by the previous studies. We will report the P-T locations of the boundaries and evaluate the effect of Si on the phase relation of Earth's core materials. References Komabayashi, J. Geophys. Res., 119, 2014; Komabayashi et al., Earth Planet. Sci. Lett. 282, 2009; Komabayashi et al., Phys. Chem. Mineral 39, 2012.
Fan, Changzeng; Li, Jian; Wang, Limin
2014-01-01
We have explored the mechanical properties, electronic structures and phase transition behaviors of three designed new phases for element boron from ambient condition to high-pressure of 120 GPa including (1) a C2/c symmetric structure (m-B16); (2) a symmetric structure (c-B56) and (3) a Pmna symmetric structure (o-B24). The calculation of the elastic constants and phonon dispersions shows that the phases are of mechanical and dynamic stability. The m-B16 phase is found to transform into another new phase (the o-B16 phase) when pressure exceeds 68 GPa. This might offer a new synthesis strategy for o-B16 from the metastable m-B16 at low temperature under high pressure, bypassing the thermodynamically stable γ-B28. The enthalpies of the c-B56 and o-B24 phases are observed to increase with pressure. The hardness of m-B16 and o-B16 is calculated to be about 56 GPa and 61 GPa, approaching to the highest value of 61 GPa recorded for α-Ga-B among all available Boron phases. The electronic structures and bonding characters are analyzed according to the difference charge-density and crystal orbital Hamilton population (COHP), revealing the metallic nature of the three phases. PMID:25345910
Advanced thermoelectric materials with enhanced crystal lattice structure and methods of preparation
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre (Inventor); Caillat, Thierry F. (Inventor); Borshchevsky, Alexander (Inventor)
1998-01-01
New skutterudite phases including Ru.sub.0.5 Pd.sub.0.5 Sb.sub.3, RuSb.sub.2 Te, and FeSb.sub.2 Te, have been prepared having desirable thermoelectric properties. In addition, a novel thermoelectric device has been prepared using skutterudite phase Fe.sub.0.5 Ni.sub.0.5 Sb.sub.3. The skutterudite-type crystal lattice structure of these semiconductor compounds and their enhanced thermoelectric properties results in semiconductor materials which may be used in the fabrication of thermoelectric elements to substantially improve the efficiency of the resulting thermoelectric device. Semiconductor materials having the desired skutterudite-type crystal lattice structure may be prepared in accordance with the present invention by using powder metallurgy techniques. Measurements of electrical and thermal transport properties of selected semiconductor materials prepared in accordance with the present invention, demonstrated high Hall mobilities and good Seebeck coefficients. These materials have low thermal conductivity and relatively low electrical resistivity, and are good candidates for low temperature thermoelectric applications.
Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...
2015-03-09
Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-01-01
The Westinghouse Electric Corporation, Science Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850[degrees]F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phase 2more » - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
NASA Astrophysics Data System (ADS)
Thomas, Rini; Das, Gangadhar; Mondal, Rajib; Pradheesh, R.; Mahato, R. N.; Geetha Kumary, T.; Nirmala, R.; Morozkin, A. V.; Lamsal, J.; Yelon, W. B.; Nigam, A. K.; Malik, S. K.
2012-04-01
Nanocrystalline La0.15Ca0.85MnO3 samples of various grain sizes ranging from ˜17 to 42 nm have been prepared by sol-gel technique. Phase purity and composition were verified by room temperature x-ray diffraction and SEM-EDAX analysis. The bulk La0.15Ca0.85MnO3 is known to order antiferromagnetically around 170 K and to undergo a simultaneous crystal structural transition. DC magnetization measurements on 17 nm size La0.15Ca0.85MnO3 show a peak at ˜130 K (TN) in zero-field-cooled (ZFC) state. Field-cooled magnetization bifurcates from ZFC data around 200 K hinting a weak ferromagnetic component near room temperature due to surface moments of the nanoparticle sample. Low temperature powder neutron diffraction experiments reveal that the incomplete structural transition from room temperature orthorhombic to low temperature orthorhombic-monoclinic state also occurs in the nanoparticle sample as in the bulk. Magnetization in the ordered state decreases as particle size increases, thus indicating the reduction of the competing ferromagnetic surface moments.
Ionic relaxation in PEO/PVDF-HFP-LiClO4 blend polymer electrolytes: dependence on salt concentration
NASA Astrophysics Data System (ADS)
Das, S.; Ghosh, A.
2016-06-01
In this paper, we have studied the effect of LiClO4 salt concentration on the ionic conduction and relaxation in poly ethylene oxide (PEO) and poly (vinylidene fluoride hexafluoropropylene) (PVDF-HFP) blend polymer electrolytes, in which the molar ratio of ethylene oxide segments to lithium ions (R = EO: Li) has been varied between 3 and 35. We have observed two phases in the samples containing low salt concentrations (R > 9) and single phase in the samples containing high salt concentrations (R ⩽ 9). The scanning electron microscopic images indicate that there exists no phase separation in the blend polymer electrolytes. The temperature dependence of the ionic conductivity shows two slopes corresponding to high and low temperatures and follows Arrhenius relation for the samples containing low salt concentrations (R > 9). The conductivity relaxation as well as the structural relaxation has been clearly observed at around 104 Hz and 106 Hz for these concentrations of the blended electrolytes. However, a single conductivity relaxation peak has been observed for the compositions with R ⩽ 9. The scaling of the conductivity spectra shows that the relaxation mechanism is independent of temperature, but depends on salt concentration.
Noncentrosymmetric superconductor BeAu
NASA Astrophysics Data System (ADS)
Amon, A.; Svanidze, E.; Cardoso-Gil, R.; Wilson, M. N.; Rosner, H.; Bobnar, M.; Schnelle, W.; Lynn, J. W.; Gumeniuk, R.; Hennig, C.; Luke, G. M.; Borrmann, H.; Leithe-Jasper, A.; Grin, Yu.
2018-01-01
Mixed spin-singlet and spin-triplet pairing can occur in noncentrosymmetric superconductors. In this respect, a comprehensive characterization of the noncentrosymmetric superconductor BeAu was carried out. It was established that BeAu undergoes a structural phase transition from a low-temperature noncentrosymmetric FeSi structure type to a high-temperature centrosymmetric structure in the CsCl type at Ts=860 K. The low-temperature modification exhibits a superconducting transition below Tc=3.3 K. The values of lower (Hc1=32 Oe) and upper (Hc2=335 Oe) critical fields are rather small, confirming that this type-II (κG-L=2.3 ) weakly coupled (λe-p=0.5 ,Δ Ce/γnTc≈1.26 ) superconductor can be well understood within the Bardeen-Cooper-Schrieffer theory. The muon spin relaxation analysis indicates that the time-reversal symmetry is preserved when the superconducting state is entered, supporting conventional superconductivity in BeAu. From the density functional band structure calculations, a considerable contribution of the Be electrons to the superconducting state was established. On average, a rather small mass renormalization was found, consistent with the experimental data.
Rotational Rehybridization and the High Temperature Phase of UC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiaodong; Rudin, Sven P.; Batista, Enrique R.
2012-12-03
The screened hybrid approximation (HSE) of density functional theory (DFT) is used to examine the structural, optical, and electronic properties of the high temperature phase, cubic UC(2). This phase contains C(2) units with a computed C-C distance of 1.443 Å which is in the range of a CC double bond; U is formally 4+, C(2) 4-. The closed shell paramagnetic state (NM) was found to lie lowest. Cubic UC(2) is found to be a semiconductor with a narrow gap, 0.4 eV. Interestingly, the C(2) units connecting two uranium sites can rotate freely up to an angle of 30°, indicating amore » hindered rotational solid. Ab-initio molecular dynamic simulations (HSE) show that the rotation of C(2) units in the low temperature phase (tetragonal UC(2)) occurs above 2000 K, in good agreement with experiment. The computed energy barrier for the phase transition from tetragonal UC(2) to cubic UC(2) is around 1.30 eV per UC(2). What is fascinating about this system is that at high temperature, the phase transformation to the cubic phase is associated with a rehybridization of the C atoms from sp to sp(3).« less
Low temperature synthesis of transition metal oxides containing surfactant ions
NASA Astrophysics Data System (ADS)
Janauer, Gerald Gilbert
1998-11-01
Recently there has been much interest in reacting vanadium oxides hydrothermally with cationic surfactants to form novel layered compounds. A series of new transition metal oxides, however, has also been formed at or near room temperature in open containers. Synthesis, characterization, and proposed mechanisms of formation are the focus of this work. Low temperature reactions of vanadium pentoxide and ammonium transition metallates with long chain amine surfactants, such as dodecyltrimethylammonium bromide yielded interesting new products many of which are layered phases. DTAsb4\\ Hsb2Vsb{10}Osb{28}. 8Hsb2O, a layered highly crystalline phase, is the first such phase for which a single crystal X-ray structure has been determined. The unit cell for this material was found to be triclinic with space group P1-, cell parameters a=9.8945(3)A, b=11.5962(1)A, c=21.9238(2)A, alpha=95.153(2)sp°,\\ beta=93.778(1)sp°, and gamma=101.360(1)sp°. Additionally, a novel tungsten, a molybdenum and a dichromate phase will be discussed. Both the tungsten and the dichromate materials were indexed from their powder diffraction patterns yielding monoclinic unit cells. The tungsten material was found to have a=50.56(4)A, b=54.41(4)A, c=13.12(1)A, and beta=99.21sp°. The dichromate compound was determined to have a=26.757(5)A, b=10.458(2)A, c=14.829(3)A and beta=98.01(1)sp°. Interlayer spacings for the lamellar dichromate and molybdenum phases were d001 = 28.7 A, and d001 = 22.9 A. The synthesis, characterization, composition, and structure of these transition metal oxide-surfactant materials will be discussed.
Klemm, Matthias; Horn, Siegfried; Woydt, Mathias
2011-01-01
Summary Magnéli-type vanadium oxides form the homologous series VnO2 n -1 and exhibit a temperature-induced, reversible metal–insulator first order phase transition (MIT). We studied the change of the adhesion force across the transition temperature between the cleavage planes of various vanadium oxide Magnéli phases (n = 3 … 7) and spherical titanium atomic force microscope (AFM) tips by systematic force–distance measurements with a variable-temperature AFM under ultrahigh vacuum conditions (UHV). The results show, for all investigated samples, that crossing the transition temperatures leads to a distinct change of the adhesion force. Low adhesion corresponds consistently to the metallic state. Accordingly, the ability to modify the electronic structure of the vanadium Magnéli phases while maintaining composition, stoichiometry and crystallographic integrity, allows for relating frictional and electronic material properties at the nano scale. This behavior makes the vanadium Magnéli phases interesting candidates for technology, e.g., as intelligent devices or coatings where switching of adhesion or friction is desired. PMID:21977416
The creation of modulated monoclinic aperiodic composites in n-alkane/urea compounds
Mariette, Céline; Guérin, Laurent; Rabiller, Philippe; ...
2014-09-12
n-Dodecane/urea is a member of the prototype series of n-alkane/urea inclusion compounds. At room temperature, it presents a quasi-one dimensional liquid-like state for the confined guest molecules within the rigid, hexagonal framework of the urea host. At lower temperatures, we report the existence of two other phases. Below T c=248 K there appears a phase with rank four superspace group P6 122(00γ), the one typically observed at room temperature in n-alkane/urea compounds with longer guest molecules. A misfit parameter, defined by the ratio γ=c h/c g (c host/c guest), is found to be 0.632±0.005. Below T c1=123 K, a monoclinicmore » modulated phase is created with a constant shift along c of the guest molecules in adjacent channels. The maximal monoclinic space group for this structure is P12 11(α0γ). We discuss analogies and differences with n-heptane/urea, which also presents a monoclinic, modulated low-temperature phase.« less
First-principles calculations on thermodynamic properties of BaTiO3 rhombohedral phase.
Bandura, Andrei V; Evarestov, Robert A
2012-07-05
The calculations based on the linear combination of atomic orbitals have been performed for the low-temperature phase of BaTiO(3) crystal. Structural and electronic properties, as well as phonon frequencies were obtained using hybrid PBE0 exchange-correlation functional. The calculated frequencies and total energies at different volumes have been used to determine the equation of state and thermal contribution to the Helmholtz free energy within the quasiharmonic approximation. For the first time, the bulk modulus, volume thermal expansion coefficient, heat capacity, and Grüneisen parameters in BaTiO(3) rhombohedral phase have been estimated at zero pressure and temperatures form 0 to 200 K, based on the results of first-principles calculations. Empirical equation has been proposed to reproduce the temperature dependence of the calculated quantities. The agreement between the theoretical and experimental thermodynamic properties was found to be satisfactory. Copyright © 2012 Wiley Periodicals, Inc.
Shape-memory properties in Ni-Ti sputter-deposited film
NASA Technical Reports Server (NTRS)
Busch, J. D.; Johnson, A. D.; Lee, C. H.; Stevenson, D. A.
1990-01-01
A Ni-Ti alloy, generically called nitinol, was prepared from sputtering targets of two different compositions on glass substrates using a dc magnetron source. The as-deposited films were amorphous in structure and did not exhibit a shape memory. The amorphous films were crystallized with a suitable annealing process, and the transformation properties were measured using differential scanning calorimetry. The annealed films demonstrated a strong shape-memory effect. Stress/strain measurements and physical manipulation were used to evaluate the shape recovery. These tests demonstrated sustained tensile stresses of up to 480 MPa in the high-temperature phase, and a characteristic plastic deformation in the low-temperature phase.
Detuning the honeycomb of α -RuCl3 : Pressure-dependent optical studies reveal broken symmetry
NASA Astrophysics Data System (ADS)
Biesner, Tobias; Biswas, Sananda; Li, Weiwu; Saito, Yohei; Pustogow, Andrej; Altmeyer, Michaela; Wolter, Anja U. B.; Büchner, Bernd; Roslova, Maria; Doert, Thomas; Winter, Stephen M.; Valentí, Roser; Dressel, Martin
2018-06-01
The honeycomb Mott insulator α -RuCl3 loses its low-temperature magnetic order by pressure. We report clear evidence for a dimerized structure at P >1 GPa and observe the breakdown of the relativistic jeff picture in this regime strongly affecting the electronic properties. A pressure-induced Kitaev quantum spin liquid cannot occur in this broken symmetry state. We shed light on the new phase by broadband infrared spectroscopy of the low-temperature properties of α -RuCl3 and ab initio density functional theory calculations, both under hydrostatic pressure.
Fracture and damage evolution of fluorinated polymers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, E. N.; Rae, P.; Orler, E. B.
2004-01-01
Fluoropolymers are often semi-crystalline in nature, with their linear chains forming complicated phases near room temperature and ambient pressure. The most widely used fluorocarbon polymer for engineering applications is polytetrafluoroethylene (PTFE), due to its extremely low coefficient of friction, outstanding resistance to corrosion, and excellent electrical properties. The phase structure of PTFE is complex with four well-characterized crystalline phases (three observed at atmospheric pressure) and substantial molecular motion well below the melting point. The first-order transition at 19 C between phases II and IV is an unraveling in the helical conformation. Further rotational disordering and untwisting of the helices occursmore » above 30 C giving way to phase I. The mechanical behavior, including fracture and damage evolution, of PTFE depends on the chain and segment motions dictated by crystalline phase microstructure. The presence of three unique phases at ambient pressure near room temperature implies that failure during standard operating conditions may be strongly dependent on the phase. This paper presents a preliminary study of fracture and damage evolution in PTFE with the effects of temperature-induced phase on fracture mechanisms. The quasi-static fracture of PTFE in the atmospheric pressure regime, over a range of temperatures, was found to be strongly phase dependent: phase II exhibits brittle-fracture, phase IV displays ductile-fracture with crazing and some stable crack growth, and plastic flow dominates phase 1. The bulk failure properties are correlated to failure mechanisms through fractography of the fracture surfaces (optical microscopy and scanning electron microscopy (SEM)).« less
NASA Astrophysics Data System (ADS)
Kim, In Soo
The influence of stoichiometry on the metal-insulator transition of vanadium dioxide (VO2) nanowires was investigated using Raman spectroscopy. Controlled reduction of nominally strain-free suspended VO2 nanowires was conducted by rapid thermal annealing (RTA). The deficiency in oxygen assisted in the unprecedented suppression of the metallic (R) phase to temperatures as low as 103 K through generation of free electrons. In a complementary manner, oxygen-rich conditions stabilized the metastable monoclinic (M2) and triclinic (T) phases. A pseudo-phase diagram with dimensions of temperature and stoichiometry was established, highlighting the accessibility of new phases in the nanowire geometry. Detection of the dynamic elastic response across the metal-insulator transition in suspended VO2 nanowires was enabled by fiber-coupled polarization dependent interferometry. Dual-beam Raman spectroscopy was developed to determine the local domain/phase structure of VO2 nanowires, which allowed for accurate modeling using COMSOL finite element analysis (FEA). The Young's moduli of the single crystal insulating (M1) and metallic (R) phases without artifacts were determined for the first time. The sources of dissipation were identified as clamping losses, structural losses, thermoelastic damping, and domain wall motion. While contribution of thermoelastic damping was found to be dominant in the terminal phases, extraordinary dissipation was observed upon formation and movement of domain walls. Finally, it was shown that creation of local defects could lead to new classes of tunable sensors with a discrete and programmable frequency response with temperature.
Effect of phase transformation on optical and dielectric properties of zirconium oxide nanoparticles
NASA Astrophysics Data System (ADS)
Chintaparty, Rajababu; Palagiri, Bhavani; Reddy Nagireddy, Ramamanohar; subbha Reddy Imma Reddy, Venkata
2015-09-01
Zirconium oxide nanoparticle (ZrO2) is synthesized by the hydrothermal method at different calcination temperatures. The structural analysis is carried out by X-ray diffraction and Raman spectra. The sample prepared at 400 °C and 1100 °C showed the cubic and monoclinic phase, respectively, and the sample calcined at 600 °C and 800 °C showed the mixed phase with co-existence of cubic and monoclinic phases. Furthermore, the morphology and particle size of these samples were investigated by scanning electron microscope (SEM) and transmission electron microscope (TEM) analysis. The band gap estimated from UV-Vis spectra of ZrO2 (zirconia) nanocrystalline materials calcined at different temperatures from 400 °C to 1100 °C was in the range of 2.6-4.2 eV. The frequency dependence of dielectric constant and dielectric loss was investigated at room temperature. The low frequency region of dielectric constant is attributed to space charge effects.
NASA Astrophysics Data System (ADS)
Zhou, W.
2016-12-01
The pore structure of Longmaxi shale was changing during the diagenetic process, mainly caused by the illitization and serpentinzation. The evolution of shale pore structure mainly relates to the element migration. Based on the result of electron microprobe analyser (EMPA), it is possible to find the distribution of element in shale directly and to distinguish the destroyed primary pore structure as element will remain in the migration way. The migration of potassium in Longmaxi shale mainly happened during early diagenesis phase to middle diagenesis phase (Geothermal temperature: 60°-140°). During the illitization, potassium mainly came from potassium feldspar, migrated though the connected pore structure and reacted with smectite. Illite and illite/smectite in Longmaxi shale distribute continuously in 10micron-level flocculent formation, which means that primary connective pore structure in Longmaxi shale has a same scale. The concentration of potassium has an obvious gradient that potassium content in middle of flocculation of Illite/smectite is about 6.8% and 4.8% in the boundary parts (Fig.). In addition, as SiO2 was generated during the illitization, which makes Longmaxi shale very compacted. The migration of magnesium in Longmaxi shale happened during low temperature serpentinization (Geothermal temperature: 140°-350°). Magnesium mainly came from dolomite and migrated in primary pores. According to the result of EMPA, it can be recognized that the migration path of magnesium is much simpler than potassium, which is caused as serpentinization do not have much reaction with clay minerals around (Fig.). Serpentine jams the primary pores of Longmaxi shale too. As reaction temperature of serpentinization is higher than illitization and serpentine is inserts in illite/smectite, the formation process of Longmaxi shale pore structure can be mainly divided into two phases: geothermal temperature˜140° and˜140°.
High temperature magnetism and microstructure of ferromagnetic alloy Si1-x Mn x
NASA Astrophysics Data System (ADS)
Aronzon, B. A.; Davydov, A. B.; Vasiliev, A. L.; Perov, N. S.; Novodvorsky, O. A.; Parshina, L. S.; Presniakov, M. Yu; Lahderanta, E.
2017-02-01
The results of a detailed study of magnetic properties and of the microstructure of SiMn films with a small deviation from stoichiometry are presented. The aim was to reveal the origin of the high temperature ferromagnetic ordering in such compounds. Unlike SiMn single crystals with the Curie temperature ~30 K, considered Si1-x Mn x compounds with x = 0.5 +Δx and Δx in the range of 0.01-0.02 demonstrate a ferromagnetic state above room temperature. Such a ferromagnetic state can be explained by the existence of highly defective B20 SiMn nanocrystallites. These defects are Si vacancies, which are suggested to possess magnetic moments. The nanocrystallites interact with each other through paramagnons (magnetic fluctuations) inside a weakly magnetic manganese silicide matrix giving rise to a long range ferromagnetic percolation cluster. The studied structures with a higher value of Δx ≈ 0.05 contained three different magnetic phases: (a)—the low temperature ferromagnetic phase related to SiMn; (b)—the above mentioned high temperature phase with Curie temperature in the range of 200-300 K depending on the growth history and (c)—superparamagnetic phase formed by separated noninteracting SiMn nanocrystallites.
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glass transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder X ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structural transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
Crystallization and properties of Sr-Ba aluminosilicate glass-ceramic matrices
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.; Hyatt, Mark J.; Drummond, Charles H., III
1991-01-01
Powders of roller quenched (Sr,Ba)O-Al2O3-2SiO2 glasses of various compositions were uniaxially pressed into bars and hot isostatically pressed at 1350 C for 4 hours or cold isostatically pressed and sintered at different temperatures between 800 to 1500 C for 10 or 20 hours. Densities, flexural strengths, and linear thermal expansion were measured for three compositions. The glasss transition and crystallization temperatures were determined by Differential Scanning Calorimetry (DSC). The liquidus and crystallization temperature from the melt were measured using high temperature Differential Thermal Analysis (DTA). Crystalline phases formed on heat treatment of the glasses were identified by powder x ray diffraction. In Sr containing glasses, the monoclinic celsian phase always crystallized at temperatures above 1000 C. At lower temperatures, the hexagonal analog formed. The temperature for orthorhombic to hexagonal structure transformation increased monotonically with SrO content, from 327 C for BaO-Al2O3-2SiO2 to 758 C for SrO-Al2O3-2SiO2. These glass powders can be sintered to almost full densities and monoclinic celsian phase at a relatively low temperature of 1100 C.
NMR, symmetry elements, structure and phase transitions in the argyrodite family
NASA Astrophysics Data System (ADS)
Gaudin, E.; Taulelle, F.; Boucher, F.; Evain, M.
1998-02-01
Cu7PSe6 belongs to a family of structures known as the argyrodites. It undergoes two phases transitions. The high temperature phase has been determined by X-ray diffraction. It has a Foverline{4}3m space group. Medium temperature phases have been refined using a non-harmonic technique and the space group proposed is P213. The low temperature phase had an apparent space group of Foverline{4}3m also. Use of X-ray diffraction and NMR together has allowed to determine the space groups of all phases as being respectively Foverline{4}3m, P213 and Pmn21. Positioning of disordered coppers in the structure is therefore possible and the structure can be described by connex polyhedra of PSe3-4 and SeCux-2_x. The phase transitions can be understood by an ordered motion of SeCux-2x polyhedra. If these polyhedra set in motion independently two transitions are to be observed, if they are coupled only one is observed. Cu7PSe6 appartient à une famille de composés connus sous le nom d'argyrodites. Cu7PSe6 possède deux transitions de phase. La structure de haute température a été déterminée par diffraction des rayons X. Elle se décrit par le groupe d'espace Foverline{4}3m. La phase de moyenne température a été raffinée en utilisant une technique non-harmonique et le groupe d'espace proposé est P213. La phase de basse température possède également un groupe d'espace apparent Foverline{4}3m. En utilisant ensemble la diffraction des rayons X et la RMN, il a été possible de déterminer les groupes d'espace de toutes les phases comme étant respectivement Foverline{4}3m, P213 et Pmn21. Placer les atomes de cuivre, désordonnés, dans la structure devient alors possible et la structure peut se décrire comme un ensemble de polyèdres connexes de PSe3-4 et SeCux-2_x. Les transitions de phases se décrivent alors comme des mouvements ordonnés des polyèdres SeCux-2_x. Si ces polyèdres se mettent en mouvement indépendamment, deux transitions de phases sont attendues, si leur mise en mouvement est couplée, une seule est observée.
NASA Astrophysics Data System (ADS)
Halder, Nilanjan; Misra, Kamakhya Prakash
2016-05-01
Using titanium isopropoxide as the precursor, Titanium dioxide (TiO2) powder was synthesized via sol-gel method, a promising low temperature route for preparing nanosized metal oxide semiconductors with good homogeneity at low cost. The as-prepared nano powder was thermally treated in air at 550, 650, 750, 900 and 1100°C for 1hr after drying at room temperature and used for further characterization. X-ray diffraction measurements showed that the annealing treatment has a strong impact on the crystal phase of TiO2 samples. The crystallite size as calculated from Debye Scherer formula lies in the range 29-69 nm and is found to increase with increase in annealing temperature. Photoluminescence studies exhibit an improvement in the optical efficiency of the samples with post synthesis heat treatment. Annealing at temperature above 900°C results in a degradation of the structural and optical quality of the TiO2 nano powder samples.
Ab initio study for the IR spectroscopy of PbTiO3 and PbZrO3, primary blocks of PbZr1‑x Ti x O3
NASA Astrophysics Data System (ADS)
Peperstraete, Yoann; Amzallag, Emilie; Tétot, Robert; Roy, Pascale
2018-05-01
PbTiO3 (PT) and PbZrO3 (PZ) are the two primary blocks of the solid solution PbZr1‑x Ti x O3 (PZT). They can be modelled in different ways; but, in order to do comparable DFT calculations on PZT, with different values of x, one must find a unique method that can be used for both PT and PZ. In particular, we want to evaluate their vibrational properties to compare them with experimental data. Density functional theory (DFT) is used to perform structure geometry optimizations and electronic structure calculations, both on low- and high-temperature phase. Then, harmonic vibrational frequencies of their low-temperature phase are determined for transverse and longitudinal optical (TO & LO) phonons. Moreover, a detailed study of the eigenvectors shows that accurate calculations are necessary to correctly interpret and understand the IR spectra. In the end, the comparison of our theoretical results with previous experimental and theoretical data confirm the strong potential of the SOGGA (second-order generalized gradient approximation) functional to correctly describe PT, PZ and, hopefully, PZT; especially their structural and vibrational properties.
NASA Astrophysics Data System (ADS)
Vidya, S.; Solomon, Sam; Thomas, J. K.
2013-01-01
Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.
Effects of Ether vs. Ester Linkage on Lipid Bilayer Structure and Water Permeability
Guler, S. Deren; Ghosh, D. Dipon; Pan, Jianjun; Matthai, John C.; Zeidel, Mark L.; Nagle, John F.; Tristram-Nagle, Stephanie
2009-01-01
The structure and water permeability of bilayers composed of the ether linked lipid, dihexadecylphosphatidylcholine (DHPC), were studied and compared with the ester linked lipid, dipalmitoylphosphaditdylcholine (DPPC). Wide angle x-ray scattering on oriented bilayers in the fluid phase indicate that the area per lipid A is slightly larger for DHPC than for DPPC. Low angle x-ray scattering yields A=65.1Å2 for DHPC at 48°C. LAXS data provide the bending modulus, KC=4.2×10−13erg, and the Hamaker parameter H=7.2×10−14erg for the van der Waals attractive interaction between neighboring bilayers. For the low temperature phases with ordered hydrocarbon chains, we confirm the transition from a tilted Lß’ gel phase to an untilted, interdigitated LßI phase as the sample hydrates at 20°C. Our measurement of water permeability, Pf=0.022 cm/s at 48 °C for fluid phase DHPC is slightly smaller than that of DPPC, (Pf=0.027 cm/s) at 50 °C, consistent with our triple slab theory of permeability. PMID:19416724
Magnetoelectric Effect in a Spin-State Transition System
NASA Astrophysics Data System (ADS)
Naka, Makoto; Mizoguchi, Eriko; Nasu, Joji; Ishihara, Sumio
2018-06-01
Magnetic, dielectric, and magnetoelectric properties in a spin-state transition system are examined, motivated by the recent discovery of multiferroic behavior in a cobalt oxide. We construct an effective model Hamiltonian on the basis of the two-orbital Hubbard model, in which the spin-state degrees of freedom in magnetic ions couple with ferroelectric-type lattice distortions. A phase transition occurs from the high-temperature low-spin phase to the low-temperature high-spin ferroelectric phase with an accompanying increase in spin entropy. The calculated results are consistent with the experimental pressure-temperature phase diagram. We predict the magnetic-field induced electric polarization in the low-spin paraelectric phase near the ferroelectric phase boundary.
He, Shaolong; He, Junfeng; Zhang, Wenhao; Zhao, Lin; Liu, Defa; Liu, Xu; Mou, Daixiang; Ou, Yun-Bo; Wang, Qing-Yan; Li, Zhi; Wang, Lili; Peng, Yingying; Liu, Yan; Chen, Chaoyu; Yu, Li; Liu, Guodong; Dong, Xiaoli; Zhang, Jun; Chen, Chuangtian; Xu, Zuyan; Chen, Xi; Ma, Xucun; Xue, Qikun; Zhou, X J
2013-07-01
The recent discovery of possible high-temperature superconductivity in single-layer FeSe films has generated significant experimental and theoretical interest. In both the cuprate and the iron-based high-temperature superconductors, superconductivity is induced by doping charge carriers into the parent compound to suppress the antiferromagnetic state. It is therefore important to establish whether the superconductivity observed in the single-layer sheets of FeSe--the essential building blocks of the Fe-based superconductors--is realized by undergoing a similar transition. Here we report the phase diagram for an FeSe monolayer grown on a SrTiO3 substrate, by tuning the charge carrier concentration over a wide range through an extensive annealing procedure. We identify two distinct phases that compete during the annealing process: the electronic structure of the phase at low doping (N phase) bears a clear resemblance to the antiferromagnetic parent compound of the Fe-based superconductors, whereas the superconducting phase (S phase) emerges with the increase in doping and the suppression of the N phase. By optimizing the carrier concentration, we observe strong indications of superconductivity with a transition temperature of 65±5 K. The wide tunability of the system across different phases makes the FeSe monolayer ideal for investigating not only the physics of superconductivity, but also for studying novel quantum phenomena more generally.
Lutz, Martin
2010-11-01
Tris(ethylenediamine)zinc(II) sulfate, [Zn(C(2)H(8)N(2))(3)]SO(4), (I), undergoes a reversible solid-solid phase transition during cooling, accompanied by a lowering of the symmetry from high-trigonal P31c to low-trigonal P3 and by merohedral twinning. The molecular symmetries of the cation and anion change from 32 (D(3)) to 3 (C(3)). This lower symmetry allows an ordered sulfate anion and generates in the complex cation two independent N atoms with significantly different geometries. The twinning is the same as in the corresponding Ni complex [Jameson et al. (1982). Acta Cryst. B38, 3016-3020]. The low-temperature phase of tris(ethylenediamine)copper(II) sulfate, [Cu(C(2)H(8)N(2))(3)]SO(4), (II), has only triclinic symmetry and the unit-cell volume is doubled with respect to the room-temperature structure in P31c. (II) was refined as a nonmerohedral twin with five twin domains. The asymmetric unit contains two independent formula units, and all cations and anions are located on general positions with 1 (C(1)) symmetry. Both molecules of the Cu complex are in elongated octahedral geometries because of the Jahn-Teller effect. This is in contrast to an earlier publication, which describes the complex as a compressed octahedron [Bertini et al. (1979). J. Chem. Soc. Dalton Trans. pp. 1409-1414].
On the multiferroic skyrmion-host GaV4S8
NASA Astrophysics Data System (ADS)
Widmann, S.; Ruff, E.; Günther, A.; Krug von Nidda, H.-A.; Lunkenheimer, P.; Tsurkan, V.; Bordács, S.; Kézsmárki, I.; Loidl, A.
2017-12-01
The lacunar spinel GaV4S8 exhibits orbital ordering at 44 K and shows a complex magnetic phase diagram below 12.7 K, which includes ferromagnetic and cycloidal spin order. At low but finite external magnetic fields, Néel-type skyrmions are formed in this material. Skyrmions are whirl-like spin vortices that have received great theoretical interest because of their non-trivial spin topology and that are also considered as basic entities for new data-storage technologies. Interestingly, we found that the orbitally ordered phase shows sizable ferroelectric polarisation and that excess spin-driven polarisations appear in all magnetic phases, including the skyrmion-lattice phase. Hence, GaV4S8 shows simultaneous magnetic and polar order and belongs to the class of multiferroics materials that attracted enormous attention in recent years. Here, we summarise the existing experimental information on the magnetic, electronic and dielectric properties of GaV4S8. By performing detailed magnetic susceptibility, resistivity, specific heat and dielectric experiments, we complement the low-temperature phase diagram. Specifically, we show that the low-temperature and low-field ground state of GaV4S8 seems to have a more complex spin configuration than purely collinear ferromagnetic spin order. In addition, at the structural Jahn-Teller transition the magnetic exchange interaction changes from antiferromagnetic to ferromagnetic. We also provide experimental evidence that the vanadium V4 clusters in GaV4S8 can be regarded as molecular units with spin 1/2. However, at high temperatures deviations in the susceptibility show up, indicating that either the magnetic moments of the vanadium atoms fluctuate independently or excited states of the V4 molecule become relevant.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cook, R.L.; MacQueen, D.B.; Bader, K.E.
1997-12-31
Alkali Metal Thermoelectric Converters (AMTEC) are efficient direct energy conversion devices that depend on the use of highly conductive beta-alumina membranes for their operation. The key component of the AMTEC system is a highly conductive Na-{beta}{double_prime}-alumina solid electrolyte which conducts sodium ions from the high to low temperature zone, thereby generating electricity. AMTEC cells convert thermal to electrical energy by using heat to produce and maintain an alkali metal concentration gradient across the ion transporting BASE membrane. They have developed a method for producing pure phase Na-{beta}{double_prime}-alumina and K-{beta}{double_prime}-alumina powders from single phase nano-sized carboxylato-alumoxanes precursors. Sodium or potassium ionsmore » (the mobile ions) and either Mg{sup 2+} or Li{sup +} ions (which stabilize the {beta}{double_prime}-alumina structure) can be atomically dispersed into the carboxylato-alumoxane lattice at low (< 100 C) temperature. Calculation of the carboxylato-alumoxane precursors at 1,200--1,500 C produces pure phase {beta}{double_prime}-alumina powders.« less
NASA Astrophysics Data System (ADS)
Kim, Chang Oh; Kim, Jin Heung; Chung, Nak Kyu
2007-07-01
Materials that can store low temperature latent heat are organic/inorganic chemicals, eutectic salt system and clathrate compound. Clathrate compound is the material that host compound in hydrogen bond forms cage and guest compound is included into it and combined. Crystallization of hydrate is generated at higher temperature than that of ice from pure water. And physical properties according to temperature are stable and congruent melting phenomenon is occurred without phase separation and it has relatively high latent heat. But clathrate compound still has supercooling problem occurred in the course of phase change and supercooling should be minimized because it affects efficiency of equipment very much. Therefore, various studies on additives to restrain this or heat storage methods are needed. Supercooling is the phenomenon that low temperature thermal storage material is not crystallized and existed as liquid for some time under phase change temperature. Because phase change into solid is delayed and it is existed as liquid due to this, heat transfer from low temperature thermal storage material is lowered. Therefore it is not crystallized at original phase change temperature and crystallized after cooled as much as supercooling degree and operation time of refrigerator is increased. In this study was investigated the cooling characteristics of the clathrate compound as a low temperature latent heat storage material. And additive was added to clathrate compound and its supercooling restrain effect was studied experimentally.
Milestone in the NTB phase investigation and beyond: direct insight into molecular self-assembly.
Ivšić, Trpimir; Vinković, Marijana; Baumeister, Ute; Mikleušević, Ana; Lesac, Andreja
2014-12-14
Although liquid-crystalline materials are most widely exploited for flat-panel displays, their ability to self-organize into periodically ordered nanostructures gives rise to a broad variety of additional applications. The recently discovered low-temperature nematic phase (N(TB)) with unusual characteristics generated considerable attention within the scientific community: despite the fact that the molecules from which the phase is composed are not chiral, the helicoidal structure of the phase is strongly implicated. Here we report on combined experimental, computational and spectroscopic studies of the structural aspects influencing formation of the N(TB) phase as well as on the molecular organization within the phase. In an extensive DFT study, the structure-property prerequisite was traced to a "bent-propeller" shape of the molecule. We also demonstrate the first utilization of liquid state NMR for direct analysis of intermolecular interactions within thermotropic liquid-crystalline phases, providing new insight into molecular packing that can lead towards design of novel chiral functional materials. The synergy of experimental, computational and NMR studies suggests a syn-parallel helical molecular organization within the N(TB) phase.
Structure of an LiKSO 4 single crystal studied by 7Li and 39K NMR at low temperature
NASA Astrophysics Data System (ADS)
Lim, A. R.; Jeong, S.-Y.
2000-09-01
The 7Li and 39K nuclear magnetic resonances in an LiKSO 4 single crystal grown by the slow evaporation method have been investigated using a Bruker FT nuclear magnetic resonance (NMR) spectrometer. From the experimental data, the quadrapole coupling constant and asymmetry parameter were determined at room temperature and low temperature, respectively. Unlike the case at 300 K, the 7Li NMR line consists of three sets at 180 K, while 39K nucleus exhibits six sets for the rotation around the three crystallographic axes. The three resonance lines of 7Li and 39K at low temperature can be explained by the existence of three kinds of twin domain, rotated with respect to each other by 120° around the c-axis. The three resonance lines are also related to the crystallographic mirror plane. Structure of ferroelastic LiKSO 4 crystals at 180 K can be directly inferred from the domain pattern obtained by 7Li and 39K NMR. The above results show that the equations of the twin boundaries belong to the mm2 F6 mm ferroelastic species. Therefore, the symmetry of phases III and II is given by orthorhombic structure with Cmc2 1 ( mm2) and hexagonal structural with P6 3mc (6 mm), respectively.
NASA Astrophysics Data System (ADS)
Voronina, E. V.; Ivanova, A. G.; Arzhnikov, A. K.; Chumakov, A. I.; Chistyakova, N. I.; Pyataev, A. V.; Korolev, A. V.
2018-04-01
Results of structural, magnetic, and Mössbauer studies of quasi ordered alloys Fe65Al35 - x M x ( M x = Ga, B; x = 0, 5 at %) are presented. The magnetic state of examined structurally-single-phase alloys at low temperatures is interpreted from the viewpoint of magnetic phase separation. An explanation is proposed for the observed behavior of magnetic characteristics of Fe65Al35 and Fe65Al30Ga5 in the framework of the model of two magnetic phases, a ferromagnetic-type one and a spin density wave. The boron-doped alloy Fe65Al30B5 is shown to demonstrate behavior that is typical of materials with the ferromagnetic type of ordering.
Microstructure and dielectric properties of pyrochlore Bi2Ti2O7 thin films
NASA Astrophysics Data System (ADS)
Cagnon, Joël; Boesch, Damien S.; Finstrom, Nicholas H.; Nergiz, Saide Z.; Keane, Sean P.; Stemmer, Susanne
2007-08-01
Bi2Ti2O7 thin films were grown by radio-frequency magnetron sputtering on bare and Pt-coated sapphire substrates at low substrate temperatures (˜200 °C). Postdeposition anneals were carried out at different temperatures to crystallize the films. Nearly phase-pure Bi2Ti2O7 thin films with the cubic pyrochlore structure were obtained at annealing temperatures up to 800 °C. Impurity phases, in particular Bi4Ti3O12, formed at higher temperatures. At 1 MHz, the dielectric constants were about 140-150 with a very small tunability and the dielectric loss was about 4×10-3. The dielectric loss increased with frequency. The dielectric properties of Bi2Ti2O7 films are compared to those of pyrochlore bismuth zinc niobate films.
Integrated low emissions cleanup system for direct coal-fueled turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lippert, T.E.; Newby, R.A.; Alvin, M.A.
1992-12-31
The Westinghouse Electric Corporation, Science & Technology Center (W-STC) is developing an Integrated Low Emissions Cleanup (ILEC) concept for high-temperature gas cleaning to meet environmental standards, as well as to economical gas turbine life. The ILEC concept simultaneously controls sulfur, particulate, and alkali contaminants in high-pressure fuel gases or combustion gases at temperatures up to 1850{degrees}F for advanced power generation systems (PFBC, APFBC, IGCC, DCF7). The objective of this program is to demonstrate, at a bench scale, the conceptual, technical feasibility of the REC concept. The ELEC development program has a 3 phase structure: Phase 1 - laboratory-scale testing; phasemore » 2 - bench-scale equipment; design and fabrication; and phase 3 - bench-scale testing. Phase 1 laboratory testing has been completed. In Phase 1, entrained sulfur and alkali sorbent kinetics were measured and evaluated, and commercial-scale performance was projected. Related cold flow model testing has shown that gas-particle contacting within the ceramic barrier filter vessel will provide a good reactor environment. The Phase 1 test results and the commercial evaluation conducted in the Phase 1 program support the bench-scale facility testing to be performed in Phase 3. Phase 2 is nearing completion with the design and assembly of a modified, bench-scale test facility to demonstrate the technical feasibility of the ILEC features. This feasibility testing will be conducted in Phase 3.« less
Cristobalite X-I: A bridge between low and high density silica polymorphs
NASA Astrophysics Data System (ADS)
Shelton, H.; Tiange, B.; Zurek, E.; Smith, J.; Dera, P.
2017-12-01
SiO2 is one of the most common compounds found on Earth. Despite its chemical simplicity, and because of its crystal chemical characteristics, SiO2 exhibits a complex phase diagram. SiO2 has a wide variety of thermodynamically stable crystalline phases, as well as numerous metastable crystalline and amorphous polymorphs. Many of the phase transition sequences that produce metastable phases of SiO2 are strongly path-dependent, where the rate of change controls the transition just as much as the final conditions. The elusive metastable polymorphs of SiO2 may provide a better understanding of the factors controlling its densification. On compression of α-cristobalite (the high temperature tetrahedral phase of SiO2) to pressures above 12 GPa, a new polymorph known as cristobalite X-I forms. Existence of cristobalite X-I has been known for several decades, however, consensus regarding the exact atomic arrangement has not yet been reached. The X-I phase constitutes an important step in the silica densification process, separating low-density tetrahedral framework structures from high-density octahedral polymorphs. It is unique in being the only non-quenchable high-density SiO2 phase, which reverts back to the tetrahedral low-density form on decompression at ambient temperature. Our new single crystal synchrotron X-ray diffraction experiments, with quasihydrostatic neon as the pressure medium, revealed the structure of this enigmatic phase to consist of octahedral silicate chains with 4-60°-2 zigzag chain geometry. This geometry has not been considered before, but is closely related to post-quartz, stishovite and seifertite. Density functional theory calculations support this observation, confirming the dynamic stability of the X-I arrangement and reasonably reproducing the pressure at which the transformation takes place. The enthalpy of cristobalite X-I is higher than stishovite and seifertite, but it is favored as a high-pressure successor of cristobalite due to a unique transformation pathway.
Study of structural, electronic and magneto transport properties of La0.7Ca0.2-xSrxAg0.1MnO3
NASA Astrophysics Data System (ADS)
Subhashini, P.; Munirathinum, B.; Krishnaiah, M.; Venkatesh, R.; Venkateswarlu, D.; Ganesan, V.
2016-10-01
Structural, electrical and magneto transport properties of Lanthanum based manganites La0.7Ca0.2-xSrxAg0.1MnO3 (x=0 & 0.1) synthesized by low temperature nitrate route is studied systematically. The X-ray Diffraction patterns confirm the presence of orthorhombic structure with Pnma space group. The temperature dependence of MR (-35%) from 233-272K for x=0 and an MR (-26%) from 281-309K for x=0.1composition with an overall variation of 1% is very much advantageous for device application. Interestingly, in low temperature regime, the MR value of -47% obtained in x=0.1 composition at 10T around 5K is 20% higher than the MR obtained at 10T around the metal insulator transition. Significant changes happening in the low temperature MR measurements is discussed in the light of electron-electron interactions and weak localization mechanisms while the additional broad hump responsible for flat MR is attributed to the intrinsic electronic in homogeneity driven phase competition created due to the presence of mono valent Ag ions. The complex localization mechanism associated with insulating regime is in accordance with Variable range hopping of small polarons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, David I., E-mail: d.i.woodward@warwick.ac.uk; Lees, Martin R.; Thomas, Pam A.
2012-08-15
The phase transitions between various structural modifications of the natrotantite-structured system xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} have been investigated and a phase diagram constructed as a function of temperature and composition. This shows three separate phase transition types: (1) paraelectric-ferroelectric, (2) rhombohedral-monoclinic and (3) a phase transition within the ferroelectric rhombohedral zone between space groups R3c and R3. The parent structure for the entire series has space group R3{sup Macron }c. Compositions with x>0.75 are rhombohedral at all temperatures whereas compositions with x<0.75 are all monoclinic at room temperature and below. At x=0.75, rhombohedral and monoclinic phases coexistmore » with the phase boundary below room temperature being virtually temperature-independent. The ferroelectric phase boundary extends into the monoclinic phase field. No evidence was found for the R3-R3c phase boundary extending into the monoclinic phase field and it is concluded that a triple point is formed. - Graphical abstract: Phase diagram for xAg{sub 2}Nb{sub 4}O{sub 11}-(1-x)Na{sub 2}Nb{sub 4}O{sub 11} solid solution showing changes in crystal symmetry as a function of temperature and composition. The crystal structure is depicted. Highlights: Black-Right-Pointing-Triangle Ferroelectric, rhombohedral Ag{sub 2}Nb{sub 4}O{sub 11} in solid solution with monoclinic Na{sub 2}Nb{sub 4}O{sub 11}. Black-Right-Pointing-Triangle Three phase boundaries were studied as a function of composition and temperature. Black-Right-Pointing-Triangle Both rhombohedral and monoclinic variants exhibit ferroelectricity. The parent phase of the series has space group R3{sup Macron }c.« less
Thermodynamic properties of some metal oxide-zirconia systems
NASA Technical Reports Server (NTRS)
Jacobson, Nathan S.
1989-01-01
Metal oxide-zirconia systems are a potential class of materials for use as structural materials at temperatures above 1900 K. These materials must have no destructive phase changes and low vapor pressures. Both alkaline earth oxide (MgO, CaO, SrO, and BaO)-zirconia and some rare earth oxide (Y2O3, Sc2O3, La2O3, CeO2, Sm2O3, Gd2O3, Yb2O3, Dy2O3, Ho2O3, and Er2O3)-zirconia system are examined. For each system, the phase diagram is discussed and the vapor pressure for each vapor species is calculated via a free energy minimization procedure. The available thermodynamic literature on each system is also surveyed. Some of the systems look promising for high temperature structural materials.
NASA Astrophysics Data System (ADS)
Dwivedi, Akansha
Two new bismuth and lead oxide based perovskite ternary solid solutions, namely xBi(Zn1/2Ti1/2)O3-yPbZrO3-zPbTiO3 [xBZT-yPZ-zPT] and xBi(Mg1/2Ti1/2)O3-yBi(Zn 1/2Ti1/2)O3-zPbTiO3 [xBMT-yBZT-zPT] have been developed and their structural and electrical properties have been determined. Various characterization techniques such as X-ray diffraction, calorimetery, electron microscopy, dielectric and piezoelectric measurements have been performed to determine the details of the phase diagram, crystal structure, and domain structure. The selection of these materials is based on the hypothesis that the presence of BZT-PT (Case I ferroelectric (FE)) will increase the transition temperature of MPB systems BMT-PT (Case II FE), and PZ-PT (Case III FE), and subsequently a MPB will be observed in the ternary phase diagrams. The Case I, II, and III classification has been outlined by Stringer et al., is on the basis of the transition temperatures (TC) behavior with composition in the Bi and Pb oxide based binary systems. Several pseudobinary lines have been investigated across the xBZT-yPZ-zPT ternary phase diagram which exhibit varied TC behavior with composition, showing both Case I- and Case III-like TC trends in different regions. A MPB between rhombohedral to tetragonal phases has been located on a pseudobinary line 0.1BZT-0.9[xPT-(1-x)PZ]. Compositions near MPB exhibit mainly soft PZT-like properties with the TC around 60°C lower than the unmodified PZT near its MPB. Electrical properties are reported for the MPB composition, TC = 325°C, Pr = 35 microC/cm2, d33 = 300 pC/N and kP =0.45. Rhombohedral compositions show diffuse phase transition with small frequency dispersion, similar to relaxors. Two transition peaks in the permittivity as well as in the latent heat has been observed in some compositions near the BZT-PT binary. This leads to the speculation for the existence of miscibility gap in the solid solutions in these regions. Transmission electron microscopy (TEM) performed on these compositions show subdomain modulation contrast suggesting the presence of localized and correlated spatial fluctuations in the spontaneous strain. In the xBMT-yBZT-zPT system, very small rhombohedral region in the room temperature phase diagram has been observed. Owing to the limited solid solubility, only a part of the phase diagram could be explored. Compositions on pseudobinary xPT-(1-x)[0.9BMT-0.1BZT] has been successfully fabricated and characterized. High c/a ratio of 1.04 has been observed for a surprisingly low tolerance factor of 0.9732. Transition temperature trends have been established from DSC and dielectric data along this pseudobinary line. The following trend in the TC has been observed with the increase in non PT end member that has been divided into three zones: in Zone I TC increases, in Zone II it decreases, and in the Zone III, two transition temperatures are observed. From the TEM investigation, it has been noted that these compositions exhibit subdomain modulations which reflects the presence of spontaneous strain. These modulations increase with the increase in non PT end member, and at certain composition along pseudobinary, both macro and micro domains structure can be observed. Compositions in the rhombohedral phase of xBMT-yBZT-zPT show dramatic changes in dielectric and piezoelectric properties when quenched from high temperature. Samples quenched from temperature range 650°C-900°C show classical ferroelectric switching behavior, which is not observed on either side of this temperature range. These quenched states are however, unstable in nature and lose their ferroelectric properties when heated to a temperature as low as 400°C. Structural analysis by TEM shows varied domain structures for samples quenched from different temperatures. Evidences of tilt transitions and intermediate phases have also been observed in the TEM study. New insights into solid solution development and defect metastability are gained and discussed in relation to relaxor based ferroelectric phenomena. Complex domains and intermediate displacive phase transitions are all considered to consistently account for the structure-property-process relations in these novel systems.
NASA Technical Reports Server (NTRS)
Labbe, J.; Friedel, J.
1977-01-01
Equations assuming a Jahn-Teller type effect for the d band electrons in V3Si compounds are given, and the results of free-energy change calculations by using some approximations based on these equations are depicted. The tetragonal structure is converted to cubic as the temperature rises past T sub m which is calculated as 13 K. by the Batterman-Barrett method and is measured to be 20-5 K. Other parameters such as change of C sub p with temperature are predicted better.
NASA Astrophysics Data System (ADS)
da Silva, Antonio N.; Neto, Antonio B. S.; Oliveira, Alcemira C.; Junior, Manoel C.; Junior, Jose A. L.; Freire, Paulo T. C.; Filho, Josué M.; Oliveira, Alcineia C.; Lang, Rossano
2018-06-01
High temperature and pressure effects on the physicochemical properties of binary oxides catalysts were investigated. The nanocomposites catalysts comprising of CeAl, CeMn and NiAl were characterized through various physicochemical techniques. A study of the temperature and pressure induced phenomena monitored by Raman spectroscopy was proposed and discussed. Spectral modifications of the Raman modes belonging to the CeMn suggest structural changes in the solid due to the MnO2 phase oxidation with increasing temperature. The thermal expansion and lattice anharmonicity effects were observed on CeMn due to lack of stability of the lattice vacancies. The CeAl and NiAl composites presented crystallographic stability at low temperatures however, undertake a phase transformation of NiO/Al2O3 into NiAl2O4, mostly without any deformation in its structure with increasing the temperature. It was also inferred that the binary oxides are more stables in comparison with monoxides. Detailed pressure-dependent Raman measurements of the T2g phonon mode of CeMn and NiAl revealed that the pressure contributes to modify bonds length and reduces the particles sizes of the solids. On the contrary, high pressure on CeAl sample improved the stability with addition of Al2O3 in the CeO2 lattice. The results then suggest a good stability of CeAl and NiAl composite catalysts at high pressure and low temperature and show how to prospect of tuning the catalysis for surface reactions entirely through in situ spectroscopic investigations means.
Dynamics of Block Copolymer Nanocomposites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mochrie, Simon G. J.
2014-09-09
A detailed study of the dynamics of cadmium sulfide nanoparticles suspended in polystyrene homopolymer matrices was carried out using X-ray photon correlation spectroscopy for temperatures between 120 and 180 °C. For low molecular weight polystyrene homopolymers, the observed dynamics show a crossover from diffusive to hyper-diffusive behavior with decreasing temperatures. For higher molecular weight polystyrene, the nanoparticle dynamics appear hyper-diffusive at all temperatures studied. The relaxation time and characteristic velocity determined from the measured hyper-diffusive dynamics reveal that the activation energy and underlying forces determined are on the order of 2.14 × 10-19 J and 87 pN, respectively. We alsomore » carried out a detailed X-ray scattering study of the static and dynamic behavior of a styrene– isoprene diblock copolymer melt with a styrene volume fraction of 0.3468. At 115 and 120 °C, we observe splitting of the principal Bragg peak, which we attribute to phase coexistence of hexagonal cylindrical and cubic double- gyroid structure. In the disordered phase, above 130 °C, we have characterized the dynamics of composition fluctuations via X-ray photon correlation spectroscopy. Near the peak of the static structure factor, these fluctuations show stretched-exponential relaxations, characterized by a stretching exponent of about 0.36 for a range of temperatures immediately above the MST. The corresponding characteristic relaxation times vary exponentially with temperature, changing by a factor of 2 for each 2 °C change in temperature. At low wavevectors, the measured relaxations are diffusive with relaxation times that change by a factor of 2 for each 8 °C change in temperature.« less
Phase transition in 2-d system of quadrupoles on square lattice with anisotropic field
NASA Astrophysics Data System (ADS)
Sallabi, A. K.; Alkhttab, M.
2014-12-01
Monte Carlo method is used to study a simple model of two-dimensional interacting quadrupoles on ionic square lattice with anisotropic strength provided by the ionic lattice. Order parameter, susceptibility and correlation function data, show that this system form an ordered structure with p(2×1) symmetry at low temperature. The p(2×1) structure undergoes an order-disorder phase transition into disordered (1×1) phase at 8.3K. The two-point correlation function show exponential dependence on distance both above and below the transition temperature. At Tc the two-point correlation function shows a power law dependence on distance, e.g. C(r) ~ 1η. The value of the exponent η at Tc shows small deviation from the Ising value and indicates that this system falls into the same universality class as the XY model with cubic anisotropy. This model can be applied to prototypical quadrupoles physisorbed systems as N2 on NaCl(100).
Gaudin; Boucher; Petricek; Taulelle; Evain
2000-06-01
The crystal structures of two of the three polymorphic forms of the Cu7PSe6 argyrodite compound are determined by means of single-crystal X-ray diffraction. In the high-temperature form, at 353 K, i.e. 33 K above the first phase transition, gamma-Cu7PSe6 crystallizes in cubic symmetry, space group F43m. The full-matrix least-squares refinement of the structure leads to the residual factors R = 0.0201 and wR = 0.0245 for 31 parameters and 300 observed independent reflections. In the intermediate form, at room temperature, beta-Cu7PSe6 crystallizes again in cubic symmetry, but with space group P2(1)3. Taking into account a merohedric twinning, the refinement of the beta-Cu7PSe6 structure leads to the residual factors R = 0.0297 and wR = 0.0317 for 70 parameters and 874 observed, independent reflections. The combination of a Gram-Charlier development of the Debye-Waller factor and a split model for copper cations reveals the possible diffusion paths of the d10 species in the gamma-Cu7PSe6 ionic conducting phase. The partial ordering of the Cu+ d10 element at the phase transition is found in concordance with the highest probability density sites of the high-temperature phase diffusion paths. A comparison between the two Cu7PSe6 and Ag7PSe6 analogues is carried out, stressing the different mobility of Cu+ and Ag+ and their relative stability in low-coordination chalcogenide environments.
Reconstructive structural phase transitions in dense Mg
NASA Astrophysics Data System (ADS)
Yao, Yansun; Klug, Dennis D.
2012-07-01
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.
Reconstructive structural phase transitions in dense Mg.
Yao, Yansun; Klug, Dennis D
2012-07-04
The question raised recently about whether the high-pressure phase transitions of Mg follow a hexagonal close-packed (hcp) → body centered cubic (bcc) or hcp → double hexagonal close-packed (dhcp) → bcc sequence at room temperature is examined by the use of first principles density functional methods. Enthalpy calculations show that the bcc structure replaces the hcp structure to become the most stable structure near 48 GPa, whereas the dhcp structure is never the most stable structure in the pressure range of interest. The characterized phase-transition mechanisms indicate that the hcp → dhcp transition is also associated with a higher enthalpy barrier. At room temperature, the structural sequence hcp → bcc is therefore more energetically favorable for Mg. The same conclusion is also reached from the simulations of the phase transitions using metadynamics methods. At room temperature, the metadynamics simulations predict the onset of a hcp → bcc transition at 40 GPa and the transition becomes more prominent upon further compression. At high temperatures, the metadynamics simulations reveal a structural fluctuation among the hcp, dhcp, and bcc structures at 15 GPa. With increasing pressure, the structural evolution at high temperatures becomes more unambiguous and eventually settles to a bcc structure once sufficient pressure is applied.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Alabri, Nawf Saif; Wright, Christopher J.
The interest in Pr2NiO4 (PNO) electrode stems from the necessity to develop active and stable oxygen electrodes (1-6) for solid oxide fuel cells (SOFCs) (7-9). PNO is known for its highly active nature (7,8,10), originating from its superior oxygen ion diffusion, surface exchange coefficient (2,7,9-11) and structural flexibility over a wide temperature region (from 500 to 900oC) (3,12). PNO electrode, however, does undergo structural evolution to form a higher order phase (Pr3Ni2O7) and Pr6O11 (PrOx) (8). The structural change has been a major concern because it possibly links with the performance degradation over long-term operation (7,8) Conventional x-ray diffraction (XRD)more » has been extensively used to investigate the structural evolution in nickelates in the form of powders or planar electrodes (8,10). This method has two major limitations due to its low flux and low resolution: (1) it might overlook the presence of additional phases in the system, which is especially true for praseodymium nickelates where XRD diffraction patterns of higher order phase(s) (e.g. Pr3Ni2O7) may overlap with the parent PNO phase, making quantification challenging (8); and (2) the quantification of phase evolution in electrochemically operated PNO electrode may show major structural change with almost 100% of the parent phase transition from the conventional XRD analysis, while the transmission electron microscopy (TEM) studies clearly show the regions of preserved PNO phase (7).« less
In situ Studies of Phase Evolution in (Pr1-xNdx)2NiO4 Electrodes with Various Interlayer Chemistries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dogdibegovic, Emir; Alabri, Nawf S.; Wright, Christopher J.
2017-07-24
The interest in Pr2NiO4 (PNO) electrode stems from the necessity to develop active and stable oxygen electrodes (1-6) for solid oxide fuel cells (SOFCs) (7-9). PNO is known for its highly active nature (7,8,10), originating from its superior oxygen ion diffusion, surface exchange coefficient (2,7,9-11) and structural flexibility over a wide temperature region (from 500 to 900oC) (3,12). PNO electrode, however, does undergo structural evolution to form a higher order phase (Pr3Ni2O7) and Pr6O11 (PrOx) (8). The structural change has been a major concern because it possibly links with the performance degradation over long-term operation (7,8) Conventional x-ray diffraction (XRD)more » has been extensively used to investigate the structural evolution in nickelates in the form of powders or planar electrodes (8,10). This method has two major limitations due to its low flux and low resolution: (1) it might overlook the presence of additional phases in the system, which is especially true for praseodymium nickelates where XRD diffraction patterns of higher order phase(s) (e.g. Pr3Ni2O7) may overlap with the parent PNO phase, making quantification challenging (8); and (2) the quantification of phase evolution in electrochemically operated PNO electrode may show major structural change with almost 100% of the parent phase transition from the conventional XRD analysis, while the transmission electron microscopy (TEM) studies clearly show the regions of preserved PNO phase (7).« less
Kaatz, Forrest H; Bultheel, Adhemar
2018-08-24
Au-Cu and Pt-M (M = Fe, Co, and Ni) nanocluster alloys are currently being investigated world-wide by many researchers for their interesting catalytic and nanophase properties. The low temperature behavior of the phase diagrams is not well understood for alloys with nanometer sizes and shapes. We consider two models for low temperature ordering in the phase diagrams of Au-Cu and Pt-M nanocluster alloys. These models are valid for sizes ∼5 nm and approach bulk values for sizes ∼20 nm. We study the phase transitions in nanoclusters with cubic, octahedral, and cuboctahedral shapes, covering the compositions of interest. These models are based on studying the melting temperatures in nanoclusters using the regular solution, mixing model for alloys. From our data, experiments on nanocubes about 5 nm in size, of stoichiometric AuCu and PtM composition, could help differentiate between the models. Dispersion data shows that for the three shapes considered, octahedra have the highest percentage of surface atoms for the same relative diameter. We summarize the effects of structural ordering on the catalytic activity and suggest a method to avoid sintering during annealing of Pt-M alloys.