NASA Astrophysics Data System (ADS)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan; Ran, Sheng; Valentí, Roser; Canfield, Paul C.
2016-01-01
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe2As2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ˜25 % on cooling from room temperature to ˜100 K in the tetragonal phase and is only weakly temperature dependent at low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe2As2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Furukawa, Yuji; Roy, Beas; Ran, Sheng
2014-03-20
The static and the dynamic spin correlations in the low-temperature collapsed tetragonal and the high-temperature tetragonal phase in CaFe2As2 have been investigated by As75 nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements. Through the temperature (T) dependence of the nuclear spin lattice relaxation rates (1/T1) and the Knight shifts, although stripe-type antiferromagnetic (AFM) spin correlations are realized in the high-temperature tetragonal phase, no trace of the AFM spin correlations can be found in the nonsuperconducting, low-temperature, collapsed tetragonal (cT) phase. Given that there is no magnetic broadening in As75 NMR spectra, together with the T-independent behavior of magneticmore » susceptibility χ and the T dependence of 1/T1Tχ, we conclude that Fe spin correlations are completely quenched statically and dynamically in the nonsuperconducting cT phase in CaFe2As2.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bud'ko, Sergey L.; Ma, Xiaoming; Tomić, Milan
Temperature dependent measurements of 57Fe Mössbauer spectra on CaFe 2As 2 single crystals in the tetragonal and collapsed tetragonal phases are reported. Clear features in the temperature dependencies of the isomer shift, relative spectra area, and quadrupole splitting are observed at the transition from the tetragonal to the collapsed tetragonal phase. From the temperature dependent isomer shift and spectral area data, an average stiffening of the phonon modes in the collapsed tetragonal phase is inferred. The quadrupole splitting increases by ~25% on cooling from room temperature to ~100 K in the tetragonal phase and is only weakly temperature dependent atmore » low temperatures in the collapsed tetragonal phase, in agreement with the anisotropic thermal expansion in this material. In order to gain microscopic insight about these measurements, we perform ab initio density functional theory calculations of the electric field gradient and the electron density of CaFe 2As 2 in both phases. By comparing the experimental data with the calculations we are able to fully characterize the crystal structure of the samples in the collapsed-tetragonal phase through determination of the As z coordinate. Furthermore, based on the obtained temperature dependent structural data we are able to propose charge saturation of the Fe-As bond region as the mechanism behind the stabilization of the collapsed-tetragonal phase at ambient pressure.« less
NASA Astrophysics Data System (ADS)
Morozov, M. I.; Kungl, H.; Hoffmann, M. J.
2011-03-01
Li-, Ta-, and Mn-modified (K,Na)NbO3 ceramics with various compositional homogeneity have been prepared by conventional and precursor methods. The homogeneous ceramic has demonstrated a sharper peak in temperature dependent piezoelectric response. The dielectric and piezoelectric properties of the homogeneous ceramics have been characterized at the experimental subcoercive electric fields near the temperature of the orthorhombic-tetragonal phase transition with respect to poling in both phases. Poling in the tetragonal phase is shown to enhance the low-signal dielectric and piezoelectric properties in the orthorhombic phase.
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Control of magnetic, nonmagnetic, and superconducting states in annealed Ca(Fe 1–xCo x)₂As₂
Ran, S.; Bud'ko, S. L.; Straszheim, W. E.; ...
2012-06-22
We have grown single-crystal samples of Co substituted CaFe₂As₂ using an FeAs flux and systematically studied the effects of annealing/quenching temperature on the physical properties of these samples. Whereas the as-grown samples (quenched from 960°C) all enter the collapsed tetragonal phase upon cooling, annealing/quenching temperatures between 350 and 800°C can be used to tune the system to low-temperature antiferromagnetic/orthorhomic or superconducting states as well. The progression of the transition temperature versus annealing/quenching temperature (T-T anneal) phase diagrams with increasing Co concentration shows that, by substituting Co, the antiferromagnetic/orthorhombic and the collapsed tetragonal phase lines are separated and bulk superconductivity ismore » revealed. We established a 3D phase diagram with Co concentration and annealing/quenching temperature as two independent control parameters. At ambient pressure, for modest x and T anneal values, the Ca(Fe₁₋ xCox)₂As₂ system offers ready access to the salient low-temperature states associated with Fe-based superconductors: antiferromagnetic/orthorhombic, superconducting, and nonmagnetic/collapsed tetragonal.« less
Zhao, Jinggeng; Liu, Haozhe; Ehm, Lars; Dong, Dawei; Chen, Zhiqiang; Liu, Qingqing; Hu, Wanzheng; Wang, Nanlin; Jin, Changqing
2013-07-15
High-pressure angle-dispersive X-ray diffraction experiments on iron-based superconductor Ce(O(0.84)F(0.16))FeAs were performed up to 54.9 GPa at room temperature. A tetragonal to tetragonal isostructural phase transition starts at about 13.9 GPa, and a new high-pressure phase has been found above 33.8 GPa. At pressures above 19.9 GPa, Ce(O(0.84)F(0.16))FeAs completely transforms to a high-pressure tetragonal phase, which remains in the same tetragonal structure with a larger a-axis and smaller c-axis than those of the low-pressure tetragonal phase. The structure analysis shows a discontinuity in the pressure dependences of the Fe-As and Ce-(O, F) bond distances, as well as the As-Fe-As and Ce-(O, F)-Ce bond angles in the transition region, which correlates with the change in T(c) of this compound upon compression. The isostructural phase transition in Ce(O(0.84)F(0.16))FeAs leads to a drastic drop in the superconducting transition temperature T(c) and restricts the superconductivity at low temperature. For the 1111-type iron-based superconductors, the structure evolution and following superconductivity changes under compression are related to the radius of lanthanide cations in the charge reservoir layer.
Whitfield, P. S.; Herron, N.; Guise, W. E.; ...
2016-10-21
Here, we examine the crystal structures and structural phase transitions of the deuterated, partially deuterated and hydrogenous organic-inorganic hybrid perovskite methyl ammonium lead iodide (MAPbI 3) using time-of-flight neutron and synchrotron X-ray powder diffraction. Near 330 K the high temperature cubic phases transformed to a body-centered tetragonal phase. The variation of the order parameter Q for this transition scaled with temperature T as Q (T c-T) , where T c is the critical temperature and the exponent was close to , as predicted for a tricritical phase transition. We also observed coexistence of the cubic and tetragonal phases over amore » range of temperature in all cases, demonstrating that the phase transition was in fact first-order, although still very close to tricritical. Upon cooling further, all the tetragonal phases transformed into a low temperature orthorhombic phase around 160 K, again via a first-order phase transition. Finally, based upon these results, we discuss the impact of the structural phase transitions upon photovoltaic performance of MAPbI 3 based solar cells.« less
Effect of pressure on the tetragonal distortion in TiH2: a first-principles study
NASA Astrophysics Data System (ADS)
de Coss, R.; Quijano, R.; Singh, D. J.
2009-03-01
The transition metal dihydride TiH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Early electronic band structure calculations have shown that TiH2 in the cubic phase display a nearly flat double degenerated band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. Nevertheless, recently we have show that the instability of fcc-TiH2 is likely to be related with a van Hove singularity. In the present work, we have performed ab-initio calculations of the electronic structure and the tetragonal distortion for TiH2 under pressure (0-30 GPa). We found that the fcc-fct energy barrier and the tetragonal distortion increases with pressure. The evolution of the tetragonal distortion is analyzed in terms of the electronic band structure. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 49985.
Phase field modeling of tetragonal to monoclinic phase transformation in zirconia
NASA Astrophysics Data System (ADS)
Mamivand, Mahmood
Zirconia based ceramics are strong, hard, inert, and smooth, with low thermal conductivity and good biocompatibility. Such properties made zirconia ceramics an ideal material for different applications form thermal barrier coatings (TBCs) to biomedicine applications like femoral implants and dental bridges. However, this unusual versatility of excellent properties would be mediated by the metastable tetragonal (or cubic) transformation to the stable monoclinic phase after a certain exposure at service temperatures. This transformation from tetragonal to monoclinic, known as LTD (low temperature degradation) in biomedical application, proceeds by propagation of martensite, which corresponds to transformation twinning. As such, tetragonal to monoclinic transformation is highly sensitive to mechanical and chemomechanical stresses. It is known in fact that this transformation is the source of the fracture toughening in stabilized zirconia as it occurs at the stress concentration regions ahead of the crack tip. This dissertation is an attempt to provide a kinetic-based model for tetragonal to monoclinic transformation in zirconia. We used the phase field technique to capture the temporal and spatial evolution of monoclinic phase. In addition to morphological patterns, we were able to calculate the developed internal stresses during tetragonal to monoclinic transformation. The model was started form the two dimensional single crystal then was expanded to the two dimensional polycrystalline and finally to the three dimensional single crystal. The model is able to predict the most physical properties associated with tetragonal to monoclinic transformation in zirconia including: morphological patterns, transformation toughening, shape memory effect, pseudoelasticity, surface uplift, and variants impingement. The model was benched marked with several experimental works. The good agreements between simulation results and experimental data, make the model a reliable tool for predicting tetragonal to monoclinic transformation in the cases we lack experimental observations.
NASA Astrophysics Data System (ADS)
Han, Dan-Dan; Lu, Da-Yong; Meng, Fan-Ling; Yu, Xin-Yu
2018-03-01
Temperature-dependent electron paramagnetic resonance (EPR) study was employed to detect oxygen vacancy defects in the tetragonal Ba(Ti1-xCrx)O3 (x = 5%) ceramic for the first time. In the rhombohedral phase below -150 °C, an EPR signal at g = 1.955 appeared in the insulating Ba(Ti1-xCrx)O3 (x = 5%) ceramic with an electrical resistivity of 108 Ω cm and was assigned to ionized oxygen vacancy defects. Ba(Ti1-xCrx)O3 ceramics exhibited a tetragonal structure except Ba(Ti1-xCrx)O3 (x = 10%) with a tetragonal-hexagonal mixed phase and a first-order phase transition dielectric behavior (ε‧m > 11,000). Mixed valence Cr ions could coexist in ceramics, form CrTi‧-VOrad rad or CrTirad-TiTi‧ defect complexes and make no contribution to a dielectric peak shift towards low temperature.
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter O.; Tsoi, Georgiy M.; Vohra, Yogesh K.
In this study, high pressure low temperature electrical resistance measurements were carried out on a series of 122 iron-based superconductors using a designer diamond anvil cell. These studies were complemented by image plate x-ray diffraction measurements under high pressures and low temperatures at beamline 16-BM-D, HPCAT, Advanced Photon Source. A common feature of the 1-2-2 iron-based materials is the observation of anomalous compressibility effects under pressure and a Tetragonal (T) to Collapsed Tetragonal (CT) phase transition under high pressures. Specific studies on antiferromagnetic spin-density-wave Ba 0.5Sr 0.5Fe 2As 2 and Ba(Fe 0.9Ru 0.1) 2As 2 samples are presented to 10more » K and 41 GPa. The collapsed tetragonal phase was observed at a pressure of 14 GPa in Ba 0.5Sr 0.5Fe 2As 2 at ambient temperature. The highest superconducting transition temperature in Ba 0.5Sr 0.5Fe 2As 2 was observed to be at 32 K at a pressure of 4.7 GPa. The superconductivity was observed to be suppressed on transformation to the CT phase in 122 materials.« less
NASA Astrophysics Data System (ADS)
Singh, Anar; Kaifeng, Dong; Chen, Jing-Sheng
2018-03-01
Epitaxial BiFeO3 thin films of 130nm were deposited by pulsed laser deposition (PLD) technique on La0.67Sr0.33MnO3 buffered SrTiO3 (001) substrate at various temperatures under different ambient oxygen pressures. Reciprocal space mapping reveals that, with decreasing temperature and oxygen pressure, the broadly reported monoclinic phase (MA) of BiFeO3 thin film initially transforms to a tetragonal phase (T1) with c/a =1.05 (1) in a narrow girth of deposition condition and then to a super-tetragonal phase (T2) with giant c/a = 1.24 (1), as confirmed by reciprocal space mapping using high resolution x-ray diffraction. The surface morphology of the films reveals the island growth of the BiFeO3 films deposited at low temperatures. We propose that the transformation from monoclinic to the super-tetragonal phase is essentially due to the manifestation of excess local strain as a result of the island growth. This study offers a recipe to grow the super-tetragonal phase of BiFeO3, with giant c/a =1.24 (1) which exhibits exceptionally large ferroelectric polarization, on ferromagnetic layer La0.67Sr0.33MnO3. This phase of BiFeO3 can be utilized for the ferroelectric control of magnetism at the interface of BiFeO3 and La0.67Sr0.33MnO3.
Electronic structure and electron-phonon coupling in TiH$$_2$$
Shanavas, Kavungal Veedu; Lindsay, Lucas R.; Parker, David S.
2016-06-15
Calculations using first principles methods and strong coupling theory are carried out to understand the electronic structure and superconductivity in cubic and tetragonal TiHmore » $$_2$$. A large electronic density of states at the Fermi level in the cubic phase arises from Ti-$$t_{2g}$$ states and leads to a structural instability against tetragonal distortion at low temperatures. However, constraining the in-plane lattice constants diminishes the energy gain associated with the tetragonal distortion, allowing the cubic phase to be stable at low temperatures. Furthermore, calculated phonon dispersions show decoupled acoustic and optic modes arising from Ti and H vibrations, respectively and frequencies of optic modes to be rather high. The cubic phase has a large electron-phonon coupling parameter $$\\lambda$$ and critical temperature of several K. Contribution of the hydrogen sublattice to $$\\lambda$$ is found to be small in this material, which we understand from strong coupling theory to be due to the small H-$s$ DOS at the Fermi level and high energy of hydrogen modes at the tetrahedral sites.« less
NASA Astrophysics Data System (ADS)
Starikov, S. V.; Kolotova, L. N.; Kuksin, A. Yu.; Smirnova, D. E.; Tseplyaev, V. I.
2018-02-01
We studied structure and thermodynamic properties of cubic and tetragonal phases of pure uranium and U-Mo alloys using atomistic simulations: molecular dynamics and density functional theory. The main attention was paid to the metastable γ0 -phase that is formed in U-Mo alloys at low temperature. Structure of γ0 -phase is similar to body-centered tetragonal (bct) lattice with displacement of a central atom in the basic cell along [ 001 ] direction. Such displacements have opposite orientations for part of the neighbouring basic cells. In this case, such ordering of the displacements can be designated as antiferro-displacement. Formation of such complex structure may be interpreted through forming of short U-U bonds. At heating, the tetragonal structure transforms into cubic γs -phase, still showing ordering of central atom displacements. With rise in temperature, γs -phase transforms to γ-phase with a quasi body-centered cubic (q-bcc) lattice. The local positions of uranium atoms in γ-phase correspond to γs -phase, however, orientations of the central atom displacements become disordered. Transition from γ0 to γ can be considered as antiferro-to paraelastic transition of order-disorder type. This approach to the structure description of uranium alloy allows to explain a number of unusual features found in the experiments: anisotropy of lattice at low temperature; remarkably high self-diffusion mobility in γ-phase; decreasing of electrical resistivity at heating for some alloys. In addition, important part of this work is the development of new interatomic potential for U-Mo system made with taking into account details of studied structures.
Order-disorder phenomena in the low-temperature phase of BaTiO3
NASA Astrophysics Data System (ADS)
Völkel, G.; Müller, K. A.
2007-09-01
X - and Q -band electron paramagnetic resonance measurements are reported on Mn4+ -doped BaTiO3 single crystals in the rhombohedral low-temperature phase. The Mn4+ probe ion is statistically substitute for the isovalent Ti4+ ion. The critical line broadening observed when approaching the phase transition to the orthorhombic phase demonstrates the presence of order-disorder processes within the off-center Ti subsystem and the formation of dynamic precursor clusters with a structure compatible with one of the orthorhombic phase. From the data it is concluded that BaTiO3 shows a special type of phase transition where displacive and order-disorder character are not only present at the cubic-tetragonal transition, but also at the orthorhombic-rhombohedral transition at low temperatures. The disappearance of the Mn4+ spectrum in the orthorhombic, tetragonal, and cubic phases can be interpreted as the consequence of the strong line broadening caused by changes of the instantaneous off-center positions in time around the averaged off-center position along a body diagonal.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
NASA Astrophysics Data System (ADS)
Gómez, A.; Villanueva, R.; Vie, D.; Murcia-Mascaros, S.; Martínez, E.; Beltrán, A.; Sapiña, F.; Vicent, M.; Sánchez, E.
2013-01-01
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and the nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures.
Room temperature metastable monoclinic phase in BaTiO3 crystals
NASA Astrophysics Data System (ADS)
Lummen, Tom; Wang, Jianjun; Holt, Martin; Kumar, Amit; Vlahos, Eftihia; Denev, Sava; Chen, Long-Qing; Gopalan, Venkatraman
2011-03-01
Low-symmetry monoclinic phases in ferroelectric materials are of considerable interest, due to their associated enhanced electromechanical coupling. Such phases have been found in Pb-based perovskite solid solutions such as lead zirconate titanate (PZT), where they form structural bridges between the rhombohedral and tetragonal ground states in compositional space. In this work, we directly image such a monoclinic phase in BaTi O3 crystals at room-temperature, using optical second harmonic generation, Raman, and X-ray microscopic imaging techniques. Phase-field modeling indicates that ferroelectric domain microstructures in BaTi O3 induce local inhomogeneous stresses in the crystals, which can effectively trap the transient intermediate monoclinic structure that occurs across the thermal orthorhombic-tetragonal phase boundary. The induced metastable monoclinic domains are ferroelectrically soft, being easily moved by electric fields as low as 0.5 kV cm-1 . Stabilizing such intermediate low-symmetry phases could very well lead to Pb-free materials with enhanced piezoelectric properties.
Metallic behavior of lanthanum disilicide
NASA Technical Reports Server (NTRS)
Long, Robert G.; Bost, M. C.; Mahan, John E.
1988-01-01
Polycrystalline thin films of LaSi2 were prepared by reaction of sputter-deposited lanthanum layers with silicon wafers. Samples of the low-temperature tetragonal and the high-temperature orthorhombic phases were separately obtained. The room-temperature intrinsic resistivities were 24 and 57 microohm cm for the low- and high-temperature structures, respectively. Although lanthanum disilicide had been previously reported to be a semiconductor, classical metallic behavior was found for both phases.
Room Temperature Monoclinic Phase in BaTiO3 Single Crystals
NASA Astrophysics Data System (ADS)
Denev, Sava; Kumar, Amit; Barnes, Andrew; Vlahos, Eftihia; Shepard, Gabriella; Gopalan, Venkatraman
2010-03-01
BaTiO3 is a well studied ferroelectric material for the last half century. It is well known to show phase transitions to tetragonal, orthorhombic and rhombohedral phases upon cooling. Yet, some old and some recent studies have argued that all these phases co-exist with a second phase with monoclinic distortion. Using optical second harmonic generation (SHG) at room temperature we directly present evidence for such monoclininc phase co-existing with tetragonal phase at room temperature. We observe domains with the expected tetragonal symmetry exhibiting 90^o and 180^o domain walls. However, at points of higher stress at the tips of the interpenetrating tetragonal domains we observe a well pronounced metastable ``staircase pattern'' with a micron-scale fine structure. Polarization studies show that this phase can be explained only by monoclinic symmetry. This phase is very sensitive to external perturbations such as temperature and fields, hence stabilizing this phase at room temperature could lead to large properties' tunability.
NASA Astrophysics Data System (ADS)
Chia, Elbert E. M.; La-O-Vorakiat, Chan; Kadro, Jeannette; Salim, Teddy; Zhao, Daming; Ahmed, Towfiq; Lam, Yeng Ming; Zhu, Jian-Xin; Marcus, Rudolph; Michel-Beyerle, Maria-Elisabeth
Using terahertz time-domain spectroscopy (THz-TDS), we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH3NH3PbI3 thin film across the terahertz (0.5-3 THz) and temperature (20-300 K) ranges. These modes are related to the vibration of the Pb-I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we analyze the critical behavior of this phase transition. King Mongkut's University of Technology Thonburi (Grant No. SCI58-003), Singapore MOE Tier 1 (RG13/12, RG123/14), ONR, ARO, NTU Biophysics Center, LANL LDRD, LANL CINT.
Influence of Pressure on Physical Property of Ammonia Borane and its Re-hydrogenation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Jiuhua
The project systematically studied the high pressure behavior of ammonia borane and its derivative lithium amidoborane. Phase transitions in these materials are investigated in the pressure range up to 20 GPa and temperature range from 80 K to 400K. A number of new phase transitions are discovered in this pressure and temperature range including a second order transformation at 5 GPa and a first order transformation at 12 GPa at room temperature, and four new transitions at high pressure and low temperatures. The Clapeyron slopes for both pressure-induce tetragonal (I4mm) phase to orthorhombic (Cmc21) phase and temperature-induce tetragonal (I4mm) phasemore » to orthorhombic (Pmn21) phase are determined to be positive, indicating these phase transitions are exothermic. This result demonstrates that the high pressure orthorhombic phase of ammonia borane has lower enthalpy than that of tetragonal phase at ambient conditions. If we assume decomposition from the orthorhombic phase yields the same products as that from the tetragonal phase, the decomposition of the orthorhombic phase will be less exothermic. Therefore rehydrogenation from the decomposed product into the orthorhombic phase at high pressure may become easier. The project also studied the influences of nanoconfinement on the phase transitions. Comparative study using Raman spectroscopy indicates that the temperature induced I4mm to Pmn21 transition is suppressed from 217 K to 195 K when the sample is confined in SBA15 (7-9 nm pore size). When the pore size is reduced from 7-9 nm to 3-4 nm, this transition is totally suppressed in the temperature down to 80 K. A similar influence of the nanoconfiement on pressure induced phase transitions is also observed using Raman spectroscopy. The phase boundary between the I4mm phase and high pressure Cmc21 phase at ambient temperature shifts from 0.9 GPa to 0.5 GPa; and that between the Cmc21 phase and higher pressure P21 phase shifts from 10.2 GPa to 9.7 GPa.« less
Photo-induced Low Temperature Structural Transition in the "114" YbaFe 4O 7 oxide
Duffort, V.; Caignaert, Vincent; Pralong, V.; ...
2013-11-11
Synchrotron irradiation of the oxide YBaFe 4O 7.0 below 190 K converts the low temperature monoclinic structure to a higher symmetry tetragonal form analogous to the room temperature structure. This photo-induced metastable tetragonal form is stable even in the absence of irradiation over the range 4-60 K, however, above 60 K the photo-transition is reversible. These structural phenomena are correlated to the magnetic behaviour of this system, suggesting possible spin-lattice coupling. Lastly, a scenario explaining the low temperature photo-induced transition is proposed, based on the different distributions of the valence electrons in the iron sub-lattice of the monoclinic and tetragonalmore » phases.« less
La-o-vorakiat, Chan; Xia, Huanxin; Kadro, Jeannette; ...
2015-12-03
Here, we study the temperature-dependent phonon modes of the organometallic lead iodide perovskite CH 3NH 3PbI 3 thin film across the terahertz (0.5–3 THz) and temperature (20–300 K) ranges. These modes are related to the vibration of the Pb–I bonds. We found that two phonon modes in the tetragonal phase at room temperature split into four modes in the low-temperature orthorhombic phase. By use of the Lorentz model fitting, we also analyze the critical behavior of this phase transition. The carrier mobility values calculated from the low-temperature phonon mode frequencies, via two theoretical approaches, are found to agree reasonably withmore » the experimental value (~2000 cm 2 V –1 s –1) from a previous time-resolved THz spectroscopy work. Thus, we have established a possible link between terahertz phonon modes and the transport properties of perovskite-based solar cells.« less
NASA Astrophysics Data System (ADS)
Francillon, Wesley
This dissertation is an investigation of materials and processed under consideration for next generation thermal structural oxides with potential applications as thermal barrier coatings; wherein, high temperature stability and mechanical properties affect durability. Two notable next generation materials systems under investigation are pyrochlore and co-doped zirconia oxides. The motivation for this work is based on current limitations of the currently used thermal barrier material of yttria stabilized zirconia (YSZ) deposited by the plasma spray processes. The rapid quenching associated with the plasma spray process, results in a metastable structure that is a non-transformable tetragonal structure in the yttria partially stabilized zirconia system rather than the equilibrium anticipated two phase mixture of cubic and monoclinic phases. It has been shown that this metastable structure offers enhanced toughness and thus durability during thermomechanical cycling from the operating temperatures in excess of 1000C to ambient. However, the metastable oxides are susceptible to partitioning at temperatures greater than 1200C, thus resulting in a transformation of the tetragonal phase oxides. Transformations of the tetragonal prime phase into the parent cubic and tetragonal prime phase result in coating degradation. Several of the emerging oxides are based on rare earth additions to zirconia. However, there is limited information of the high temperature stability of these oxide coatings and more notably these compositions exhibit limited toughness for durable performance. A potential ternary composition based on the YSZ system that offers the ability to tailor the phase structure is based YO1.5-TiO2 -ZrO2. The ternary of YO1.5-TiO2-ZrO 2 has the current TBC composition of seven molar percent yttria stabilized zirconia, pyrochlore phase oxide and zirconia doped with yttria and titania additions (Ti-YSZ). The Ti-YSZ phase field is of interest because at equilibrium it is a single tetragonal phase. Thus, compositions are of single phase tetragonal phase, theoretically, should not undergo high temperature partitioning. Single Tetragonal phase oxides of Ti-YSZ also offer the possibility of enhanced toughness and higher temperature stability akin to those observed in yttria partially stabilized zirconia. Many pyrochlore oxides are under review because they have shown to have lower thermal conductivity than YSZ oxides. This study focused on chemically synthesizing homogeneous starting material compositions in a metastable state (preferably amorphous), following its evolution according to the phase hierarchy under conditions of kinetic constraints. The current equilibrium diagram of YO1.5-TiO2-ZrO 2 is based on theoretical calculations. One of the contributions of this work is the redefined phase fields in YO1.5-TiO2-ZrO 2 based on our experimental results. Investigated compositions were based on tie lines of Y2-xTi2ZrxO7+x/2 and Y2Ti2-yZryO7 representing substitution of Zr4+ for Y3+ and Zr4+ for Ti4+ respectively. More notably, we observed extended metastable phases in pyrochlore and fluorite oxides at low temperature. The significance of this result is that it offers a larger compositional range for investing pyrochlore oxides with associated high temperature phase stability for TBC applications. In tetragonal oxides, our results showed that Ti-YSZ results have slower partitioning kinetics in comparison to YSZ at high temperature. This study also emphasized the deposition of advanced ceramic coatings by plasma spray for tetragonal and pyrochlore systems, compositionally complex functional oxides that may potentially have lower thermal conductivity values compared to current YSZ oxides. Next generation thermal barrier coatings require powders with high chemical purity, chemical homogeneity, controlled particle size/shape and pertinent phase state. Thermal spray offers an avenue to create novel materials and deposits directly from the precursor and compositionally controlled powder feedstock. This study contributed to investigating an unexplored field that offers a variety of opportunities in materials synthesis that would not be possible by conventional methods. Understanding processing-microstructure-property correlations is of considerable importance in thermal spray of functional oxide materials. This thesis demonstrated by radio-frequency thermal spray that the complex pyrochlore oxide Y 2Ti2O7 could be deposited by directly injecting molecularly mixed precursors to form oxide coatings. Structural analysis revealed the metastable fluorite phase; however, with thermal treatments at relatively low temperature of 700°C the pyrochlore phase was obtained. For Ti-YSZ coatings, the tetragonal phase oxides were obtained with unique microstructures, however, the tetragonal prime destabilized at 1200°C. This dissertation explored novel oxide compositions through detailed structural analysis. The approach presented a comprehensive and integrated investigation as it pertains to phase evolution of oxides in powder feedstock to coating characteristics (phase/properties).
Physical properties of V 1-xTi xO₂ (0 < x < 0.187) single crystals
Kong, Tai; Masters, Morgan W.; Bud’ko, Sergey L.; ...
2015-02-13
Free standing, low strain, single crystals of pure and titanium doped VO₂ were grown out of an excess of V ₂O₅ using high temperature solution growth techniques. At T MI ~ 340 K, pure VO₂ exhibits a clear first-order phase transition from a high-temperature paramagnetic tetragonal phase (R) to a low-temperature non-magnetic monoclinic phase (M1). With Ti doping, another monoclinic phase (M2) emerges between the R and M1 phases. The phase transition temperature between R and M2 increases with increasing Ti doping while the transition temperature between M2 and M1 decreases.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manoun, Bouchaib, E-mail: manounb@gmail.com; Tamraoui, Y.; Lazor, P.
2013-12-23
Double-perovskite oxide Sr{sub 2}MgTeO{sub 6} has been synthetized, and its crystal structure was probed by the technique of X-ray diffraction at room temperature. The structure is monoclinic, space group I2/m. Temperature-induced phase transitions in this compound were investigated by Raman spectroscopy up to 550 °C. Two low-wavenumber modes corresponding to external lattice vibrations merge at temperature of around 100 °C, indicating a phase transition from the monoclinic (I2/m) to the tetragonal (I4/m) structure. At 300 °C, changes in the slopes of temperature dependencies of external and O–Te–O bending modes are detected and interpreted as a second phase transition from the tetragonal (I4/m) tomore » the cubic (Fm-3m) structure.« less
S. -H. Baek; Gu, G. D.; Utz, Y.; ...
2015-10-26
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
S. -H. Baek; Gu, G. D.; Utz, Y.
We report 139La nuclear magnetic resonance studies performed on a La 1.875Ba 0.125CuO 4 single crystal. The data show that the structural phase transitions (high-temperature tetragonal → low-temperature orthorhombic → low-temperature tetragonal phase) are of the displacive type in this material. The 139La spin-lattice relaxation rate T –1 1 sharply upturns at the charge-ordering temperature T CO = 54 K, indicating that charge order triggers the slowing down of spin fluctuations. Detailed temperature and field dependencies of the T –1 1 below the spin-ordering temperature T SO=40 K reveal the development of enhanced spin fluctuations in the spin-ordered state formore » H ∥ [001], which are completely suppressed for large fields along the CuO 2 planes. Lastly, our results shed light on the unusual spin fluctuations in the charge and spin stripe ordered lanthanum cuprates.« less
NASA Astrophysics Data System (ADS)
Salje, Ekhard K. H.; Carpenter, Michael A.; Nataf, Guillaume F.; Picht, Gunnar; Webber, Kyle; Weerasinghe, Jeevaka; Lisenkov, S.; Bellaiche, L.
2013-01-01
The dynamic properties of elastic domain walls in BaTiO3 were investigated using resonance ultrasonic spectroscopy (RUS). The sequence of phase transitions is characterized by minima in the temperature dependence of RUS resonance frequencies and changes in Q factors (resonance damping). Damping is related to the friction of mobile twin boundaries (90° ferroelectric walls) and distorted polar nanoregions (PNRs) in the cubic phase. Damping is largest in the tetragonal phase of ceramic materials but very low in single crystals. Damping is also small in the low-temperature phases of the ceramic sample and slightly increases with decreasing temperature in the single crystal. The phase angle between the real and imaginary part of the dynamic response function changes drastically in the cubic and tetragonal phases and remains constant in the orthorhombic phase. Other phases show a moderate dependence of the phase angle on temperature showing systematic changes of twin microstructures. Mobile twin boundaries (or sections of twin boundaries such as kinks inside twin walls) contribute strongly to the energy dissipation of the forced oscillation while the reduction in effective modulus due to relaxing twin domains is weak. Single crystals and ceramics show strong precursor softening in the cubic phase related to polar nanoregions (PNRs). The effective modulus decreases when the transition point of the cubic-tetragonal transformation is approached from above. The precursor softening follows temperature dependence very similar to recent results from Brillouin scattering. Between the Burns temperature (≈586 K) and Tc at 405 K, we found a good fit of the squared RUS frequency [˜Δ (C11-C12)] to a Vogel-Fulcher process with an activation energy of ˜0.2 eV. Finally, some first-principles-based effective Hamiltonian computations were carried out in BaTiO3 single domains to explain some of these observations in terms of the dynamics of the soft mode and central mode.
Low temperature molten-salt synthesis of nanocrystalline cubic Sr{sub 2}SbMnO{sub 6}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baral, Antara; Varma, K.B.R., E-mail: kbrvarma@mrc.iisc.ernet.i
2009-12-15
Sr{sub 2}SbMnO{sub 6} (SSM) powders were successfully synthesized at reasonably low temperatures via molten-salt synthesis (MSS) method using eutectic composition of 0.635 Li{sub 2}SO{sub 4}-0.365 Na{sub 2}SO{sub 4} (flux). High-temperature cubic phase SSM was stabilized at room temperature by calcining the as-synthesized powders at 900 deg. C/10 h. The phase formation and morphology of these powders were characterized via X-ray powder diffraction and scanning electron microscopy, respectively. The SSM phase formation associated with {approx}60 nm sized crystallites was also confirmed by transmission electron microscopy. The activation energy associated with the particle growth was found to be 95+-5 kJ mol{sup -1}.more » The dielectric constant of the tetragonal phase of the ceramic (fabricated using this cubic phase powder) with and without the flux (sulphates) has been monitored as a function of frequency (100 Hz-1 MHz) at room temperature. Internal barrier layer capacitance (IBLC) model was invoked to rationalize the dielectric properties. - Graphical abstract: The as synthesized powders of Sr{sub 2}SbMnO{sub 6} calcined at 900 deg. C/10 h yielded a cubic phase ({approx}60 nm sized crystallites). Centrosymmetric tetragonal (I4/mcm) phase was obtained by increasing the calcination temperature to 1000 deg. C. Display Omitted« less
NASA Astrophysics Data System (ADS)
Vlahos, E.; Kumar, A.; Denev, S.; Melville, A.; Adamo, C.; Ihlefeld, J. F.; Sheng, G.; Zeches, R. J.; Zhang, J. X.; He, Q.; Yang, C. H.; Erni, R.; Rossell, M. D.; J, A.; Hatt; Chu, Y.-H.; Wang, C. H.; Ederer, C.; Gopalan, V.; Chen, L. Q.; Schlom, D. G.; Spaldin, N. A.; Martin, L. W.; Ramesh, R.; Tenne, Dmitri
2010-03-01
We have shown that biaxially strained BiFeO3 thin films can undergo an isosymmetric phase transition from a rhombohedral-like to a tetragonal-like phase. This talk discusses the evolution of the tetragonal and the mixed phases in BiFeO3/YAlO3 thin films with varying film thickness using optical second harmonic generation (SHG) and Raman spectroscopy. 25nm, 75nm, and 225 nm thick films were studied; thinner films are dominated by the tetragonal phase, whereas thicker films exhibit both tetragonal and rhombohedral phases. The evolution of these phases as function of film thickness and temperature was experimentally determined.
The p- T phase diagram of KNbO 3 by a dielectric constant measurement
NASA Astrophysics Data System (ADS)
Kobayashi, Y.; Endo, S.; Deguchi, K.; Ming, L. C.; Zou, G.
2001-11-01
A dielectric constant measurement was carried out on perovskite-type ferroelectrics KNbO 3 over a wide range of temperature under high pressure. The temperature- and pressure-dependence of the dielectric constant clarified that all temperatures of the transitions from the ferroelectric rhombohedral to orthorhombic, to tetragonal and then to the paraelectric cubic phase, decrease with increasing pressure. These results indicate that the orthorhombic-tetragonal transition takes place at 8.5 GPa and the tetragonal-cubic transition at 11 GPa, at room temperature.
Revealing the hidden structural phases of FeRh
NASA Astrophysics Data System (ADS)
Kim, Jinwoong; Ramesh, R.; Kioussis, Nicholas
2016-11-01
Ab initio electronic structure calculations reveal that tetragonal distortion has a dramatic effect on the relative stability of the various magnetic structures (C-, A-, G-, A'-AFM, and FM) of FeRh giving rise to a wide range of novel stable/metastable structures and magnetic phase transitions between these states. We predict that the cubic G-AFM structure, which was believed thus far to be the ground state, is metastable and that the tetragonally expanded G-AFM is the stable structure. The low energy barrier separating these states suggests phase coexistence at room temperature. We propose an A'-AFM phase to be the global ground state among all magnetic phases which arises from the strain-induced tuning of the exchange interactions. The results elucidate the underlying mechanism for the recent experimental findings of electric-field control of magnetic phase transition driven via tetragonal strain. The magnetic phase transitions open interesting prospects for exploiting strain engineering for the next-generation memory devices.
NASA Astrophysics Data System (ADS)
Dul'kin, E.; Kojima, S.; Roth, M.
2012-04-01
Sr0.75Ba0.25Nb2O6 [100]-oriented uniaxial tungsten bronze relaxor crystals have been studied by means of dedicated acoustic emission during their thermal cycling in 150-300 K temperature range under dc electric field (E). A 1st order transition in a modulated incommensurate tetragonal phase has been successfully detected at Tmi = 198 K on heating and Tmi = 184 K on cooling, respectively. As field E enhances, a thermal hysteresis gradually narrows and vanishes in the critical point at Eth = 0.31 kV/cm, above which a phase transition becomes to 2nd order. The Tmi(E) dependence looks as a V-shape dip, not similar that previously has been looked as a smeared minimum between both the two polar and nonpolar tetragonal phases near Tm = 220 ÷ 230 K in the same crystals (Dul'kin et al., J Appl. Phys. 110, 044106 (2011)). Due to such a V-shape dip is characteristic for Pb-based multiaxial perovskite relaxor, a rhombohedral phase is waited to be induced by a field E in the critical point temperature range. The emergence of this rhombohedral phase as a crucial evidence of an orthorhombic phase presumably existing within the modulated incommensurate tetragonal phase in tungsten bronze SrxBa1-xNb2O6 relaxor is discussed.
Fe moments in the pressure-induced collapsed tetragonal phase of (Ca0.67Sr0.33) Fe2As2
NASA Astrophysics Data System (ADS)
Jeffries, Jason; Butch, Nicha; Bradley, Joseph; Xiao, Yuming; Chow, Paul; Saha, Shanta; Kirshenbaum, Kevin; Paglione, Johnpierre
2013-06-01
The tetragonal AEFe2As2 (AE =alkaline earth element) family of iron-based superconductors exhibits magnetic order at ambient pressure and low temperature. Under pressure, the magnetic order is suppressed, and an isostructural volume collapse is induced due to increased As-As bonding across the mirror plane of the structure. This collapsed tetragonal phase has been shown to support superconductivity under some conditions, and theoretical calculations suggest an unconventional origin. Theoretical calculations also reveal that enhanced As-As bonding and the magnitude of the Fe moments are correlated, suggesting that the Fe moments can be quenched in the collapsed tetragonal phase. Whether the Fe moments persist in the collapsed tetragonal phase has implications for the pairing mechanism of the observed, pressure-induced superconductivity in these compounds. We will present pressure- dependent x-ray emission spectroscopy (XES) measurements that probe the Fe moments through the volume collapse transition of (Ca0.67Sr0.33) Fe2As2. These measurements will be compared with previously reported phase diagrams that include superconductivity. Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the US Department of Energy (DOE), National Nuclear Security Administration under Contract No. DE-AC52-07NA27344.
Correia, T. M.
2016-01-01
Full-perovskite Pb0.87Ba0.1La0.02(Zr0.6Sn0.33Ti0.07)O3 (PBLZST) thin films were fabricated by a sol–gel method. These revealed both rhombohedral and tetragonal phases, as opposed to the full-tetragonal phase previously reported in ceramics. The fractions of tetragonal and rhombohedral phases are found to be strongly dependent on film thickness. The fraction of tetragonal grains increases with increasing film thickness, as the substrate constraint throughout the film decreases with film thickness. The maximum of the dielectric constant (εm) and the corresponding temperature (Tm) are thickness-dependent and dictated by the fraction of rhombohedral and tetragonal phase, with εm reaching a minimum at 400 nm and Tm shifting to higher temperature with increasing thickness. With the thickness increase, the breakdown field decreases, but field-induced antiferroelectric–ferroelectric (EAFE−FE) and ferroelectric–antiferroelectric (EFE−AFE) switch fields increase. The electrocaloric effect increases with increasing film thickness. This article is part of the themed issue ‘Taking the temperature of phase transitions in cool materials’. PMID:27402937
A sol-powder coating technique for fabrication of yttria stabilised zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wattanasiriwech, Darunee; Wattanasiriwech, Suthee; Stevens, Ron
Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very highmore » surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.« less
Glass ceramic toughened with tetragonal zirconia
Keefer, K.D.
1984-02-10
A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nuclearing agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200 to 1700/sup 0/C and is then heat-treated at a temperature within the range of 800 to 1200/sup 0/C in order to precipitate tetragonal ZrO/sub 2/. The composition, as well as the length and temperature of the heat treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.
Glass ceramic toughened with tetragonal zirconia
Keefer, Keith D.; Michalske, Terry A.
1986-01-01
A phase transformation-toughened glass ceramic and a process for making it are disclosed. A mixture of particulate network-forming oxide, network-modifying oxide, and zirconium oxide is heated to yield a homogeneous melt, and this melt is then heat-treated to precipitate an appreciable quantity of tetragonal zirconia, which is retained at ambient temperature to form a phase transformation-toughened glass ceramic. Nucleating agents and stabilizing agents may be added to the mixture to facilitate processing and improve the ceramic's properties. Preferably, the mixture is first melted at a temperature from 1200.degree. to 1700.degree. C. and is then heat-treated at a temperature within the range of 800.degree. to 1200.degree. C. in order to precipitate tetragonal ZrO.sub.2. The composition, as well as the length and temperature of the heat-treatment, must be carefully controlled to prevent solution of the precipitated tetragonal zirconia and subsequent conversion to the monoclinic phase.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Peijun; Xia, Yi; Gong, Jue
Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less
Direct synthesis of ultrafine tetragonal BaTiO3 nanoparticles at room temperature
2011-01-01
A large quantity of ultrafine tetragonal barium titanate (BaTiO3) nanoparticles is directly synthesized at room temperature. The crystalline form and grain size are checked by both X-ray diffraction and transmission electron microscopy. The results revealed that the perovskite nanoparticles as fine as 7 nm have been synthesized. The phase transition of the as-prepared nanoparticles is investigated by the temperature-dependent Raman spectrum and shows the similar tendency to that of bulk BaTiO3 materials. It is confirmed that the nanoparticles have tetragonal phase at room temperature. PMID:21781339
Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish
Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less
Pressure-induced half-collapsed-tetragonal phase in CaKFe 4 As 4
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; ...
2017-10-02
Here, we report the temperature-pressure phase diagram of CaKFe 4As 4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe 4As 4 is suppressed and then disappears at p ≳ 4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe 4As 4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line ismore » essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥ 12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe 4As 4 as compared to CaFe 2As 2: a half-collapsed tetragonal phase.« less
Pressure-induced half-collapsed-tetragonal phase in CaKFe4As4
NASA Astrophysics Data System (ADS)
Kaluarachchi, Udhara S.; Taufour, Valentin; Sapkota, Aashish; Borisov, Vladislav; Kong, Tai; Meier, William R.; Kothapalli, Karunakar; Ueland, Benjamin G.; Kreyssig, Andreas; Valentí, Roser; McQueeney, Robert J.; Goldman, Alan I.; Bud'ko, Sergey L.; Canfield, Paul C.
2017-10-01
We report the temperature-pressure phase diagram of CaKFe4As4 established using high-pressure electrical resistivity, magnetization, and high-energy x-ray diffraction measurements up to 6 GPa. With increasing pressure, both resistivity and magnetization data show that the bulk superconducting transition of CaKFe4As4 is suppressed and then disappears at p ≳4 GPa. High-pressure x-ray data clearly indicate a phase transition to a collapsed tetragonal phase in CaKFe4As4 under pressure that coincides with the abrupt loss of bulk superconductivity near 4 GPa. The x-ray data, combined with resistivity data, indicate that the collapsed tetragonal transition line is essentially independent of pressure, occurring at 4.0(5) GPa for temperatures below 150 K. Density functional theory calculations also find a sudden transition to a collapsed tetragonal state near 4 GPa, as As-As bonding develops across the Ca layer. Bonding across the K layer only occurs for p ≥12 GPa. These findings demonstrate a different type of collapsed tetragonal phase in CaKFe4As4 as compared to CaFe2As2 : a half-collapsed tetragonal phase.
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung-Chieh; Chen, Chih-Yen; Wu, Hao; Liu, Yuan; Huang, Yu; Duan, Xiangfeng
2016-01-01
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirm that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Our findings offer significant fundamental insight on the temperature- and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials. PMID:27098114
Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals
Li, Dehui; Wang, Gongming; Cheng, Hung -Chieh; ...
2016-04-21
Methylammonium lead iodide perovskite has attracted considerable recent interest for solution processable solar cells and other optoelectronic applications. The orthorhombic-to-tetragonal phase transition in perovskite can significantly alter its optical, electrical properties and impact the corresponding applications. Here, we report a systematic investigation of the size-dependent orthorhombic-to-tetragonal phase transition using a combined temperature-dependent optical, electrical transport and transmission electron microscopy study. Our studies of individual perovskite microplates with variable thicknesses demonstrate that the phase transition temperature decreases with reducing microplate thickness. The sudden decrease of mobility around phase transition temperature and the presence of hysteresis loops in the temperature-dependent mobility confirmmore » that the orthorhombic-to-tetragonal phase transition is a first-order phase transition. Lastly, our findings offer significant fundamental insight on the temperature-and size-dependent structural, optical and charge transport properties of perovskite materials, and can greatly impact future exploration of novel electronic and optoelectronic devices from these materials.« less
Structural and low temperature transport properties of Fe2B and FeB systems at high pressure
NASA Astrophysics Data System (ADS)
Kumar, P. Anand; Satya, A. T.; Reddy, P. V. Sreenivasa; Sekar, M.; Kanchana, V.; Vaitheeswaran, G.; Mani, Awadhesh; Kalavathi, S.; Shekar, N. V. Chandra
2017-10-01
The evolution of crystal structure and the ground state properties of Fe2B and FeB have been studied by performing high pressure X-ray diffraction up to a pressure of ∼24 GPa and temperature dependent (4.2-300 K range) high-pressure resistivity measurements up to ∼ 2 GPa. While a pressure induced reversible structural phase transition from tetragonal to orthorhombic structure is observed at ∼6.3 GPa in Fe2B, FeB has been found to be stable in its orthorhombic phase up to the pressure of 24 GPa. In the case of Fe2B, both parent and daughter phases coexist beyond the transition pressure. The bulk modulus of FeB and Fe2B (tetragonal) have been found to be 248 GPa and 235 GPa respectively. First principle electronic structure calculations have been performed using the present experimental inputs and the calculated ground state properties agree quite well with the major findings of the experiments. Debye temperature extracted from the analysis of low temperature resistivity data is observed to decrease with pressure indicating softening of phonons in both the systems.
Thermal stability and phase transformation in fully indium oxide (InO{sub 1.5}) stabilized zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Piva, R.H., E-mail: honorato.piva@ua.pt; Piva, D.H
2017-01-15
Indium oxide (InO{sub 1.5}) stabilized zirconia (InSZ) is an attractive material as electrolyte, or electrode, in solid oxide fuel cells (SOFCs), and as corrosion resistant top coat in thermal barrier coatings. However, little is known about the phase stability of cubic InSZ at temperatures that simulate the conditions in an operating SOFC or turbine. This article provides an investigation of the phase stability and phase transformations in cubic InSZ after heat treatments at 800, 1000, and 1200 °C for periods up to 2000 h. The results revealed that cubic InSZ is not stable during annealing at 1000 and 1200 °C,more » owing to a fast destabilization of the initial cubic phase to tetragonal, and eventually to monoclinic (c → t → m). The c → t → m transition in InSZ is intimately associated with the indium volatilization. On the other hand, cubic InSZ remained stable for 2000 h at 800 °C, although the partial formation of the tetragonal phase was observed along with a 0.25% contraction in the unit cell volume of the cubic phase, caused by short-range ordering. These results demonstrate that technological applications of cubic InSZ are restricted to temperatures at which the volatilization of the InO{sub 1.5} stabilizer does not occur. - Highlights: •Phase stability of fully InO{sub 1.5} stabilized zirconia (cubic InSZ) was evaluated. •Cubic InSZ is instable at temperatures ≥ 1000 °C, owing to the cubic-to-tetragonal-to-monoclinic destabilization. •Cubic InSZ undergoes the cubic-to-tetragonal transformation at ~ 800 °C. •Owing to the low phase stability, applications of cubic InSZ in TBCs or SOFCs are restricted.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
Liu, Yong; Tanatar, Makariy A.; Timmons, Erik; ...
2016-11-09
In this study, a sequence of structural/magnetic transitions on cooling is reported in the literature for hole-doped iron-based superconductor (Ba 1–xK x)Fe 2As 2 with x = 0.24. By using polarized light microscopy, we directly observe the formation of orthorhombic domains in (Ba 1–xK x)Fe 2As 2 (x = 0.24) single crystal below a temperature of simultaneous structural/magnetic transition T N ~ 80 K. The structural domains vanish below ~30 K, but reappear below T = 15 K. Our results are consistent with reentrance transformation sequence from high-temperature tetragonal (HTT) to low temperature orthorhombic (LTO1) structure at T N ~more » 80 K, LTO1 to low temperature tetragonal (LTT) structure at T c ~ 25 K, and LTT to low temperature orthorhombic (LTO2) structure at T ~ 15 K.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Li, Zhen
Practical hybrid perovskite solar cells (PSCs) must endure temperatures above the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI3). However, the ionic and optical properties of MAPbI3 in such a temperature range, and particularly, dramatic changes in these properties resulting from a structural phase transition, are not well studied. Herein, we report a striking contrast at approximately 45 degrees C in the ionic/electrical properties of MAPbl3 owing to a change of the ion activation energy from 0.7 to 0.5 eV, whereas the optical properties exhibit no particular transition except for the steady increase of the bandgap with temperature. Thesemore » observations can be explained by the 'continuous' nature of perovskite phase transition. We speculate that the critical temperature at which the ionic/electrical properties change, although related to crystal symmetry variation, is not necessarily the same temperature as when tetragonal-cubic structural phase transition occurs.« less
Ali, Roushown; Yashima, Masatomo
2003-05-01
Lattice parameters and the structural phase transition of La(0.68)(Ti(0.95),Al(0.05))O(3) have been investigated in situ in the temperature range 301-689 K by the synchrotron radiation powder diffraction (SR-PD) technique. High-angular-resolution SR-PD is confirmed to be a powerful technique for determining precise lattice parameters around a phase-transition temperature. The title compound exhibits a reversible phase transition between orthorhombic and tetragonal phases at 622.3 +/- 0.6 K. The following results were obtained: (i) the lattice parameters increased continuously with temperature, while the b/a ratio decreased continuously with temperature and became unity at the orthorhombic-tetragonal transition point; (ii) no hysteresis was observed between the lattice-parameter values measured on heating and on cooling. Results (i) and (ii) indicate that the orthorhombic-tetragonal phase transition is continuous and reversible. The b/a ratio is found to exhibit a more continuous temperature evolution than does the order parameter for a typical second-order phase transition based on Landau theory.
NASA Astrophysics Data System (ADS)
Shojaee, S. A.; Harriman, T. A.; Han, G. S.; Lee, J.-K.; Lucca, D. A.
2017-07-01
We examine the effects of substrates on the low temperature photoluminescence (PL) spectra and phase transition in methylammonium lead iodide hybrid perovskite (CH3NH3PbI3) thin films. Structural characterization at room temperature with X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy indicated that while the chemical structure of films deposited on glass and quartz was similar, the glass substrate induced strain in the perovskite films and suppressed the grain growth. The luminescence response and phase transition of the perovskite thin films were studied by PL spectroscopy. The induced strain was found to affect both the room temperature and low temperature PL spectra of the hybrid perovskite films. In addition, it was found that the effects of the glass substrate inhibited a tetragonal to orthorhombic phase transition such that it occurred at lower temperatures.
NASA Astrophysics Data System (ADS)
Puli, Venkata Sreenivas; Adireddy, Shiva; Elupula, Ravinder; Molugu, Sudheer; Shipman, Josh; Chrisey, Douglas B.
2017-05-01
We report the successful synthesis and structural characterization of barium lanthanum titanate Ba(1-x)LaxTiO3 (x=0.003,0.006,0.010) nanoparticles. The colloidal nanoparticles were prepared with high yield by a solvothermal method at temperatures as low as 150°C for 24h. The as-prepared nanopowders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), and Raman spectroscopy. The XRD studies revealed pseudo-cubic crystalline structure, with no impurity phases at room temperature. However ferroelectric tetragonal modes were clearly observed using Raman spectroscopy measurements. From TEM measurements, uniformly sized BLT nanoparticles were observed. Selected area diffraction TEM images revealed polycrystalline perovskite ring patterns, identified as corresponding to the tetragonal phase.
Polar Fluctuations in Metal Halide Perovskites Uncovered by Acoustic Phonon Anomalies
Guo, Peijun; Xia, Yi; Gong, Jue; ...
2017-09-28
Solution-processable metal-halide perovskites (MHPs) offer great promise for efficient light harvesting and emitting devices due to their long carrier lifetime and superior carrier transport characteristics. Ferroelectric effects, a hallmark of traditional oxide perovskites, was proposed to be a mechanism to suppress carrier recombination and enhance charge transport in MHPs, but the existence and influence of such polar order is still of considerable debate. Here we performed transient reflection measurements on single crystals of both inorganic and organic-inorganic (hybrid) MHPs over a range of temperatures, and demonstrate significant phonon softening in the cubic phases close to the cubic-to-tetragonal phase transition temperatures.more » Such phonon softening indicates the formation of polar domains, which grow in size upon cooling and can persist in the low-temperature tetragonal and orthorhombic phases. Our results link the extraordinary electronic properties of MHPs to the spontaneous polarizations which can contribute to more efficient charge separation and characteristics of an indirect bandgap.« less
Suppression of superconductivity and structural phase transitions under pressure in tetragonal FeS
Lai, Xiaofang; Liu, Ying; Lu, Xujie; ...
2016-08-08
Pressure is a powerful tool to study iron-based superconductors. Here, we report systematic high-pressure transport and structural characterizations of the newly discovered superconductor FeS. It is found that superconductor FeS (tetragonal) partly transforms to a hexagonal structure at 0.4 GPa, and then completely transforms to an orthorhombic phase at 7.4 GPa and finally to a monoclinic phase above 9.0 GPa. The superconducting transition temperature of tetragonal FeS was gradually depressed by pressure, different from the case in tetragonal FeSe. With pressure increasing, the S-Fe-S angles only slightly change but the anion height deviates farther from 1.38 Å. This change ofmore » anion height, together with the structural instability under pressure, should be closely related to the suppression of superconductivity. We also observed an anomalous metal-semiconductor transition at 6.0 GPa and an unusual increased resistance with further compression above 9.6 GPa. The former can be ascribed to the tetragonal-orthorhombic structural phase transition, and the latter to the electronic structure changes of the high-pressure monoclinic phase. Lastly, a phase diagram of tetragonal FeS as functions of pressure and temperature was mapped out for the first time, which will shed new light on understanding of the structure and physics of the superconducting FeS.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Peigong; Fan, Caimei, E-mail: fancm@163.com; Wang, Yawen
Graphical abstract: The cubic phase BaTiO{sub 3} nanoparticles can be obtained at 600 °C and changed into tetragonal phase at 900 °C by a dual chelating sol–gel method, and the photocatalytic activities of the photocatalysts calcined at different temperatures were investigated by the removal of humic acid (HA) from water under UV light irradiation. Highlights: ► The humic acid in water was firstly degradated by BaTiO{sub 3} photocatalyst. ► The cubic BaTiO{sub 3} was obtained and changed into tetragonal phase at lower temperature. ► The chelating agents had an important influence on the phase formation of BaTiO{sub 3}. ► Themore » tetragonal phase BaTiO{sub 3} calcined at 900 °C exhibited higher photocatalytic activity under UV irradiation. -- Abstract: In this paper, a dual chelating sol–gel method was used to synthesize BaTiO{sub 3} nanoparticles by using acetylacetone and citric acid as chelating agents. The samples calcined at different temperatures were analyzed by thermogravimetric and differential thermal analysis (TG-DTA), X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscope (SEM) and UV–vis diffuse reflectance spectra (UV–vis). The results indicated that cubic phase BaTiO{sub 3} nanoparticles about 19.6 nm can be obtained at 600 °C and changed into tetragonal phase at 900 °C about 97.1 nm. All the BaTiO{sub 3} nanoparticles showed effective photocatalytic activities on the removal of humic acid (HA) under UV light irradiation. A comparison of single (acetylacetone or citric acid) and dual chelating (acetylacetone and citric acid) synthetic processes was also studied and the results demonstrated that the dual chelating agents indeed reduced phase transformation temperature from cubic to tetragonal BaTiO{sub 3}.« less
Rotational Rehybridization and the High Temperature Phase of UC2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wen, Xiaodong; Rudin, Sven P.; Batista, Enrique R.
2012-12-03
The screened hybrid approximation (HSE) of density functional theory (DFT) is used to examine the structural, optical, and electronic properties of the high temperature phase, cubic UC(2). This phase contains C(2) units with a computed C-C distance of 1.443 Å which is in the range of a CC double bond; U is formally 4+, C(2) 4-. The closed shell paramagnetic state (NM) was found to lie lowest. Cubic UC(2) is found to be a semiconductor with a narrow gap, 0.4 eV. Interestingly, the C(2) units connecting two uranium sites can rotate freely up to an angle of 30°, indicating amore » hindered rotational solid. Ab-initio molecular dynamic simulations (HSE) show that the rotation of C(2) units in the low temperature phase (tetragonal UC(2)) occurs above 2000 K, in good agreement with experiment. The computed energy barrier for the phase transition from tetragonal UC(2) to cubic UC(2) is around 1.30 eV per UC(2). What is fascinating about this system is that at high temperature, the phase transformation to the cubic phase is associated with a rehybridization of the C atoms from sp to sp(3).« less
Bozin, Emil S.; Zhong, Ruidan; Knox, Kevin R.; ...
2015-02-26
A long standing puzzle regarding the disparity of local and long range CuO₆ octahedral tilt correlations in the underdoped regime of La₂₋ xBa xCuO₄ is addressed by utilizing complementary neutron powder diffraction and inelastic neutron scattering (INS) approaches. Long-range and static CuO₆ tilt order with orthogonally inequivalent Cu-O bonds in the CuO₂ planes in the low temperature tetragonal (LTT) phase is succeeded on warming through the low-temperature transition by one with orthogonally equivalent bonds in the low temperature orthorhombic (LTO) phase. In contrast, the signatures of LTT-type tilts in the instantaneous local atomic structure persist on heating throughout the LTOmore » crystallographic phase on the nanoscale, although becoming weaker as temperature increases. Analysis of the INS spectra for the x = 1/8 composition reveals the dynamic nature of the LTT-like tilt fluctuations within the LTO phase and their 3D character. The doping dependence of relevant structural parameters indicates that the magnitude of the Cu-O bond anisotropy has a maximum at x = 1/8 doping where bulk superconductivity is most strongly suppressed, suggesting that the structural anisotropy might be influenced by electron-phonon coupling and the particular stability of the stripe-ordered phase at this composition. The bond-length modulation that pins stripe order is found to be remarkably subtle, with no anomalous bond length disorder at low temperature, placing an upper limit on any in-plane Cu-O bondlength anisotropy. The results further reveal that although appreciable octahedral tilts persist through the high-temperature transition and into the high temperature tetragonal (HTT) phase, there is no significant preference between different tilt directions in the HTT regime. As a result, this study also exemplifies the importance of a systematic approach using complementary techniques when investigating systems exhibiting a large degree of complexity and subtle structural responses.« less
First determination of the valence band dispersion of CH3NH3PbI3 hybrid organic-inorganic perovskite
NASA Astrophysics Data System (ADS)
Lee, Min-I.; Barragán, Ana; Nair, Maya N.; Jacques, Vincent L. R.; Le Bolloc'h, David; Fertey, Pierre; Jemli, Khaoula; Lédée, Ferdinand; Trippé-Allard, Gaëlle; Deleporte, Emmanuelle; Taleb-Ibrahimi, Amina; Tejeda, Antonio
2017-07-01
The family of hybrid organic-inorganic halide perovskites is in the limelight because of their recently discovered high photovoltaic efficiency. These materials combine photovoltaic energy conversion efficiencies exceeding 22% and low-temperature and low-cost processing in solution; a breakthrough in the panorama of renewable energy. Solar cell operation relies on the excitation of the valence band electrons to the conduction band by solar photons. One factor strongly impacting the absorption efficiency is the band dispersion. The band dispersion has been extensively studied theoretically, but no experimental information was available. Herein, we present the first experimental determination of the valence band dispersion of methylammonium lead halide in the tetragonal phase. Our results pave the way for contrasting the electronic hopping or the electron effective masses in different theories by comparing to our experimental bands. We also show a significant broadening of the electronic states, promoting relaxed conditions for photon absorption, and demonstrate that the tetragonal structure associated to the octahedra network distortion below 50 °C induces only a minor modification of the electronic bands, with respect to the cubic phase at high temperature, thus minimizing the impact of the cubic-tetragonal transition on solar cell efficiencies.
Nakajima, Yasuyuki; Wang, Renxiong; Metz, Tristin; ...
2015-03-09
Here, we report a high-pressure study of simultaneous low-temperature electrical resistivity and Hall effect measurements on high quality single-crystalline KFe 2As 2 using designer diamond anvil cell techniques with applied pressures up to 33 GPa. In the low pressure regime, we show that the superconducting transition temperature T c finds a maximum onset value of 7 K near 2 GPa, in contrast to previous reports that find a minimum T c and reversal of pressure dependence at this pressure. Upon applying higher pressures, this T c is diminished until a sudden drastic enhancement occurs coincident with a first-order structural phasemore » transition into a collapsed tetragonal phase. The appearance of a distinct superconducting phase above 13 GPa is also accompanied by a sudden reversal of dominant charge carrier sign, from hole- to electron-like, which agrees with our band calculations predicting the emergence of an electron pocket and diminishment of hole pockets upon Fermi surface reconstruction. Our results suggest the high-temperature superconducting phase in KFe 2As 2 is substantially enhanced by the presence of nested electron and hole pockets, providing the key ingredient of high-T c superconductivity in iron pnictide superconductors.« less
First-Principles Study of the Jahn-Teller Distortion in the Ti1-XVXH2 and Zr1-XNbxH2 Alloys
NASA Astrophysics Data System (ADS)
Quijano, Ramiro; de Coss, Romeo; Singh, David
2008-03-01
The transition metal dihydrides TiH2 and ZrH2 present the fluorite structure (CaF2) at high temperature but undergoes a tetragonal distortion with c/a<1 at low temperature. Electronic band structure calculations have shown that TiH2 and ZrH2 in the cubic phase display a very flat band at the Fermi level. Thus the low temperature tetragonal distortion has been associated to a Jahn-Teller effect. In order to understand the role of band filling in controlling the structural instability of the transition metal dihydrides, we have performed a first-principles total energy study of the Ti1-XVxH2 and Zr1-xNbxH2 alloys. The calculations were performed using FP-LAPW method within the (DFT) and we use the GGA for exchange correlation functional energy. The critical concentration for which the Jahn-Teller effect is suppressed, was determined from the evolution of the tetragonal-cubic energy barrier. We discuss the electronic mechanism of the structural-instability, in terms of the band filling. From the obtained results we conclude that the tetragonal distortion in TiH2 and ZrH2 is not produced only by a Jahn-Teller Effect. This research was supported by Consejo Nacional de Ciencia y Tecnolog'ia (Conacyt) under Grant No. 43830-F.
NASA Astrophysics Data System (ADS)
Zhao, Yuexing; Wang, Liang; Yang, Jiasheng; Li, Dachuan; Zhong, Xinghua; Zhao, Huayu; Shao, Fang; Tao, Shunyan
2015-02-01
7.5YSZ thermal barrier coatings (TBCs) were deposited onto the stainless steel substrates using axial suspension plasma spraying (ASPS). Free-standing coatings were isothermally aged in air from 1200 to 1600 °C for 24 h and at 1550 °C for 20 to 100 h, respectively. Thermal aging behavior such as phase composition, microstructure evolutions, grain growth, and mechanical properties for thermal-aged coatings were investigated. Results show that the as-sprayed metastable tetragonal (t'-ZrO2) phase decomposes into equilibrium tetragonal (t-ZrO2) and cubic (c-ZrO2) phases during high-temperature exposures. Upon further cooling, the c-ZrO2 may be retained or transform into another metastable tetragonal (t″-ZrO2) phase, and tetragonal → monoclinic phase transformation occurred after 1550 °C/40 h aging treatment. The coating exhibits a unique structure with segmentation cracks and micro/nano-size grains, and the grains grow gradually with increasing aging temperature and time. In addition, the hardness ( H) and Young's modulus ( E) significantly increased as a function of temperature due to healing of pores or cracks and grain growth of the coating. And a nonmonotonic variation is found in the coatings thermal aged at a constant temperature (1550 °C) with prolonged time, this is a synergetic effect of coating sintering and m-ZrO2 phase formation.
Interface-induced superconductivity at ∼25 K at ambient pressure in undoped CaFe2As2 single crystals
Zhao, Kui; Lv, Bing; Deng, Liangzi; Huyan, Shu-Yuan; Xue, Yu-Yi; Chu, Ching-Wu
2016-01-01
Superconductivity has been reversibly induced/suppressed in undoped CaFe2As2 (Ca122) single crystals through proper thermal treatments, with Tc at ∼25 K at ambient pressure and up to 30 K at 1.7 GPa. We found that Ca122 can be stabilized in two distinct tetragonal (T) phases at room temperature and ambient pressure: PI with a nonmagnetic collapsed tetragonal (cT) phase at low temperature and PII with an antiferromagnetic orthorhombic (O) phase at low temperature, depending on the low-temperature annealing condition. Neither phase at ambient pressure is superconducting down to 2 K. However, systematic annealing for different time periods at 350 °C on the as-synthesized crystals, which were obtained by quenching the crystal ingot from 850 °C, reveals the emergence of superconductivity over a narrow time window. Whereas the onset Tc is insensitive to the anneal time, the superconductive volume fraction evolves with the time in a dome-shaped fashion. Detailed X-ray diffraction profile analyses further reveal mesoscopically stacked layers of the PI and the PII phases. The deduced interface density correlates well with the superconducting volume measured. The transport anomalies of the T–cT transition, which is sensitive to lattice strain, and the T–O transition, which is associated with the spin-density-wave (SDW) transition, are gradually suppressed over the superconductive region, presumably due to the interface interactions between the nonmagnetic metallic cT phase and the antiferromagnetic O phase. The results provide the most direct evidence to date for interface-enhanced superconductivity in undoped Ca122, consistent with the recent theoretical prediction. PMID:27799564
Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming; ...
2017-10-30
We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frandsen, Benjamin A.; Taddei, Keith M.; Yi, Ming
We report on temperature-dependent pair distribution function measurements of Sr 1-xNa xFe 2As 2, an iron-based superconductor system that contains a magnetic phase with reentrant tetragonal symmetry, known as the magnetic C 4 phase. Quantitative refinements indicate that the instantaneous local structure in the C 4 phase comprises fluctuating orthorhombic regions with a length scale of similar to 2 nm, despite the tetragonal symmetry of the average static structure. Additionally, local orthorhombic fluctuations exist on a similar length scale at temperatures well into the paramagnetic tetragonal phase. Furthermore, these results highlight the exceptionally large nematic susceptibility of iron-based superconductors andmore » have significant implications for the magnetic C 4 phase and the neighboring C 2 and superconducting phases.« less
Evolution of structure and superconductivity in Ba(Ni 1 -xCox)2As2
NASA Astrophysics Data System (ADS)
Eckberg, Chris; Wang, Limin; Hodovanets, Halyna; Kim, Hyunsoo; Campbell, Daniel J.; Zavalij, Peter; Piccoli, Philip; Paglione, Johnpierre
2018-06-01
The effects of Co substitution on Ba (Ni1-xCox) 2As2 (0 ≤x ≤0.251 ) single crystals grown out of Pb flux are investigated via transport, magnetic, and thermodynamic measurements. BaNi2As2 exhibits a first-order tetragonal to triclinic structural phase transition at Ts=137 K upon cooling, and enters a superconducting phase below Tc=0.7 K. The structural phase transition is sensitive to cobalt content and is suppressed completely by x ≥0.133 . The superconducting critical temperature, Tc, increases continuously with x , reaching a maximum of Tc=2.3 K at x =0.083 and then decreases monotonically until superconductivity is no longer observable well into the tetragonal phase. In contrast to similar BaNi2As2 substitutional studies, which show an abrupt change in Tc at the triclinic-tetragonal boundary that extends far into the tetragonal phase, Ba (Ni1-xCox) 2As2 exhibits a domelike phase diagram centered around the zero-temperature tetragonal-triclinic boundary. Together with an anomalously large heat capacity jump Δ Ce/γ T ˜2.2 near optimal doping, the smooth evolution of Tc in the Ba (Ni1-xCox) 2As2 system suggests a mechanism for pairing enhancement other than phonon softening.
Combined effects of Sr substitution and pressure on the ground states in CaFe2As2
NASA Astrophysics Data System (ADS)
Knöner, S.; Gati, E.; Köhler, S.; Wolf, B.; Tutsch, U.; Ran, S.; Torikachvili, M. S.; Bud'ko, S. L.; Canfield, P. C.; Lang, M.
2016-10-01
We present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe2As2 . Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P ≤2 GPa, were performed on Ca1 -xSrxFe2As2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure, which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x =0 and low Sr concentration levels. For x =0.177 , we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe2As2 . Our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.
Real-time atomistic observation of structural phase transformations in individual hafnia nanorods
Hudak, Bethany M.; Depner, Sean W.; Waetzig, Gregory R.; ...
2017-05-12
High-temperature phases of hafnium dioxide have exceptionally high dielectric constants and large bandgaps, but quenching them to room temperature remains a challenge. Scaling the bulk form to nanocrystals, while successful in stabilizing the tetragonal phase of isomorphous ZrO 2, has produced nanorods with a twinned version of the room temperature monoclinic phase in HfO 2. Here we use in situ heating in a scanning transmission electron microscope to observe the transformation of an HfO 2 nanorod from monoclinic to tetragonal, with a transformation temperature suppressed by over 1000°C from bulk. When the nanorod is annealed, we observe with atomic-scale resolutionmore » the transformation from twinned-monoclinic to tetragonal, starting at a twin boundary and propagating via coherent transformation dislocation; the nanorod is reduced to hafnium on cooling. Unlike the bulk displacive transition, nanoscale size-confinement enables us to manipulate the transformation mechanism, and we observe discrete nucleation events and sigmoidal nucleation and growth kinetics.« less
Tunable magnetic and transport properties of Mn3Ga thin films on Ta/Ru seed layer
NASA Astrophysics Data System (ADS)
Hu, Fang; Xu, Guizhou; You, Yurong; Zhang, Zhi; Xu, Zhan; Gong, Yuanyuan; Liu, Er; Zhang, Hongguo; Liu, Enke; Wang, Wenhong; Xu, Feng
2018-03-01
Hexagonal D019-type Mn3Z alloys that possess large anomalous and topological-like Hall effects have attracted much attention due to their great potential in antiferromagnetic spintronic devices. Herein, we report the preparation of Mn3Ga films in both tetragonal and hexagonal phases with a tuned Ta/Ru seed layer on a thermally oxidized Si substrate. Large coercivity together with large anomalous Hall resistivity is found in the Ta-only sample with a mixed tetragonal phase. By increasing the thickness of the Ru layer, the tetragonal phase gradually disappears and a relatively pure hexagonal phase is obtained in the Ta(5)/Ru(30) buffered sample. Further magnetic and transport measurements revealed that the anomalous Hall conductivity nearly vanishes in the pure hexagonal sample, while an abnormal asymmetric hump structure emerges in the low field region. The extracted additional Hall term is robust in a large temperature range and presents a sign reversal above 200 K. The abnormal Hall properties are proposed to be closely related to the frustrated spin structure of D019 Mn3Ga.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yin; Chen, Chen; Gao, Ran
2015-11-02
Phase stability of the ferroelectric materials at high temperature is extremely important to their device performance. Ba{sub x}Sr{sub 1−x}TiO{sub 3} (BST) nanoparticles with different Sr contents (x = 1, 0.91, 0.65, 0.4, and 0) are prepared by a facile hydrothermal method. Using Raman spectroscopy and transmission electron microscopy (TEM) analyses under in situ heating conditions (up to 300 °C), the phase transitions of BST nanoparticles between 25 °C and 280 °C are comprehensively investigated. The original Curie temperature of BST nanoparticles decreases abruptly with the increase in Sr content, which is more obvious than in the bulk or film material. Besides, an abnormal phase transitionmore » from cubic to tetragonal structure is observed from BST nanoparticles and the transition temperature rises along with the increase in Sr content. Direct TEM evidences including a slight lattice distortion have been provided. Differently, BaTiO{sub 3} nanoparticles remained in the tetragonal phase during the above temperature ranges.« less
Marronnier, Arthur; Roma, Guido; Boyer-Richard, Soline; Pedesseau, Laurent; Jancu, Jean-Marc; Bonnassieux, Yvan; Katan, Claudine; Stoumpos, Constantinos C; Kanatzidis, Mercouri G; Even, Jacky
2018-04-24
Hybrid organic-inorganic perovskites emerged as a new generation of absorber materials for high-efficiency low-cost solar cells in 2009. Very recently, fully inorganic perovskite quantum dots also led to promising efficiencies, making them a potentially stable and efficient alternative to their hybrid cousins. Currently, the record efficiency is obtained with CsPbI 3 , whose crystallographical characterization is still limited. Here, we show through high-resolution in situ synchrotron XRD measurements that CsPbI 3 can be undercooled below its transition temperature and temporarily maintained in its perovskite structure down to room temperature, stabilizing a metastable perovskite polytype (black γ-phase) crucial for photovoltaic applications. Our analysis of the structural phase transitions reveals a highly anisotropic evolution of the individual lattice parameters versus temperature. Structural, vibrational, and electronic properties of all the experimentally observed black phases are further inspected based on several theoretical approaches. Whereas the black γ-phase is shown to behave harmonically around equilibrium, for the tetragonal phase, density functional theory reveals the same anharmonic behavior, with a Brillouin zone-centered double-well instability, as for the cubic phase. Using total energy and vibrational entropy calculations, we highlight the competition between all the low-temperature phases of CsPbI 3 (γ, δ, β) and show that avoiding the order-disorder entropy term arising from double-well instabilities is key to preventing the formation of the yellow perovskitoid phase. A symmetry-based tight-binding model, validated by self-consistent GW calculations including spin-orbit coupling, affords further insight into their electronic properties, with evidence of Rashba effect for both cubic and tetragonal phases when using the symmetry-breaking structures obtained through frozen phonon calculations.
Raman spectra and phase transitions in Rb{sub 2}KInF{sub 6} elpasolite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krylov, A. S.; Krylova, S. N., E-mail: slanky@iph.krasn.ru; Vtyurin, A. N.
2011-01-15
The Raman spectra of Rb{sub 2}KInF{sub 6} elpasolite crystal have been studied in a wide temperature range, including two phase transitions: from the cubic phase to the tetragonal phase and then to the monoclinic phase. Several anomalies of internal modes of InF{sub 6} octahedra and low-frequency lattice vibrations, which are related to the structural changes at the transition points, have been found and quantitatively analyzed. The results of a quantitative analysis of the temperature dependences of the parameters of spectral lines are in good agreement with the thermodynamic data on the phase transitions.
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe; ...
2017-11-15
In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean -Christophe
In this paper, connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered CH 3NH 3more » + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R- and M-point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.« less
NASA Astrophysics Data System (ADS)
Appavoo, Kannatassen; Nie, Wanyi; Blancon, Jean-Christophe; Even, Jacky; Mohite, Aditya D.; Sfeir, Matthew Y.
2017-11-01
Connecting the complex electronic excitations of hybrid perovskites to their intricate organic-inorganic lattice structure has critical implications for energy conversion and optoelectronic technologies. Here we detail the multiband, multivalley electronic structure of a halide hybrid perovskite by measuring the absorption transients of a millimeter-scale-grain thin film as it undergoes a thermally controlled reversible tetragonal-to-orthogonal phase transition. Probing nearly single grains of this hybrid perovskite, we observe an unreported energy splitting (degeneracy lifting) of the high-energy 2.6 eV band in the tetragonal phase that further splits as the rotational degrees of freedom of the disordered C H3N H3 + molecules are reduced when the sample is cooled. This energy splitting drastically increases during an extended phase-transition coexistence region that persists from 160 to 120 K, becoming more pronounced in the orthorhombic phase. By tracking the temperature-dependent optical transition energies and using symmetry analysis that describes the evolution of electronic states from the tetragonal phase to the orthorhombic phase, we assign this energy splitting to the nearly degenerate transitions in the tetragonal phase from both the R - and M -point-derived states. Importantly, these assignments explain how momentum conservation effects lead to long hot-carrier lifetimes in the room-temperature tetragonal phase, with faster hot-carrier relaxation when the hybrid perovskite structurally transitions to the orthorhombic phase due to enhanced scattering at the Γ point.
Li, Kai Chun; Waddell, J Neil; Prior, David J; Ting, Stephanie; Girvan, Liz; van Vuuren, Ludwig Jansen; Swain, Michael V
2013-11-01
To investigate the effect of autoclave induced low-temperature degradation on the adhesion energy between yttria-stabilized zirconia veneered with porcelain. The strain energy release rate using a four-point bending stable fracture test was evaluated for two different porcelains [leucite containing (VM9) and glass (Zirox) porcelain] veneered to zirconia. Prior to veneering the zirconia had been subjected to 0 (control), 1, 5, 10 and 20 autoclave cycles. The specimens were manufactured to a total bi-layer dimension of 30 mm × 8 mm × 3 mm. Subsequent scanning electron microscopy/energy dispersive spectrometry, electron backscatter diffraction and X-ray diffraction analysis were performed to identify the phase transformation and fracture behavior. The strain energy release rate for debonding of the VM9 specimens were significantly higher (p<0.05) compared to the Zirox specimens across all test groups. Increasing autoclave cycles lowered the strain energy release rate significantly (p<0.05) from 18.67 J/m(2) (control) to the lowest of 12.79 J/m(2) (cycle 10) for only the VM9 specimens. SEM analyses showed predominant cohesive fracture within the porcelain for all cycle groups. XRD analysis of the substrate prior to veneering confirmed a tetragonal to monoclinic phase transformation with increasing the number of autoclave cycles between 5 and 20. The monoclinic phase reverted back to tetragonal phase after undergoing conventional porcelain firing cycles. EBSD data showed significant changes of the grain size distribution between the control and autoclaved specimen (cycle 20). Increasing autoclave cycles only significantly decreased the adhesion of the VM9 layered specimens. In addition, a conventional porcelain firing schedule completely reverted the monoclinic phase back to tetragonal. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Temperature dependence of field-responsive mechanisms in lead zirconate titanate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Ching-Chang; Fancher, Chris M.; Isaac, Catherine
2017-05-17
An electric field loading stage was designed for use in a laboratory diffractometer that enables in situ investigations of the temperature dependence in the field response mechanisms of ferroelectric materials. The stage was demonstrated in this paper by measuring PbZr 1-xTi xO 3 (PZT) based materials—a commercially available PZT and a 1% Nb-doped PbZr 0.56Ti 0.44O 3 (PZT 56/44)—over a temperature range of 25°C to 250°C. The degree of non-180° domain alignment (η 002) of the PZT as a function of temperature was quantified. η 002 of the commercially available PZT increases exponentially with temperature, and was analyzed as amore » thermally activated process as described by the Arrhenius law. The activation energy for thermally activated domain wall depinning process in PZT was found to be 0.47 eV. Additionally, a field-induced rhombohedral to tetragonal phase transition was observed 5°C below the rhombohedral-tetragonal transition in PZT 56/44 ceramic. The field-induced tetragonal phase fraction was increased 41.8% after electrical cycling. Finally, a large amount of domain switching (η 002=0.45 at 1.75 kV/mm) was observed in the induced tetragonal phase.« less
NASA Astrophysics Data System (ADS)
Valenti, Roser
KFe2As2 shows an intricate behavior as a function of pressure. At ambient pressure the system is superconductor with a low critical temperature Tc=3.4 K and follows a V-shaped pressure dependence of Tc for moderate pressures with a local minimum at a pressure of 1.5 GPa. Under high pressures Pc=15 GPa, KFe2As2 exhibits a structural phase transition from a tetragonal to a collapsed tetragonal phase accompanied by a boost of the superconducting critical temperature up to 12 K. On the other hand, negative pressures realized through substitution of K by Cs or Rb decrease Tc down to 2.25K. In this talk we will discuss recent progress on the understanding of the microscopic origin of this pressure-dependent behavior by considering a combination of ab initio density functional theory with dynamical mean field theory and spin fluctuation theory calculations. We will argue that a Lifshitz transition associated with the structural collapse changes the pairing symmetry from d-wave (tetragonal) to s+/- (collapsed tetragonal) at high pressures while at ambient and negative pressures correlation effects appear to be detrimental for superconductivity. Further, we shall establish cross-links to the chalcogenide family, in particular FeSe under pressure. The Deutsche Forschungsgemeinschaft (DFG) is gratefully acknowledged for financial support.
Anisotropic physical properties of single-crystal U2Rh2Sn in high magnetic fields
NASA Astrophysics Data System (ADS)
Prokeš, K.; Gorbunov, D. I.; Reehuis, M.; Klemke, B.; Gukasov, A.; Uhlířová, K.; Fabrèges, X.; Skourski, Y.; Yokaichiya, F.; Hartwig, S.; Andreev, A. V.
2017-05-01
We report on the crystal and magnetic structures, magnetic, transport, and thermal properties of U2Rh2Sn single crystals studied in part in high magnetic fields up to 58 T. The material adopts a U3Si2 -related tetragonal crystal structure and orders antiferromagnetically below TN=25 K. The antiferromagnetic structure is characterized by a propagation vector k =(00 1/2 ) . The magnetism in U2Rh2Sn is found to be associated mainly with 5 f states. However, both unpolarized and polarized neutron experiments reveal at low temperatures in zero field non-negligible magnetic moments also on Rh sites. U moments of 0.50(2) μB are directed along the tetragonal axis while Rh moments of 0.06(4) μB form a noncollinear arrangement confined to the basal plane. The response to applied magnetic field is highly anisotropic. Above ˜15 K the easy magnetization direction is along the tetragonal axis. At lower temperatures, however, a stronger response is found perpendicular to the c axis. While for the a axis no magnetic phase transition is observed up to 58 T, for the field applied at 1.8 K along the tetragonal axis we observe above 22.5 T a field-polarized state. A magnetic phase diagram for the field applied along the c axis is presented.
NASA Astrophysics Data System (ADS)
Jida, Shin'suke; Miki, Toshikatsu
1996-11-01
Paramagnetic centers in Nb-doped BaTiO3 ceramics are measured at 77-500 K by electron paramagnetic resonance (EPR) for investigating the role of the centers on the well-known positive temperature coefficient of resistivity (PTCR) effect (PTCR at the Curie temperature). EPR detects four signals; an anisotropically broad singlet signal at g=2.005, a sextet signal due to Mn2+, a Cr3+ signal, and a Ti3+ signal. The former two signals arise in the rhombohedral and cubic phases, but disappear in the tetragonal and orthorhombic phases. The Cr3+ signal appears in all of the phases, while the Ti3+ signal is detected only at low temperatures. The singlet signal also arises in undoped, barium-deficient BaTiO3 ceramics, therefore the signal is attributable to barium-vacancy-associated centers rather than Nb4+ ions or Fe3+ ions proposed by several authors. In this article, we propose that the singlet signal is due to vacancy-pairs of VBa-F+ type, i.e., the vacancy pair of VBa-VO capturing one electron. The electrical resistivity data show a polaronic character of low-temperature conduction and a high resistivity jump around the Curie temperature. The low-temperature polaronic conduction is explained in terms of electron-hopping between Ti4+ and Ti3+ ions. The resistivity jump at the Curie temperature occurs along with the EPR intensity increase of the singlet signal, the Mn2+ signal and the Cr3+ signal. We conclude that the PTCR of Nb-doped BaTiO3 ceramics is strongly associated with the trap activation of the VBa-VO vacancy-pairs and manganese centers at the tetragonal-to-cubic transition.
Low Temperature X-Ray Diffraction Study on CaFe2As2
NASA Astrophysics Data System (ADS)
Huyan, Shuyuan; Deng, Liangzi; Wu, Zheng; Zhao, Kui; Lv, Bing; Xue, Yiyu; Chu, Ching-Wu; B. Lv Collaboration; HPLT (Paul C. W. Chu) Team
For undoped CaFe2As2 single crystals, we observed that utilizing thermal treatments could stabilize two pure tetragonal phases PI and PII. Both phases are non-superconducting, while the superconductivity with a Tc up to 25 K can be induced through proper thermal treatment. Room temperature X-ray studies suggest that the origin of superconductivity arises from the interface of the mesoscopically stacked layers of PI and PII. To further investigate, a systematic low temperature X-ray study was conducted over a series of thermal treated CaFe2As2 single crystals. From which, we observed the phase aggregation of PI and PII upon cooling, more importantly, an ordered stacking structure exists at low temperature, which closely related to superconducting volume fraction and the ratio of PI and PII. These results further support the proposal of interface-enhanced superconductivity in undoped CaFe2As2. UT Dallas
Growth of epitaxial orthorhombic YO{sub 1.5}-substituted HfO{sub 2} thin film
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shimizu, Takao; Katayama, Kiliha; Kiguchi, Takanori
YO{sub 1.5}-substituted HfO{sub 2} thin films with various substitution amounts were grown on (100) YSZ substrates by the pulsed laser deposition method directly from the vapor phase. The epitaxial growth of film with different YO{sub 1.5} amounts was confirmed by the X-ray diffraction method. Wide-area reciprocal lattice mapping measurements were performed to clarify the crystal symmetry of films. The formed phases changed from low-symmetry monoclinic baddeleyite to high-symmetry tetragonal/cubic fluorite phases through an orthorhombic phase as the YO{sub 1.5} amount increased from 0 to 0.15. The additional annular bright-field scanning transmission electron microscopy indicates that the orthorhombic phase has polarmore » structure. This means that the direct growth by vapor is of polar orthorhombic HfO{sub 2}-based film. Moreover, high-temperature X-ray diffraction measurements showed that the film with a YO{sub 1.5} amount of 0.07 with orthorhombic structure at room temperature only exhibited a structural phase transition to tetragonal phase above 450 °C. This temperature is much higher than the reported maximum temperature of 200 °C to obtain ferroelectricity as well as the expected temperature for real device application. The growth of epitaxial orthorhombic HfO{sub 2}-based film helps clarify the nature of ferroelectricity in HfO{sub 2}-based films (186 words/200 words)« less
Combined effects of Sr substitution and pressure on the ground states in CaFe 2 As 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Knoner, S.; Gati, E.; Kohler, S.
2016-10-21
Here, we present a detailed study of the combined effects of Sr substitution and hydrostatic pressure on the ground-state properties of CaFe 2As 2. Measurements of the electrical resistance and magnetic susceptibility, both at ambient and finite pressure P ≤ 2 GPa, were performed on Ca 1–xSr xFe 2As 2 single crystals grown out of Sn flux. We find that by Sr substitution the transition temperature to the magnetic/structural phase is enhanced and therefore a higher pressure is needed to suppress the transition to lowest temperature. In addition, the transition to the collapsed tetragonal phase is found at a pressure,more » which is distinctly higher than in the pure compound. This implies that the stability ranges of both phases shift on the pressure-axis upon doping, but the latter one with a higher rate. These observations suggest the possibility of separating the two phase lines, which intersect already at elevated temperatures for x = 0 and low Sr concentration levels. For x = 0.177, we find strong evidence that both phases remain separated down to the lowest temperature and that a zero-resistance state emerges in this intermediate pressure window. This observation indicates that Sr substitution combined with hydrostatic pressure provides another route for stabilizing superconductivity in CaFe 2As 2. Lastly, our results are consistent with the notion that (i) preserving the fluctuations associated with the structural-magnetic transition to low temperatures is vital for superconductivity to form in this material and that (ii) the nonmagnetic collapsed tetragonal phase is detrimental for superconductivity.« less
Strain Phase Diagram of SrTiO3 Thin Films
NASA Astrophysics Data System (ADS)
He, Feizhou; Shapiro, S. M.
2005-03-01
SrTiO3 thin films were used as a model system to study the effects of strain and epitaxial constraint on structural phase transitions of oxide films. The basic phenomena revealed will apply to a variety of important structural transitions including the ferroelectric transition. Highly strained, epitaxial films of SrTiO3 were grown on different substrates. The structural phase transition temperature Tc increases from 105 K in bulk STO to 167 K for films under tensile strain and 330 K for films with compressive strain. The measured temperature-strain phase diagram is qualitatively consistent with theory [1], however the increase in Tc is much larger than predicted in all cases. The symmetry of the phases involved in the transition is different from the corresponding bulk structures largely because of epitaxial constraint, the clamping effect. Thus the shape of the STO unit cell is tetragonal at all temperatures. The possibility exists of a very unique low temperature phase with orthorhombic symmetry (Cmcm) but tetragonal unit cell shape. More generally, we have characterized at least three different manifestations of the clamping effect, showing it is much more subtle than usually recognized. This work is supported through NSF DMR-0239667, DMR-0132918, by the Research Corp, and at BNL by the US DOE DE-AC02-98CH10886. [1] N. A. Pertsev, A. K. Tagantsev and N. Setter, Phys. Rev. B61, R825 (2000).
[Structure and properties of colored dental tetragonal zirconia stabilized by yttrium ceramics].
Yi, Yuan-fu; Wang, Chen; Wen, Ning; Lin, Yong-zhao; Tian, Jie-mo
2009-10-01
To investigate the structure, mechanical and low temperature aging properties of colored dental zirconia ceramics. 5 graded colored dental zirconia ceramics were made by adding colorants and their combinations into a 3Y-TZP (tetragonal zirconia stabilized by 3mol% yttrium) powder, the green body were compacted at 200 MPa, pre-sinter at 1,050 degrees C and maintained for 2 h, then densely sintered at 1,500 degrees C for 2 h. Specimens were cut from each of the 5 graded colored blocks. Physical, mechanical properties as well as chemical stability were tested, microstructure were observed, crystalline phase were identified by X-ray diffraction (XRD), aging properties were assessed by measurement of the relative content of monoclinic phase and bending strength testing. The overall density of colored zirconia ceramics was over 99.7%, linear shrinkage was about 20%, while thermal expansion coefficient was about 11 x 10(-6) x degrees C(-1), the crystalline phase was tetragonal, bending strength was over 900 MPa which was slightly lowered than that of the uncolored zirconia, fracture toughness was slightly higher. Good chemical stability in acetic acid was observed. After aging treatment, tetragonal-to-monoclinic phase transformation was detected up to 40%, while bending strength was not significantly degraded. The results showed that colored 3Y-TZP ceramics presented good mechanical properties even after aging treatments, and was suitable for dental clinical use.
Effect of Cs content on K1-xCsxAlSi2O6 ceramic solidification forms
NASA Astrophysics Data System (ADS)
Li, Jun; Duan, Jianxia; Hou, Li; Lu, Zhongyuan
2018-02-01
K1-xCsx-geopolymers with chemical compositions of about K1-xCsxAlSi2O6·nH2O were used as precursors to prepare K1-xCsxAlSi2O6 ceramic solidification forms through the thermal treatment method. The structures of K1-xCsxAlSi2O6 ceramic solidification forms obtained at different sintering temperatures have been characterized by X-ray diffraction, scanning electron microscopy and fourier transform infrared spectroscopy. It has been observed that the crystallization temperature and phase of K1-xCsxAlSi2O6 ceramic were significantly influenced by the Cs content. An increase in the Cs content resulted in a decrease in the crystallization temperature of the K1-xCsxAlSi2O6 cubic phase. K1-xCsxAlSi2O6 ceramic obtained at 850 °C was lecucite cubic or pollucite cubic phase when x ≥ 0.2, and the lattice parameters of cubic phase increased with increasing of Cs content. However, leucite tetragonal phase formed at elevated heating temperature (1100 °C and 1300 °C) except for the case x = 0.3, 0.4, 0.5 and 1. The c/a ratio of leucite tetragonal phase obtained at 1100 °C and 1300 °C was much more closed to 1 with Cs content increased, which made it hard to be indexed between cubic and tetragonal phase. In this case, leucite tetragonal phase could also be considered as pseudo-cubic phase. Additionally, the product consistency test leaching results showed that K1-xCsxAlSi2O6 ceramics possessed superior chemical durability.
Conventional empirical law reverses in the phase transitions of 122-type iron-based superconductors
Yu, Zhenhai; Wang, Lin; Wang, Luhong; ...
2014-11-24
Phase transition of solid-state materials is a fundamental research topic in condensed matter physics, materials science and geophysics. It has been well accepted and widely proven that isostructural compounds containing different cations undergo same pressure-induced phase transitions but at progressively lower pressures as the cation radii increases. However, we discovered that this conventional law reverses in the structural transitions in 122-type iron-based superconductors. In this report, a combined low temperature and high pressure X-ray diffraction (XRD) measurement has identified the phase transition curves among the tetragonal (T), orthorhombic (O) and the collapsed-tetragonal (cT) phases in the structural phase diagram ofmore » the iron-based superconductor AFe 2As 2 (A = Ca, Sr, Eu, and Ba). As a result, the cation radii dependence of the phase transition pressure (T → cT) shows an opposite trend in which the compounds with larger ambient radii cations have a higher transition pressure.« less
Raman spectroscopy analysis of air grown oxide scale developed on pure zirconium substrate
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Favergeon, J.; Lahoche, L.; El-Marssi, M.; Grosseau Poussard, J.-L.; Moulin, G.; Roelandt, J.-M.
2015-11-01
Using Raman spectroscopy technique, external and internal parts of zirconia oxide films developed at 500 °C and 600 °C on pure zirconium substrate under air at normal atmospheric pressure have been examined. Comparison of Raman peak positions of tetragonal and monoclinic zirconia phases, recorded during the oxide growth at elevated temperature, and after cooling at room temperature have been presented. Subsequently, Raman peak positions (or shifts) were interpreted in relation with the stress evolution in the growing zirconia scale, especially closed to the metal/oxide interface, where the influence of compressive stress in the oxide is the biggest. Reported results, for the first time show the presence of a continuous layer of tetragonal zirconia phase developed in the proximity of pure zirconium substrate. Based on the Raman peak positions we prove that this tetragonal layer is stabilized by the high compressive stress and sub-stoichiometry level. Presence of the tetragonal phase located in the outer part of the scale have been confirmed, yet its Raman characteristics suggest a stress-free tetragonal phase, therefore different type of stabilization mechanism. Presented study suggest that its stabilization could be related to the lattice defects introduced by highstoichiometry of zirconia or presence of heterovalent cations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Wenzhi; Yang, Jili; Wang, Chunjie
2012-09-15
Highlights: ► Tetragonal t″ phase was stabilized in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution at temperature as high as 1000 °C. ► Specific surface area of powders decreased with the increase of water addition and the Ce content. ► The single stable phase was controlled by adjusting the volume ratio of water and ethanol. ► Tetragonal (t″) phase dissociated into cubic and tetragonal (t′) phases at 1200 °C. -- Abstract: ZrO{sub 2}–CeO{sub 2} mixed oxides were synthesized via sol–gel process. Thermal stability, structure and morphology of samples were investigated by powder X-ray diffraction, FT-Raman spectroscopy, X-ray photoelectron spectroscopy and scanningmore » electron microscopy. In this approach, the solvent composition and Zr/Ce molar ratio have great influences on the structure and morphology of final products. With decreasing water content in the mixed solvent, specific surface area of powders increased and the single tetragonal phase was obtained. Only when the volume ratio of water and ethanol and the Zr/Ce molar ratio were 1:1, tetragonal t″-Zr{sub 0.5}Ce{sub 0.5}O{sub 2} could be stabilized in powders at temperature as high as 1000 °C. Meanwhile, tetragonal (t′) and (t″) phases coexisted in Zr{sub 0.5}Ce{sub 0.5}O{sub 2} solid solution without peak splitting after calcination at 1100 °C, further transforming into cubic and tetragonal (t′) phases at 1200 °C. The effective activation energy for Zr{sub 0.5}Ce{sub 0.5}O{sub 2} nanocrystallite growth during annealing is about 5.24 ± 0.15 kJ/mol.« less
Candido, L M; Fais, Lmg; Ferreira, E B; Antonio, S G; Pinelli, Lap
To characterize the surface of an yttria-stabilized zirconia (Y-TZP) ceramic after diamond grinding in terms of its crystalline phase, morphology, mean roughness (Ra), and wettability as well as to determine a thermal treatment to reverse the resulting tetragonal to monoclinic (t-m) transformation. Y-TZP specimens were distributed into different groups according to the actions (or no action) of grinding and irrigation. Grinding was accomplished using a diamond stone at a low speed. The samples were characterized by x-ray diffraction (XRD), scanning electron microscopy, goniometry, and profilometry. In situ high-temperature XRD was used to determine an annealing temperature to reverse the t-m transformation. Ra was submitted to the Kruskal-Wallis test, followed by the Dunn test (α=0.05). The volume fraction of the monoclinic phase and contact angle were submitted to one-way analysis of variance, followed by the Tukey test (α=0.05). Monoclinic zirconia was observed on the surface of samples after dry and wet grinding with a diamond stone. The volume fraction of the monoclinic phase was smaller on the dry ground samples (3.6%±0.3%) than on the wet ground samples (5.6%±0.3%). High-temperature XRD showed reversion of the t-m phase transformation, which started at 700°C and completed at 800°C in a conventional oven. Grinding with a diamond stone partially transformed the crystalline phase on the surface of a Y-TZP ceramic from tetragonal to monoclinic zirconia while simultaneously increasing the surface roughness and wettability. The t-m transformation could be reversed by heat treatment at 800°C or 900°C for 60 minutes or 1000°C for 30 minutes.
Demonstration of Ru as the 4th ferromagnetic element at room temperature.
Quarterman, P; Sun, Congli; Garcia-Barriocanal, Javier; Dc, Mahendra; Lv, Yang; Manipatruni, Sasikanth; Nikonov, Dmitri E; Young, Ian A; Voyles, Paul M; Wang, Jian-Ping
2018-05-25
Development of novel magnetic materials is of interest for fundamental studies and applications such as spintronics, permanent magnetics, and sensors. We report on the first experimental realization of single element ferromagnetism, since Fe, Co, and Ni, in metastable tetragonal Ru, which has been predicted. Body-centered tetragonal Ru phase is realized by use of strain via seed layer engineering. X-ray diffraction and electron microscopy confirm the epitaxial mechanism to obtain tetragonal phase Ru. We observed a saturation magnetization of 148 and 160 emu cm -3 at room temperature and 10 K, respectively. Control samples ensure the ferromagnetism we report on is from tetragonal Ru and not from magnetic contamination. The effect of thickness on the magnetic properties is also studied, and it is observed that increasing thickness results in strain relaxation, and thus diluting the magnetization. Anomalous Hall measurements are used to confirm its ferromagnetic behavior.
Low temperature synthesis of monolithic transparent Ta2O5 gels from hydrolysis of metal alkoxide
NASA Technical Reports Server (NTRS)
Bansal, Narottam P.
1993-01-01
Tantalum oxide gels in the form of transparent monoliths and powder were prepared from hydrolysis of tantalum pentaethoxide under controlled conditions using different mole ratios of Ta(OC2H5)5:C2H50H:H20:HCl. Alcohol acts as the mutual solvent and HCl as the deflocculating agent. For a fixed alkoxide:water:HCl ratio, time of gel formation increased with the alcohol to alkoxide mole ratio. Thermal evolution of the physical and structural changes in the gel was monitored by differential thermal analysis, thermogravimetric analysis, x-ray diffraction, and infrared spectroscopy. On heating to approximately 400 C, the amorphous gel crystallized into the low temperature orthorhombic phase Beta-Ta2O5, which transformed into the high temperature tetragonal phase Alpha-Ta2O5 when further heated to approximately 1450 C. The volume fraction of the crystalline phase increased with the firing temperature. The Alpha-Ta205 converted back into the low temperature phase, Beta-Ta2O5, on slow cooling through the transformation temperature of 1360 C indicating a slow but reversible transformation.
Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction
Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.; ...
2016-10-13
The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less
Monitoring a Silent Phase Transition in CH 3NH 3PbI 3 Solar Cells via Operando X-ray Diffraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schelhas, Laura T.; Christians, Jeffrey A.; Berry, Joseph J.
The relatively modest temperature of the tetragonal-to-cubic phase transition in CH 3NH 3PbI 3 perovskite is likely to occur during real world operation of CH 3NH 3PbI 3 solar cells. In this work, we simultaneously monitor the structural phase transition of the active layer along with solar cell performance as a function of the device operating temperature. The tetragonal to cubic phase transition is observed in the working device to occur reversibly at temperatures between 60.5 and 65.4 degrees C. In these operando measurements, no discontinuity in the device performance is observed, indicating electronic behavior that is insensitive to themore » structural phase transition. Here, this decoupling of device performance from the change in long-range order across the phase transition suggests that the optoelectronic properties are primarily determined by the local structure in CH 3NH 3PbI 3. That is, while the average crystal structure as probed by X-ray diffraction shows a transition from tetragonal to cubic, the local structure generally remains well characterized by uncorrelated, dynamic octahedral rotations that order at elevated temperatures but are unchanged locally.« less
Crystal structure and phase transitions of sodium potassium niobate perovskites
NASA Astrophysics Data System (ADS)
Tellier, J.; Malic, B.; Dkhil, B.; Jenko, D.; Cilensek, J.; Kosec, M.
2009-02-01
This paper presents the crystal structure and the phase transitions of K xNa 1- xNbO 3 (0.4 ≤ x ≤ 0.6). X-ray diffraction measurements were used to follow the change of the unit-cell parameters and the symmetry in the temperature range 100-800 K. At room temperature all the compositions exhibited a monoclinic metric of the unit cell with a small monoclinic distortion (90.32° ≤ β ≤ 90.34°). No major change of symmetry was evidenced in the investigated compositional range, which should be characteristic of the morphotropic phase-boundary region. With increasing temperature, the samples underwent first-order monoclinic-tetragonal and tetragonal-cubic transitions. Only the potassium-rich phases were rhombohedral at 100 K.
Nematic fluctuations in iron arsenides NaFeAs and LiFeAs probed by 75As NMR
NASA Astrophysics Data System (ADS)
Toyoda, Masayuki; Kobayashi, Yoshiaki; Itoh, Masayuki
2018-03-01
75As NMR measurements have been made on single crystals to study the nematic state in the iron arsenides NaFeAs, which undergoes a structural transition from a high-temperature (high-T ) tetragonal phase to a low-T orthorhombic phase at Ts=57 K and an antiferromagnetic transition at TN=42 K, and LiFeAs having a superconducting transition at Tc=18 K. We observe the in-plane anisotropy of the electric field gradient η even in the tetragonal phase of NaFeAs and LiFeAs, showing the local breaking of tetragonal C4 symmetry. Then, η is found to obey the Curie-Weiss (CW) law as well as in Ba (Fe1-xCox) 2As2 . The good agreement between η and the nematic susceptibility obtained by electronic Raman spectroscopy indicates that η is governed by the nematic susceptibility. From comparing η in NaFeAs and LiFeAs with η in Ba (Fe1-xCox) 2As2 , we discuss the carrier-doping dependence of the nematic susceptibility. The spin contribution to nematic susceptibility is also discussed from comparing the CW terms in η with the nuclear spin-lattice relaxation rate divided by temperature 1 /T1T . Finally, we discuss the nematic transition in the paramagnetic orthorhombic phase of NaFeAs from the in-plane anisotropy of 1 /T1T .
Pressure-induced collapsed-tetragonal phase in SrCo2As2 at ambient temperature
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, A.; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Bud'Ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.; Fabbris, G.; Feng, Y.; Veiga, L. S. I.; Dos Santos, A. M.
Our recent high-energy (HE) high-pressure (HP) x-ray powder diffraction measurements on tetragonal (T) SrCo2As2 have revealed a first-order pressure-induced structural phase transition to a collapsed tetragonal (cT) phase with a reduction in c by -7.9% and the c / a ratio by -9.9%. The T and cT phases coexist for applied pressures 6 GPa to 18 GPa at 7 K. Resistance measurements up to 5.9 GPa and down to 1.8 K signatures likely associated with the cT phase above 5.5 GPa and found no evidence for superconductivity. Neutron diffraction data show no evidence of magnetic order up to 1.1 GPa. Here, we show that the T to cT transition occurs around 6.8 GPa at ambient temperature, and that the transition is nearly temperature-independent from 300 K down to 7 K, which indicates a steep p - T phase line. Work at Ames Lab. was supported by US DOE, BES, DMSE under DE-AC02-07CH11358. This research used resources at the APS and ORNL, US DOE, SC, User Facilities.
Nanotwin and phase transformation in tetragonal Pb(Fe1/2Nb1/2)1-xTixO3 single crystal
NASA Astrophysics Data System (ADS)
Tu, C.-S.; Tseng, C.-T.; Chien, R. R.; Schmidt, V. Hugo; Hsieh, C.-M.
2008-09-01
This work is a study of phase transformation in (001)-cut Pb(Fe1/2Nb1/2)1-xTixO3 (x =48%) single crystals by means of dielectric permittivity, domain structure, and in situ x-ray diffraction. A first-order T(TNT)-C(TNT) phase transition was observed at the Curie temperature TC≅518 K upon zero-field heating. T, TNT, and C are tetragonal, tetragonal nanotwin, and cubic phases, respectively. T(TNT) and C(TNT) indicate that minor TNT domains reside in the T and C matrices. Nanotwins, which can cause broad diffraction peak, remain above TC≅518 K and give an average microscopic cubic symmetry in the polarizing microscopy. Colossal dielectric permittivity (>104) was observed above room temperature with strong frequency dispersion. This study suggests that nanotwins can play an important role in relaxor ferroelectric crystals while phase transition takes place. The Fe ion is a potential candidate as a B-site dopant for enhancing dielectric permittivity.
NASA Astrophysics Data System (ADS)
Yu, Jian; An, Fei-fei; Cao, Fei
2014-05-01
In this paper, ferroelectric phase transitions of Pb0.6-xCaxBi0.4(Ti0.75Zn0.15Fe0.1)O3 with x ≤ 0.20 ceramics were experimentally measured and a change from first-order to relaxor was found at a critical composition x ˜ 0.19. With increasing Ca content of x ≤ 0.18, Curie temperature and tetragonality was found decrease but piezoelectric constant and dielectric constant increase in a quadratic polynomial relationship as a function of x, while the ferroic Curie temperature and ferroelastic ordering parameter of tetragonality are correlated in a quadratic polynomial relationship. Near the critical composition of ferroic phase transition from first-order to relaxor, the Pb0.42Ca0.18Bi0.4(Ti0.75Zn0.15Fe0.1)O3 and 1 mol % Nb + 0.5 mol % Mg co-doped Pb0.44Ca0.16Bi0.4(Ti0.75Zn0.15Fe0.1)O3 ceramics exhibit a better anisotropic piezoelectric properties than those commercial piezoceramics of modified-PbTiO3 and PbNb2O6. At last, those factors including reduced mass of unit cell, mismatch between cation size and anion cage size, which affect ferroic Curie temperature and ferroelastic ordering parameter (tetragonality) of tetragonal ABO3 perovskites, are analyzed on the basis of first principle effective Hamiltonian and the reduced mass of unit cell is argued a more universal variable than concentration to determine Curie temperature in a quadratic polynomial relationship over various perovskite-structured solid solutions.
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO3
NASA Astrophysics Data System (ADS)
Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; Gedik, Nuh; Moodera, Jagadeesh S.; Moler, Kathryn A.
2017-12-01
The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16 K, and SrTiO3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K, indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. We speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.
Nakatani, Tomotaka; Yoshiasa, Akira; Nakatsuka, Akihiko; Hiratoko, Tatsuya; Mashimo, Tsutomu; Okube, Maki; Sasaki, Satoshi
2016-02-01
A variable-temperature single-crystal X-ray diffraction study of a synthetic BaTiO3 perovskite has been performed over the temperature range 298-778 K. A transition from a tetragonal (P4mm) to a cubic (Pm3m) phase has been revealed near 413 K. In the non-centrosymmetric P4mm symmetry group, both Ti and O atoms are displaced along the c-axis in opposite directions with regard to the Ba position fixed at the origin, so that Ti(4+) and Ba(2+) cations occupy off-center positions in the TiO6 and BaO12 polyhedra, respectively. Smooth temperature-dependent changes of the atomic coordinates become discontinuous with the phase transition. Our observations imply that the cations remain off-center even in the high-temperature cubic phase. The temperature dependence of the mean-square displacements of Ti in the cubic phase includes a significant static component which means that Ti atoms are statistically distributed in the off-center positions.
NASA Astrophysics Data System (ADS)
Jao, M.-H.; Teague, M. L.; Huang, J.-S.; Tseng, W.-S.; Yeh, N.-C.
Organic-inorganic hybrid perovskites, arising from research of low-cost high performance photovoltaics, have become promising materials not only for solar cells but also for various optoelectronic and spintronic applications. An interesting aspect of the hybrid perovskites is that their material properties, such as the band gap, can be easily tuned by varying the composition, temperature, and the crystalline phases. Additionally, the surface structure is critically important for their optoelectronic applications. It is speculated that different crystalline facets could show different trap densities, thus resulting in microscopically inhomogeneous performance. Here we report direct studies of the surface structures and electronic properties of hybrid perovskite CH3NH3PbI3 single crystals by scanning tunneling microscopy and spectroscopy (STM/STS). We found long-range spatially homogeneous tunneling conductance spectra with a well-defined energy gap of (1.55 +/- 0.1) eV at 300 K in the tetragonal phase, suggesting high quality of the single crystals. The energy gap increased to (1.81 +/- 0.1) eV in the orthorhombic phase, below the tetragonal-to-orthorhombic phase transition temperature at 150 K. Detailed studies of the temperature evolution in the spatially resolved surface structures and local density of states will be discussed to elucidate how these properties may influence the optoelectronic performance of the hybrid perovskites. We thank the support from NTU in Taiwan and from NSF in the US.
NASA Astrophysics Data System (ADS)
Yadav, Arun Kumar; Verma, Anita; Kumar, Sunil; Srihari, Velaga; Sinha, A. K.; Reddy, V. Raghavendra; Liu, Shun Wei; Biring, Sajal; Sen, Somaditya
2018-03-01
The phase purity and crystal structure of Pb(1-x)LaxTi(1-x)AlxO3 (0 ≤ x ≤ 0.25) samples (synthesized via the sol-gel process) were confirmed using synchrotron x-ray powder diffraction (XRD) (wavelength, λ = 0.44573 Å). Rietveld analyses of powder x-ray diffraction data confirmed the tetragonal structure for compositions with x ≤ 0.18 and cubic structure for the sample with x = 0.25. Temperature-dependent XRD was performed to investigate the structural change from tetragonal to cubic structure phase transition. Raman spectroscopy at room temperature also confirmed this phase transition with compositions. Field emission scanning electron microscopy (FESEM) provided information about the surface morphology while an energy dispersive x-ray spectrometer attached with FESEM confirmed the chemical compositions of samples. Temperature and frequency dependent dielectric studies showed that the tetragonal to cubic phase transition decreased from 680 K to 175 K with an increase in the x from 0.03 to 0.25, respectively. This is correlated with the structural studies. Electric field dependent spontaneous polarization showed a proper ferroelectric loop for 0.06 ≤ x ≤ 0.18 belonging to a tetragonal phase, while for x ≥ 0.25, the spontaneous polarization vanishes. Bipolar strain versus electric field revealed a butterfly loop for 0.06 ≤ x ≤ 0.18 compositions. Energy storage efficiency initially increases nominally with substitution but beyond x = 0.18 enhances considerably.
NASA Astrophysics Data System (ADS)
Lahoz, F.; Villacampa, B.; Alcalá, R.; Marquina, C.; Ibarra, M. R.
1997-04-01
The influence of crystal mixing on the structural phase transitions in Rb1-xCsxCaF3 (0
X-ray and dielectric characterization of Co doped tetragonal BaTiO3 ceramics
NASA Astrophysics Data System (ADS)
Bujakiewicz-Koronska, R.; Vasylechko, L.; Markiewicz, E.; Nalecz, D. M.; Kalvane, A.
2017-01-01
The crystal structure modifications of BaTiO3 induced by cobalt doping were studied. The polycrystalline (1 - x)BaTiO3 + xCo2O3 samples, with x ≤ 10 wt.%, were prepared by high temperature sintering conventional method. According to X-ray phase and structural characterization, performed by full-profile Rietveld refinement technique, all synthesized samples showed tetragonal symmetry perovskite structure with minor amount of parasitic phases. Pure single-phase composition has been detected only in the low level of doping BaTiO3. It was indicated that substitution of Co for the Ti sites in the (1 - x)BaTiO3 + xCo2O3 series led to decrease of tetragonality (c/a) of the BaTiO3 perovskite structure. This effect almost vanished in the (1 - x)BaTiO3 + xCo2O3 samples with nominal Co content higher than ∼1 wt.%, in which precipitation of parasitic Co-containing phases CoO and Co2TiO4 has been observed. Based on the results, the solubility limit of Co in Ti sub-lattice in the (1 - x)BaTiO3 + xCo2O3 series is estimated as x = 0.75 wt.%.
NASA Astrophysics Data System (ADS)
Yan, Tianxiang; Han, Feifei; Ren, Shaokai; Ma, Xing; Fang, Liang; Liu, Laijun; Kuang, Xiaojun; Elouadi, Brahim
2018-04-01
(1 - x)K0.5Na0.5NbO3- x(Bi0.5Li0.5)ZrO3 (labeled as (1 - x)KNN- xBLZ) lead-free ceramics were fabricated by a solid-state reaction method. A research was conducted on the effects of BLZ content on structure, dielectric properties and relaxation behavior of KNN ceramics. By combining the X-ray diffraction patterns with the temperature dependence of dielectric properties, an orthorhombic-tetragonal phase coexistence was identified for x = 0.03, a tetragonal phase was determined for x = 0.05, and a single rhombohedral structure occurred at x = 0.08. The 0.92KNN-0.08BLZ ceramic exhibits a high and stable permittivity ( 1317, ± 15% variation) from 55 to 445 °C and low dielectric loss (≤ 6%) from 120 to 400 °C, which is hugely attractive for high-temperature capacitors. Activation energies of both high-temperature dielectric relaxation and dc conductivity first increase and then decline with the increase of BLZ, which might be attributed to the lattice distortion and concentration of oxygen vacancies.
Yabuta, Hisato; Tanaka, Hidenori; Furuta, Tatsuo; Watanabe, Takayuki; Kubota, Makoto; Matsuda, Takanori; Ifuku, Toshihiro; Yoneda, Yasuhiro
2017-01-01
To stabilise ferroelectric-tetragonal phase of BaTiO3, the double-doping of Bi and Mn up to 0.5 mol% was studied. Upon increasing the Bi content in BaTiO3:Mn:Bi, the tetragonal crystal-lattice-constants a and c shrank and elongated, respectively, resulting in an enhancement of tetragonal anisotropy, and the temperature-range of the ferroelectric tetragonal phase expanded. X-ray absorption fine structure measurements confirmed that Bi and Mn were located at the A(Ba)-site and B(Ti)-site, respectively, and Bi was markedly displaced from the centrosymmetric position in the BiO12 cluster. This A-site substitution of Bi also caused fluctuations of B-site atoms. Magnetic susceptibility measurements revealed a change in the Mn valence from +4 to +3 upon addition of the same molar amount of Bi as Mn, probably resulting from a compensating behaviour of the Mn at Ti4+ sites for donor doping of Bi3+ into the Ba2+ site. Because addition of La3+ instead of Bi3+ showed neither the enhancement of the tetragonal anisotropy nor the stabilisation of the tetragonal phase, these phenomena in BaTiO3:Mn:Bi were not caused by the Jahn-Teller effect of Mn3+ in the MnO6 octahedron, but caused by the Bi-displacement, probably resulting from the effect of the 6 s lone-pair electrons in Bi3+. PMID:28367973
Origin of thickness dependence of structural phase transition temperatures in BiFeO 3 thin films
Yang, Yongsoo; Beekman, Christianne; Siemons, Wolter; ...
2016-03-28
In this study, two structural phase transitions are investigated in highly strained BiFeO 3 thin films grown on LaAlO 3 substrates, as a function of film thickness and temperature via synchrotron x-ray diffraction. Both transition temperatures (upon heating: monoclinic MC to monoclinic MA, and MA to tetragonal) decrease as the film becomes thinner. The existence of an interface layer at the film-substrate interface, deduced from half-order peak intensities, contributes to this behavior only for the thinnest samples; at larger thicknesses (above a few nanometers) the temperature dependence can be understood in terms of electrostatic considerations akin to size effects inmore » ferroelectric phase transitions, but observed here for structural phase transitions within the ferroelectric phase and related to the rearrangement rather than the formation of domains. For ultra-thin films, the tetragonal structure is stable at all investigated temperatures (down to 30 K).« less
NASA Astrophysics Data System (ADS)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar
2015-04-01
Results of the room temperature structural studies on (1-x)Bi(Mg1/2Ti1/2)O3-xPbTiO3 ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.
Giant piezoelectric property of (110) oriented BaxSr1-xTiO3 films
NASA Astrophysics Data System (ADS)
Chen, Z. H.; Chen, Z.; Qiu, J. H.; Yuan, N. Y.; Ding, J. N.
2017-10-01
A phenomenological Landau-Devonshire theory is applied to investigate the phase diagrams and physical properties of (110) oriented BaxSr1-xTiO3 films. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase, appear in the ;misfit strain-temperature; phase diagrams for (110) oriented films compared with that of (001) oriented films. Moreover, the orthorhombic a2 c phase, and the tetragonal c phase and the triclinic γ phase are stable at low temperature for x = 0.5 and x = 0.7 , respectively. The ferroelectric, dielectric, and piezoelectric properties strongly depend on the misfit strain and electric field. (110) oriented Ba0.7Sr0.3TiO3 film has the larger ferroelectric polarization and piezoelectric coefficient than that of Ba0.5Sr0.5TiO3 film. The giant piezoelectric coefficient of 340 pm / V is obtained at the electric field of 50 KV / cm in (110) oriented Ba0.7Sr0.3TiO3 film, which is comparable with the values of Pb (Zr1-xTix)O3 and (1 - x) Pb (Mg1/3Nb2/3)O3 -xPbTiO3 films. It makes (110) oriented BaxSr1-xTiO3 films suitable for applications in electromechanical devices.
Tetragonal CH3NH3PbI3 is ferroelectric
Bar-Elli, Omri; Meirzadeh, Elena; Kaslasi, Hadar; Peleg, Yagel; Hodes, Gary; Lubomirsky, Igor; Oron, Dan; Ehre, David; Cahen, David
2017-01-01
Halide perovskite (HaP) semiconductors are revolutionizing photovoltaic (PV) solar energy conversion by showing remarkable performance of solar cells made with HaPs, especially tetragonal methylammonium lead triiodide (MAPbI3). In particular, the low voltage loss of these cells implies a remarkably low recombination rate of photogenerated carriers. It was suggested that low recombination can be due to the spatial separation of electrons and holes, a possibility if MAPbI3 is a semiconducting ferroelectric, which, however, requires clear experimental evidence. As a first step, we show that, in operando, MAPbI3 (unlike MAPbBr3) is pyroelectric, which implies it can be ferroelectric. The next step, proving it is (not) ferroelectric, is challenging, because of the material’s relatively high electrical conductance (a consequence of an optical band gap suitable for PV conversion) and low stability under high applied bias voltage. This excludes normal measurements of a ferroelectric hysteresis loop, to prove ferroelectricity’s hallmark switchable polarization. By adopting an approach suitable for electrically leaky materials as MAPbI3, we show here ferroelectric hysteresis from well-characterized single crystals at low temperature (still within the tetragonal phase, which is stable at room temperature). By chemical etching, we also can image the structural fingerprint for ferroelectricity, polar domains, periodically stacked along the polar axis of the crystal, which, as predicted by theory, scale with the overall crystal size. We also succeeded in detecting clear second harmonic generation, direct evidence for the material’s noncentrosymmetry. We note that the material’s ferroelectric nature, can, but need not be important in a PV cell at room temperature. PMID:28588141
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3
Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.; ...
2017-12-15
The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less
Spatially modulated magnetic structure of EuS due to the tetragonal domain structure of SrTiO 3
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosenberg, Aaron J.; Katmis, Ferhat; Kirtley, John R.
The combination of ferromagnets with topological superconductors or insulators allows for new phases of matter that support excitations such as chiral edge modes and Majorana fermions. EuS, a wide-bandgap ferromagnetic insulator with a Curie temperature around 16K, and SrTiO 3 (STO), an important substrate for engineering heterostructures, may support these phases. We present scanning superconducting quantum interference device measurements of EuS grown epitaxially on STO that reveal micron-scale variations in ferromagnetism and paramagnetism. These variations are oriented along the STO crystal axes and only change their configuration upon thermal cycling above the STO cubic-to-tetragonal structural transition temperature at 105 K,more » indicating that the observed magnetic features are due to coupling between EuS and the STO tetragonal structure. Here, we speculate that the STO tetragonal distortions may strain the EuS, altering the magnetic anisotropy on a micron scale. This result demonstrates that local variation in the induced magnetic order from EuS grown on STO needs to be considered when engineering new phases of matter that require spatially homogeneous exchange.« less
Investigation of transport properties of FeTe compound
NASA Astrophysics Data System (ADS)
Lodhi, Pavitra Devi; Solanki, Neha; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Transport properties of FeTe parent compound has been investigated by measurements of electrical resistivity, magnetic susceptibility and Seebeck coefficient. The sample was synthesized through a standard solid state reaction route via vacuum encapsulation and characterized by x-ray diffraction, which indicated a tetragonal phase with space group P4/nmm. The parent FeTe compound does not exhibit superconductivity but shows an anomaly in the resistivity measurement at around 67 K, which corresponds to a structural phase transition along with in the vicinity of a magnetic phase transition. In the low temperature regime, Seebeck coefficient, S(T), exhibited an anomalous dip feature and negative throughout the temperature range, indicating electron-like charge carrier conduction mechanism.
NASA Technical Reports Server (NTRS)
Labbe, J.; Friedel, J.
1978-01-01
In V3Si, the V atoms form an array of dense linear chains; a tight-binding approximation in one dimension was used to describe the d electrons. The electronic energy calculated by this method was reduced when the lattice is deformed. This lead to a band type of the Jahn Teller effect, which may explain the cubic to tetragonal transition which was observed at low temperatures. The theory can be extended to other superconductors of the V3X type when X=Ga, Ge, Sn, etcetera, or NB3SN.
Structure of water clusters on graphene: A classical molecular dynamics approach
NASA Astrophysics Data System (ADS)
Maekawa, Yuki; Sasaoka, Kenji; Yamamoto, Takahiro
2018-03-01
The microscopic structure of surface water adsorbed on graphene is elucidated theoretically by classical molecular dynamics simulation. At a low temperature (100 K), the main polygon consisting of hydrogen bonds in single-layered water on graphene is tetragonal, whereas the dominant polygons in double-layered water are tetragonal, pentagonal, and hexagonal. On the other hand, at room temperature, the tetragonal, pentagonal, and hexagonal water clusters are the main structures in both single- and double-layered water.
Hassinger, Elena; Gredat, G.; Valade, F.; ...
2016-04-01
In the temperature-concentration phase diagram of most iron-based superconductors, antiferromagnetic order is gradually suppressed to zero at a critical point, and a dome of superconductivity forms around that point. The nature of the magnetic phase and its fluctuations is of fundamental importance for elucidating the pairing mechanism. In Ba 1–xK xFe 2As 2 and Ba 1–xNa xFe 2As 2, it has recently become clear that the usual stripelike magnetic phase, of orthorhombic symmetry, gives way to a second magnetic phase, of tetragonal symmetry, near the critical point, in the range from x = 0.24 to x = 0.28 for Bamore » 1–xK xFe 2As 2. In a prior study, an unidentified phase was discovered for x < 0.24 but under applied pressure, whose onset was detected as a sharp anomaly in the resistivity. Here we report measurements of the electrical resistivity of Ba 1–xK xFe 2As 2 under applied hydrostatic pressures up to 2.75 GPa, for x = 0.22, 0.24, and 0.28. The critical pressure above which the unidentified phase appears is seen to decrease with increasing x and vanish at x = 0.24, thereby linking the pressure-induced phase to the tetragonal magnetic phase observed at ambient pressure. In the temperature-concentration phase diagram of Ba 1–xK xFe 2As 2, we find that pressure greatly expands the tetragonal magnetic phase, while the stripelike phase shrinks. As a result, this reveals that pressure may be a powerful tuning parameter with which to explore the interplay between magnetism and superconductivity in this material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh
Simultaneous high-pressure X-ray diffraction and electrical resistance measurements have been carried out on a PbO-type {alpha}-FeSe{sub 0.92} compound to a pressure of 44 GPa and temperatures down to 4 K using designer diamond anvils at synchrotron source. A ambient temperature, a structural phase transition from a tetragonal (P4/nmm) phase to an orthorhombic (Pbnm) phase is observed at 11 GPa and the Pbnm phase persists up to 74 GPa. The superconducting transition temperature (T{sub c}) increases rapidly with pressure reaching a maximum of {approx}28 K at {approx}6 GPa and decreases at higher pressures, disappearing completely at 14.6 GPa. Simultaneous pressure-dependent X-raymore » diffraction and resistance measurements at low temperatures show superconductivity only in a low-pressure orthorhombic (Cmma) phase of the {alpha}-FeSe{sub 0.92}. Upon increasing pressure at 10 K near T{sub c}, crystalline phases change from a mixture of orthorhombic (Cmma) and hexagonal (P63/mmc) phases to a high-pressure orthorhombic (Pbnm) phase near 6.4 GPa where T{sub c} is maximum.« less
NASA Technical Reports Server (NTRS)
Labbe, J.; Friedel, J.
1977-01-01
Equations assuming a Jahn-Teller type effect for the d band electrons in V3Si compounds are given, and the results of free-energy change calculations by using some approximations based on these equations are depicted. The tetragonal structure is converted to cubic as the temperature rises past T sub m which is calculated as 13 K. by the Batterman-Barrett method and is measured to be 20-5 K. Other parameters such as change of C sub p with temperature are predicted better.
Crystallization of Chicken Egg White Lysozyme from Sulfate Salts
NASA Technical Reports Server (NTRS)
Forsythe, Elizabeth; Pusey, Marc
1998-01-01
It has been "known" that chicken egg white lysozyme does not crystallize from sulfate, particularly ammonium sulfate, salts, but instead gives amorphous precipitates. This has been the basis of several studies using lysozyme comparing macromolecule crystal nucleation and amorphous precipitation. Recently Ries-Kautt et al (Acta Cryst D50, (1994) 366) have shown that purified isoionic CEWL could be crystallized from low concentrations of sulfate at basic pH, and we subsequently showed that in fact CEWL could be purified in both the tetragonal and orthorhombic forms using ammonium sulfate over the pH range 4.0 to 7.8 (Acta Cryst D53, (1997) 795). We have now extended these observations to include a range of common sulfate salts, specifically sodium, potassium, rubidium, magnesium, and manganese sulfates. In all cases but the manganese sulfates both the familiar tetragonal and orthorhombic forms were obtained, with unit cell dimensions close to those known for the "classic" sodium chloride crystallized forms. Manganese sulfate has only yielded orthorhombic crystals to date. All crystallizations were carried out using low (typically less than or equal to 6 M) salt and high (greater than approximately 90 mg/ml) protein concentrations. As with ammonium sulfate, the tetragonal - orthorhombic phase shift appears to be a function of both the temperature and the protein concentration, with higher temperatures and concentrations favoring the orthorhombic and lower the tetragonal form. The phase change range is somewhat reduced for the sulfate salts, depending upon conditions being typically between approximately 15 - 20 C. Both the magnesium and manganese sulfates gave crystals at salt concentrations over 0.6 M as well, with magnesium sulfate giving a very slowly nucleating and growing hexagonal form. A triclinic crystal form, characterized by aggressively small crystals (typically 0.1 mm in size) has been occasionally obtained from ammonium sulfate. Finally, preliminary spot solubility determinations have suggested that in some cases the solubility increases with increasing salt concentrations.
Transformation to Ni5Al3 in a 63.0 at. pct Ni-Al alloy
NASA Technical Reports Server (NTRS)
Khadkikar, P. S.; Locci, I. E.; Vedula, K.; Michal, G. M.
1993-01-01
Microstructures of 63 at. pct P/M Ni-Al alloys with a composition close to the stoichiometry of the Ni5Al3 phase were investigated using homogenized and quenched specimens aged at low temperatures for various times. Results of analyses of XRD data and electron microscopy observations were used for quantitative phase analysis, performed to calculate the (NiAl + Ni5Al3)/Ni5Al3 phase boundary locations. The measured lattice parameters of Ni5Al3 phase formed at 823, 873, and 923 K indicated an increase in tetragonality of the phase with increasing nickel content.
NASA Astrophysics Data System (ADS)
Morozova, Natalia V.; Karkin, Alexander E.; Ovsyannikov, Sergey V.; Umerova, Yuliya A.; Shchennikov, Vladimir V.; Mittal, R.; Thamizhavel, A.
2015-12-01
We experimentally investigated the electronic transport properties of four iron pnictide crystals, namely, EuFe2As2, SrFe2As2, and CaFe2As2 parent compounds, and superconducting CaFe1.94Co0.06As2 at ambient and high pressures up to 20 GPa. At ambient pressure we examined the electrical resistivity, Hall and magnetoresistance effects of the samples in a temperature range from 1.5 to 380 K in high magnetic fields up to 13.6 T. In this work we carried out the first simultaneous investigations of the in-plane and out-of-plane Hall coefficients, and found new peculiarities of the low-temperature magnetic and structural transitions that occur in these materials. In addition, the Hall coefficient data suggested that the parent compounds are semimetals with a multi-band conductivity that includes hole-type and electron-type bands. We measured the pressure dependence of the thermoelectric power (the Seebeck effect) of these samples up to 20 GPa, i.e. across the known phase transition from the tetragonal to the collapsed tetragonal lattice. The high-pressure behavior of the thermopower of EuFe2As2 and CaFe2As2 showing the p-n sign inversions was consistent with the semimetal model described above. By means of thermopower, we found in single-crystalline CaFe2As2 direct evidence of the band structure crossover related to the formation of As-As bonds along the c-axis on the tetragonal → collapsed tetragonal phase transition near 2 GPa. We showed that this feature is distinctly observable only in high-quality samples, and already for re-pressurization cycles this crossover was strongly smeared because of the moderate deterioration of the sample. We also demonstrated by means of thermopower that the band structure crossover that should accompany the tetragonal → collapsed tetragonal phase transition in EuFe2As2 near 8 GPa is hardly visible even in high-quality single crystals. This behavior may be related to a gradual valence change of the Eu ions under pressure that leads to an injection of free electrons and the steady shift of the conduction to n-type.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhaka, R. S.; Jiang, Rui; Ran, S.
2014-01-31
We use angle-resolved photoemission spectroscopy and density functional theory calculations to study the electronic structure of CaFe 2As 2 in the collapsed tetragonal (CT) phase. This unusual phase of iron arsenic high-temperature superconductors was hard to measure as it exists only under pressure. By inducing internal strain, via the postgrowth thermal treatment of single crystals, we were able to stabilize the CT phase at ambient pressure. We find significant differences in the Fermi surface topology and band dispersion data from the more common orthorhombic-antiferromagnetic or tetragonal-paramagnetic phases, consistent with electronic structure calculations. The top of the hole bands sinks belowmore » the Fermi level, which destroys the nesting present in parent phases. The absence of nesting in this phase, along with an apparent loss of Fe magnetic moment, are now clearly experimentally correlated with the lack of superconductivity in this phase.« less
NASA Astrophysics Data System (ADS)
Rendtorff, N. M.; Suárez, G.; Sakka, Y.; Aglietti, E. F.
2011-10-01
The mechanochemical activation processing has proved to be an effective technique to enhance a solid-state reaction at relatively low temperatures. In such a process, the mechanical effects of milling, such as reduction of particle size and mixture homogenization, are accompanied by chemical effects, such as partial decomposition of salts or hydroxides resulting in very active reactants. The objective of the present work is to obtain (ZrO2)0.97(Y2O3)0.03 nanocrystalline tetragonal solid solution powders directly using a high energy milling on a mixture of the pure oxides. A second objective is to evaluate the efficiency of the processing proposed and to characterize both textural and structural evolution of the mixtures during the milling processes and throughout posterior low temperature treatments. The Textural and structural evolution were studied by XRD analysis, specific area measurements (BET) and SEM. Firstly a decrease of the crystallinity of the reactants was observed, followed by the disappearance of Y2O3 diffraction peaks and the partial appearance of the tetragonal phase at room temperature. The solid solution proportion was increased with the high energy milling time, obtaining complete stabilization of the tetragonal solid solution with long milling treatments (60 min).The obtained powders were uniaxially pressed and sintered at different temperatures (600-1400°C) the influence of the milling time was correlated with the sinterization degree and final crystalline composition of the materials. Finally, fully stabilized nanocrystalline zirconia materials were obtained satisfactorily by the proposed method.
Yi, Yuan-fu; Liu, Hong-chen; Wang, Chen; Tian, Jie-mo; Wen, Ning
2008-03-01
To investigate the influence of in vitro low-temperature degradation (LTD) treatment on the structural stability of 5 kinds of Y2O3 stabilized tetragonal zirconia polycrystals (Y-TZP) dental ceramics. TZ-3YS powder was compacted at 200 MPa using cold isostatic pressure and pre-sintered at 1050 degrees C for 2 h forming presintered blocks. Specimens were sectioned into 15 mm x 15 mm x 1.5 mm slices from blocks of TZ-3YS, Vita In-Ceram YZ, Ivoclar, Cercon Smart, and Kavo Y-TZP presintered blocks, 18 slices for each brand, and then densely sintered. Specimens were divided into 6 groups and subjected to an accelerated aging test carried out in an autoclave in steam at 134 degrees C, 0.2 MPa, for 0, 1, 2, 3, 4, and 5 h. X-ray diffraction (XRD) was used to identify crystal phases and relative content of monoclinic phase was calculated. Specimens for three-point bending test were fabricated using TZ-3YS ceramics according to the ISO 6872 standard and bending strength was tested before and after aging. The polished and aging specimens of TZ-3YS and Cercon Smart zirconia ceramics were observed by atomic force microscopy (AFM) to evaluate surface microstructure. Tetragonal-to-monoclinic phase transformation was detected for specimens of TZ-3YS, Vita In-Ceram YZ, Ivoclar, and Kavo zirconia ceramics except for Cercon Smart ceramics after aging, and the relative content of monoclinic phase was increasing with the prolonged aging time. TZ-3YS was the most affected material, Kavo took the second, and Vita and Ivoclar were similar. Aging had no significant negative effects on flexural strength of TZ-3YS with average bending strength being over 1100 MPa. The nucleation and growth of monoclinic phase were detected by AFM in surface of Cercon Smart zirconia in which monoclinic phase was not detected by XRD. The results suggest that LTD of dental Y-TZP is time dependent, but the aging test does not reduce the flexural strength of TZ-3YS. The long-term clinical serviceability of dental Y-TZP needs further observation.
NASA Astrophysics Data System (ADS)
Prades, Marta; Beltrán, Héctor; Masó, Nahum; Cordoncillo, Eloisa; West, Anthony R.
2008-11-01
The ferroelectric tetragonal tungsten bronze (TTB) phases, Ba2RETi2Nb3O15:RE=Nd,Sm, were prepared by low temperature solvothermal synthesis. The permittivity versus temperature data of sintered ceramics show two unusual features: first, a hysteresis of 50-100 °C between values of the Curie temperature Tc on heat-cool cycles and second: a huge depression in the Curie-Weiss temperature T0. Both effects are attributed to the complex nature of their TTB-related crystal structures with different superstructures above and below Tc and the difficulty in nucleating ferroelectric domains on cooling through Tc. Several factors may contribute to the latter difficulty: first, the structures contain two sets of crystallographic sites for the "active" Ti, Nb ions; second, the distribution of Ti and Nb over these two sets of sites is not random but partially ordered; and third, below Tc a weak commensurate superstructure perpendicular to the polar c&barbelow; axis is present, but above Tc a weak incommensurate superstructure in a similar orientation is present. Hence the formation of the ferroelectric structure on cooling requires both nucleation of polar domains involving two sets of cation sites and structural change from an incommensurate to a commensurate supercell.
Cubic to tetragonal phase transition of Tm{sup 3+} doped nanocrystals in oxyfluoride glass ceramics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yiming; Fu, Yuting; Shi, Yahui
2016-02-15
Tm{sup 3+} ions doped β-PbF{sub 2} nanocrystals in oxyfluoride glass ceramics with different doping concentrations and thermal temperatures are prepared by a traditional melt-quenching and thermal treatment method to investigate the structure and the phase transition of Tm{sup 3+} doped nanocrystals. The structures are characterized by X-ray diffraction Rietveld analysis and confirmed with numerical simulation. The phase transitions are proved further by the emission spectra. Both of the doping concentration and thermal temperature can induce an O{sub h} to D{sub 4h} site symmetry distortion and a cubic to tetragonal phase transition. The luminescence of Tm{sup 3+} doped nanocrystals at 800more » nm was modulated by the phase transition of the surrounding crystal field.« less
Crystal structure and properties of tetragonal EuAg{sub 4}In{sub 8} grown by metal flux technique
DOE Office of Scientific and Technical Information (OSTI.GOV)
Subbarao, Udumula; Sarkar, Sumanta; Peter, Sebastian C., E-mail: sebastiancp@jncasr.ac.in
The compound EuAg{sub 4}In{sub 8} has been obtained as single crystals in high yield from reactions run in liquid indium. X-ray diffraction on single crystals suggests that EuAg{sub 4}In{sub 8} crystallizes in the CeMn{sub 4}Al{sub 8} structure type, tetragonal space group I4/mmm with lattice constants a=b=9.7937(2) Å and c=5.7492(2) Å. Crystal structure of EuAg{sub 4}In{sub 8} is composed of pseudo Frank–Kasper cages occupied by one europium atom in each ring, which are shared through the corner along the ab plane resulting in a three dimensional network. The magnetic susceptibility of EuAg{sub 4}In{sub 8} was measured in the temperature range 2–300more » K, which obeyed Curie–Weiss law above 50 K. Magnetic moment value calculated from the fitting indicates the presence of divalent europium, which was confirmed by X-ray absorption near edge spectroscopy. Electrical resistivity measurements suggest that EuAg{sub 4}In{sub 8} is metallic in nature with a probable Fermi liquid behavior at low temperature. - Graphical abstract: The tetragonal EuAg{sub 4}In{sub 8} has been grown as single crystals from reactions run in liquid indium. Magnetic and XANES measurements suggest divalent nature of Eu and resistivity measurements suggest metallic nature. - Highlights: • EuAg{sub 4}In{sub 8} phase having tetragonal phase is grown by metal flux technique. • Magnetic and XANES measurements exhibit divalent nature of Eu in EuAg{sub 4}In{sub 8}. • Resistivity measurement suggests metallic nature and probable Fermi liquid behavior.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kalyani, Ajay Kumar; Brajesh, Kumar; Ranjan, Rajeev, E-mail: rajeev@materials.iisc.ernet.in
2014-06-23
The effect of Zr, Hf, and Sn in BaTiO{sub 3} has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2 mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d{sub 33}), with Sn modification exhibiting the highest value ∼425 pC/N.
Continuous-wave lasing in an organic-inorganic lead halide perovskite semiconductor
NASA Astrophysics Data System (ADS)
Jia, Yufei; Kerner, Ross A.; Grede, Alex J.; Rand, Barry P.; Giebink, Noel C.
2017-12-01
Hybrid organic-inorganic perovskites have emerged as promising gain media for tunable, solution-processed semiconductor lasers. However, continuous-wave operation has not been achieved so far1-3. Here, we demonstrate that optically pumped continuous-wave lasing can be sustained above threshold excitation intensities of 17 kW cm-2 for over an hour in methylammonium lead iodide (MAPbI3) distributed feedback lasers that are maintained below the MAPbI3 tetragonal-to-orthorhombic phase transition temperature of T ≈ 160 K. In contrast with the lasing death phenomenon that occurs for pure tetragonal-phase MAPbI3 at T > 160 K (ref. 4), we find that continuous-wave gain becomes possible at T ≈ 100 K from tetragonal-phase inclusions that are photogenerated by the pump within the normally existing, larger-bandgap orthorhombic host matrix. In this mixed-phase system, the tetragonal inclusions function as carrier recombination sinks that reduce the transparency threshold, in loose analogy to inorganic semiconductor quantum wells, and may serve as a model for engineering improved perovskite gain media.
High pressure ferroelastic phase transition in SrTiO3
NASA Astrophysics Data System (ADS)
Salje, E. K. H.; Guennou, M.; Bouvier, P.; Carpenter, M. A.; Kreisel, J.
2011-07-01
High pressure measurements of the ferroelastic phase transition of SrTiO3 (Guennou et al 2010 Phys. Rev. B 81 054115) showed a linear pressure dependence of the transition temperature between the cubic and tetragonal phase. Furthermore, the pressure induced transition becomes second order while the temperature dependent transition is near a tricritical point. The phase transition mechanism is characterized by the elongation and tilt of the TiO6 octahedra in the tetragonal phase, which leads to strongly nonlinear couplings between the structural order parameter, the volume strain and the applied pressure. The phase diagram is derived from the Clausius-Clapeyron relationship and is directly related to a pressure dependent Landau potential. The nonlinearities of the pressure dependent strains lead to an increase of the fourth order Landau coefficient with increasing pressure and, hence, to a tricritical-second order crossover. This behaviour is reminiscent of the doping related crossover in isostructural KMnF3.
NASA Astrophysics Data System (ADS)
Piosik, A.; Żurowski, K.; Pietralik, Z.; Hędzelek, W.; Kozak, M.
2017-11-01
Zirconium dioxide has been widely used in dental prosthetics. However, the improper mechanical treatment can induce changes in the microstructure of zirconium dioxide. From the viewpoint of mechanical properties and performance, the phase transitions of ZrO2 from the tetragonal to the monoclinic phase induced by mechanical processing, are particularly undesirable. In this study, the phase transitions of yttrium stabilized zirconium dioxide (Y-TZP) induced by mechanical treatment are investigated by the scanning electron microscopy (SEM), atomic force microscopy (AFM) and powder diffraction (XRD). Mechanical stress was induced by different types of drills used presently in dentistry. At the same time the surface temperature was monitored during milling using a thermal imaging camera. Diffraction analysis allowed determination of the effect of temperature and mechanical processing on the scale of induced changes. The observed phase transition to the monoclinic phase was correlated with the methods of mechanical processing.
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1-x)TiO3/Cu Composite.
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-06-03
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1-xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.
2001-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study, we show that possible conformational changes induced by heating are stable and apparently non-reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for four weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 hours at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
The Effect of Solution Thermal History on Chicken Egg White Lysozyme Nucleation
NASA Technical Reports Server (NTRS)
Burke, Michael W.; Judge, Russell A.; Pusey, Marc L.; Rose, M. Franklin (Technical Monitor)
2000-01-01
Proteins are highly flexible molecules and often exhibit defined conformational changes in response to changes in the ambient temperature. Chicken egg white lysozyme has been previously shown to undergo an apparent structural change when warmed above the tetragonal/orthorhombic phase transition temperature. This is reflected by a change in the habit of the tetragonal and orthorhombic crystals so formed. In this study we show that possible conformational changes induced by heating are stable and apparently non- reversible by simple cooling. Exposure of protein solutions to temperatures above the phase change transition temperature, before combining with precipitant solution to begin crystallization, reduces final crystal numbers. Protein that is briefly warmed to 37 C, then cooled shows no sign of reversal to the unheated nucleation behavior even after storage for 4 weeks at 4 C. The change in nucleation behavior of tetragonal lysozyme crystals, attributed to a structural shift, occurs faster the greater the exposure to temperature above the equi-solubility point for the two phases. Heating for 2 h at 48 C reduces crystal numbers by 20 fold in comparison to the same solution heated for the same time at 30 C. Thermal treatment of solutions is therefore a possible tool to reduce crystal numbers and increase crystal size. The effects of a protein's previous thermal history are now shown to be a potentially critical factor in subsequent macromolecule crystal nucleation and growth studies.
NASA Astrophysics Data System (ADS)
Rao, Badari Narayana; Khatua, Dipak Kumar; Garg, Rohini; Senyshyn, Anatoliy; Ranjan, Rajeev
2015-06-01
The highly complex structure-property interrelationship in the lead-free piezoelectric (x )N a1 /2B i1 /2Ti O3- (1 -x ) BaTi O3 is a subject of considerable contemporary debate. Using comprehensive x-ray, neutron diffraction, dielectric, and ferroelectric studies, we have shown the existence of a new criticality in this system at x =0.80 , i.e., well within the conventional tetragonal phase field. This criticality manifests as a nonmonotonic variation of the tetragonality and coercivity and is shown to be associated with a crossover from a nonmodulated tetragonal phase (for x <0.8 ) to a long-period modulated tetragonal phase (for x >0.80 ). It is shown that the stabilization of long-period modulation introduces a characteristic depolarization temperature in the system. While differing qualitatively from the two-phase model often suggested for the critical compositions of this system, our results support the view with regard to the tendency in perovskites to stabilize long-period modulated structures as a result of complex interplay of antiferrodistortive modes [Bellaiche and Iniguez, Phys. Rev. B 88, 014104 (2013), 10.1103/PhysRevB.88.014104; Prosandeev, Wang, Ren, Iniguez, ands Bellaiche, Adv. Funct. Mater. 23, 234 (2013), 10.1002/adfm.201201467].
Computational study of Li2OHCl as a possible solid state battery material
NASA Astrophysics Data System (ADS)
Howard, Jason; Holzwarth, N. A. W.
Preparations of Li2OHCl have recently been experimentally studied as solid state Li ion electrolytes. A disordered cubic phase is known to be stable at temperatures T >35o C. Following previous ideas, first principles supercells are constructed with up to 320 atoms to model the cubic phase. First principles molecular dynamics simulations of the cubic phase show Li ion diffusion occuring on the t =10-12 s time scale, at temperatures as low as T = 400 K. The structure of the lower temperature phase (T <35o C) is not known in detail. A reasonable model of this structure is developed by using the tetragonal ideal structure found by first principles simulations and a model Hamiltonian to account for alternative orientations of the OH groups. Supported by NSF Grant DMR-1507942. Thanks to Zachary D. Hood of GaTech and ORNL for introducing these materials to us.
Sarang, Som; Ishihara, Hidetaka; Chen, Yen-Chang; Lin, Oliver; Gopinathan, Ajay; Tung, Vincent C; Ghosh, Sayantani
2016-10-19
We have developed a framework for using temperature dependent static and dynamic photoluminescence (PL) of hybrid organic-inorganic perovskites (PVSKs) to characterize lattice defects in thin films, based on the presence of nanodomains at low temperature. Our high-stability PVSK films are fabricated using a novel continuous liquid interface propagation technique, and in the tetragonal phase (T > 120 K), they exhibit bi-exponential recombination from free charge carriers with an average PL lifetime of ∼200 ns. Below 120 K, the emergence of the orthorhombic phase is accompanied by a reduction in lifetimes by an order of magnitude, which we establish to be the result of a crossover from free carrier to exciton-dominated radiative recombination. Analysis of the PL as a function of excitation power at different temperatures provides direct evidence that the exciton binding energy is different in the two phases, and using these results, we present a theoretical approach to estimate this variable binding energy. Our findings explain this anomalous low temperature behavior for the first time, attributing it to an inherent fundamental property of the hybrid PVSKs that can be used as an effective probe of thin film quality.
NASA Astrophysics Data System (ADS)
Bhandari, Churna; Lambrecht, Walter R. L.
2018-06-01
While the tetragonal antiferro-electrically distorted (AFD) phase with space group I 4 / mcm is well known for SrTiO3 to occur below 105 K, there are also some hints in the literature of an orthorhombic phase, either at the lower temperature or at high pressure. A previously proposed orthorhombic layered structure of SrTiO3, known as the post-perovskite or CaIrO3 structure with space group Cmcm is shown to have significantly higher energy than the cubic or tetragonal phase and to have its minimum volume at larger volume than cubic perovskite. The Cmcm structure is thus ruled out. We also study an alternative Pnma phase obtained by two octahedral rotations about different axes. This phase is found to have slightly lower energy than the I 4 / mcm phase in spite of the fact that its parent, in-phase tilted P 4 / mbm phase is not found to occur. Our calculated enthalpies of formation show that the I 4 / mcm phase occurs at slightly higher volume than the cubic phase and has a negative transition pressure relative to the cubic phase, which suggests that it does not correspond to the high-pressure tetragonal phase. The enthalpy of the Pnma phase is almost indistinguishable from the I 4 / mcm phase. Alternative ferro-electric tetragonal and orthorhombic structures previously suggested in literature are discussed.
NASA Astrophysics Data System (ADS)
Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.
2017-10-01
We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Ashutosh; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2015-04-14
Results of the room temperature structural studies on (1−x)Bi(Mg{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} ceramics using Rietveld analysis of the powder x-ray diffraction data in the composition range 0.28 ≤ x ≤ 0.45 are presented. The morphotropic phase boundary region exhibits coexistence of monoclinic (space group Pm) and tetragonal (space group P4 mm) phases in the composition range 0.33 ≤ x ≤ 0.40. The structure is nearly single phase monoclinic (space group Pm) in the composition range 0.28 ≤ x ≤ 0.32. The structure for the compositions with x ≥ 0.45 is found to be predominantly tetragonal with space group P4 mm. Rietveld refinement of the structure rules out the coexistence of rhombohedral and tetragonal phases inmore » the morphotropic phase boundary region reported by earlier authors. The Rietveld structure analysis for the sample x = .35 calcined at various temperatures reveals that phase fraction of the coexisting phases in the morphotropic phase boundary region varies with grain size. The structural parameters of the two coexisting phases also change slightly with changing grain size.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lahoz, F.; Villacampa, B.; Alcala, R.
1997-04-01
The influence of crystal mixing on the structural phase transitions in Rb{sub 1{minus}x}Cs{sub x}CaF{sub 3} (0{lt}x{lt}1) fluoroperovskite crystals has been studied by thermal expansion and EPR measurements of Ni{sup 2+} and Ni{sup 3+} paramagnetic probes. A cubic-to-tetragonal phase transition has been detected in crystals with x=0, 0.1, 0.21, 0.27, and 0.35. The critical temperature and the tetragonal distortion decrease as x increases. No transition was observed for x{ge}0.44. This transition shows a weak first-order component in the x=0 and 0.1 samples, which is progressively smeared out for x{gt}0.1, indicating a spatial distribution of the critical temperature in those crystals withmore » high ionic substitution rate. In RbCaF{sub 3}, another structural phase transition was observed at 20 K with a thermal hysteresis between 20 and 40 K. This transition has not been found in any of the mixed crystals.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Chen, Jun; Fan, Longlong
Electric field-induced changes in the domain wall motion of (1-x)Bi(Mg 0.5Ti 0.5)O 3–xPbTiO 3 (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x =0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phasesmore » for BMT-37PT is larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less
NASA Astrophysics Data System (ADS)
Welke, M.; Huth, P.; Dabelow, K.; Gorgoi, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.
2018-05-01
In BaTiO3 the phase transition from tetragonal to cubic is connected with the disappearance of the ferroelectric polarization. In photoelectron spectroscopy huge transient shifts in the binding energies of all core-level photoemission lines have been observed while heating and cooling through the Curie temperature. Excitation energies from 2 keV to 6 keV have been used to show this to be a bulk effect and not a surface effect alone. These observations are discussed in terms of charging, which results from the disappearance of the ferroelectric polarization. This mechanism has previously been proposed as the origin of electron emission in ferroelectric materials. Besides the jump-like shifts, additional permanent shifts in binding energies have been observed for the tetragonal and the cubic phase. These experimental shifts have been related to theoretical ones from ab initio calculations. In addition to BaTiO3 single crystals, systems with CoFe2O4 and NiFe2O4 overlayers on BaTiO3 have been investigated. The low conductivity of these layers sets them apart from metallic overlayers like Fe or Co, where the shifts are suppressed. This difference adds further support for charging as the origin of the effect.
NASA Technical Reports Server (NTRS)
Burke, Michael; Judge, Russell; Pusey, Marc
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.2 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubilities are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to addition of precipitant solution. Warming a lysozyme solution above the phase transition point, then cooling it back below this point, has been shown to affect the subsequent nucleation rate, as determined by the numbers and size of crystals formed, but not the growth rate for the tetragonal crystal form . We have now measured the kinetics of this process and investigated its reversibility. The transition effects are progressive with temperature, having a half time of about 1 hour at 37C at pH 4.8. After holding a lysozyme solution at 37C (prior to addition of precipitant) for 16 hours, then cooling it back to 4C no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. Putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. This differential behaviour may be exploited to elucidate how and where flow affects the lysozyme crystal growth process. The presentation will focus on the results of these and ongoing studies in this area.
Electron-electron correlations in Raman spectra of VO2
NASA Astrophysics Data System (ADS)
Goncharuk, I. N.; Ilinskiy, A. V.; Kvashenkina, O. E.; Shadrin, E. B.
2013-01-01
It has been shown that, in single crystals and films of a strongly correlated material, namely, vanadium dioxide, upon a thermally stimulated phase transition from the low-temperature monoclinic phase to the high-temperature tetragonal phase, the narrow-line Raman spectrum of the insulating (monoclinic) phase transforms into the broad-band Raman spectrum, which contains two peaks at 500 and 5000 cm-1 with widths of 400 and 3500 cm-1, respectively. It has been found that, as the temperature of the monoclinic phase approaches the structural phase transition temperature (340 K), the line profile of soft-mode phonons at a frequency of 149 cm-1 with A g symmetry and the line profile of phonons at a frequency of 201 cm-1 with A g symmetry acquire an asymmetric shape with a Fano antiresonance that is characteristic of the interaction of a single phonon vibration with a continuum of strongly correlated electrons. It has been demonstrated that the thermal transformation of peaks in the Raman spectra of the VO2 metallic phase is in quantitative agreement with the theory of Raman scattering in strongly correlated materials.
On the metal-insulator-transition in vanadium dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Godoy, Salvador; Suzuki, Akira
2012-02-01
Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity σ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop.
Effect of Cation Rotation on Charge Dynamics in Hybrid Lead Halide Perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gélvez-Rueda, María C.; Cao, Duyen H.; Patwardhan, Sameer
Organic-inorganic hybrid halide perovskites are a promising class of materials for photovoltaic application with reported power efficiencies over similar to 22%. However, not much is known about the influence of the organic dipole rotation and phase transitions on charge carrier dynamics. Here, we report substantial changes in mobility and lifetime of charge carriers in CH 3NH 3PbI 3 after the low-temperature tetragonal (beta) to orthorhombic (gamma) phase transition. By using microwave conductivity measurements, we observed that the mobility and lifetime of ionized charge carriers increase as the temperature decreases and a sudden increment is seen after the beta-gamma phase transition.more » For CH 3NH 3PbI 3, the mobility and the half-lifetime increase by a factor of 36 compared with the values before the beta-gamma phase transition. We attribute the considerable change in the dynamics at low temperature to the decrease of the inherent dynamic disorder of the organic cation (CH 3NH 3+) inside the perovskite crystal structure.« less
NASA Astrophysics Data System (ADS)
Feng, Yu; Li, Wei-Li; Yu, Yang; Jia, He-Nan; Qiao, Yu-Long; Fei, Wei-Dong
2017-11-01
An approach to greatly enhance the piezoelectric properties (˜4 00 pC/N) of the tetragonal BaTi O3 polycrystal using a small number of A -site acceptor-donor substitutions [D. Xu et al., Acta Mater. 79, 84 (2014), 10.1016/j.actamat.2014.07.023] has been proposed. In this study, Pb (ZrTi ) O3 (PZT) based polycrystals with various crystal symmetries (tetragonal, rhombohedral, and so on) were chosen to investigate the piezoelectricity enhancement mechanism. X-ray diffraction results show that doping generates an intrinsic uniaxial compressive stress along the [001] pc direction in the A B O3 lattices. Piezoelectric maps in the parameter space of temperature and Ti concentration in the PZT and doped system show a more significant enhancement effect of L i+-A l3 + codoping in tetragonal PZT than in the rhombohedral phase. Phenomenological thermodynamic analysis indicates that the compressive stress results in more serious flattening of the free-energy profile in tetragonal PZT, compared with that in the rhombohedral phase. The chemical stress obtained by this acceptor-donor codoping can be utilized to optimize the piezoelectric performance on the tetragonal-phase site of the morphotropic phase boundary in the PZT system. The present study provides a promising route to the large piezoelectric effect induced by chemical-stress-driven flattening of the free-energy profile.
NASA Astrophysics Data System (ADS)
Kuo, K.; Cheng, C. W.; Chern, G.
2012-04-01
Mn3O4 is a Jahn-Taller tetragonal ferrite that has a relatively low Curie temperature (Tc) of ˜43 K due to weak coupling between the canting spins. In this study, we fabricated a series of 100-nm-thick Mn2.5M0.5O4 (M = Co, Ni, Mn, Cr, and Mg) films via oxygen-plasma-assisted molecular beam epitaxy and measured the structural and magnetic properties of these films. These films show single phase quality, and the c-axis lattice parameter of pure Mn3O4 is 0.944 nm, with a c/a ratio ˜1.16, consistent with the bulk values. The replacement of Mn by M (M = Co, Ni, Cr, and Mg) changes the lattice parameters, and the c/a ratio varies between 1.16 and 1.06 depending upon the cation distribution of the films. The magnetic Curie temperatures of these films also vary in the range of 25-66 K in that Ni and Co enhance the Tc whereas Mg reduces the Tc (Cr shows no effect on the Tc). These changes to the Tc are related to both the element electronic state and the cation distributions in these compounds. As a non-collinear spin configuration can induce electrical polarization, the present study provides a systematic way to enhance the magnetic transition temperature in tetragonal spinel ferrites.
[Raman studies of nanocrystalline BaTiO3 ceramics].
Xiao, Chang-jiang; Jin, Chang-qing; Wang, Xiao-hui
2008-12-01
High pressure can significantly increase the densification. Further, during the high pressure assisted sintering, the nucleation rate is increased due to reduced energy barrier and the growth rate is suppressed due to the decreased diffusivity. Thus high pressure enables the specimen to be fabricated with relatively lower temperature and shorter sintering period that assures to obtain dense nanocrystalline ceramics. Dense nanocrystalline BaTiO3 ceramics with uniform grain sizes of 60 and 30 nm, respectively, were obtained by pressure assisted sintering. The crystal structure and phase transitions were investigated by Raman scattering at temperatures ranging from -190 to 200 degrees C. The Raman results indicated that the evolution of Raman spectrum with grain size is characterized by an intensity decrease, a broadening of the line width, a frequency shift, and the disappearance of the Raman mode. With increasing temperature, similar to 3 mm BaTiO3 normal ceramics, the successive phase transitions from rhombohedral to orthorhombic, orthorhombic to tetragonal, and tetragonal to cubic were also observed in nanocrystalline BaTiO3 ceramics. In addition, when particle size is reduced to the nanoscale, one will find some unusual physical properties in nanocrystalline ceramics, compared with those of coarse-grained BaTiO3 ceramics. The different coexistences of multiphase were found at different temperature. Especially, the ferroelectric tetragonal and orthorhombic phase can coexist at room temperature in nanocrystalline BaTiO3 ceramics. The phenomenon can be explained by the internal stress. The coexistences of different ferroelectric phases at room temperature indicate that the critical grain size for the disappearance of ferroelectricity in nanocrystalline BaTiO3 ceramics fabricated by pressure assisted sintering is below 30 nm.
Cubic γ-phase U-Mo alloys synthesized by splat-cooling
NASA Astrophysics Data System (ADS)
Kim-Ngan, Nhu-T. H.; Tkach, I.; Mašková, S.; Havela, L.; Warren, A.; Scott, T.
2013-09-01
U-Mo alloys are the most promising materials fulfilling the requirements of using low enriched uranium (LEU) fuel in research reactors. From a fundamental standpoint, it is of interest to determine the basic thermodynamic properties of the cubic γ-phase U-Mo alloys. We focus our attention on the use of Mo doping together with ultrafast cooling (with high cooling rates ⩾106 K s-1), which helps to maintain the cubic γ-phase in U-Mo system to low temperatures and on determination of the low-temperature properties of these γ-U alloys. Using a splat cooling method it has been possible to maintain some fraction of the high-temperature γ-phase at room temperature in pure uranium. U-13 at.% Mo splat clearly exhibits the pure γ-phase structure. All the splats become superconducting with Tc in the range from 1.24 K (pure U splat) to 2.11 K (U-15 at.% Mo). The γ-phase in U-Mo alloys undergoes eutectoid decomposition to form equilibrium phases of orthorhombic α-uranium and tetragonal γ‧-phase upon annealing at 500 °C, while annealing at 800 °C has stabilized the initial γ phase. The α-U easily absorbs a large amount of hydrogen (UH3 hydride), while the cubic bcc phase does not absorb any detectable amount of hydrogen at pressures below 1 bar and at room temperature. At 80 bar, the U-15 at.% Mo splat becomes powder consisting of elongated particles of 1-2 mm, revealing amorphous state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samuvel, K., E-mail: kssamuvel@gmail.com; Ramachandran, K., E-mail: ramach76@yahoo.com
2016-05-06
BaTi{sub 0.5}CO{sub 0.5}O{sub 3} (BTCO) nanoparticles were prepared by the solid state reaction technique using different starting materials and the microstructure examined by XRD, FESEM, BDS and VSM. X-ray diffraction and electron diffraction patterns showed that the nanoparticles were the tetragonal BTCO phase. The BTCO nanoparticles prepared from the starting materials of as prepared titanium-oxide, Cobalt -oxide and barium carbonate have spherical grain morphology, an average size of 65 nm and a fairly narrow size distribution. The nano-scale presence and the formation of the tetragonal perovskite phase as well as the crystallinity were detected using the mentioned techniques. Dielectric properties ofmore » the samples were measured at different frequencies. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. The doped BTCO samples exhibited low loss factor at 1 kHz and 1 MHz frequencies respectively.« less
Evidence for photo-induced monoclinic metallic VO{sub 2} under high pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hsieh, Wen-Pin, E-mail: wphsieh@stanford.edu; Mao, Wendy L.; Department of Geological and Environmental Sciences, Stanford University, Stanford, California 94305
2014-01-13
We combine ultrafast pump-probe spectroscopy with a diamond-anvil cell to decouple the insulator-metal electronic transition from the lattice symmetry changing structural transition in the archetypal strongly correlated material vanadium dioxide. Coherent phonon spectroscopy enables tracking of the photo-excited phonon vibrational frequencies of the low temperature, monoclinic (M{sub 1})-insulating phase that transforms into the metallic, tetragonal rutile structured phase at high temperature or via non-thermal photo-excitations. We find that in contrast with ambient pressure experiments where strong photo-excitation promptly induces the electronic transition along with changes in the lattice symmetry, at high pressure, the coherent phonons of the monoclinic (M{sub 1})more » phase are still clearly observed upon the photo-driven phase transition to a metallic state. These results demonstrate the possibility of synthesizing and studying transient phases under extreme conditions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Chen, Jun; Fan, Longlong
Electric field-induced changes in the domain wall motion of (1−x)Bi(Mg{sub 0.5}Ti{sub 0.5})O{sub 3}–xPbTiO{sub 3} (BMT-xPT) near the morphotropic phase boundary (MPB) where x = 0.37 (BMT-37PT) and x = 0.38 (BMT-38PT), are studied by means of synchrotron x-ray diffraction. Through Rietveld analysis and profile fitting, a mixture of coexisting monoclinic (Cm) and tetragonal (P4mm) phases is identified at room temperature. Extrinsic contributions to the property coefficients are evident from electric-field-induced domain wall motion in both the tetragonal and monoclinic phases, as well as through the interphase boundary motion between the two phases. Domain wall motion in the tetragonal and monoclinic phases for BMT-37PT ismore » larger than that of BMT-38PT, possibly due to this composition's closer proximity to the MPB. Increased interphase boundary motion was also observed in BMT-37PT. Lattice strain, which is a function of both intrinsic piezoelectric strain and elastic interactions of the grains (the latter originating from domain wall and interphase boundary motion), is similar for the respective tetragonal and monoclinic phases.« less
Designing shape-memory Heusler alloys from first-principles
NASA Astrophysics Data System (ADS)
Siewert, M.; Gruner, M. E.; Dannenberg, A.; Chakrabarti, A.; Herper, H. C.; Wuttig, M.; Barman, S. R.; Singh, S.; Al-Zubi, A.; Hickel, T.; Neugebauer, J.; Gillessen, M.; Dronskowski, R.; Entel, P.
2011-11-01
The phase diagrams of magnetic shape-memory Heusler alloys, in particular, ternary Ni-Mn-Z and quarternary (Pt, Ni)-Mn-Z alloys with Z = Ga, Sn, have been addressed by density functional theory and Monte Carlo simulations. Finite temperature free energy calculations show that the phonon contribution stabilizes the high-temperature austenite structure while at low temperatures magnetism and the band Jahn-Teller effect favor the modulated monoclinic 14M or the nonmodulated tetragonal structure. The substitution of Ni by Pt leads to a series of magnetic shape-memory alloys with very similar properties to Ni-Mn-Ga but with a maximal eigenstrain of 14%.
NASA Astrophysics Data System (ADS)
L'vov, V. A.; Matsishin, N.; Glavatska, N.
2010-04-01
The theoretical phase diagram of the shape memory alloy, which exhibits the first-order martensitic phase transition of the cubic-tetragonal type, has been considered. The thermoelastic behaviour of the ultra-soft Ni-Mn-Ga alloy in the vicinity of the endpoint of the phase transitions line has been modelled. To this end, the strain-temperature and stress-strain dependencies have been computed with the account of the temperature dependence of the elastic modulus of the alloy. Two important features of thermoelastic behaviour of the alloy have been disclosed: (1) even in the case of complete stress-induced martensitic transformation (MT), the MT strain determined from the length of the plateaus at the stress-strain curves is smaller than the 'spontaneous' tetragonal distortion of the crystal lattice, which arises on cooling of the alloy and (2) the stress-strain loops may include the plateau-like segment even at temperatures above the critical temperature, which corresponds to the endpoint of the stress-strain phase diagram. These features render the observation of the endpoint of phase transitions line impossible with the help of the stress-strain tests and make preferable the direct structural studies of MTs in the stressed single-crystalline specimens.
NASA Astrophysics Data System (ADS)
Lima, Rogerio S.; Marple, Basil R.
2017-03-01
The effective high-temperature operation limit of a ZrO2-7-8 wt.%Y2O3 (YSZ) thermal barrier coating (TBC) manufactured via air plasma spray (APS) is considered to be 1300 °C. This is related to the metastable tetragonal t'-phase formed during the rapid quenching of the YSZ particles during spraying. The t'-phase transforms into the equilibrium tetragonal and cubic phases at temperatures ≥ 1300 °C, which can lead to the formation of the monoclinic phase of YSZ upon cooling to room temperature. This formation of the monoclinic phase is accompanied by a volume expansion that leads to TBC failure due to extensive micro-cracking. To further investigate this limitation, an APS YSZ TBC was sprayed on a CMSX-4 substrate. By using a thermal (laser) gradient cyclic testing, a temperature gradient was generated across the TBC/substrate system. The YSZ T- front and substrate backside T- back temperature levels were 1500 and 1000 °C, respectively. In cycle conditions (5-min or 1-h hot and 2-min cool), no TBC failure has been observed. This behavior was partially attributed to the unexpected absence of the monoclinic phase of the YSZ in the cycled coatings. Although preliminary, these results are promising regarding increasing the effective high-temperature operational limits of APS YSZ TBCs.
Reconstructive phase transition in (NH4)3TiF7 accompanied by the ordering of TiF6 octahedra.
Molokeev, Maxim; Misjul, S V; Flerov, I N; Laptash, N M
2014-12-01
An unusual phase transition P4/mnc → Pa\\bar 3 has been detected after cooling the (NH4)3TiF7 compound. Some TiF6 octahedra, which are disordered in the room-temperature tetragonal structure, become ordered in the low-temperature cubic phase due to the disappearance of the fourfold axis. Other TiF6 octahedra undergo large rotations resulting in huge displacements of the F atoms by 1.5-1.8 Å that implies a reconstructive phase transition. It was supposed that phases P4/mbm and Pm\\bar 3m could be a high-temperature phase and a parent phase, respectively, in (NH4)3TiF7. Therefore, the sequence of phase transitions can be written as Pm\\bar 3m → P4/mbm → P4/mnc → Pa\\bar 3. The interrelation between (NH4)3TiF7, (NH4)3GeF7 and (NH4)3PbF7 is found, which allows us to suppose phase transitions in relative compounds.
NASA Astrophysics Data System (ADS)
Cassir, Michel; Goubin, Fabrice; Bernay, Cécile; Vernoux, Philippe; Lincot, Daniel
2002-06-01
Ultra thin films of ZrO 2 were synthesized on soda lime glass and SnO 2-coated glass, using ZrCl 4 and H 2O precursors by atomic layer deposition (ALD), a sequential CVD technique allowing the formation of dense and homogeneous films. The effect of temperature on the film growth kinetics shows a first temperature window for ALD processing between 280 and 350 °C and a second regime or "pseudo-window" between 380 and 400 °C, with a growth speed of about one monolayer per cycle. The structure and morphology of films of less than 1 μm were characterized by XRD and SEM. From 275 °C, the ZrO 2 film is crystallized in a tetragonal form while a mixture of tetragonal and monoclinic phases appears at 375 °C. Impedance spectroscopy measurements confirmed the electrical properties of ZrO 2 and the very low porosity of the deposited layer.
Pressure-induced structural and semiconductor-semiconductor transitions in C o0.5M g0.5C r2O4
NASA Astrophysics Data System (ADS)
Rahman, S.; Saqib, Hajra; Zhang, Jinbo; Errandonea, D.; Menéndez, C.; Cazorla, C.; Samanta, Sudeshna; Li, Xiaodong; Lu, Junling; Wang, Lin
2018-05-01
The effect of pressure on the structural, vibrational, and electronic properties of Mg-doped Cr bearing spinel C o0.5M g0.5C r2O4 was studied up to 55 GPa at room-temperature using x-ray diffraction, Raman spectroscopy, electrical transport measurements, and ab initio calculations. We found that the ambient-pressure phase is cubic (spinel-type, F d 3 ¯m ) and underwent a pressure-induced structural transition to a tetragonal phase (space group I 4 ¯m 2 ) above 28 GPa. The ab initio calculation confirmed this first-order phase transition. The resistivity of the sample decreased at low pressures with the existence of a low-pressure (LP) phase and started to increase with the emergence of a high-pressure (HP) phase. The temperature dependent resistivity experiments at different pressures illustrated the wide band gap semiconducting nature of both the LP and HP phases with different activation energies, suggesting a semiconductor-semiconductor transition at HP. No evidence of chemical decomposition or a semiconductor-metal transition was observed in our studies.
Phase-Transformation-Induced Extra Thermal Expansion Behavior of (SrxBa1–x)TiO3/Cu Composite
Sheng, Jie; Wang, Lidong; Li, Shouwei; Yin, Benke; Liu, Xiangli; Fei, Wei-Dong
2016-01-01
The properties of metal matrix composites (MMCs) can be optimized effectively through adjusting the type or the volume fraction of reinforcement. Generally, the coefficient of thermal expansion (CTE) of MMCs can be reduced by increasing the volume fraction of the reinforcement with lower CTE than metal matrix. However, it is great challenge to fabricate low CTE MMCs with low reinforcement volume fraction because of the limitation of reinforcement CTEs. SrxBa1−xTiO3 (SBT) powder presents negative thermal expansion behavior during the phase transformation from tetragonal to cubic phase. Here, we demonstrate that the phase transformation of SBT can be utilized to reduce and design the thermal expansion properties of SBT particle-reinforced Cu (SBT/Cu) composite, and ultralow CTE can be obtained in SBT/Cu composite. The X-ray diffraction analysis on heating indicates that the temperature range of phase transformation is extended greatly, therefore, the low CTE can be achieved within wide temperature range. Landau-Devonshire theory study on the phase transformation behaviors of SBT particles in the composite indicates that thermal mismatch stress significantly affects the Curie temperature of SBT particles and the CTE of the composite. The results given in the present study provide a new approach to design the MMCs with low CTE. PMID:27255420
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-01-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
NASA Astrophysics Data System (ADS)
Jiang, Shengli; Huang, Xiao; He, Zhang; Buyers, Andrew
2018-05-01
To examine the effect of doping/co-doping on high-temperature phase compositions of YSZ, stand-alone YSZ and CeO2 and Nb2O5 co-doped YSZ samples were prepared using mechanical alloy and high-temperature sintering. XRD analysis was performed on these samples from room temperature to 1100 °C. The results show that the structure for the co-doped samples tends to be thermally stable when the test temperature is higher than a critical value. Monoclinic phase was dominant in Nb2O5 co-doped YSZ at temperatures lower than 600 °C, while for the YSZ and CeO2 co-doped YSZ, cubic/tetragonal phase was dominant in the whole test temperature range. The lattice parameters for all the samples increase with increasing test temperature generally. The lattice parameters for the two non-trivalent rare earth oxides co-doped YSZ show that the lattice parameter a for the cubic phase of the Ce4+ co-doped YSZ is consistently greater than that of 7YSZ which is related to the presence of larger radius of Ce4+ in the matrix. The lattice parameters a, b, c for the monoclinic phase of Ce4+ co-doped YSZ are much closer to each other than that of the Nb5+ co-doped YSZ, indicating the former has better tendency to form cubic/tetragonal phase, which is desired for vast engineering applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shahee, Aga, E-mail: agashahee@gmail.com; Lalla, N. P.
2015-06-24
Low temperature x-ray powder diffraction studies, in conjunction with transmission electron microscopy on stoichiometric (δ = 0.01) and oxygen deficient (δ =0.12) samples of La{sub 0.2}Sr{sub 0.8}MnO{sub 3-δ} manganites have been carried out. These studies revealed that oxygen stoichiometry plays a key role in controlling ground state of electron doped manganites. It is observed that the La{sub 0.2}Sr{sub 0.8}MnO{sub 2.99} undergoes a first order phase transition from cubic (Pm-3m) to JT-distorted twin tetragonal (I4/mcm) phase associated with C-type antiferromagnetic ordering at ∼260K. This JT-distortion induced cubic to tetragonal phase transition get totally suppressed in La{sub 0.2}Sr{sub 0.8}MnO{sub 2.88}. The basicmore » perovskite lattice of the off-stoichiometric La{sub 0.2}Sr{sub 0.8}MnO{sub 2.88} remains cubic down to 80K but undergoes a well-developed charge-ordering transition with 9x9 modulations at ∼260K.« less
Crystal structure and phase transition of thermoelectric SnSe.
Sist, Mattia; Zhang, Jiawei; Brummerstedt Iversen, Bo
2016-06-01
Tin selenide-based functional materials are extensively studied in the field of optoelectronic, photovoltaic and thermoelectric devices. Specifically, SnSe has been reported to have an ultrahigh thermoelectric figure of merit of 2.6 ± 0.3 in the high-temperature phase. Here we report the evolution of lattice constants, fractional coordinates, site occupancy factors and atomic displacement factors with temperature by means of high-resolution synchrotron powder X-ray diffraction measured from 100 to 855 K. The structure is shown to be cation defective with a Sn content of 0.982 (4). The anisotropy of the thermal parameters of Sn becomes more pronounced approaching the high-temperature phase transition (∼ 810 K). Anharmonic Gram-Charlier parameters have been refined, but data from single-crystal diffraction appear to be needed to firmly quantify anharmonic features. Based on modelling of the atomic displacement parameters the Debye temperature is found to be 175 (4) K. Conflicting reports concerning the different coordinate system settings in the low-temperature and high-temperature phases are discussed. It is also shown that the high-temperature Cmcm phase is not pseudo-tetragonal as commonly assumed.
Magnetic characteristics of polymorphic single crystal compounds DyIr2Si2
NASA Astrophysics Data System (ADS)
Uchima, Kiyoharu; Shigeoka, Toru; Uwatoko, Yoshiya
2018-05-01
We have confirmed that the tetragonal ternary compound DyIr2Si2 shows polymorphism; the ThCr2Si2-type structure as a low temperature phase (I-phase) and the CaBe2Ge2-type one as a high temperature phase (P-phase) exist. A comparative study on magnetic characteristics of the morphs was performed on the I- and P-phase single crystals in order to elucidate how magnetic properties are influenced by crystallographic symmetry. The magnetic behavior changes drastically depending on the structure. The DyIr2Si2(I) shows an antiferromagnetic ordering below TN = 30 K, additional magnetic transitions of T1 = 17 K and T2 = 10 K, and a strong uniaxial magnetic anisotropy with the easy [001] direction. The [001] magnetization shows four metamagnetic transitions at low temperatures. On the other hand, the DyIr2Si2(P) has comparatively low ordering temperature of TN1 = 9.4 K and an additional transition temperature of TN2 = 3.0 K, and exhibits an easy-plane magnetic anisotropy with the easy [110] direction. Two metamagnetic transitions appear in the basal plane magnetization processes. In both the morphs, the χ-T behavior suggests the existence of component-separated magnetic transitions. The ab-component of magnetic moments orders at the higher transition temperature TN1 for the P-phase compound, which is contrast to the I-phase behavior; the c-component orders firstly at TN. The crystalline electric field (CEF) analysis was made, and the difference in magnetic behaviors between both the morphs is explained by the CEF effects.
Influence of Sn doping in BaSnxTi1-xO3 ceramics on microstructural and dielectric properties
NASA Astrophysics Data System (ADS)
Ansari, Mohd. Azaj; Sreenivas, K.
2018-05-01
BaSnxTi1-x O3 solid solutions with varying Sn content (x = 0.00, 0.05, 0.15, 0.25) prepared by solid state reaction method have been studied for their structural and dielectric properties. X-ray diffraction and Raman spectroscopic analysis show composition induced modifications in the crystallographic structure, and with increasing Sn content the structure changes from tetragonal to cubic structure. The tetragonal distortion decreases with increasing Sn, and the structure becomes purely cubic for x =0.25. Changes in the structure are reflected in the temperature dependent dielectric properties. For increasing Sn content the peak dielectric constant is found to increase and the phase transition temperature (Tc) decreases to lower temperature. The purely cubic structure with x=0.25 shows a diffused phased transition.
Pseudomorphic to orthomorphic growth of Fe films on Cu3Au(001)
NASA Astrophysics Data System (ADS)
Bruno, F.; Terreni, S.; Floreano, L.; Cossaro, A.; Cvetko, D.; Luches, P.; Mattera, L.; Morgante, A.; Moroni, R.; Repetto, M.; Verdini, A.; Canepa, M.
2002-06-01
The structure of Fe films grown on the (001) surface of a Cu3Au single crystal at room temperature has been investigated by means of grazing incidence x-ray diffraction (GIXRD) and photo/Auger-electron diffraction (ED) as a function of thickness in the (3-36)-Å range. The combination of GIXRD and ED allows one to obtain quantitative information on the in-plane spacing a from the former technique, and the ratio between the vertical spacing c and a, from the latter one. At low coverage the film grows pseudomorphic to the face-centered-cubic substrate. The experimental results obtained on a film of 8 Å thickness clearly indicate the overcoming of the limit for pseudomorphic growth. Above this limit the film is characterized by the coexistence of the pseudomorphic phase with another tetragonally strained phase γ, which falls on the epitaxial line of ferromagnetic face-centered cubic Fe. Finally, the development of a body-centered phase α, whose unit cell is rotated by 45° with respect to the substrate one, has been clearly observed at ~17 Å. α is the dominating phase for film thickness above ~25 Å and its lattice constant evolves towards the orthomorphic phase in strict quantitative agreement with epitaxial curves calculated for body-centered tetragonal iron phases.
Large scale synthesis of nanostructured zirconia-based compounds from freeze-dried precursors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gomez, A.; Villanueva, R.; Vie, D.
2013-01-15
Nanocrystalline zirconia powders have been obtained at the multigram scale by thermal decomposition of precursors resulting from the freeze-drying of aqueous acetic solutions. This technique has equally made possible to synthesize a variety of nanostructured yttria or scandia doped zirconia compositions. SEM images, as well as the analysis of the XRD patterns, show the nanoparticulated character of those solids obtained at low temperature, with typical particle size in the 10-15 nm range when prepared at 673 K. The presence of the monoclinic, the tetragonal or both phases depends on the temperature of the thermal treatment, the doping concentration and themore » nature of the dopant. In addition, Rietveld refinement of the XRD profiles of selected samples allows detecting the coexistence of the tetragonal and the cubic phases for high doping concentration and high thermal treatment temperatures. Raman experiments suggest the presence of both phases also at relatively low treatment temperatures. - Graphical abstract: Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders by thermal decomposition of precursors obtained by freeze-drying, and this synthetic procedure has been scaled up to the 100 g scale. Highlights: Black-Right-Pointing-Pointer Zr{sub 1-x}A{sub x}O{sub 2-x/2} (A=Y, Sc; 0{<=}x{<=}0.12) solid solutions have been prepared as nanostructured powders. Black-Right-Pointing-Pointer The synthetic method involves the thermal decomposition of precursors obtained by freeze-drying. Black-Right-Pointing-Pointer The temperature of the thermal treatment controls particle sizes. Black-Right-Pointing-Pointer The preparation procedure has been scaled up to the 100 g scale. Black-Right-Pointing-Pointer This method is appropriate for the large-scale industrial preparation of multimetallic systems.« less
NASA Astrophysics Data System (ADS)
Jaffari, G. Hassnain; Bilal, M.; Ur Rahman, Jamil; Lee, Soonil
2017-09-01
PbTiO3/PbFe12O19 composites have been synthesized by keeping the Fe concentration (x) in PbFexTi1-xO3 beyond solubility limit, i.e., x > 0.1% and 5% Pb excess. Both these factors have been successfully utilized to extract Fe doped PbTiO3 tetragonal phase which is composited with Magnetoplumbite (PbFe12O19) phase. A systematic evolution of the tetragonality of the former and improved stoichiometry of the later constituent has been observed. As x increases, emergence of additional Raman mode around 650 cm-1 with Fe addition was observed. Systematic increase in the relative intensity of this mode with x, showed that this mode corresponds to the magnetoplumbite phase. In addition to that resultant composite exhibited noticeable systematic decrease in the value of the energy gap as a function of x. Increasing Fe concentration in PbTiO3 constituent, led to monotonic decrease in c/a and increase in strain experienced by PbTiO3. Increase in the value of the saturation polarization was observed up to x = 0.4, which is identified to be associated with the strain induced by the dopant. A comprehensive magnetic characterization revealed monotonic decrease in magnetization with temperature for all compositions. Finally, we found an anomalous temperature dependent trend in the magnetic coercivity which is explained in terms of low temperature decrease in effective magnetic anisotropy by including magneto-electric coupling. Both constituent phases in the composite being ferroelectric and ferromagnetic at room temperature led to formation of better multiferroic properties and exhibited tunable physical properties with x.
Thermodynamic analysis of the formation of tetragonal bainite in steels
NASA Astrophysics Data System (ADS)
Mirzayev, D. A.; Mirzoev, A. A.; Buldashev, I. V.; Okishev, K. Yu.
2017-06-01
In the articles of Bkhadeshia, a new class of high-strength steels based on the structure of carbidefree bainite with an enhanced carbon content has been developed. According to Bkhadeshia, the main factor responsible for the high solubility of carbon is the occurrence of a tetragonality of the bainite lattice. To check this effect, in this article, the theory of tetragonality of martensite of iron alloys developed by Zener and Khachaturyan was applied to bainite under the assumption that the precipitation of carbides is prohibited. Equations for the chemical potentials of carbon and iron in austenite and in tetragonal ferrite have been derived. The equilibrium of these phases has been considered, and the calculations of the boundary concentrations of carbon and iron at different temperatures (300-1000 K) and at different parameters of the deformation interaction λ0 have been performed. The rigorous calculations confirmed Bkhadeshia's hypothesis that the suppression of the carbide formation during the formation of bainite leads to an increase in the carbon solubility in the bcc phase.
NASA Astrophysics Data System (ADS)
Thongrueng, Jirawat; Tsuchiya, Toshio; Masuda, Yoichiro; Fujita, Shigetaka; Nagata, Kunihiro
1999-09-01
Soft BaTiO3 ceramics having a very low coercive field of 65 V/mm were prepared by substituting 9 mol% Hf Zr for the Ti-site of BaTiO3, for applications to ferroelectric thin-film devices. Electrical properties of the soft BaTiO3 ceramics were measured and compared with those of normal BaTiO3 ceramics. By substituting Hf Zr for Ti-site, the phase transition temperatures were controlled, and we could select the preferred crystal structure from the tetragonal, orthorhombic and rhombohedral phases at room temperature. In addition, the preparation and characterization of the soft BaTiO3 thin-films using a sol-gel process were carried out.
On melt solutions for the growth of CaTiO3 crystals
NASA Astrophysics Data System (ADS)
Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen
2018-03-01
When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.
NASA Astrophysics Data System (ADS)
Vagadia, Megha; Hester, James; Nigam, A. K.
2018-04-01
We studied the effect of different annealing conditions on structural and magnetic properties of Mn2NiGa Heusler alloys. Reitveld refinement of neutron diffraction pattern at RT confirms the tetragonal structure with cubic phase for I-W quenched alloy whereas Le Bail fitting trials performed on neutron diffraction pattern collected for other three alloys confirm 7M monoclinic structure with cubic phase. It is found that starting and finish temperatures associated with martensite and austenite phase transformation depends strongly on the cooling rate corresponding to different cooling techniques. Slow furnace cooled sample possesses the highest martensite start temperature above room temperature ˜ 326K which decreases to ˜ 198K for ice -water quenched sample. Variation in the drop in the magnetization around MS obtained upon warming from martensite to austenite phase under ZFC cycle suggests that change in the cooling condition strongly affects the magnetization in the low temperature martensite phase. Present results suggest that by varying the cooling rate, martensite transformation as well as the martensite structure can be tuned.
NASA Astrophysics Data System (ADS)
Zaman, Arif; Malik, Rizwan Ahmed; Maqbool, Adnan; Hussain, Ali; Ahmed, Tanveer; Song, Tae Kwon; Kim, Won-Jeong; Kim, Myong-Ho
2018-03-01
Crystal structure, dielectric, ferroelectric, piezoelectric, and electric field-induced strain properties of lead-free Nb-modified 0.96Bi0.5K0.5TiO3-0.04Bi(Mg0.5Ti0.5)O3 (BKT-BMT) piezoelectric ceramics were investigated. Crystal structure analysis showed a gradual phase transition from tetragonal to pseudocubic phase with increasing Nb content. The optimal piezoelectric property of small-signal d 33 was enhanced up to ˜ 68 pC/N with a lower coercive field ( E c) of ˜ 22 kV/cm and an improved remnant polarization ( P r) of ˜ 13 μC/cm2 for x = 0.020. A relaxor-like behavior with a frequency-dependent Curie temperature T m was observed, and a high T m around 320°C was obtained in the investigated system. This study suggests that the ferroelectric properties of BKT-BMT was significantly improved by means of Nb substitution. The possible shift of depolarization temperature T d toward high temperature T m may have triggered the spontaneous relaxor to ferroelectric phase transition with long-range ferroelectric order without any traces of a nonergodic relaxor state in contradiction with Bi0.5Na0.5TiO3-based systems. The possible enhancement in ferroelectric and piezoelectric properties near the critical composition x = 0.020 may be attributed to the increased anharmonicity of lattice vibrations which may facilitate the observed phase transition from a low-symmetry tetragonal to a high-symmetry cubic phase with a decrease in the lattice anisotropy of an undoped sample. This highly flexible (at a unit cell level) narrow compositional range triggers the enhancement of d 33 and P r values.
Pressure-induced phase transitions in the CdC r2S e4 spinel
NASA Astrophysics Data System (ADS)
Efthimiopoulos, I.; Liu, Z. T. Y.; Kucway, M.; Khare, S. V.; Sarin, P.; Tsurkan, V.; Loidl, A.; Wang, Y.
2016-11-01
We have conducted high-pressure x-ray diffraction and Raman spectroscopic studies on the CdC r2S e4 spinel at room temperature up to 42 GPa. We have resolved three structural transitions up to 42 GPa, i.e., the starting F d 3 ¯m phase transforms at ˜11 GPa into a tetragonal I 41/a m d structure, an orthorhombic distortion was observed at ˜15 GPa , whereas structural disorder initiates beyond 25 GPa. Our ab initio density functional theory studies successfully reproduced the observed crystalline-to-crystalline structural transitions. In addition, our calculations propose an antiferromagnetic ordering as a potential magnetic ground state for the high-pressure tetragonal and orthorhombic modifications, compared with the starting ferromagnetic phase. Furthermore, the computational results indicate that all phases remain insulating in their stability pressure range, with a direct-to-indirect band gap transition for the F d 3 ¯m phase taking place at 5 GPa. We attempted also to offer an explanation behind the peculiar first-order character of the F d 3 ¯m (cubic ) →I 41/a m d (tetragonal) transition observed for several relevant Cr spinels, i.e., the sizeable volume change at the transition point, which is not expected from space group symmetry considerations. We detected a clear correlation between the cubic-tetragonal transition pressures and the next-nearest-neighbor magnetic exchange interactions for the Cr-bearing sulfide and selenide members, a strong indication that the cubic-tetragonal transitions in these systems are principally governed by magnetic effects.
NASA Astrophysics Data System (ADS)
Xu, W. M.; Hearne, G. R.; Layek, S.; Levy, D.; Pasternak, M. P.; Rozenberg, G. Kh.; Greenberg, E.
2018-02-01
X-ray diffraction pressure studies at room temperature demonstrate that the spinel FeA l2O4 transforms to a tetragonal phase at ˜18 GPa. This tetragonal phase has a highly irregular unit-cell volume versus pressure dependence up to ˜45 GPa, after which a transformation to a Cmcm postspinel phase is onset. This is attributable to pressure driven Fe↔Al site inversion at room temperature, corroborated by signatures in the 57Fe Mössbauer spectroscopy pressure data. At the tetragonal→postspinel transition, onset in the range 45-50 GPa, there is a concurrent emergence of a nonmagnetic spectral component in the Mössbauer data at variable cryogenic temperatures. This is interpreted as spin crossover at sixfold coordinated Fe locations emanated from site inversion. Spin crossover commences at the end of the pressure range of the tetragonal phase and progresses in the postspinel structure. There is also a much steeper volume change ΔV /V ˜ 10% in the range 45-50 GPa compared to the preceding pressure regime, from the combined effects of the structural transition and spin crossover electronic change. At the highest pressure attained, ˜106 GPa, the Mössbauer data evidence a diamagnetic Fe low-spin abundance of ˜50%. The rest of the high-spin Fe in eightfold coordinated sites continue to experience a relatively small internal magnetic field of ˜33 T. This is indicative of a magnetic ground state associated with strong covalency, as well as substantive disorder from site inversion and the mixed spin-state configuration. Intriguingly, magnetism survives in such a spin-diluted postspinel lattice at high densities. The R (300 K) data decrease by only two orders of magnitude from ambient pressure to the vicinity of ˜100 GPa. Despite a ˜26% unit-cell volume densification from the lattice compressibility, structural transitions, and spin crossover, FeA l2O4 is definitively nonmetallic with an estimated gap of ˜400 meV at ˜100 GPa. At such high densification appreciable bandwidth broadening and gap closure would be anticipated. Reasons for the resilient nonmetallic behavior are briefly discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.
We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less
Shaw, Santosh; Silva, Tiago F.; Bobbitt, Jonathan M.; ...
2017-08-28
We describe in this paper a bottom-up approach to control the composition of solid/solid interfaces in nanostructured materials, and we test its effectiveness on tetragonal ZrO 2, an inorganic phase of great technological significance. Colloidal nanocrystals capped with trioctylphosphine oxide (TOPO) or oleic acid (OA) are deposited, and the organic fraction of the ligands is selectively etched with O 2 plasma. The interfaces in the resulting all-inorganic colloidal nanocrystal assemblies are either nearly bare (for OA-capped nanocrystals) or terminated with phosphate groups (for TOPO-capped nanocrystals) resulting from the reaction of phosphine oxide groups with plasma species. The chemical modification ofmore » the interfaces has extensive effects on the thermodynamics and kinetics of the material. Different growth kinetics indicate different rate limiting processes of growth (surface diffusion for the phosphate-terminated surfaces and dissolution for the “bare” surfaces). Phosphate termination led to a higher activation energy of growth, and a 3-fold reduction in interfacial energy, and facilitated significantly the conversion of the tetragonal phase into the monoclinic phase. Finally, films devoid of residual ligands persisted in the tetragonal phase at temperatures as high as 900 °C for 24 h.« less
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Marshall, William G.; Hawkins, Philip M.
2014-06-01
The fluoroperovskite phase RbCaF3 has been investigated using high-pressure neutron powder diffraction in the pressure range ~0-7.9 GPa at room temperature. It has been found to undergo a first-order high-pressure structural phase transition at ~2.8 GPa from the cubic aristotype phase to a hettotype phase in the tetragonal space group I4/ mcm. This transition, which also occurs at ~200 K at ambient pressure, is characterised by a linear phase boundary and a Clapeyron slope of 2.96 × 10-5 GPa K-1, which is in excellent agreement with earlier, low-pressure EPR investigations. The bulk modulus of the high-pressure phase (49.1 GPa) is very close to that determined for the low-pressure phase (50.0 GPa), and both are comparable with those determined for the aristotype phases of CsCdF3, TlCdF3, RbCdF3, and KCaF3. The evolution of the order parameter with pressure is consistent with recent modifications to Landau theory and, in conjunction with polynomial approximations to the pressure dependence of the lattice parameters, permits the pressure variation of the bond lengths and angles to be predicted. On entering the high-pressure phase, the Rb-F bond lengths decrease from their extrapolated values based on a third-order Birch-Murnaghan fit to the aristotype equation of state. By contrast, the Ca-F bond lengths behave atypically by exhibiting an increase from their extrapolated magnitudes, resulting in the volume and the effective bulk modulus of the CaF6 octahedron being larger than the cubic phase. The bulk moduli for the two component polyhedra in the tetragonal phase are comparable with those determined for the constituent binary fluorides, RbF and CaF2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Upadhyay, Sanjay Kumar; Reddy, V. Raghavendra, E-mail: varimalla@yahoo.com, E-mail: vrreddy@csr.res.in; Bag, Pallab
2014-09-15
Structural, dielectric, ferroelectric (FE), {sup 119}Sn Mössbauer, and specific heat measurements of polycrystalline BaTi{sub 1–x}Sn{sub x}O{sub 3} (x = 0% to 15%) ceramics are reported. Phase purity and homogeneous phase formation with Sn doping is confirmed from x-ray diffraction and {sup 119}Sn Mössbauer measurements. With Sn doping, the microstructure is found to change significantly. Better ferroelectric properties at room temperature, i.e., increased remnant polarization (38% more) and very low field switchability (225% less) are observed for x = 5% sample as compared to other samples and the results are explained in terms of grain size effects. With Sn doping, merging of all the phasemore » transitions into a single one is observed for x ≥ 10% and for x = 5%, the tetragonal to orthorhombic transition temperature is found close to room temperature. As a consequence better electro-caloric effects are observed for x = 5% sample and therefore is expected to satisfy the requirements for non-toxic, low energy (field) and room temperature based applications.« less
NASA Astrophysics Data System (ADS)
Pontes, F. M.; Pontes, D. S. L.; Leite, E. R.; Longo, E.; Chiquito, A. J.; Pizani, P. S.; Varela, J. A.
2003-12-01
We have studied the phase transition behavior of Pb0.76Ca0.24TiO3 thin films using Raman scattering and dielectric measurement techniques. We also have studied the leakage current conduction mechanism as a function of temperature for these thin films on platinized silicon substrates. A Pb0.76Ca0.24TiO3 thin film was prepared using a soft chemical process, called the polymeric precursor method. The results showed that the dependence of the dielectric constant upon the frequency does not reveal any relaxor behavior. However, a diffuse character-type phase transition was observed upon transformation from a cubic paraelectric phase to a tetragonal ferroelectric phase. The temperature dependency of Raman scattering spectra was investigated through the ferroelectric phase transition. The soft mode showed a marked dependence on temperature and its disappearance at about 598 K. On the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive above the phase transition temperature. The origin of these modes must be interpreted in terms of a local breakdown of cubic symmetry by some kind of disorder. The lack of a well-defined transition temperature suggested a diffuse-type phase transition. This result corroborate the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in the thin film. The leakage current density of the PCT24 thin film was studied at elevated temperatures, and the data were well fitted by the Schottky emission model. The Schottky barrier height of the PCT24 thin film was estimated to be 1.49 eV.
NASA Astrophysics Data System (ADS)
Kumar, Amit; Denev, Sava; Zeches, Robert J.; Vlahos, Eftihia; Podraza, Nikolas J.; Melville, Alexander; Schlom, Darrell G.; Ramesh, R.; Gopalan, Venkatraman
2010-09-01
Epitaxial strain can induce the formation of morphotropic phase boundary in lead free ferroelectrics like bismuth ferrite, thereby enabling the coexistence of tetragonal and rhombohedral phases in the same film. The relative ratio of these phases is governed by the film thickness and theoretical studies suggest that there exists a monoclinic distortion of both the tetragonal as well as the rhombohedral unit cells due to imposed epitaxial strain. In this work we show that optical second harmonic generation can distinguish the tetragonal-like phase from the rhombohedral-like phase and enable detection of monoclinic distortion in only a pure tetragonal-like phase.
NASA Astrophysics Data System (ADS)
Li, Chun-Mei; Hu, Yan-Fei
2017-12-01
The composition-dependent properties and their correlation with the phase stability of Fe75+xPd25-x (- 10.0 ≤x ≤10.0 ) alloys are systematically investigated by using first-principles exact muffin-tin orbitals (EMTO)-coherent potential approximation (CPA) calculations. It is shown that the martensitic transformation (MT) from L 12 to body-centered-tetragonal (bct) occurs in the ordered alloys with about -5.0 ≤x ≤10.0 . In both the L 12 and bct phases, the evaluated a and c/a agree well with the available experimental data; the average magnetic moment per atom increases whereas the local magnetic moments of Fe atoms, dependent on both their positions and the structure of the alloy, decrease with increasing x. The tetragonal shear elastic constant of the L 12 phase ( C ' ) decreases whereas that of the bct phase (Cs) increases with x. The tetragonality of the martensite ( |1 -c /a | ) increases whereas its energy relative to the austenite with a negative value decreases with Fe addition. All these effects account for the increase of MT temperature (TM) with x. The MT from L 12 to bct is finally confirmed originating from the splitting of Fe 3d Eg and T2 g bands upon tetragonal distortion due to the Jahn-Teller effect.
One pot synthesis of pure micro/nano photoactive α-PbO crystals
NASA Astrophysics Data System (ADS)
Bhagat, Dharini; Waldiya, Manmohansingh; Vanpariya, Anjali; Mukhopadhyay, Indrajit
2018-05-01
The present study reports a simple, fast and cost effective precipitation technique for synthesis of pure α-PbO powder. Lead monoxide powder with tetragonal structure was synthesized chemically at an elevated temperature using lead acetate and sodium hydroxide solution bath. XRD powder diffraction was used to find the structural properties as well as phase transition from alpha to beta. Study revealed that synthesized PbO powder was crystalline with tetragonal symmetry, having an average crystallite size of 70 nm and lattice constants; a=3.97Å, b=3.97Å, and c=5.02Å. Phase transition from tetragonal to orthorhombic structure was studied by comparing the XRD data of the annealed samples in the temperature range from 200 °C to 600 °C. UV-Visible spectroscopy was used to find out the optical properties of prepared PbO powder. Diffuse reflectance and absorbance spectra confirmed the formation of α-PbO with obtained direct band gap of 1.9 eV. Synthesized lead monoxide (α-PbO) powder has promising application in energy conversion as well as energy storage applications.
Energetics of zirconia stabilized by cation and nitrogen substitution
NASA Astrophysics Data System (ADS)
Molodetsky, Irina
Tetragonal and cubic zirconia are used in advanced structural ceramics, fuel cells, oxygen sensors, nuclear waste ceramics and many other applications. These zirconia phases are stabilized at room temperature (relative to monoclinic phase for pure zirconia) by cation and nitrogen substitution. This work is aimed at a better understanding of the mechanisms of stabilization of the high-temperature zirconia. phases. Experimental data are produced on the energetics of zirconia stabilized by yttria and calcia, energetics of nitrogen-oxygen substitution in zirconia and cation doped zirconia, and energetics of x-ray amorphous zirconia. obtained by low-temperature synthesis. High-temperature oxide melt solution enables direct measurement of enthalpies of formation of these refractory oxides. The enthalpy of the monoclinic to cubic phase transition of zirconia is DeltaHm-c = 12.2 +/- 1.2 kJ/mol. For cubic phases of YSZ at low yttria contents, a straight line DeltaH f,YSZ = -(52.4 +/- 3.6)x + (12.2 +/- 1.2) approximates the enthalpy of formation as a function of the yttria content, x (0. 1 < x < 0.3). Use of the quadratic fit DeltaHf,YSZ = 126.36 x 2 - 81.29 x + 12.37 (0.1 ≲ x ≲ 0.53) indicates that yttria stabilizes the cubic phase in enthalpy at low dopant content and destabilizes the cubic phase as yttria content increases. Positive entropy of mixing in YSZ and small enthalpy of long range ordering in 0.47ZrO2-0.53YO1.5, DeltaHord = -2.4 +/- 3.0 kJ/mol, indicate presence of short range ordering in YSZ. The enthalpy of formation of calcia stabilized zirconia as a function of calcia content x, is approximated as DeltaHf,c = (-91.4 +/- 3.8) x + (13.5 +/- 1.7) kJ/mol. The enthalpy of oxygen-nitrogen substitution, DeltaHO-N, in zirconium oxynitrides is a linear function of nitrogen content. DeltaH O-N ˜ -500 kJ/mol N is for Ca (Y)-Zr-N-O and Zr-N-O oxynitrides and DeltaHO-N ˜ -950 kJ/mol N is for Mg-Zr-N-O oxynitrides. X-ray amorphous zirconia is 58.6 +/- 3.3 kJ/mol less stable in enthalpy than monoclinic zirconia. The difference between the surface energies of amorphous and tetragonal zirconia phases is ˜1.19 +/- 0.05 J/m2, with a lower surface energy for the amorphous material.
Sanchez, Dilsom A.; Ortega, N.; Kumar, Ashok; ...
2011-12-05
Mixing 60-70% lead zirconate titanate with 40-30% lead iron tantalate produces a single-phase, low-loss, room-temperature multiferroic with magnetoelectric coupling: (PbZr 0.53Ti 0.47O 3) (1-x)- (PbFe 0.5Ta 0.5O 3) x. Our study combines x-ray scattering, magnetic and polarization hysteresis in both phases, plus a second-order dielectric divergence (to epsilon = 6000 at 475 K for 0.4 PFT; to 4000 at 520 K for 0.3 PFT) for an unambiguous assignment as a C 2v-C 4v (Pmm2-P4mm) transition. Furthermore, the material exhibits square saturated magnetic hysteresis loops with 0.1 emu/g at 295 K and saturation polarization P r = 25 μC/cm 2, whichmore » actually increases (to 40 μC/cm 2) in the high-T tetragonal phase, representing an exciting new room temperature oxide multiferroic to compete with BiFeO 3. Additional transitions at high temperatures (cubic at T>1300 K) and low temperatures (rhombohedral or monoclinic at T<250 K) are found. Finally, these are the lowest-loss room-temperature multiferroics known, which is a great advantage for magnetoelectric devices.« less
Influence of growth flux solvent on anneal-tuning of ground states in CaFe2As2
NASA Astrophysics Data System (ADS)
Roncaioli, Connor; Drye, Tyler; Saha, Shanta R.; Paglione, Johnpierre
2018-04-01
The effects of anneal-tuning of single-crystalline samples of CaFe2As2 synthesized via a molten Sn-flux method are investigated using x-ray diffraction, chemical composition, electrical transport, and magnetic susceptibility measurements in order to understand the role of growth conditions on the resultant phase diagram. Previous studies of CaFe2As2 crystals synthesized using a self-flux (FeAs) method revealed an ability to tune the structural and magnetic properties of this system by control of post-synthesis annealing conditions, resulting in an ambient pressure phase diagram that spans from tetragonal/orthorhombic antiferromagnetism to the collapsed tetragonal phase of this system. In this work, we compare previous results to those obtained on crystals synthesized via Sn flux, finding similar tunability in both self- and Sn-flux cases, but less sensitivity to annealing temperatures in the latter case, resulting in a temperature-shifted phase diagram.
NASA Astrophysics Data System (ADS)
Dwivedi, G. D.; Kumar, Abhishek; Yang, K. S.; Chen, B. Y.; Liu, K. W.; Chatterjee, Sandip; Yang, H. D.; Chou, H.
2016-05-01
Structural phase transition and Néel temperature (TN) enhancement were observed in Cr-substituted Mn3O4 spinels. Structural, magnetic, and dielectric properties of (Mn1-xCrx)3O4 (where x = 0.00, 0.10, 0.20, 0.25, 0.30, 0.40, and 0.50) were investigated. Cr-substitution induces room temperature structural phase transition from tetragonally distorted I41/amd (x = 0.00) to cubic Fd 3 ¯ m (x = 0.50). TN is found to increase from 43 K (x = 0.00) to 58 K (x = 0.50) with Cr-substitution. The spin ordering-induced dielectric anomaly near TN ensures that magneto-dielectric coupling persists in the cubic x = 0.50 system. X-ray absorption spectra reveal that Cr exists in a trivalent oxidation state and prefers the octahedral (Oh)-site, replacing Mn3+. Due to a reduction in the Jahn-Teller active Mn3+ cation and an increase in the smaller Cr3+ cation, the system begins to release the geometrical frustration by lowering its degeneracy. Consequently, a phase transition, from distorted tetragonal structure to the more symmetric cubic phase, occurs.
NASA Astrophysics Data System (ADS)
Marathe, Madhura; Renggli, Damian; Sanlialp, Mehmet; Karabasov, Maksim O.; Shvartsman, Vladimir V.; Lupascu, Doru C.; Grünebohm, Anna; Ederer, Claude
2017-07-01
We study the electrocaloric (EC) effect in bulk BaTiO3 (BTO) using molecular dynamics simulations of a first principles-based effective Hamiltonian, combined with direct measurements of the adiabatic EC temperature change in BTO single crystals. We examine in particular the dependence of the EC effect on the direction of the applied electric field at all three ferroelectric transitions, and we show that the EC response is strongly anisotropic. Most strikingly, an inverse caloric effect, i.e., a temperature increase under field removal, can be observed at both ferroelectric-ferroelectric transitions for certain orientations of the applied field. Using the generalized Clausius-Clapeyron equation, we show that the inverse effect occurs exactly for those cases where the field orientation favors the higher temperature/higher entropy phase. Our simulations show that temperature changes of around 1 K can, in principle, be obtained at the tetragonal-orthorhombic transition close to room temperature, even for small applied fields, provided that the applied field is strong enough to drive the system across the first-order transition line. Our direct EC measurements for BTO single crystals at the cubic-tetragonal and at the tetragonal-orthorhombic transitions are in good qualitative agreement with our theoretical predictions, and in particular confirm the occurrence of an inverse EC effect at the tetragonal-orthorhombic transition for electric fields applied along the [001] pseudocubic direction.
Lattice dynamics and the nature of structural transitions in organolead halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.
Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remarkable optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic x-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our findings confirm the displacive nature of the cubic-to-tetragonal phase transition, which is further shown, using neutron and x-ray diffraction, to be close to a tricritical point. Lastly, we detect quasistatic symmetry-breaking nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These findings reveal key structural properties of these materials, and also bearmore » important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.« less
Chen, Yan; Rangasamy, Ezhiylmurugan; dela Cruz, Clarina R.; ...
2015-09-28
Doped Li 7La 3Zr 2O 12 garnets, oxide-based solids with good Li + conductivity and compatibility, show great potential as leading electrolyte material candidates for all-solid-state lithium ion batteries. Still yet, the conductive bulk usually suffers from the presence of secondary phases and the transition towards a low-conductivity tetragonal phase during synthesis. Dopants are designed to stabilize the high-conductive cubic phase and suppress the formation of the low-conductivity phases. In situ neutron diffraction enables a direct observation of the doping effects by monitoring the phase evolutions during garnet synthesis. It reveals the reaction mechanism involving the temporary presence of intermediatemore » phases. The off-stoichiometry due to the liquid Li 2CO 3 evaporation leads to the residual of the low-conductivity intermediate phase in the as-synthesized bulk. Appropriate doping of an active element may alter the component of the intermediate phases and promote the completion of the reaction. While the dopants aid to stabilize most of the cubic phase, a small amount of tetragonal phase tends to form under a diffusion process. Lastly, the in situ observations provide the guideline of process optimization to suppress the formation of unwanted low-conductivity phases.« less
NASA Astrophysics Data System (ADS)
Phan, The-Long; Zhang, P.; Grinting, D.; Yu, S. C.; Nghia, N. X.; Dang, N. V.; Lam, V. D.
2012-07-01
Polycrystalline samples of BaTiO3 doped with 2.0 at. % Mn were prepared by solid-state reaction at various temperatures (Tan) ranging from 500 to 1350 °C, used high-pure powders of BaCO3, TiO2, and MnCO3 as precursors. Experimental results obtained from x-ray diffraction patterns and Raman scattering spectra reveal that tetragonal Mn-doped BaTiO3 starts constituting as Tan ≈ 500 °C. The Tan increase leads to the development of this phase. Interestingly, there is the tetragonal-hexagonal transformation in the crystal structure of BaTiO3 as Tan ≈ 1100 °C. Such the variations influence directly magnetic properties of the samples. Besides paramagnetic contributions of Mn2+ centers traced to electron spin resonance, the room-temperature ferromagnetism found in the samples is assigned to exchange interactions taking place between Mn3+ and Mn4+ ions located in tetragonal BaTiO3 crystals.
NASA Astrophysics Data System (ADS)
Jauhari, Mrinal; Mishra, S. K.; Mittal, R.; Sastry, P. U.; Chaplot, S. L.
2017-12-01
We present results obtained from a combination of dielectric and x-ray diffraction measurements for compositional design of (1 -x )NaNb O3-x BaTi O3(NNBT x ) , which can induce interferroelectric phase transitions. Anomalies are observed in dielectric measurements performed for various compositions at 300 K, as well as at different temperatures for NNBT03. We observed the appearance(disappearance) of the superlattice reflections along with change in the intensities of the main perovskite peaks in the powder x-ray diffraction data, which provide clear evidences for structural phase transitions with composition and temperature. We found that increasing the concentration of BaTi O3 leads to the suppression of out-of-phase rotation of octahedra and an increment in tetragonality (c /a ratio), which promotes the polar mode at room temperature. The temperature-dependent powder diffraction study shows that the ferroelectric rhombohedral phase of pure sodium niobate gets suppressed for the composition x =0.03 , and the monoclinic phase C c gets stabilized at low temperature. The monoclinic phase is believed to provide for a flexible polarization rotation and is considered to be directly linked to the high-performance piezoelectricity in materials due to presence of more easy axes for spontaneous polarizations than the rhombohedral phase.
NASA Astrophysics Data System (ADS)
Zheng, Limei; Jing, Yujia; Lu, Xiaoyan; Wang, Ruixue; Liu, Gang; Lü, Weiming; Zhang, Rui; Cao, Wenwu
2016-03-01
The phase-transition sequence of 0.67 Pb (M g1 /3N b2 /3)- 0.37 PbTi O3 (PMN-0.37PT) single crystals driven by the electric (E ) field and temperature is comprehensively studied. Based on the strain-E field loop, polarization-E field loop, and the evolution of domain configurations, the E field along the [011] C induced phase transitions have been confirmed to be as follows: tetragonal (T ) → monoclinic (MC)→ single domain orthorhombic (O ) phase. As the E field decreases, the induced O phase cannot be maintained and transformed to the MC phase, then to the coexistence state of MC and T phases. In addition, the complete sets of dielectric, piezoelectric, and elastic constants for the [011] C-poled domain-engineered PMN-0.37PT single crystal were measured at room temperature, which show high longitudinal dielectric, piezoelectric, and electromechanical properties (ɛ33T=10 661 ,d33=1052 pC /N , and k33= 0.766 ). Our results revealed that the MC phase plays an important role in the high electromechanical properties of this domain-engineered single crystal. The temperature dependence of the domain configuration revealed that the volume fraction of the MC phase decreases with temperature accompanied by the reduction of ɛ33T,d31, and k31 due to the substantially smaller intrinsic properties of the T phase.
NASA Astrophysics Data System (ADS)
Wu, Tai-Lung; Whittaker, Luisa; Patridge, C. J.; Banerjee, S.; Sambandamurthy, G.
2011-03-01
Vanadium oxide is a well-know material to study the metal-insulator transition (MIT) in correlated electron systems. Upon heating to about 340 K, VO2 undergoes orders of magnitude drop in resistance from an insulating phase (I) to a metallic phase (M) and accompanies a lattice structural phase transition from a low-temperature monoclinical phase (M1) to a high-temperature tetragonal phase (R). We present results from combined electrical transport and Raman spectroscopic measurements to discern the effects of doping in controllably tuning the MIT in individual nanowires of single crystal WxV1 - xO2 . The MIT temperature (Tc) in our WxV1 - xO2 nanowires can be tuned through a wide range from 280 to 330 K by controlling the dopant concentration. The M-I transition can also driven electrically in these nanowires. Our simultaneous measurement of electrical transport and Raman spectroscopic measurement help us understand the role of structural transition in affecting the macroscopic electrical transition in individual wires.
NASA Astrophysics Data System (ADS)
Ochoa, D. A.; Levit, R.; Fancher, C. M.; Esteves, G.; Jones, J. L.; E García, J.
2017-05-01
Ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot be associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel-Fulcher-Tammann phenomenological equation. Results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.
Superconductivity in YTE2Ge2 compounds (TE = d-electron transition metal)
NASA Astrophysics Data System (ADS)
Chajewski, G.; Samsel-Czekała, M.; Hackemer, A.; Wiśniewski, P.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
Polycrystalline samples of YTE2Ge2 with TE = Co, Ni, Ru, Rh, Pd and Pt were synthesized and characterized by means of X-ray powder diffraction and low-temperature electrical resistivity and specific heat measurements, supplemented by fully relativistic full-potential local-orbital band structure calculations. We confirm that most of the compounds studied crystallize in a body-centered tetragonal ThCr2S2 -type structure (space group I 4 / mmm) and have three-dimensional Fermi surfaces, while only one of them (YPt2Ge2) forms with a primitive tetragonal CaBe2Ge2 -type unit cell (space group P 4 / nmm) and possesses quasi-two-dimensional Fermi surface sheets with some nesting. Physical properties data show conventional superconductivity in the phases with TE = Co, Pd and Pt, i.e. independently of the structure type (and hence the dimensionality of the Fermi surface).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, C. Q.; Peng, L.; Jiang, K.
2015-06-15
The phase transitions of Pb{sub 1−x}Sr{sub x}(Al{sub 1/3}Nb{sub 2/3}){sub 0.1}(Zr{sub 0.52}Ti{sub 0.48}){sub 0.9}O{sub 3} (Sr-modified PAN-PZT) ceramics with Sr compositions of x = 2%, 5%, 10% and 15% have been investigated using X-ray diffraction (XRD), temperature dependent dielectric permittivity and Raman scattering. The XRD analysis show that the phase transition occurs between Sr composition of 5% and 10%. Based on the broad dielectric peaks at 100 Hz, the diffused phase transition from tetragonal (T) to cubic (C) structure shifts to lower temperature with increasing Sr composition. The dramatic changes of wavenumber and full width at half-maximum (FWHM) for E(TO{sub 4})′more » softing mode can be observed at morphotropic phase boundary (MPB). Moreover, the MPB characteristic shows a wider and lower trend of temperature region with increasing Sr composition. It could be ascribed to the diminishment of the energy barrier and increment of A-cation entropy. Therefore, the Sr-modified PAN-PZT ceramics unambiguously undergo two successive structural transitions (rhombohedral-tetragonal-cubic phase) with temperature from 80 to 750 K. Correspondingly, the phase diagram of Sr-modified PAN-PZT ceramics can be well depicted.« less
Rapid thermal annealing of WSi x. In-situ resistance measurements
NASA Astrophysics Data System (ADS)
Nobili, C.; Bosi, M.; Ottaviani, G.; Queirolo, G.; Bacci, L.
1991-11-01
In-situ sheet resistance measurements have been performed on amorphous WSi 2.5 alloy films deposited by low pressure chemical vapour deposition either on thermal oxide or on polysilicon. The heat treatments were performed in vacuum up to 1000°C at a heating rate ranging from 5 to 6000°C/min. The temperature was measured with a thermocouple placed underneath and in contact with the sample; the film sheet resistance was measured with a four-point probe in van der Pauw configuration. The in-depth elemental composition was determined by 2 MeV 4He + backscattering technique. Nuclear reaction was used to monitor the quantity of flourine present in the sample. The phases formed were identified by X-ray diffraction. The sheet resistance versus temperature curves are all similar and present, after a small initial decrease, first a sharp increase followed, after about 200°C, by a decrease. X-ray diffraction measurements indicate that the increase is due to the amorphous-hexagonal phase transformation; the decrease is due to the formation of the tetragonal WSi 2 phase. The temperature at which the two variations occur increases with the heating rate indicating thermally activated processes. The activation energies are 1.4 ±0.1 and 2.4 ±0.1 eV for the amorphous-hexagonal and hexagonal-tetragonal transformation, respectively. Silicon segregation at the inner interface occurs only on the samples where the silicide alloy was deposited on polysilicon and for heating rates lower than 200°C/min. The total flourine content is not affected by the kind of heat treatment performed.
Forbidden phonon: Dynamical signature of bond symmetry breaking in the iron chalcogenides
Fobes, David M.; Zaliznyak, Igor A.; Tranquada, John M.; ...
2016-09-01
Investigation of the inelastic neutron scattering spectra in Fe 1+yTe 1₋xSe x near a signature wave vector Q=(1,0,0) for the bond-order wave (BOW) formation of parent compound Fe 1+yTe reveals an acoustic-phonon-like dispersion present in all structural phases. While a structural Bragg peak accompanies the mode in the low-temperature phase of Fe 1+yTe, it is absent in the high-temperature tetragonal phase, where Bragg scattering at this Q is forbidden by symmetry. Notably, this mode is also observed in superconducting FeTe 0.55Se 0.45, where structural and magnetic transitions are suppressed, and no BOW has been observed. Lastly, the presence of thismore » “forbidden” phonon indicates that the lattice symmetry is dynamically or locally broken by magneto-orbital BOW fluctuations, which are strongly coupled to lattice in these materials.« less
NASA Astrophysics Data System (ADS)
Hou, Dong; Usher, Tedi-Marie; Zhou, Hanhan; Raengthon, Natthaphon; Triamnak, Narit; Cann, David P.; Forrester, Jennifer S.; Jones, Jacob L.
2017-08-01
The existence of local tetragonal distortions is evidenced in the BaTiO3-xBi(Zn1/2Ti1/2)O3 (BT-xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2-3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transforms to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Hou, Dong; Usher, Tedi -Marie; Zhou, Hanhan; ...
2017-08-11
The existence of local tetragonal distortions is evidenced in the BaTiO 3–xBi(Zn 1/2Ti 1/2)O 3 (BT–xBZT) relaxor dielectric material system at elevated temperatures. The local and average structures of BT-xBZT with different compositions are characterized using in situ high temperature total scattering techniques. Using the box-car fitting method, it is inferred that there are tetragonal polar clusters embedded in a non-polar pseudocubic matrix for BT-xBZT relaxors. The diameter of these polar clusters is estimated as 2–3 nm at room temperature. Sequential temperature series fitting shows the persistence of the tetragonal distortion on the local scale, while the average structure transformsmore » to a pseudocubic paraelectric phase at high temperatures. The fundamental origin of the temperature stable permittivity of BT-xBZT and the relationship with the unique local scale structures are discussed. This systematic structural study of the BT-xBZT system provides both insight into the nature of lead-free perovskite relaxors, and advances the development of a wide range of electronics with reliable high temperature performance.« less
Self-Organized Superlattice and Phase Coexistence inside Thin Film Organometal Halide Perovskite.
Kim, Tae Woong; Uchida, Satoshi; Matsushita, Tomonori; Cojocaru, Ludmila; Jono, Ryota; Kimura, Kohei; Matsubara, Daiki; Shirai, Manabu; Ito, Katsuji; Matsumoto, Hiroaki; Kondo, Takashi; Segawa, Hiroshi
2018-02-01
Organometal halide perovskites have attracted widespread attention as the most favorable prospective material for photovoltaic technology because of their high photoinduced charge separation and carrier transport performance. However, the microstructural aspects within the organometal halide perovskite are still unknown, even though it belongs to a crystal system. Here direct observation of the microstructure of the thin film organometal halide perovskite using transmission electron microscopy is reported. Unlike previous reports claiming each phase of the organometal halide perovskite solely exists at a given temperature range, it is identified that the tetragonal and cubic phases coexist at room temperature, and it is confirmed that superlattices composed of a mixture of tetragonal and cubic phases are self-organized without a compositional change. The organometal halide perovskite self-adjusts the configuration of phases and automatically organizes a buffer layer at boundaries by introducing a superlattice. This report shows the fundamental crystallographic information for the organometal halide perovskite and demonstrates new possibilities as promising materials for various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ab initio study of the structural phase transitions of the double perovskites Sr2MWO6 (M=Zn, Ca, Mg)
NASA Astrophysics Data System (ADS)
Petralanda, U.; Etxebarria, I.
2014-02-01
We study the interplay of structural distortions in double perovskites Sr2MWO6 (M = Zn, Ca, Mg) by means of first-principles calculations and group theoretical analysis. Structure relaxations of the cubic, tetragonal, and monoclinic phases show that the ground states of the three compounds are monoclinic, although the energy difference between the monoclinic and tetragonal structures is very small in the case of Sr2MgWO6. The symmetry analysis of the distortions involved in the experimental and calculated low-temperature structures shows that the amplitude of two primary distortions associated to rigid rotations of the MX6 and WO6 octahedra are dominant, although the amplitude of a third mode related to deformations of the MX6 groups can not be neglected. The energy maps of the space spanned by the three relevant modes are calculated, and the couplings among the modes are evaluated, showing that the role of a hard secondary mode (in the Landau sense) coupled trilinearly to the two primary instabilities is crucial to stabilize the monoclinic ground state. Results suggest that the key role of the trilinear coupling among three modes could be rather common. A phenomenological theory including the effects of the chemical pressure is also developed. We find that the evolution of the stiffness constants in terms of the atomic substitution follows an accurate linear dependence and that the influence of quantum saturation of the order parameters could stabilize the tetragonal phase of Sr2MgWO6.
NASA Astrophysics Data System (ADS)
Wehrenfennig, Christian; Liu, Mingzhen; Snaith, Henry J.; Johnston, Michael B.; Herz, Laura M.
2014-08-01
The optoelectronic properties of the mixed hybrid lead halide perovskite CH3NH3PbI3-xClx have been subject to numerous recent studies related to its extraordinary capabilities as an absorber material in thin film solar cells. While the greatest part of the current research concentrates on the behavior of the perovskite at room temperature, the observed influence of phonon-coupling and excitonic effects on charge carrier dynamics suggests that low-temperature phenomena can give valuable additional insights into the underlying physics. Here, we present a temperature-dependent study of optical absorption and photoluminescence (PL) emission of vapor-deposited CH3NH3PbI3-xClx exploring the nature of recombination channels in the room- and the low-temperature phase of the material. On cooling, we identify an up-shift of the absorption onset by about 0.1 eV at about 100 K, which is likely to correspond to the known tetragonal-to-orthorhombic transition of the pure halide CH3NH3PbI3. With further decreasing temperature, a second PL emission peak emerges in addition to the peak from the room-temperature phase. The transition on heating is found to occur at about 140 K, i.e., revealing significant hysteresis in the system. While PL decay lifetimes are found to be independent of temperature above the transition, significantly accelerated recombination is observed in the low-temperature phase. Our data suggest that small inclusions of domains adopting the room-temperature phase are responsible for this behavior rather than a spontaneous increase in the intrinsic rate constants. These observations show that even sparse lower-energy sites can have a strong impact on material performance, acting as charge recombination centres that may detrimentally affect photovoltaic performance but that may also prove useful for optoelectronic applications such as lasing by enhancing population inversion.
Structural properties of zirconia - in-situ high temperature XRD characterization
NASA Astrophysics Data System (ADS)
Kurpaska, Lukasz
2018-07-01
In this work, the effect of high temperature on structural properties of pure zirconium have been investigated. In-situ X-ray diffraction analysis of the oxide layer formed at temperature window 25-600 °C on pure zirconium were performed. Conducted experiment aimed at investigation of the zirconia phases developed on surface of the metallic substrate. Based on the conducted studies, possible stress state (during heating, continuous oxidation and cooling), cell parameters and HWHM factor were analyzed. A tetragonal and monoclinic phases peak shifts and intensities change were observed, suggesting that different phases react in different way upon temperature effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rodriguez-Hernandez, J.; Instituto de Ciencia y Tecnologia de Materiales, Universidad de La Habana; Lemus-Santana, A.A.
2010-01-15
The materials under study are pillared solids T[Ni(CN){sub 4}].xpyz with one and two (x=1,2) pyrazine (pyz) molecules and where T=Mn, Co, Ni, Zn, Cd. Stimulated by their structural features and potential role as prototype of porous solids for hydrogen storage, the structural stability under cryogenic conditions for this series of pillared solids was studied. At low temperature, in the 100-200 K range, the occurrence of a reversible structural transformation was found. For T=Mn, Co, Zn, Cd, with x=2, the structural transformation was observed to occur around 185 K, and the low temperature phase crystallizes with a monoclinic unit cell (spacemore » group Pc). This structure change results from certain charge redistribution on cooling within the involved ligands. For T=Ni with x=1, both the low and high temperature phases crystallize with unit cells of tetragonal symmetry, within the same space group but with a different unit cell volume. In this case the structure change is observed around 120 K. Above that temperature the rotational states for the pyrazine molecule are thermally excited and all the pyrazine molecules in the structure become equivalent. Under this condition the material structure is described using a smaller structural unit. The structural study using X-ray powder diffraction data was complemented with calorimetric and Raman spectroscopy measurements. For the low temperature phases the crystal structures were solved from Patterson methods and then refined using the Rietveld method. - Graphical abstract: Low temperature ordered structure for pyrazine in T[Ni(CN){sub 4}].pyz.« less
Pan, Zhao; Chen, Jun; Yu, Runze; ...
2016-09-15
Lead-free piezoelectrics have attracted increasing attention due to the awareness of lead toxicity to the environment. Here, a new Bi-based lead-free perovskite of (1-x)Bi(Zn 0.5Ti 0.5)O 3-xBiFeO 3 has been synthesized via high-pressure and high-temperature method. It exhibits interest-ing properties of giant polarization, morphotropic phase boundary (MPB), and monoclinic phase. In particular, large tetragonality ( c/a = 1.228) and giant spontaneous polariza-tion of 110 μC/cm 2 has been obtained in 0.6Bi(Zn 0.5Ti 0.5)O 3-0.4BiFeO 3, which is much higher than most available lead-free materials and conventional Pb(Zr,Ti)O 3. MPB is clearly identified to be constituted by tetragonal and monoclinic phasesmore » at x = 0.5. Notably, a single monoclinic phase has been observed at x = 0.6, which exhibits an intriguing high temperature property. In conclusion, the present results are helpful to explore new lead-free MPB systems in bismuth-based compounds.« less
NASA Astrophysics Data System (ADS)
Brajesh, Kumar; Tanwar, Khagesh; Abebe, Mulualem; Ranjan, Rajeev
2015-12-01
There is great interest in lead-free (B a0.85C a0.15 ) (T i0.90Z r0.10 ) O3 (15/10BCTZ) because of its exceptionally large piezoelectric response [Liu and Ren, Phys. Rev. Lett. 103, 257602 (2009), 10.1103/PhysRevLett.103.257602]. In this paper, we have analyzed the nature of: (i) crystallographic phase coexistence at room temperature, (ii) temperature- and field-induced phase transformation to throw light on the atomistic mechanisms associated with the large piezoelectric response of this system. A detailed temperature-dependent dielectric and lattice thermal expansion study proved that the system exhibits a weak dielectric relaxation, characteristic of a relaxor ferroelectric material on the verge of exhibiting a normal ferroelectric-paraelectric transformation. Careful structural analysis revealed that a ferroelectric state at room temperature is composed of three phase coexistences, tetragonal (P 4 m m )+ orthorhombic(Amm 2 )+rhombohedral(R 3 m ) . We also demonstrate that the giant piezoresponse is associated with a significant fraction of the tetragonal phase transforming to rhombohedral. It is argued that the polar nanoregions associated with relaxor ferroelectricity amplify the piezoresponse by providing an additional degree of intrinsic structural inhomogeneity to the system.
NASA Astrophysics Data System (ADS)
Varanasi, Venu Gopal
The gas turbine engine uses an yttria-stabilized zirconia (YSZ) coating to provide thermal insulation for its turbine blades. This YSZ coating must be tetragonal in crystal structure, columnar in microstructure, and be 100--250 mum thick to provide for adequate protection for the turbine blades in the severe engine environment. Currently, YSZ coatings are fabricated by electron-beam physical vapor deposition (EB-PVD), but this fabrication method is cost intensive. Chemical vapor deposition (CVD) is a more commercially viable processing method and a possible alternative to EB-PVD. The deposition of tetragonal YSZ from gaseous metal and oxidation sources were studied. A chemical equilibrium analysis modeled the feasibility of depositing tetragonal YSZ for both chloride CVD (Zr-Y-C-O-Cl-H-Inert system) and metal-organic CVD (MOCVD) (Zr-Y-C-O-H system). Pure thermochemical properties and the assessed YSZ phase diagram were used in this analysis. Using the molar input of metals ((nY + nZr) and ( nY/(nY + nZr ) = 0.08)) as bases, equilibrium calculations showed that tetragonal YSZ formation was feasible. Tetragonal YSZ formation was feasible with high oxygen content (nO/(nY + nZr) > 8) and high temperature (T > 100°C) in the case of chloride CVD (Zr-Y-C-O-Cl-H-Inert). Tetragonal YSZ formation was feasible with high oxygen content (nO/( nY + nZr) > 5) and high temperature (T > 950°C) in the case of MOCVD (Zr-Y-C-O-H). Although solid carbon formation did not appear in chloride CVD, additional oxygen (nO/( nY + nZr) > 32) and low hydrogen content relative to carbon (nH/nC < 2) were required to avoid solid carbon formation in MOCVD. Coatings were deposited using a set of base conditions derived from the chemical equilibrium analysis. In chloride CVD, YCl3 was not included because of its low vapor pressure, thus, ZrCl4 was oxidized with the H2-CO2 gas mixture. Monoclinic ZrO2 coatings were deposited at the thermochemically optimized conditions (n O/(nY + nZr) > 8, T > 1004°C) with approximately 5.5 mum h-1 growth rate. In metal-organic CVD (MOCVD), liquid precursor solutions of Y- and Zr-beta-diketonate and Y- and Zr-n-butoxide precursors were used as the metal sources and O2 gas was used as the oxidation source. Using the Y- and Zr-beta-diketonate liquid precursor solution, tetragonal YSZ was deposited with a layered microstructure apparent and a maximum growth rate of approximately 14 mum h-1 (activation energy (E a) of 50.9 +/- 4.3 kJ mol-1). The growth rate (approximately 43 mum h-1 with Ea = 53.8 +/- 7.9 kJ mol-1) was improved using Y- and Zr- n-butoxide liquid precursor solutions, and the microstructure was columnar. Yet, two-phase deposition of monoclinic ZrO2 and tetragonal YSZ occurred. Results of electron-probe micro-analysis showed that the nY/(nY + nZr ) ratio was less than 45% of the nY/( nY + nZr) ratio in the liquid precursor solution.
Petrović, Miloš; Ye, Tao; Chellappan, Vijila; Ramakrishna, Seeram
2017-12-13
Low-temperature optoelectrical studies of perovskite solar cells using MAPbI 3 and mixed-perovskite absorbers implemented into planar and mesoporous architectures reveal fundamental charge transporting properties in fully assembled devices operating under light bias. Both types of devices exhibit inverse correlation of charge carrier lifetime as a function of temperature, extending carrier lifetimes upon temperature reduction, especially after exposure to high optical biases. Contribution of bimolecular channels to the overall recombination process should not be overlooked because the density of generated charge surpasses trap-filling concentration requirements. Bimolecular charge recombination coefficient in both device types is smaller than Langevin theory prediction, and its mean value is independent of the applied illumination intensity. In planar devices, charge extraction declines upon MAPbI 3 transition from a tetragonal to an orthorhombic phase, indicating a connection between the trapping/detrapping mechanism and temperature. Studies on charge extraction by linearly increasing voltage further support this assertion, as charge carrier mobility dependence on temperature follows multiple-trapping predictions for both device structures. The monotonously increasing trend following the rise in temperature opposes the behavior observed in neat perovskite films and indicates the importance of transporting layers and the effect they have on charge transport in fully assembled solar cells. Low-temperature phase transition shows no pattern of influence on thermally activated electron/hole transport.
The phase transition of Pb8F14I2.
Weil, Matthias
2017-01-01
The reversible phase transition of Pb 8 F 14 I 2 is of continuous type and takes place at about 107 °C as monitored by temperature-dependent single crystal and powder X-ray diffraction measurements, optical microscopy, and differential scanning calorimetry. The low-temperature ferroelastic phase crystallizes in the orthorhombic crystal system (23 °C, Bmmb , Z = 2, a = 6.0699(6) Å, b = 6.0165(6) Å, c = 25.077(2) Å, 1487 structure factors, 41 parameter, R ( F 2 ) = 0.0346, wR ( F 2 ) = 0.0771) and changes its symmetry to the tetragonal crystal system into the high-temperature paraelastic phase (130 °C, I 4/ mmm , Z = 1, a = 4.2667(12) Å, c = 25.388(7) Å, 430 structure factors, 303 parameter, R ( F 2 ) = 0.0575, wR ( F 2 ) = 0.1564). Group-subgroup relationships between the two structures and a hypothetical intermediate structure are presented.
Phase stability of zirconium oxide films during focused ion beam milling
NASA Astrophysics Data System (ADS)
Baxter, Felicity; Garner, Alistair; Topping, Matthew; Hulme, Helen; Preuss, Michael; Frankel, Philipp
2018-06-01
Focused ion beam (FIB) is a widely used technique for preparation of electron transparent samples and so it is vital to understand the potential for introduction of FIB-induced microstructural artefacts. The bombardment of both Xe+ and Ga+ ions is observed to cause extensive monoclinic to tetragonal phase transformation in ZrO2 corrosion films, however, this effect is diminished with reduced energy and is not observed below 5 KeV. This study emphasises the importance of careful FIB sample preparation with a low energy cleaning step, and also gives insight into the stabilisation mechanism of the tetragonal phase during oxidation.
NASA Astrophysics Data System (ADS)
Chang, Yunfei; Yang, Zupei; Ma, Difei; Liu, Zonghuai; Wang, Zenglin
2009-03-01
(KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 lead-free piezoelectric ceramics were produced by conventional solid-state reaction method. The effects of K/Na ratio on the phase transitional behavior, Raman spectrum, microstructure, and dielectric, piezoelectric, and ferroelectric properties of the ceramics have been investigated. The phase structure of the ceramics undergoes a transition from orthorhombic to tetragonal phase with increasing x. A double-degenerate symmetric O-Nb-O stretching vibration v1 and a triply degenerate symmetric O-Nb-O bending vibration v5 are detected as relatively strong scattering in the Raman spectra. The peak shifts of v5 and v1 modes all have a discontinuity with x between 0.42 and 0.46, which may suggest the coexistence of orthorhombic and tetragonal phases in this range. Properly modifying x reduces the sintering temperature, promotes the grain growth behavior, and improves the density of the ceramics. The polymorphic phase transition (at To -t) is shifted to near room temperature by increasing x to 0.44 (K/Na ratio of about 0.85:1), and the coexistence of orthorhombic and tetragonal phases in the ceramics at x =0.44 results in the optimized electrical properties (d33=291 pC/N, kp=0.54, ɛr=1167, tan δ=0.018, To -t=35 °C, TC=351 °C, Pr=27.65 μC/cm2, and Ec=8.63 kV/cm). The results show that the equal K/Na ratio is not an essential condition in obtaining optimized electrical properties in (KxNa0.96-xLi0.04)(Nb0.85Ta0.15)O3 ceramics.
Synthesis and thermal stability of zirconia and yttria-stabilized zirconia microspheres.
Leib, Elisabeth W; Vainio, Ulla; Pasquarelli, Robert M; Kus, Jonas; Czaschke, Christian; Walter, Nils; Janssen, Rolf; Müller, Martin; Schreyer, Andreas; Weller, Horst; Vossmeyer, Tobias
2015-06-15
Zirconia microparticles produced by sol-gel synthesis have great potential for photonic applications. To this end, identifying synthetic methods that yield reproducible control over size uniformity is important. Phase transformations during thermal cycling can disintegrate the particles. Therefore, understanding the parameters driving these transformations is essential for enabling high-temperature applications. Particle morphology is expected to influence particle processability and stability. Yttria-doping should improve the thermal stability of the particles, as it does in bulk zirconia. Zirconia and YSZ particles were synthesized by improved sol-gel approaches using fatty acid stabilizers. The particles were heated to 1500 °C, and structural and morphological changes were monitored by SEM, ex situ XRD and high-energy in situ XRD. Zirconia particles (0.4-4.3 μm in diameter, 5-10% standard deviation) synthesized according to the modified sol-gel approaches yielded significantly improved monodispersities. As-synthesized amorphous particles transformed to the tetragonal phase at ∼450 °C with a volume decrease of up to ∼75% and then to monoclinic after heating from ∼650 to 850 °C. Submicron particles disintegrated at ∼850 °C and microparticles at ∼1200 °C due to grain growth. In situ XRD revealed that the transition from the amorphous to tetragonal phase was accompanied by relief in microstrain and the transition from tetragonal to monoclinic was correlated with the tetragonal grain size. Early crystallization and smaller initial grain sizes, which depend on the precursors used for particle synthesis, coincided with higher stability. Yttria-doping reduced grain growth, stabilized the tetragonal phase, and significantly improved the thermal stability of the particles. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Features of the electronic structure of FeTe compounds
NASA Astrophysics Data System (ADS)
Grechnev, G. E.; Lyogenkaya, A. A.; Panfilov, A. S.; Logosha, A. V.; Kotlyar, O. V.; Gnezdilov, V. P.; Makarova, I. P.; Chareev, D. A.; Mitrofanova, E. S.
2015-12-01
A theoretical and experimental study of the electronic structure and nature of the chemical bonds in FeTe compounds in antiferromagnetic (AFM) and paramagnetic phases was carried out. It is established that the nature of the chemical bonds is mainly metallic, and the presence of covalent bonds Fe-Te and Te-Te helps to stabilize the structural distortions of the tetragonal phase of FeTe in the low-temperature region. It is found that the bicollinear AFM structure corresponds to the ground state of the FeTe compound and the calculated value of the magnetic moment MFe = -2.4μB is in good agreement with the data from neutron diffraction measurements. At the same time, the Fermi surface (FS) of the low-temperature AFM phase is radically different from the FS of the paramagnetic FeTe. Reconstructing the FS can lead to a sign change of the Hall coefficient observed in FeTe. The calculation results serve as evidence of the fact that the electronic structures and magnetic properties of FeTe are well-described by the model of itinerant d-electrons and the density functional theory (DFT-GGA).
NASA Astrophysics Data System (ADS)
Pradhan, Lagen Kumar; Pandey, Rabichandra; Kumar, Sunil; Supriya, Sweety; Kar, Manoranjan
2018-04-01
Effect of lattice distortion on diffuse phase transition in BNBTO solid solutions near Morphotropic phase boundary (MPB) has been investigated. Solid solutions of (Bi0.5Na0.5)1-xBaxTiO3 (with mole % of x= 0.04, 0.05, 0.06, 0.07 and 0.08) were prepared by the planetary ball mill method in ethanol medium. Rietveld refinement technique with rhombohedral (R3c) and tetragonal (P4bm) crystal symmetry has been employed for structural as well as phase analysis of the solid solutions. Both rhombohedral and tetragonal lattice distortion (c/a) tends toward the pseudo-cubic crystal symmetry with the increase of mole fraction of Ba2+ near MPB (x= 6 mole %). Also, the average crystallite size and grain size decrease with increase of mole fraction of Ba2+ in BNT ceramic are due to larger ionic radius of Ba2+ and grain boundary pinning process in the solid solutions respectively. Additionally, depolarization temperature (Td) and maximum temperature (Tm) reduces due to the lattice distortion of both the phases in BNBTO solid solutions, which is explained extensively. Significant increase of dielectric constant has been observed near MPB composition (x=6%) in BNBTO solid solutions.
Orbital ordering in FeV2O4: Spinel with two orbitally active sites
NASA Astrophysics Data System (ADS)
Sarkar, Soumyajit; Saha-Dasgupta, T.
2011-12-01
By employing first-principles electronic structure calculations, we investigate orbital ordering in FeV2O4, a spinel with orbital degrees of freedom both at Fe and V sites that exhibits two tetragonal phases, one compressed at high temperature and another elongated at low temperature. Our first-principles study shows the ferro-orbital ordering of dx2-y2 and d3z2-r2 types at Fe sites at the high- and low-temperature phases, respectively. The orbital ordering at V sites is found to consist of orbital chains running along different directions with orbitals rotated alternatively within each chain, similar to that found for MnV2O4 [S. Sarkar , Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.102.216405 102, 216405 (2009)]. Further, we find that the single-ion anisotropy effect with hard and easy c axis favors the compressed and elongated tetrahedral shapes. This gives rise to magnetocrystalline anisotropy-dependent shapes, similar to that reported in the context of rare-earth-based magnetic shape memory alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Tao; Du, Zehui; Tamura, Nobumichi
(1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less
Li, Tao; Du, Zehui; Tamura, Nobumichi; ...
2017-11-10
(1-x)Pb(Zn 1/3Nb 2/3)O 3-xPbTiO 3 ((1-x)PZN-xPT in short) is one of the most important piezoelectric materials. In this study, we extensively investigated (1-x)PZN-xPT (x = 0.07–0.11) ferroelectric single crystals using in-situ synchrotron μXRD, complemented by TEM and PFM, to correlate microstructures with phase transitions. The results reveal that (i) at 25°C, the equilibrium state of (1-x)PZN-xPT is a metastable orthorhombic phase for x = 0.07 and 0.08, while it shows coexistence of orthorhombic and tetragonal phases for x = 0.09 and x = 0.11, with all ferroelectric phases accompanied by ferroelastic domains; (ii) upon heating, the phase transformation in xmore » = 0.07 is Orthorhombic → Monoclinic → Tetragonal → Cubic. The coexistence of ferroelectric tetragonal and paraelectric cubic phases was in-situ observed in x = 0.08 above Curie temperature (T C), and (iii) phase transition can be explained by the evolution of the ferroelectric and ferroelastic domains. These results disclose that (1-x)PZN-xPT are in an unstable regime, which is possible factor for its anomalous dielectric response and high piezoelectric coefficient.« less
NASA Astrophysics Data System (ADS)
Liu, Xing; Fang, Bijun; Deng, Ji; Yan, Hong; Deng, Hao; Yue, Qingwen; Ding, Jianning; Zhao, Xiangyong; Luo, Haosu
2016-01-01
In this work, the temperature-dependent Raman spectra and electrical properties of the [001]-oriented 0.5 mol. % Mn-doped 0.35Pb(In1/2Nb1/2)O3-0.35Pb(Mg1/3Nb2/3)O3-0.30PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. All the unpoled and poled PIMNT-Mn single crystals experience a ferroelectric tetragonal phase to paraelectric cubic phase transition (FET-PC) around 183 °C (TC), which exhibits a second-order transition behavior. Whereas, the poled PIMNT-Mn single crystals exhibit another two dielectric anomalies around 130 °C (TRM) and 148 °C (TMT), in which the ferroelectric rhombohedral phase to ferroelectric monoclinic phase (FER-FEM) and the ferroelectric monoclinic phase to ferroelectric tetragonal phase (FEM-FET) transitions take place, respectively. Both the two ferroelectric phase transitions exhibit a first-order transition behavior. The discontinuous change of the phase degree (θ) and frequencies (fr and fa) around TRM suggest the occurrence of the FER-FEM phase transition in the poled PIMNT-Mn single crystals. The narrowing of the 510 cm-1 and 582 cm-1 Raman modes around the TRM, TMT, and TC temperatures shown in the temperature-dependent Raman spectra suggests their increased ordering of the local structure. The intensity ratio of I272 cm-1/I801 cm-1 increases obviously around the phase transition temperatures (TRM, TMT, and TC), indicating the reduction of the long-range order. The anomalous broadening of the 272 cm-1 Raman mode around the TRM, TMT, and TC temperatures indicates the occurrence of the successive ferroelectric phase transitions (FER-FEM, FEM-FET, and FET-PC) with increasing temperature in the poled PIMNT-Mn single crystals.
NASA Astrophysics Data System (ADS)
Recarte, V.; Pérez-Landazábal, J. I.; Sánchez-Alarcos, V.; Rodríguez-Velamazán, J. A.
2014-11-01
Ni-Mn-Ga alloys show the highest magnetic-field-induced strain among ferromagnetic shape memory alloys. A great effort is being done in this alloy system to increase the application temperature range. In this sense, the addition of small amounts of Cobalt to NiMnGa alloys has been proved to increase the MT temperatures through the increase of the electron per atom relation (e/a). In this work, the analysis of the crystal structure of the present phases and the phase transformations has been performed on a Ni-Mn-Ga-Co alloy by neutron diffraction measurements from 10 K to 673 K. The study has been completed by means of calorimetric and magnetic measurements. On cooling the alloy undergoes a martensitic transformation from a face centered cubic structure to a nonmodulated tetragonal martensite. The appearance of intermartensite transformations can be disregarded in the whole temperature range below the martensitic transformation. However, a jump in the unit-cell volume of the tetragonal martensite has been observed at 325 K. Since this temperature is close to the Curie temperature of the alloy both, the structural and magnetic contributions are taken into account to explain the results.
NASA Astrophysics Data System (ADS)
Jiang, P. P.; Duan, Z. H.; Xu, L. P.; Zhang, X. L.; Li, Y. W.; Hu, Z. G.; Chu, J. H.
2014-02-01
Thermal evolution and an intermediate phase between ferroelectric orthorhombic and paraelectric tetragonal phase of multiferroic Bi5Ti3FeO15 ceramic have been investigated by temperature-dependent spectroscopic ellipsometry and Raman scattering. Dielectric functions and interband transitions extracted from the standard critical-point model show two dramatic anomalies in the temperature range of 200-873 K. It was found that the anomalous temperature dependence of electronic transition energies and Raman mode frequencies around 800 K can be ascribed to intermediate phase transformation. Moreover, the disappearance of electronic transition around 3 eV at 590 K is associated with the conductive property.
Wang, X P; Gao, Y X; Xia, Y P; Zhuang, Z; Zhang, T; Fang, Q F
2014-04-21
The correlation and transport mechanism of lithium ions with the crystal structure of a fast lithium ion conductor Li7La3Zr2O12 are mainly investigated by internal friction (IF) and AC impedance spectroscopy techniques. Compared with the poor conductivity of tetragonal Li7La3Zr2O12, the Al stabilized cubic phase exhibits a good ionic conductivity that can be up to 1.9 × 10(-4) S cm(-1) at room temperature, which can be ascribed to the disordered distribution of lithium ions in the cubic phase. A well-pronounced relaxation IF peak (labeled as peak PC) is observed in the cubic phase while a very weak IF peak (labeled as PT) is observed in the tetragonal phase, further evidencing the difference in lithium ion migration in the two phases. Peak PC can be decomposed into two sub-peaks with the activation energy and the pre-exponential factor of relaxation time being E1 = 0.41 eV and τ01 = 1.2 × 10(-14) s for the lower temperature peak PC1 and E2 = 0.35 eV and τ02 = 1.9 × 10(-15) s for the higher temperature PC2 peak, respectively. Based on the crystalline structure of a cubic garnet-type Li7La3Zr2O12 compound, an atomistic mechanism of lithium ion diffusion via vacancies is suggested, i.e. 48g(96h) ↔ 48g(96h) for peak PC1 and 48g(96h) ↔ 24d for peak PC2, respectively. The weak PT peak in the tetragonal phase is preliminarily interpreted as due to the short jump process among neighboring octahedral sites and vacant tetrahedral sites.
Pulsed Laser Deposited Ferromagnetic Chromium Dioxide thin Films for Applications in Spintronics
NASA Astrophysics Data System (ADS)
Dwivedi, S.; Jadhav, J.; Sharma, H.; Biswas, S.
Stable rutile type tetragonal chromium dioxide (CrO2) thin films have been deposited on lattice-matched layers of TiO2 by KrF excimer laser based pulsed laser deposition (PLD) technique using Cr2O3 target. The TiO2 seed layer was deposited on oxidized Si substrates by the same PLD process followed by annealing at 1100 °C for 4 h. The lattice-matched interfacial layer is required for the stabilization of Cr (IV) phase in CrO2, since CrO2 behaves as a metastable compound under ambient conditions and readily converts into its stable phase of Cr (III) oxide, Cr2O3. Analyses with X-ray diffraction (XRD), Glancing-angle XRD (GIXRD), Raman spectroscopy and grazing-angle Fourier transform infra-red (FTIR) spectroscopy confirm the presence of tetragonal CrO2 phase in the as-deposited films. Microstructure and surface morphology in the films were studied with field emission scanning electron microscope (FESEM) and atomic force microscope (AFM). Electrical and magnetic characterizations of the films were performed at room temperature. Such type of stable half-metallic CrO2 thin films with low field magnetoresistive switching behaviour are in demand for applications as diverse as spin-FETs, magnetic sensors, and magneto-optical devices.
NASA Astrophysics Data System (ADS)
Balakrishnan, G.; Sastikumar, D.; Kuppusami, P.; Babu, R. Venkatesh; Song, Jung Il
2018-02-01
Single layer aluminium oxide (Al2O3), zirconium oxide (ZrO2) and Al2O3/ZrO2 nano multilayer films were deposited on Si (100) substrates at room temperature by pulsed laser deposition. The development of Al2O3/ZrO2 nanolayered structure is an important method used to stabilize the high temperature phase (tetragonal and cubic) of ZrO2 at room temperature. In the Al2O3/ZrO2 multilayer structure, the Al2O3 layer was kept constant at 5 nm, while the ZrO2 layer thickness varied from 5 to 20 nm (5/5, 5/10, 5/15 and 5/20 nm) with a total of 40 bilayers. The X-ray diffraction studies of single layer Al2O3 indicated the γ-Al2O3 of cubic structure, while the single layer ZrO2 indicated both monoclinic and tetragonal phases. The 5/5 and 5/10 nm multilayer films showed the nanocrystalline nature of ZrO2 with tetragonal phase. The high resolution transmission electron microscopy studies indicated the formation of well-defined Al2O3 and ZrO2 layers and that they are of uniform thickness. The atomic force microscopy studies revealed the uniform and dense distribution of nanocrystallites. The nanoindentation studies indicated the hardness of 20.8 ± 1.10 and 10 ± 0.60 GPa, for single layer Al2O3 and ZrO2, respectively, and the hardness of multilayer films varied with bilayer thickness.
Magnetism and electronic structure of CoFeCrX (X = Si, Ge) Heusler alloys
NASA Astrophysics Data System (ADS)
Jin, Y.; Kharel, P.; Lukashev, P.; Valloppilly, S.; Staten, B.; Herran, J.; Tutic, I.; Mitrakumar, M.; Bhusal, B.; O'Connell, A.; Yang, K.; Huh, Y.; Skomski, R.; Sellmyer, D. J.
2016-08-01
The structural, electronic, and magnetic properties of CoFeCrX (X = Si, Ge) Heusler alloys have been investigated. Experimentally, the alloys were synthesized in the cubic L21 structure with small disorder. The cubic phase of CoFeCrSi was found to be highly stable against heat treatment, but CoFeCrGe disintegrated into other new compounds when the temperature reached 402 °C (675 K). Although the first-principle calculation predicted the possibility of tetragonal phase in CoFeCrGe, the tetragonal phase could not be stabilized experimentally. Both CoFeCrSi and CoFeCrGe compounds showed ferrimagnetic spin order at room temperature and have Curie temperatures (TC) significantly above room temperature. The measured TC for CoFeCrSi is 790 K but that of CoFeCrGe could not be measured due to its dissociation into new compounds at 675 K. The saturation magnetizations of CoFeCrSi and CoFeCrGe are 2.82 μB/f.u. and 2.78 μB/f.u., respectively, which are close to the theoretically predicted value of 3 μB/f.u. for their half-metallic phases. The calculated band gaps for CoFeCrSi and CoFeCrGe are, respectively, 1 eV and 0.5 eV. These materials have potential for spintronic device applications, as they exhibit half-metallic electronic structures with large band gaps, and Curie temperatures significantly above room temperature.
Rapp, L.; Haberl, B.; Pickard, C. J.; ...
2015-06-29
Ordinary materials can transform into novel phases with new crystal structures at extraordinary high pressure and temperature applied under both equilibrium and non-equilibrium conditions 1-6. The recently developed method of ultra-short laser-induced confined microexplosions 7-9 extends the range of possible new phases by initiating a highly non-equilibrium plasma state deep inside a bulk material 7-12. Ultra-high quenching rates can help to overcome kinetic barriers to the formation of new metastable phases, while the surrounding pristine crystal confines the affected material and preserves it for further study 10-12. Here we demonstrate that ultra-rapid pressure release from a completely disordered plasma statemore » in silicon produces several new metastable end phases quenched to ambient conditions. Their structure is determined from comparison to an ab initio random structure search which revealed six new energetically competitive potential phases, four tetragonal and two monoclinic ones. We show the presence of bt8 and st12, which have been predicted theoretically previously 13-15, but have not been observed in nature or in laboratory experiments. Additionally, the presence of the as yet unidentified silicon phase, Si-VIII and two of our other predicted tetragonal phases are highly likely within laser-affected zones. These findings pave the way for new materials with novel and exotic properties.« less
Epitaxial bain paths and metastable phases of tetragonal iron and manganese
NASA Astrophysics Data System (ADS)
Ma, Hong
2002-04-01
Epitaxial Bain paths and metastable states of tetragonal Fe and Mn have been studied by first-principles total-energy calculations using the full-potential linearized-augmented-plane-wave method. The main accomplishments are as follows. (1) We have performed the first ever EBP calculation of tetragonal antiferromagnetic (AF) Mn showing that when grown epitaxially on Pd(001), the AF Mn film is strained gamma-Mn, but grown on V(001) the film is strained delta-Mn, which could not be determined using the available crystallographic and elastic data because they were obtained from unstrained states. (2) We have calculated the EBP's of Fe at zero pressure in four magnetic phases, i.e., ferromagnetic (FM), nonmagnetic (NM), type-I antiferromagnetic (AF1), and type-II antiferromagnetic (AF2), which show that the AF2 is the phase of the bulk of epitaxial Fe films on Cu(001) and it is unstable for [110] and [010] shears in the (001) plane, but it can be stabilized by epitaxy on Cu(001). (3)We have unified and simplified the theory of elasticity under hydrostatic pressure p at zero temperature using the Gibbs free energy G, rather than the energy E. The minima of G, but not E, with respect to strains at the equilibrium structure give the zero temperature elastic constants; the stability of a phase at p is then determined by the same Born stability conditions used at p = 0 when applied to the elastic constants from G. The EBP's of FM Fe under hydrostatic pressure show that the bcc phase exists up to 1500 kbar. A bct phase is shown to come into existence at 1300 kbar and becomes stable at 1825 kbar and above. (4) Based on this dissertation research five papers have been published in refereed journals.
Singh, Shivam; Li, Cheng; Panzer, Fabian; Narasimhan, K L; Graeser, Anna; Gujar, Tanaji P; Köhler, Anna; Thelakkat, Mukundan; Huettner, Sven; Kabra, Dinesh
2016-08-04
In this Letter, we investigate the temperature dependence of the optical properties of methylammonium lead iodide (MAPbI3 = CH3NH3PbI3) from room temperature to 6 K. In both the tetragonal (T > 163 K) and the orthorhombic (T < 163 K) phases of MAPbI3, the band gap (from both absorption and photoluminescence (PL) measurements) decreases with decrease in temperature, in contrast to what is normally seen for many inorganic semiconductors, such as Si, GaAs, GaN, etc. We show that in the perovskites reported here, the temperature coefficient of thermal expansion is large and accounts for the positive temperature coefficient of the band gap. A detailed analysis of the exciton line width allows us to distinguish between static and dynamic disorder. The low-energy tail of the exciton absorption is reminiscent of Urbach absorption. The Urbach energy is a measure of the disorder, which is modeled using thermal and static disorder for both the phases separately. The static disorder component, manifested in the exciton line width at low temperature, is small. Above 60 K, thermal disorder increases the line width. Both these features are a measure of the high crystal quality and low disorder of the perovskite films even though they are produced from solution.
Photoluminescent emission of Pr 3+ ions in different zirconia crystalline forms
NASA Astrophysics Data System (ADS)
Ramos-Brito, F.; Alejo-Armenta, C.; García-Hipólito, M.; Camarillo, E.; Hernández A, J.; Murrieta S, H.; Falcony, C.
2008-08-01
Polycrystalline praseodymium doped-zirconia powders were synthesized by crystallization of a saturated solution and annealed in air at T a = 950 °C. Monoclinic, tetragonal and cubic crystalline phases of zirconia were obtained. EDS studies showed homogeneous chemical composition over all the powders particles and chemical elemental contents in good agreement with the incorporation of Pr 3+ ion in Zr 4+ sites. XRD patterns showed stabilization of tetragonal and cubic phases at 1.28 and 2.87 at.% of Pr 3+ doping concentrations, respectively. Both unit cells expand when Pr 3+ content increases. All samples showed a crystallite size lower than 27 nm. Diffuse reflectance studies exhibited the presence of the 4f5d absorption band of Pr 3+, and absorption peaks in 440-610 nm region associated with 4f inter-level electronic transitions in Pr 3+ ion. Low temperature (20 K) photo-luminescent spectroscopic measurements over excitation of 488 nm for praseodymium doped zirconia, showed multiple emission peaks in the 520-900 nm range of the electromagnetic spectrum, associated with typical 4f inter-level electronic transition in Pr 3+. Incorporation of Pr 3+ in more than one zirconia crystalline phase and the incorporation in cubic C 2 sites, were observed. Zirconia powders presented significant differences in its emission spectra as a function of the type of crystalline phase compounds.
Thermal analysis of 3-mol%-yttria-stabilized tetragonal zirconia powder doped with copper oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seidensticker, J.R.; Mayo, M.J.
Thermal analysis was performed upon 3-mol%-yttria-stabilized tetragonal zirconia polycrystals (3Y-TZP) which had been doped with CuO using an aqueous adsorption technique. Cyclic differential thermal analysis (DTA) scans indicated that the CuO present on the powder surfaces first transforms to Cu{sub 2}O and then melts. The molten Cu{sub 2}O then reacts with yttria at the powder surfaces to form a new phase containing Y, Cu, and O. Because Y takes time to diffuse to the particle surfaces, the apparent melting point of this new phase appears at higher temperatures in initial DTA scans than in subsequent scans. Vaporization of the moltenmore » copper-oxide-rich phase at the temperatures studied causes a gradual shift in composition from Y{sub 2}Cu{sub 4}O{sub 5} to the less copper-rich Y{sub 2}Cu{sub 2}O{sub 5} phase. The presence of the Y{sub 2}Cu{sub 2}O{sub 5} phase in CuO-doped 3Y-TZP allows for previous sintering and superplasticity results to be explained.« less
Substitutional Cd and Cd-Oxygen Vacancy Complexes in ZrO2 and Ce-doped ZrO_2
NASA Astrophysics Data System (ADS)
Zacate, Matthew O.; Karapetrova, E.; Platzer, R.; Gardner, J. A.; Evenson, W. E.; Sommers, J. A.
1996-03-01
We are using Perturbed Angular Correlation Spectroscopy (PAC) to study oxygen vacancy (V_O) dynamics in tetragonal ZrO2 and Ce-doped ZrO_2. PAC requires a radioactive probe atom, Cd in this study, which sits substitutionally for a Zr ion. Cd is doubly-negatively charged relative to the lattice and attracts doubly-positively charged V_Os. Pure tetragonal zirconia exists only above 950 ^circC and in this temperature range, the V_Os are very mobile. Above 950 ^circC we observe V_Os rapidly hopping about the Cd allowing us to determine the VO concentration and the trapping energy. We have been Ce-doping to stabilize the tetragonal phase to lower temperature to determine the electric field gradient the Cd experiences due to a stationary V_O. As a consequence of the Ce-doping, we observe a local lattice distortion about the Cd which increases with Ce-doping.
Fabini, Douglas H; Stoumpos, Constantinos C; Laurita, Geneva; Kaltzoglou, Andreas; Kontos, Athanassios G; Falaras, Polycarpos; Kanatzidis, Mercouri G; Seshadri, Ram
2016-12-05
The structure of the hybrid perovskite HC(NH 2 ) 2 PbI 3 (formamidinium lead iodide) reflects competing interactions associated with molecular motion, hydrogen bonding tendencies, thermally activated soft octahedral rotations, and the propensity for the Pb 2+ lone pair to express its stereochemistry. High-resolution synchrotron X-ray powder diffraction reveals a continuous transition from the cubic α-phase (Pm3‾ m, #221) to a tetragonal β-phase (P4/mbm, #127) at around 285 K, followed by a first-order transition to a tetragonal γ-phase (retaining P4/mbm, #127) at 140 K. An unusual reentrant pseudosymmetry in the β-to-γ phase transition is seen that is also reflected in the photoluminescence. Around room temperature, the coefficient of volumetric thermal expansion is among the largest for any extended crystalline solid. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parlinski, K.; Hashi, Y.; Tsunekawa, S.
A model of lanthanum orthoniobate which possesses a ferroelastic tetragonal-monoclinic phase transition is proposed. It contains only one particle per unit cell, but it is constructed consistently with symmetry changes at the phase transition. The model parameters are chosen to reproduce the bare soft mode, degree of deformation of the tetragonal unit cell to monoclinic one, and the phase transition temperature. The ferroelastic system with free boundary conditions was simulated by the molecular dynamics technique, and the second order phase transition was reproduced. The studied annealing process shows formation of the stripe lenticular domain pattern, which has been interrupted bymore » appearance of a temporary band of perpendicularly oriented lenticular domains. The maps contain W{sup {prime}}-type domain walls whose orientations are fixed only by interplay of potential parameters and not by symmetry elements. The simulated domain pattern has the same features as those observed by transmission electron microscopy. {copyright} {ital 1997 Materials Research Society.}« less
Crystal structures and transition mechanism of VO{sub 2}(A)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oka, Yoshio; Yao, Takeshi; Yamamoto, Naoichi
1998-12-01
Structures of VO{sub 2}(A) have been redetermined by single-crystal diffractometry for low- (LTP) and high-temperature (HTP) phases at 298 and 473 K, respectively. The LTP adopts the tetragonal system P4/ncc with a = 8.4403(9) {angstrom}, c = 7.666(1) {angstrom}, and Z = 16, whereas the HTP adopts the body-centered tetragonal system I4/m with a = 8.476(2) {angstrom}, c = 3.824(2) {angstrom}, and Z = 8. The refinements led to R/R{sub w} = 0.031/0.032 for LTP and 0.012/0.033 for HTP. The structures of both phases consist of edge-sharing VO{sub 6} octahedra and exhibit quite similar oxygen frameworks. Through the transition themore » V{sup 4+}-V{sup 4+} bonding in LTP with a distance of 2.7695(8) {angstrom} is dissociated in HTP to a distance of 3.0794(3) {angstrom}. The transition occurs with cooperative movements of the V atoms, namely, a rotation around the c axis and a shift along the c axis. Strangely, twinning is induced on the LTP to HTP transition but disappears on the reverse transition.« less
Thermal stability of simple tetragonal and hexagonal diamond germanium
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca; ...
2017-11-07
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
Thermal stability of simple tetragonal and hexagonal diamond germanium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huston, Larissa Q.; Johnson, Brett C.; Haberl, Bianca
Here, exotic phases of germanium, that form under high pressure but persist under ambient conditions, are of technological interest due to their unique optical and electrical properties. The thermal evolution and stability of two of these exotic Ge phases, the simple tetragonal (st12) and hexagonal diamond (hd) phases, are investigated in detail. These metastable phases, formed by high pressure decompression in either a diamond anvil cell or by nanoindentation, are annealed at temperatures ranging from 280 to 320 °C for st12-Ge and 200 to 550 °C for hd-Ge. In both cases, the exotic phases originated from entirely pure Ge precursormore » materials. Raman microspectroscopy is used to monitor the phase changes ex situ following annealing. Our results show that hd-Ge synthesized via a pure form of a-Ge first undergoes a subtle change in structure and then an irreversible phase transformation to dc-Ge with an activation energy of (4.3 ± 0.2) eV at higher temperatures. St12-Ge was found to transform to dc-Ge with an activation energy of (1.44 ± 0.08) eV. Taken together with results from previous studies, this study allows for intriguing comparisons with silicon and suggests promising technological applications.« less
NASA Astrophysics Data System (ADS)
Kornphom, Chittakorn; Laowanidwatana, Artid; Bongkarn, Theerachai
2017-03-01
In this work, a new binary 94 wt%[Bi0.5(Na0.68K0.22Li0.1)0.5TiO3 + 0.10 wt% of La2O3]-6 wt% [(Ba0.85Ca0.15)(Ti0.90Zr0.10)O3] [BNKLLT-6 wt% BCTZ] ceramic was fabricated by the solid-state combustion technique and glycine was used as the fuel. The effect of sintering temperature in the range of 1075-1175 °C for 2 h on phase evolution, microstructure and electrical properties was investigated. The phase formation exhibited a coexistence structure between rhombohedral and tetragonal at low sintering temperature. As the sintering temperature increased, the phase formation changed to pseudo-cubic phase. The average grain size of the ceramics was increased with the increasing sintering temperature. Density, ɛr, ɛSA and TFA of BNKLLT-6 wt% BCTZ ceramics increased while the TSA decreased when the sintering temperature increased up to 1125 °C, while after this temperature the opposite trends occurred. At a sintering temperature of 1125 °C, the BNKLLT-6 wt% BCTZ sample showed the highest theoretical density (95.8%), maximum dielectric constant ɛSA (5278), highest d33 (227 pC/N) and fair ferroelectric properties (Pr = 24.5 µC/cm2 and Ec = 15.45 kV/cm).
Ochoa, D. A.; Levit, R.; Fancher, C. M.; ...
2017-04-05
We report that ordinary ferroelectrics exhibit a second order phase transition that is characterized by a sharp peak in the dielectric permittivity at a frequency-independent temperature. Furthermore, these materials show a low temperature dielectric relaxation that appears to be a common behavior of perovskite systems. Tetragonal lead zirconate titanate is used here as a model system in order to explore the origin of such an anomaly, since there is no consensus about the physical phenomenon involved in it. Crystallographic and domain structure studies are performed from temperature dependent synchrotron x-ray diffraction measurement. Results indicate that the dielectric relaxation cannot bemore » associated with crystallographic or domain configuration changes. The relaxation process is then parameterized by using the Vogel–Fulcher–Tammann phenomenological equation. Finally, results allow us to hypothesize that the observed phenomenon is due to changes in the dynamic behavior of the ferroelectric domains related to the fluctuation of the local polarization.« less
NASA Astrophysics Data System (ADS)
Zeng, Lingkun
We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.
Metal Insulator transition in Vanadium Dioxide
NASA Astrophysics Data System (ADS)
Jovaini, Azita; Fujita, Shigeji; Suzuki, Akira; Godoy, Salvador
2012-02-01
MAR12-2011-000262 Abstract Submitted for the MAR12 Meeting of The American Physical Society Sorting Category: 03.9 (T) On the metal-insulator-transition in vanadium dioxide AZITA JOVAINI, SHIGEJI FUJITA, University at Buffalo, SALVADOR GODOY, UNAM, AKIRA SUZUKI, Tokyo University of Science --- Vanadium dioxide (VO2) undergoes a metal-insulator transition (MIT) at 340 K with the structural change from tetragonal to monoclinic crystal. The conductivity _/ drops at MIT by four orders of magnitude. The low temperature monoclinic phase is known to have a lower ground-state energy. The existence of the k-vector k is prerequisite for the conduction since the k appears in the semiclassical equation of motion for the conduction electron (wave packet). The tetragonal (VO2)3 unit is periodic along the crystal's x-, y-, and z-axes, and hence there is a three-dimensional k-vector. There is a one-dimensional k for a monoclinic crystal. We believe this difference in the dimensionality of the k-vector is the cause of the conductivity drop. Prefer Oral Session X Prefer .
Lattice dynamics and the nature of structural transitions in organolead halide perovskites
Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.; ...
2016-09-09
Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remark- able optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic X-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our ndings conrm the displacive nature of the cubic-to- tetragonal phase transition, which is further shown, using neutron and x-ray diraction, to be close to a tricritical point. The experimental sound speed, around 100-200 m/s, suggests that electron- phonon scattering is likely a limiting factor for further improvements in carrier mobility. Lastly, we detect quasistatic symmetry-breakingmore » nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These ndings reveal key structural properties of these materials, but also bear important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.« less
Lattice dynamics and the nature of structural transitions in organolead halide perovskites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Comin, Riccardo; Crawford, Michael K.; Said, Ayman H.
Organolead halide perovskites are a family of hybrid organic-inorganic compounds whose remark- able optoelectronic properties have been under intensive scrutiny in recent years. Here we use inelastic X-ray scattering to study low-energy lattice excitations in single crystals of methylammonium lead iodide and bromide perovskites. Our ndings conrm the displacive nature of the cubic-to- tetragonal phase transition, which is further shown, using neutron and x-ray diraction, to be close to a tricritical point. The experimental sound speed, around 100-200 m/s, suggests that electron- phonon scattering is likely a limiting factor for further improvements in carrier mobility. Lastly, we detect quasistatic symmetry-breakingmore » nanodomains persisting well into the high-temperature cubic phase, possibly stabilized by local defects. These ndings reveal key structural properties of these materials, but also bear important implications for carrier dynamics across an extended temperature range relevant for photovoltaic applications.« less
NASA Astrophysics Data System (ADS)
Domieracki, Krzysztof; Wiśniewski, Piotr; Wochowski, Konrad; Romanova, Tetiana; Hackemer, Alicja; Gorzelniak, Roman; Pikul, Adam; Kaczorowski, Dariusz
2018-05-01
Our on-going search for unconventional superconductors among the ThTE2Ge2 phases (TE is a d-electron transition metal) revealed that ThPd2Ge2, which crystallizes with a body-centered tetragonal ThCr2Si2-type structure, exhibits superconductivity at low temperatures. In this paper, we report on the electrical transport and thermodynamic properties of a polycrystalline sample of this new superconductor, extended down to 50 mK. The experimental data indicates weakly-coupled type-II superconductivity with Tc = 0.63(2) K and μ0Hc2(0) = 32(2) mT.
NASA Astrophysics Data System (ADS)
Stoia, Marcela; Barvinschi, Paul; Barbu-Tudoran, Lucian; Negrea, Adina; Barvinschi, Floricica
2013-10-01
The paper presents some results concerning the preparation of zirconia powders starting from ZrOCl2·8H2O by using two synthesis methods: (a) precipitation with NH3, at 90 °C, and (b) thermal decomposition of carboxylate precursors, obtained in the reaction of zirconium nitrate and two different alcohols, 1,3-propanediol (PD) and poly(vinyl alcohol) (PVA), at 150 °C. The precursors obtained at different temperatures have been characterized by thermal analysis (TG, DTA) and FT-IR spectroscopy. DTA analysis evidenced very clearly the transition temperatures between zirconia crystalline phases. The precursors have been annealed at different temperatures in order to obtain zirconia powders and the as obtained powders have been characterized by means of X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), and Scanning Electron Microscopy (SEM). In case of precipitation method the presence of the tetragonal phase was observed at 400 °C, while the monoclinic phase appears at temperatures higher than 400 °C, becoming major crystalline phase starting with 700 °C. In case of the powders prepared by thermal decomposition of carboxylate precursors, the tetragonal phase was formed at temperatures below 700 °C, when the monoclinic phase begin to crystallize as secondary phase, in a higher proportion for the samples synthesized with 1,3-propanediol. All powders annealed at 1200 °C are pure monoclinic zirconia. SEM images have evidenced for the zirconia powders annealed at 1000 °C particles with diameters up to 150 nm, agglomerated in micrometer-sized aggregates, more individualized and homogenous than that obtained in the case of zirconia powder synthesized with poly(vinyl alcohol).
NASA Astrophysics Data System (ADS)
Mishra, D. K.; Prusty, Sasmita; Mohapatra, B. K.; Singh, S. K.; Behera, S. N.
2012-07-01
Zirconia mullite (MUZ), Y2O3-MUZ, CaO-MUZ and MgO-MUZ composites, synthesized through plasma fusion technique, are becoming important due to their commercial scale of production within five minutes of plasma treatment from sillimanite, zircon and alumina mixture. The X-ray diffraction studies reveal the monoclinic zirconia phase in MUZ composite whereas mixed monoclinic, tetragonal and cubic phases of zirconia have been observed in Y2O3, CaO, MgO added MUZ composites. The Y2O3, CaO and MgO additives act as sintering aids to favour the transformation and stabilisation of tetragonal and cubic zirconia phases at room temperature. These additives also play a key role in the development of various forms of microstructure to achieve dense MUZ composites.
Wu, Bo; Wu, Haijun; Wu, Jiagang; Xiao, Dingquan; Zhu, Jianguo; Pennycook, Stephen J
2016-11-30
Because of growing environmental concerns, the development of lead-free piezoelectric materials with enhanced properties has become of great interest. Here, we report a giant piezoelectric coefficient (d 33 ) of 550 pC/N and a high Curie temperature (T C ) of 237 °C in (1-x-y)K 1-w Na w Nb 1-z Sb z O 3- xBiFeO 3- yBi 0.5 Na 0.5 ZrO 3 (KN w NS z -xBF-yBNZ) ceramics by optimizing x, y, z, and w. Atomic-resolution polarization mapping by Z-contrast imaging reveals the intimate coexistence of rhombohedral (R) and tetragonal (T) phases inside nanodomains, that is, a structural origin for the R-T phase boundary in the present KNN system. Hence, the physical origin of high piezoelectric performance can be attributed to a nearly vanishing polarization anisotropy and thus low domain wall energy, facilitating easy polarization rotation between different states under an external field.
NASA Astrophysics Data System (ADS)
Xiao, Xiang-Bo; Liu, Bang-Gui
2018-03-01
It is highly desirable to combine the full spin polarization of carriers with modern semiconductor technology for spintronic applications. For this purpose, one needs good crystalline ferromagnetic (or ferrimagnetic) semiconductors with high Curie temperatures. Rutile CrO2 is a half-metallic spintronic material with Curie temperature 394 K and can have nearly full spin polarization at room temperature. Here, we find through first-principles investigation that when a biaxial compressive stress is applied on rutile CrO2, the density of states at the Fermi level decreases with the in-plane compressive strain, there is a structural phase transition to an orthorhombic phase at the strain of -5.6 % , and then appears an electronic phase transition to a semiconductor phase at -6.1 % . Further analysis shows that this structural transition, accompanying the tetragonal symmetry breaking, is induced by the stress-driven distortion and rotation of the oxygen octahedron of Cr, and the half-metal-semiconductor transition originates from the enhancement of the crystal field splitting due to the structural change. Importantly, our systematic total-energy comparison indicates the ferromagnetic Curie temperature remains almost independent of the strain, near 400 K. This biaxial stress can be realized by applying biaxial pressure or growing the CrO2 epitaxially on appropriate substrates. These results should be useful for realizing full (100%) spin polarization of controllable carriers as one uses in modern semiconductor technology.
Dielectric properties of A- and B-site doped BaTiO 3: Effect of La and Ga
NASA Astrophysics Data System (ADS)
Gulwade, Devidas; Gopalan, Prakash
2009-06-01
Extremely small amounts of La and Ga doping on the A- and B-site of BaTiO 3, respectively, resulting in a solid solution of the type Ba 1-3xLa 2xTi 1-3yGa 4yO 3 have been investigated. The present work dwells on the influence of the individual dopants, namely La and Ga, on the dielectric properties of BaTiO 3. The compositions have been prepared by solid-state reaction. X-ray diffraction (XRD) reveals the presence of tetragonal (P4/mmm) phase. The XRD data has been analyzed using FULLPROF, a Rietveld refinement package. The microstructure have been studied by orientation imaging microscopy (OIM). The compositions have been characterized by dielectric spectroscopy between room temperature and 250 °C. Further, the nature of phase transition has been studied using high temperature XRD. The resulting compounds exhibit high dielectric constant, enhanced diffuseness and low temperature coefficient of capacitance.
Variation of transition temperatures and residual resistivity ratio in vapor-grown FeSe
Böhmer, A. E.; Taufour, V.; Straszheim, W. E.; ...
2016-07-29
The study of the iron-based superconductor FeSe has blossomed with the availability of high-quality single crystals, obtained through flux/vapor-transport growth techniques below the structural transformation temperature of its tetragonal phase, T≈450°C. Here, we report on the variation of sample morphology and properties due to small modifications in the growth conditions. A considerable variation of the superconducting transition temperature T c, from 8.8 K to 3 K, which cannot be correlated with the sample composition, is observed. Instead, we point out a clear correlation between T c and disorder, as measured by the residual resistivity ratio. Notably, the tetragonal-to-orthorhombic structural transitionmore » is also found to be quite strongly disorder dependent (T s≈72–90K) and linearly correlated with T c.« less
Scaling of the Stress and Temperature Dependence of the Optical Anisotropy in Ba(Fe 1-x Co x ) 2As 2
Mirri, C.; Dusza, A.; Bastelberger, S.; ...
2016-09-15
We revisit our recent investigations of the optical properties in the underdoped regime of the title compounds with respect to their anisotropic behavior as a function of both temperature and uniaxial stress across the ferro-elastic tetragonal-to-orthorhombic transition. By exploiting a dedicated pressure device, we can tune and control uniaxial stress in situ thus changing the degree of detwinning of the samples in the orthorhombic SDW state as well as pressure-inducing an orthorhombicity in the paramagnetic tetragonal phase. Here we discover a hysteretic behavior of the optical anisotropy; its stress versus temperature dependence across the structural transition bears testimony to themore » analogy with the magnetic-field versus temperature dependence of the magnetization in a ferromagnet when crossing the Curie temperature. In this context, we find furthermore an intriguing scaling of the stress and temperature dependence of the optical anisotropy in Ba(Fe 1-xCo x) 2As 2.« less
Properties and rapid sintering of a nanostructured tetragonal zirconia composites
NASA Astrophysics Data System (ADS)
Shon, In-Jin; Yoon, Jin-Kook; Hong, Kyung-Tae
2017-09-01
4YSZ is generally used as oxygen sensors, fuel cells, thermal barrier and hip and knee joint replacements as a result of these excellent properties with its high biocompatibility, low density, good resistance against corrosion, high ionic conductivity, hard phase and melting point. However, 4YTZ with coarse grain has low resistance to wear and abrasion because of low hardness and low fracture toughness at room temperature. The fracture toughness and hardness of a 4YTZ can be improved by forming nanostructured composites and addition of a second hard phase. In this study, nanostuctured 4YTZ-graphene composites with nearly full density were achieved using high-frequency induction heated sintering for one min at a pressure of 80 MPa. The rapid consolidation and addition of graphene to 4YTZ retained the nano-scale structure of the ceramic by inhibiting grain growth. The grain size of 4YTZ was reduced remarkably by the addition of graphene and the addition of graphene to 4YTZ greatly improved the fracture toughness without decrease of hardness.
NASA Astrophysics Data System (ADS)
Kurpaska, L.; Jasinski, J.; Wyszkowska, E.; Nowakowska-Langier, K.; Sitarz, M.
2018-04-01
In this study, structural and nanomechanical properties of zirconia polymorphs induced by ion irradiation were investigated by means of Raman spectroscopy and nanoindentation techniques. The zirconia layer have been produced by high temperature oxidation of pure zirconium at 600 °C for 5 h at normal atmospheric pressure. In order to distinguish between the internal and external parts of zirconia, the spherical metallographic sections have been prepared. The samples were irradiated at room temperature with 150 keV Ar+ ions at fluences ranging from 1 × 1015 to 1 × 1017 ions/cm2. The main objective of this study was to distinguish and confirm different structural and mechanical properties between the interface layer and fully developed scale in the internal/external part of the oxide. Conducted studies suggest that increasing ion fluence impacts Raman bands positions (especially characteristic for tetragonal phase) and increases the nanohardness and Young's modulus of individual phases. This phenomenon has been examined from the point of view of stress-induced hardening effect and classical monoclinic → tetragonal (m → t) martensitic phase transformation.
Mapping the Superconducting Anti-ferromagnetic C4 Phase in Iron-Pnictides
NASA Astrophysics Data System (ADS)
Stadel, Ryan; Taddei, Keith; Bugaris, Dan; Lapidus, Saul; Claus, Helmut; Phelan, Daniel; Chung, Duck Young; Kanatzidis, Mercouri; Osborn, Raymond; Rosenkranz, Stephan; Chmaissem, Omar
Following the discovery of the microscopic coexistence of antifermagnetic spin density waves and superconductivity in Ba1-xKxFe2As2 and the low temperature re-entrance to the novel magnetic C4 tetragonal phase in Ba1-xNaxFe2As2, there has been significant interest in developing an understanding of the properties and formation of these phases and analyzing their dependence on temperature and composition in hole-doped 122 alkaline earth metal/iron-pnictides. We describe the mapping of various Ba, Sr, and Ca 122 phase diagrams with systematically controlled levels of hole-doping of alkaline metal onto the alkaline earth metal site, which was investigated via x-ray and neutron diffraction. Our elaborate synthesis, diffraction work, and analysis maps and firmly establishes the C4 phase space in these ternary diagrams as well as the boundary lines that separate the individual phases, and provides natural clues as well as a framework to investigate the stability and formation of the C4 domes that shift location with doping contents in the phase diagrams. Work at Argonne was supported by US DOE, Office of Science, Materials Sciences and Engineering Division.
Fourfold symmetric anisotropic magnetoresistance in half-metallic Co2MnSi Heusler alloy thin films
NASA Astrophysics Data System (ADS)
Oogane, Mikihiko; McFadden, Anthony P.; Kota, Yohei; Brown-Heft, Tobias L.; Tsunoda, Masakiyo; Ando, Yasuo; Palmstrøm, Chris J.
2018-06-01
In this study, we systematically investigated the anisotropic magnetoresistance (AMR) effect in half-metallic Co2MnSi Heusler alloy films epitaxially grown by molecular beam epitaxy. The fourfold symmetric AMR was observed in the temperature range of 25–275 K. In addition, the films exhibited a marked change in twofold symmetric AMR below 100 K. This specific temperature dependence of the AMR effect in Co2MnSi films can be caused by the tetragonal crystal field because of the distortion of the lattice at low temperatures. The influence of tetragonal distortion on both the AMR effect and half-metallicity is also discussed by first-principles calculations.
NASA Astrophysics Data System (ADS)
Suchanicz, J.; Bovtun, V.; Dutkiewicz, E. M.; Konieczny, K.; Sitko, D.; Kluczewska, K.; Wajda, A.; Kalvane, A.; Sternberg, A.
2016-08-01
Lead-free (Na0.5Bi0.5)1-xSrxTiO3 (x = 0, 0.04 and 0.06) ceramics with relative densities above 97% were prepared by solid-state synthesis process. Their dielectric, thermal and Raman properties were studied. X-ray diffraction analysis shows perovskite structure with rhombohedral symmetry at room temperature. Sr doping of Na0.5Bi0.5TiO3 (NBT) results in an increase of the dielectric permittivity, diffusing of the permittivity maximum and its shift toward lower temperatures. The temperature of the rhombohedral-tetragonal phase transition indicated by the differential scanning calorimetry (DSC) peak and relaxational dielectric anomaly near the depolarization temperature are also shifted toward lower temperatures. The observed increase and broadening of the permittivity maximum, enhancement of the dielectric relaxation near the depolarization temperature, broadening of the DSC anomaly related to the rhombohedral-tetragonal phase transition and broadening of the Raman bands with increasing Sr content are attributed to the increase of the degree of cationic disorder and evident enhancement of the relaxor-like features in NBT-xST. This enhancement could play a positive role in the improvement of the piezoelectric performance of NBT-based ceramics.
NASA Astrophysics Data System (ADS)
Wu, Jiagang; Xiao, Dingquan; Wang, Yuanyu; Zhu, Jianguo; Yu, Ping; Jiang, Yihang
2007-12-01
(1-x)(K0.42Na0.58)NbO3-xLiSbO3 [(1-x)KNN-xLS] lead-free piezoelectric ceramics were prepared by the conventional mixed oxide method. The compositional dependence of the phase structure and the electrical properties of the ceramics were studied. A morphotropic phase boundary (MPB) between the orthorhombic and tetragonal phases was identified in the composition range of 0.04
Effect of off-center ion substitution in morphotropic lead zirconate titanate composition
NASA Astrophysics Data System (ADS)
Bhattarai, Mohan K.; Pavunny, Shojan P.; Instan, Alvaro A.; Scott, James F.; Katiyar, Ram S.
2017-05-01
A detailed study of the effect of off-center donor ion (Sc3+) substitution on structural, microstructural, optical, dielectric, electrical, and ferroelectric properties of morphotropic composition of lead zirconate titanate electroceramics with the stoichiometric formula Pb0.85Sc0.10Zr0.53Ti0.47O3 (PSZT) and synthesized using a high energy solid-state reaction technique was carried out. Powder x-ray diffractometry was used to identify the stabilized tetragonal phase (space group P 4 m m ) with considerably reduced tetragonal strain, c /a = 1.005. An analysis of the thermal dependence of the Raman results indicated a smooth displacive (ferroelectric-paraelectric) phase transition as revealed by the observed disappearance of the soft modes A1 (1TO) and A1 (2TO) above 460 K. The dielectric response of Pt/PSZT/Pt metal-ferroelectric-metal capacitors was probed over a wide range of thermal excursions (85-600 K) and ac signal frequencies (102-106 Hz). Thermally activated dynamic and static conduction processes indicate hopping conduction mechanism ( Ea c t ≤ 0.015 eV) and the formation of small polarons caused by the electron and/or hole-lattice (phonon) interaction ( Ea c t ≥ 0.1 eV) at low (100-300 K) and high temperatures (300-600 K), respectively. The reduction in remnant polarization obtained is in good agreement with the largely reduced tetragonal strain observed in this sample, ( Pr ∝ √{c /a -1 } ). DC conduction is dominated by Poole-Frenkel mechanism that assumes a Coulombic attraction between detrapped electrons and positively charged stationary defect species in the polycrystalline matrix.
Ordering tendencies and electronic properties in quaternary Heusler derivatives
NASA Astrophysics Data System (ADS)
Neibecker, Pascal; Gruner, Markus E.; Xu, Xiao; Kainuma, Ryosuke; Petry, Winfried; Pentcheva, Rossitza; Leitner, Michael
2017-10-01
The phase stabilities and ordering tendencies in the quaternary full-Heusler alloys NiCoMnAl and NiCoMnGa have been investigated by in situ neutron diffraction, calorimetry, and magnetization measurements. NiCoMnGa was found to adopt the L 21 structure, with distinct Mn and Ga sublattices but a common Ni-Co sublattice. A second-order phase transition to the B 2 phase with disorder also between Mn and Ga was observed at 1160 K . In contrast, in NiCoMnAl slow cooling or low-temperature annealing treatments are required to induce incipient L 21 ordering, otherwise the system displays only B 2 order. Linked to L 21 ordering, a drastic increase in the magnetic transition temperature was observed in NiCoMnAl, while annealing affected the magnetic behavior of NiCoMnGa only weakly due to the low degree of quenched-in disorder. First principles calculations were employed to study the thermodynamics as well as order-dependent electronic properties of both compounds. It was found that a near half-metallic pseudogap emerges in the minority spin channel only for the completely ordered Y structure. However, this structure is energetically unstable compared to a tetragonal structure with alternating layers of Ni and Co, which is predicted to be the low-temperature ground state. The experimental inaccessibility of the totally ordered structures is explained by kinetic limitations due to the low ordering energies.
NASA Astrophysics Data System (ADS)
Borkar, Hitesh; Choudhary, R. J.; Singh, V. N.; Tomar, M.; Gupta, Vinay; Kumar, Ashok
2015-08-01
Novel magnetic properties and magnetic interactions in composite multiferroic oxides Pb[(Zr0.52Ti0.48)0.60(Fe0.67W0.33).40]O3]0.80-[CoFe2O4]0.20 (PZTFW-CFO) have been studied from 50 to 1000 Oe field cooled (FC) and zero field cooled (ZFC) probing conditions, and over a wide range of temperatures (4-350 K). Crystal structure analysis, surface morphology, and high resolution transmission electron microscopy images revealed the presence of two distinct phases, where micro- and nano-size spinel CFO were embedded in tetragonal PZTFW matrix and applied a significant built-in compressive strain (˜0.4-0.8%). Three distinct magnetic phase transitions were observed with the subtle effect of CFO magnetic phase on PZTFW magnetic phase transitions below the blocking temperature (TB). Temperature dependence magnetic property m(T) shows a clear evidence of spin freezing in magnetic order with lowering in thermal vibration. Chemical inhomogeneity and confinement of nanoscale ferrimagnetic phase in paramagnetic/antiferromagnetic matrix restrict the long range interaction of spin which in turn develop a giant spin frustration. A large divergence in the FC and ZFC data and broad hump in ZFC data near 200 (±10) K were observed which suggests that large magnetic anisotropy and short range order magnetic dipoles lead to the development of superparamagnetic states in composite.
First-principles study of intermetallic phase stability in the ternary Ti-Al-Nb alloy system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asta, M.; Ormeci, A.; Wills, J.M.
The stability of bcc-based phases in the Ti-Al-Nb alloy system has been studied from first-principles using a combination of ab-initio total energy and cluster variation method (CVM) calculations. Total energies have been computed for 18 binary and ternary bcc superstructures in order to determine low temperature ordering tendencies. From the results of these calculations a set of effective cluster interaction parameters have been derived. These interaction parameters are required input for CVM computations of alloy thermodynamic properties. The CVM has been used to study the effect of composition on finite-temperature ordering tendencies and site preferences for bcc-based phases. Strong orderingmore » tendencies are observed for binary Nb-Al and Ti-Al bcc phases as well as for ternary alloys with compositions near Ti{sub 2}AlNb. For selected superstructures we have also analyzed structural stabilities with respect to tetragonal distortions which transform the bcc into an fcc lattice. Instabilities with respect to such distortions are found to exist for binary but not ternary bcc compounds.« less
NASA Astrophysics Data System (ADS)
Huynh, K. K.; Tanabe, Y.; Urata, T.; Oguro, H.; Heguri, S.; Watanabe, K.; Tanigaki, K.
2014-10-01
An SDW antiferromagnetic (SDW-AF) low-temperature phase transition is generally observed and the AF spin fluctuations are considered to play an important role for the superconductivity pairing mechanism in FeAs superconductors. However, a similar magnetic phase transition is not observed in FeSe superconductors, which has caused considerable discussion. We report on the intrinsic electronic states of FeSe as elucidated by electric transport measurements under magnetic fields using a high quality single crystal. A mobility spectrum analysis, an ab initio method that does not make assumptions on the transport parameters in a multicarrier system, provides very important and clear evidence that another hidden order, most likely the symmetry broken from the tetragonal C4 symmetry to the C2 symmetry nematicity associated with the selective d -orbital splitting, exists in the case of superconducting FeSe other than the AF magnetic order spin fluctuations. The intrinsic low-temperature phase in FeSe is in the almost compensated semimetallic states but is additionally accompanied by Dirac cone-like ultrafast electrons ˜104cm2(VS) -1 as minority carriers.
Atomic Origins of Monoclinic-Tetragonal (Rutile) Phase Transition in Doped VO2 Nanowires.
Asayesh-Ardakani, Hasti; Nie, Anmin; Marley, Peter M; Zhu, Yihan; Phillips, Patrick J; Singh, Sujay; Mashayek, Farzad; Sambandamurthy, Ganapathy; Low, Ke-Bin; Klie, Robert F; Banerjee, Sarbajit; Odegard, Gregory M; Shahbazian-Yassar, Reza
2015-11-11
There has been long-standing interest in tuning the metal-insulator phase transition in vanadium dioxide (VO2) via the addition of chemical dopants. However, the underlying mechanisms by which doping elements regulate the phase transition in VO2 are poorly understood. Taking advantage of aberration-corrected scanning transmission electron microscopy, we reveal the atomistic origins by which tungsten (W) dopants influence the phase transition in single crystalline WxV1-xO2 nanowires. Our atomically resolved strain maps clearly show the localized strain normal to the (122̅) lattice planes of the low W-doped monoclinic structure (insulator). These strain maps demonstrate how anisotropic localized stress created by dopants in the monoclinic structure accelerates the phase transition and lead to relaxation of structure in tetragonal form. In contrast, the strain distribution in the high W-doped VO2 structure is relatively uniform as a result of transition to tetragonal (metallic) phase. The directional strain gradients are furthermore corroborated by density functional theory calculations that show the energetic consequences of distortions to the local structure. These findings pave the roadmap for lattice-stress engineering of the MIT behavior in strongly correlated materials for specific applications such as ultrafast electronic switches and electro-optical sensors.
Mishra, S. K.; Gupta, M. K.; Mittal, R.; ...
2016-06-22
Here, we report inelastic neutron scattering measurements over 7–1251 K in CaMnO 3 covering various phase transitions, and over 6–150 K in PrMnO 3 covering the magnetic transition. The excitations around 20 meV in CaMnO 3 and at 17 meV in PrMnO 3 at low temperatures are found to be associated with magnetic origin. We observe coherent magnetic neutron scattering in localized regions in reciprocal space and show it to arise from long-range correlated magnetic spin-waves below the magnetic transition temperature (TN) and short-range stochastic spin-spin fluctuations above T N. In spite of the similarity of the structure of themore » two compounds, the neutron inelastic spectrum of PrMnO 3 exhibits broad features at 150 K unlike well-defined peaks in the spectrum of CaMnO 3. This might result from the difference in the nature of interactions in the two compounds (magnetic and Jahn-Teller distortion). Ab initio phonon calculations have been used to interpret the observed phonon spectra. The ab initio calculations at high pressures show that the variations of Mn-O distances are isotropic for CaMnO 3 and highly anisotropic for PrMnO 3. The calculation in PrMnO 3 shows the suppression of Jahn-Teller distortion and simultaneous insulator-to-metal transition. It appears that this transition may not be associated with the occurrence of the tetragonal phase above 20 GPa as reported in the literature, since the tetragonal phase is found to be dynamically unstable, although it is found to be energetically favored over the orthorhombic phase above 20 GPa. CaMnO 3 does not show any phase transition up to 60 GPa.« less
NASA Astrophysics Data System (ADS)
Knight, Kevin S.; Price, G. David; Stuart, John A.; Wood, Ian G.
2015-01-01
The nature of the apparently continuous structural phase transition at 1,049 K in the perovskite-structured, MgSiO3 isomorph, neighborite (NaMgF3), from the orthorhombic ( Pbnm) hettotype phase to the cubic () aristotype structure, has been re-investigated using high-resolution, time-of-flight neutron powder diffraction. Using data collected at 1 K intervals close to the nominal phase transition temperature, the temperature dependence of the intensities of superlattice reflections at the M point and the R point of the pseudocubic Brillouin zone indicate the existence of a new intermediate tetragonal phase in space group P4/ mbm, with a narrow phase field extending from ~1,046.5 to ~1,048.5 K, at ambient pressure. Group theoretical analysis shows that the structural transitions identified in this study, Pbnm- P4/ mbm, and P4/ mbm-, are permitted to be second order. The observation of the tetragonal phase resolves the longstanding issue of why the high-temperature phase transition, previously identified as Pbnm-, and which would be expected to be first order under Landau theory, is in fact found to be continuous. Analysis of the pseudocubic shear strain shows it to vary with a critical exponent of 0.5 implying that the phase transition from Pbnm to P4/ mbm is tricritical in character. The large librational modes that exist in the MgF6 octahedron at high temperature, and the use of Gaussian probability density functions to describe atomic displacements, result in apparent bond shortening in the Mg-F distances, making mode amplitude determination an unreliable method for determination of the critical exponent from internal coordinates. Crystal structures are reported for the three phases of NaMgF3 at 1,033 K ( Pbnm), 1,047 K ( P4/ mbm) and 1,049 K ().
Temperature Driven Topological Switch in 1T'-MoTe2 and Strain Induced Nematicity in NaFeAs
NASA Astrophysics Data System (ADS)
Berger, Ayelet Denise Notis
Quasiparticle interference (QPI) is a powerful technique within Scanning Tunneling Microscopy (STM) that is used to probe the electronic bandstructure of materials. This thesis presents two examples using QPI to measure the bandstructure in materials with exotic electronic states that can be tuned via outside parameters (temperature and strain). In Part I of the thesis, we discuss the temperature dependence of Fermi Arcs in 1T'-MoTe 2, and then in Part II, the strain dependent nematic state in NaFeAs. The recent discovery of Weyl semimetals has introduced a new family of materials with topologically protected electronic properties and potential applications due to their anomalous transport effects. Even more useful is a Weyl semimetal that can be turned "on" and "off," switching between a topological and trivial state. One possible material is MoTe2, which undergoes a phase transition at 240K. This thesis consists of experiments using Scanning Tunneling Microscopy (STM) and Spectroscopy (STS) at different temperatures to visualize changes in the electronic bandstructure of MoTe2 across the topological phase transition. We show that a signature of topologically protected Fermi Arcs is present at low temperatures but disappears at room temperature, in the trivial phase. We include an in-depth discussion of how to account for thermal effects when comparing these two types of measurements. In Part II, we discuss strain induced nematicity in NaFeAs, an iron pnictide. Nematic fluctuations and spin correlations play an important role in the phase diagram of the iron pnictides, a family of unconventional superconductors. Illuminating the mechanism behind this symmetry breaking is key to understanding the superconducting state. Previous work has shown that nematicity in the iron pnictides responds strongly to applied strain [1, 2]. In this thesis, I present results from a new experimental technique, elasto-scanning tunneling microscopy (E-STM), which combines in situ strain and atomic resolution STM/STS. For the first time, we are able to observe the effects of strain on nematicity at the local level. We perform E-STM measurements in both the spin density wave phase and the tetragonal phase of NaFeAs and measure a distinct response in each. We successfully use strain to manipulate domain boundaries in the spin density wave state and we find the intensity of nematic fluctuations is coupled to strain in NaFeAs in the tetragonal phase.
Superconductivity in single crystalline YPd2Ge2
NASA Astrophysics Data System (ADS)
Chajewski, G.; Wiśniewski, P.; Hackemer, A.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
Single crystals of the YPd2Ge2 compound, crystallizing in the body-centered tetragonal ThCr2Si2-type structure, were studied by means of low-temperature magnetization, specific heat and electrical resistivity measurements. The zero-field data confirmed bulk and intrinsic superconductivity of the compound with the critical temperature 1.14 K, while the experiments performed in magnetic fields revealed a non-trivial character of the superconducting state. In particular, low and close to each other critical fields μ0Hc1 and μ0Hc2 (of about 20-30 mT) and field-induced first-order phase transition occurring only in the field parallel to the ab plane suggest possible cross-over from the type-I to type-II/1 superconductivity. Moreover, YPd2Ge2 exhibits robust surface superconductivity with the critical field μ0Hc3 about 20 times larger than μ0Hc1 and μ0Hc2.
Low-Temperature Dielectric Anisotropy Driven by an Antiferroelectric Mode in SrTiO3
NASA Astrophysics Data System (ADS)
Casals, Blai; Schiaffino, Andrea; Casiraghi, Arianna; Hämäläinen, Sampo J.; López González, Diego; van Dijken, Sebastiaan; Stengel, Massimiliano; Herranz, Gervasi
2018-05-01
Strontium titanate (SrTiO3 ) is the quintessential material for oxide electronics. One of its hallmark features is the transition, driven by antiferrodistortive (AFD) lattice modes, from a cubic to a ferroelastic low-temperature phase. Here we investigate the evolution of the ferroelastic twin walls upon application of an electric field. Remarkably, we find that the dielectric anisotropy of tetragonal SrTiO3 , rather than the intrinsic domain wall polarity, is the main driving force for the motion of the twins. Based on a combined first-principles and Landau-theory analysis, we show that such anisotropy is dominated by a trilinear coupling between the polarization, the AFD lattice tilts, and a previously overlooked antiferroelectric (AFE) mode. We identify the latter AFE phonon with the so-called "R mode" at ˜440 cm-1 , which was previously detected in IR experiments, but whose microscopic nature was unknown.
Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.; ...
2016-12-19
Current studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon contentmore » in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. In conclusion, the present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.« less
NASA Astrophysics Data System (ADS)
Ge, Wenwei; Li, Jiefang; Viehland, D.; Chang, Yunfei; Messing, Gary L.
2011-06-01
The structure, ferroelectric and piezoelectric properties of <001> textured (K0.5Na0.5)0.98Li0.02NbO3 ceramics were investigated as a function of temperature and dc bias E. X-ray diffraction revealed an orthorhombic (O) → tetragonal (T) polymorphic phase boundary (PPB). Phase coexistence was found near the PPB over a 30 °C temperature range, where the relative phase volume fractions changed with temperature. Furthermore, increasing E applied along the <001> texture direction resulted in a notable increase in the volume fraction of the T phase at the expense of the O phase, effectively shifting the O → T boundary to lower temperature. An enhancement in the piezoelectric properties was found to accompany this increase in the T volume fraction.
Yu Pomjakushin, V; Krzton-Maziopa, A; Pomjakushina, E V; Conder, K; Chernyshov, D; Svitlyk, V; Bosak, A
2012-10-31
The crystal and magnetic structures of the superconducting iron-based chalcogenides Rb(y)Fe(2-x)Se(2) have been studied by means of single-crystal synchrotron x-ray and high-resolution neutron powder diffraction in the temperature range 2-570 K. The ground state of the crystal is an intrinsically phase-separated state with two distinct-by-symmetry phases. The main phase has the iron vacancy ordered √5 × √5 superstructure (I4/m space group) with AFM ordered Fe spins. The minority phase does not have √5 × √5-type of ordering and has a smaller in-plane lattice constant a and larger tetragonal c-axis and can be well described by assuming the parent average vacancy disordered structure (I4/mmm space group) with the refined stoichiometry Rb(0.60(5))(Fe(1.10(5))Se)(2). The minority phase amounts to 8-10% mass fraction. The unit cell volume of the minority phase is 3.2% smaller than the one of the main phase at T = 2 K and has quite different temperature dependence. The minority phase merges with the main vacancy ordered phase on heating above the phase separation temperature T(P) = 475 K. The spatial dimensions of the phase domains strongly increase above T(P) from 1000 to >2500 Å due to the integration of the regions of the main phase that were separated by the second phase at low temperatures. Additional annealing of the crystals at a temperature T = 488 K, close to T(P), for a long time drastically reduces the amount of the minority phase.
NASA Astrophysics Data System (ADS)
Augustyns, V.; van Stiphout, K.; Joly, V.; Lima, T. A. L.; Lippertz, G.; Trekels, M.; Menéndez, E.; Kremer, F.; Wahl, U.; Costa, A. R. G.; Correia, J. G.; Banerjee, D.; Gunnlaugsson, H. P.; von Bardeleben, J.; Vickridge, I.; Van Bael, M. J.; Hadermann, J.; Araújo, J. P.; Temst, K.; Vantomme, A.; Pereira, L. M. C.
2017-11-01
γ -Fe and related alloys are model systems of the coupling between structure and magnetism in solids. Since different electronic states (with different volumes and magnetic ordering states) are closely spaced in energy, small perturbations can alter which one is the actual ground state. Here, we demonstrate that the ferromagnetic state of γ -Fe nanoparticles is associated with a tetragonal distortion of the fcc structure. Combining a wide range of complementary experimental techniques, including low-temperature Mössbauer spectroscopy, advanced transmission electron microscopy, and synchrotron radiation techniques, we unambiguously identify the tetragonally distorted ferromagnetic ground state, with lattice parameters a =3.76 (2 )Å and c =3.50 (2 )Å , and a magnetic moment of 2.45(5) μB per Fe atom. Our findings indicate that the ferromagnetic order in nanostructured γ -Fe is generally associated with a tetragonal distortion. This observation motivates a theoretical reassessment of the electronic structure of γ -Fe taking tetragonal distortion into account.
Spin order in FeV2O4 determined by single crystal Mössbauer spectroscopy in applied magnetic field
NASA Astrophysics Data System (ADS)
Nakamura, Shin; Kobayashi, Yasuhiro; Kitao, Shinji; Seto, Makoto
2018-05-01
In order to clarify the spin order of FeV2O4, 57Fe Mössbauer spectroscopy has been conducted by using a single crystal specimen. A measurement in applied magnetic field has been also conducted. By applying a slight compression in the sample plane, almost single domain state was achieved in the low temperature phases. The spectra consist of Fe2+ spectra ( 85%) and Fe2.5+ spectra ( 15%), corresponding to the A- and B-site Fe ions, respectively. The B-site spectrum well represents the local structure and the magnetic structure of V3+ ion on the B-site. Notable changes in the Mössbauer parameters are recognized at 140, 110, and 65 K, where the successive phase transitions take place. The feature well represents the orbital and spin order. In the orthorhombic phase below 110 K, Fe2+ and V3+ spins form a collinear ferrimagnetic order along the a-axis. Below 65 K in the low temperature tetragonal phase, however, both spins incline from the c-axis to form a canted ferrimagnetic structure. The canting angles are about 17° and 52° at 4.2 K for Fe2+ and V3+ spins, respectively.
Preparation of meta-stable phases of barium titanate by Sol-hydrothermal method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Selvaraj, Mahalakshmi; Department of Material Science, School of Chemistry, Madurai Kamaraj University, Tamilnadu Madurai-625 021; Venkatachalapathy, V.
2015-11-15
Two low-cost chemical methods of sol–gel and the hydrothermal process have been strategically combined to fabricate barium titanate (BaTiO{sub 3}) nanopowders. This method was tested for various synthesis temperatures (100 °C to 250 °C) employing barium dichloride (BaCl{sub 2}) and titanium tetrachloride (TiCl{sub 4}) as precursors and sodium hydroxide (NaOH) as mineralizer for synthesis of BaTiO{sub 3} nanopowders. The as-prepared BaTiO{sub 3} powders were investigated for structural characteristics using x-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The overall analysis indicates that the hydrothermal conditions create a gentle environment to promote the formation of crystalline phasemore » directly from amorphous phase at the very low processing temperatures investigated. XRD analysis showed phase transitions from cubic - tetragonal - orthorhombic - rhombohedral with increasing synthesis temperature and calculated grain sizes were 34 – 38 nm (using the Scherrer formula). SEM and TEM analysis verified that the BaTiO{sub 3} nanopowders synthesized by this method were spherical in shape and about 114 - 170 nm in size. The particle distribution in both SEM and TEM shows that as the reaction temperature increases from 100 °C to 250 °C, the particles agglomerate. Selective area electron diffraction (SAED) shows that the particles are crystalline in nature. The study shows that choosing suitable precursor and optimizing pressure and temperature; different meta-stable (ferroelectric) phases of undoped BaTiO{sub 3} nanopowders can be stabilized by the sol-hydrothermal method.« less
Pressure-induced collapsed-tetragonal phase in SrCo2As2
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Kaluarachchi, U. S.; Ueland, B. G.; Pandey, Abhishek; Lee, Y. B.; Taufour, V.; Sapkota, A.; Kothapalli, K.; Sangeetha, N. S.; Fabbris, G.; Veiga, L. S. I.; Feng, Yejun; dos Santos, A. M.; Bud'ko, S. L.; Harmon, B. N.; Canfield, P. C.; Johnston, D. C.; Kreyssig, A.; Goldman, A. I.
2015-12-01
We present high-energy x-ray diffraction data under applied pressures up to p =29 GPa , neutron diffraction measurements up to p =1.1 GPa , and electrical resistance measurements up to p =5.9 GPa , on SrCo2As2 . Our x-ray diffraction data demonstrate that there is a first-order transition between the tetragonal (T) and collapsed-tetragonal (cT) phases, with an onset above approximately 6 GPa at T =7 K . The pressure for the onset of the cT phase and the range of coexistence between the T and cT phases appears to be nearly temperature independent. The compressibility along the a axis is the same for the T and cT phases, whereas, along the c axis, the cT phase is significantly stiffer, which may be due to the formation of an As-As bond in the cT phase. Our resistivity measurements found no evidence of superconductivity in SrCo2As2 for p ≤5.9 GPa and T ≥ 1.8 K. The resistivity data also show signatures consistent with a pressure-induced phase transition for p ≳5.5 GPa. Single-crystal neutron diffraction measurements performed up to 1.1 GPa in the T phase found no evidence of stripe-type or A-type antiferromagnetic ordering down to 10 K. Spin-polarized total-energy calculations demonstrate that the cT phase is the stable phase at high pressure with a c/a ratio of 2.54. Furthermore, these calculations indicate that the cT phase of SrCo2As2 should manifest either A-type antiferromagnetic or ferromagnetic order.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhagwat, Mahesh; Ramaswamy, Veda
Nanocrystalline zirconia powder with a fairly narrow particle size distribution has been synthesized by the amorphous citrate route. The sample obtained has a high BET surface area of 89 m{sup 2} g{sup -1}. Rietveld refinement of the powder X-ray diffraction (XRD) profile of the zirconia sample confirms stabilization of zirconia in the tetragonal phase with around 8% monoclinic impurity. The data show the presence of both anionic as well as cationic vacancies in the lattice. Crystallite size determined from XRD is 8 nm and is in close agreement with the particle size determined by TEM. The in situ high temperature-X-raymore » diffraction (HTXRD) study revealed high thermal stability of the mixture till around 1023 K after which the transformation of tetragonal phase into the monoclinic phase has been seen as a function of temperature till 1473 K. This transformation is accompanied by an increase in the crystallite size of the sample from 8 to 55 nm. The thermal expansion coefficients are 9.14 x 10{sup -6} K{sup -1} along 'a'- and 15.8 x 10{sup -6} K{sup -1} along 'c'-axis. The lattice thermal expansion coefficient in the temperature range 298-1623 K is 34.6 x 10{sup -6} K{sup -1}.« less
Does Warming a Lysozyme Solution Cook Ones Data?
NASA Technical Reports Server (NTRS)
Pusey, Marc; Burke, Michael; Judge, Russell
2000-01-01
Chicken egg white lysozyme has a well characterized thermally driven phase transition. Between pH 4.0 and 5.2, the transition temperature, as defined by the point where the tetragonal and orthorhombic solubility are equal, is a function of the pH, salt (precipitant) type and concentration, and most likely of the buffer concentration as well. This phase transition can be carried out with protein solution alone, prior to the initiation of the crystallization process. We have now measured the kinetics of this process and investigated its reversibility. An aliquot of a stock protein solution is held at a given temperature, and at periodic intervals used to set up batch crystallization experiments. The batch solutions were incubated at 20 C until macroscopic crystals were obtained, at which point the number of crystals in each well were counted. The transition effects increased with temperature, slowly falling off at 30 C with a half time (time to approx. 1/2 the t = 0 number of crystals) of approx. 5 hours, and an estimated half time of approx. 0.5 hours at 43 C. Further, the process was not reversible by simple cooling. After holding a lysozyme solution at 37 C (prior to addition of precipitant) for 16 hours, then cooling and holding it at 4 C, no return to the pre-warmed nucleation kinetics are observed after at least 4 weeks. Thus every thermal excursion above the phase transition point results in a further decrease in the nucleation rate of that solution, the extent being a function of the time and temperature. Orthorhombic lysozyme crystals apparently do not undergo the flow-induced growth cessation of tetragonal lysozyme crystals. We have previously shown that putting the protein in the orthorhombic form does not affect the averaged face growth kinetics, only nucleation, for tetragonal crystals. We may be able to use this differential behavior to elucidate how flow affects tile lysozyme crystal growth process.
Phase transition studies in bismuth ferrite thin films synthesized via spray pyrolysis technique
NASA Astrophysics Data System (ADS)
Goyal, Ankit; Lakhotia, Harish
2013-06-01
Multiferroic are the materials, which combine two or more "ferroic" properties, ferromagnetism, ferroelectricity or ferroelasticity. BiFeO3 is the only single phase multiferroic material which possesses a high Curie temperature (TC ˜ 1103 K), and a high Neel temperature (TN ˜ 643 K) at room temperature. Normally sophisticated methods are being used to deposit thin films but here we have tried a different method Low cost Spray Pyrolysis Method to deposit BiFeO3 thin film of Glass Substrate with rhombohedral crystal structure and R3c space group. Bismuth Ferrite thin films are synthesized using Bismuth Nitrate and Iron Nitrate as precursor solutions. X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) were used to study structural analysis of prepared thin films. XRD pattern shows phase formation of BiFeO3 and SEM analysis shows formation of nanocrystals of 200 nm. High Temperature Resistivity measurements were done by using Keithley Electrometer (Two Probe system). Abrupt behavior in temperature range (313 K - 400K) has been observed in resistance studies which more likely suggests that in this transition the structure is tetragonal rather than rhombohedral. BiFeO3 is the potential active material in the next generation of ferroelectric memory devices.
Composition and annealing effects on superconductivity in sintered and arc-melted Fe1+εTe0.5Se0.5
NASA Astrophysics Data System (ADS)
Foreman, M. M.; Ponti, G.; Mozaffari, S.; Markert, J. T.
2018-03-01
We present the results of x-ray diffraction, electrical resistivity, and ac magnetic susceptibility measurements on specimens of the “11”-structure superconductor Fe1+εTe0.50Se0.50 (0 ≤ ε ≤ 0.15). Samples were initially either sintered in sealed quartz tubes or melted in a zirconium-gettered arc furnace. Sintered samples were fired two to three times at temperatures of 425°C, 600°C, or 675°C, while arc-melted samples were studied both asmelted and after annealing at 650°C. X-ray diffraction data show a predominant PbO-type tetragonal phase, with a secondary hexagonal NiAs-type phase; for sintered specimens annealed at 600°C, the secondary phase decreases as ε increases over the range 0 ≤ ε ≤ 0.10, with the composition Fe1.10Te0.5Se0.5 exhibiting x-ray phase purity. A higher annealing temperature of 675°C provided such tetragonal phase purity at the composition Fe1.05Te0.5Se0.5. The resistive superconducting transition temperature Tc was nearly independent of the iron concentration 1+ε, suggesting a single superconducting phase, while the magnetic screening fraction varied greatly with concentration and conditions, peaking at ɛ = 0.07, indicating that the amount of superconducting phase is strongly dependent on conditions. We propose that the behaviour can also be viewed in terms of an electron-doped, chalcogen-deficient stoichiometry.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pandey, Rishikesh, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in; Singh, Akhilesh Kumar, E-mail: akhilesh-bhu@yahoo.com, E-mail: aksingh.mst@itbhu.ac.in
2014-07-28
We present here the results of structural studies on multiferroic (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} solid solution using Rietveld analysis on powder x-ray diffraction data in the composition range 0.35 ≤ x ≤ 0.55. The stability region of various crystallographic phases at room temperature for (1 − x)Bi(Ni{sub 1/2}Ti{sub 1/2})O{sub 3}-xPbTiO{sub 3} is determined precisely. Structural transformation from pseudo-cubic (x ≤ 0.40) to tetragonal (x ≥ 0.50) phase is observed via phase coexistence region demarcating the morphotropic phase boundary. The morphotropic phase boundary region consists of coexisting tetragonal and monoclinic structures with space group P4mm and Pm, respectively, stable in composition range 0.41 ≤ x ≤ 0.49 as confirmed by Rietveld analysis. The resultsmore » of Rietveld analysis completely rule out the coexistence of rhombohedral and tetragonal phases in the morphotropic phase boundary region reported by earlier workers. A comparison between the bond lengths for “B-site cations-oxygen anions” obtained after Rietveld refinement, with the bond length calculated using Shannon-Prewitt ionic radii, reveals the ionic nature of B-O (Ni/Ti-O) bonds for the cubic phase and partial covalent character for the other crystallographic phases.« less
NASA Astrophysics Data System (ADS)
Yuan, Ruihao; Xue, Deqing; Zhou, Yumei; Ding, Xiangdong; Sun, Jun; Xue, Dezhen
2017-07-01
We designed and synthesized a pseudo-binary Pb-free system, Ba(Ti0.7Zr0.3)O3-x(Ba0.82Ca0.18)TiO3, by combining a rhombohedral end (with only cubic to rhombohedral ferroelectric phase transition) and a tetragonal end (with only cubic to tetragonal ferroelectric phase transition). The established composition-temperature phase diagram is characterized by a tricritical point type morphotropic phase boundary (MPB), and the MPB composition has better ferroelectric, piezoelectric, and dielectric properties than the compositions deviating from MPB. Moreover, a full set of material constants (including elastic stiffness constants, elastic compliance constants, piezoelectric constants, dielectric constants, and electromechanical coupling factors) of the MPB composition are determined using a resonance method. The good piezoelectric performance of the MPB composition can be ascribed to the high dielectric constants, elastic softening, and large electromechanical coupling factor.
Tuning the metal-insulator transition of VO2 by introducing W dopants via a combinatorial approach
NASA Astrophysics Data System (ADS)
Liang, Yangang; Lee, Seunghun; Zhang, Xiaohang; Takeuchi, Ichiro
We have systematically studied the structural phase transition and the electronic properties of composition spread V1-xWxO2 (0 <= x <= 0.037) thin films fabricated on silicon (001) and c-cut sapphire substrates through combinatorial pulsed laser deposition of a V2O5 target and a WO3 target. Our in-situ temperature-dependent x-ray diffraction measurements reveal a gradual change in the film structure from a monoclinic phase to a tetragonal phase via an intermediate mixture of the two as the concentration of tungsten increases from 0% to 3.7% at 300 K. At 358 K, the film is found to be in a tetragonal phase for the entire composition range we studied. The results also suggest that the volume of the unit cell increases as the concentration of tungsten increases. Electrical transport results further show that both the phase transition temperature and the width of the hysteresis loop decrease with the increasing of the concentration of tungsten. Especially, epitaxial V1-xWxO2 films fabricated on c-cut sapphire substrates show narrower hysteresis loop compared to textured V1-xWxO2 films fabricated on Si (100) substrates. In addition, the Hall effect measurements on the epitaxial V1-xWxO2 thin films at various temperature points provide important information for the change in the electronic structure upon increasing the concentration of tungsten. This work was supported by CNAM.
Magnetic Properties of Heavy Fermion Compound Ce5Si4 with Chiral Structure
NASA Astrophysics Data System (ADS)
Sato, Yoshiki J.; Shimizu, Yusei; Nakamura, Ai; Homma, Yoshiya; Li, Dexin; Maurya, Arvind; Honda, Fuminori; Aoki, Dai
2018-07-01
The low-temperature magnetic properties of Ce5Si4 with a chiral structure have been studied by electrical resistivity, heat capacity, and magnetization measurements using single-crystalline samples. It is found that Ce5Si4 is an antiferromagnet with moderately correlated electronic states. The resistivity decreases strongly under magnetic fields, indicating scaling behavior based on the Coqblin-Schrieffer model. The obtained characteristic energy scale of the Kondo effect is clearly anisotropic for the magnetic field H ∥ a-axis and H ∥ c-axis in the tetragonal structure, possibly related to the anisotropic antiferromagnetic phase. Furthermore, in the antiferromagnetic phase, a shoulderlike crossover anomaly is observed in C/T. A possible scenario is that non-ordered Ce atoms exist even below TN in this chiral system.
The low temperature synthesis, characterization and properties of ferroelectrics
NASA Astrophysics Data System (ADS)
Xu, Jie
2000-10-01
PZT 50:50 xerogels prepared by two different sol-gel routes crystallized in a similar fashion to give a mixture of tetragonal and rhombohedral at high temperature (1000°C). Both the diffraction and EXAFS data suggest that the compositional inhomogeneity of the samples prepared by the two routes is similar. The crystallization of CZT gels is complicated. Crystalline CaCO 3 was always detected in the dry gels regardless of the sample composition and preparation methods. At intermediate temperatures a fluorite related phase was always formed and it transformed to perovskite at higher temperatures. The EXAFS data suggest that perovskite CZT samples prepared using alkoxide sol-gel chemistry may not be random solid solutions. All the solution processed ZrTiO4 materials crystallized in the range 600--700°C. The KTN samples prepared using a conventional alkoxide sol-gel route crystallized completely to perovskite at lower temperatures than those prepared using prehydrolyzed precursors. The EXAFS data for the KTN samples prepared using a conventional alkoxide sol-gel route are consistent with a random distribution of tantalum and niobium in the solid solution. However, materials prepared using the inhomogeneous sol-gel route and by the direct reaction of mixed oxides were shown to be compositionally inhomogeneous. The heterogeneity could not be removed by regrinding and heating the mixed oxide samples several times. K2Ta4-xNbxO11 (x = 0, 2, 4) samples were prepared using alkoxide sol-gel chemistry and their crystallization was examined by powder X-ray diffraction. A Rietveld structure analysis of the pyrochlore formed from a gel with bulk composition K2Ta 2Nb2O11 indicated that it was rich in potassium relative to the bulk sample. On heating to high temperatures tetragonal tungsten bronzes were formed. A Rietveld analysis was also performed for K2Ta 2Nb2O11 with tetragonal tungsten bronze structure. The defect pyrochlores "AgTaO3" and GaTaO 3 were synthesized by ion-exchange using pyrochlore KTaO3 as a starting material. The structures of the pyrochlores were examined using the Rietveld method. The pyrochlore-to-perovskite transformations were also explored.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rementeria, Rosalia; Poplawsky, Jonathan D.; Aranda, Maria M.
Current studies using atom probe tomography (APT) show that bainitic ferrite formed at low temperature contains more carbon than what is consistent with the paraequilibrium phase diagram. However, nanocrystalline bainitic ferrite exhibits a non-homogeneous distribution of carbon atoms in arrangements with specific compositions, i.e. Cottrell atmospheres, carbon clusters, and carbides, in most cases with a size of a few nanometers. The ferrite volume within a single platelet that is free of these carbon-enriched regions is extremely small. Proximity histograms can be compromised on the ferrite side, and a great deal of care should be taken to estimate the carbon contentmore » in regions of bainitic ferrite free from carbon agglomeration. For this purpose, APT measurements were first validated for the ferritic phase in a pearlitic sample and further performed for the bainitic ferrite matrix in high-silicon steels isothermally transformed between 200 °C and 350 °C. Additionally, results were compared with the carbon concentration values derived from X-ray diffraction (XRD) analyses considering a tetragonal lattice and previous APT studies. In conclusion, the present results reveal a strong disagreement between the carbon content values in the bainitic ferrite matrix as obtained by APT and those derived from XRD measurements. Those differences have been attributed to the development of carbon-clustered regions with an increased tetragonality in a carbon-depleted matrix.« less
Ab initio DFT+U study of He atom incorporation into UO(2) crystals.
Gryaznov, Denis; Heifets, Eugene; Kotomin, Eugene
2009-09-07
We present and discuss results of the density functional theory (DFT) for perfect UO(2) crystals with He atoms in octahedral interstitial positions therein. We have calculated basic bulk crystal properties and He incorporation energies into the low temperature anti-ferromagnetic UO(2) phase using several exchange-correlation functionals within the spin-polarized local density (LDA) and generalized gradient (GGA) approximations. In all DFT calculations we included the on-site correlation corrections using the Hubbard model (DFT+U approach). We analysed a potential crystalline symmetry reduction from tetragonal down to orthorhombic structure and confirmed the presence of the Jahn-Teller effect in a perfect UO(2). We discuss also the problem of a conducting electronic state arising when He is placed into a tetragonal antiferromagnetic phase of UO(2) commonly used in defect modelling. Consequently, we found a specific monoclinic lattice distortion which allowed us to restore the semiconducting state and properly estimate He incorporation energies. Unlike the bulk properties, the He incorporation energy strongly depends on several factors, including the supercell size, the use of spin polarization, the exchange-correlation functionals and on-site correlation corrections. We compare our results for the He incorporation with the previous shell model and ab initio DFT calculations.
Scandia-and-Yttria-Stabilized Zirconia for Thermal Barriers
NASA Technical Reports Server (NTRS)
Mess, Derek
2003-01-01
yttria in suitable proportions has shown promise of being a superior thermal- barrier coating (TBC) material, relative to zirconia stabilized with yttria only. More specifically, a range of compositions in the zirconia/scandia/yttria material system has been found to afford increased resistance to deleterious phase transformations at temperatures high enough to cause deterioration of yttria-stabilized zirconia. Yttria-stabilized zirconia TBCs have been applied to metallic substrates in gas turbine and jet engines to protect the substrates against high operating temperatures. These coatings have porous and microcracked structures, which can accommodate strains induced by thermal-expansion mismatch and thermal shock. The longevity of such a coating depends upon yttria as a stabilizing additive that helps to maintain the zirconia in an yttria-rich, socalled non-transformable tetragonal crystallographic phase, thus preventing transformation to the monoclinic phase with an associated deleterious volume change. However, at a temperature greater than about 1,200 C, there is sufficient atomic mobility that the equilibrium, transformable zirconia phase is formed. Upon subsequent cooling, this phase transforms to the monoclinic phase, with an associated volume change that adversely affects the integrity of the coating. Recently, scandia was identified as a stabilizer that could be used instead of, or in addition to, yttria. Of particular interest are scandia-and-yttria-stabilized zirconia (SYSZ) compositions of about 6 mole percent scandia and 1 mole percent yttria, which have been found to exhibit remarkable phase stability at a temperature of 1,400 C in simple aging tests. Unfortunately, scandia is expensive, so that the problem becomes one of determining whether there are compositions with smaller proportions of scandia that afford the required high-temperature stability. In an attempt to solve this problem, experiments were performed on specimens made with reduced proportions of scandia. The criterion used to judge these specimens was whether they retained the non-transformable tetragonal phase after a severe heat treatment of 140 hours at 1,400 C.
Collapsed tetragonal phase transition in LaRu 2 P 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.
Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less
Collapsed tetragonal phase transition in LaRu2P2
NASA Astrophysics Data System (ADS)
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; Kothapalli, Karunakar; Bud'ko, Sergey L.; Goldman, Alan I.; Kreyssig, Andreas; Canfield, Paul C.
2017-11-01
The structural properties of LaRu2P2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu2P2 (I4/mmm) has a tetragonal structure with a bulk modulus of B =105 (2 ) GPa and exhibits superconductivity at Tc=4.1 K. With the application of pressure, LaRu2P2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B =175 (5 ) GPa. At the transition, the c -lattice parameter exhibits a sharp decrease with a concurrent increase of the a -lattice parameter. The cT phase transition in LaRu2P2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P =3.9 (3 ) GPa at 160 K to P =4.6 (3 ) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu2P2 (R = Y, La -Er , Yb) isostructural series of compounds and find them to be analogous.
Collapsed tetragonal phase transition in LaRu 2 P 2
Drachuck, Gil; Sapkota, Aashish; Jayasekara, Wageesha T.; ...
2017-11-10
Here, the structural properties of LaRu 2P 2 under external pressure have been studied up to 14 GPa, employing high-energy x-ray diffraction in a diamond-anvil pressure cell. At ambient conditions, LaRu 2P 2 (I4/ mmm) has a tetragonal structure with a bulk modulus of B = 105(2) GPa and exhibits superconductivity at T c = 4.1 K. With the application of pressure, LaRu 2P 2 undergoes a phase transition to a collapsed tetragonal (cT) state with a bulk modulus of B = 175(5) GPa. At the transition, the c-lattice parameter exhibits a sharp decrease with a concurrent increase of themore » a-lattice parameter. The cT phase transition in LaRu 2P 2 is consistent with a second-order transition, and was found to be temperature dependent, increasing from P = 3.9(3) GPa at 160 K to P = 4.6(3) GPa at 300 K. In total, our data are consistent with the cT transition being near, but slightly above 2 GPa at 5 K where superconductivity is suppressed. Finally, we compare the effect of physical and chemical pressure in the RRu 2P 2 ( R = Y, La–Er, Yb) isostructural series of compounds and find them to be analogous.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du Hongliang; Zhou Wancheng; Luo Fa
The (1-x)(K{sub 0.5}Na{sub 0.5})NbO{sub 3}-x(Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} (KNN-BST) solid solution has been synthesized by conventional solid-state sintering in order to search for the new lead-free relaxor ferroelectrics for high temperature applications. The phase structure, dielectric properties, and relaxor behavior of the (1-x)KNN-xBST solid solution are systematically investigated. The phase structure of the (1-x)KNN-xBST solid solution gradually changes from pure perovskite phase with an orthorhombic symmetry to the tetragonal symmetry, then to the pseudocubic phase, and to the cubic phase with increasing addition of BST. The 0.90KNN-0.10BST solid solution shows a broad dielectric peak with permittivity maximum near 2500 andmore » low dielectric loss (<4%) in the temperature range of 100-250 deg. C. The result indicates that this material may have great potential for a variety of high temperature applications. The diffuse phase transition and the temperature of the maximum dielectric permittivity shifting toward higher temperature with increasing frequency, which are two typical characteristics for relaxor ferroelectrics, are observed in the (1-x)KNN-xBST solid solution. The dielectric relaxor behavior obeys a modified Curie-Weiss law and a Vogel-Fulcher relationship. The relaxor nature is attributed to the appearance of polar nanoregions owing to the formation of randon fields including local electric fields and elastic fields. These results confirm that the KNN-based relaxor ferroelectrics can be regarded as an alternative direction for the development of high temperature lead-free relaxor ferroelectrics.« less
NASA Astrophysics Data System (ADS)
Pradhan, S. K.; Das, S. N.; Bhuyan, S.; Behera, C.; Padhee, R.; Choudhary, R. N. P.
2016-06-01
A lanthanum-modified BiFeO3-PbTiO3 binary electronic system has been fabricated by a high-temperature solid-state reaction technique. The structural, dielectric and electrical properties of a single phase of multicomponent system are investigated to understand its ferroelectrics as well as relaxation behavior. The X-ray diffraction structural analysis substantiates the formation of a new stable phase of tetragonal system (with a large c/a ratio 1.23) without any trace of impurity phase. The electrical behavior of the processed material is characterized through impedance spectroscopy in a wide frequency range (1 kHz-1 MHz) over a temperature range of 25-500 °C. It is observed that the substitution of lanthanum-modified PbTiO3 (PT) into BiFeO3 (BFO) reveals enviable multiferroic property which is evident from the ME coefficient measurement and ferroelectric loop. It also reduces the electrical leakage current or tangent loss. The ac conductivity of the solid solution increases with increase in frequency in the low-temperature region. The impedance spectroscopy of the synthesized material reflects the dielectric relaxation of non-Debye type.
Effect of NiO substitution on the structural and dielectric behaviour of NaNbO3
NASA Astrophysics Data System (ADS)
George, R. T.; Joshi, D. C.; Nayak, S.; Tiwari, N.; Chauhan, R. N.; Pramanik, P.; Dar, T. A.; Ghosh, S.; Thota, S.
2018-02-01
The structural and dielectric properties of NiO substituted NaNbO3 ceramics are reported. The orthorhombic (Pmna) crystal structure of NaNbO3 transforms to a lower symmetry monoclinic phase (Pbma) after the dilute dispersion of NiO. X-ray photoelectron spectroscopy reveals pentavalent "Nb," monovalent "Na," and divalent "Ni" states along with the signatures of non-local screening effects. The antiferroelectric to paraelectric transition (TAFE) accompanied by a structural change from the orthorhombic to the tetragonal phase shifts by 55 °C toward the low-temperature side, whereas the morphotropic phase boundary (TO-M) moves toward a higher temperature by 28 °C for nominal substitutions ( x ≤0.10 ). The generalized Lyddane-Sachs-Teller expression (ε0/-S'ε∞)= (ωl/ωt ) 2 and thermodynamic free energy models are employed to explain the anomalous behaviour of the temperature dependence of relative dielectric permittivity ( εr (T)) across TAFE and TO-M. The frequency dependence of ac-conductivity σac(ω) follows the Jonscher power law (σac = σ(0) + Aωs), suggesting the dominance of the phonon-assisted hopping mechanism, whereas the frequency independent term (σ(0)) was explained by Funke's Jump-Relaxation Model.
Formation of collapsed tetragonal phase in EuCo₂As₂ under high pressure.
Bishop, Matthew; Uhoya, Walter; Tsoi, Georgiy; Vohra, Yogesh K; Sefat, Athena S; Sales, Brian C
2010-10-27
The structural properties of EuCo₂As₂ have been studied up to 35 GPa, through the use of x-ray diffraction in a diamond anvil cell at a synchrotron source. At ambient conditions, EuCo₂As₂ ) (I4/mmm) has a tetragonal lattice structure with a bulk modulus of 48 ± 4 GPa. With the application of pressure, the a axis exhibits negative compressibility with a concurrent sharp decrease in c-axis length. The anomalous compressibility of the a axis continues until 4.7 GPa, at which point the structure undergoes a second-order phase transition to a collapsed tetragonal (CT) state with a bulk modulus of 111 ± 2 GPa. We found a strong correlation between the ambient pressure volume of 122 parents of superconductors and the corresponding tetragonal to collapsed tetragonal phase transition pressures.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santhosh, M.; Rajeswarapalanichamy, R., E-mail: rrpalanichamy@gmail.com; Manikandan, M.
2016-05-06
Ab initio calculations are performed to investigate the structural stability, electronic structure and mechanical properties of alkali gallium hydrides AGaH{sub 4} (A = Li, Na) for three different crystal structures, namely tetragonal (P42{sub 1}c), tetragonal (P4{sub 2}/nmc) and monoclinic (P2{sub 1}/c). Among the considered structures, tetragonal (P42{sub 1}c) phase is found to be the most stable phase for these hydrides at normal pressure. A pressure induced structural phase transition from tetragonal (P42{sub 1}c) to tetragonal (P4{sub 2}/nmc) is observed. The electronic structure reveals that these hydrides are insulators. The calculated elastic constants indicate that these ternary imides are mechanically stablemore » at normal pressure.« less
NASA Astrophysics Data System (ADS)
Li, Qi-Lian; Cui, Xiang-Zhong; Li, Shu-Qing; Yang, Wei-Hua; Wang, Chun; Cao, Qian
2015-01-01
Scandia, gadolinia, and ytterbia co-doped zirconia (SGYZ) ceramic powder was synthesized by chemical co-precipitation and calcination processes for application in thermal barrier coatings to promote the durability of gas turbines. The ceramic powder was agglomerated and sintered at 1150 °C for 2 h, and the powder exhibited good flowability and apparent density to be suitable for plasma spraying process. The microstructure, morphology and phase stability of the powder and plasma-sprayed SGYZ coatings were analyzed by means of scanning electron microscope and x-ray diffraction. Thermal conductivity of plasma-sprayed SGYZ coatings was measured. The results indicated that the SGYZ ceramic powder and the coating exhibit excellent stability to retain single non-transformable tetragonal zirconia even after high temperature (1400 °C) exposure for 500 h and do not undergo a tetragonal-to-monoclinic phase transition upon cooling. Furthermore, the plasma-sprayed SGYZ coating also exhibits lower thermal conductivity than yttria stabilized zirconia coating currently used in gas turbine engine industry. SGYZ can be explored as a candidate material of ultra-high temperature thermal barrier coating for advanced gas turbine engines.
Raman scattering in HfxZr1-xO2 nanoparticles
NASA Astrophysics Data System (ADS)
Robinson, Richard D.; Tang, Jing; Steigerwald, Michael L.; Brus, Louis E.; Herman, Irving P.
2005-03-01
Raman spectroscopy demonstrates that ˜5nm dimension HfxZr1-xO2 nanocrystals prepared by a nonhydrolytic sol-gel synthesis method are solid solutions of hafnia and zirconia, with no discernable segregation within the individual nanoparticles. Zirconia-rich particles are tetragonal and ensembles of hafnia-rich particles show mixed tetragonal/monoclinic phases. Sintering at 1200 °C produces larger particles (20-30 nm) that are monoclinic. A simple lattice dynamics model with composition-averaged cation mass and scaled force constants is used to understand how the Raman mode frequencies vary with composition in the tetragonal HfxZr1-xO2 nanoparticles. Background luminescence from these particles is minimized after oxygen treatment, suggesting possible oxygen defects in the as-prepared particles. Raman scattering is also used to estimate composition and the relative fractions of tetragonal and monoclinic phases. In some regimes there are mixed phases, and Raman analysis suggests that in these regimes the tetragonal phase particles are relatively rich in zirconium and the monoclinic phase particles are relatively rich in hafnium.
Hess, Nancy J; Schenter, Gregory K; Hartman, Michael R; Daemen, Luc L; Proffen, Thomas; Kathmann, Shawn M; Mundy, Christopher J; Hartl, Monika; Heldebrant, David J; Stowe, Ashley C; Autrey, Tom
2009-05-14
The structural behavior of (11)B-, (2)H-enriched ammonia borane, ND(3)(11)BD(3), over the temperature range from 15 to 340 K was investigated using a combination of neutron powder diffraction and ab initio molecular dynamics simulations. In the low temperature orthorhombic phase, the progressive displacement of the borane group under the amine group was observed leading to the alignment of the B-N bond near parallel to the c-axis. The orthorhombic to tetragonal structural phase transition at 225 K is marked by dramatic change in the dynamics of both the amine and borane group. The resulting hydrogen disorder is problematic to extract from the metrics provided by Rietveld refinement but is readily apparent in molecular dynamics simulation and in difference Fourier transform maps. At the phase transition, Rietveld refinement does indicate a disruption of one of two dihydrogen bonds that link adjacent ammonia borane molecules. Metrics determined by Rietveld refinement are in excellent agreement with those determined from molecular simulation. This study highlights the valuable insights added by coupled experimental and computational studies.
Stable tetragonal phase and magnetic properties of Fe-doped HfO2 nanoparticles
NASA Astrophysics Data System (ADS)
Sales, T. S. N.; Cavalcante, F. H. M.; Bosch-Santos, B.; Pereira, L. F. D.; Cabrera-Pasca, G. A.; Freitas, R. S.; Saxena, R. N.; Carbonari, A. W.
2017-05-01
In this paper, the effect in structural and magnetic properties of iron doping with concentration of 20% in hafnium dioxide (HfO2) nanoparticles is investigated. HfO2 is a wide band gap oxide with great potential to be used as high-permittivity gate dielectrics, which can be improved by doping. Nanoparticle samples were prepared by sol-gel chemical method and had their structure, morphology, and magnetic properties, respectively, investigated by X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) with electron back scattering diffraction (EBSD), and magnetization measurements. TEM and SEM results show size distribution of particles in the range from 30 nm to 40 nm with small dispersion. Magnetization measurements show the blocking temperature at around 90 K with a strong paramagnetic contribution. XRD results show a major tetragonal phase (94%).
NASA Astrophysics Data System (ADS)
Hwang, Soo Min; Lee, Seung Muk; Park, Kyung; Lee, Myung Soo; Joo, Jinho; Lim, Jun Hyung; Kim, Hyoungsub; Yoon, Jae Jin; Kim, Young Dong
2011-01-01
High-permittivity (k) ZrO2/Si(100) films were fabricated by a sol-gel technique and the microstructural evolution with the annealing temperature (Ta) was correlated with the variation of their electrical performance. With increasing Ta, the ZrO2 films crystallized into a tetragonal (t) phase which was maintained until 700 °C at nanoscale thicknesses. Although the formation of the t-ZrO2 phase obviously enhanced the k value of the ZrO2 dielectric layer, the maximum capacitance in accumulation was decreased by the growth of a low-k interfacial layer (IL) between ZrO2 and Si with increasing Ta. On the other hand, the gate leakage current was remarkably depressed with increasing Ta probably due to the combined effects of the increased IL thickness, optical band gap of ZrO2, and density of ZrO2 and decreased remnant organic components.
Y-TZP zirconia regeneration firing: Microstructural and crystallographic changes after grinding.
Ryan, Daniel Patrick Obelenis; Fais, Laiza Maria Grassi; Antonio, Selma Gutierrez; Hatanaka, Gabriel Rodrigues; Candido, Lucas Miguel; Pinelli, Ligia Antunes Pereira
2017-07-26
This study evaluated microstructural and crystallographic phase changes after grinding (G) and regeneration firing/anneling (R) of Y-TZP ceramics. Thirty five bars (Lava TM and Ice Zirkon) were divided: Y-TZP pre-sintered, control (C), regeneration firing (R), dry grinding (DG), dry grinding+regeneration firing (DGR), wet grinding (WG) and wet grinding+regeneration firing (WGR). Grinding was conducted using a diamond bur and annealing at 1,000°C. The microstructure was analyzed by SEM and the crystalline phases by X-ray diffraction (XRD). XRD showed that pre-sintered specimens contained tetragonal and monoclinic phases, while groups C and R showed tetragonal, cubic and monoclinic phases. After grinding, the cubic phase was eliminated in all groups. Annealing (DGR and WGR) resulted in only tetragonal phase. SEM showed semi-circular cracks after grinding and homogenization of particles after annealing. After grinding, surfaces show tetragonal and monoclinic phases and R can be assumed to be necessary prior to porcelain layering when grinding is performed.
Structure of tetragonal martensite in the In95.42Cd4.58 cast alloy
NASA Astrophysics Data System (ADS)
Khlebnikova, Yu. V.; Egorova, L. Yu.; Rodionov, D. P.; Kazantsev, V. A.
2017-11-01
The structure of martensite in the In95.42Cd4.58 alloy has been studied by metallography, X-ray diffraction, dilatometry, and transmission electron microscopy. It has been shown that a massive structure built of colonies of tetragonal lamellar plates divided by a twin boundary {101}FCT is formed in the alloy under cooling below the martensite FCC → FCT transition temperature. The alloy recrystallizes after a cycle of FCT → FCC → FCT transitions with a decrease in the grain size by several times compared with the initial structure such fashion that the size of massifs and individual martensite lamella in the massif correlates with the change in the size of the alloy grain. Using thermal cycling, it has been revealed that the alloy tends to stabilize the high-temperature phase.
NASA Astrophysics Data System (ADS)
Sarantopoulos, A.; Ferreiro-Vila, E.; Pardo, V.; Magén, C.; Aguirre, M. H.; Rivadulla, F.
2015-10-01
We report thermoelectric power experiments in e -doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e -doped STO thin films, is similar to that observed in LaAlO3 /STO interfaces and magnetic STO quantum wells.
NASA Astrophysics Data System (ADS)
Degtyareva, V. F.; Bdikin, I. K.; Porsch, F.; Novokhatskaya, N. I.
2003-03-01
The effect of pressure on tetragonal In-Pb alloys with 10, 15, and 22 at.% Pb has been studied up to pressure 30 GPa with diamond anvil cells using synchrotron radiation. The In-type face-centred tetragonal phase of the In alloy with 10 at.% Pb undergoes under pressure a phase transition with a discontinuous jump of the axial ratio from c/a > 1 to c/a < 1 via a two-phase region from 7 to 20 GPa. The tetragonal phases of the In alloys with 15 and 22 at.% Pb with c/a < 1 at ambient pressure show only a slight decrease in c/a with pressure increase. The correlation of the axial ratio with the alloy content and its change with pressure in In alloys and In itself are attributed to Brillouin-zone-Fermi-sphere interactions.
NASA Astrophysics Data System (ADS)
Lok, R.; Kaya, S.; Yilmaz, E.
2018-05-01
In this work, the thermal phase separation and annealing optimization of ZrSiO4 thin films have been carried out. Following annealing optimization, the frequency-dependent electrical characteristics of the Al/ZrSiO4/p-Si/Al MOS capacitors were investigated in detail. The chemical evolution of the films under various annealing temperatures was determined by Fourier transform infrared spectroscopy (FTIR) measurements. The phase separation was determined by x-ray diffraction (XRD) measurements. The electrical parameters were determined via the capacitance–voltage (C–V), conductance–voltage (G/ω) and leakage-current–voltage (Ig–Vg ). The results demonstrate that zirconium silicate formations are present at 1000 °C annealing with the SiO2 interfacial layer. The film was in amorphous form after annealing at 250 °C. The tetragonal phases of ZrO2 were obtained after annealing at 500 °C. When the temperature approaches 750 °C, transitions from the tetragonal phase to the monoclinic phase were observed. The obtained XRD peaks after 1000 °C annealing matched the crystalline peaks of ZrSiO4. This means that the crystalline zirconium dioxide in the structure has been converted into a crystalline silicate phase. The interface states increased to 5.71 × 1010 and the number of border traps decreased to 7.18 × 1010 cm‑2 with the increasing temperature. These results indicate that an excellent ZrSiO4/Si interface has been fabricated. The order of the leakage current varied from 10‑9 Acm‑2 to 10‑6 Acm‑2. The MOS capacitor fabricated with the films annealed at 1000 °C shows better behavior in terms of its structural, chemical and electrical properties. Hence, detailed frequency-dependent electrical characteristics were performed for the ZrSiO4 thin film annealed at 1000 °C. Very slight capacitance variations were observed under the frequency variations. This shows that the density of frequency-dependent charges is very low at the ZrSiO4/Si interface. The barrier height of the device varies slightly from 0.776 eV to 0.827 eV under frequency dispersion. Briefly, it is concluded that the devices annealed at 1000 °C exhibit promising electrical characteristics.
NASA Astrophysics Data System (ADS)
Itasaka, Hiroki; Mimura, Ken-ichi; Nishi, Masayuki; Kato, Kazumi
2018-05-01
We investigated the influence of heat treatment on the crystallographic structure and ferroelectric phase transition behavior of barium titanate (BaTiO3, BT) nanocubes assembled into highly ordered monolayers, using tip-enhanced Raman spectroscopy (TERS), temperature-dependent micro-Raman spectroscopy, and scanning transmission electron microscopy (STEM). TER spectra from individual BT nanocubes with the size of about 20 nm were obtained with a side-illumination optical setup, and revealed that heat treatment enhances their tetragonality. The result of temperature-dependent micro-Raman spectroscopy showed that the ferroelectric phase transition behavior of the monolayers becomes similar to that of bulk BT through heat treatment in spite of their thickness. STEM observation for the cross-section of the heated BT nanocube monolayer showed that amorphous layers exist at the interface between BT nanocubes in face-to-face contact. These results indicate that the tetragonal crystal structure of BT nanocubes is stabilized by heat treatment and the formation of the interfacial amorphous layer during heat treatment may be a key to this phenomenon.
The High Temperature Resistivity of Ba2YCu3O7-x
NASA Astrophysics Data System (ADS)
Xingkui, Zhang; Shining, Zhu; Hao, Wang; Shiyuan, Zhang; Su, Ye; Ningshen, Zhou; Ziran, Xu
The high temperature resistivity (ρ), thermogravimetry (TG) and derivative thermogravimetry (DTG) have been used to characterize superconductor Ba2YCu3O7-x (BYCO) in O2, air and N2. The resistivity is linear from room temperature to 350°C and then deviate from linearity with oxygen evolution, the derivative of resistivity dρ/dT increases abruptly near orthorhombic to tetragonal phase transition. These phenomena can give good explanations for a two-band Drude model.
Determination of the structural phase and octahedral rotation angle in halide perovskites
NASA Astrophysics Data System (ADS)
dos Reis, Roberto; Yang, Hao; Ophus, Colin; Ercius, Peter; Bizarri, Gregory; Perrodin, Didier; Shalapska, Tetiana; Bourret, Edith; Ciston, Jim; Dahmen, Ulrich
2018-02-01
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurement of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). The approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Li, Binzhi; Bowman, Keith
The piezoelectric compositions (1 - x)Ba(Zr 0.2Ti 0.8)O 3–x(Ba 0.7Ca 0.3)TiO 3 (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributedmore » to the increased contribution from 90° domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less
Interdiffusion-driven synthesis of tetragonal chromium (III) oxide on BaTi O3
NASA Astrophysics Data System (ADS)
Asa, M.; Vinai, G.; Hart, J. L.; Autieri, C.; Rinaldi, C.; Torelli, P.; Panaccione, G.; Taheri, M. L.; Picozzi, S.; Cantoni, M.
2018-03-01
Interfaces play a crucial role in the study of novel phenomena emerging at heterostructures comprising metals and functional oxides. For this reason, attention should be paid to the interface chemistry, which can favor the interdiffusion of atomic species and, under certain conditions, lead to the formation of radically different compounds with respect to the original constituents. In this work, we consider Cr/BaTi O3 heterostructures grown on SrTi O3 (100) substrates. Chromium thin films (1-2 nm thickness) are deposited by molecular beam epitaxy on the BaTi O3 layer, and subsequently annealed in vacuum at temperatures ranging from 473 to 773 K. A disordered metallic layer is detected for annealing temperatures up to 573 K, whereas, at higher temperatures, we observe a progressive oxidation of chromium, which we relate to the thermally activated migration of oxygen from the substrate. The chromium oxidation state is +3 and the film shows a defective rocksalt structure, which grows lattice matched on the underlying BaTi O3 layer. One out of every three atoms of chromium is missing, producing an uncommon tetragonal phase with C r2O3 stoichiometry. Despite the structural difference with respect to the ordinary corundum α-C r2O3 phase, we demonstrate both experimentally and theoretically that the electronic properties of the two phases are, to a large extent, equivalent.
High Performance Relaxor-Based Ferroelectric Single Crystals for Ultrasonic Transducer Applications
Chen, Yan; Lam, Kwok-Ho; Zhou, Dan; Yue, Qingwen; Yu, Yanxiong; Wu, Jinchuan; Qiu, Weibao; Sun, Lei; Zhang, Chao; Luo, Haosu; Chan, Helen L. W.; Dai, Jiyan
2014-01-01
Relaxor-based ferroelectric single crystals Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) have drawn much attention in the ferroelectric field because of their excellent piezoelectric properties and high electromechanical coupling coefficients (d33∼2000 pC/N, kt∼60%) near the morphotropic phase boundary (MPB). Ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystals also possess outstanding performance comparable with PMN-PT single crystals, but have higher phase transition temperatures (rhombohedral to tetragonal Trt, and tetragonal to cubic Tc) and larger coercive field Ec. Therefore, these relaxor-based single crystals have been extensively employed for ultrasonic transducer applications. In this paper, an overview of our work and perspectives on using PMN-PT and PIN-PMN-PT single crystals for ultrasonic transducer applications is presented. Various types of single-element ultrasonic transducers, including endoscopic transducers, intravascular transducers, high-frequency and high-temperature transducers fabricated using the PMN-PT and PIN-PMN-PT crystals and their 2-2 and 1-3 composites are reported. Besides, the fabrication and characterization of the array transducers, such as phased array, cylindrical shaped linear array, high-temperature linear array, radial endoscopic array, and annular array, are also addressed. PMID:25076222
Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.
Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a functionmore » of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.« less
NASA Astrophysics Data System (ADS)
Ma, C.; Tschauner, O. D.
2016-12-01
The combination of FESEM-EDS-EBSD, EPMA, and synchrotron microdiffraction is developing into a powerful tool for identification of micron-scale minerals in rocks such as high-pressure phases in shocked meteorites. During a nanomineralogy investigation of the Shergotty meteorite using this approach, we have identified a new shock-induced high-pressure silicate, majoritic almandine with a tetragonal I41/a structure, in an impact melt pocket. The Shergotty meteorite, which fell in the Gaya district, Bihar, India in 1865, is a Martian basaltic shergottite with shock features. Tetragonal almandine in Shergotty occurs as aggregates of subhedral crystals, 0.8 - 2.5 µm in diameter, along with stishovite in the central region of a shock melt pocket, showing an empirical formula of (Fe1.16Ca0.75Mg0.61Na0.42Mn0.03K0.01)(Al1.16Si0.63Mg0.19Ti0.02)Si3O12. Its general formula is (Fe,Mg,Ca,Na)3(Al,Si,Mg)2Si3O12. EBSD indicated this phase has a garnet-related structure. Synchrotron X-ray diffraction revealed that this garnet has actually a tetragonal structure (I41/a) with unit cell dimensions: a = 11.585(9) Å, c = 11.63(4) Å, V = 1561(7) Å3, and Z = 8. Tetragonal almandine is the polymorph of cubic almandine, a new high-pressure garnet mineral, formed by shock metamorphism via the Shergotty impact event on Mars. It apparently crystallized from Fe-rich shock-induced melt under high-pressure and high-temperature conditions.
Structural phase transition and phonon instability in Cu 12Sb 4S 13
May, Andrew F.; Delaire, Olivier A.; Niedziela, Jennifer L.; ...
2016-02-08
In this study, a structural phase transition has been discovered in the synthetic tetrahedrite Cu 12Sb 4S 13 at approximately 88 K. Upon cooling, the material transforms from its known cubic symmetry to a tetragonal unit cell that is characterized by an in-plane ordering that leads to a doubling of the unit cell volume. Specific heat capacity measurements demonstrate a hysteresis of more than two degrees in the associated anomaly. A similar hysteresis was observed in powder x-ray diffraction measurements, which also indicate a coexistence of the two phases, and together these results suggest a first-order transition. This structural transitionmore » coincides with a recently-reported metal-insulator transition, and the structural instability is related to the very low thermal conductivity κ in these materials. Inelastic neutron scattering was used to measure the phonon density of states in Cu 12Sb 4S 13 and Cu 10Zn 2Sb 4S 13, both of which possess a localized, low-energy phonon mode associated with strongly anharmonic copper displacements that suppress κ. In Cu 12Sb 4S 13, signatures of the phase transition are observed in the temperature dependence of the localized mode, which disappears at the structural transition. In contrast, in the cubic Zn-doped material, the mode is at slightly higher-energy but observable for all temperatures, though it softens upon cooling.« less
NASA Astrophysics Data System (ADS)
Howard, Jason; Hood, Zachary D.; Holzwarth, N. A. W.
2017-12-01
Solid-state electrolytes that are compatible with high-capacity electrodes are expected to enable the next generation of batteries. As a promising example, Li2OHCl was reported to have good ionic conductivity and to be compatible with a lithium metal anode even at temperatures above 100 ∘C . In this work, we explore the fundamental properties of Li2OHCl by comparing simulations and experiments. Using calculations based on density functional theory, including both static and dynamic contributions through the quasiharmonic approximation, we model a tetragonal ground state, which is not observed experimentally. An ordered orthorhombic low-temperature phase was also simulated, agreeing with experimental structural analysis of the pristine electrolyte at room temperature. In addition, comparison of the ordered structures with simulations of the disordered cubic phase provide insight into the mechanisms associated with the experimentally observed abrupt increase in ionic conductivity as the system changes from its ordered orthorhombic to its disordered cubic phase. A large Haven ratio for the disordered cubic phase is inferred from the computed tracer diffusion coefficient and measured ionic conductivity, suggesting highly correlated motions of the mobile Li ions in the cubic phase of Li2OHCl . We find that the OH bond orientations participate in gating the Li ion motions which might partially explain the predicted Li-Li correlations.
NASA Astrophysics Data System (ADS)
Zhang, Yan; Chen, Hua-Xin; Duan, Li; Fan, Ji-Bin; Ni, Lei; Ji, Vincent
2018-07-01
Using density-functional perturbation theory, we systematically investigate the Born effective charges and dielectric properties of cubic, tetragonal, monoclinic, ortho-I (Pbca), ortho-II (Pnma) and ortho-III (Pca21) phases of ZrO2. The magnitudes of the Born effective charges of the Zr and oxygen atoms are greater than their nominal ionic valences (+4 for Zr and -2 for oxygen), indicating a strong dynamic charge transfer from Zr atoms to O atoms and a mixed covalent-ionic bonding in six phases of ZrO2. For all six phases of ZrO2, the electronic contributions εij∞ to the static dielectric constant are rather small (range from 5 to 6.5) and neither strongly anisotropic nor strongly dependent on the structural phase, while the ionic contributions εijion to the static dielectric constant are large and not only anisotropic but also dependent on the structural phase. The average dielectric constant εbar0 of the six ZrO2 phases decreases in the sequence of tetragonal, cubic, ortho-II (Pnma), ortho-I (Pbca), ortho-III (Pca21) and monoclinic. So among six phases of ZrO2, the tetragonal and cubic phases are two suitable phases to replace SiO2 as the gate dielectric material in modern integrated-circuit technology. Furthermore, for the tetragonal ZrO2 the best orientation is [100].
Magnetocaloric effect and other low-temperature properties of Pr2Pt2 In
NASA Astrophysics Data System (ADS)
Mboukam, J. J.; Sondezi, B. M.; Tchokonté, M. B. Tchoula; Bashir, A. K. H.; Strydom, A. M.; Britz, D.; Kaczorowski, D.
2018-05-01
We report on X-ray diffraction, electrical transport, heat capacity and magnetocaloric effect measurements of a polycrystalline sample of Pr2Pt2 In . The compound forms in the tetragonal Mo2FeB2 type structure and orders ferromagnetically at TC=9 K. In the ordered state, its thermodynamic and electrical transport properties are dominated by magnon contributions with an energy gap of about 8 K in the spin-wave spectrum. The magnitude of magnetocaloric effect is similar to the values reported for most rare-earth based intermetallics. Characteristic behavior of the isothermal magnetic entropy change maximum points to a second-order character of the ferromagnetic phase transition in the compound studied.
FeRh ground state and martensitic transformation
Zarkevich, Nikolai A.; Johnson, Duane D.
2018-01-09
Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkevich, Nikolai A.; Johnson, Duane D.
Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less
Origin of phase transition in VO2
NASA Astrophysics Data System (ADS)
Basu, Raktima; Sardar, Manas; Dhara, Sandip
2018-04-01
Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) along with a structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R via another two intermediate phases of monoclinic M2 and triclinic T at a technologically important temperature of 340K. In the present work, besides synthesizing M1 phase of VO2, we also stabilized M2 and T phases at room temperature by introducing native defects in the system and observed an increase in transition temperature with increase in native defects. Raman spectroscopic measurements were carried out to confirm the pure VO2 phases. Since the MIT is accompanied by SPT in these systems, the origin of the phase transition is still under debate. The controversy between MIT and SPT, whether electron-phonon coupling or strong electron-electron correlation triggers the phase transition in VO2 is also resolved by examining the presence of intermediate phase M2 during phase transition.
Phase Behavior and Equations of State of the Actinide Oxides
NASA Astrophysics Data System (ADS)
Chidester, B.; Pardo, O. S.; Panero, W. R.; Fischer, R. A.; Thompson, E. C.; Heinz, D. L.; Prescher, C.; Prakapenka, V. B.; Campbell, A.
2017-12-01
The distribution of the long-lived heat-producing actinide elements U and Th in the deep Earth has important implications for the dynamics of the mantle and possibly the energy budget of Earth's core. The low shear velocities of the Large Low-Shear Velocity Provinces (LLSVPs) on the core-mantle boundary suggests that these regions are at least partially molten and may contain concentrated amounts of the radioactive elements, as well as other large cations such as the rare Earth elements. As such, by exploring the phase behavior of actinide-bearing minerals at extreme conditions, some insight into the mineralogy, formation, and geochemical and geodynamical effects of these regions can be gained. We have performed in situ high-pressure, high-temperature synchrotron X-ray diffraction experiments and calculations on two actinide oxide materials, UO2 and ThO2, to determine their phase behavior at the extreme conditions of the lower mantle. Experiments on ThO2 reached 60 GPa and 2500 K, and experiments on UO2 reached 95 GPa and 2500 K. We find that ThO2 exists in the fluorite-type structure to 20 GPa at high temperatures, at which point it transforms to the high-pressure cotunnite-type structure and remains thus up to 60 GPa. At room temperature, an anomalous expansion of the fluorite structure is observed prior to the transition, and may signal anion sub-lattice disorder. Similarly, UO2 exists in the fluorite-type structure at ambient conditions and up to 28 GPa at high temperatures. Above these pressures, we have observed a previously unidentified phase of UO2 with a tetragonal structure as the lower-temperature phase and the cotunnite-type phase at higher temperatures. Above 78 GPa, UO2 undergoes another transition or possible dissociation into two separate oxide phases. These phase diagrams suggest that the actinides could exist as oxides in solid solution with other analogous phases (e.g. ZrO2) in the cotunnite-type structure throughout much of Earth's lower mantle.
Ultrasound-assisted sol-gel synthesis of ZrO2.
Guel, Marlene Lariza Andrade; Jiménez, Lourdes Díaz; Hernández, Dora Alicia Cortés
2017-03-01
Synthesis of tetragonal ZrO 2 by both conventional sol-gel and ultrasound-assisted sol-gel methods and using a non-ionic surfactant Tween-20, was performed. A porous microstructure composed of nanometric particles was observed. Tetragonal ZrO 2 was obtained using a low heat treatment temperature of powders, 500°C by both methods. A higher crystallinity and a shorter reaction time were observed when ultrasound was used in the sol-gel method due to the cavitation phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Ram, S.; Jana, A.; Kundu, T. K.
The phase formation and thermal-induced phase transformation are studied in BaTiO3 nanoparticles. 2 h of heating a polymer precursor at 550°C in air formed a single phase BaTiO3 of 15 nm average crystallite size D. The X-ray diffraction peaks are analyzed assuming a Pnma orthorhombic (o) crystal structure of lattice parameters a = 0.6435 nm, b = 0.5306 nm, and c = 0.8854 nm. The lattice volume V = 0.3023 nm3, with z = 4 formula units, yields a density ρ = 5.124 g/cm3. This is a new polymorph in comparison to well-known Pm3m tetragonal (t) structure, V = 0.0644 nm3 or ρ = 6.016 g/cm3 (z = 1). An o ↦ t transformation appears on heating at temperature as high as 650°C in air. A proposed model explains the transformation above a certain D value in terms of the Gibbs free energy. Unless heating above 750°C, the two phases coexist in a composite structure (D≤27 nm), with as much residual o-phase trace as ~28 vol%. As a function of temperature both the phases decrease in the V values up to 0.2975 and 0.0643 nm3 at 750°C respectively (0.0650 nm3 at 650°C). This is an important parameter for designing useful ferroelectric and other properties in a hybrid composite structure.
Effect of particle in-flight behavior on the composition of thermal barrier coatings
NASA Astrophysics Data System (ADS)
Zhao, L.; Bai, Y.; Tang, J. J.; Liu, K.; Ding, C. H.; Yang, J. F.; Han, Z. H.
2013-12-01
In this work, 6 to 11 mol% YO1.5-stabilized zirconia (YSZ) coatings were deposited by supersonic and conventional atmospheric plasma spraying. During spraying, the surface temperature and velocity of in-flight particles were monitored by Spray Watch 2i on-line system. The phase composition of as-sprayed coatings was analyzed by X-ray diffractometry (XRD). Lattice parameters, tetragonality and the content of YO1.5 (mol%) of as-sprayed coatings were calculated according to the position of (0 0 4) and (4 0 0) diffraction peaks. It was found that the as-sprayed coatings were composed of metastable non-transformable tetragonal phase (t‧). However, the amount of YO1.5 (mol%) in the as-sprayed coatings decreased with the increase of melting index of in-flight particles due to the partial evaporation of YO1.5 during spraying.
Eco-friendly p-type Cu2SnS3 thermoelectric material: crystal structure and transport properties
Shen, Yawei; Li, Chao; Huang, Rong; Tian, Ruoming; Ye, Yang; Pan, Lin; Koumoto, Kunihito; Zhang, Ruizhi; Wan, Chunlei; Wang, Yifeng
2016-01-01
As a new eco-friendly thermoelectric material, copper tin sulfide (Cu2SnS3) ceramics were experimentally studied by Zn-doping. Excellent electrical transport properties were obtained by virtue of 3-dimensionally conductive network for holes, which are less affected by the coexistence of cubic and tetragonal phases that formed upon Zn subsitition for Sn; a highest power factors ~0.84 mW m−1 K−2 at 723 K was achieved in the 20% doped sample. Moreover, an ultralow lattice thermal conductivity close to theoretical minimum was observed in these samples, which could be related to the disordering of atoms in the coexisting cubic and tetragonal phases and the interfaces. Thanks to the phonon-glass-electron-crystal features, a maximum ZT ~ 0.58 was obtained at 723 K, which stands among the tops for sulfide thermoelectrics at the same temperature. PMID:27666524
PAC characterization of Gd and Y doped nanostructured zirconia solid solutions
NASA Astrophysics Data System (ADS)
Caracoche, María C.; Martínez, Jorge A.; Pasquevich, Alberto F.; Rivas, Patricia C.; Djurado, Elizabeth; Boulc'h, Florence
2007-02-01
A perturbed angular correlation (PAC) study as a function of temperature has been carried out on spray pyrolysis-derived powders and compacts of 2.5 mol% Y 2O 3-ZrO 2 and 2 mol% Gd 2O 3-ZrO 2 nanostructured tetragonal zirconias. The powders undergo the ordinary thermal transformation between the two known defective t‧- and regular t-tetragonal forms and also a partial and irreversible change to an ordered cubic configuration. The dynamical nature of the t‧-form leads to an activation energy of about 0.15 eV for the oxygen vacancies movement. The as-obtained compacts do not exhibit any known cubic nanostructure but some additional contributions. In both of them a hyperfine component assigned to the orthorhombic phase is determined. In the smaller cation Y doped ceramic a small amount of monoclinic phase reflects an incomplete stabilization.
Cubic martensite in high carbon steel
NASA Astrophysics Data System (ADS)
Chen, Yulin; Xiao, Wenlong; Jiao, Kun; Ping, Dehai; Xu, Huibin; Zhao, Xinqing; Wang, Yunzhi
2018-05-01
A distinguished structural characteristic of martensite in Fe-C steels is its tetragonality originating from carbon atoms occupying only one set of the three available octahedral interstitial sites in the body-centered-cubic (bcc) Fe lattice. Such a body-centered-tetragonal (bct) structure is believed to be thermodynamically stable because of elastic interactions between the interstitial carbon atoms. For such phase stability, however, there has been a lack of direct experimental evidence despite extensive studies of phase transformations in steels over one century. In this Rapid Communication, we report that the martensite formed in a high carbon Fe-8Ni-1.26C (wt%) steel at room temperature induced by applied stress/strain has actually a bcc rather than a bct crystal structure. This finding not only challenges the existing theories on the stability of bcc vs bct martensite in high carbon steels, but also provides insights into the mechanism for martensitic transformation in ferrous alloys.
Growth and study of first order metal insulator transition in VO2 films
NASA Astrophysics Data System (ADS)
Rathore, Ajay K.; Kumar, Satish; Kumar, Dhirendra; Sathe, V. G.
2015-06-01
VO2 films have been grown on Si substrate using pulse laser deposition technique. The as-deposited film prepared by V2O3 target is found to possess signatures of V2O5 phase. Up on annealing at 780°C the film transforms to VO2 phase. The annealed film is found to be highly oriented along (011) and single phase in nature. The high temperature Raman spectroscopic measurements on the annealed film showed first order transition from monoclinic insulating phase to conductive tetragonal rutile phase around 65°C.
Double-Q spin-density wave in iron arsenide superconductors
Allred, J. M.; Taddei, K. M.; Bugaris, D. E.; ...
2016-01-25
Elucidating the nature of the magnetic ground state of iron-based superconductors is of paramount importance in unveiling the mechanism behind their high temperature superconductivity. Until recently, it was thought that superconductivity emerges only from an orthorhombic antiferromagnetic stripe phase, which can in principle be described in terms of either localized or itinerant spins. However, we recently reported that tetragonal symmetry is restored inside the magnetically ordered state of certain hole-doped compounds, revealing the existence of a new magnetic phase at compositions close to the onset of superconductivity. Here, we present Mossbauer data that show that half of the iron sitesmore » in this tetragonal phase are non-magnetic, establishing conclusively the existence of a novel magnetic ground state with a non-uniform magnetization that is inconsistent with localized spins. Instead, this state is naturally explained as the interference between two commensurate spin density waves, a rare example of collinear double-Q magnetic order. Finally, our results demonstrate the itinerant character of the magnetism of the iron pnictides, and the primary role played by magnetic degrees of freedom in determining their phase diagram.« less
Parshall, D.; Pintschovius, L.; Niedziela, Jennifer L.; ...
2015-04-27
Pmore » arent compounds of Fe-based superconductors undergo a structural phase transition from a tetragonal to an orthorhombic structure. We investigated the temperature dependence of the frequencies of TA phonons that extrapolate to the shear vibrational mode at the zone center, which corresponds to the orthorhombic deformation of the crystal structure at low temperatures in BaFe 2 As 2 and SrFe 2 As 2 . We found that acoustic phonons at small wave vectors soften gradually towards the transition from high temperatures, tracking the increase of the size of slowly fluctuating magnetic domains. On cooling below the transition to base temperature the phonons harden, following the square of the magnetic moment (which we find is proportional to the anisotropy gap). Finally, our results provide evidence for close correlation between magnetic and phonon properties in Fe-based superconductors.« less
Giri, Ashutosh; Wee, Sung Hun; Jain, Shikha; ...
2016-08-26
Here, we report on the out-of-plane thermal conductivities of tetragonal L1 0 FePt (001) easy-axis and cubic A1 FePt thin films via time-domain thermoreflectance over a temperature range from 133 K to 500 K. The out-of-plane thermal conductivity of the chemically ordered L10 phase with alternating Fe and Pt layers is ~23% greater than the thermal conductivity of the disordered A1 phase at room temperature and below. However, as temperature is increased above room temperature, the thermal conductivities of the two phases begin to converge. Molecular dynamics simulations on model FePt structures support our experimental findings and help shed moremore » light into the relative vibrational thermal transport properties of the L1 0 and A1 phases. Furthermore, unlike the varying temperature trends in the thermal conductivities of the two phases, the electronic scattering rates in the out-of-plane direction of the two phases are similar for the temperature range studied in this work.« less
The New Superconductor tP-SrPd2Bi2: Structural Polymorphism and Superconductivity in Intermetallics.
Xie, Weiwei; Seibel, Elizabeth M; Cava, Robert J
2016-04-04
We consider a system where structural polymorphism suggests the possible existence of superconductivity through the implied structural instability. SrPd2Bi2 has two polymorphs, which can be controlled by the synthesis temperature: a tetragonal form (CaBe2Ge2-type) and a monoclinic form (BaAu2Sb2-type). Although the crystallographic difference between the two forms may, at first, seem trivial, we show that tetragonal SrPd2Bi2 is superconducting at 2.0 K, whereas monoclinic SrPd2Bi2 is not. We rationalize this finding and place it in context with other 1-2-2 phases.
Murtaza, Adil; Yang, Sen; Zhou, Chao; ...
2016-08-04
In this study, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb 1-xNd xCo 2 and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo 2-rich side is detected to be rhombohedral and that of NdCo 2-rich side is tetragonal below their respective Curie temperatures TC. The MPB composition Tb 0.35Nd 0.65Co 2 corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase ( T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb 0.35Nd 0.65Co 2 shows minimummore » magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb 1-xNd xCo 2 decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Finally, our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.« less
Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia
NASA Astrophysics Data System (ADS)
Simha, N. K.
1997-02-01
We first construct Bain strains for the tetragonal to monoclinic ( t → m) transformation of zirconia (ZrO 2), and then examine the resulting twin and habit plane microstructures. The ( t → m) transformation in zirconia occurs via two paths; transformation along path I has two Bain strains that involve shearing of a rectangular face of the tetragonal unit cell, and shearing of the square base corresponds to path II. The monoclinic variants resulting from each of the three Bain strains can form 12 twins, and four of the twins corresponding to path II are neither of type I nor of type II. Habit planes do not exist for the transformation along path I, whereas transformation along path II has: (± 0.8139, ± 0.3898, - 0.4309) t, (± 0.6489, ± 0.6271, - 0.4309) t, (± 0.7804, ± 0.4530, - 0.4309) t. We predict the exact twin planes observed by Bailey [(1964) Phase transformation at high temperatures in hafnia and zirconia. Proc. Roy. Soc.279A, 395-412], Bansal and Heuer [(1972) On a martensitic phase transformation in Zirconia ZrO 2—I. Metallographic evidence. Acta Metall.20, 1281-1289] and Buljan et al. [(1976) Optical and X-ray single crystal studies of the monoclinic ↔ tetragonal transition in ZrO 2. J. Am. Ceram. Soc.59, 351-354]; additional twins and habit planes that we predict have not yet been observed.
Complex structures of different CaFe2As2 samples
Saparov, Bayrammurad; Cantoni, Claudia; Pan, Minghu; Hogan, Thomas C.; II, William Ratcliff; Wilson, Stephen D.; Fritsch, Katharina; Gaulin, Bruce D.; Sefat, Athena S.
2014-01-01
The interplay between magnetism and crystal structures in three CaFe2As2 samples is studied. For the nonmagnetic quenched crystals, different crystalline domains with varying lattice parameters are found, and three phases (orthorhombic, tetragonal, and collapsed tetragonal) coexist between TS = 95 K and 45 K. Annealing of the quenched crystals at 350°C leads to a strain relief through a large (~1.3%) expansion of the c-parameter and a small (~0.2%) contraction of the a-parameter, and to local ~0.2 Å displacements at the atomic-level. This annealing procedure results in the most homogeneous crystals for which the antiferromagnetic and orthorhombic phase transitions occur at TN/TS = 168(1) K. In the 700°C-annealed crystal, an intermediate strain regime takes place, with tetragonal and orthorhombic structural phases coexisting between 80 to 120 K. The origin of such strong shifts in the transition temperatures are tied to structural parameters. Importantly, with annealing, an increase in the Fe-As length leads to more localized Fe electrons and higher local magnetic moments on Fe ions. Synergistic contribution of other structural parameters, including a decrease in the Fe-Fe distance, and a dramatic increase of the c-parameter, which enhances the Fermi surface nesting in CaFe2As2, are also discussed. PMID:24844399
Sarantopoulos, A; Ferreiro-Vila, E; Pardo, V; Magén, C; Aguirre, M H; Rivadulla, F
2015-10-16
We report thermoelectric power experiments in e-doped thin films of SrTiO3 (STO) which demonstrate that the electronic band degeneracy can be lifted through defect management during growth. We show that even small amounts of cationic vacancies, combined with epitaxial stress, produce a homogeneous tetragonal distortion of the films, resulting in a Kondo-like resistance upturn at low temperature, large anisotropic magnetoresistance, and nonlinear Hall effect. Ab initio calculations confirm a different occupation of each band depending on the degree of tetragonal distortion. The phenomenology reported in this Letter for tetragonally distorted e-doped STO thin films, is similar to that observed in LaAlO3/STO interfaces and magnetic STO quantum wells.
High P-T Raman study of transitions in relaxor multiferroic Pb(Fe 0.5Nb 0.5)O 3
Wilfong, Brandon; Ahart, Muhtar; Gramsch, Stephen A.; ...
2015-09-02
The vibrational and structural properties of Pb(Fe 0.5Nb 0.5)O 3 have been investigated using Raman spectroscopy up to 40 GPa at 300 K and from 300 to 415 K at selected pressures. The measurements reveal three phase transitions at 5.5, 8.7 and 24 GPa at room temperature. The temperature dependences of the spectra indicated transitions at 1.5 GPa, at 335 and 365 K. The results support the appearance of an intermediate tetragonal P4mm phase between ferroelectric R3m and paraelectric Pm-3m phases. Furthermore, a P-T phase diagram is proposed that allows further insight into the magnetoelectric coupling present in this material.
A self-ordered, body-centered tetragonal superlattice of SiGe nanodot growth by reduced pressure CVD
NASA Astrophysics Data System (ADS)
Yamamoto, Yuji; Zaumseil, Peter; Capellini, Giovanni; Schubert, Markus Andreas; Hesse, Anne; Albani, Marco; Bergamaschini, Roberto; Montalenti, Francesco; Schroeder, Thomas; Tillack, Bernd
2017-12-01
Self-ordered three-dimensional body-centered tetragonal (BCT) SiGe nanodot structures are fabricated by depositing SiGe/Si superlattice layer stacks using reduced pressure chemical vapor deposition. For high enough Ge content in the island (>30%) and deposition temperature of the Si spacer layers (T > 700 °C), we observe the formation of an ordered array with islands arranged in staggered position in adjacent layers. The in plane periodicity of the islands can be selected by a suitable choice of the annealing temperature before the Si spacer layer growth and of the SiGe dot volume, while only a weak influence of the Ge concentration is observed. Phase-field simulations are used to clarify the driving force determining the observed BCT ordering, shedding light on the competition between heteroepitaxial strain and surface-energy minimization in the presence of a non-negligible surface roughness.
NASA Astrophysics Data System (ADS)
Amirsalari, A.; Farjami Shayesteh, S.
2015-06-01
In this study, we describe the synthesis of alumina nanoparticles using a chemical wet method in at varying pH. The optimized prepared particles with pH equals to 9 were calcined at various temperatures. For characterization of structural and optical properties of nanoparticles had been used X-ray diffraction, Infrared Fourier transform spectroscopy, field effect-scanning electron microscopy, photoluminescence and ultraviolet-visible spectroscopy. The results revealed that the nanoparticles calcined at 500 °C consist of an Al2O3 tetragonal structure and tetragonal distortion decreases with increasing calcination temperature up to 750 °C then increased with increasing temperature. Another phase similar to γ-Al2O3 was formed instead of δ-Al2O3 in the transition sequence from the γ to θ phase. FT-IR analysis; suggests that there are a few different types of functional groups on the surface of the alumina nanoparticles such as hydroxy groups and oxy groups. The transmittance spectra showed that the absorption bands in the UV region strongly depend on the calcination temperature. Moreover, the results showed that alumina has an optical direct band gap and that the energy gap decreases with increasing the calcination temperature and pH of the reaction. Luminescence spectra showed that some luminescent centers such as OH-related radiative centers and oxygen vacancies (F, F22+ and F2 centers) centers exist in the nanoparticles.
Domain structure sequence in ferroelectric Pb(Zr0.2Ti0.8)O3 thin film on MgO
NASA Astrophysics Data System (ADS)
Janolin, Pierre-Eymeric; Fraisse, Bernard; Dkhil, Brahim; Le Marrec, Françoise; Ringgaard, Erling
2007-04-01
The structural evolution of a polydomain ferroelectric Pb(Zr0.2Ti0.8)O3 film was studied by temperature-dependent x-ray diffraction. Two critical temperatures were evidenced: T*=740K, corresponding to a change in the domain structure (a /c/a/c to a1/a2/a1/a2), and TCfilm=825K, where the film undergoes a ferroelectric-paraelectric phase transition. The film remains tetragonal on the whole range of temperature investigated. The evolutions of the domain structure and lattice parameters were found to be in very good agreement with the calculated domain stability map and theoretical temperature-misfit strain phase diagram, respectively.
NASA Astrophysics Data System (ADS)
Bel-Hadj-Tahar, Radhouane; Abboud, Mohamed
2018-04-01
The synthesis of crystalline lead titanate powder by a generic low-temperature sol-gel approach is developed. Acetoin was added as ligand, instead of the commonly used alkanolamines, to ensure total dissolution of the precursor compounds. The feasibility of the acetoin-Ti isopropoxide complex as a new precursor of PbTiO3 perovskite particles via sol-gel method has been demonstrated. No excess lead has been introduced. Nanometric PbTiO3 crystallites have been formed at 400 °C under atmospheric pressure from titanium isopropoxide and lead acetate in alcoholic solution by remarkably low activation energy of crystallization process of 90 kJ mol-1. The powders show tetragonal lattice and dendritic morphology. In addition to the effect of heat-treatment temperature, time, and atmosphere, the sol chemistry particularly influenced the phase composition, particle size, and particle morphology. The use of different ligands significantly modified powder morphology. The extent of the crystallization was quantitatively evaluated by differential thermal analysis and analyzed by Johnson-Mehl-Avrami approach. The crystallization followed two rate regimes depending on the interval of the crystallized fraction.
Nayak, Nadiya B.; Nayak, Bibhuti B.
2016-01-01
Development of in-born porous nature of zirconium hydroxide nanopowders through a facile hydrogen (H2) gas-bubbles assisted borohydride synthesis route using sodium borohydride (NaBH4) and novel information on the temperature-mediated phase transformation, pore geometry as well as pore hysteresis transformation of in-born porous zirconium hydroxide nanopowders with the help of X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET) isotherm and Transmission Electron Microscopy (TEM) images are the main theme of this research work. Without any surfactants or pore forming agents, the borohydride derived amorphous nature of porous powders was stable up to 500 °C and then the seed crystals start to develop within the loose amorphous matrix and trapping the inter-particulate voids, which led to develop the porous nature of tetragonal zirconium oxide at 600 °C and further sustain this porous nature as well as tetragonal phase of zirconium oxide up to 800 °C. The novel hydrogen (H2) gas-bubbles assisted borohydride synthesis route led to develop thermally stable porous zirconium hydroxide/oxide nanopowders with an adequate pore size, pore volume, and surface area and thus these porous materials are further suggested for promising use in different areas of applications. PMID:27198738
Intermediate phases in [111]- and [001]-oriented PbMg1/3Nb2/3O3-29PbTiO3 single crystals
NASA Astrophysics Data System (ADS)
Kamzina, L. S.
2017-09-01
Phase transformations in [111]- and [001]-oriented PbMg1/3Nb2/3O3-29PbTiO3 single crystals have been studied using dielectric and optical measurements before and after applying an electric field. It is shown that the subsequence of phase transitions rhombohedral ( R)—tetragonal ( T)—cubic ( C) phases is observed in nonpolarized samples of both orientations as temperature increases. In the [111]-oriented crystal, an additional intermediate monoclinic phase (it is possible, M a ) is induced after preliminary polarization at room temperature and the R- M a - T- C phase transitions are observed on heating. In the [001]-oriented crystal, after its polarization, the monoclinic phase forms instead of the rhombohedral phase even at room temperature and the M a - T- C transitions occur on heating. The results are discussed from the point of view of the existence polar nanoregions with different local symmetries in a glasslike matrix.
NASA Astrophysics Data System (ADS)
Santhosh Kumar, K.; Das, Sarmistha; Eswara Phanindra, V.; Rana, D. S.
2017-12-01
The metal-insulator transition (MIT) in correlated systems is a central phenomenon that possesses potential for several emerging technologies. We investigate the kinetics of such MIT in perovskite nickelates by studying the terahertz (THz) low-energy charge dynamics in orthorhombic and tetragonal symmetries of Pr0.5Nd0.5NiO3 thin films. The THz conductivity of the orthorhombic thin film is dominated by Drude behavior in the entire temperature range, albeit a dominant anomaly at and around the MIT region. The tetragonal thin film exhibits different overall THz conductivity dynamics though, i.e. of a Drude-Smith (DS) type in the entire temperature range, the DS coefficient signifying dominant backscattering peaks in the MIT region. While the overall THz dynamics profile is different for the two films, a unique yet similar sensitivity of the I-M transition regions of both films to THz frequencies underlines the fundamental origin of the bi-critical phase around MIT of the nickelates. The peculiar behavior around the I-M transition, as evaluated in the framework of a percolative path approximation based Dyre expression, emphasizes the importance of critical metallic volume fraction (f c) for the percolation conduction, as an f c of ~0.645 obtained for the present case, along with evidence for the absence of super-heating.
Guo, Xin; McCleese, Christopher; Kolodziej, Charles; Samia, Anna C S; Zhao, Yixin; Burda, Clemens
2016-03-07
Perovskite films were prepared using single step solution deposition at different annealing temperatures and annealing times. The crystal structure, phases and grain size were investigated with XRD, XPS and SEM/EDX. The prepared films show a typical orientation of tetragonal perovskite phase and a gradual transition at room temperature from the yellow intermediate phase to the black perovskite phase. Films with high purity were obtained by sintering at 100 °C. In addition, the chemical composition and crystal structure of intermediate phase were investigated in detail. FTIR, UV-vis and NMR spectra revealed the occurance of DMF complexes. Interestingly, the intermediate phase could be transformed to the black perovskite phase upon X-ray irradiation. In addition, the recovery of the aged perovskite films from a yellow intermediate phase back to the black perovskite was shown to be viable via heating and X-ray irradiation.
Chen, Jing-Yin; Kim, Minseob; Yoo, Choong-Shik; Dattelbaum, Dana M; Sheffield, Stephen
2010-06-07
We have studied the pressure-induced phase transition and chemical decomposition of hydrogen peroxide and its mixtures with water to 50 GPa, using confocal micro-Raman and synchrotron x-ray diffractions. The x-ray results indicate that pure hydrogen peroxide crystallizes into a tetragonal structure (P4(1)2(1)2), the same structure previously found in 82.7% H(2)O(2) at high pressures and in pure H(2)O(2) at low temperatures. The tetragonal phase (H(2)O(2)-I) is stable to 15 GPa, above which transforms into an orthorhombic structure (H(2)O(2)-II) over a relatively large pressure range between 13 and 18 GPa. Inferring from the splitting of the nu(s)(O-O) stretching mode, the phase I-to-II transition pressure decreases in diluted H(2)O(2) to around 7 GPa for the 41.7% H(2)O(2) and 3 GPa for the 9.5%. Above 18 GPa H(2)O(2)-II gradually decomposes to a mixture of H(2)O and O(2), which completes at around 40 GPa for pure and 45 GPa for the 9.5% H(2)O(2). Upon pressure unloading, H(2)O(2) also decomposes to H(2)O and O(2) mixtures across the melts, occurring at 2.5 GPa for pure and 1.5 GPa for the 9.5% mixture. At H(2)O(2) concentrations below 20%, decomposed mixtures form oxygen hydrate clathrates at around 0.8 GPa--just after H(2)O melts. The compression data of pure H(2)O(2) and the stability data of the mixtures seem to indicate that the high-pressure decomposition is likely due to the pressure-induced densification, whereas the low-pressure decomposition is related to the heterogeneous nucleation process associated with H(2)O(2) melting.
Phase-field model of domain structures in ferroelectric thin films
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Y. L.; Hu, S. Y.; Liu, Z. K.
A phase-field model for predicting the coherent microstructure evolution in constrained thin films is developed. It employs an analytical elastic solution derived for a constrained film with arbitrary eigenstrain distributions. The domain structure evolution during a cubic{r_arrow}tetragonal proper ferroelectric phase transition is studied. It is shown that the model is able to simultaneously predict the effects of substrate constraint and temperature on the volume fractions of domain variants, domain-wall orientations, domain shapes, and their temporal evolution. {copyright} 2001 American Institute of Physics.
Equation of state and phase transformations study of Nd at ultra-high pressures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akella, J.; Smith, G.S.; Weir, S.
1991-10-01
Neodymium was investigated to 96.0 GPa pressure in a diamond-anvil ell at room temperature. The observed structural sequence as a function of pressure is dhcp-fcc- six layered'' structure. In the diffraction pattern hexagonal doublets; notably 102, 006 and 100, 108; appear as single reflection when the c/a ratio is 4.899. However, when cc/a approaches 4.7, the splitting is clear. So far in this study, no monoclinic phase or tetragonal phase were observed. 1 fig., 18 refs.
NASA Astrophysics Data System (ADS)
Zheng, R. K.; Zhu, C. F.; Xie, J. Q.; Li, X. G.
2001-01-01
Ultrasonic sound velocity and attenuation have been measured in polycrystalline manganese oxide La1-xCaxMnO3 (x=0.5,0.83,1.0) at a frequency of 10 MHz. For x=0.5, on cooling down from high temperature, a slight softening of the sound velocity above the charge ordering transition temperature TCO and dramatic stiffening below TCO coincided with big attenuation peaks for both longitudinal and transverse waves were observed. It was found that these ultrasonic anomalies near TCO are correlated with the fine structure (i.e., the lattice parameters) change caused by the Jahn-Teller effect. For x=0.83, the sound velocity starts to soften dramatically with decreasing temperature from higher temperature to TS (180 K), and stiffens dramatically below TS. The large softening and stiffening of the sound velocity accompanied by a big attenuation peak are strongly correlated with a cubic-to-tetragonal structural phase transition at TS, which is confirmed by the low-temperature powder x-ray diffraction measurements. It is suggested that this structural phase transition be due to the Jahn-Teller distortion of the Mn3+O6 octahedra and related to the charge ordering transition. For CaMnO3, the anomaly in sound velocity is small.
Structure and property correlations in FeS
NASA Astrophysics Data System (ADS)
Kuhn, S. J.; Kidder, M. K.; Parker, D. S.; dela Cruz, C.; McGuire, M. A.; Chance, W. M.; Li, Li; Debeer-Schmitt, L.; Ermentrout, J.; Littrell, K. C.; Eskildsen, M. R.; Sefat, A. S.
2017-03-01
For iron-sulfide (FeS), we investigate the correlation between the structural details, including its dimensionality and composition, with its magnetic and superconducting properties. We compare, theoretically and experimentally, the two-dimensional (2D) layered tetragonal (;t-FeS;) phase with the 3D hexagonal ("h-FeS") phase. X-ray diffraction reveals iron-deficient chemical compositions of t-Fe0.93(1)S and h-Fe0.84(1)S that show no low-temperature structural transitions. First-principles calculations reveal a high sensitivity of the 2D structure to the electronic and magnetic properties, predicting marginal antiferromagnetic instability for our compound (sulfur height of zS = 0.252) with an ordering energy of about 11 meV/Fe, while the 3D phase is magnetically stable. Experimentally, h-Fe0.84S orders magnetically well above room temperature, while t-Fe0.93S shows coexistence of antiferromagnetism at TN = 116 and filamentary superconductivity below Tc = 4 K. Low temperature neutron diffraction data reveals antiferromagnetic commensurate ordering with wave vector km = (0.25,0.25,0) and 0.46(2) μB/Fe. Additionally, neutron scattering measurements were used to find the particle size and iron vacancy arrangement of t-FeS and h-FeS. The structure of iron sulfide has a delicate relationship with the superconducting transition; while our sample with a = 3.6772(7) Å is a filamentary superconductor coexisting with an antiferromagnetic phase, previously reported samples with a > 3.68 Å are bulk superconductors with no magnetism, and those with a ≈ 3.674 Å show magnetic properties.
NASA Astrophysics Data System (ADS)
Majumder, Supriyo; Choudhary, R. J.; Tripathi, M.; Phase, D. M.
2018-05-01
We have investigated the phase formation and correlation between electronic and magnetic properties of oxygen deficient BaTiO3 ceramics, synthesized by solid state reaction method, following different calcination paths. The phase analysis divulge that a higher calcination temperature above 1000° C is favored for tetragonal phase formation than the cubic phase. The core level X-ray photo electron spectroscopy measurements confirm the presence of oxygen vacancies and oxygen vacancy mediated Ti3+ states. As the calcination temperature and calcination time increases these oxygen vacancies and hence Ti3+ concentrations reduce in the sample. The temperature dependent magnetization curves suggest unexpected magnetic ordering, which may be due to the presence of unpaired electron at the t2g state (d1) of nearest-neighbor Ti atoms. In magnetization vs magnetic field isotherms, the regular decrease of saturation moment value with increasing calcination temperature and calcination time, can be discussed considering the amount of oxygen deficiency induced Ti3+ concentrations, present in the sample.
NASA Astrophysics Data System (ADS)
Abebe, Mulualem; Brajesh, Kumar; Singh Malhotra, Jaskaran; Ranjan, Rajeev
2018-05-01
We carried out a Rayleigh analysis of the dielectric permittivity of a lead-free piezoceramic system (1‑x)(BaTi0.88Sn0.12)–x(Ba0.7Ca0.3)TiO3 across the composition and temperature induced polymorphic phase transformations to determine the trend in the reversible and irreversible domain wall motion across the composition and temperature induced structural changes. Experiments were carried out on three representative compositions x = 0.10, 0.2, and 0.25 exhibiting rhombohedral, orthorhombic, and tetragonal phases at room temperature. While confirming that the irreversible Rayleigh parameter is large in the orthorhombic phase, we discuss a correspondence between the reduction in the coercive field and the corresponding increase in the irreversible Rayleigh parameter. We also show how the proximity of the Curie point to the polymorphic phase boundary greatly undermines this correspondence.
NASA Astrophysics Data System (ADS)
Jethva, Sadaf; Katba, Savan; Udeshi, Malay; Kuberkar, D. G.
2017-09-01
We report the results of the structural, transport and magnetotransport studies on polycrystalline La0.5Sr0.5Mn1-xRuxO3 (x = 0.0 and 0.05) manganite investigated using XRD and resistivity (with and without field) measurements. Rietveld refinement of XRD patterns confirms the single phasic tetragonal structure for both the samples crystalizing in I4/mcm space group (No. 140). Low-temperature resistivity and MR measurements with H = 0 T & 5 T field show thermal hysteresis which has been attributed to the first order phase transition. The increase in resistivity and decrease in metal - insulator transition temperature (TMI) with Ru - doping concentration in La0.5Sr0.5MnO3 (LSMO) has been understood in the context of superexchange interaction between Mn and Ru ions. The observed upturn in resistivity at low temperature under field has been explained using combined effect of electron - electron (e - e) interaction, Kondo-like spin-dependent scattering and electron - phonon interaction while the variation in resistivity at high temperature (T > Tp) has been explained using adiabatic small polaron hopping model.
Structure Evolution of BaTiO3 on Co Doping: X-ray diffraction and Raman study
NASA Astrophysics Data System (ADS)
Mansuri, Amantulla; Mishra, Ashutosh
2016-10-01
In the present study, we have synthesize polycrystalline samples of BaTi1-xCoxO3 (x = 0, 0.05 and 0.1) with standard solid state reaction technique. The obtained samples are characterized by X-ray diffraction (XRD) and Raman spectroscopy. The detail structural analysis has been performed by Rietveld refinement using Fullprof program. The structural analysis reveal the samples are chemical pure and crystallize in tetragonal phase with space group Pm3m. We observe an increase in lattice parameters which results due to substitution of Co2+ with large ionic radii (0.9) for smaller ionic radii (0.6) Ti4+. Moreover peak at 45.5° shift to 45° on Co doping, which is due to structure phase transition from tetragonal to cubic. Raman study infers that the intensity of characteristic peaks decreases and linewidth increases with Co doping. The bands linked with the tetragonal structure (307 cm1) decreased due to the tetragonal-towards-cubic phase transition with Co doping. Our structural study reveals the expansion of BTO unit cell and tetragonal-to-cubic phase transformation takes place, results from different characterization techniques are conclusive and show structural evolution with Co doping.
Pressure calibrants in the hydrothermal diamond-anvil cell
Chou, I.-Ming
2007-01-01
Based on the equation of state of water (EOSW), experimental pressure in the hydrothermal diamond-anvil cell (HDAC) using pure water or dilute aqueous solutions as a pressure medium can be accurately determined at each measured temperature. Consequently, meaningful interpretations can be obtained for observations in the HDAC, which has been widely accepted as a versatile, modern apparatus for hydrothermal experiments. However, this is not true when other pressure media were used because there is no reliable way to determine experimental pressure other than the use of in situ pressure sensors. Most of the available pressure sensors are difficult to apply because they either require expensive facilities to perform the measurements or are unable to provide the accuracy needed for the interpretation of hydrothermal experiments. The only exception is to use the interferometric method to detect the ??-?? quartz transition, although such applications are limited to temperatures above 573??C. In this study, three pressure calibrants were calibrated for applications at lower temperatures, and they were based on visual observation of the ferroelastic phase transitions in BaTiO3 (tetragonal/cubic), Pb3(PO4)2 (monoclinic/trigonal), and PbTiO3 (tetragonal/cubic). For the phase transitions in BaTiO3 and Pb3(PO4)2, the temperature at which twinning disappears during heating was taken as the transition temperature (Ttr); the phase transition pressures (Ptr) can be calculated, respectively, from Ptr (MPa; ??3%) = 0.17 - 21.25 [(Ttr) - 115.3], and Ptr (MPa; ??2%) = 1.00 - 10.62 [(Ttr) - 180.2], where Ttr is in ??C. For the phase transition in PbTiO3, the temperature at which the movement of phase front begins (or ends) on heating (or cooling) was taken as the transition temperature (Ttr,h or Ttr,c), and the phase transition pressures on heating (Ptr,h) and cooling (Ptr,c) can be calculated from Ptr,h (MPa; ??4%) = 7021.7 - 14.235 (Ttr,h), and Ptr,c (MPa; ??4%) = 6831.3 - 14.001 (Ttr,c). Phase transitions for these three pressure calibrants are easy to detect visually, and their P-T phase boundaries have negative slopes and intersect isochors of most of the geologic fluids at high angles and, therefore, are easy to apply. Copyright ?? 2007 by V. H. Winston & Son, Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Sreelalitha, K.; Thyagarajan, K.
2016-01-01
In the present study, we investigate the structural, morphological and magnetic properties of sol-gel spin-coated PZT thin films on alumina substrate. The morphotropic phase boundary (MPB) of PZT [Pb (Zr1-xTix)03] between the tetragonal and rhombohedral phases occurs at the Zr/Ti ratio of 52/48. At the MPB the physical properties of PZT are of far-reaching importance due to their possible crystalline phases. In this study Pb(Zr0.52Ti0.48)03 sols are prepared at room temperature and at 125 °C. The gels are coated onto alumina substrate using a spin-coating unit as two and three layers. The structural studies using XRD confirm the perovskite phase formation at an annealing temperature of 660 °C for both films. The structural parameter grain size, dislocation density, lattice parameters and strain were dependent on the sol temperature. The SEM morphology of the samples represents well-developed dense grain structure and thickness in micrometer ranges. The VSM analysis shows diamagnetic and ferromagnetic hysteresis loop. The ferromagnetism at low fields in PZT films is confirmed by studying the magnetic properties of powder made of the same gel. The effect of heat treatment on the gel preparation is observed on structural, morphological and magnetic properties of PZT thin films. The ferromagnetism in PZT can be attributed to oxygen vacancies. The squareness ratio of the films shows the application of the films as a high-density recording medium.
Thin film molybdenum silicide as potential temperature sensors for turbine engines
NASA Technical Reports Server (NTRS)
Ho, C. H.; Prakash, S.; Deshpandey, C. V.; Doerr, H. J.; Bunshah, R. F.
1989-01-01
Temperature measurements of Mo-Si-based thin-film resistance thermometers were studied. Annealing in an argon ambient at a temperature above 1000 C for at least 1 h is required to form the stable tetragonal MoSi2 phase. With a crack-free 2-micron-thick AlN barrier layer on top, a sensor was tested up to 1200 C. The resistivity vs temperature characteristic shows the room temperature resistivity and temperature coefficient of resistivity (TCR) of the sensor to be approximately 350 microohm and 0.01195 K, respectively. No film adhesion problems were observed for at least four testing cycles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
dos Reis, Roberto; Yang, Hao; Ophus, Colin
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
Symmetry of Highly-Strained BiFeO3 Films in the Ultrathin Regime
NASA Astrophysics Data System (ADS)
Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Schlepütz, Christian M.; Beekman, Christianne; Siemons, Wolter; Christen, Hans M.
2014-03-01
At room temperature, highly-strained BiFeO3 (BFO) films grown on LaAlO3 substrates exhibit a monoclinic structure with a giant c/a ratio (~1.3) when the films are thicker than 4 nm. Their structural symmetry can be controlled by adjusting the temperature [Appl. Phys. Express 4, 095801 (2011), Adv. Mater. 25, 5561 (2013)], with a high-temperature tetragonal phase being observed. We report that a structural phase transition can also be achieved by controlling the film thickness: synchrotron x-ray diffraction data shows that the Bragg peak splitting associated with the monoclinic phase disappears as the film thickness decreases below 3 nm, indicating a tetragonal symmetry, but still maintaining the giant c/a ratio. Unlike a similar transition reported for moderately strained BFO grown on SrTiO3 [APL Mater. 1, 052102 (2013)], the half-order Bragg peaks indicate that this transition does not involve a significant change in the octahedral tilt pattern of the film. This suggests that the structural evolution of highly-strained BFO films should be understood in terms of the unique (non-octahedral) oxygen coordination of the Fe ion in this highly-strained BFO, not the corner-connectivity of the oxygen octahedra between the film and the substrate. Funding: U.S. Department of Energy, BES-MSED (U. Michigan: DE-FG02-06ER46273, and at ORNL). Measurements: 13-BMC, 33-IDD, 33-BMC of the Advanced Photon Source, ANL (DE-AC02-06CH11357).
NASA Astrophysics Data System (ADS)
Chootin, Suphornphun; Bongkarn, Theerachai
2017-08-01
The effects of calcination conditions (950°C to 1200°C for 2 h to 6 h) and sintering temperature (1300°C to 1500°C for 2 h) on phase formation, microstructure, and electrical behavior of lead-free piezoelectric (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 (BCTS) ceramics produced by solid-state combustion using glycine as fuel have been investigated. BCTS powder with pure perovskite structure was obtained by calcination at 1100°C for 4 h. The microstructure of the BCTS powders showed almost spherical shape with average particle size increasing from 184 nm to 320 nm as the calcination temperature and soaking time were increased. The XRD patterns of all ceramics exhibited single perovskite structure. Rietveld refinement analysis indicated that the BCTS ceramics exhibited coexistence of orthorhombic and tetragonal phase in all samples with increased tetragonal phase content with increasing sintering temperature. The average grain size, density, dielectric constants at room ( ɛ r) and Curie temperature ( ɛ C), remanent polarization ( P r), and piezoelectric constant ( d 33) increased as the sintering temperature was increased up to 1400°C, then decreased. BCTS ceramic sintered at 1400°C exhibited the highest relative density (98%), highest dielectric response ( ɛ r = 4951, ɛ C = 19,185), good ferroelectric behavior ( P r = 12.74 μC/cm2 and coercive field E c = 1.60 kV/cm), and highest d 33 value (528 pC/N). The large piezoelectricity of BCTS ceramics makes them good candidates for use in lead-free applications to replace Pb-based ceramics.
Noad, Hilary; Spanton, Eric M.; Nowack, Katja C.; ...
2016-11-28
Strontium titanate is a low-temperature, non–Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO 3 embedded in undoped SrTiO 3. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconductingmore » transition temperature T c ≳ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Some regions are too wide to originate on twin boundaries; therefore, we propose that the orientation of the tetragonal unit cell with respect to the doped plane affects T c. Finally, our results suggest that the anisotropic dielectric properties of SrTiO 3 are important for its superconductivity and need to be considered in any theory of the mechanism of the superconductivity.« less
Thermoelastic martensitic transformations in ternary Ni50Mn50- z Ga z alloys
NASA Astrophysics Data System (ADS)
Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.
2016-01-01
We have studied the effect of gallium alloying on the structure, phase composition, and physical properties of ternary alloys of the Ni50Mn50- z Ga z (0 ≤ z ≤ 25 at %) quasi-binary section in a broad temperature range. Dependences of the type of crystalline structure of the high-temperature austenite phase and martensite, as well as the critical temperatures of martensitic transformations on the alloy composition, are determined. A phase diagram of the structural and magnetic transformations is constructed. Concentration boundaries of the existence of tetragonal L10 (2 M) martensite and martensitic phases (10 M and 14 M) with complex multilayer crystalline lattices are found. It is established that the predominant martensite morphology is determined by the hierarchy of packets of thin coherent nano- and submicrocrystalline plates with habit planes close to {011} B2, pairwise twinned along one of 24 equivalent {011}<011> B2 twinning shear systems.
Magnetic properties of Zn1-zMnzGa2Se4 alloy system in the temperature range from 2 to 300 K
NASA Astrophysics Data System (ADS)
Morocoima, M.; Quintero, M.; Quintero, E.; Bocaranda, P.; Ruiz, J.; Moreno, E.
2006-10-01
Measurements of low field static magnetic susceptibility and of magnetization with pulsed magnetic fields up to 32T have been made as a function of temperature on polycrystalline samples of the Zn1-zMnzGa2Se4 alloy system, which has a defect tetragonal chalcopyrite structure in the whole composition range. The resulting data have been used to give information on the magnetic spin-flop and magnetic saturation transitions, and details of the magnetic B-T phase diagrams were determined for the phases. The zero-field Néel temperatures TN and triple points, for the Zn1-zMnzGa2Se4 alloy system, have been found to be 8.1K and (7.8K, 2.2T) for z =1, 5.8K and (5.6K, 1.7T) for z =0.85, 4.5K and (4.35K, 1.0T) for z =0.075, and 3.9K and (3.85K, 0.5T) for z =0.7. The susceptibility χ(T ) curves for B =3 and 5T show magnetothermal effects below 4.5K.
Exchange field effect in the crystal-field ground state of Ce M Al 4 Si 2
Chen, K.; Strigari, F.; Sundermann, M.; ...
2016-09-06
The crystal-field ground-state wave functions of the tetragonal, magnetically ordering Kondo lattice materials CeMAl 4Si 2 (M = Rh, Ir, and Pt) are determined in this paper with low-temperature linearly polarized soft-x-ray absorption spectroscopy, and estimates for the crystal-field splittings are given from the temperature evolution of the linear dichroism. Values for the dominant exchange field in the magnetically ordered phases can be obtained from fitting the influence of magnetic order on the linear dichroism. The direction of the required exchange field is || c for the antiferromagnetic Rh and Ir compounds, with the corresponding strength of the order ofmore » λ ex ≈ 6 meV (65 K). Finally and furthermore, the presence of Kondo screening in the Rh and Ir compound is demonstrated on the basis of the absorption due to f 0 in the initial state.« less
FeRh ground state and martensitic transformation
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2018-01-01
Cubic B 2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B 2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90 ±10 K . We also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed [Phys. Rev. B 94, 180407(R) (2016), 10.1103/PhysRevB.94.180407], but a constrained solution.
Mechanism of room temperature oxygen sensor based on nanocrystalline TiO2 film
NASA Astrophysics Data System (ADS)
Bakri, A. S.; Sahdan, M. Z.; Nafarizal, N.; Abdullah, S. A.; Said, N. D. M.; Raship, N. A.; Sari, Y.
2018-04-01
A titanium dioxide (TiO2) thin film is proposed as the active layer for the detection of oxygen gas. The sensor is fabricated on silicon wafer using sol-gel dip coating technique with a constant withdrawal speed. The field emission scanning electron microscope image reveals that the film has a uniform structure while the x-ray diffraction analysis indicates that the film is anatase phase with tetragonal lattice structure. The film exhibit the highest intensity peak at (101) plane. The surface roughness measurement shows that the film has low surface roughness with small grain size. The electrical studies revealed that the resistivity is about 4.02 x 10-3 Ω.cm and the thickness of TiO2 film is 127.44 nm. The gas sensor measurement showed that the sensor response of the film is about 4.21% at room temperature.
Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates
NASA Astrophysics Data System (ADS)
Pereira, M. J.; Lourenço, A. A. C. S.; Amaral, V. S.
2014-07-01
Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC). Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tutuncu, Goknur; Li, Binzhi; Bowman, Keith
The piezoelectric compositions (1 − x)Ba(Zr{sub 0.2}Ti{sub 0.8})O{sub 3}–x(Ba{sub 0.7}Ca{sub 0.3})TiO{sub 3} (BZT-xBCT) span a model lead-free morphotropic phase boundary (MPB) between room temperature rhombohedral and tetragonal phases at approximately x = 0.5. In the present work, in situ X-ray diffraction measurements during electric field application are used to elucidate the origin of electromechanical strain in several compositions spanning the tetragonal compositional range 0.6 ≤ x ≤ 0.9. As BCT concentration decreases towards the MPB, the tetragonal distortion (given by c/a-1) decreases concomitantly with an increase in 90° domain wall motion. The increase in observed macroscopic strain is predominantly attributed to the increased contribution from 90°more » domain wall motion. The results demonstrate that domain wall motion is a significant factor in achieving high strain and piezoelectric coefficients in lead-free polycrystalline piezoelectrics.« less
NASA Astrophysics Data System (ADS)
Wei, T.; Dong, Z.; Zhao, C. Z.; Guo, Y. Y.; Zhou, Q. J.; Li, Z. P.
2016-03-01
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba5-5xSm5xTi5xNb10-5xO30 (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A2-site compared with that of A1-site will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (Tm) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of Tm in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.
Domain and phase change contributions to response in high strain piezoelectric actuators
NASA Astrophysics Data System (ADS)
Cross, L. Eric
2000-09-01
Current solid state actuators are briefly compared to traditional actuator technologies to highlight the major need for enhanced strain capability. For the ferroelectric piezoelectric polycrystal ceramics, the balance of evidence suggests a large entrinsic contribution to the field induced strain from ferroelectric-ferroelastic domain wall motion. Here-to-fore the intrinsic single domain contribution has been derived indirectly from phenomenological analysis. Now, new evidence of a stable monoclinic phase at compositions very close to the MPB suggest that the previous assessment will need to be revised. Actuator behavior in the new lead zinc niobate-lead titanate (PZN:PT) single crystal shows most unusual anisotropic behavior. For 111 oriented field poled crystals in the rhombohedral phase normal low induced strain is observed. For 001 field poled crystals however massive (0.6%) quasi-linear anhysteritic strain can be induced. Since the 001 oriented field in the rhombohedral phase can not drive ferroelastic domain walls it is suggested that the strain must be intrinsic. The suggestion is that it is due to an induced monoclinic phase in which the Ps vector tilts under increasing field up to more than 20° from 111, before the vector switches to the tetragonal 001 direction. Such a polarization rotation mechanism has also been suggested by Fu and Cohen. Calculations of induced single domain strain using measured electrostriction constants agree well with observed behavior. Recent measurements by Park et al. and Wada et al. on single crystal BaTiO3 show strongly enhanced piezoelectricity at temperatures near the ferroelectric phase transitions. Of particular relevance is the inverse experiment forcing the tetragonal over to the rhombohedral phase with high 111 oriented field. From this result it is suggested that both cubic and dodecahedral mirrors participate in the reorientation through orthorhombic to the rhombohedral state giving rise to different value of the induced d33 at different field levels.
NASA Astrophysics Data System (ADS)
Musyarofah; Nurlaila, R.; Muwwaqor, N. F.; Saukani, M.; Kuswoyo, A.; Triwikantoro; Pratapa, S.
2017-04-01
The effects of SiO2-ZrO2 polymorphic combinations as starting powders and calcination temperature on phase composition of the SiO2-ZrO2 composites were studied. Stoichiometric (1:1 mol%) mixtures of the SiO2-ZrO2 composites were mechanically activated using a ball-milling for 5 h followed by calcinations at 1000, 1100 and 1200 °C for 3 h. The composites used in the present study were a-SiO2+ a-ZrO2, a-SiO2+ t-ZrO2, c-SiO2+ a-ZrO2 and c-SiO2+ t-ZrO2 which were symbolized by AA, AT, CA and CT, respectively. Prefixes a, t and c denote amorphous, tetragonal and cristobalite, respectively. The phase composition was determined by Rietveld analysis of X-ray diffraction (XRD) data using Rietica software. The identified phases for all calcined samples were a combination among t-ZrO2, c-SiO2, m-ZrO2 and zircon (ZrSiO4). Amorphous zirconia formed a transient tetragonal zirconia phase during heating, which reacted with silica to form zircon. The zircon phase was not found to form even at 1200 °C in the AT and CT mixtures and at 1100 °C in the CA mixture. The AA mixture in particular crystallized to form zircon at a lower temperature with more composition fraction than the others, ca 82.9 (14) mol%.
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.; ...
2017-04-19
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Min Hyuk; Schenk, Tony; Fancher, Christopher M.
The origin of the unexpected ferroelectricity in doped HfO 2 thin films is now considered to be the formation of a non-centrosymmetric Pca2 1 orthorhombic phase. Due to the polycrystalline nature of the films as well as their extremely small thickness (~10 nm) and mixed orientation and phase composition, structural analysis of doped HfO 2 thin films remains a challenging task. As a further complication, the structural similarities of the orthorhombic and tetragonal phase are difficult to distinguish by typical structural analysis techniques such as X-ray diffraction. To resolve this issue, the changes in the grazing incidence X-ray diffraction (GIXRD)more » patterns of HfO 2 films doped with Si, Al, and Gd are systematically examined. For all dopants, the shift of o111/ t101 diffraction peak is observed with increasing atomic layer deposition (ALD) cycle ratio, and this shift is thought to originate from the orthorhombic to P4 2/ nmc tetragonal phase transition with decreasing aspect ratio (2 a/(b + c) for orthorhombic and c/a for the tetragonal phase). For quantitative phase analysis, Rietveld refinement is applied to the GIXRD patterns. A progressive phase transition from P2 1/c monoclinic to orthorhombic to tetragonal is confirmed for all dopants, and a strong relationship between orthorhombic phase fraction and remanent polarization value is uniquely demonstrated. The concentration range for the ferroelectric properties was the narrowest for the Si-doped HfO 2 films. As a result, the dopant size is believed to strongly affect the concentration range for the ferroelectric phase stabilization, since small dopants can strongly decrease the free energy of the tetragonal phase due to their shorter metal–oxygen bonds.« less
Enhancement of electrical properties in polycrystalline BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Yun, Kwi Young; Ricinschi, Dan; Kanashima, Takeshi; Okuyama, Masanori
2006-11-01
Ferroelectric BiFeO3 thin films were grown on Pt /TiO2/SiO2/Si substrates by pulsed-laser deposition. From the x-ray diffraction analysis, the BiFeO3 thin films consist of perovskite single phase, and the crystal structure shows the tetragonal structure with a space group P4mm. The BiFeO3 thin films show enhanced electrical properties with low leakage current density value of ˜10-4A /cm2 at a maximum applied voltage of 31V. This enhanced electrical resistivity allowed the authors to obtain giant ferroelectric polarization values such as saturation polarizations of 110 and 166μC/cm2 at room temperature and 80K, respectively.
Djaker, Nadia; Wulfman, Claudine; Sadoun, Michaël; Lamy de la Chapelle, Marc
2013-01-01
Subsurface hydrothermal degradation of yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) is presented. Evaluation of low temperature degradation (LTD) phase transformation induced by aging in 3Y-TZP is experimentally studied by Raman confocal microspectroscopy. A non-linear distribution of monoclinic volume fraction is determined in depth by using different pinhole sizes. A theoretical simulation is proposed based on the convolution of the excitation intensity profile and the Beer-Lambert law (optical properties of zirconia) to compare between experiment and theory. The calculated theoretical degradation curves matche closely to the experimental ones. Surface transformation (V0) and transformation factor in depth (T) are obtained by comparing simulation and experience for each sample with nondestructive optical sectioning. PMID:23667788
NASA Astrophysics Data System (ADS)
Chen, Xiuli; Li, Xiaoxia; Yan, Xiao; Liu, Gaofeng; Zhou, Huanfu
2018-02-01
(Ba1-x Bi x )(Ti1-x Ni0.5x Sn0.5x )O3 (BBTNS, 0.02 ≤ x ≤ 0.1) samples have been synthesized by traditional solid-state reaction technique and their structural transformation and dielectric properties investigated. X-ray diffraction (XRD) analysis revealed that BBTNS could form a homogeneous solid solution, and the transformation from tetragonal to pseudocubic phase occurred at 0.04 ≤ &!nbsp;x ≤ 0.06. Optimized properties with stable ɛ r (˜ 1829 to 1838), small Δɛ/ɛ 25°C values (± 15%) over a broad temperature range from -60°C to 140°C, and low tan Δ (≤ 0.02) from 4°C to 194°C were obtained at x = 0.1. The relaxation and conduction process in the high-temperature region are attributed to thermal activation, and oxygen vacancies may be the ionic charge carriers in perovskite ferroelectrics.
Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions
NASA Astrophysics Data System (ADS)
Kumar, Anand; Kashyap, Manish K.; Sabharwal, Namita; Kumar, Sarvesh; Kumar, Ashok; Kumar, Parmod; Asokan, K.
2017-11-01
In order to elucidate the effect of transition metal (TM) doping, the impedance and dielectric responses of Co and/or Mn-doped TiO2 nanocrystalline powder samples with 3% doping concentration synthesized via sol gel technique, have been analyzed. X-ray diffraction (XRD) analysis confirms the formation of tetragonal TiO2 anatase phase for all studied samples without any extra impurity phase peaks. The variation in the grain size measured from field emission scanning electron microscope (FESEM) measurements for all the samples are in accordance with the change in crystallite size as obtained from XRD. The DC resistivity for pure TiO2 nanoparticles is the highest while codoped samples exhibit low resistivity. The temperature dependent dielectric constant and dielectric loss possess step like enhancement and show the relaxation behavior. At room temperature, the dielectric function and dielectric loss decrease rapidly with increase in frequency and become almost constant at the higher frequencies. Such a decrease in dielectric loss is suitable for energy storage devices.
NASA Astrophysics Data System (ADS)
Ota, Shiori; Matsumoto, Kazuya; Suzuki, Kohei; Kojima, Seiji
2014-03-01
The successive phase transitions of multiferroic barium sodium niobate, Ba2NaNb5O15 (BNN), were studied by Brillouin scattering. The LA, TA modes, and central peak were measured in a large temperature range from room temperature up to 750 °C. In the vicinity of a ferroelectric phase transition at about TC = 585 °C from the prototypic tetragonal 4/mmm to ferroelectric 4mm phases, elastic anomaly was observed for LA and TA modes. In addition, the order-disorder nature was observed by the temperature dependence of a central peak. For further cooling another elastic anomaly was also observed in the vicinity of a ferroelastic incommensurate phase transition at about TIC = 285 °C into orthorhombic 2mm phase with the appearance of incommensurate modulation. The large thermal hysteresis of elastic anomaly near TIC can be attributed the typical feature of the type III incommensurate phase transition predicted recently by Ishibashi and Iwata (2013 J. Phys. Soc. Jpn. 82 044703).
Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.; ...
2017-12-20
We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sangeetha, N. S.; Smetana, V.; Mudring, A. -V.
We report the inference of Ying et al. [Europhys. Lett. 104, 67005 (2013)] of a composition-induced change from c-axis ordered-moment alignment in a collinear A-type antiferromagnetic (AFM) structure at small x to ab-plane alignment in an unknown AFM structure at larger x in Ca 1-xSr xCo 2-yAs 2 with the body-centered tetragonal ThCr 2Si 2 structure is confirmed. Our major finding is an anomalous magnetic behavior in the crossover region 0.2 ≲ x ≲ 0.3 between these two phases. Also, in this region the magnetic susceptibility vs temperature χ ab(T) measured with magnetic fields H applied in the ab planemore » exhibit typical AFM behaviors with cusps at the Néel temperatures of ~ 65 K, whereas χ c(T) and the low-temperature isothermal magnetization M c(H) with H aligned along the c axis exhibit extremely soft ferromagneticlike behaviors.« less
The high-temperature phases of WO{sub 3}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogt, T.; Woodward, P.M.; Hunter, B.A.
1999-04-01
High-temperature, high-resolution neutron powder diffraction experiments were performed to investigate the phases of WO{sub 3} between room temperature and 850 C. Two phases were found and characterized by Rietveld refinements: orthorhombic {beta}-WO{sub 3} (Pbcn, a = 7.3331(2), b = 7.5733(2), c = 7.7401(3) {angstrom} at 350 C, tilt system a{sup 0}b{sup +}c{sup {minus}}) and tetragonal {alpha}-WO{sub 3} (P4/ncc, a = 5.27659(1), b = 5.2759(1), c = 7.8462(3) {angstrom} at 800 C, tilt system a{sup 0}a{sup 0}c{sup {minus}}). The sequence of temperature-induced phase transitions in WO{sub 3} can be rationalized in terms of changes in the octahedral tilt systems and/or displacementsmore » of the tungsten out of the center of the WO{sub 6} octahedron. Above room temperature the two phase transitions are driven by successive softening of phonon modes, M{sub 3} at the {alpha}- to {beta}-transition and R{sub 25} at the {beta}- to {gamma}-transition.« less
Determination of the structural phase and octahedral rotation angle in halide perovskites
dos Reis, Roberto; Yang, Hao; Ophus, Colin; ...
2018-02-12
A key to the unique combination of electronic and optical properties in halide perovskite materials lies in their rich structural complexity. However, their radiation sensitive nature limits nanoscale structural characterization requiring dose efficient microscopic techniques in order to determine their structures precisely. In this work, we determine the space-group and directly image the Br halide sites of CsPbBr 3, a promising material for optoelectronic applications. Based on the symmetry of high-order Laue zone reflections of convergent-beam electron diffraction, we identify the tetragonal (I4/mcm) structural phase of CsPbBr 3 at cryogenic temperature. Electron ptychography provides a highly sensitive phase contrast measurementmore » of the halide positions under low electron-dose conditions, enabling imaging of the elongated Br sites originating from the out-of-phase octahedral rotation viewed along the [001] direction of I4/mcm persisting at room temperature. The measurement of these features and comparison with simulations yield an octahedral rotation angle of 6.5°(±1.5°). Finally, the approach demonstrated here opens up opportunities for understanding the atomic scale structural phenomena applying advanced characterization tools on a wide range of radiation sensitive halide-based all-inorganic and hybrid organic-inorganic perovskites.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtaza, Adil; Yang, Sen, E-mail: yang.sen@mail.xjtu.edu.cn; Zhou, Chao
2016-08-01
In this work, we report a morphotropic phase boundary (MPB) involved ferromagnetic system Tb{sub 1-x}Nd{sub x}Co{sub 2} and reveal the corresponding structural and magnetoelastic properties of this system. With high resolution synchrotron X-ray diffractometry, the crystal structure of the TbCo{sub 2}-rich side is detected to be rhombohedral and that of NdCo{sub 2}-rich side is tetragonal below their respective Curie temperatures T{sub C}. The MPB composition Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} corresponds to the coexistence of the rhombohedral phase (R-phase) and tetragonal phase (T-phase). Contrary to previously reported MPB involved ferromagnetic systems, the MPB composition of Tb{sub 0.35}Nd{sub 0.65}Co{sub 2} shows minimummore » magnetization which can be understood as compensation of sublattice moments between the R-phase and the T-phase. Furthermore, magnetostriction of Tb{sub 1-x}Nd{sub x}Co{sub 2} decreases with increasing Nd concentration until x = 0.8 and then increases in the negative direction with further increasing Nd concentration; the optimum point for magnetoelastic properties lies towards the rhombohedral phase. Our work not only shows an anomalous type of ferromagnetic MPB but also provides an effective way to design functional materials.« less
Effect of Bi doping on morphotropic phase boundary and dielectric properties of PZT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joshi, Shraddha; Acharya, Smita, E-mail: saha275@yahoo.com
2016-05-23
In our present attempt, Pb{sub (1-x)}Bi{sub x}Zr{sub 0.52}Ti{sub 0.48}O{sub 3} [PBZT] {where x = 0, 0.05, 0.1} is synthesized by sol-gel route. Effect of Bi addition on structure, sinterability and dielectric properties are observed. The presence of morphotropic phase boundary (coexistence of tetragonal and rhombohedral symmetry) is confirmed by X-ray diffraction. Enhancement of sinterability after Bi doping is observed through a systematic sintering program. Frequency and temperature dependent dielectric constant are studied. Bi doping in PZT is found to enhance room temperature dielectric constant. However, at high temperature the dielectric constant of pure PZT is more than that of dopedmore » PZT.« less
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2017-11-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
NASA Astrophysics Data System (ADS)
Fujii, Yosuke; Kosuga, Atsuko
2018-06-01
Polycrystalline CuGaTe2 with a chalcopyrite-type structure consolidated by hot-pressing is a potential candidate as a medium-temperature thermoelectric (TE) material. However, its high-temperature formation phases have rarely been reported to date. Here, we investigated the temperature-dependent formation phases and crystal structure at 300-800 K of hot-pressed CuGaTe2. From synchrotron x-ray diffraction data and crystal structure analysis of the heating and cooling processes, it was clarified that a certain amount of impurity phases, such as Te and CuTe, precipitated from the CuGaTe2 matrix when the temperature was increased (to 500-650 K). This is the temperature range where CuGaTe2 has been reported to show high TE performance. After CuGaTe2 was heated to 800 K, such impurity phases remained, even when cooled to room temperature. They also affected the tetragonal distortion and the x-coordinate of Te in the CuGaTe2 matrix, probably due to deficiencies of Cu and Te in the matrix. Our results reveal detailed information on the formation phases of CuGaTe2 at high temperature and thus provide insight for evaluation of its high-temperature stability and transport properties.
Moshopoulou, E G; Ibberson, R M; Sarrao, J L; Thompson, J D; Fisk, Z
2006-04-01
The room-temperature crystal structure of the heavy fermion antiferromagnet Ce2RhIn8, dicerium rhodium octaindide, has been studied by a combination of high-resolution synchrotron X-ray reciprocal-space mapping of single crystals and high-resolution time-of-flight neutron powder diffraction. The structure is disordered, exhibiting a complex interplay of non-periodic, partially correlated planar defects, coexistence and segregation of polytypic phases (induced by periodic planar ;defects'), mosaicity (i.e. domain misalignment) and non-uniform strain. These effects evolve as a function of temperature in a complicated way, but they remain down to low temperatures. The room-temperature diffraction data are best represented by a complex mixture of two polytypic phases, which are affected by non-periodic, partially correlated planar defects, differ slightly in their tetragonal structures, and exhibit different mosaicities and strain values. Therefore, Ce2RhIn8 approaches the paracrystalline state, rather than the classic crystalline state and thus several of the concepts of conventional single-crystal crystallography are inapplicable. The structural results are discussed in the context of the role of disorder in the heavy-fermion state and in the interplay between superconductivity and magnetism.
NASA Astrophysics Data System (ADS)
Zhao, K.; Glasbrenner, J. K.; Gretarsson, H.; Schmitz, D.; Bednarcik, J.; Etter, M.; Sun, J. P.; Manna, R. S.; Al-Zein, A.; Lafuerza, S.; Scherer, W.; Cheng, J. G.; Gegenwart, P.
2018-02-01
A well-known feature of the CaFe2As2 -based superconductors is the pressure-induced collapsed tetragonal phase that is commonly ascribed to the formation of an interlayer As-As bond. Using detailed x-ray scattering and spectroscopy, we find that Rh-doped Ca0.8Sr0.2Fe2As2 does not undergo a first-order phase transition and that local Fe moments persist despite the formation of interlayer As-As bonds. Our density functional theory calculations reveal that the Fe-As bond geometry is critical for stabilizing magnetism and the pressure-induced drop in the c lattice parameter observed in pure CaFe2As2 is mostly due to a constriction within the FeAs planes. The collapsed tetragonal phase emerges when covalent bonding of strongly hybridized Fe 3 d and As 4 p states completely wins out over their exchange splitting. Thus the collapsed tetragonal phase is properly understood as a strong covalent phase that is fully nonmagnetic with the As-As bond forming as a by-product.
NASA Astrophysics Data System (ADS)
Akdogan, E. K.; Safari, A.
2007-03-01
We propose a phenomenological intrinsic finite-size effect model for single domain, mechanically free, and surface charge compensated ΔG-P ⃗s-ξ space, which describes the decrease in tetragonal phase stability with decreasing ξ rigorously.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semaltianos, N. G., E-mail: nsemaltianos@yahoo.com; Friedt, J.-M.; Blondeau-Patissier, V.
2016-05-28
Laser ablation of a bulk Hf target in deionized (DI) water, ethanol, or toluene was carried out for the production of nanoparticles' colloidal solutions. Due to the interaction of the ablation plasma plume species with the species which are produced by the liquid decomposition at the plume-liquid interface, hafnia (HfO{sub 2}) nanoparticles are synthesized in DI water, hafnium carbide (HfC) nanoparticles in toluene, and a mixture of these in ethanol. The hafnia nanoparticles are in the monoclinic low temperature phase and in the tetragonal and fcc high temperature phases. Their size distribution follows log-normal function with a median diameter inmore » the range of 4.3–5.3 nm. Nanoparticles synthesized in DI water have band gaps of 5.6 and 5.4 eV, in ethanol 5.72 and 5.65 eV (using low and high pulse energy), and in toluene 3 eV. The values for the relative permittivity in the range of 7.74–8.90 were measured for hafnia nanoparticles' thin films deposited on substrates by drop-casting (self-assembled layers) in parallel plate capacitor structures.« less
Pereira, Gabriel K R; Guilardi, Luís F; Dapieve, Kiara S; Kleverlaan, Cornelis J; Rippe, Marília P; Valandro, Luiz Felipe
2018-05-23
This study characterized the mechanical properties (static and under fatigue), the crystalline microstructure (monoclinic - m, tetragonal - t and cubic - c phase contents) and the surface topography of three yttrium-stabilized zirconia (YSZ) materials with different translucent properties, before and after aging in an autoclave (low temperature degradation). Disc-shaped specimens were produced from second generation (Katana ML/HT - high-translucent) and third generations (Katana STML - super-translucent and UTML - ultra-translucent) YSZ ceramics (Kuraray Noritake Dental Inc.), following ISO 6872-2015 guidelines for biaxial flexural strength testing (final dimensions: 15 mm in diameter and 1.2 ± 0.2 mm in thickness), and then subjected to the respective tests and analyses. ML was mainly composed of tetragonal crystals, while STML and UTML presented cubic content. Aging increased the monoclinic content for ML and did not affect STML and UTML. Topographical analysis highlights different grain sizes on the ceramic surface (UTML > STML > ML) and aging had no effect on this outcome. Weibull analysis showed the highest characteristic strength for ML both before and after aging, and statistically similar Weibull moduli for all groups. ML material also obtained the highest survival rates (ML > STML > UTML) for both fatigue strength and number of cycles to failure. All fractures originated from surface defects on the tensile side. Third generation zirconia (Katana STML and UTML) are fully stabilized materials (with tetragonal and cubic crystals), being totally inert to the autoclave aging, and presented lower mechanical properties than the second-generation zirconia (Katana ML - metastable zirconia). Copyright © 2018 Elsevier Ltd. All rights reserved.
Template assisted strain tuning and phase stabilization in epitaxial BiFeO3 thin films
NASA Astrophysics Data System (ADS)
Saj Mohan M., M.; Ramadurai, Ranjith
2018-04-01
Strain engineering is a key to develop novel properties in functional materials. We report a strain mediated phase stabilization and epitaxial growth of bismuth ferrite(BiFeO3) thin films on LaAlO3 (LAO) substrates. The strain in the epitaxial layer is controlled by controlling the thickness of bottom electrode where the thickness of the BFO is kept constant. The thickness of La0.7Sr0.3MnO3(LSMO) template layer was optimized to grow completely strained tetragonal, tetragonal/rhombohedral mixed phase and fully relaxed rhombohedral phase of BFO layers. The results were confirmed with coupled-θ-2θ scan, and small area reciprocal space mapping. The piezoelectric d33 (˜ 45-48 pm/V) coefficient of the mixed phase was relatively larger than the strained tetragonal and relaxed rhombohedral phase for a given thickness.
Electronic structures and superconductivity in LuTE2Si2 phases (TE = d-electron transition metal)
NASA Astrophysics Data System (ADS)
Samsel-Czekała, M.; Chajewski, G.; Wiśniewski, P.; Romanova, T.; Hackemer, A.; Gorzelniak, R.; Pikul, A. P.; Kaczorowski, D.
2018-05-01
In the course of our search for unconventional superconductors amidst the 1:2:2 phases, we have re-investigated the LuTE2Si2 compounds with TE = Fe, Co, Ni, Ru, Pd and Pt. In this paper, we present the results of our fully relativistic ab initio calculations of the band structures, performed using the full-potential local-orbital code. The theoretical data are supplemented by the results of low-temperature electrical transport and specific heat measurements performed down to 0.35 K. All the materials studied but LuPt2Si2 crystallize with the body-centered tetragonal ThCr2Si2-type structure (space group I4/mmm). Their Fermi surfaces exhibit a three-dimensional multi-band character. In turn, the Pt-bearing compound adopts the primitive tetragonal CaBe2Ge2-type structure (space group P4/nmm), and its Fermi surface consists of predominantly quasi-two-dimensional sheets. Bulk superconductivity was found only in LuPd2Si2 and LuPt2Si2 (independent of the structure type and dimensionality of the Fermi surface). The key superconducting characteristics indicate a fully-gapped BCS type character. Though the electronic structure of LuFe2Si2 closely resembles that of the unconventional superconductor YFe2Ge2, this Lu-based silicide exhibits neither superconductivity nor spin fluctuations at least down to 0.35 K.
Growth and dissolution kinetics of tetragonal lysozyme
NASA Technical Reports Server (NTRS)
Monaco, L. A.; Rosenberger, F.
1993-01-01
The growth and dissolution kinetics of lysozyme in a 25 ml solution bridge inside a closed growth cell was investigated. It was found that, under all growth conditions, the growth habit forming (110) and (101) faces grew through layer spreading with different growth rate dependence on supersaturation/temperature. On the other hand, (100) faces which formed only at low temperatures underwent a thermal roughening transition around 12 C.
NASA Astrophysics Data System (ADS)
Sapkota, A.; Das, P.; Böhmer, A. E.; Ueland, B. G.; Abernathy, D. L.; Bud'ko, S. L.; Canfield, P. C.; Kreyssig, A.; Goldman, A. I.; McQueeney, R. J.
2018-05-01
Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1 -xCox)2As2,x =0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x =0.026 , similar to the parent CaFe2As2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1 -xCox)2As2 , wherein the crossover corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1 -xCox)2As2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x =0.030 sample and high-temperature x =0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x =0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. One possible scenario ascribes this loss of moment to a sensitivity to the c -axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.
Temperature evolution of the structural properties of monodomain ferroelectric thin film
NASA Astrophysics Data System (ADS)
Janolin, Pierre-Eymeric; Le Marrec, Françoise; Chevreul, Jacques; Dkhil, Brahim
2007-05-01
The structural evolution of epitaxial monodomain (only 180° domains) ferroelectric PbTiO3 thin film has been investigated, using high-resolution, temperature-dependent, x-ray diffraction. The full set of lattice parameters was obtained from room temperature up to 850K. It allowed the calculation of the different strains stored in the film at room temperature, underlying the difference between the mechanical strain and the misfit strain. The evolution of the misfit strain as a function of temperature was also calculated and was found to be consistent with the theoretical temperature-misfit strain phase diagram. These data strongly suggest that the film remains ferroelectric and tetragonal up to 940K.
The solubility of hen egg-white lysozyme
NASA Technical Reports Server (NTRS)
Howard, Sandra B.; Twigg, Pamela J.; Baird, James K.; Meehan, Edward J.
1988-01-01
The equilibrium solubility of chicken egg-white lysozyme in the presence of crystalline solid state was determined as a function of NaCl concentration, pH, and temperature. The solubility curves obtained represent a region of the lysozyme phase diagram. This diagram makes it possible to determine the supersaturation of a given set of conditions or to achieve identical supersaturations by different combinations of parameters. The temperature dependence of the solubility permits the evaluation of Delta-H of crystallization. The data indicate a negative heat of crystallization for the tetragonal crystal form but a positive heat of crystallization for the high-temperature orthorhombic form.
NASA Astrophysics Data System (ADS)
Zhang, Zhang; Chen, Jianwei; Xu, Jialin; Li, Xiaobing; Luo, Haosu
2017-12-01
The temperature and electric-field induced phase transition behavior and dielectric, piezoelectric, and ferroelectric properties of [001]-oriented 0.23Pb(In1/2Nb1/2)O3-0.47Pb(Mg1/3Nb2/3)O3-0.3PbTiO3-Mn (PIMNT-Mn) single crystals were investigated. Dielectric performance analysis and temperature-dependent Raman spectra show three apparent ferroelectric phase transition temperatures around 120 °C(TR-M),145 °C(TM-T), and 170 °C(TT-C), respectively. In addition, the temperature dependence of the relative Raman intensities of Lorentzian peaks indicates the poled PIMNT-Mn single crystals exhibit rhombohedral(R) → monoclinic(M) → tetragonal(T) → cubic(C) phase transition path. The electrical properties of the PIMNT-Mn single crystals such as the longitudinal electrostrictive coefficient (Q), the converse piezoelectric constant (d33), and the maximum strain value (Smax%) have changed abnormally around the phase transition temperatures (TR-M and TM-T).
The solubility of the tetragonal form of hen egg white lysozyme from pH 4.0 to 5.4
NASA Technical Reports Server (NTRS)
Cacioppo, Elizabeth; Pusey, Marc L.
1991-01-01
Hen egg white lysozyme solubilities in the presence of the tetragonal crystal form have been determined. Conditions investigated cover the pH range 4.0 to 5.4, varying from 2.0 to 7.0 percent NaCl concentrations and from 4 to 25 C. In all instances, the solubilities were found to increase with temperature and decrease with increasing salt concentration. The effects of pH were more complex, showing a decreasing solubility with increasing pH at low salt concentration and an increasing solubility with increasing pH at high salt concentration.
NASA Astrophysics Data System (ADS)
Sarang, Som; Ishihara, Hidetaka; Tung, Vincent; Ghosh, Sayantani
Utilizing a Marangoni flow inspired electrospraying technique, we synthesize hybrid perovskite (PVSK) thin films with broad absorption spectrum and high crystallinity. The precursor solvents are electrosprayed onto an indium tin oxide (ITO) substrate, resulting in a gradient force developing between the droplet surface and the bulk due to the varying vapor pressure in the bi-solvent system. This gradient force helps the droplets propagate and merge with surrounding ones, forming a uniform thin film with excellent morphological and topological characteristics, as evident from the average power conversion efficiency (PCE) of 16%. In parallel, we use low temperature static and dynamic photoluminescence spectroscopy to probe the grain boundaries and defects in the synthesized PVSK thin films. At 120 K, the emergence of the low temperature orthorhombic phase is accompanied by reduction in lifetimes by an order of magnitude, a result attributed to charge transfer between the orthorhombic and tetragonal domains, as well as due to a crossover from free charge carrier to excitonic recombination. Our fabrication technique and optical studies help in advancement of PVSK based technology by providing unique insights into the fundamental physics of these novel materials. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.
Phase control of Mn-based spinel films via pulsed laser deposition
Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.; ...
2016-07-06
Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less
Phase control of Mn-based spinel films via pulsed laser deposition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Zhenxing; Chen, Xiao; Fister, Timothy T.
Phase transformations in battery cathode materials during electrochemical-insertion reactions lead to capacity fading and low cycle life. One solution is to keep the same phase of cathode materials during cation insertion-extraction processes. Here, we demonstrate a novel strategy to control the phase and composition of Mn-based spinel oxides for magnesium-ion battery applications through the growth of thin films on lattice-matched substrates using pulsed laser deposition. Materials at two extreme conditions are considered: fully discharged cathode MgMn 2O 4 and fully charged cathode Mn 2O 4. The tetragonal MgMn 2O 4 (MMO) phase is obtained on MgAl 2O 4 substrates, whilemore » the cubic MMO phase is obtained on MgO substrates. Similarly, growth of the empty Mn 2O 4 spinel in the cubic phase is obtained on an MgO substrate. These results demonstrate the ability to control separately the phase of spinel thin films (e.g., tetragonal vs. cubic MMO) at nominally fixed composition, and to maintain a fixed (cubic) phase while varying its composition (MgxMn 2O 4, for x = 0, 1). As a result, this capability provides a novel route to gain insights into the operation of battery electrodes for energy storage applications.« less
NASA Astrophysics Data System (ADS)
Juneja, J. K.; Thakur, O. P.; Prakash, Chandra
2003-10-01
The structural, dielectric and piezoelectric properties have been studied in detail for the samarium modified PZT system. The samples, with chemical formula Pb1-xSmxZr0.52Ti0.48O3 with x varying from 0 to 0.02 in steps of 0.0025, were prepared by standard double sintering ceramic method. XRD analysis showed all the samples to be of single phase with tetragonal structure. Tetragonality (c/a) decreases gradually with samarium concentration (x) and the experimental density increases with x. Dielectric properties were studied as a function of temperature and frequency. All the samples show well-defined ferroelectric behavior. The remanance ratio (Pr/Ps) was found to increase with increasing Sm3+ concentration. Piezoelectric charge coefficient d33 decreases with x.
NASA Astrophysics Data System (ADS)
Christy, Yohanes; Matsumoto, Kazuya; Kojima, Seiji
2015-07-01
The lattice instability of the incommensurate (IC) phase transition of uniaxial ferroelectric Ba2NaNb5O15 (BNN) was investigated by micro-Brillouin scattering. Spectra of the longitudinal acoustic (LA) mode were observed from room temperature to 750 K. In the vicinity of the IC phase transition temperature TIC = 573 K, elastic anomalies in the form of a sharp peak in the sound velocity and thermal hysteresis during the heating and cooling cycle were observed. During this transition, the crystal point group changed from tetragonal 4mm to orthorhombic 2mm along with the IC modulation. In order to deepen our understanding of the thermal hysteresis, aging experiment in the IC phase was conducted. We can conclude that the appearance of thermal hysteresis related to the relaxation of ferroelastic strain is related to the feature of the new type III IC phase transition mechanism of BNN.
NASA Astrophysics Data System (ADS)
Supatutkul, C.; Pramchu, S.; Jaroenjittichai, A. P.; Laosiritaworn, Y.
2017-09-01
This work reports the structures and electronic properties of two-dimensional (2D) ZnO in hexagonal, (4,8)-tetragonal, and (4,4)-tetragonal monolayer using GGA and HSE-hybrid functional. The calculated results show that the band gaps of 2D ZnO sheets are wider than those of the bulk ZnO. The hexagonal and (4,8)-tetragonal phases yield direct band gaps, which are 4.20 eV, and 4.59 eV respectively, while the (4,4)-tetragonal structure has an indirect band gap of 3.02 eV. The shrunken Zn-O bond lengths in the hexagonal and (4,8)-tetragonal indicate that they become more ionic in comparison with the bulk ZnO. In addition, the hexagonal ZnO sheet is the most energetically favourable. The total energy differences of (4,8)-tetragonal and (4,4)-tetragonal sheets from that of hexagonal monolayer (per formula unit) are 197 meV and 318 meV respectively.
Prasad, Krishnamurthy; Pinjari, D V; Pandit, A B; Mhaske, S T
2011-09-01
Nanostructured zirconium dioxide was synthesized from zirconyl nitrate using both conventional and ultrasound assisted precipitation in alkaline medium. The synthesized samples were calcinated at temperatures ranging from 400°C to 900°C in steps of 100°C. The ZrO(2) specimens were characterized using X-ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). The thermal characteristics of the samples were studied via Differential Scanning Calorimetry-Thermo-Gravimetry Analysis (DSC-TGA). The influence of the calcination temperature on the phase transformation process from monoclinic to tetragonal to cubic zirconia and its consequent effect on the crystallite size and % crystallinity of the synthesized ZrO(2) was studied and interpreted. It was observed that the ultrasound assisted technique helped to hasten to the phase transformation and also at some point resulted in phase stabilization of the synthesized zirconia. Copyright © 2011 Elsevier B.V. All rights reserved.
Spin-orbital model of stoichiometric LaMnO3 with tetragonal distortions
NASA Astrophysics Data System (ADS)
Snamina, Mateusz; Oleś, Andrzej M.
2018-03-01
The spin-orbital superexchange model is derived for the cubic (perovskite) symmetry of LaMnO3, whereas real crystal structure is strongly deformed. We identify and explain three a priori important physical effects arising from tetragonal deformation: (i) the splitting of eg orbitals ∝Ez , (ii) the directional renormalization of d -p hybridization tp d, and (iii) the directional renormalization of charge excitation energies. Using the example of LaMnO3 crystal we evaluate their magnitude. It is found that the major effects of deformation are an enhanced amplitude of x2-y2 orbitals induced in the orbital order by Ez≃300 meV and anisotropic tp d≃2.0 (2.35) eV along the a b (c ) cubic axis, in very good agreement with Harrison's law. We show that the improved tetragonal model analyzed within mean field approximation provides a surprisingly consistent picture of the ground state. Excellent agreement with the experimental data is obtained simultaneously for: (i) eg orbital mixing angle, (ii) spin exchange constants, and (iii) the temperatures of spin and orbital phase transition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wei, T., E-mail: weitong.nju@gmail.com, E-mail: weitong-nju@163.com; Dong, Z.; Zhou, Q. J.
2016-03-28
New unfilled tetragonal tungsten bronze (TTB) oxides, Ba{sub 5−5x}Sm{sub 5x}Ti{sub 5x}Nb{sub 10−5x}O{sub 30} (BSTN-x), where 0.10 ≤ x ≤ 0.35, have been synthesized in this work. Their crystal structure was determined and analyzed based on Rietveld structural refinement. It is found that single TTB phase can be formed in a particular x range (i.e., 0.15 ≤ x ≤ 0.3) due to the competition interaction between tolerance factor and electronegativity difference. Furthermore, dielectric and ferroelectric results indicate that phase transitions and ferroelectric states are sensitive to x. Referring to the local chemistry, we suggest that the raise of vacancies at the A{sub 2}-site compared with that of A{sub 1}-sitemore » will intensely depress the normal ferroelectric phase and is in favor of relaxor ferroelectric state. Macroscopically, previous A-site size difference standpoint on fill TTB compounds cannot give a reasonable explanation about the variation of dielectric maximum temperature (T{sub m}) for present BSTN-x compounds. Alternatively, tetragonality (c/a) is adopted which can well describe the variation of T{sub m} in whole x range. In addition, one by one correspondence between tetragonality and electrical features can be found, and the compositions involving high c/a are usually stabilized in normal ferroelectric phase. It is believed that c/a is a more appropriate parameter to illustrate the variation of ferroelectric properties for unfilled TTB system.« less
Vapor Growth of Mercuric Iodide Tetragonal Prismatic Crystals
2013-03-01
oxidation starting at 200°C, which results in oxygen containing low molecular weight compounds, such as water, aldehydes , and ketones [65]. The temperatures...41 iii 4.7 Growth with Ketones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.8 Material Characterization...82 5.5.4 Summary of growth with alkanes . . . . . . . . . . . . . . . . . . 83 5.6 Growth with Ketones
Preparation of Nanocrystalline Powders of ZrO2, Stabilized by Y2O3 Dobs for Ceramics
NASA Astrophysics Data System (ADS)
Petrunin, V. F.; Korovin, S. A.
The purpose of this study was to develop a synthesis conditions and produce samples of nanocrystalline zirconia powder in a high-temperature phase state. To increase the stability of this state at room temperature, Y2O3 was used as a dop in the two-stages chemical method including coprecipitation mixture of the corresponding hydroxides and air drying. To reduce agglomeration of nanoparticles during heat treatment of precursors the microwave oven instead of a muffle was used. Different characterisation methods have been used to determine that the obtained powders are nano-scale corresponds to a high-temperature tetragonal phase of ZrO2. It is shown that such nanocrystalline powders may be used to produce highly-dense nanoceramics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Errandonea, D., E-mail: daniel.errandonea@uv.es; García-Domene, B.; Gomis, O.
We have studied the structural behavior of bismuth phosphate under compression. We performed x-ray powder diffraction measurements up to 31.5 GPa and ab initio calculations. Experiments were carried out on different polymorphs: trigonal (phase I) and monoclinic (phases II and III). Phases I and III, at low pressure (P < 0.2–0.8 GPa), transform into phase II, which has a monazite-type structure. At room temperature, this polymorph is stable up to 31.5 GPa. Calculations support these findings and predict the occurrence of an additional transition from the monoclinic monazite-type to a tetragonal scheelite-type structure (phase IV). This transition was experimentally found after the simultaneous applicationmore » of pressure (28 GPa) and temperature (1500 K), suggesting that at room temperature the transition might by hindered by kinetic barriers. Calculations also predict an additional phase transition at 52 GPa, which exceeds the maximum pressure achieved in the experiments. This transition is from phase IV to an orthorhombic barite-type structure (phase V). We also studied the axial and bulk compressibility of BiPO{sub 4}. Room-temperature pressure-volume equations of state are reported. BiPO{sub 4} was found to be more compressible than isomorphic rare-earth phosphates. The discovered phase IV was determined to be the less compressible polymorph of BiPO{sub 4}. On the other hand, the theoretically predicted phase V has a bulk modulus comparable with that of monazite-type BiPO{sub 4}. Finally, the isothermal compressibility tensor for the monazite-type structure is reported at 2.4 GPa showing that the direction of maximum compressibility is in the (0 1 0) plane at approximately 15° (21°) to the a axis for the case of our experimental (theoretical) study.« less
High Resolution X-ray Scattering Studies of Structural Phase Transitions in BaFe2-x Cr x As 2
NASA Astrophysics Data System (ADS)
Gaulin, B. D.; Clancy, J. P.; Wagman, J. J.; Sefat, A. S.
2011-03-01
While the effects of electron-doping on the parent compounds of the 122 family of Fe-based superconductors have been extremely well-studied in recent years, far less is known about the influence of hole-doping in compounds such as BaFe 2-x Cr x As 2 . In contrast to the electron-doped 122 systems, the hole-doped compounds do not become superconducting. Furthermore, while the hole-doped compounds exhibit similar structural and magnetic phase transitions, they appear to be much less sensitive to dopant concentration. We have performed high resolution x-ray scattering and magnetic susceptibility measurements on single crystal samples of BaFe 2-x Cr x As 2 for Cr concentrations ranging from 0 <= x <= 0.67 . These measurements allow us to determine the magnetic and structural phase transitions for this series and map out the low temperature phase diagram as a function of doping. In particular, we have carried out detailed measurements of the tetragonal (I4/mmm) to orthorhombic (Fmmm) structural phase transition which reveal how the orthorhombicity of the system evolves with increasing Cr concentration and how this correlates with the values of Ts and Tm .
High pressure spectroscopic studies of phase transition in VO2
NASA Astrophysics Data System (ADS)
Basu, Raktima; Mishra, K. K.; Ravindran, T. R.; Dhara, Sandip
2018-04-01
Vanadium dioxide (VO2) exhibits a reversible first-order metal to insulator transition (MIT) at a technologically important temperature of 340K. A structural phase transition (SPT) from monoclinic M1 to rutile tetragonal R is also reported via another two intermediate phases of monoclinic M2 and triclinic T. Metastable monoclinic M2 phase of VO2 was synthesized by Mg doping in the vapour transport process. Raman spectroscopic measurements were carried out at high pressure on V1-xMgxO2 microrods. Two reversible structural phase transitions from monoclinic M2 to triclinic T at 1.6 GPa and T to monoclinic M1 at 3.2 GPa are observed and are explained by structural relaxation of the strained phases.
Reactive sputter deposition of metal oxide nanolaminates
NASA Astrophysics Data System (ADS)
Rubin Aita, Carolyn
2008-07-01
We discuss the reactive sputter deposition of metal oxide nanolaminates on unheated substrates using four archetypical examples: ZrO2 Al2O3, HfO2 Al2O3, ZrO2 Y2O3, and ZrO2 TiO2. The pseudobinary bulk phase diagrams corresponding to these nanolaminates represent three types of interfaces. I. Complete immiscibility (ZrO2 Al2O3 and HfO2 Al2O3). II. Complete miscibility (ZrO2 Y2O3). III. Limited miscibility without a common end-member lattice (ZrO2 TiO2). We found that, although reactive sputter deposition is a far-from-equilibrium process, thermodynamic considerations strongly influence both phase formation within layers and at interfaces. We show that pseudobinary phase diagrams can be used to predict interfacial cation mixing in the nanolaminates. However, size effects must be considered to predict specific structures. In the absence of pseudoepitaxy, size effects play a significant role in determining the nanocrystalline phases that form within a layer (e.g. tetragonal ZrO2, tetragonal HfO2, and orthorhombic HfO2) and at interfaces (e.g. monoclinic (Zr,Ti)O2). These phases are not bulk standard temperature and pressure phases. Their formation is understood in terms of self-assembly into the lowest energy structure in individual critical nuclei.
Mudryk, Y.; Paudyal, D.; Pathak, A. K.; ...
2016-04-13
The nature of multiple magnetostructural transformations in HoCo 2 has been studied by employing magnetic and specific heat measurements, temperature and magnetic field dependent X-ray powder diffraction, and first-principles calculations. Unexpected increase of magnetization observed below the spin-reorientation temperature (T SR) suggests that the low-temperature transition involves a reduction of Co moment. First principles calculations confirm that the paramagnetic cubic to ferrimagnetic tetragonal transformation at T C is assisted by itinerant electron metamagnetism, and that the reduction of Co moment in HoCo 2 occurs in parallel with the ferrimagnetic tetragonal to the nearly ferromagnetic orthorhombic transformation at T SRvia themore » rearrangement of both 3d states of Co and 5d states of Ho. The ac magnetic susceptibility measurements show significant magnetic frustration below T C. Furthermore, in contrast to earlier reports neither ac nor dc magnetic susceptibilities show anomalies in the paramagnetic region obeying the Curie–Weiss law.« less
Hybrid Perovskite Phase Transition and Its Ionic, Electrical and Optical Properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoque, Md Nadim Ferdous; Islam, Nazifah; Zhu, Kai
Hybrid perovskite solar cells (PSCs) under normal operation will reach a temperature above ~ 60 °C, across the tetragonal-cubic structural phase transition of methylammonium lead iodide (MAPbI 3). Whether the structural phase transition could result in dramatic changes of ionic, electrical and optical properties that may further impact the PSC performances should be studied. Herein, we report a structural phase transition temperature of MAPbI 3thin film at ~ 55 °C, but a striking contrast occurred at ~ 45 °C in the ionic and electrical properties of MAPbI 3due to a change of the ion activation energy from 0.7 eV tomore » 0.5 eV. The optical properties exhibited no sharp transition except for the steady increase of the bandgap with temperature. It was also observed that the activation energy for ionic migration steadily increased with increased grain sizes, and reduction of the grain boundary density reduced the ionic migration.« less
Structural and magnetic properties of morphotropic phase boundary involved Tb 1-xGd xFe 2 compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murtaza, Adil; Yang, Sen; Zhou, Chao
2016-09-01
In the present paper, structural, magnetic and magnetostrictive properties of Tb 1-xGd xFe 2 (0 <= x <= 1.0) were studied. Synchrotron x-ray diffraction (XRD) results show the non-cubic symmetry of Tb 1-xGd xFe 2 at room temperature and composition-induced crystallographic phase transition from rhombohedral phase to tetragonal phase. The Gd concentration dependent lattice parameters, lattice distortion and change of easy magnetic direction were detected by synchrotron XRD. With the Gd concentration increases, Curie temperature Tc increases while room temperature magnetization and magnetostriction coefficient lambda(111) and the anisotropy of TbFe 2 decrease. The decrease in spontaneous magnetostriction coefficient lambda(111) withmore » increasing Gd substitution can be understood on the basis of the single-ion model; the corresponding decrease of magnetostriction for Tb 1-xGd xFe 2, and the large magnetostriction value occurs on the Tb-rich side, are ascribed to decrease of lambda(111)« less
Niu, Tianchao; Wu, Jinge; Ling, Faling; Jin, Shuo; Lu, Guanghong; Zhou, Miao
2018-01-09
Construction of tunable and robust two-dimensional (2D) molecular arrays with desirable lattices and functionalities over a macroscopic scale relies on spontaneous and reversible noncovalent interactions between suitable molecules as building blocks. Halogen bonding, with active tunability of direction, strength, and length, is ideal for tailoring supramolecular structures. Herein, by combining low-temperature scanning tunneling microscopy and systematic first-principles calculations, we demonstrate novel halogen bonding involving single halogen atoms and phase engineering in 2D molecular self-assembly. On the Au(111) surface, we observed catalyzed dehalogenation of hexabromobenzene (HBB) molecules, during which negatively charged bromine adatoms (Br δ- ) were generated and participated in assembly via unique C-Br δ+ ···Br δ- interaction, drastically different from HBB assembly on a chemically inert graphene substrate. We successfully mapped out different phases of the assembled superstructure, including densely packed hexagonal, tetragonal, dimer chain, and expanded hexagonal lattices at room temperature, 60 °C, 90 °C, and 110 °C, respectively, and the critical role of Br δ- in regulating lattice characteristics was highlighted. Our results show promise for manipulating the interplay between noncovalent interactions and catalytic reactions for future development of molecular nanoelectronics and 2D crystal engineering.
Determining the structure of tetragonal Y 2WO 6 and the site occupation of Eu 3+ dopant
NASA Astrophysics Data System (ADS)
Huang, Jinping; Xu, Jun; Li, Hexing; Luo, Hongshan; Yu, Xibin; Li, Yikang
2011-04-01
The compound Y 2WO 6 is prepared by solid state reaction at 750 °C using sodium chloride as mineralizer. Its structure is solved by ab-initio methods from X-ray powder diffraction data. This low temperature phase of yttrium tungstate crystallizes in tetragonal space group P4/ nmm (No. 129), Z=2, a=5.2596(2) Å, c=8.4158(4) Å. The tungsten atoms in the structure adopt an unusual [WO 6] distorted cubes coordination, connecting [YO 6] distorted cubes with oxygen vacancies at the O 2 layers while other yttrium ions Y 2 form [YO 8] cube coordination. Y 3+ ions occupy two crystallographic sites of 2 c ( C4v symmetry) and 2 a ( D2d symmetry) in the Y 2WO 6 host lattice. With Eu 3+ ions doped, the high resolution emission spectrum of Y 2WO 6:Eu 3+ suggests that Eu 3+ partly substituted for Y 3+ in these two sites. The result of the Rietveld structure refinement shows that the Eu 3+ dopants preferentially enter the 2 a site. The uniform cube coordination environment of Eu 3+ ions with the identical eight Eu-O bond lengths is proposed to be responsible for the intense excitation of long wavelength ultraviolet at 466-535 nm.
NASA Astrophysics Data System (ADS)
Holgado, J. P.; Escobar Galindo, R.; van Veen, A.; Schut, H.; de Hosson, J. Th. M.; González-Elipe, A. R.
2002-09-01
Two sets of ZrO 2 thin films have been prepared at room temperature by ion beam induced chemical vapour deposition and subsequently annealed up to 1323 K. The two sets of samples have been prepared by using either O 2+ or mixtures of (O 2++Ar +) ions for the decomposition of a volatile metallorganic precursor of zirconium. The structure and microstructure of these two sets of samples have been determined by means of X-ray diffraction, Fourier transform infrared spectroscopy and positron beam analysis (PBA). The samples were very compact and dense and had a very low-surface roughness. After annealing in air at T⩾573 K both sets of films were transparent and showed similar refraction indexes. For the (O 2++Ar +)-ZrO 2 thin films it is shown by X-ray photoelectron spectroscopy and Rutherford back scattering that a certain amount of incorporated Ar (5-6 at.%) remains incorporated within the oxide lattice. No changes were detected in the amount of incorporated Ar even after annealing at T=773 K. For higher annealing temperatures ( T>1073 K), the amount of Ar starts to decrease, and at T=1223 K only residual amounts of Ar (<0.4%) remain within the lattice. It has been found that as far as Ar atoms remain incorporated within the ZrO 2 network, the (O 2+-Ar +)-ZrO 2 films present a cubic/tetragonal phase. When the amount of "embedded" Ar decreases, the crystalline phase reverts to monoclinic, the majority phase observed for the (O 2+)-ZrO 2 films after any annealing treatments. The microstructure of the films after different annealing treatments has been investigated by PBA. The presence of Ar ions and the initial amorphous state of the layers were detected by this technique. An increase of the open volume was observed after annealing up to 773 K in both sets of samples. For higher annealing temperatures the samples showed a progressive crystallisation resulting in a decrease of the open volume. During this sintering the samples without embedded Ar present a higher concentration of open volume defects. After the release of Ar occurs ( T⩾1223 K) both samples approach to a similar defect free state. The incorporation of Ar within the ZrO 2 thin film structure, is proposed as the main factor contributing to the stabilisation of the cubic/tetragonal phase of ZrO 2 at room temperature.
NASA Astrophysics Data System (ADS)
Fernández-Posada, Carmen M.; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-01
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO3-BiCoO3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO3-BiMnO3-PbTiO3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
Fernández-Posada, Carmen M; Castro, Alicia; Kiat, Jean-Michel; Porcher, Florence; Peña, Octavio; Algueró, Miguel; Amorín, Harvey
2016-09-28
There is a growing activity in the search of novel single-phase multiferroics that could finally provide distinctive magnetoelectric responses at room temperature, for they would enable a range of potentially disruptive technologies, making use of the ability of controlling polarization with a magnetic field or magnetism with an electric one (for example, voltage-tunable spintronic devices, uncooled magnetic sensors and the long-searched magnetoelectric memory). A very promising novel material concept could be to make use of phase-change phenomena at structural instabilities of a multiferroic state. Indeed, large phase-change magnetoelectric response has been anticipated by a first-principles investigation of the perovskite BiFeO 3 -BiCoO 3 solid solution, specifically at its morphotropic phase boundary between multiferroic polymorphs of rhombohedral and tetragonal symmetries. Here, we report a novel perovskite oxide that belongs to the BiFeO 3 -BiMnO 3 -PbTiO 3 ternary system, chemically designed to present such multiferroic phase boundary with enhanced ferroelectricity and canted ferromagnetism, which shows distinctive room-temperature magnetoelectric responses.
A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect
Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.
2016-01-01
The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 − 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 −CoFe2O4 bulk composites with similar content of the ferrite phase. PMID:27555563
A new (Ba, Ca) (Ti, Zr)O3 based multiferroic composite with large magnetoelectric effect
NASA Astrophysics Data System (ADS)
Naveed-Ul-Haq, M.; Shvartsman, Vladimir V.; Salamon, Soma; Wende, Heiko; Trivedi, Harsh; Mumtaz, Arif; Lupascu, Doru C.
2016-08-01
The lead-free ferroelectric 0.5Ba(Zr0.2Ti0.8)O3 - 0.5(Ba0.7Ca0.3)TiO3 (BCZT) is a promising component for multifunctional multiferroics due to its excellent room temperature piezoelectric properties. Having a composition close to the polymorphic phase boundary between the orthorhombic and tetragonal phases, it deserves a case study for analysis of its potential for modern electronics applications. To obtain magnetoelectric coupling, the piezoelectric phase needs to be combined with a suitable magnetostrictive phase. In the current article, we report on the synthesis, dielectric, magnetic, and magnetoelectric characterization of a new magnetoelectric multiferroic composite consisting of BCZT as a piezoelectric phase and CoFe2O4 (CFO) as the magnetostrictive phase. We found that this material is multiferroic at room temperature and manifests a magnetoelectric effect larger than that of BaTiO3 -CoFe2O4 bulk composites with similar content of the ferrite phase.
NASA Astrophysics Data System (ADS)
Vidya, S.; Solomon, Sam; Thomas, J. K.
2013-01-01
Nanocrystalline scheelite CaWO4, a promising material for low-temperature co-fired ceramic (LTCC) applications, has been successfully synthesized through a single-step autoignition combustion route. Structural analysis of the sample was performed by powder x-ray diffraction (XRD), Fourier-transform infrared spectroscopy, and Raman spectroscopy. The XRD analysis revealed that the as-prepared sample was single phase with scheelite tetragonal structure. The basic optical properties and optical constants of the CaWO4 nanopowder were studied using ultraviolet (UV)-visible absorption spectroscopy, which showed that the material was a wide-bandgap semiconductor with bandgap of 4.7 eV at room temperature. The sample showed poor transmittance in the ultraviolet region but maximum transmission in the visible/near-infrared regions. The photoluminescence spectra recorded at different temperatures showed intense emission in the green region. The particle size estimated from transmission electron microscopy was 23 nm. The feasibility of CaWO4 for LTCC applications was studied from its sintering behavior. The sample was sintered at a relatively low temperature of 810°C to high density, without using any sintering aid. The surface morphology of the sintered sample was analyzed by scanning electron microscopy. The dielectric constant and loss factor of the sample measured at 5 MHz were found to be 10.50 and 1.56 × 10-3 at room temperature. The temperature coefficient of the dielectric constant was -88.71 ppm/°C. The experimental results obtained in this work demonstrate the potential of nano-CaWO4 as a low-temperature co-fired ceramic as well as an excellent luminescent material.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.
We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less
Frustrated magnetism and caloric effects in Mn-based antiperovskite nitrides: Ab initio theory
NASA Astrophysics Data System (ADS)
Zemen, J.; Mendive-Tapia, E.; Gercsi, Z.; Banerjee, R.; Staunton, J. B.; Sandeman, K. G.
2017-05-01
We model changes of magnetic ordering in Mn-based antiperovskite nitrides driven by biaxial lattice strain at zero and at finite temperature. We employ a noncollinear spin-polarized density functional theory to compare the response of the geometrically frustrated exchange interactions to a tetragonal symmetry breaking (the so called piezomagnetic effect) across a range of Mn3AN (A = Rh, Pd, Ag, Co, Ni, Zn, Ga, In, Sn) at zero temperature. Building on the robustness of the effect we focus on Mn3GaN and extend our study to finite temperature using the disordered local moment (DLM) first-principles electronic structure theory to model the interplay between the ordering of Mn magnetic moments and itinerant electron states. We discover a rich temperature-strain magnetic phase diagram with two previously unreported phases stabilized by strains larger than 0.75% and with transition temperatures strongly dependent on strain. We propose an elastocaloric cooling cycle crossing two of the available phase transitions to achieve simultaneously a large isothermal entropy change (due to the first-order transition) and a large adiabatic temperature change (due to the second-order transition).
In situ Investigation of Magnetism in Metastable Phases of Levitated Fe83 B17 During Solidification
NASA Astrophysics Data System (ADS)
Quirinale, D. G.; Messina, D.; Rustan, G. E.; Kreyssig, A.; Prozorov, R.; Goldman, A. I.
2017-11-01
In situ measurements of structure, density, and magnetization on samples of Fe83 B17 using an electrostatic levitation furnace allow us to identify and correlate the magnetic and structural transitions in this system during its complex solidification process. In particular, we identify magnetic ordering in the metastable Fe23 B6 /fcc Fe coherently grown structures and primitive tetragonal Fe3 B metastable phase in addition to characterizing the equilibrium Fe2 B phase. Our measurements demonstrate that the incorporation of a tunnel-diode oscillator circuit within an electrostatic levitation furnace enables investigations of the physical properties of high-temperature metastable structures.
Low symmetry phase in Pb(Zr0.52Ti0.48)O3 epitaxial thin films with enhanced ferroelectric properties
NASA Astrophysics Data System (ADS)
Yan, Li; Li, Jiefang; Cao, Hu; Viehland, D.
2006-12-01
The authors report the structural and ferroelectric properties of Pb(Zr0.52Ti0.48)O3 (PZT) epitaxial thin films grown on (001), (110), and (111) SrRuO3/SrTiO3 substrates by pulsed laser deposition. A monoclinic C (Mc) phase has been found for (101) films, whereas (001) and (111) ones were tetragonal (T ) and rhombohedral (R), respectively. The authors find that the ferroelectric polarization of the Mc phase is higher than that in either the T or R ones. These results are consistent with predictions (i) of epitaxial phase diagrams and (ii) that the enhanced ferroelectric properties of morphotropic phase boundary PZT are related to a low symmetry monoclinic phase.
NASA Astrophysics Data System (ADS)
Bhattacharya, Jishnu
We perform first-principles investigations of thermally activated phase transitions and diffusion in solids. The atomic scale energy landscapes are evaluated with first-principles total energy calculations for different structural and configurational microstates. Effective Hamiltonians constructed from the total energies are subjected to Monte Carlo simulations to study thermodynamic and kinetic properties of the solids at finite temperatures. Cubic to tetragonal martensitic phase transitions are investigated beyond the harmonic approximation. As an example, stoichiometric TiH2 is studied where a cubic phase becomes stable at high temperature while ab-initio energy calculations predict the cubic phase to be mechanically unstable with respect to tetragonal distortions at zero Kelvin. An anharmonic Hamiltonian is used to explain the stability of the cubic phase at higher temperature. The importance of anharmonic terms is emphasized and the true nature of the high temperature phase is elucidated beyond the traditional Landau-like explanation. In Li-ion battery electrodes, phase transitions due to atomic redistribution with changes in Li concentration occur with insertion (removal) of Li-ions during discharge (charge). A comprehensive study of the thermodynamics and the non-dilute Li-diffusion mechanisms in spinel-Li1+xTi2 O4 is performed. Two distinct phases are predicted at different lithium compositions. The predicted voltage curve qualitatively matches with experimental observation. The predicted fast diffusion arises from crystallographic features unique to the spinel crystal structure elucidating the crucial role of crystal structure on Li diffusion in intercalation compounds. Effects of anion and guest species on diffusion are elucidated with Li- and Cu-diffusion in spinel-LixTiS2. We predict strong composition dependence of the diffusion coefficients. A unique feature about spinel-LixTiS2 is that the intermediate site of a Li-hop is coordinated by four Li-sites. This results in di- and triple-vacancy mechanisms at non-dilute concentrations with very different migration barriers. The strong dependence of hop mechanisms on local Li-arrangement is at the origin of large concentration dependence of the diffusion coefficients. This contrasts with spinel-Li xTiO2 where the transition states are coordinated only by the end states of the hop, thereby restricting hops to a single vacancy mechanism. Cu ions are predicted to have much slower diffusion rate in TiS 2 host compared to Li ions.
NASA Astrophysics Data System (ADS)
Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; Kreyssig, Andreas; Ran, S.; Bud'ko, Sergey L.; Canfield, Paul C.; Mompean, Federico J.; García-Hernández, Mar; Munuera, Carmen; Guillamón, Isabel; Suderow, Hermann
2018-01-01
We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co-substituted CaFe2As2 . We use atomic force, magnetic force, and scanning tunneling microscopy to identify the domains and characterize their properties, finding in particular that tetragonal superconducting domains are very elongated, more than several tens of micrometers long and about 30 nm wide; have the same Tc as unstrained samples; and hold vortices in a magnetic field. Thus, biaxial strain produces a phase-separated state, where each phase is equivalent to what is found on either side of the first-order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of the order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first-order quantum phase transitions lead to nanometric-size phase separation under the influence of strain.
Fente, Antón; Correa-Orellana, Alexandre; Böhmer, Anna E.; ...
2018-01-09
We show that biaxial strain induces alternating tetragonal superconducting and orthorhombic nematic domains in Co substituted CaFe 2As 2. We use Atomic Force, Magnetic Force and Scanning Tunneling Microscopy (AFM, MFM and STM) to identify the domains and characterize their properties, nding in particular that tetragonal superconducting domains are very elongated, more than several tens of μm long and about 30 nm wide, have the same Tc than unstrained samples and hold vortices in a magnetic eld. Thus, biaxial strain produces a phase separated state, where each phase is equivalent to what is found at either side of the rstmore » order phase transition between antiferromagnetic orthorhombic and superconducting tetragonal phases found in unstrained samples when changing Co concentration. Having such alternating superconducting domains separated by normal conducting domains with sizes of order of the coherence length opens opportunities to build Josephson junction networks or vortex pinning arrays and suggests that first order quantum phase transitions lead to nanometric size phase separation under the influence of strain.« less
Effects of high pressure nitrogen annealing on ferroelectric Hf0.5Zr0.5O2 films
NASA Astrophysics Data System (ADS)
Kim, Taeho; Park, Jinsung; Cheong, Byoung-Ho; Jeon, Sanghun
2018-02-01
The effect of high-pressure nitrogen annealing at up to 50 atmospheres (atm) on Hf0.5Zr0.5O2 films at relatively low temperatures (450 °C) is analyzed using polarization-electric field curves, bipolar switching endurance measurements, grazing angle incidence X-ray diffraction, and piezoelectric force microscopy. Hf0.5Zr0.5O2 films annealed at 450 °C/50 atm have excellent characteristics, including remanent polarizations greater than 20 μC/cm2, a switching speed of 200 ns, and reliability, measured by sustained performance after 1010 bipolar switching cycles. The enhanced device features are attributed to the transition to the orthorhombic-phase from the tetragonal-phase of Hf0.5Zr0.5O2 at high pressure, which is also consistent with the results of "wake-up" analysis, and the variations of the pure polarization curves, extracted from the total displacement field under pressure.
NASA Astrophysics Data System (ADS)
El Hajjaji, S.; Manov, S.; Roy, J.; Aigouy, T.; Ben Bachir, A.; Aries, L.
2001-08-01
Conversion coatings modified by deposits of electrolytic alumina added or not with yttria and/or zirconia, have been studied which are well known for their resistance to chemical attack and high temperature. Conversion coating, characterised by a particular morphology and strong interfacial adhesion with the substrate, facilitate the electrochemical deposition of ceramic layers and enhance their adhesion to the substrate. Zirconia-alumina coating behaviour at 1000°C is similar to that of alumina coating; from 800°C, the chromium diffuses from the stainless steel through the electrolytic refractory coating up to the external interface, provokes discontinuities and can modify its protective character. Yttrium stabilises the cubic and the tetragonal form of the zirconia; so, during cooling, the phase transformation near 1000°C of tetragonal zirconia to monoclinic form cannot take place.
NASA Astrophysics Data System (ADS)
Anitha, V. S.; Lekshmy, S. Sujatha; Berlin, I. John; Joy, K.
2014-01-01
Transparent nanocomposite ZrO2-SnO2 thin films were prepared by sol-gel dip-coating technique. Films were annealed at 500°C, 800°C and 1200°C respectively. X-ray diffraction(XRD) spectra showed a mixture of three phases: tetragonal ZrO2 and SnO2 and orthorhombic ZrSnO4. The grain size of all the three phases' increased with annealing temperature. An average transmittance greater than 85%(in UV-Visible region) is observed for all the films. The band gap for the films decreased from 4.79 eV to 4.62 eV with increase in annealing temperature from 500 to 1200 °C. The electrical resistivity increased with increase in annealing temperature. Such composite ZrO2-SnO2 films can be used in many applications and in optoelectronic devices.
Wu, Fengmin; Yang, Bin; Sun, Enwei; Liu, Gang; Tian, Hao; Cao, Wenwu
2013-01-01
Linear electro-optic properties of 0.24Pb(In1/2Nb1/2)O3-(0.76 − x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 single crystals, with compositions in the rhombohedral, morphotropic phase boundary (MPB) and tetragonal phases, have been investigated. Very large effective electro-optic coefficient γc (204 pm/V) was observed in a crystal with the MPB composition when it is poled along [001]. The rhombohedral phase (x = 0.27 and 0.30) single crystals poled along [111] direction and tetragonal phase (x = 0.39) single crystal poled along [001] direction are in single domain, and their electro-optic coefficients (γc = 76, 94, and 43 pm/V for the crystals with x = 0.27, 0.30, and 0.39, respectively) were found to be much higher than that of traditional electro-optic single crystal LiNbO3 (γc = 19.9 pm/V). The electro-optic coefficients of the single crystal in the rhombohedral phase have excellent temperature stability in the experimental temperature range of 10–40 °C. The half-wave voltage Vπ was calculated to be much lower (less than 1000 V) than that of LiNbO3 single crystal (2800 V). These superior properties make the ternary relaxor-PT single crystals very promising for electro-optic modulation applications. PMID:23922449
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prosviryakov, A.S., E-mail: pro.alex@mail.ru; Shch
Ground chips of as-cast Al-10 wt.% Zr alloy were subjected to mechanical alloying (MA) with 5 vol.% of nanodiamond addition in a high energy planetary ball-mill. The aim of this work was to investigate the microstructure, phase transformation and mechanical properties of the material both after MA and after subsequent annealing. Optical and transmission electron microscopes were used for morphological and microstructural analysis. The effect of milling time on powder microhardness, Al lattice parameter, lattice microstrain and crystallite size was determined. It was shown that mechanical alloying of as-cast Al-10wt.%Zr alloy during 20 h leads to a complete dissolution ofmore » the primary tetragonal Al{sub 3}Zr crystals in aluminum. At the same time, the powder microhardness increases to 370 HV. Metastable cubic Al{sub 3}Zr phase nanoparticles precipitate from the Al solution due to its decomposition after annealing, however, the Al solid solution remains supersaturated and nanocrystalline. Compression tests at room temperature and at 300 °C showed that the strength values of the hot-pressed samples reach 822 MPa and 344 MPa, respectively. - Highlights: •As-cast Al-10 wt.% Zr alloy was mechanically alloyed with 5 vol.% nanodiamond. •The primary tetragonal Al{sub 3}Zr crystals were completely dissolved in Al after 20 h. •Cubic Al{sub 3}Zr phase nanoparticles precipitated from Al solution after aging. •The aged bulk material showed a high strength at room and elevated temperatures.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antunez, E. E.; Salazar-Kuri, U.; Estevez, J. O.
Morphological properties of thermochromic VO{sub 2}—porous silicon based hybrids reveal the growth of well-crystalized nanometer-scale features of VO{sub 2} as compared with typical submicron granular structure obtained in thin films deposited on flat substrates. Structural characterization performed as a function of temperature via grazing incidence X-ray diffraction and micro-Raman demonstrate reversible semiconductor-metal transition of the hybrid, changing from a low-temperature monoclinic VO{sub 2}(M) to a high-temperature tetragonal rutile VO{sub 2}(R) crystalline structure, coupled with a decrease in phase transition temperature. Effective optical response studied in terms of red/blue shift of the reflectance spectra results in a wavelength-dependent optical switching withmore » temperature. As compared to VO{sub 2} film over crystalline silicon substrate, the hybrid structure is found to demonstrate up to 3-fold increase in the change of reflectivity with temperature, an enlarged hysteresis loop and a wider operational window for its potential application as an optical temperature sensor. Such silicon based hybrids represent an exciting class of functional materials to display thermally triggered optical switching culminated by the characteristics of each of the constituent blocks as well as device compatibility with standard integrated circuit technology.« less
Temperature-dependent excitonic photoluminescence of hybrid organometal halide perovskite films.
Wu, Kewei; Bera, Ashok; Ma, Chun; Du, Yuanmin; Yang, Yang; Li, Liang; Wu, Tom
2014-11-07
Organometal halide perovskites have recently attracted tremendous attention due to their potential for photovoltaic applications, and they are also considered as promising materials in light emitting and lasing devices. In this work, we investigated in detail the cryogenic steady state photoluminescence properties of a prototypical hybrid perovskite CH3NH3PbI3-xClx. The evolution of the characteristics of two excitonic peaks coincides with the structural phase transition around 160 K. Our results further revealed an exciton binding energy of 62.3 ± 8.9 meV and an optical phonon energy of 25.3 ± 5.2 meV, along with an abnormal blue-shift of the band gap in the high-temperature tetragonal phase.
Samuvel, K; Ramachandran, K
2015-07-05
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Samuvel, K.; Ramachandran, K.
2015-07-01
This study examined the effects of the combination of starting materials on the properties of solid-state reacted BaTiO3 using two different types of BaCO3 and TiO2. In addition, the effect of mechanochemical activation by high energy milling and the Ba/Ti molar ratio on the reaction temperature, particle size and tetragonality were investigated. The TiO2 phase and size plays a major role in increasing the reaction temperature and particle size. With the optimum selection of starting materials and processing conditions, BaTiO3 with a particle size <200 nm (Scherrer's formula) and a tetragonality c/a of approximately 1.007 was obtained. Broadband dielectric spectroscopy is applied to investigate the electrical properties of disordered perovskite-like ceramics in a wide temperature range. From the X-ray diffraction analysis it was found that the newly obtained BaTi0.5Fe0.5O3 ceramics consist of two chemically different phases. The electric modulus M∗ formalism used in the analysis enabled us to distinguish and separate the relaxation processes, dominated by marked conductivity in the ε∗(ω) representation. Interfacial effects on the dielectric properties of the samples have been understood by Cole-Cole plots in complex impedance and modulus formalism. Modulus formalism has identified the effects of both grain and grain boundary microstructure on the dielectric properties, particularly in solid state routed samples.
NASA Astrophysics Data System (ADS)
Zeng, Yuyang; Tian, Fanghua; Chang, Tieyan; Chen, Kaiyun; Yang, Sen; Cao, Kaiyan; Zhou, Chao; Song, Xiaoping
2017-02-01
We report the magnetocaloric effect in a Tb1-x Dy x Co2 compound which exhibits a wide working temperature window around the Curie temperature (T C) and delivers a large refrigerant capacity (RC) with near-zero thermal hysteresis. Specifically, the wide full width at half maxima ({δ\\text{WFHM}} ) can reach up to 62 K and the RC value changes from 216.5 to 274.3 J Kg-1 when the external magnetic field increases to 5 T. Such magnetocaloric effects are attributed to a magnetic and structural transition from a paramagnetic and cubic phase to a ferromagnetic (M S along [1 1 1] direction) and rhombohedral phase or ferromagnetic (M S along [0 0 1] direction) and tetragonal phase.
Jiang, Shanshan; Zhou, Wei; Niu, Yingjie; Zhu, Zhonghua; Shao, Zongping
2012-10-01
It is generally recognized that the phase transition of a perovskite may be detrimental to the connection between cathode and electrolyte. Moreover, certain phase transitions may induce the formation of poor electronic and ionic conducting phase(s), thereby lowering the electrochemical performance of the cathode. Here, we present a study on the phase transition of a cobalt-free perovskite (SrNb(0.1)Fe(0.9)O(3-δ), SNF) and evaluate its effect on the electrochemical performance of the fuel cell. SNF exists as a primitive perovskite structure with space group P4mm (99) at room temperature. As evidenced by in situ high-temperature X-ray diffraction measurements over the temperature range of 600 to 1000 °C, SNF undergoes a transformation to a tetragonal structure with a space group I4/m (87). This phase transition is accompanied by a moderate change in the volume, allowing a good cathode/electrolyte interface on thermal cycling. According to the electrochemical impedance spectroscopy evaluation, the I4/m phase exhibits positive effects on the cathode's performance, showing the highest oxygen reduction reaction activity of cobalt-free cathodes reported so far. This activity improvement is attributed to enhanced oxygen surface processes. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Boudys, M
1991-01-01
Variations of temperature coefficients of permittivity epsilon(33)(T), elastic compliances at constant electric fields s(11)(E), and constant polarization s(11)(P) with a Zr/Ti ratio of Pb(Zr(x)Ti(1-x))O(3) and Pb[(Sb(1/3)Mn(2/3))(0.05)Zr(x)Ti (0.95-x)]O(3) solid solutions, were investigated. Relations between temperature coefficients of epsilon(33)(T ), S(11)(E), and S(11) (P) were theoretically derived; a discrepancy was found between theoretical relations and experimental results. On the basis of the observed discrepancy, it is proposed that some extrinsic effects arising from the motion of interphase boundaries between the tetragonal and the rhombohedral phases which exist in grains contribute to values of both elastic compliances.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sapkota, A.; Das, P.; Bohmer, A. E.
Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1–xCo x) 2As 2, x = 0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x = 0.026, similar to the parent CaFe 2As 2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1–xCo x) 2As 2, wherein the crossovermore » corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1–xCo x) 2As 2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x = 0.030 sample and high-temperature x = 0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x = 0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. In conclusion, one possible scenario ascribes this loss of moment to a sensitivity to the c-axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.« less
Sapkota, A.; Das, P.; Bohmer, A. E.; ...
2018-05-29
Results of inelastic neutron scattering measurements are reported for two annealed compositions of Ca(Fe 1–xCo x) 2As 2, x = 0.026 and 0.030, which possess stripe-type antiferromagnetically ordered and superconducting ground states, respectively. In the AFM ground state, well-defined and gapped spin waves are observed for x = 0.026, similar to the parent CaFe 2As 2 compound. We conclude that the well-defined spin waves are likely to be present for all x corresponding to the AFM state. This behavior is in contrast to the smooth evolution to overdamped spin dynamics observed in Ba(Fe 1–xCo x) 2As 2, wherein the crossovermore » corresponds to microscopically coexisting AFM order and SC at low temperature. The smooth evolution is likely absent in Ca(Fe 1–xCo x) 2As 2 due to the mutual exclusion of AFM ordered and SC states. Overdamped spin dynamics characterize paramagnetism of the x = 0.030 sample and high-temperature x = 0.026 sample. A sizable loss of magnetic intensity is observed over a wide energy range upon cooling the x = 0.030 sample, at temperatures just above and within the superconducting phase. This phenomenon is unique amongst the iron-based superconductors and is consistent with a temperature-dependent reduction in the fluctuating moment. In conclusion, one possible scenario ascribes this loss of moment to a sensitivity to the c-axis lattice parameter in proximity to the nonmagnetic collapsed tetragonal phase and another scenario ascribes the loss to a formation of a pseudogap.« less
Synthesis of Hf 8O 7, a new binary hafnium oxide, at high pressures and high temperatures
Bayarjargal, L.; Morgenroth, W.; Schrodt, N.; ...
2017-01-23
In this paper, two binary phases in the system Hf-O have been synthesized at pressures between 12 and 34 GPa and at temperatures up to 3000 K by reacting Hf with HfO 2 using a laser-heated diamond anvil cell. In situ X-ray diffraction in conjunction with density functional theory calculations has been employed to characterize a previously unreported tetragonal Hf 8O 7 phase. This phase has a structure which is based on an fcc Hf packing with oxygen atoms occupying octahedral interstitial positions. Its predicted bulk modulus is 223(1) GPa. The second phase has a composition close to Hf 6O,more » where oxygen atoms occupy octahedral interstitial sites in an hcp Hf packing. Its experimentally determined bulk modulus is 128(30) GPa. Finally, the phase diagram of Hf metal was further constrained at high pressures and temperatures, where we show that α-Hf transforms to β-Hf around 2160(150) K and 18.2 GPa and β-Hf remains stable up to at least 2800 K at this pressure.« less
NASA Astrophysics Data System (ADS)
Jayasekara, W. T.; Pandey, Abhishek; Kreyssig, A.; Sangeetha, N. S.; Sapkota, A.; Kothapalli, K.; Anand, V. K.; Tian, W.; Vaknin, D.; Johnston, D. C.; McQueeney, R. J.; Goldman, A. I.; Ueland, B. G.
2017-02-01
Magnetization, neutron diffraction, and high-energy x-ray diffraction results for Sn-flux grown single-crystal samples of Ca (Co1-xFex) yAs2 , 0 ≤x ≤1 , 1.86 ≤y ≤2 , are presented and reveal that A-type antiferromagnetic order, with ordered moments lying along the c axis, persists for x ≲0.12 (1 ) . The antiferromagnetic order is smoothly suppressed with increasing x , with both the ordered moment and Néel temperature linearly decreasing. Stripe-type antiferromagnetic order does not occur for x ≤0.25 , nor does ferromagnetic order for x up to at least x =0.104 , and a smooth crossover from the collapsed-tetragonal (cT) phase of CaCo1.86As2 to the tetragonal (T) phase of CaFe2As2 occurs. These results suggest that hole doping CaCo1.86As2 has a less dramatic effect on the magnetism and structure than steric effects due to substituting Sr for Ca.
Placke, Astrid; Kumar, Ashok; Priya, Shashank
2016-01-01
We report synthesis of cetyltrimethyl ammonium bromide (CTAB) stabilized Zn1+xSnO3+x (0 ≤ x ≤1) nano-crystallites by facile cost-effective wet chemistry route. The X-ray diffraction patterns of as-synthesized powders at the Zn/Sn ratio of 1 exhibited formation of ZnSn(OH)6. Increasing the Zn/Sn ratio further resulted in the precipitation of an additional phase corresponding to Zn(OH)2. The decomposition of these powders at 650°C for 3h led to the formation of the orthorhombic phase of ZnSnO3 and tetragonal SnO2-type phase of Zn2SnO4 at the Zn/Sn ratio of 1 and 2, respectively, with the formation of their mixed phases at intermediate compositions, i.e., at Zn/Sn ratio of 1.25, 1.50 and 1.75, respectively. The lattice parameters of orthorhombic and tetragonal phases were a ~ 3.6203 Å, b ~ 4.2646 Å and c ~ 12.8291Å (for ZnSnO3) and a = b ~ 5.0136 Å and c ~ 3.3055Å (for Zn2SnO4). The transmission electron micrographs revealed the formation of nano-crystallites with aspect ratio ~ 2; the length and thickness being 24, 13 nm (for ZnSnO3) and 47, 22 nm (for Zn2SnO4), respectively. The estimated direct bandgap values for the ZnSnO3 and Zn2SnO4 were found to be 4.21 eV and 4.12 eV, respectively. The ac conductivity values at room temperature (at 10 kHz) for the ZnSnO3 and Zn2SnO4 samples were 8.02 × 10−8 Ω-1 cm-1 and 6.77 × 10−8 Ω-1 cm-1, respectively. The relative permittivity was found to increase with increase in temperature, the room temperature values being 14.24 and 25.22 for the samples ZnSnO3 and Zn2SnO4, respectively. Both the samples, i.e., ZnSnO3 and Zn2SnO4, exhibited low values of loss tangent up to 300 K, the room temperature values being 0.89 and 0.72, respectively. A dye-sensitized solar cell has been fabricated using the optimized sample of zinc stannate photo-anode, i.e., Zn2SnO4. The cyclic voltammetry revealed oxidation and reduction around 0.40 V (current density ~ 11.1 mA/cm2) and 0.57 V (current density– 11.7 mA/cm2) for Zn2SnO4 photo-anode in presence of light. PMID:27228102
Substrate Temperature effect on the transition characteristics of Vanadium (IV) oxide
NASA Astrophysics Data System (ADS)
Yang, Tsung-Han; Wei, Wei; Jin, Chunming; Narayan, Jay
2008-10-01
One of the semiconductor to metal transition material (SMT) is Vanadium Oxide (VO2) which has a very sharp transition temperature close to 340 K as the crystal structure changes from monoclinic phase (semiconductor) into tetragonal phase (metal phase). We have grown high-quality epitaxial vanadium oxide (VO2) films on sapphire (0001) substrates by pulsed laser deposition for oxygen pressure 10-2torr and obtained interesting results without further annealing treatments. The epitaxial growth via domain matching epitaxy, where integral multiples of planes matched across the film-substrate interface. We were able to control the transition characteristics such as the sharpness (T), amplitude (A) of SMT transition and the width of thermal hysteresis (H) by altering the substrate temperature from 300 ^oC, 400 ^oC, 500 ^oC, and 600 ^oC. We use the XRD to identify the microstructure of film and measure the optical properties of film. Finally the transition characteristics is observed by the resistance with the increase of temperature by Van Der Pauw method from 25 to 100 ^oC to measure the electrical resistivity hystersis loop during the transition temperature.
Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ
Yang, Tianrang; Mattick, Victoria F.; Chen, Yan; ...
2018-01-29
The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less
Crystal Structure and Transport Properties of Oxygen-Deficient Perovskite Sr 0.9Y 0.1CoO 3-δ
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Tianrang; Mattick, Victoria F.; Chen, Yan
The present work reports a systematic study on temperature-dependent local crystal structure, oxygen stoichiometry, and electrical/electrochemical properties of an oxygen-deficient Sr 0.9Y 0.1CoO 3-δ (SYC10) perovskite using variable-temperature neutron diffraction (VTND), thermal gravimetric analysis, and electrical/electrochemical methods, respectively. The VTND reveals that the crystal symmetry of SYC10 remains P4/mmm tetragonal up to 900 °C. The tetragonal symmetry reflects the net effects of temperature and oxygen stoichiometry on crystal symmetry. The observed p-type electronic conductivity behavior originates from the charge-ordering between the two distinctive Co-sites. The partial oxide-ion conductivity and diffusivity obtained from oxygen permeation measurements are 2.3 × 10 –2more » S cm –1 and 7.98 × 10–8 cm 2/s at 800 °C in air, respectively. The electrochemical oxygen reduction reaction kinetics of the SYC10 cathode is primarily limited by the charge-transfer process at low temperatures (600–650 °C) and oxide-ion migration from the cathode into the electrolyte at high temperatures (700–800 °C).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sano, Yukio; Abe, Akihisa; Tokushima, Koji
The aim of this study is to examine the difference between shock temperatures predicted by an equation for temperature inside a steady wave front and the Walsh-Christian equation. Calculations are for yttria-doped tetragonal zirconia, which shows an elastic-plastic and a phase transition: Thus the shock waves treated are multiple structure waves composed of one to three steady wave fronts. The evaluated temperature was 3350K at the minimum specific volume of 0.1175 cm{sup 3}/g (or maximum Hugoniot shock pressure of 140GPa) considered in the present examination, while the temperature predicted by the Walsh-Christian equation under identical conditions was 2657K. The causemore » of the large temperature discrepancy is considered to be that the present model treats nonequilibrium states inside steady waves.« less
Tetragonal Lysozyme Nucleation and Crystal Growth: The Role of the Solution Phase
NASA Technical Reports Server (NTRS)
Pusey, Marc L.; Forsythe, Elizabeth; Sumida, John; Maxwell, Daniel; Gorti, Sridhar; Curreri, Peter A. (Technical Monitor)
2002-01-01
Experimental evidence indicates a dominant role of solution phase interactions in nucleating and growing tetragonal lysozyme crystals. These interactions are extensive, even at saturation, and may be a primary cause of misoriented regions in crystals grown on Earth. Microgravity, by limiting interfacial concentrations to diffusion-controlled levels, may benefit crystal quality by also reducing the extent of associated species present at the interface.
Octahedral tilting instabilities in inorganic halide perovskites
NASA Astrophysics Data System (ADS)
Bechtel, Jonathon S.; Van der Ven, Anton
2018-02-01
Dynamic instabilities, stabilized by anharmonic interactions in cubic and tetragonal halide perovskites at high temperature, play a role in the electronic structure and optoelectronic properties of halide perovskites. In particular, inorganic and hybrid perovskite materials undergo structural phase transitions associated with octahedral tilts of the metal-halide octahedra. We investigate the structural instabilities present in inorganic Cs M X3 perovskites with Pb or Sn on the metal site and Br or I on the X site. Defining primary order parameters in terms of symmetry-adapted collective displacement modes and secondary order parameters in terms of symmetrized Hencky strain components, we unravel the coupling between octahedral tilt modes and macroscopic strains as well as the role of A -site displacements in perovskite phase stability. Symmetry-allowed secondary strain order parameters are enumerated for the 14 unique perovskite tilt systems. Using first-principles calculations to explore the Born-Oppenheimer energy surface in terms of symmetrized order parameters, we find coupling between octahedral tilting and A -site displacements is necessary to stabilize P n m a ground states. Additionally, we show that the relative stability of an inorganic halide perovskite tilt system correlates with the volume decrease from the high-symmetry cubic phase to the low-symmetry distorted phase.
Optical Characterization of Lead Monoxide Films Grown by Laser-Assisted Deposition
NASA Astrophysics Data System (ADS)
Baleva, M.; Tuncheva, V.
1994-05-01
The Raman spectra of PbO films, grown by laser-assisted deposition (LAD) at different substrate temperatures are investigated. The spectra of the films, deposited on amorphous, single crystal quartz and polycrystal PbTe substrates, are compared with the Raman spectra of tetragonal and orthorhombic powder samples. The phonon frequencies determined in our experiment with powder samples coincide fairly well with those obtained by Adams and Stevens, J. Chem. Soc., Dalton Trans., 1096 (1977). Thus the Raman spectra of the powder samples presented in this paper can be considered as unambiguous characteristics of the two different PbO crystal phases. It was concluded that the Raman scattering may serve as a tool for identification of PbO films and their crystal modifications. On the basis of this investigation it was concluded that the film structure changes from orthorhombic to tetragonal with increased substrate temperature, and that the nature of the substrate influences the crystal structure of the films. On the basis of the Raman spectra of the β-PbO films with prevailing (001) orientation of crystallization, an assignment of the modes is proposed.
NASA Astrophysics Data System (ADS)
Cai, Ling; Toulouse, Jean; Luo, Haosu; Tian, Wei
2014-08-01
The lead free relaxor Na1/2Bi1/2TiO3 (NBT) undergoes a structural cubic-to-tetragonal transition near 800 K which is caused by the cooperative rotations of O6 octahedra. These rotations are also accompanied by the displacements of the cations and the formation of the polar nanodomains (PNDs) that are responsible for the characteristic dielectric dispersion of relaxor ferroelectrics. Because of their intrinsic properties, spontaneous polarization, and lack of inversion symmetry, these PNDs are also piezoelectric and can mediate an interaction between polarization and strain or couple the optic and acoustic phonons. Because PNDs introduce a local tetragonal symmetry, the phonon coupling they mediate is found to be anisotropic. In this paper we present inelastic neutron scattering results on coupled transverse acoustic (TA) and transverse optic (TO) phonons in the [110] and [001] directions and across the cubic-tetragonal phase transition at TC˜800 K. The phonon spectra are analyzed using a mode coupling model. In the [110] direction, as in other relaxors and some ferroelectric perovskites, a precipitous drop of the TO phonon into the TA branch or "waterfall" is observed at a certain qwf˜0.14 r.l.u. In the [001] direction, the highly overdamped line shape can be fitted with closely positioned bare mode energies which are largely overlapping along the dispersion curves. Two competing lattice coupling mechanism are proposed to explain these observations.
Keuper, Melanie; Berthold, Christoph; Nickel, Klaus Georg
2014-02-01
We present new findings on the low-temperature degradation of yttria-stabilized zirconia at 37°C over several years and at high and low partial pressures of water. With the aid of focused ion beam cross-section confirmation studies we are able to show an extensive linear, continuous degradation without retardation, even at low temperatures and low water pressures. The characteristic layer growth and its inferred rate constant imply a lifetime of tens of years under simple tension and open the possibility of studying the longevity of these ceramics more rigorously. In addition, we show reproducibility complications of accelerated aging tests by the use of different autoclaves and possible implications for standardized procedures. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Singh, Sanjay; D'Souza, S. W.; Nayak, J.; Caron, L.; Suard, E.; Chadov, S.; Felser, C.
2016-04-01
Ni2MnGa exhibits ideal ferromagnetic shape memory properties, however, brittleness and a low-temperature martensite transition hinder its technological applications motivating the search for novel materials showing better mechanical properties as well as higher transition temperatures. In this work, the crystal structure, phase transitions, and the magnetic properties of quaternary Ni2 -xPtxMnGa (0 ≤x ≤1 ) shape memory alloys were studied experimentally by x-ray diffraction, magnetization measurements, and neutron diffraction and compared to ab initio calculations. Compositions within 0 ≤x ≤0.25 exhibit the cubic austenite phase at room temperature. The x ≈0.3 composition exhibits a seven-layer modulated monoclinic martensite structure. Within 0.4 ≤x ≤1 , the system stabilizes in the nonmodulated tetragonal structure. The martensite transition has very narrow thermal hysteresis 0 ≤x ≤0.3 , which is a typical characteristic of a shape memory alloy. By increasing x , the temperature of the martensite transition increases, while that of the magnetic transition decreases. The x =1 composition (NiPtMnGa) in the martensite phase undergoes a para-to-ferrimagnetic transition. The saturation magnetization exhibits a nontrivial behavior with increasing up to x ≈0.25 , above which, it suddenly decreases. Powder neutron diffraction reveals the presence of antisite disorder, with about 17% of the original Ga sites being occupied by Mn. Computations suggest that the antisite disorder triggers an antiferromagnetic coupling between two Mn atoms in different crystallographic positions, resulting into a sudden drop of the saturation magnetization for higher x .
Equilibrium p-T Phase Diagram of Boron: Experimental Study and Thermodynamic Analysis
Solozhenko, Vladimir L.; Kurakevych, Oleksandr O.
2013-01-01
Solid-state phase transformations and melting of high-purity crystalline boron have been in situ and ex situ studied at pressures to 20 GPa in the 1500–2500 K temperature range where diffusion processes become fast and lead to formation of thermodynamically stable phases. The equilibrium phase diagram of boron has been constructed based on thermodynamic analysis of experimental and literature data. The high-temperature part of the diagram contains p-T domains of thermodynamic stability of rhombohedral β-B106, orthorhombic γ-B28, pseudo-cubic (tetragonal) t'-B52, and liquid boron (L). The positions of two triple points have been experimentally estimated, i.e. β–t'–L at ~ 8.0 GPa and ~ 2490 K; and β–γ–t' at ~ 9.6 GPa and ~ 2230 K. Finally, the proposed phase diagram explains all thermodynamic aspects of boron allotropy and significantly improves our understanding of the fifth element. PMID:23912523
Magnetic structures and excitations in CePd2(Al,Ga)2 series: Development of the "vibron" states
NASA Astrophysics Data System (ADS)
Klicpera, M.; Boehm, M.; Doležal, P.; Mutka, H.; Koza, M. M.; Rols, S.; Adroja, D. T.; Puente Orench, I.; Rodríguez-Carvajal, J.; Javorský, P.
2017-02-01
CePd2Al2 -xGax compounds crystallizing in the tetragonal CaBe2Ge2 -type structure (space group P 4 /n m m ) and undergoing a structural phase transition to an orthorhombic structure (C m m e ) at low temperatures were studied by means of neutron scattering. The amplitude-modulated magnetic structure of CePd2Al2 is described by an incommensurate propagation vector k ⃗=(δx,1/2 +δy,0 ) with δx=0.06 and δy=0.04 . The magnetic moments order antiferromagnetically within the a b planes stacked along the c axis and are arranged along the direction close to the orthorhombic a axis with a maximum value of 1.5(1) μB/Ce3 +. CePd2Ga2 reveals a magnetic structure composed of two components: the first is described by the propagation vector k1⃗=(1/2 ,1/2 ,0 ) , and the second one propagates with k2⃗=(0 ,1/2 ,0 ) . The magnetic moments of both components are aligned along the same direction—the orthorhombic [100] direction—and their total amplitude varies depending on the mutual phase of magnetic moment components on each Ce site. The propagation vectors k1⃗ and k2⃗ describe also the magnetic structure of substituted CePd2Al2 -xGax compounds, except the one with x =0.1 .CePd2Al1.9Ga0.1 with magnetic structure described by k ⃗ and k1⃗ stays on the border between pure CePd2Al2 and the rest of the series. Determined magnetic structures are compared with other Ce 112 compounds. Inelastic neutron scattering experiments disclosed three nondispersive magnetic excitations in the paramagnetic state of CePd2Al2 , while only two crystal field (CF) excitations are expected from the splitting of ground state J =5/2 of the Ce3 + ion in a tetragonal/orthorhombic point symmetry. Three magnetic excitations at 1.4, 7.8, and 15.9 meV are observed in the tetragonal phase of CePd2Al2 . A structural phase transition to an orthorhombic structure shifts the first excitation up to 3.7 meV, while the other two excitations remain at almost the same energy. The presence of an additional magnetic peak is discussed and described within the Thalmeier-Fulde CF-phonon coupling (i.e., magnetoelastic coupling) model generalized to the tetragonal point symmetry. The second parent compound CePd2Ga2 does not display any sign of additional magnetic excitation. The expected two CF excitations were observed. The development of magnetic excitations in the CePd2Al2 -xGax series is discussed and crystal field parameters determined.
NASA Astrophysics Data System (ADS)
Wang, Yaojin; Wang, Ding; Yuan, Guoliang; Ma, He; Xu, Feng; Li, Jiefang; Viehland, D.; Gehring, Peter M.
2016-11-01
We have examined the effects of field cooling on the phase diagram of the relaxor system (1 -x ) Pb (Z n1 /3N b2 /3) O3-x PbTi O3 (PZN-x PT ) for compositions near the morphotropic phase boundary (MPB). High-resolution diffraction measurements using Cu Kα x rays, which probe ≈3 μ m below the crystal surface, were made on field-cooled (FC) single-crystal specimens of PZN-4.5 %PT and PZN-6.5 %PT under electric fields of 1 and 2 kV/cm applied along [001] and combined with previous neutron diffraction data, which probe the entire crystal volume, for FC PZN-8 %PT [Ohwada et al., Phys. Rev. B 67, 094111 (2003), 10.1103/PhysRevB.67.094111]. A comparison to the zero-field-cooled (ZFC) PZN-x PT phase diagram reveals several interesting features: (1) The short-range monoclinic phase observed in the ZFC state on the low-PT side of the MPB is replaced by a monoclinic MA phase; (2) field cooling extends the tetragonal phase to higher temperatures and lower-PT concentrations; (3) the orthorhombic phase near the MPB is replaced by a monoclinic MC phase; (4) the vertical MPB in the ZFC phase diagram bends significantly towards the low-PT side in the FC state. These results demonstrate that both the phase stability and the nature of the MPB in PZN-PT within the near-surface regions are fragile in the presence of electric fields.
NASA Astrophysics Data System (ADS)
Platt, P.; Frankel, P.; Gass, M.; Howells, R.; Preuss, M.
2014-11-01
Corrosion is a key limiting factor in the degradation of zirconium alloys in light water reactors. Developing a mechanistic understanding of the corrosion process offers a route towards improving safety and efficiency as demand increases for higher burn-up of fuel. Oxides formed on zirconium alloys are composed of both monoclinic and meta-stable tetragonal phases, and are subject to a number of potential mechanical degradation mechanisms. The work presented investigates the link between the tetragonal to monoclinic oxide phase transformation and degradation of the protective character of the oxide layer. To achieve this, Abaqus finite element analysis of the oxide phase transformation has been carried out. Study of the change in transformation strain energy shows how relaxation of oxidation induced stress and fast fracture at the metal-oxide interface could destabilise the tetragonal phase. Central to this is the identification of the transformation variant most likely to form, and understanding why twinning of the transformed grain is likely to occur. Development of transformation strain tensors and analysis of the strain components allows some separation of dilatation and shear effects. Maximum principal stress is used as an indication of fracture in the surrounding oxide layer. Study of the stress distributions shows the way oxide fracture is likely to occur and the differing effects of dilatation and shape change. Comparison with literature provides qualitative validation of the finite element simulations.
Paramagnetic-to-nonmagnetic transition in antiperovskite nitride Cr3GeN studied by 14N-NMR and µSR
NASA Astrophysics Data System (ADS)
Takao, K.; Liu, Z.; Uji, K.; Waki, T.; Tabata, Y.; Watanabe, I.; Nakamura, H.
2017-06-01
The antiperovskite-related nitride Cr3GeN forms a tetragonal structure with the space group P\\bar{4}{2}1m at room temperature. It shows a tetragonal (P\\bar{4}{2}1m) to tetragonal (I4/mcm) structural transition with a large hysteresis at 300-400 K. The magnetic susceptibility of Cr3GeN shows Curie-Weiss type temperature dependence at high temperature, but is almost temperature-independent below room temperature. We carried out µSR and 14N-NMR microscopy measurements to reveal the magnetic ground state of Cr3GeN. Gradual muon spin relaxation, which is nearly temperature-independent below room temperature, was observed, indicating that Cr3GeN is magnetically inactive. In the 14N-NMR measurement, a quadrupole-split spectrum was obtained at around 14 K = 0. The temperature dependence of 14(1/T1) satisfies the Korringa relation. These experimental results indicate that the ground state of Cr3GeN is Pauli paramagnetic, without antiferromagnetic long-range order.
NASA Astrophysics Data System (ADS)
Yasui, Kyuichi; Mimura, Ken-ichi; Izu, Noriya; Kato, Kazumi
2018-03-01
The dielectric constant of an ordered assembly of BaTiO3 nanocubes is numerically calculated as a function of temperature assuming a distribution of tilt angles of attached nanocubes. As the phase transition temperature from the tetragonal crystal structure to the cubic crystal structure of a BaTiO3 nanocube decreases as the tilt angle increases, the temperature at the peak of the dielectric constant of an ordered assembly is considerably lower than the Curie temperature of a free-standing BaTiO3 crystal. The peak of the dielectric constant as a function of temperature for an ordered assembly becomes considerably broader than that for a single crystal owing to the contribution of nanocubes with various tilt angles.
Low temperature synthesis of LnOF rare-earth oxyfluorides through reaction of the oxides with PTFE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dutton, S.E., E-mail: sdutton@princeton.edu; Hirai, D.; Cava, R.J.
2012-03-15
Highlights: Black-Right-Pointing-Pointer Low temperature synthesis of LnOF rare-earth oxyfluorides from Ln{sub 2}O{sub 3} and PTFE (CF{sub 2}). Black-Right-Pointing-Pointer Rhombohedral LnOF is the major phase and forms as nanocrystals, 29-103 nm. Black-Right-Pointing-Pointer Expected lanthanide contraction observed in lattice parameters and bond lengths. Black-Right-Pointing-Pointer TbOF orders antiferromagnetically at 10 K and has a metamagnetic transition at 1.8 T. Black-Right-Pointing-Pointer GdOF orders antiferromagnetically at 5 K, other LnOF are paramagnetic. -- Abstract: A low temperature solid-state synthesis route, employing polytetrafluoroethylene (PTFE) and the rare-earth oxides, for the formation of the LnOF rare-earth oxyfluorides (Ln = Y, La, Pr, Nd, Sm, Eu, Gd, Tb,more » Dy, Ho, Er), is reported. With the exception of LaOF, which forms in a tetragonal variant, rhomobohedral LnOF is found to be the major product of the reaction. In the case of PrOF, a transition from the rhombohedral to the cubic fluorite phase is observed on heating in air to 500 Degree-Sign C. X-ray diffraction shows the expected lanthanide contraction in the lattice parameters and bond lengths. Magnetic susceptibility measurements show antiferromagnetic-like ordering in TbOF, T{sub m} = 10 K, with a metamagnetic transition at a field {mu}{sub 0}H{sub t} = 1.8 T at 2 K. An antiferromagnetic transition, T{sub N} = 4 K, is observed in GdOF. Paramagnetic behavior is observed above 2 K in PrOF, NdOF, DyOF, HoOF and ErOF. The magnetic susceptibility of EuOF is characteristic of Van Vleck paramagnetism.« less
Quantitative assessment of carbon allocation anomalies in low temperature bainite
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rementeria, Rosalia
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
Quantitative assessment of carbon allocation anomalies in low temperature bainite
Rementeria, Rosalia
2017-05-24
Low temperature bainite is a mixture of ferrite and austenite with a high dislocation density and nanoscale precipitates produced by isothermal transformation of the austenite in high-carbon high-silicon steels. The mass balance for carbon is systematically unsuitable when considering only ferrite and austenite forming the structure, but no attempt has been made to evaluate the amount of carbon located at linear defects and precipitates. Additionally, bainitic ferrite has been recently shown to have a tetragonal crystal structure, allowing greater amounts of carbon in solid solution than those expected by the paraequilibrium phase boundaries. In order to quantify the contribution ofmore » all the carbon sinks, we have followed the evolution of carbon in ferrite and austenite, along with the precipitation of cementite and η–carbide, during the isothermal bainitic transformation at 220 and 250 °C by means of in-situ synchrotron high energy X-ray diffraction and complementary transmission electron microscopy (TEM) and atom probe tomography (APT) analyses. Furthermore, this is the first time that the mass balance for carbon is successfully achieved by considering all the transformation products together with an estimation of the carbon segregated to linear defects.« less
First-Principles Calculations of Lattice Dynamics in La_2CuO_4
NASA Astrophysics Data System (ADS)
Wang, C.-Z.; Yu, Rici; Krakauer, Henry
1998-03-01
To investigate wavevector-dependent lattice vibrational properties of the high-temperature cuprate superconductor La_2-xSr_xCuO_4, we have performed first principles calculations for tetragonal I4/mmm La_2CuO_4, using the linear response LAPW method(R. Yu and H. Krakauer, Phys. Rev. B 49), 4467 (1994). Phonon frequencies and polarization vectors are obtained throughout the Brillouin zone. Generally good agreement is obtained with experiment, but we underestimate the frequencies of the low lying modes, which involve either motions of the apical oxygen atoms parallel to the CuO2 planes or motions of the plane O atoms along the c-axis. The discrepancy may be due to anharmonic coupling of these modes(R. Cohen, W. Pickett, and H. Krakauer, Phys. Rev. Lett. 62), 831 (1989)^,(D. J. Singh, Solid State Commun. 98), 575 (1996). The X point tilt phonon mode is found to be the most unstable mode, consistent with previous frozen phonon calculations^3 and the observed phase transition to the orthorhombic structure at low temperature. The results will be discussed in comparison with previous calculations^3,4 and experiment.
NASA Technical Reports Server (NTRS)
Staszak, Paul Russell; Wirtz, G. P.; Berg, M.; Brown, S. D.
1988-01-01
A study of the effects of titania on selected properties of hafnia-rich mixed oxides in the system hafnia-zirconia-titania (HZT) was made in the region 5 to 20 mol percent titania. The studied properties included electrical conductivity, thermal expansion, and fracture strength and toughness. The effects of titania on the properties were studied for the reduced state as well as the oxidized state of the sintered mixed oxides. X-ray analysis showed that the materials were not always single phase. The oxidized compositions went from being monoclinic solid solutions at low titania additions to having three phases (two monoclinic and a titanate phase) at high additions of titania. The reduced compositions showed an increasing cubic phase presence mixed with the monoclinic phase as titania was added. The electrical conductivity increased with temperature at approximately 0.1 mhos/cm at 1700 C for all compositions. The thermal expansion coefficient decreased with increasing titania as did the monoclinic to tetragonal transformation temperature. The fracture strength of the oxidized bars tended to decrease with the addition of titania owing to the presence of the second phase titania. The fracture strength of the reduced bars exhibited a minimum corresponding to a two-phase region of monoclinic and cubic phases. When the second phases were suppressed, the titania tended to increase the fracture strength slightly in both the oxidized and reduced states. The fracture toughness followed similar trends.
Mechanical properties of metal dihydrides
Schultz, Peter A.; Snow, Clark S.
2016-02-04
First-principles calculations are used to characterize the bulk elastic properties of cubic and tetragonal phase metal dihydrides,more » $$\\text{M}{{\\text{H}}_{2}}$$ {$$\\text{M}$$ = Sc, Y, Ti, Zr, Hf, lanthanides} to gain insight into the mechanical properties that govern the aging behavior of rare-earth di-tritides as the constituent 3H, tritium, decays into 3He. As tritium decays, helium is inserted in the lattice, the helium migrates and collects into bubbles, that then can ultimately create sufficient internal pressure to rupture the material. The elastic properties of the materials are needed to construct effective mesoscale models of the process of bubble growth and fracture. Dihydrides of the scandium column and most of the rare-earths crystalize into a cubic phase, while dihydrides from the next column, Ti, Zr, and Hf, distort instead into the tetragonal phase, indicating incipient instabilities in the phase and potentially significant changes in elastic properties. We report the computed elastic properties of these dihydrides, and also investigate the off-stoichiometric phases as He or vacancies accumulate. As helium builds up in the cubic phase, the shear moduli greatly soften, converting to the tetragonal phase. Conversely, the tetragonal phases convert very quickly to cubic with the removal of H from the lattice, while the cubic phases show little change with removal of H. Finally, the source and magnitude of the numerical and physical uncertainties in the modeling are analyzed and quantified to establish the level of confidence that can be placed in the computational results, and this quantified confidence is used to justify using the results to augment and even supplant experimental measurements.« less
NASA Astrophysics Data System (ADS)
Cordero, F.
2018-03-01
A method is proposed for evaluating the potential piezoelectric response, that a ferroelectric material would exhibit after full poling, from elastic and dielectric measurements of the unpoled ceramic material. The method is based on the observation that the softening in a ferroelectric phase with respect to the paraelectric phase is of piezoelectric origin, and is tested on BaTiO3. The angular averages of the piezoelectric softening in unpoled ceramics are calculated for ferroelectric phases of different symmetries. The expression of the orientational average with the piezoelectric and dielectric constants of single crystal tetragonal BaTiO3 from the literature reproduces well the softening of the Young's modulus of unpoled ceramic BaTiO3, after a correction for the porosity. The agreement is good in the temperature region sufficiently far from the Curie temperature and from the transition to the orthorhombic phase, where the effect of fluctuations should be negligible, but deviations are found outside this region, and possible reasons for this are discussed. This validates the determination of the piezoelectric response by means of purely elastic measurements on unpoled samples. The method is indirect and, for quantitative assessments, requires the knowledge of the dielectric tensor. On the other hand, it does not require poling of the sample, and therefore is insensitive to inaccuracies from incomplete poling, and can even be used with materials that cannot be poled, for example, due to excessive electrical conductivity. While the proposed example of the Young's modulus of a ceramic provides an orientational average of all the single crystal piezoelectric constants, a Resonant Ultrasound Spectroscopy measurement of a single unpoled ceramic sample through the ferroelectric transition can in principle measure all the piezoelectric constants, together with the elastic ones.
Transient electronic anisotropy in overdoped NaF e1 -xC oxAs superconductors
NASA Astrophysics Data System (ADS)
Liu, Shenghua; Zhang, Chunfeng; Deng, Qiang; Wen, Hai-hu; Li, Jian-xin; Chia, Elbert E. M.; Wang, Xiaoyong; Xiao, Min
2018-01-01
By combining polarized pump-probe spectroscopic and Laue x-ray diffraction measurements, we have observed nonequivalent transient optical responses with the probe beam polarized along the x and y axes in overdoped NaF e1 -xC oxAs superconductors. Such transient anisotropic behavior has been uncovered in the tetragonal phase with the doping level and temperature range far from the borders of static nematic phases. The measured transient anisotropy can be well explained as a result of nematic fluctuation driven by an orbital order with energy splitting of the dx z- and dy z-dominant bands. In addition, the doping level dependence and the pressure effect of the crossover temperature show significant differences between the transient nematic fluctuation and static nematic phase, implying spin and orbital orders may play different roles in static and transient nematic behaviors.
NASA Astrophysics Data System (ADS)
Mitchell, Roger H.; Kennedy, Brendan J.; Knight, Kevin S.
2018-01-01
Refinement of time-of-flight high-resolution neutron powder diffraction data for lueshite (Na, Ca)(Nb, Ta, Ti)O3, the natural analogue of synthetic NaNbO3, demonstrates that lueshite at room temperature (298 K) adopts an orthorhombic structure with a 2 a p × 2 a p × 4 a p superlattice described by space group Pmmn [#59: a = 7.8032(4) Å; b = 7.8193(4) Å; c = 15.6156(9) Å]. This structure is analogous to that of phase S of synthetic NaNbO3 observed at 753-783 K (480-510 °C). In common with synthetic NaNbO3, lueshite exhibits a series of phase transitions with decreasing temperature from a cubic (Pm\\bar{3}m) aristotype through tetragonal ( P4/ mbm) and orthorhombic ( Cmcm) structures. However, the further sequence of phase transitions differs in that for lueshite the series terminates with the room temperature S ( Pmmn) phase, and the R ( Pmmn or Pnma) and P ( Pbcm) phases of NaNbO3 are not observed. The appearance of the S phase in lueshite at a lower temperature, relative to that of NaNbO3, is attributable to the effects of solid solution of Ti, Ta and Ca in lueshite.
Autillo, Matthieu; Wilson, Richard E.
2017-09-22
A study of the phase transitions occurring in tetramethylammonium hexachlorometalate compounds with M = U IV, Np IV, Zr IV, Sn IV, Hf IV and Pt IV were performed using single-crystal X-ray diffraction across the temperature range 120 - 400K. When the crystals were cooled, movement of the octahedral [MCl 6] 2- anions induces a phase transition from Fm3m to Fd3c with a doubling of the unit cell. For the actinide compounds, no correlation between the f-electron configuration and the transition temperature was observed, instead, a correlation between the transition temperatures and both the [MCl 6] 2- anion and themore » TMA cation size is highlighted. Two phase transitions were observed and characterized. The first phase transition occurs with the ordering of the TMA cation and the second from a rotation of the [MCl 6] 2- octahedra. A third phase transition was observed at lower temperatures and was ascribed to a tetragonal distortion of the [MCl 6] 2- anions. Synthesis and study of their deuterated compounds did not show a significant isotope effect. As a result, Raman spectra performed on the protonated and deuterated compounds indicate only weak hydrogen bonding interactions between the TMA cations and the [MCl 6] 2- octahedra.« less
Fabrication and magnetic properties of Fe and Co co-doped ZrO2
NASA Astrophysics Data System (ADS)
Okabayashi, J.; Kono, S.; Yamada, Y.; Nomura, K.
2011-12-01
We investigate the effects of Fe and Co co-doping on the magnetic and electronic properties of ZrO2 ceramics prepared by a sol-gel method, and study their dependence on the annealing temperature. Dilute Fe and Co co-doping into ZrO2 exhibits ferromagnetic behavior at room temperature for annealing temperatures above 900 °C, accompanying the phase transition from tetragonal to monoclinic structure in ZrO2. The electronic structures are studied by x-ray absorption spectroscopy and Mössbauer spectroscopy, which suggest that the Fe3+ and Co2+/Co3+ mixing states are dominant in Fe and Co co-doped ZrO2.
Investigations on Sm- and Nb-SUBSTITUTED PZT Ceramics
NASA Astrophysics Data System (ADS)
Prakash, Chandra; Juneja, J. K.
In the present paper, we report the effect of Samarium substitution and Niobium doping on the properties of a PZT(52:48). The properties studied are: structural, dielectric and ferroelectric. The samples with chemical formula Pb0.99Sm0.01Zr0.52Ti0.48O3 were prepared by solid-state dry ceramic method. Small amount (0.5 wt%) of Nb2O5 was also added. X-ray diffraction (XRD) analysis showed formation of a single phase with tetragonal structure. Dielectric properties were studied as a function of temperature and frequency. Transition temperature, Tc, was determined from dielectric constant versus temperature plot. The material shows well-defined ferroelectric (PE) hysteresis loop.
In situ investigations of the phase change behaviour of tungsten oxide nanostructures.
Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu
2018-04-01
This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W 18 O 49 nanowires and WO 3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO 3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO 3 ; however, W 18 O 49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO 3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm -1 as the fingerprint band for the phase transition from γ- to β-phase of the WO 3 nanoparticle. Furthermore, WO 3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W 18 O 49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.
In situ investigations of the phase change behaviour of tungsten oxide nanostructures
NASA Astrophysics Data System (ADS)
Thummavichai, Kunyapat; Wang, Nannan; Xu, Fang; Rance, Graham; Xia, Yongda; Zhu, Yanqiu
2018-04-01
This study uses two in situ techniques to investigate the geometry and phase change behaviour of bundled ultrathin W18O49 nanowires and WO3 nanoparticles. The in situ X-ray diffraction (XRD) results have shown that the phase transition of WO3 nanoparticles occurs in sequence from monoclinic (room temperature) → orthorhombic (350°C) → tetragonal (800°C), akin to bulk WO3; however, W18O49 nanowires remain stable as the monoclinic phase up to 500°C, after which a complete oxidation to WO3 and transformation to the orthorhombic β-phase at 550°C is observed. The in situ Raman spectroscopy investigations have revealed the Raman peak downshifts as the temperature increases, and have identified the 187.6 cm-1 as the fingerprint band for the phase transition from γ- to β-phase of the WO3 nanoparticle. Furthermore, WO3 nanoparticles exhibit the γ- to β-phase conversion at 275°C, which is about 75°C lower than the relaxation temperature of 350°C for the monoclinic γ-W18O49 nanowires. These new fundamental understandings on the phase transition behaviour offer important guidance for the design and development of tungsten oxide-based nanodevices by defining their allowed operating conditions.
NASA Astrophysics Data System (ADS)
Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.
1989-11-01
High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.
Phase Transition and Structure of Silver Azide at High Pressure
DOE Office of Scientific and Technical Information (OSTI.GOV)
D Hou; F Zhang; C Ji
2011-12-31
Silver azide (AgN{sub 3}) was compressed up to 51.3 GPa. The results reveal a reversible second-order orthorhombic-to-tetragonal phase transformation starting from ambient pressure and completing at 2.7 GPa. The phase transition is accompanied by a proximity of cell parameters a and b, a 3{sup o} rotation of azide anions, and a change of coordination number from 4-4 (four short, four long) to eight fold. The crystal structure of the high pressure phase is determined to be in I4/mcm space group, with Ag at 4a, N{sub 1} at 4d, and N{sub 2} at 8h Wyckoff positions. Both of the two phasesmore » have anisotropic compressibility: the orthorhombic phase exhibits an anomalous expansion under compression along a-axis and is more compressive along b-axis than c-axis; the tetragonal phase is more compressive along the interlayer direction than the intralayer directions. The bulk moduli of the orthorhombic and tetragonal phases are determined to be K{sub OT} = 39{+-}5 GPa with K{sub OT'} = 10{+-}7 and K{sub OT} = 57 {+-}2 GPa with K{sub OT'} = 6.6{+-}0.2, respectively.« less
Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
Structural and Na-ion conduction characteristics of Na 3 PS x Se 4-x
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bo, Shou-Hang; Wang, Yan; Ceder, Gerbrand
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4-x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4-x more » identified a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4-x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
Structural and Na-ion conduction characteristics of Na 3PS xSe 4–x
Bo, Shou -Hang; Wang, Yan; Ceder, Gerbrand
2016-05-19
The recent discovery of the isostructrual cubic Na 3PS 4 and Na 3PSe 4 as fast Na-ion conductors provided a general structural framework for the exploration of new sodium superionic conductors. In this work, we systematically investigated the structures and ionic conduction characteristics of a series of compounds with the general chemical formula of Na 3PS xSe 4–x. Synthesis of Na 3PS 4 under different conditions (e.g., temperature, reaction vessel, mass of the precursors) reveals the reactivity of the precursors with the reaction tubes, producing different polymorphs. X-ray diffraction studies on the solid solution phases Na 3PS xSe 4–x identifiedmore » a tetragonal-to-cubic phase transition with increasing Se concentration. This observation is consistent with the computed stability of the tetragonal and cubic polymorphs, where the energy difference between the two polymorphs becomes very close to zero in Se-rich compositions. Furthermore, ab initio molecular dynamic simulations suggest that the fast Na-ion conduction in Na 3PS xSe 4–x may not be causally related with the symmetry or the composition of these phases. The formation of defects, instead, enables fast Na-ion conduction in this class of materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duffort, V.; Sarkar, T.; Caignaert, V., E-mail: vincent.caignaert@ensicaen.fr
2013-09-15
The possibility to lift the geometric frustration in the “114” stoichiomeric tetragonal oxide YBaFe{sub 4}O{sub 7.0} by decreasing the temperature has been investigated using neutron and synchrotron powder diffraction techniques. Besides the structural transition from tetragonal to monoclinic symmetry that appears at T{sub S}=180 K, a magnetic transition is observed below T{sub N}=95 K. The latter corresponds to a lifting of the 3D geometric frustration toward an antiferromagnetic long range ordering, never observed to date in a cubic based “114’” oxide. The magnetic structure, characterized by the propagation vector k{sub 1}=(0,0,½), shows that one iron Fe2 exhibits a larger magneticmore » moment than the three others, suggesting a possible charge ordering according to the formula YBaFe{sup 3+}Fe{sub 3}{sup 2+}O{sub 7.0}. The magnetic M(T) and χ′(T) curves, in agreement with neutron data, confirm the structural and magnetic transitions and evidence the coexistence of residual magnetic frustration. Moreover, the transport measurements show a resistive transition from a thermally activated conduction mechanism to a variable range hopping mechanism at T{sub S}=180 K, with a significant increase of the dependence of the resistivity vs. temperature. Mössbauer spectroscopy clearly evidences a change in the electronic configuration of the iron framework at the structural transition as well as coexistence of several oxidation states. The role of barium underbonding in these transitions is discussed. - Graphical abstract: Atomic displacements at the tetragonal-monoclinic transition in YBaFe{sub 4}O{sub 7}. Display Omitted - Highlights: • The structural and magnetic phase transitions of YBaFe{sub 4}O{sub 7} were studied below room temperature. • The tetragonal to monoclinic transition, characterized by NPD and SXRD, was studied using mode crystallography approach. • Monoclinic distortion allows the lifting of the geometrical frustration on the iron sublattice, leading to AF order at T=95 K.« less
The Origin of Uni-axial Negative Thermal Expansion in a Layered Perovskite
NASA Astrophysics Data System (ADS)
Ablitt, Chris; Craddock, Sarah; Senn, Mark; Mostofi, Arash; Bristowe, Nicholas
Using first-principles calculations within the quasi-harmonic approximation (QHA), we explain the origin of experimentally observed uni-axial negative thermal expansion (NTE) in a layered perovskite: the Ruddlesden-Popper (RP) oxide Ca2MnO4, which has anti-ferromagnetic ordering at low temperatures and is closely related to Ca3Mn2O7, which exhibits hybrid improper ferroelectricity and uni-axial NTE in competing phases. Dynamic tilts of MnO6 octahedra, common in many complex oxides, drive the expansion of the a axis and contraction of the c axis of the tetragonal NTE phase. We find that ferroelastic RP phases with a frozen octahedral rotation are unusually compliant to particular combinations of strains along different axes. The atomic mechanism responsible is characteristic of the perovskite/rock-salt interfaces present in the RP structure. We show that the contribution from this anisotropic elasticity must be taken into account in order to accurately predict NTE over the temperature range observed in experiment. A similar compliance to cooperative strains is found in other systems with uni-axial NTE. The development of this mechanistic understanding of NTE in complex oxides may pave the way for designing tunable multifunctional materials. The authors would like to acknowledge support from the EPSRC and the Centre for Doctoral Training in Theory and Simulation of Materials.
Ferroelectricity of strained SrTiO3 in lithium tetraborate glass-nanocomposite and glass-ceramic
NASA Astrophysics Data System (ADS)
Abdel-Khalek, E. K.; Mohamed, E. A.; Kashif, I.
2018-02-01
Glass-nanocomposite (GNCs) sample of the composition [90Li2B4O7-10SrTiO3] (mol %) was prepared by conventional melt quenching technique. The glassy phase and the amorphous nature of the GNCs sample were identified by Differential thermal analysis (DTA) and X-ray diffraction (XRD) studies, respectively. DTA of the GNCs exhibits sharp and broad exothermic peaks which represent the crystallization of Li2B4O7 and SrTiO3, respectively. The tetragonal Li2B4O7 and tetragonal SrTiO3 crystalline phases in glass-ceramic (GC) were identified by XRD and scanning electron microscopic (SEM). The strain tetragonal SrTiO3 phase in GNCs and GC has been confirmed by SEM. The values of crystallization activation energies (Ec1 and Ec2) for the first and second exothermic peaks are equal to 174 and 1452 kJ/mol, respectively. The Ti3+ ions in tetragonal distorted octahedral sites in GNCs were identified by optical transmission spectrum. GNCs and GC samples exhibit broad dielectric anomalies at 303 and 319 K because of strained SrTiO3 ferroelectric, respectively.
NASA Astrophysics Data System (ADS)
Belosludtseva, E. S.; Kuranova, N. N.; Marchenkova, E. B.; Popov, A. G.; Pushin, V. G.
2016-04-01
The effect of gallium alloying on the structure, the phase composition, and the properties of quasibinary Ni50Mn50- z Ga z (0 ⩽ z ⩽ 25 at %) alloys is studied over a wide temperature range. The influence of the alloy composition on the type of crystal structure in high-temperature austenite and martensite and the critical martensitic transformation temperatures is analyzed. A general phase diagram of the magnetic and structural transformations in the alloys is plotted. The temperature-concentration boundaries of the B2 and L21 superstructures in the austenite field, the tetragonal L10 (2 M) martensite, and the 10 M and 14 M martensite phases with complex multilayer crystal lattices are found. The predominant morphology of martensite is shown to be determined by the hierarchy of the packets of thin coherent lamellae of nano- and submicrocrystalline crystals with planar habit plane boundaries close to {011} B2. Martensite crystals are twinned along one of the 24 24{ {011} }{< {01bar 1} rangle _{B2}} "soft" twinning shear systems, which provides coherent accommodation of the martensitic transformation-induced elastic stresses.
Observation of Superconductivity in Tetragonal FeS.
Lai, Xiaofang; Zhang, Hui; Wang, Yingqi; Wang, Xin; Zhang, Xian; Lin, Jianhua; Huang, Fuqiang
2015-08-19
The possibility of superconductivity in tetragonal FeS has attracted considerable interest because of its similarities to the FeSe superconductor. However, all efforts made to pursue superconductivity in tetragonal FeS have failed so far, and it remains controversial whether tetragonal FeS is metallic or semiconducting. Here we report the observation of superconductivity at 5 K in tetragonal FeS that is synthesized by the hydrothermal reaction of iron powder with sulfide solution. The obtained samples are highly crystalline and less air-sensitive, in contrast to those reported in the literature, which are meta-stable and air-sensitive. Magnetic and electrical properties measurements show that the samples behave as a paramagnetic metal in the normal state and exhibit superconductivity below 5 K. The high crystallinity and the stoichiometry of the samples play important roles in the observation of superconductivity. The present results demonstrate that tetragonal FeS is a promising new platform to realize high-temperature superconductors.
NASA Astrophysics Data System (ADS)
Ullah, Aman; Gul, Hafiza Bushra; Ullah, Amir; Sheeraz, Muhammad; Bae, Jong-Seong; Jo, Wook; Ahn, Chang Won; Kim, Ill Won; Kim, Tae Heon
2018-01-01
A thermotropic phase boundary between non-ergodic and ergodic relaxor phases is tuned in lead-free Bi1/2Na1/2TiO3-based ceramics through a structural transition driven by compositional modification (usually named as "morphotropic approach"). The substitution of Bi(Ni1/2Ti1/2)O3 for Bi1/2(Na0.78K0.22)1/2TiO3 induces a transition from tetragonal to "metrically" cubic phase and thereby, the ergodic relaxor ferroelectric phase becomes predominant at room temperature. A shift of the transition temperature (denoted as TF-R) in the non-ergodic-to-ergodic phase transition is corroborated via temperature-dependent dielectric permittivity and loss measurements. By monitoring the chemical composition dependence of polarization-electric field and strain-electric field hysteresis loops, it is possible to track the critical concentration of Bi(Ni1/2Ti1/2)O3 where the (1 - x)Bi0.5(Na0.78K0.22)0.5TiO3-xBi(Ni0.5Ti0.5)O3 ceramic undergoes the phase transition around room temperature. At the Bi(Ni0.5Ti0.5)O3 content of x = 0.050, the highest room-temperature electrostrictive coefficient of 0.030 m4/C2 is achieved with no hysteretic characteristic, which can foster the realization of actual electrostrictive devices with high operational efficiency at room temperature.
He, Heming; Shoesmith, David
2010-07-28
A method to determine the defect structures in hyper-stoichiometric UO(2+x) using a combination of XRD and Raman spectroscopy has been developed. A sequence of phase transitions, from cubic to tetragonal symmetry, occurs with increasing degree of non-stoichiometry. This sequence proceeds from a cubic phase through an intermediate t''-type tetragonal (axial ratio c/a = 1) phase to a final t-type tetragonal (c/a not = 1) phase. Four distinct structural defect regions can be identified in the stoichiometry range, UO(2) to U(3)O(7): (i) a random point defect structure (x (in UO(2+x)) < or = 0.05); (ii) a non-stoichiometry region (0.05 < or = x < or = 0.15) over which point defects are gradually eliminated and replaced by the Willis 2:2:2 cluster; (iii) a mixture of Willis and cuboctahedral clusters (0.15 < or = x < or = 0.23); (iv) the cuboctahedral cluster (x > or = 0.23). The geometry and steric arrangement of these defects is primarily determined by the concentration of the excess-oxygen interstitials.
Tuning the Curie temperature of FeCo compounds by tetragonal distortion
NASA Astrophysics Data System (ADS)
Jakobsson, A.; Şaşıoǧlu, E.; Mavropoulos, Ph.; Ležaić, M.; Sanyal, B.; Bihlmayer, G.; Blügel, S.
2013-09-01
Combining density-functional theory calculations with a classical Monte Carlo method, we show that for B2-type FeCo compounds, tetragonal distortion gives rise to a strong reduction of the Curie temperature TC. The TC monotonically decreases from 1575 K (for c /a=1) to 940 K (for c /a=√2 ). We find that the nearest neighbor Fe-Co exchange interaction is sufficient to explain the c/a behavior of the TC. Combination of high magnetocrystalline anisotropy energy with a moderate TC value suggests tetragonal FeCo grown on the Rh substrate with c /a=1.24 to be a promising material for heat-assisted magnetic recording applications.
Orientation dependence of phase diagrams and physical properties in epitaxial Ba0.6Sr0.4TiO3 films
NASA Astrophysics Data System (ADS)
Qiu, J. H.; Zhao, T. X.; Chen, Z. H.; Yuan, N. Y.; Ding, J. N.
2018-04-01
Orientation dependence of phase diagrams and physical properties of Ba0.6Sr0.4TiO3 films are investigated by using a phenomenological Landau-Devonshire theory. New ferroelectric phases, such as the tetragonal a1 phase and the orthorhombic a2 c phase in (110) oriented film and the monoclinic MA phase in (111) oriented film, appear in the "misfit strain-temperature" phase diagrams as compared with (001) oriented film. Moreover, the phase diagrams of (110) and (111) oriented films are more complex than that of (001) oriented film due to the nonlinear coupling terms appeared in the thermodynamic potential. The dielectric and piezoelectric properties largely depend on the misfit strain and orientation. (111) oriented film has the better piezoelectric property than (110) oriented film. Furthermore, the compressive misfit strain is prone to induce the larger piezoelectric property than tensile misfit strain.