Science.gov

Sample records for lower hybrid heating

  1. Compact antennas for lower hybrid wave heating

    NASA Astrophysics Data System (ADS)

    Ohshima, S.; Takamura, S.; Okuda, T.

    1981-01-01

    A T-shaped antenna loaded with alumina was designed and constructed for lower hybrid wave heating of toroidal plasmas. The theoretical power spectra showed that a T-shaped antenna can be used for both ion and electron heating, and the accuracy of the calculation was verified by measuring the antenna's impedance. The dependence of the impedance on the power fed to the antenna was also investigated, and it was found that the RF pressure affected the coupling between the antenna and the plasma.

  2. Stochastic Ion Heating by the Lower-Hybrid Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G.; Tel'nikhin, A.; Krotov, A.

    2011-01-01

    The resonance lower-hybrid wave-ion interaction is described by a group (differentiable map) of transformations of phase space of the system. All solutions to the map belong to a strange attractor, and chaotic motion of the attractor manifests itself in a number of macroscopic effects, such as the energy spectrum and particle heating. The applicability of the model to the problem of ion heating by waves at the front of collisionless shock as well as ion acceleration by a spectrum of waves is discussed. Keywords: plasma; ion-cyclotron heating; shocks; beat-wave accelerator.

  3. Numerical modeling of lower hybrid heating and current drive

    SciTech Connect

    Valeo, E.J.; Eder, D.C.

    1986-03-01

    The generation of currents in toroidal plasma by application of waves in the lower hybrid frequency range involves the interplay of several physical phenomena which include: wave propagation in toroidal geometry, absorption via wave-particle resonances, the quasilinear generation of strongly nonequilibrium electron and ion distribution functions, and the self-consistent evolution of the current density in such a nonequilibrium plasma. We describe a code, LHMOD, which we have developed to treat these aspects of current drive and heating in tokamaks. We present results obtained by applying the code to a computation of current ramp-up and to an investigation of the possible importance of minority hydrogen absorption in a deuterium plasma as the ''density limit'' to current drive is approached.

  4. Electron heating using lower hybrid waves in the PLT tokamak

    SciTech Connect

    Bell, R.E.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Luce, T.; Motley, R.; Ono, M.; Stevens, J.; von Goeler, S.

    1987-06-01

    Lower hybrid waves with a narrow high velocity wave spectrum have been used to achieve high central electron temperatures in a tokamak plasma. Waves with a frequency of 2.45 GHz launched by a 16-waveguide grill at a power level less than 600 kW were used to increase the central electron temperature of the PLT plasma from 2.2 keV to 5 keV. The magnitude of the temperature increase depends strongly on the phase difference between the waveguides and on the direction of the launched wave. A reduction in the central electron thermal diffusivity is associated with the peaked electron temperature profiles of lower hybrid current-driven plasmas. 16 refs.

  5. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Giruzzi, G.; Napoli, F.; Galli, A.; Schettini, G.; Tuccillo, A. A.

    2014-02-01

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (Te_periphery). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (Te_periphery). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a˜0.8, f0=144 GHz), an increase of Te in the outer plasma (from 40 eV to 80 eV at r/a˜0.8) is expected by the JETTO code

  6. Lower hybrid current drive favoured by electron cyclotron radiofrequency heating

    SciTech Connect

    Cesario, R.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Tuccillo, A. A.; Giruzzi, G.; Napoli, F.; Schettini, G.

    2014-02-12

    The important goal of adding to the bootstrap a fraction of non-inductive plasma current, which would be controlled for obtaining and optimizing steady-state profiles, can be reached by using the Current Drive produced by Lower Hybrid waves (LHCD). FTU (Frascati Tokamak Upgrade) experiments demonstrated, indeed, that LHCD is effective at reactor-graded high plasma density, and the LH spectral broadening is reduced, operating with higher electron temperature in the outer region of plasma column (T{sub e-periphery}). This method was obtained following the guidelines of theoretical predictions indicating that the broadening of launched spectrum produced by parametric instability (PI) should be reduced, and the LHCD effect at high density consequently enabled, under higher (T{sub e-periphery}). In FTU, the temperature increase in the outer plasma region was obtained by operating with reduced particle recycling, lithized walls and deep gas fuelling by means of fast pellet. Heating plasma periphery with electron cyclotron resonant waves (ECRH) will provide a further tool for achieving steady-state operations. New FTU experimental results are presented here, demonstrating that temperature effect at the plasma periphery, affecting LH penetration, occurs in a range of plasma parameters broader than in previous work. New information is also shown on the modelling assessing frequencies and growth rates of the PI coupled modes responsible of spectral broadening. Finally, we present the design of an experiment scheduled on FTU next campaign, where ECRH power is used to slightly increase the electron temperature in the outer plasma region of a high-density discharge aiming at restoring LHCD. Consequent to model results, by operating with a toroidal magnetic field of 6.3 T, useful for locating the electron cyclotron resonant layer at the periphery of the plasma column (r/a∼0.8, f{sub 0}=144 GHz), an increase of T{sub e} in the outer plasma (from 40 eV to 80 eV at r/a∼0.8) is

  7. Effects of Lower-hybrid Waves on Electron And Ion Heating During Asymmetric Reconnection

    NASA Astrophysics Data System (ADS)

    Wang, S.; Chen, L. J.; Hesse, M.; Wilson, L. B., III; Bessho, N.; Gershman, D. J.; Dorelli, J.; Giles, B. L.; Torbert, R. B.; Pollock, C.; Strangeway, R. J.; Ergun, R.; Burch, J. L.; Avanov, L. A.; Lavraud, B.; Moore, T. E.; Saito, Y.

    2016-12-01

    During asymmetric reconnection, lower-hybrid waves are often observed near the magnetospheric separatrix region at the density gradient. With MMS observations, we identify multiple events where magnetosheath electrons are substantially heated in the parallel direction towards the magnetosphere near the magnetospheric separatrix region, which cannot be completely explained by heating mechanisms predicted in 2D simulations with a limited range of setup parameters, e.g., the large-scale parallel potential. Such heating is accompanied with electromagnetic lower-hybrid-like waves, which were predicted in theory and simulation to develop close to the X-line. Nongyrotropic distributions for magnetosheath ions due to finite gyro-radius effects could still exist in the wave region. Magnetospheric cold ions, when present, are heated and possibly demagnetized by waves. By analyzing the waves and particle distributions, we will estimate the contribution of lower-hybrid waves in heating ions and electrons, look for conditions for lower-hybrid waves to be important in interacting with particles, e.g., distance from the X-line, guide field strength, upstream density and temperature conditions.

  8. Lower hybrid heating associated with mode conversion on the Wisconsin toroidal octupole

    SciTech Connect

    Owens, T L; Scharer, J E

    1980-09-01

    Wave heating experiments and wave propagation measurements in the lower hybrid range of frequencies are described. A T antenna launches up to 40 kW of wave power at 140 MHz with better than 95% coupling efficiency. Ion temperature increases of ..delta..T/sub i/ = 37 eV are measured with ..delta..T/sub parallel//T/sub io/ = 12. Ion heating is strongly localized near the lower hybrid turning point for a peak value of (k/sub parallel//..omega..)(KT/sub i//m/sub e/)/sup 1/2/ approx. = 0.3 corresponding to an upshifted k/sub parallel/ spectrum. Wavelength measurements indicate that the upshift in k/sub parallel/ occurs in the interior of the plasma. Other wave measurements show the existence of a large amplitude weakly damped fast wave component in addition to the slow wave.

  9. Voyager observations of lower hybrid noise in the Io plasma torus and anomalous plasma heating rates

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.; Coroniti, F. V.; Kurth, W. S.; Scarf, F. L.

    1985-01-01

    A study of Voyager 1 electric field measurements obtained by the plasma wave instrument in the Io plasma torus has been carried out. A survey of the data has revealed the presence of persistent peaks in electric field spectra in the frequency range 100-600 Hz consistent with their identification as lower hybrid noise for a heavy-ion plasma of sulfur and oxygen. Typical wave intensities are 0.1 mV/m, and the spectra also show significant Doppler broadening, Delta omega/omega approximately 1. A theoretical analysis of lower hybrid wave generation by a bump-on-tail ring distribution of ions is given. The model is appropriate for plasmas with a superthermal pickup ion population present. A general methodology is used to demonstrate that the maximum plasma heating rate possible through anomalous wave-particle heat exchange is less than approximately 10 to the -14th ergs per cu cm per s. Although insufficient to meet the power requirement of the EUV-emitting warm torus, the heating rate is large enough to maintain a low-density (0.01-0.1 percent) superthermal electron population of keV electrons, which may lead to a small but significant anomalous ionization effect.

  10. Excitation of ion-cyclotron harmonic waves in lower-hybrid heating

    NASA Astrophysics Data System (ADS)

    Villalon, E.

    1981-06-01

    The parametric excitation of ion-cyclotron waves by a lower-hybrid pump field is studied in the assumption that the magnitude of the pump is constant. The spatial amplification factor is given as a function of the wavenumber mismatch as produced by the plasma density gradient, and of the linear damping rates of the excited ion-cyclotron and sideband waves. The analysis is applied to plasma edge parameters relevant to the JFT2 heating experiment. It is found that ion-cyclotron harmonic modes are excited depending on pump frequency and plasma density. These modes are shown to have finite damping rates. The parallel refractive indices n1z of the excited sideband fields are found to be always larger than that of the driven pump field. Transition to quasi-mode decay occurs either by decreasing the pump frequency or by increasing the applied RF-power.

  11. Survey of lower hybrid experiments

    SciTech Connect

    Porkolab, M.

    1983-05-01

    Recent developments in lower hybrid experiments are discussed. While a decade ago there were many small scale experiments which verified the fundamental aspects of wave propagation near and above the lower hybrid frequency, more recently the greatest interest has been in using lower hybrid waves to heat the plasma, and to drive currents in toroidal devices. While in the mid 70's lower hybrid heating experiments in tokamaks were carried out at the 100 to 200 kW level, in recent experiments powers up to 1 MW have been injected in the Alcator C tokamak at MIT. Also, while the earlier lower hybrid experiments concentrated on the ion heating regime (..omega.. approx. = ..omega../sub LH/), in the more recent experiments the electron heating regime (..omega.. greater than or equal to 2..omega../sub LH/) and the current drive regime (..omega.. > 2..omega../sub LH/) has been explored to a greater extent. The reason for this is that bulk ion heating near the mode conversion layer appears to be less reproducible and more difficult to achieve than electron heating (and concommitant collisional bulk ion heating). While the reason for this is not well understood, it is likely that as the wave frequency gets closer to the lower hybrid frequency the shorter wavelength waves may be more effectively absorbed and/or scattered near the plasma surface by nonlinear effects (parametric instabilities, low frequency fluctuations, etc.). Toroidal effects may further enhance such mechanisms.

  12. Role of lower hybrid waves in ion heating at dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Greco, A.; Artemyev, A.; Zimbardo, G.; Angelopoulos, V.; Runov, A.

    2017-05-01

    One of the important sources of hot ions in the magnetotail is the bursty bulk flows propagating away from the reconnection region and heating the ambient plasma. Charged particles interact with nonlinear magnetic field pulses (dipolarization fronts, DFs) embedded into these flows. The convection electric fields associated with DF propagation are known to reflect and accelerate ambient ions. Moreover, a wide range of waves is observed within/near these fronts, the electric field fluctuations being dominated by the lower hybrid drift (LHD) instability. Here we investigate the potential role of these waves in the further acceleration of ambient ions. We use a LHD wave emission profile superimposed on the leading edge of a two-dimensional model profile of a DF and a test particle approach. We show that LHD waves with realistic amplitudes can significantly increase the upper limit of energies gained by ions. Wave-particle interaction near the front is more effective in producing superthermal ions than in increasing the flux of thermal ions. Comparison of test particle simulations and Time History of Events and Macroscale Interactions during Substorms observations show that ion acceleration by LHD waves is more important for slower DFs.

  13. Lower Hybrid Heating and Current Drive on the Alcator C-Mod Tokamak

    SciTech Connect

    R. Wilson, R. Parker, M. Bitter, P.T. Bonoli, C. Fiore, R.W. Harvey, K. Hill, A.E. Hubbard, J.W. Hughes, A. Ince-Cushman, C. Kessel, J.S. Ko, O. Meneghini, C.K. Phillips, M. Porkolab, J. Rice, A.E. Schmidt, S. Scott,S. Shiraiwa, E. Valeo, G.Wallace, J.C. Wright and the Alcator C-Mod Team

    2009-11-20

    On the Alcator C-Mod tokamak, lower hybrid current drive (LHCD) is being used to modify the current profile with the aim of obtaining advanced tokamak (AT) performance in plasmas with parameters similar to those that would be required on ITER. To date, power levels in excess of 1 MW at a frequency of 4.6 GHz have been coupled into a variety of plasmas. Experiments have established that LHCD on C-Mod behaves globally as predicted by theory. Bulk current drive efficiencies, n20IlhR/Plh ~ 0.25, inferred from magnetics and MSE are in line with theory. Quantitative comparisons between local measurements, MSE, ECE and hard x-ray bremsstrahlung, and theory/simulation using the GENRAY, TORIC-LH CQL3D and TSC-LSC codes have been performed. These comparisons have demonstrated the off-axis localization of the current drive, its magnitude and location dependence on the launched n|| spectrum, and the use of LHCD during the current ramp to save volt-seconds and delay the peaking of the current profile. Broadening of the x-ray emission profile during ICRF heating indicates that the current drive location can be controlled by the electron temperature, as expected. In addition, an alteration in the plasma toroidal rotation profile during LHCD has been observed with a significant rotation in the counter current direction. Notably, the rotation is accompanied by peaking of the density and temperature profiles on a current diffusion time scale inside of the half radius where the LH absorption is taking place.

  14. Dynamics of the electron thermal diffusivity at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak

    SciTech Connect

    Kouprienko, D. V.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Kantor, M. Yu.; Lashkul, S. I.; Esipov, L. A.

    2010-05-15

    The dynamics of electron heat transport at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak was studied experimentally. Evolution of the profiles of the electron temperature and density was thoroughly investigated under conditions of fast variation in the plasma parameters. The energy balance in the electron channel is calculated with the help of the ASTRA code by using the measured plasma parameters. Correlation is revealed between the dynamics of electron heat transport and the behavior of small-scale drift turbulence measured using the enhanced scattering correlation diagnostics. The suppression of heat transfer and turbulence agrees well with the increase in the shear of poloidal plasma rotation calculated from experimental data in the neoclassical approximation.

  15. Dynamics of the electron thermal diffusivity at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak

    NASA Astrophysics Data System (ADS)

    Kouprienko, D. V.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Kantor, M. Yu.; Lashkul, S. I.; Esipov, L. A.

    2010-05-01

    The dynamics of electron heat transport at improved energy confinement during lower hybrid plasma heating in the FT-2 tokamak was studied experimentally. Evolution of the profiles of the electron temperature and density was thoroughly investigated under conditions of fast variation in the plasma parameters. The energy balance in the electron channel is calculated with the help of the ASTRA code by using the measured plasma parameters. Correlation is revealed between the dynamics of electron heat transport and the behavior of small-scale drift turbulence measured using the enhanced scattering correlation diagnostics. The suppression of heat transfer and turbulence agrees well with the increase in the shear of poloidal plasma rotation calculated from experimental data in the neoclassical approximation.

  16. Observation of Zero Current Density in the Core of JET Discharges with Lower Hybrid Heating and Current Drive

    NASA Astrophysics Data System (ADS)

    Hawkes, N. C.; Stratton, B. C.; Tala, T.; Challis, C. D.; Conway, G.; Deangelis, R.; Giroud, C.; Hobirk, J.; Joffrin, E.; Lomas, P.; Lotte, P.; Mailloux, J.; Mazon, D.; Rachlew, E.; Reyes-Cortes, S.; Solano, E.; Zastrow, K.-D.

    2001-09-01

    Simultaneous current ramping and application of lower hybrid heating and current drive (LHCD) have produced a region with zero current density within measurement errors in the core ( r/a<=0.2) of JET tokamak optimized shear discharges. The reduction of core current density is consistent with a simple physical explanation and numerical simulations of radial current diffusion including the effects of LHCD. However, the core current density is clamped at zero, indicating the existence of a physical mechanism which prevents it from becoming negative.

  17. Lower Hybrid Current Drive and Heating for the National Transport Code Collaboration

    NASA Astrophysics Data System (ADS)

    Ignat, D. W.; Jardin, S. C.; McCune, D. C.; Valeo, E. J.

    2000-10-01

    The Lower hybrid Simulation Code LSC was originally written as a subroutine to the Toroidal Simulation Code TSC (Jardin, Pomphrey, Kessel, et al) and subsequently ported to a subroutine of TRANSP. Modifications to simplify the use of the LSC both as a callable module, and also independently of larger transport codes, and improve the documentation have been undertaken with the goal of installing LSC in the NTCC library. The physical model, which includes ray tracing from a Brambilla spectrum, 1D Fokker-Planck development of the electron distribution, the Karney-Fisch treatment of the electric field, heuristic diffusion of current and power and wall scattering, has not been changed. The computational approach is to suppress or remove from the control of the user numerical parameters such as step size and number of iterations while changing some code to be extremely stable in varied conditions. Essential graphics are now output as gnuplot commands and data for off-line post processing, but the original outputs to sglib are retained as an option. Examples of output are shown.

  18. Heat flux of fast electrons to the limiter in lower hybrid current drive plasma on WT-3

    NASA Astrophysics Data System (ADS)

    Maekawa, T.; Nakamura, M.; Komatsu, T.; Kishino, T.; Kishigami, Y.; Makino, K.; Maehara, T.; Minami, T.; Hanada, K.; Iida, M.; Terumichi, Y.; Tanaka, S.

    1992-10-01

    The heat flux of fast electrons to the local limiter in LHCD plasmas in WT-3 has been investigated by thermal measurement of the limiter. The amount of the heat flux (PFE) is found to be about on third of the net radiofrequency power (Prf) injected into the plasma for various discharge conditions. The results combined with other measurements show that the confinement of fast electrons deteriorates as Prf increases. This direct loss of fast electrons is one of the causes of the degradation of the current drive efficiency. Heat transport of the bulk electrons is also found to increase as Prf increases. Experimental results indicate that a significant part of the remaining RF power (2Prf/3) flows to the bulk electrons. The slowing down power of fast electrons in the energy range above several tens of keV is estimated to be quite small compared with 2Prf/3, suggesting that a significant part of the remaining power flows to the bulk electrons via other channels. A plausible channel is the absorption of RF power via lower energy electrons by an upshift of the parallel refractive index of the injected lower hybrid waves. This seems to be another cause of the degradation of the current drive efficiency

  19. Modulational Instability of Lower Hybrid Waves,

    DTIC Science & Technology

    1984-06-01

    for the power density pployed in the lower hybrid heating experiments in large tokamaks . C. ~) ~DTIC EECTE 2o. Gi~iITION/AVAILABILITY OF ABSTRACT 2... tokamaks . 1. Introduction The need of supplementary plasma heating in magnetic fusion devices has been generally recognized for achieving the...imposed magnetic field. For the power densities commonly used in the lower hybrid heating experiments in large tokamaks , the growth rate given in (12) is

  20. A study of quasi-mode parametric excitations in lower-hybrid heating of tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Villalon, E.; Bers, A.

    1980-03-01

    A detailed linear and non-linear analysis of quasi-mode parametric excitations, relevant to experiments in supplementary heating of tokamak plasmas, is presented. The linear analysis includes the full ion-cyclotron harmonic quasi-mode spectrum, while the nonlinear one, considering depletion of the pump electric field, is applied to the recent Alcator A heating experiment. The quasi-mode excitations are studied independently for the plasma edge and the main bulk of the plasma, and for the two typical regimes in overall density. It is concluded that the excited spectrum has a frequency close to the initial pump frequency, while the wave-number spectrum may be different from the initial linear spectrum.

  1. Experimental results of H-mode power threshold with lower hybrid wave heating on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Huang, Canbin; Gao, Xiang; Liu, Zixi; Han, Xiang; Zhang, Tao; Wang, Yumin; Zang, Shoubiao; Kong, Defeng; the EAST Team

    2016-07-01

    The density roll-over dependence on H-mode power threshold is observed on EAST for the first time. In campaign 2014 and 2015 shots with a toroidal field of 2.25 T have observed roll-over dependence with lower hybrid wave as the only auxiliary heating method, while shots with a toroidal field of 1.79 T and 1.9 T exhibit linear dependence consistent with scaling law. The density of minimum power for accessing H-mode on EAST has different plasma current values of 400 kA and 500 kA, and is better described in the normalized Greenwald fraction {{\\widehat{n}}\\text{e,min}}/{{n}\\text{G}}~≈ ~0.4 at {{B}\\text{T}}=2.35 \\text{T} . The absence of {{\\widehat{n}}\\text{e,min}} in 1.7 T and 1.8 T may be attributed to the positive dependence with toroidal field. Besides, correlation analysis of H-mode power threshold and divertor geometry in scanning X-point is summarized and compared. Outer leg length (distance from X-point to outer strike point) has the highest correlation coefficient with H-mode power threshold, which explains the data scattering within the same plasma parameters. A new equation of scaling law is proposed: {{P}\\text{th \\_\\text{EAST}}}=4.27\\text{OL}{{\\text{L}}1.4}× {{P}\\text{th \\_\\text{08}}}.~ Neutral particles are believed to be the hidden factor in different divertor geometry, and play a negative role in L-H transition via charge exchange damping.

  2. Transition into the improved core confinement mode as a possible mechanism for additional electron heating observed in the lower hybrid current drive experiments at the FT-2 tokamak

    NASA Astrophysics Data System (ADS)

    Lashkul, S. I.; Altukhov, A. B.; Gurchenko, A. D.; Gusakov, E. Z.; Dyachenko, V. V.; Esipov, L. A.; Irzak, M. A.; Kantor, M. Yu.; Kouprienko, D. V.; Perevalov, A. A.; Saveliev, A. N.; Stepanov, A. Yu.; Shatalin, S. V.

    2017-07-01

    In experiments on lower hybrid current drive (LHCD) carried out at the FT-2 tokamak, a substantial increase in the central electron temperature T e ( r = 0 cm) from 550 to 700 eV was observed. A complex simulation procedure is used to explain a fairly high LHCD efficiency and the observed additional heating, which can be attributed to a transition into the improved core confinement (ICC) mode. For numerical simulations, data obtained in experiments with deuterium plasma at < n e > = 1.6 × 1019 m-3 were used. Simulations by the GRILL3D, FRTC, and ASTRA codes have shown that the increase in the density and central temperature is apparently caused by a significant suppression of heat transport in the electron component. The mechanism for transition into the improved confinement mode at r < 3 cm can be associated with the broadening of the plasma current channel due to the lower hybrid drive of the current carried by superthermal and runaway electrons. In this case, the magnetic shear s = ( r/ q)( dq/ dr) in the axial region of the plasma column almost vanishes during the RF pulse. In this study, the effect of lower hybrid waves on the plasma parameters, resulting in a transition into the ICC mode, is considered. New experimental and calculated data are presented that evidence in favor of such a transition. Special attention is paid to the existence of a threshold for the transition into the ICC mode in deuterium plasma.

  3. Enhanced Production of Runaway Electrons during a Disruptive Termination of Discharges Heated with Lower Hybrid Power in the Frascati Tokamak Upgrade

    SciTech Connect

    Martin-Solis, J. R.; Esposito, B.; Panaccione, L.; Sanchez, R.; Poli, F. M.

    2006-10-20

    We report on the observation of a large production of runaway electrons during a disruptive termination of discharges heated with lower-hybrid waves at the Frascati Tokamak Upgrade. The runaway current plateaus, which can carry up to 80% of the predisruptive current, are observed more often than in normal Ohmic disruptions. The largest runaway currents correspond to the slowest plasma current decay rates. This trend is opposite to what is observed in most tokamaks. We attribute this anomalous behavior to the acceleration of the preexistent wave-resonant suprathermal electrons during the disruption decay phase. These results could be relevant for the operation of the ITER tokamak whenever a sizeable amount of lower-hybrid power is made available.

  4. Lower hybrid wavepacket stochasticity revisited

    SciTech Connect

    Fuchs, V.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Seidl, J.; Urban, J.

    2014-02-12

    Analysis is presented in support of the explanation in Ref. [1] for the observation of relativistic electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [1,2]. LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B≅0.5 T, Ðœ„n{sub e}≅5×10{sup 17} 1/m{sup 3} plasma at T{sub e}≅10 eV bulk temperature with an EC generated 50 keV component [1]. The fast electrons cycle around flux or drift surfaces with few collisions, sufficient for randomizing phases but insufficient for slowing fast electrons down, and thus repeatedly interact with the rf field close to the antenna mouth, gaining energy in the process. Our antenna calculations reveal a standing electric field pattern at the antenna mouth, with which we formulate the electron dynamics via a relativistic Hamiltonian. A simple approximation of the equations of motion leads to a relativistic generalization of the area-preserving Fermi-Ulam (F-U) map [3], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, the F-U map predicts an LH driven current of about 230 A, at about 225 W of dissipated power, in good agreement with the measurements and analysis reported in [1].

  5. Lower hybrid current drive and ion cyclotron range of frequencies heating experiments in H-mode plasmas in Experimental Advanced Superconducting Tokomak

    SciTech Connect

    Zhang, X. J.; Wan, B. N. Zhao, Y. P.; Ding, B. J.; Xu, G. S.; Gong, X. Z.; Li, J. G.; Lin, Y.; Wukitch, S.; Taylor, G.; Noterdaeme, J. M.; Braun, F.; Magne, R.; Litaudon, X.; Kumazawa, R.; Kasahara, H.

    2014-06-15

    An ion cyclotron range of frequencies (ICRF) system with power up to 6.0 MW and a lower hybrid current drive (LHCD) system up to 4 MW have been applied for heating and current drive experiments in Experimental Advanced Superconducting Tokomak (EAST). Significant progress has been made with ICRF heating and LHCD for realizing the H-mode plasma operation in EAST. During 2010 and 2012 experimental campaigns, ICRF heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H minority heating (H-MH) mode. The H-MH mode produced good plasma performance, and realized H-mode using ICRF power alone in 2012. In 2010, H-modes were generated and sustained by LHCD alone, where lithium coating and gas puffing near the mouth of the LH launcher were applied to improve the LHCD power coupling and penetration into the core plasmas of H-modes. In 2012, the combination of LHCD and ICRH power extended the H-mode duration up to over 30 s. H-modes with various types of edge localized modes (ELMs) have been achieved with H{sub IPB98}(y, 2) ranging from 0.7 to over unity. A brief overview of LHCD and ICRF Heating experiment and their application in achieving H-mode operation during these two campaigns will be presented.

  6. Hybrid Heat Exchangers

    NASA Technical Reports Server (NTRS)

    Tu, Jianping Gene; Shih, Wei

    2010-01-01

    A hybrid light-weight heat exchanger concept has been developed that uses high-conductivity carbon-carbon (C-C) composites as the heat-transfer fins and uses conventional high-temperature metals, such as Inconel, nickel, and titanium as the parting sheets to meet leakage and structural requirements. In order to maximize thermal conductivity, the majority of carbon fiber is aligned in the fin direction resulting in 300 W/m.K or higher conductivity in the fin directions. As a result of this fiber orientation, the coefficient of thermal expansion (CTE) of the C-C composite in both non-fiber directions matches well with the CTE of various high-temperature metal alloys. This allows the joining of fins and parting sheets by using high-temperature braze alloys.

  7. Localized lower hybrid acceleration of ionospheric plasma

    NASA Technical Reports Server (NTRS)

    Kintner, P. M.; Vago, J.; Chesney, S.; Arnoldy, R. L.; Lynch, K. A.; Pollock, C. J.; Moore, T. E.

    1992-01-01

    Observations of the transverse acceleration of ions in localized regions of intense lower hybrid waves at altitudes near 1000 km in the auroral ionosphere are reported. The acceleration regions are thin filaments with dimensions across geomagnetic field lines of about 50-100 m corresponding to 5-10 thermal ion gyroradii or one hot ion gyroradius. Within the acceleration region lower hybrid waves reach peak-to-peak amplitudes of 100-300 mV/m and ions are accelerated transversely with characteristic energies of the order of 10 eV. These observations are consistent with theories of lower hybrid wave collapse.

  8. Lower Hybrid to Whistler Wave Conversion

    SciTech Connect

    Winske, Dan

    2012-07-16

    In this presentation we discuss recent work concerning the conversion of whistler waves to lower hybrid waves (as well as the inverse process). These efforts have been motivated by the issue of attenuation of upward propagating whistler waves in the ionosphere generated by VLF transmitters on the ground, i.e., the 'Starks 20 db' problem, which affects the lifetimes of energetic electrons trapped in the geomagnetic field at low magnetic altitude (L). We discuss recent fluid and kinetic plasma simulations as well as ongoing experiments at UCLA to quantify linear and nonlinear mode conversion of lower hybrid to whistler waves.

  9. Dynamic modeling of lower hybrid current drive

    SciTech Connect

    Ignat, D.W.; Valeo, E.J.; Jardin, S.C.

    1993-10-01

    A computational model of lower hybrid current drive in the presence of an electric field is described and some results are given. Details of geometry, plasma profiles and circuit equations are treated carefully. Two-dimensional velocity space effects are approximated in a one-dimensional Fokker-Planck treatment.

  10. Nonlinear lower hybrid modeling in tokamak plasmas

    SciTech Connect

    Napoli, F.; Schettini, G.; Castaldo, C.; Cesario, R.

    2014-02-12

    We present here new results concerning the nonlinear mechanism underlying the observed spectral broadening produced by parametric instabilities occurring at the edge of tokamak plasmas in present day LHCD (lower hybrid current drive) experiments. Low frequency (LF) ion-sound evanescent modes (quasi-modes) are the main parametric decay channel which drives a nonlinear mode coupling of lower hybrid (LH) waves. The spectrum of the LF fluctuations is calculated here considering the beating of the launched LH wave at the radiofrequency (RF) operating line frequency (pump wave) with the noisy background of the RF power generator. This spectrum is calculated in the frame of the kinetic theory, following a perturbative approach. Numerical solutions of the nonlinear LH wave equation show the evolution of the nonlinear mode coupling in condition of a finite depletion of the pump power. The role of the presence of heavy ions in a Deuterium plasma in mitigating the nonlinear effects is analyzed.

  11. Currents generated by lower hybrid waves

    SciTech Connect

    McWilliams, R.; Motley, R.W.

    1981-04-01

    Electron currents can be driven in a linear plasma by the absorption of lower hybrid waves excited primarily in one direction. Current-drive has been demonstrated both for collisional and resonant-electron absorption. The magnitude of the excited currents is compared with the predictions from an electron kinetic equation with a Lorentz collision operator in the regime k/sub parallel to/v/sub te//..omega..<<1.

  12. A 3 megawatt lower hybrid generator for TPX

    SciTech Connect

    Greenough, N.; Bernabei, S.; Swain, D.

    1995-12-31

    The lower hybrid (LH) system is part of an overall heating and current drive system for TPX. The LH system is required to provide off-axis current profile control, efficient bulk current drive at low plasma temperatures, and electron heating. The device and facility will provide 4 MW of generated LH/LHCD power with 3 MW of power to the plasma at 3.7 GHz through one horizontal port. This paper will describe the RF generator system that supplies RF power to the launcher. The LH launcher is described separately in a paper by Paul Goranson of ORNL.

  13. Modulational instability of lower hybrid waves at the magnetopause

    NASA Technical Reports Server (NTRS)

    Shapiro, V. D.; Shevchenko, V. I.; Cargill, P. J.; Papadopoulos, K.

    1994-01-01

    The role of lower bybrid waesat the magnetopause is reexamined. It is found that for the maximum observed wave power, the lower hybrid waves are unstable to a modulational instability on the magnetosheath side of the magnetopause. The modulational instabitlity leads to localized field structures oriented predominantly along the magnetic field. Such patchy lower hybrid turbulence has been observed by some spacecraft. As a result of the large T(sub i)/T(sub e) ratio, the waves saturate by ion heating; as a result, unlike other settings (e.g. comets, critical ionization phenomena) energetic electrons are not expected. The stochasitc electron transport in the presence of such turbulence is analyzed and results in strongly anistropic electron diffusion, with the dominant direction across the magnetic field. The diffusion rate exceeds significantly that expected from quasi-linear considerations and, for magnetospause parameters, also exceeds the rate discussed by Sonnerup (1980).

  14. A modified lower hybrid coupler for TPX

    SciTech Connect

    Bernabei, S.; Goranson, P.; Greenough, N.; Swain, D.

    1996-02-01

    Efforts have concentrated on redesigning the configuration of the Lower Hybrid coupler for the TPX tokamak. Several concerns motivated this redesign: reduce the effect of thermal incompatibility between coupler and rf-window material, reduce weight, reduce the risk of window failure and address the problem of replaceability, increase the reliability by reducing the number of connections and finally, reduce the total cost. The result is a highly compact, light and easily serviceable coupler which incorporates some of the simplicity of the multijunction coupler but preserves the spectral flexibility of a conventional coupler. {copyright} {ital 1996 American Institute of Physics.}

  15. A modified lower hybrid coupler for TPX

    SciTech Connect

    Bernabei, S.; Greenough, N.; Goranson, P.; Swain, D.

    1995-07-01

    Efforts have concentrated on redesigning the configuration of the Lower Hybrid coupler for TPX tokamak. Several concerns motivated this redesign: reduce the effect of thermal incompatibility between coupler and rf-window material, reduce weight, reduce the risk of wind failure and address the problem of replaceability, increase the reliability by reducing the number connections and finally, reduce the total cost. The result is a highly compact, light and easily serviceable coupler which incorporates some of the simplicity of the multifunction coupler but preserves the spectral flexibility of a conventional coupler.

  16. A modified lower hybrid coupler for TPX

    NASA Astrophysics Data System (ADS)

    Bernabei, Stefano; Goranson, Paul; Greenough, Nevell; Swain, David

    1996-02-01

    Efforts have concentrated on redesigning the configuration of the Lower Hybrid coupler for the TPX tokamak. Several concerns motivated this redesign: reduce the effect of thermal incompatibility between coupler and rf-window material, reduce weight, reduce the risk of window failure and address the problem of replaceability, increase the reliability by reducing the number of connections and finally, reduce the total cost. The result is a highly compact, light and easily serviceable coupler which incorporates some of the simplicity of the multijunction coupler but preserves the spectral flexibility of a conventional coupler.

  17. A Third Generation Lower Hybrid Coupler

    SciTech Connect

    S. Bernabei; J. Hosea; C. Kung; D. Loesser; J. Rushinski; J.R. Wilson; R. Parker

    2001-12-05

    The Princeton Plasma Physics Laboratory (PPPL) and the Massachusetts Institute of Technology (MIT) are preparing an experiment of current profile control using lower-hybrid waves in order to produce and sustain advanced tokamak regimes in steady-state conditions in Alcator C-Mod. Unlike JET's, ToreSupra's and JT60's couplers, the C-Mod lower-hybrid coupler does not employ the now conventional multijunction design, but will have similar characteristics, compactness, and internal power division while retaining full control of the antenna element phasing. This is achieved by using 3 dB vertical power splitters and a stack of laminated plates with the waveguides milled in them. Construction is simplified and allows easy control and maintenance of all parts. Many precautions are taken to avoid arcing. Special care is also taken to avoid the recycling of reflected power which could affect the coupling and the launched n(subscript ||) spectrum. The results from C-Mod should allow further simplification in the designs of the coupler planned for KSTAR (Korea Superconducting Tokamak Advanced Research) and ITER (International Thermonuclear Experimental Reactor).

  18. Lower hybrid drift waves: space observations.

    PubMed

    Norgren, Cecilia; Vaivads, Andris; Khotyaintsev, Yuri V; André, Mats

    2012-08-03

    Lower hybrid drift waves (LHDWs) are commonly observed at plasma boundaries in space and laboratory, often having the strongest measured electric fields within these regions. We use data from two of the Cluster satellites (C3 and C4) located in Earth's magnetotail and separated by a distance of the order of the electron gyroscale. These conditions allow us, for the first time, to make cross-spacecraft correlations of the LHDWs and to determine the phase velocity and wavelength of the LHDWs. Our results are in good agreement with the theoretical prediction. We show that the electrostatic potential of LHDWs is linearly related to fluctuations in the magnetic field magnitude, which allows us to determine the velocity vector through the relation ∫δEdt·v = ϕ(δB)(∥). The electrostatic potential fluctuations correspond to ∼10% of the electron temperature, which suggests that the waves can strongly affect the electron dynamics.

  19. Lower hybrid wave phenomena associated with density depletions

    NASA Technical Reports Server (NTRS)

    Seyler, C. E.

    1994-01-01

    A fluid description of lower hybrid, whistler and magnetosonic waves is applied to study wave phenomena near the lower hybrid resonance associated with plasma density depletions. The goal is to understand the nature of lower hybrid cavitons and spikelets often associated with transverse ion acceleration events in the auroral ionosphere. Three-dimensional simulations show the ponderomotive force leads to the formation of a density cavity (caviton) in which lower hybrid wave energy is concentrated (spikelet) resulting in a three-dimensional collapse of the configuration. Plasma density depletions of the order of a few percent are shown to greatly modify the homogeneous linear properties of lower hybrid waves and account for many of the observed features of lower hybrid spikelets.

  20. Lower hybrid system design for the Tokamak physics experiment

    SciTech Connect

    Goranson, P.L.; Conner, D.L.; Swain, D.W.; Yugo, J.J.; Bernabei, S.; Greenough, N.

    1995-12-31

    The lower hybrid (LH) launcher configuration has been redesigned to integrate the functions of the vertical four-way power splitter and the front waveguide array (front array). This permits 256 waveguide channels to be fed by only 64 waveguides at the vacuum window interface. The resulting configuration is a more compact coupler, which incorporates the simplicity of a multijunction coupler while preserving the spectral flexibility of a conventional lower hybrid launcher. Other spin-offs of the redesign are reduction in thermal incompatibility between the front array and vacuum windows, improved maintainability, in situ vacuum window replacement, a reduced number of radio frequency (rf) connections, and a weight reduction of 7300 kg. There should be a significant cost reduction as well. Issues associated with the launcher design and fabrication have been addressed by a research and development program that includes brazing of the front array and testing of the power splitter configuration to confirm that phase errors due to reflections in the shorted splitter legs will not significantly impact the rf spectrum. The Conceptual Design Review requires that radiation levels at the torus radial port mounting flange and outer surface of the toroidal field coils should be sufficiently low to permit hands-on maintenance. Low activation materials and neutron shielding are incorporated in the launcher design to meet these requirements. The launcher is configured to couple 3 MW of steady state LH heating/LH current drive power at 3.7 GHz to the Tokamak Physics Experiment plasma.

  1. Radio wave heating of the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Freeman, Matthew Jack

    1993-06-01

    The interaction of high power, high frequency radio waves with the lower ionosphere is becoming an area of considerable theoretical and experimental interest. In particular, significant ohmic heating of the collisional, weakly ionized ionospheric plasma is possible, which can change the absorptive and conductive properties of the plasma in a nonlinear fashion. Precisely controlled heating may have applications to the production of ELF/VLF waves in the ionosphere by the stimulation when inferring the physical parameters of the sources. The necessary generalizations to the standard synchrotron self-Compton theory are presented. Relativistic induced Compton scattering is very sensitive to the number of mildly relativistic electrons in the source, and so may be a useful probe to this portion of the electron energy distribution.

  2. A thermoacoustic-Stirling hybrid heat engine

    NASA Astrophysics Data System (ADS)

    Backhaus, Scott

    2000-03-01

    By combining the thermodynamic reversibility of the Stirling cycle and the simplicity of thermoacoustic heat engines, a new type of hybrid heat engine has been developed. It has no moving parts and converts heat into acoustic work at 42% of the Carnot efficiency, a 50% increase over other no-moving-parts heat engines. By carefully shaping crucial components, boundary-layer processes and hydrodynamic end effects are used to suppress the acoustic streaming that would otherwise seriously degrade the engine performance. Streaming suppression is clearly demonstrated by measurements of temperature distributions and heat flows within the engine. Analysis of loss mechanisms suggest the path of future research on these engines.

  3. Hybrid microwave-cavity heat engine.

    PubMed

    Bergenfeldt, Christian; Samuelsson, Peter; Sothmann, Björn; Flindt, Christian; Büttiker, Markus

    2014-02-21

    We propose and analyze the use of hybrid microwave cavities as quantum heat engines. A possible realization consists of two macroscopically separated quantum-dot conductors coupled capacitively to the fundamental mode of a microwave cavity. We demonstrate that an electrical current can be induced in one conductor through cavity-mediated processes by heating up the other conductor. The heat engine can reach Carnot efficiency with optimal conversion of heat to work. When the system delivers the maximum power, the efficiency can be a large fraction of the Carnot efficiency. The heat engine functions even with moderate electronic relaxation and dephasing in the quantum dots. We provide detailed estimates for the electrical current and output power using realistic parameters.

  4. Is there lower hybrid wave collapse at auroral latitudes?: Theory versus observations

    NASA Astrophysics Data System (ADS)

    Robinson, P. A.; Melatos, A.; Rozmus, W.

    1996-10-01

    Observations of lower hybrid wave packets in density depletions at altitudes of 500 to 13,000 km are compared with predictions from the theory of lower hybrid wave nucleation and collapse. It is shown that a widely accepted interpretation of these cavities as collapsing lower hybrid wave packets localized in self-consistent density wells produced by their ponderomotive force is only partly consistent with observations. Observed potentials match or exceed those required for collapse and most observed length scales and aspect ratios lie in the theoretically predicted range. However, associated density perturbations appear to be almost always negative, contrary to theory based on ponderomotive force balance, which predicts them to be positive and negative equally often; moreover, they are typically 100 times greater in magnitude than this theory predicts. It is concluded that the electric-field and length-scale data are consistent with the occurrence of lower hybrid collapse, but that the lower hybrid waves either accumulate in preexisting density depressions, or produce the depressions ponderomotively via multiple collapses at a single site, or by means other than their ponderomotive force, as suggested by some previous authors. This work also suggests a possible resolution of conflicting results relating to the dominance of electron or ion heating by collapsing lower hybrid wave packets, with electron heating dominating for large ratios of electron temperature to ion temperature and ion heating prevailing in the opposite limit.

  5. Role of Lower-hybrid Resonances to Relativistic Electrons

    NASA Astrophysics Data System (ADS)

    Chen, S. H.; Fok, M. C. H.; Khazanov, G. V.

    2014-12-01

    The interplay of processes within Earth's radiation belts and the near-Earth plasma sheet play a major role in the energization, transport, and loss of energetic particles in the region. Both MHD and kinetic processes are found active even during geomagnetically quiet times in the flow-through region connecting the radiation belts and near-Earth plasma sheet. Many observations and modeling studies supported the importance of the interactions of waves and particles in vortices and reconnection regions. In particular, the lower-hybrid resonances, resonance branches between the ion and electron cyclotron frequencies in the plasma wave dispersion relations, could play an important role in converting flow energy in MHD scale to waves and heat ions and electrons in kinetic scale or vice versa. Recent observations from the Van Allen Probes and THEMIS spacecraft show enhancements of such wave activities occurred during the main phase of the geomagnetic storms when the relativistic electrons were going through the depletion and recovery cycles. The total wave powers in these events are comparable or even greater than those of whistler mode resonances along, indicating the physical processes at the lower-hybrid resonances are also important in energy conversion between waves and particles, particularly during the main phase of geomagnetic storms. We use multi-point measurements from the Van Allen Probes and THEMIS spacecraft to study the kinetic processes of how the flow energy is converted to heat or cool ions and electrons in the region connecting the radiation belts and near-Earth plasma sheet. Using the in-situ plasma measurements as inputs, we will run the Waves in Homogeneous and Anisotropic Multi-component Plasmas (WHAMP) plasma wave dispersion solver to study the growth rates and instabilities of these waves near the lower hybrid resonances as well as the Alfvenic and whistler branches at lower and higher frequencies, respectively. We will present studies of two

  6. Lower hybrid emission diagnostics on the NASA Lewis bumpy torus

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.

    1977-01-01

    The feasibility of using RF emission near the lower hybrid frequency of the NASA Lewis Bumpy Torus plasma for diagnostic purposes is examined. The emission is detected using a spectrum analyzer and a 50 omega miniature coaxial antenna that is sensitive to the polarization of the incoming signal. The frequency shift of the lower hybrid emission peak is monitored as a function of the background pressure, electrode voltage, electrode ring configuration and the strength of the toroidal dc magnetic field. Simultaneous measurements of the average plasma density are made with a polarization diplexing microwave interferometer. Data derived from the experiment are discussed with reference to the following: (1) the strength of the dc magnetic field in the emitting region; (2) comparison of the lower hybrid plasma density with the average plasma density; and (3) validity of the cold plasma lower hybrid resonance formula in the high density operating regime of the bumpy torus plasma.

  7. Vlasov Simulations of Ionospheric Heating Near Upper Hybrid Resonance

    NASA Astrophysics Data System (ADS)

    Najmi, A. C.; Eliasson, B. E.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2014-12-01

    It is well-known that high-frequency (HF) heating of the ionosphere can excite field- aligned density striations (FAS) in the ionospheric plasma. Furthermore, in the neighborhood of various resonances, the pump wave can undergo parametric instabilities to produce a variety of electrostatic and electromagnetic waves. We have used a Vlasov simulation with 1-spatial dimension, 2-velocity dimensions, and 2-components of fields, to study the effects of ionospheric heating when the pump frequency is in the vicinity of the upper hybrid resonance, employing parameters currently available at ionospheric heaters such as HAARP. We have found that by seeding theplasma with a FAS of width ~20% of the simulation domain, ~10% depletion, and by applying a spatially uniform HF dipole pump electric field, the pump wave gives rise to a broad spectrum of density fluctuations as well as to upper hybrid and lower hybrid oscillating electric fields. We also observe collisionless bulk-heating of the electrons that varies non-linearly with the amplitude of the pump field.

  8. Theory of runaway current sustainment by lower-hybrid waves

    SciTech Connect

    Liu, C.S.; Chan, V.S.; Bhadra, D.K.; Harvey, R.W.

    1982-05-24

    A mechanism is proposed whereby high--phase-velocity lower-hybrid waves can interact with lower--parallel-velocity electrons through nonlinearly excited plasma waves. Significant steady-state current can be sustained by the rf after the Ohmic field is turned off in a tokamak provided the initial electron distribution is in the runaway regime with density below a critical value.

  9. High density operation with Lower Hybrid waves in FTU tokamak

    NASA Astrophysics Data System (ADS)

    Pericoli Ridolfini, V.; Mirizzi, F.; Panaccione, L.; Podda, S.

    2001-10-01

    Since April 2001 the lower hybrid (LH) radiofrequency system in FTU (6 gyrotrons @ f=8 GHz) can deliver to the plasma about 2 MW through two equal launchers with a reflection coefficient = 10%. This value is close to the target value of 2.2 MW (net power density of 6.2 kW/cm2 on the waveguides mouth) which could be reached after further conditioning of the grill and of the transmission lines. In high density plasmas (line density *1*1020 m-3), high magnetic field (BT=7.2 T), with PLH=2 MW we drive about 75% of the total current (Ip=500 kA) and stabilise fully the sawteeth activity. The central electron temperature Te0 increases from 1.6 to 3.3 keV (steady), and the neutron rate by about 10 times. Analysis of these pulses with effective electronic heating will be presented. In post-pellet plasmas ( *6*1020 m-3), good coupling of the LH is achieved with the launcher almost flush to the walls, due to the very dense scrape off-layer. The perturbation here induced by the pellet imposes a delay to the LH of only 20 ms. The exact location of the launcher is critical in these regimes, because the high N|| (parallel index of refraction) requested (N||>2.3) for a good penetration of the waves makes more problematic a good coupling all along the poloidal extension of the grill.

  10. Lower Hybrid Oscillations in Multicomponent Space Plasmas Subjected to Ion Cyclotron Waves

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Krivorutsky, E. N.; Moore, T. E.; Liemohn, M. W.; Horwitz, J. L.

    1997-01-01

    It is found that in multicomponent plasmas subjected to Alfven or fast magnetosonic waves, such as are observed in regions of the outer plasmasphere and ring current-plasmapause overlap, lower hybrid oscillations are generated. The addition of a minor heavy ion component to a proton-electron plasma significantly lowers the low-frequency electric wave amplitude needed for lower hybrid wave excitation. It is found that the lower hybrid wave energy density level is determined by the nonlinear process of induced scattering by ions and electrons; hydrogen ions in the region of resonant velocities are accelerated; and nonresonant particles are weakly heated due to the induced scattering. For a given example, the light resonant ions have an energy gain factor of 20, leading to the development of a high-energy tail in the H(+) distribution function due to low-frequency waves.

  11. Flute mode waves near the lower hybrid frequency excited by ion rings in velocity space

    NASA Technical Reports Server (NTRS)

    Cattell, C.; Hudson, M.

    1982-01-01

    Discrete emissions at the lower hybrid frequency are often seen on the S3-3 satellite. Simultaneous observation of perpendicularly heated ions suggests that these ions may provide the free energy necessary to drive the instability. Studies of the dispersion relation for flute modes excited by warm ion rings in velocity space show that waves are excited with real frequencies near the lower hybrid frequency and with growth rates ranging from about 0.01 to 1 times the ion cyclotron frequency. Numerical results are therefore consistent with the possibility that the observed ions are the free energy source for the observed waves.

  12. A Lower-hybrid/Fast-wave package for the TRANSP transport analysis code

    NASA Astrophysics Data System (ADS)

    Jobes, F. C.; Ignat, D. W.; McCune, D. C.

    1996-11-01

    A software package is being added to the TRANSP code which will permit analysis of tokamak plasmas with either lower hybrid current drive or fast wave heating or current drive. The package is a outgrowth of the LSC (Lower Hybrid Simulation) code(Ignat, D. W. et al.), Nucl. Fusion 34 837 (1994). used in conjunction with TSC (Tokamak Simulation Code)(Jardin, S. C. et al.), J. Comput. Phys. 66 481 (1986). The fastwave analysis was added to LSC, and and that combined package then adapted to TRANSP usage.

  13. Lower hybrid waves upstream of comets and their implications for the Comet Halley 'bow wave'

    NASA Technical Reports Server (NTRS)

    Hizanidis, K.; Cargill, P. J.; Papadopoulos, K.

    1988-01-01

    Observed and theoretical features concerning the nature of so-called cometary 'bow shocks' or 'bow waves' are discussed. Collective plasma effects associated with the presence of pickup ring ions (protons and water ions) in the vicinity of the supermagnetosonic to submagnetosonic transition region in the quasi-perpendicular limit are considered; the linear and nonlinear evolution of instabilities around the lower hybrid frequency is emphasized. It is shown that lower hybrid waves can lead to heating and produce distributions with magnitudes in reasonable agreement with Giotto data. The implications to the existence and structure of cometary bow shocks are discussed.

  14. Influence of electrical and hybrid heating on bread quality during baking.

    PubMed

    Chhanwal, N; Ezhilarasi, P N; Indrani, D; Anandharamakrishnan, C

    2015-07-01

    Energy efficiency and product quality are the key factors for any food processing industry. The aim of the study was to develop energy and time efficient baking process. The hybrid heating (Infrared + Electrical) oven was designed and fabricated using two infrared lamps and electric heating coils. The developed oven can be operated in serial or combined heating modes. The standardized baking conditions were 18 min at 220°C to produce the bread from hybrid heating oven. Effect of baking with hybrid heating mode (H-1 and H-2, hybrid oven) on the quality characteristics of bread as against conventional heating mode (C-1, pilot scale oven; C-2, hybrid oven) was studied. The results showed that breads baked in hybrid heating mode (H-2) had higher moisture content (28.87%), higher volume (670 cm(3)), lower crumb firmness value (374.6 g), and overall quality score (67.0) comparable to conventional baking process (68.5). Moreover, bread baked in hybrid heating mode showed 28% reduction in baking time.

  15. Effect of plasma fluctuations on lower hybrid current drive

    SciTech Connect

    Peysson, Y.; Decker, J.; Ekedahl, A.; Hillairet, J.; Ohsako, T.

    2011-12-23

    The effect of fluctuations of the electron density at the plasma edge on Lower Hybrid current drive is investigated. It is shown that the lack of robustness of the simulations due to ray stochasticity still remain despite the time averaging resulting from fluctuations.

  16. Echo phenomenon associated with lower-hybrid-wave launching

    SciTech Connect

    Wong, K.L.; Skiff, F.; Ono, M.

    1983-06-01

    Lower hybrid waves at two different frequencies f/sub 1/ and f/sub 2/ are launched simultaneously from two localized antennas, and a third wave is observed to arise near the plasma edge at the frequency f = f/sub 2/ - f/sub 1/. This phenomenon can be explained by an echo effect near the plasma surface.

  17. A Lower Hybrid Fluid Model and Asymptotic Solutions

    NASA Astrophysics Data System (ADS)

    Wang, Xiaogang

    2016-10-01

    Hall MHD is for ion dynamics with a zero mass electron fluid. EMHD is for electron dynamics with fixed (infinity mass) ions. Also, other approximations such as electron incompressibility and low frequency appraisal (by ignoring the displacement current) have limited the application of EMHD. We then introduce a ``Lower Hybrid Fluid'' model by keeping the higher order mass ratio terms in the two-fluid model to investigate the problems in a hybrid scale range between the electron skin depth and the ion inertial length.

  18. Ion conics and counterstreaming electrons generated by lower hybrid waves in the earth's magnetosphere

    NASA Technical Reports Server (NTRS)

    Chang, Tom; Crew, Geoffrey B.; Retterrer, John M.; Jasperse, John R.

    1989-01-01

    The exotic phenomenon of energetic ion-conic and counterstreaming electron formation by lower hybrid waves along discrete auroral field lines in the earth magnetosphere is considered. Mean-particle calculations, plasma simulations, and analytical treatments of the acceleration processes are described. It is shown that, in the primary auroral electron-beam region, lower hybrid waves could be an efficient mechanism for the transverse heating of H (+) and O(+) ions of ionospheric origin, as well as for the field-aligned heating of the ambient electrons leading to coincident counterstreaming electron distributions. For O(+) ions to be energized by such a wave-particle interaction process, however, some sort of preheating mechanism is required.

  19. Simulations of ionospheric turbulence produced by HF heating near the upper hybrid layer

    NASA Astrophysics Data System (ADS)

    Najmi, A.; Eliasson, B.; Shao, X.; Milikh, G. M.; Papadopoulos, K.

    2016-06-01

    Heating of the ionosphere by high-frequency (HF), ordinary (O) mode electromagnetic waves can excite magnetic field-aligned density striations, associated with upper and lower hybrid turbulence and electron heating. We have used Vlasov simulations in one spatial and two velocity dimensions to study the induced turbulence in the presence of striations when the O-mode pump is mode converted to large-amplitude upper hybrid oscillations trapped in a striation. Parametric processes give rise to upper and lower hybrid turbulence, as well as to large amplitude, short wavelength electron Bernstein waves. The latter excite stochastic electron heating when their amplitudes exceed a threshold for stochasticity, leading to a rapid increase of the electron temperature by several thousands of kelvin. The results have relevance for high-latitude heating experiments.

  20. Non-resonant parametric decay of lower-hybrid waves in the ACT-1 toroidal device

    SciTech Connect

    Wong, K.L.; Ono, M.

    1981-02-01

    Non-resonant parametric decay of lower-hybrid waves, observed in a number of high-power tokamak rf heating experiments, is positively identified as a decay into ion-cyclotron quasi-modes. The decay-wave spectrum, wavelength and amplitude profile are measured inside a toroidal plasma with pump frequency f/sub 0/ approx. 3.5 f/sub ..pi../ approx. 25 f/sub ci/.

  1. The effect of lower hybrid waves on JET plasma rotation

    NASA Astrophysics Data System (ADS)

    Nave, M. F. F.; Kirov, K.; Bernardo, J.; Brix, M.; Ferreira, J.; Giroud, C.; Hawkes, N.; Hellsten, T.; Jonsson, T.; Mailloux, J.; Ongena, J.; Parra, F.; Contributors, JET

    2017-03-01

    This paper reports on observations of rotation in JET plasmas with lower hybrid current drive. Lower hybrid (LH) has a clear impact on rotation. The changes in core rotation can be either in the co- or counter-current directions. Experimental features that could determine the direction of rotation were investigated. Changes from co- to counter-rotation as the q-profile evolves from above unity to below unity suggests that magnetic shear could be important. However, LH can drive either co- or counter-rotation in discharges with similar magnetic shear and at the same plasma current. It is not clear if a slightly lower density is significant. A power scan at fixed density, shows a lower hybrid power threshold around 3 MW. For smaller LH powers, counter rotation increases with power, while for larger powers a trend towards co-rotation is found. The estimated counter-torque from the LH waves, would not explain the observed angular frequencies, neither would it explain the observation of co-rotation.

  2. Excitation and trapping of lower hybrid waves in striations

    SciTech Connect

    Borisov, N.; Honary, F.

    2008-12-15

    The theory of lower hybrid (LH) waves trapped in striations in warm ionospheric plasma in the three-dimensional case is presented. A specific mechanism of trapping associated with the linear transformation of waves is discussed. It is shown analytically that such trapping can take place in elongated plasma depletions with the frequencies below and above the lower hybrid resonance frequency of the ambient plasma. The theory is applied mainly to striations generated artificially in ionospheric modification experiments and partly to natural plasma depletions in the auroral upper ionosphere. Typical amplitudes and transverse scales of the trapped LH waves excited in ionospheric modification experiments are estimated. It is shown that such waves possibly can be detected by backscattering at oblique sounding in very high frequency (VHF) and ultra high frequency (UHF) ranges.

  3. Generalized lower-hybrid-drift instability. [of plasma

    NASA Technical Reports Server (NTRS)

    Hsia, J. B.; Chiu, S. M.; Hsia, M. F.; Chou, R. L.; Wu, C. S.

    1979-01-01

    The theory of lower-hybrid-drift instability is extended to include a finite value of the component of wave vector parallel to the ambient magnetic field so that the analysis bridges the usual lower-hybrid-drift instability of flute modes and the modified-two-stream instability. The present theory also includes electromagnetic and ambient magnetic field-gradient effects. It is found that in the cold-electron limit the density and magnetic gradients can qualitatively modify the conclusion obtained in the early theory of the modified-two-stream instability. For example, even if the relative drift far exceeds the Alfven speed of the plasma, the instability may still persist. This result is in contrast to that established in the literature. When the electron temperature is finite, the problem is complicated. Numerical solutions are obtained for a number of cases.

  4. Laboratory investigation of whistler and lower hybrid wave characteristics

    NASA Astrophysics Data System (ADS)

    Amatucci, William; Blackwell, David; Ganguli, Gurudas; Gatling, George; Walker, David; Compton, Chris

    2007-11-01

    An experimental investigation of the generation and propagation of whistler and lower hybrid waves is underway in the NRL Space Physics Simulation Chamber. Wave propagation is being investigated in conditions simulating the Earth's radiation belt environment. These studies are carried out in both homogeneous plasma and plasma containing density structures. In homogeneous plasma, resonance cone propagation of the waves is observed, consistent with theoretical predictions. In plasma containing a density depletion layer, wave ducting within the layer has been observed. For these experiments, we have fabricated and tested transmitting and receiving magnetic loop antennas and electric field dipole receiving antennas. Preliminary comparisons of the two antenna styles indicate that loop antennas couple significantly more wave power into the plasma. Efforts are currently underway to further quantify these observations. Experimental results related to the propagation characteristics of whistler/lower hybrid waves under these conditions will be presented.

  5. Electrostatic chains driven by nonuniform lower hybrid pump

    NASA Astrophysics Data System (ADS)

    Vranjes, J.; Jovanovic, D.

    1997-01-01

    We study the parametric interaction of a nonuniform long-wavelength lower hybrid (LH) wave propagating almost perpendicularly to the magnetic field lines, with low frequency density perturbations. Neglecting perturbations of the strong LH wave acting as a pump, we show that for a specific profile of its amplitude, a LH pump can excite electrostatic vortex chains propagating perpendicularly both to the magnetic field and the direction of the pump gradient.

  6. Advanced tokamak operations with ICRF and lower-hybrid power

    NASA Astrophysics Data System (ADS)

    Mau, T. K.; Lee, B. J.; Ehst, D. A.

    1994-10-01

    Advanced tokamak operating modes based on high bootstrap current, first- and second-stability regime plasma are examined in the context of the TPX experiment and the ARIES reactors, using a combination of ICRF fast wave and lower hybrid power. The main method of analysis entails the alignment of driven current density profiles with those required for stability. In most of the cases studied, the required power levels and launched spectra are found to be reasonable.

  7. Lower-Hybrid-Drift Wave Turbulence in the Distant Magnetotail

    DTIC Science & Technology

    1978-05-01

    Rayleigh - Taylor instability ) is excited which can nonlinearly produce short wave- length drift waves. We propose a similar phenomenon may exist in the...Cyclotron Instability in a Non-Uniform Plasma," Spy. Phys. JETP, 17, 626, I963. Papadopoulos, K., A Review of Anomalous Resistivity for the Ionosphere ...and magnetic noise in the distant magnetotail (Gumett et al., 1976) can be explained by the excitation of the lower-hybrid-drift instability . In

  8. Electron runaway induced by lower hybrid waves in DII-A

    SciTech Connect

    Harvey, R.W.; Riordan, J.C.; Luxon, J.L.; Marx, K.D.

    1981-02-01

    In the DII-A lower hybrid heating experiment, injection of power using the lowest n/sub parallel to/ antennas resulted in marked increases in plasma conductivity, hard and soft x-rays, and cyclotron radiation. The magnitudes of these increases vary inversely with n/sub e/ and n/sub parallel to/, whereas bulk electron heating was not observed at low n/sub parallel to/. These observations are interpreted as due to an RF-induced electron runaway in the DC electric field.

  9. Evolution of lower hybrid turbulence in the ionosphere

    SciTech Connect

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W.

    2015-11-15

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.

  10. Evolution of lower hybrid turbulence in the ionosphere

    NASA Astrophysics Data System (ADS)

    Ganguli, G.; Crabtree, C.; Mithaiwala, M.; Rudakov, L.; Scales, W.

    2015-11-01

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is analyzed. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region. This can result in unique low-amplitude saturation with extended saturation time. It is shown that when the nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution.

  11. 3D Evolution of Lower Hybrid Turbulence in the Ionosphere

    NASA Astrophysics Data System (ADS)

    Ganguli, Gurudas; Crabtree, Chris; Rudakov, Leonid

    2016-10-01

    Three-dimensional evolution of the lower hybrid turbulence driven by a spatially localized ion ring beam perpendicular to the ambient magnetic field in space plasmas is considered. It is shown that the quasi-linear saturation model breaks down when the nonlinear rate of scattering by thermal electron is larger than linear damping rates, which can occur even for low wave amplitudes. The evolution is found to be essentially a three-dimensional phenomenon, which cannot be accurately explained by two-dimensional simulations. An important feature missed in previous studies of this phenomenon is the nonlinear conversion of electrostatic lower hybrid waves into electromagnetic whistler and magnetosonic waves and the consequent energy loss due to radiation from the source region that can result in unique low-amplitude saturation with extended saturation time. It is shown that when the realistic nonlinear effects are considered the net energy that can be permanently extracted from the ring beam is larger. The results are applied to anticipate the outcome of a planned experiment that will seed lower hybrid turbulence in the ionosphere and monitor its evolution. NRL Base Program.

  12. On the Toroidal Plasma Rotations Induced by Lower Hybrid Waves

    SciTech Connect

    Guan, Xiaoyin; Qin, Hong; Liu, Jian; Fisch, Nathaniel J.

    2012-11-14

    A theoretical model is developed to explain the plasma rotations induced by lower hybrid waves in Alcator C-Mod. In this model, torodial rotations are driven by the Lorentz force on the bulk electron flow across flux surfaces, which is a response of the plasma to the resonant-electron flow across flux surfaces induced by the lower hybrid waves. The flow across flux surfaces of the resonant electrons and the bulk electrons are coupled through the radial electric fi eld initiated by the resonant electrons, and the friction between ions and electrons transfers the toroidal momentum to ions from electrons. An improved quasilinear theory with gyrophase dependent distribution function is developed to calculate the perpendicular resonant-electron flow. Toroidal rotations are determined using a set of fluid equations for bulk electrons and ions, which are solved numerically by a fi nite- difference method. Numerical results agree well with the experimental observations in terms of flow pro file and amplitude. The model explains the strong correlation between torodial flow and internal inductance observed experimentally, and predicts both counter-current and co-current flows, depending on the perpendicular wave vectors of the lower hybrid waves. __________________________________________________

  13. Predictions of entry heating for lower surface of shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Edwards, C. L. W.; Cole, S. R.

    1983-01-01

    A broad base of thermocouple and phase change paint data was assembled and correlated to the nominal design 14414.1 and proposed STS-1 (first flight of the space transportation system) entry trajectories. Averaged data from phase change paint tests compared favorably with thermocouple data for predicting heating rates. Laminar and turbulent radiation equilibrium heating rates were computed on the lower surface of the Shuttle orbiter for both trajectories, and the lower surface center line results were compared both with aerodynamic heating design data and with flight values from the STS-1 and STS-2 trajectories. The peak laminar heating values from the aerodynamic heating design data book were generally 40 to 60 percent higher than the laminar estimates of this study, except at the 55 percent location of maximum span where the design data book values were less than 10 percent higher. Estimates of both laminar and turbulent heating rates compared favorably with flight data.

  14. Control of Heat and Charge Transport in Nanostructured Hybrid Materials

    DTIC Science & Technology

    2015-07-21

    Lee, Joo-Hyoung, Galli, Giulia A., and Grossman, Jeffrey C., Nanoporous Si as an Efficient Thermoelectric Material . Nano Letters 8 (11), 3750 (2008...AFRL-OSR-VA-TR-2015-0204 CONTROL OF HEAT AND CHARGE TRANSPORT IN NANOSTRUCTURED HYBRID MATERIALS Akram Boukai UNIVERSITY OF MICHIGAN Final Report 07...SUBTITLE Control of Heat and Charge Transport in Nanostructured Hybrid Materials 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1-0058 5c. PROGRAM

  15. Electron beam driven lower hybrid waves in a dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2013-05-15

    An electron beam propagating through a magnetized dusty plasma drives electrostatic lower hybrid waves to instability via Cerenkov interaction. A dispersion relation and the growth rate of the instability for this process have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave increase with the relative density of negatively charged dust grains. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density. In addition, the dependence of the growth rate on the beam velocity is also discussed.

  16. Lower hybrid assisted plasma current ramp-up in ITER

    NASA Astrophysics Data System (ADS)

    Kim, S. H.; Artaud, J. F.; Basiuk, V.; Bécoulet, A.; Dokuka, V.; Hoang, G. T.; Imbeaux, F.; Khayrutdinov, R. R.; Lister, J. B.; Lukash, V. E.

    2009-06-01

    Lower hybrid (LH) assisted plasma current ramp-up in ITER is demonstrated using a free-boundary full tokamak discharge simulator which combines the DINA-CH and CRONOS codes. LH applied from the initial phase of the plasma current ramp-up increases the safety margins in operating the superconducting poloidal field coils both by reducing resistive ohmic flux consumption and by providing non-inductively driven plasma current. Loss of vertical control associated with high plasma internal inductance is avoided by tailoring the plasma current density profiles. Effects of early LH application on the plasma shape evolution are identified by the free-boundary plasma simulation.

  17. Lower hybrid current drive in the PLT tokamak

    SciTech Connect

    Bernabei, S.; Daughney, C.; Efthimion, P.

    1982-07-01

    Order of magnitude improvements in the level and duration of current driven by lower hybrid waves have been achieved in the PLT tokamak. Steady currents up to 175 kA have been maintained for three seconds and 400 kA for 0.3 sec by the rf power alone. The principal current carrier appears to be a high energy (approx. 100 keV) electron component, concentrated in the central 20 to 40 cm diameter core of the 80 cm PLT discharge.

  18. Plasma-surface interactions with ICRF antennas and lower hybrid grills in Tore Supra

    SciTech Connect

    Harris, J.H.; Hutter, T.; Hogan, J.T.

    1996-10-01

    The edge plasma interactions of the actively cooled radio-frequency heating launchers in Tore Supra- ion-cyclotron range-of-frequencies (ICRF) antennas and lower-hybrid (LH) grills-are studied using infrared video imaging. On the two-strap ICRF antennas, operated in fast-wave electron heating or current drive mode, hot spots with temperatures of 500-900{degrees} C are observed by the end of 2-s power pulses of 2 MW per antenna. The distribution and maximum values of temperature are determined principally by the relative phase of the two antenna straps: dipole (heating) phasing results in significantly less antenna heating than does 90` (current drive) phasing. Transient heat fluxes of 1-20 MW/m{sup 2} are measured on the lateral protection bumpers at ICRF turn-on; these fluxes are primarily a function of plasma and radio frequency (rf) control, and are not simply correlated with the strap phasing or the final surface temperature distributions. The remarkable feature of the lower hybrid edge interaction is the production of beams of heat flux in front of the grills; these beams propagate along the helical magnetic field lines and can deliver fluxes of 5-10 MW/m{sup 2} over areas of several cm{sup 2} to plasma-facing components such as the grill or antenna lateral bumpers. Both the ICRF and LH phenomena appear to result from the acceleration of particles by the near fields of the launchers. Modeling of the heat flux deposition on components and its relation to sputtering processes is presented, and possibilities for controlling these interactions are discussed.

  19. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    NASA Technical Reports Server (NTRS)

    Bell, T. F; Inan, U. S.; Lauben, D.; Sonwalkar, V. S.; Helliwell, R. A.; Sobolev, Ya. P.; Chmyrev, V. M.; Gonzalez, S.

    1994-01-01

    Past work demostrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength lambda. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which lambda less than or equal to 3.5 m when excitation occurs at a frequency roughly equal to the local lower hybrid resonance frequency. This wavelength limit is a factor of approximately 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H(+) ions with energy less than or equal to 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells.

  20. DE-1 and COSMOS 1809 observations of lower hybrid waves excited by VLF whistler mode waves

    SciTech Connect

    Bell, T.F.; Inan, U.S.; Lauben, D.; Sonwalkar, V.S.; Helliwell, R.A.; Sobolev, Ya.P.; Chmyrev, V.M.; Gonzalez, S.

    1994-04-15

    Past work demonstrates that strong lower hybrid (LH) waves can be excited by electromagnetic whistler mode waves throughout large regions of the topside ionosphere and magnetosphere. The effects of the excited LH waves upon the suprathermal ion population in the topside ionosphere and magnetosphere depend upon the distribution of LH wave amplitude with wavelength {lambda}. The present work reports plasma wave data from the DE-1 and COSMOS 1809 spacecraft which suggests that the excited LH wave spectrum has components for which {lambda} {le} 3.5 m when excitation occurs at a frequency roughly equal to the lower hybrid resonance frequency. This wavelength limit is a factor of {approximately} 3 below that reported in past work and suggests that the excited LH waves can interact with suprathermal H{sup +} ions with energy {le} 6 eV. This finding supports recent work concerning the heating of suprathermal ions above thunderstorm cells. 19 refs., 3 figs.

  1. Observation of Self-Generated Flows in Tokamak Plasmas with Lower-Hybrid-Driven Current

    SciTech Connect

    Ince-Cushman, A.; Rice, J. E.; Reinke, M.; Greenwald, M.; Wallace, G.; Parker, R.; Fiore, C.; Hughes, J. W.; Bonoli, P.; Shiraiwa, S.; Hubbard, A.; Wolfe, S.; Hutchinson, I. H.; Marmar, E.; Bitter, M.; Wilson, J.; Hill, K.

    2009-01-23

    In Alcator C-Mod discharges lower hybrid waves have been shown to induce a countercurrent change in toroidal rotation of up to 60 km/s in the central region of the plasma (r/a{approx}<0.4). This modification of the toroidal rotation profile develops on a time scale comparable to the current redistribution time ({approx}100 ms) but longer than the energy and momentum confinement times ({approx}20 ms). A comparison of the co- and countercurrent injected waves indicates that current drive (as opposed to heating) is responsible for the rotation profile modifications. Furthermore, the changes in central rotation velocity induced by lower hybrid current drive (LHCD) are well correlated with changes in normalized internal inductance. The application of LHCD has been shown to generate sheared rotation profiles and a negative increment in the radial electric field profile consistent with a fast electron pinch.

  2. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  3. Feedback control of the lower hybrid power deposition profile on Tore Supra

    NASA Astrophysics Data System (ADS)

    Barana, O.; Mazon, D.; Laborde, L.; Turco, F.

    2007-07-01

    The Tore Supra facility is well suited to study ITER relevant topics such as the real-time control of plasma current and the sustaining of steady-state discharges. This work describes a tool that was recently developed and implemented on Tore Supra to control in real time, by means of the direct knowledge of the suprathermal electron local emission profile, the width of the lower hybrid power deposition profile. This quantity can be considered to some extent equivalent to the width of the plasma current density profile in case of fully non-inductive discharges. This system takes advantage of an accurate hard x-ray diagnostics, of an efficient lower hybrid additional heating and of a reliable real-time communication network. The successful experiments carried out to test the system employed, as actuators, the parallel refractive index n// and the total power PLH. The control of the suprathermal electron local emission profile through n// was also integrated with the feedback control of the total plasma current IP with PLH and of the loop voltage Vloop with the central solenoid flux. These results demonstrate that the system is robust, reliable and able to counterbalance destabilizing events. This tool can be effectively used in the future in fully non-inductive discharges to improve the MHD stability and to maintain internal transport barriers or lower hybrid enhanced performance modes. The real-time control of the lower hybrid power deposition profile could also be used in conjunction with the electron-cyclotron radiofrequency heating for synergy studies.

  4. Enhanced Lower Hybrid Current Drive Experiments on HT-7 Tokamak

    NASA Astrophysics Data System (ADS)

    Shen, Wei-ci; Kuang, Guang-li; Liu, Yue-xiu; Ding, Bo-jiang; Shi, Yao-jiang; HT-7 Team

    2003-02-01

    Effective Lower Hybrid Current Driving (LHCD) and improved confinement experiments in higher plasma parameters (Ip > 200 kA, ne > 2 × 1013 cm-3, Te >= 1 keV) have been curried out in optimized LH wave spectrum and plasma parameters in HT-7 superconducting tokamak. The dependence of current driving efficiency on LH power spectrum, plasma density ne and toroidal magnetic field BT has been obtained under optimal conditions. A good CD efficiency was obtained at higher plasma current and higher electron density. The improvement of the energy confinement time is accompanied with the increase in line averaged electron density, and in ion and electron temperatures. The highest current driving efficiency reached ηCD = Ipbar neR/PRF approx 1.05 × 1019 Am-2/W. Wave-plasma coupling was sustained in a good state and the reflective coefficient was less than 5%. The experiments have also demonstrated the ability of LH wave in the start-up and ramp-up of the plasma current. The measurement of the temporal distribution of plasma parameter shows that lower hybrid leads to a broader profile in plasma parameter. The LH power deposition profile and the plasma current density profile were modeled with a 2D Fokker-Planck code corresponding to the evolution process of the hard x-ray detector array.

  5. Lower Hybrid Drift in Simulations of Hypersonic Plasma

    NASA Astrophysics Data System (ADS)

    Niehoff, D.; Ashour-Abdalla, M.; Niemann, C.; Schriver, D.; Sotnikov, V. I.; Lapenta, G.

    2014-12-01

    It has been shown experimentally that hypersonic plasma (defined as moving with a bulk flow velocity of more than 5 to 10 times the Mach speed) traveling through a magnetic field will create a diamagnetic cavity, or bubble [1]. At the edge of the bubble, opposing field and density gradients can drive the lower hybrid drift instability [2]. We will explore two and a half dimensional (2 space and 3 velocity dimensions) simulations of hypersonic plasma within a parameter regime motivated by the aforementioned diamagnetic bubble experiments, wherein we find oscillations excited near the lower hybrid frequency propagating perpendicular to the bulk motion of the plasma and the background magnetic field. The simulations are run using the implicit PIC code iPIC3D so that we are able to capture dynamics of the plasma below ion scales, but not be forced to resolve all electron scales [3]. [1] Niemann et al, Phys. Plasmas 20, 012108 (2013) [2] Davidson et al, Phys. Fluids, Vol. 20, No. 2, February 1977 [3] S. Markidis et al, Math. Comput. Simul. (2009), doi 10.1016/j.matcom.2009.08.038

  6. Lower Hybrid Current Drive Experiments in Alcator C-Mod

    SciTech Connect

    J.R. Wilson, S. Bernabei, P. Bonoli, A. Hubbard, R. Parker, A. Schmidt, G. Wallace, J. Wright, and the Alcator C-Mod Team

    2007-10-09

    A Lower Hybrid Current Drive (LHCD) system has been installed on the Alcator C-MOD tokamak at MIT. Twelve klystrons at 4.6 GHz feed a 4x22 waveguide array. This system was designed for maximum flexibility in the launched parallel wave-number spectrum. This flexibility allows tailoring of the lower hybrid deposition under a variety of plasma conditions. Power levels up to 900 kW have been injected into the tokomak. The parallel wave number has been varied over a wide range, n|| ~ 1.6–4. Driven currents have been inferred from magnetic measurements by extrapolating to zero loop voltage and by direct comparison to Fisch-Karney theory, yielding an efficiency of n20IR/P ~ 0.3. Modeling using the CQL3D code supports these efficiencies. Sawtooth oscillations vanish, accompanied with peaking of the electron temperature (Te0 rises from 2.8 to 3.8 keV). Central q is inferred to rise above unity from the collapse of the sawtooth inversion radius, indicating off-axis cd as expected. Measurements of non-thermal x-ray and electron cyclotron emission confirm the presence of a significant fast electron population that varies with phase and plasma density. The x-ray emission is observed to be radialy broader than that predicted by simple ray tracing codes. Possible explanations for this broader emission include fast electron diffusion or broader deposition than simple ray tracing predictions (perhaps due to diffractive effects).

  7. Penetration of lower hybrid current drive waves in tokamaks

    SciTech Connect

    Horton, W.; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2013-11-15

    Lower hybrid (LH) ray propagation in toroidal plasma is shown to be controlled by combination of the azimuthal spectrum launched by the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the drift wave fluctuations. The width of the poloidal and radial radio frequency wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the drift waves. The electron temperature gradient (ETG) spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and phase velocities. ETG turbulence is also driven by the radial gradient of the electron current profile giving rise to an anomalous viscosity spreading the LH driven plasma currents. The LH wave scattering is derived from a Fokker-Planck equation for the distribution of the ray trajectories with diffusivities derived from the drift wave fluctuations. The condition for chaotic diffusion for the rays is derived. The evolution of the poloidal and radial mode number spectrum of the lower hybrid waves are both on the antenna spectrum and the spectrum of the drift waves. Antennas launching higher poloidal mode number spectra drive off-axis current density profiles producing negative central shear [RS] plasmas with improved thermal confinement from ETG transport. Core plasma current drive requires antennas with low azimuthal mode spectra peaked at m = 0 azimuthal mode numbers.

  8. On the instability and energy flux of lower hybrid waves in the Venus plasma mantle

    NASA Technical Reports Server (NTRS)

    Strangeway, R. J.; Crawford, G. K.

    1993-01-01

    Waves generated near the lower hybrid resonance frequency by the modified two stream instability have been invoked as a possible source of energy flux into the topside ionosphere of Venus. These waves are observed above the ionopause in a region known as the plasma mantle. The plasma within the mantle appears to be a mixture of magnetosheath and ionospheric plasmas. Since the magnetosheath electrons and ions have temperatures of several tens of eV, any instability analysis of the modified two stream instability requires the inclusion of finite electron and ion temperatures. Finite temperature effects are likely to reduce the growth rate of the instability. Furthermore, the lower hybrid waves are only quasi-electrostatic, and the energy flux of the waves is mainly carried by parallel Poynting flux. The magnetic field in the mantle is draped over the ionopause. Lower hybrid waves therefore cannot transport any significant wave energy to lower altitudes, and so do not act as a source of additional heat to the topside ionosphere.

  9. Hybrid sodium heat pipe receivers for dish/Stirling systems

    SciTech Connect

    Laing, D.; Reusch, M.

    1997-12-31

    The design of a hybrid solar/gas heat pipe receiver for the SBP 9 kW dish/Stirling system using a United Stirling AB V160 Stirling engine and the results of on-sun testing in alternative and parallel mode will be reported. The receiver is designed to transfer a thermal power of 35 kW. The heat pipe operates at around 800 C, working fluid is sodium. Operational options are solar-only, gas augmented and gas-only mode. Also the design of a second generation hybrid heat pipe receiver currently developed under a EU-funded project, based on the experience gained with the first hybrid receiver, will be reported. This receiver is designed for the improved SPB/L. and C.-10 kW dish/Stirling system with the reworked SOLO V161 Stirling engine.

  10. Lower hybrid drift instability with temperature gradient in a perpendicular shock wave

    NASA Technical Reports Server (NTRS)

    Zhou, Y. M.; Wong, H. K.; Wu, C. S.

    1983-01-01

    Finite beta effects and an electron temperature gradient are included in the present study of the perpendicular bow shock geometry's lower hybrid instability, where the flute mode that is stable at the shock for constant electron temperature is destabilized in the case of a sufficiently great temperature gradient. Numerical solutions are given for cases in which the ion distribution is either drifting Maxwellian or consists of two Maxwellians, to represent the effect of reflected ions at the shock. A discussion is presented of the implications of results obtained for ion and electron heating and electron acceleration at the bow shock.

  11. Stabilization and Destabilization of Sawtooth Oscillations by Lower Hybrid Current Drive in the WT-3 Tokamak

    NASA Astrophysics Data System (ADS)

    Iida, Motomi; Maekawa, Takashi; Tanaka, Hitoshi; Ide, Shunsuke; Ogura, Kazuo; Hanada, Kazuaki; Iwamasa, Mikito; Itoh, Takehiko; Terumichi, Yasushi; Tanaka, Shigetoshi

    1988-11-01

    Sawtooth oscillations appearing in Ohmically heated (OH) plasmas are suppressed by the lower hybrid current drive (LHCD) in the WT-3 tokamak (R{=}65 cm, a{=}20 cm, Ip≃100 kA, \\bar{n}e{=}1-2× 1013 cm-3, qa≃4.5, and PLH≳100 kW). After the suppression, sawteeth reappear following m{=}1 oscillations in the LHCD plasmas. The latter sawteeth have a large amplitude and long period (Ts{=}2--5 msec), compared with the former one (Ts{=}0.5--1.5 msec). Furthermore, they do not accompany a precursor and crash very fast.

  12. Nonlinear evolution of the lower-hybrid drift instability in a current sheet.

    PubMed

    Daughton, William; Lapenta, Giovanni; Ricci, Paolo

    2004-09-03

    The lower-hybrid drift instability is simulated in an ion-scale current sheet using a fully kinetic approach with values of the ion to electron mass ratio up to m(i)/m(e)=1836. Although the instability is localized on the edge of the layer, the nonlinear development increases the electron flow velocity in the central region resulting in a strong bifurcation of the current density and significant anisotropic heating of the electrons. This dramatically enhances the collisionless tearing mode and may lead to the rapid onset of magnetic reconnection for current sheets near the critical scale.

  13. Evaluation of heat engine for hybrid vehicle application

    NASA Technical Reports Server (NTRS)

    Schneider, H. W.

    1984-01-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  14. Evaluation of heat engine for hybrid vehicle application

    SciTech Connect

    Schneider, H.W.

    1984-08-01

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. Focus is on recent research with two-stroke, rotary, and free-piston engines. It is concluded that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  15. Damping of lower hybrid waves in large spectral gap configurations

    SciTech Connect

    Decker, J.; Peysson, Y.; Artaud, J.-F.; Nilsson, E.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Mazon, D.

    2014-02-12

    Extensive experimental data support reliable power deposition and current drive by lower-hybrid (LH) waves in conditions where a large spectral gap exists between the nominal parallel index of refraction prescribed by the antenna characteristics and phasing, and that required for significant Landau damping to take place. We argue that only a significant modification of the initial spectrum at the plasma edge could explain experimental observations. Based on this assumption, a new prescription for reliable simulations of LH current drive using ray-tracing and Fokker-Planck modelling is proposed. A remarkable agreement between experimental observations in the Tore Supra tokamak and simulations is obtained for relevant parametric scans, including electron density and LH waveguide phasing. In an effort to investigate the possible role of fluctuations, it is shown that the spectral gap can be bridged dynamically in the presence of a fluctuating LH spectrum.

  16. Lower hybrid current drive efficiency on Tore Supra and JET

    SciTech Connect

    Goniche, M.; Artaud, J.F.; Basiuk, V.; Peysson, Y.; Aniel, T.; Ekedahl, A.; Giruzzi, G.; Imbeaux, F.; Mazon, D.; Zwingman, W.

    2005-09-26

    The lower hybrid current drive efficiency of 66 Tore Supra pulses has been investigated. The ohmic part of the plasma current (0.6-0.9 MA) is very small (Vloop <50mV) for most of the pulses. Different scaling laws were tested with three input parameters: the wave directivity, the plasma current (Ip) or the volume average temperature () and the effective charge (Zeff). When applying these scaling laws to four JET pulses, no discrepancy is found except for the high plasma current (Ip=2.0MA) pulse. Finally the best fit was found by replacing Te (or Ip) by the thermal electron confinement time. This result is supported by the hard X-ray (HXR) diagnostic indicating a fairly good correlation between the plasma edge HXR emission, normalized to the central emission, and the thermal electron confinement time.

  17. Lower hybrid waves in the ion diffusion and magnetospheric inflow regions

    NASA Astrophysics Data System (ADS)

    Graham, D. B.; Khotyaintsev, Yu. V.; Norgren, C.; Vaivads, A.; André, M.; Toledo-Redondo, S.; Lindqvist, P.-A.; Marklund, G. T.; Ergun, R. E.; Paterson, W. R.; Gershman, D. J.; Giles, B. L.; Pollock, C. J.; Dorelli, J. C.; Avanov, L. A.; Lavraud, B.; Saito, Y.; Magnes, W.; Russell, C. T.; Strangeway, R. J.; Torbert, R. B.; Burch, J. L.

    2017-01-01

    The role and properties of lower hybrid waves in the ion diffusion region and magnetospheric inflow region of asymmetric reconnection are investigated using the Magnetospheric Multiscale (MMS) mission. Two distinct groups of lower hybrid waves are observed in the ion diffusion region and magnetospheric inflow region, which have distinct properties and propagate in opposite directions along the magnetopause. One group develops near the ion edge in the magnetospheric inflow, where magnetosheath ions enter the magnetosphere through the finite gyroradius effect and are driven by the ion-ion cross-field instability due to the interaction between the magnetosheath ions and cold magnetospheric ions. This leads to heating of the cold magnetospheric ions. The second group develops at the sharpest density gradient, where the Hall electric field is observed and is driven by the lower hybrid drift instability. These drift waves produce cross-field particle diffusion, enabling magnetosheath electrons to enter the magnetospheric inflow region thereby broadening the density gradient in the ion diffusion region.

  18. Temporal evolution of lower hybrid waves in the presence of ponderomotive density fluctuations

    SciTech Connect

    Karney, C.F.F.

    1980-06-01

    The propagation of lower hybrid waves in the presence of ponderomotive density density fluctuations is considered. The problem is treated in two dimensions and, in order to be able to correctly impose the boundary conditions, the waves are allowed to evolve in time. The fields are described by i upsilon/sub tau/ - ..integral.. upsilon/sub xi/d/sub zeta/ + upsilon/sub zeta zeta/ + upsilon//sup 2/ upsilon = 0 where upsilon is proportional to the electric field, tau to time, and zeta and xi measure distances across and along the lower hybrid ray. The behavior of the waves is investigated numerically. If the amplitude of the waves is large enough, the spectrum of the waves broadens and their parallel wavelength becomes shorter. The assumptions made in the formulation preclude the application of these results to the lower hybrid heating experiment on Alcator-A. Nevertheless, there are indications that the physics embodied in this problem are responsible for some of the results of that experiment.

  19. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    SciTech Connect

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  20. Hybrid Heat Pipes for Lunar and Martian Surface and High Heat Flux Space Applications

    NASA Technical Reports Server (NTRS)

    Ababneh, Mohammed T.; Tarau, Calin; Anderson, William G.; Farmer, Jeffery T.; Alvarez-Hernandez, Angel R.

    2016-01-01

    Novel hybrid wick heat pipes are developed to operate against gravity on planetary surfaces, operate in space carrying power over long distances and act as thermosyphons on the planetary surface for Lunar and Martian landers and rovers. These hybrid heat pipes will be capable of operating at the higher heat flux requirements expected in NASA's future spacecraft and on the next generation of polar rovers and equatorial landers. In addition, the sintered evaporator wicks mitigate the start-up problems in vertical gravity aided heat pipes because of large number of nucleation sites in wicks which will allow easy boiling initiation. ACT, NASA Marshall Space Flight Center, and NASA Johnson Space Center, are working together on the Advanced Passive Thermal experiment (APTx) to test and validate the operation of a hybrid wick VCHP with warm reservoir and HiK"TM" plates in microgravity environment on the ISS.

  1. Affordable Hybrid Heat Pump Clothes Dryer

    SciTech Connect

    TeGrotenhuis, Ward E.; Butterfield, Andrew; Caldwell, Dustin D.; Crook, Alexander

    2016-06-30

    This project was successful in demonstrating the feasibility of a step change in residential clothes dryer energy efficiency by demonstrating heat pump technology capable of 50% energy savings over conventional standard-size electric dryers with comparable drying times. A prototype system was designed from off-the-shelf components that can meet the project’s efficiency goals and are affordable. An experimental prototype system was built based on the design that reached 50% energy savings. Improvements have been identified that will reduce drying times of over 60 minutes to reach the goal of 40 minutes. Nevertheless, the prototype represents a step change in efficiency over heat pump dryers recently introduced to the U.S. market, with 30% improvement in energy efficiency at comparable drying times.

  2. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  3. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    SciTech Connect

    Winske, D. Daughton, W.

    2015-02-15

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma 19, 072109 (2012)], but at higher electron beta (β{sub e} = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with T{sub i} = T{sub e}. At higher electron beta, the level of lower hybrid waves at saturation normalized to the ion thermal energy (β{sub i} = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, the waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring, and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.

  4. Influence of plasma beta on the generation of lower hybrid and whistler waves by an ion velocity ring distribution

    DOE PAGES

    Winske, D.; Daughton, W.

    2015-02-02

    We present results of three-dimensional electromagnetic particle-in-cell simulations of the lower hybrid ion ring instability, similar to our earlier results [D. Winske and W. Daughton, Phys. Plasma, 19, 072109, 2012], but at higher electron beta (βe = ratio of electron thermal pressure to magnetic pressure = 0.06, rather than at 0.006) with Ti = Te. At higher electron beta the level of lower hybrid waves at saturation normalized to the ion thermal energy (βi = 0.06 also) is only slightly smaller, but the corresponding magnetic fluctuations are about an order of magnitude larger, consistent with linear theory. After saturation, themore » waves evolve into whistler waves, through a number of possible mechanisms, with an average growth rate considerably smaller than the linear growth rate of the lower hybrid waves, to a peak fluctuation level that is about 20% above the lower hybrid wave saturation level. The ratio of the peak magnetic fluctuations associated with the whistler waves relative to those of the saturated lower hybrid waves, the ratio of the nonlinear growth rate of whistlers relative to the linear growth rate of lower hybrid waves, the amount of energy extracted from the ring and the amount of heating of the background ions and electrons are comparable to those in the lower electron beta 3-D simulation. This suggests that even at higher electron beta, the linear and nonlinear physics of the lower hybrid ion ring instability is dominated by electrostatic, wave-particle rather than wave-wave interactions.« less

  5. Rosetta measurements of lower hybrid frequency range electric field oscillations in the plasma environment of comet 67P

    NASA Astrophysics Data System (ADS)

    Karlsson, T.; Eriksson, A. I.; Odelstad, E.; André, M.; Dickeli, G.; Kullen, A.; Lindqvist, P.-A.; Nilsson, H.; Richter, I.

    2017-02-01

    Electric field measurements from cometary environments are very rare but can provide important information on how plasma waves help fashion the plasma environment. The long dwelling time of the Rosetta spacecraft close to comet 67P/Churyumov-Gerasimenko promises to improve this state. We here present the first electric field measurements from 67P, performed by the Rosetta dual Langmuir probe instrument LAP. Measurements of the electric field from cometocentric distances of 149 and 348 km are presented together with estimates of plasma density changes. Persistent wave activity around the local H2O+ lower hybrid frequency is observed, with the largest amplitudes observed at sharp plasma gradients. We demonstrate that the necessary requirements for the lower hybrid drift instability to be operating are fulfilled. We suggest that lower hybrid waves are responsible for the creation of a warm electron population, the origins of which have been unknown so far, by heating ambient electrons in the magnetic field-parallel direction.

  6. Path to Efficient Lower Hybrid Current Drive at High Density

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Bonoli, P. T.; Brunner, D.; Faust, I.; Labombard, B. L.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Wukitch, S.

    2015-11-01

    Recovery of lower hybrid current drive (LHCD) efficiency at high density was demonstrated on Alcator C-Mod by modifying the scrape-off layer (SOL) plasma. RF probe measurements around the C-Mod tokamak indicate that the LH wave amplitude at the high field side wall significantly attenuates with plasma density. This is interpreted as enhanced collisional loss due to the increase in the SOL density and width. By taking advantage of the narrower SOL width by doubling plasma current to 1.1 MA, it is found that the LH wave amplitude maintains its strength, and an effective current drive is extended to above 1x10e20 m-3. An order of magnitude increase in non-thermal Bremsstrahlung emission is consistent with ray-tracing results which take into account the change of SOL profiles with current. In the coming campaign, a further investigation on the role of the SOL plasma is planned by raising plasma current above 1.1 MA. This will be aided with newly developed RF magnetic loop antennas mounted on a radially movable probe head. This system is expected to intercept the LH resonance cone on the first pass, allowing us to measure radial profiles of both the wave amplitude and dominant parallel wavenumber in the SOL for the first time. These data will be compared with the GENRAY ray-tracing code. Work supported by USDoE awards DE-FC02-99ER54512.

  7. Fast electron transport in lower-hybrid current drive

    SciTech Connect

    Kupfer, K.; Bers, A.

    1991-01-01

    We generalize the quasilinear-Fokker-Planck formulation for lower-hybrid current drive to include the wave induced radial transport of fast electrons. Toroidal ray tracing shows that the wave fields in the plasma develop a large poloidal component associated with the upshift in k1l and the filling of the "spectral gap". These fields lead to an enhanced radial E x B drift of resonant electrons. Two types of radial flows are obtained: an outward convective flow driven by the asymmetry in the poloidal wave spectrum, and a diffusive flow proportional to the width of the poloidal spectrum. Simulations of Alcator C and JT60, show that the radial convection velocity has a broad maximum of nearly 1 m/sec and is independent of the amplitude of fields. In both cases, the radial diffusion is found to be highly localized near the magnetic axis. For JT60, the peak of the diffusion profile can be quite large, nearly 1 m2/sec.

  8. Lower Hybrid Wave Induced Rotation on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Parker, Ron; Podpaly, Yuri; Rice, John; Schmidt, Andrea

    2009-11-01

    Injection of RF power in the vicinity of the lower hybrid frequency has been observed to cause strong counter current rotation in Alcator C-Mod plasmas [1,2]. The spin-up rate is consistent with the rate at which momentum is injected by the LH waves, and also the rate at which fast electron momentum is transferred to the ions. A momentum diffusivity of ˜ 0.1 m^2/s is sufficient to account for the observed steady-state rotation. This value is also comparable with that derived from an analysis of rotation induced by RF mode conversion [3]. Radial force balance requires a radial electric field, suggesting a buildup of negative charge in the plasma core. This may be the result of an inward pinch of the LH produced fast electrons, as would be expected for resonant trapped particles. Analysis of the fast-electron-produced bremsstrahlung during LH power modulation experiments yields an inward pinch velocity of ˜ 1 m/s, consistent with the estimated trapped particle pinch velocity. [4pt] [1] A. Ince-Cushman, et.al., Phys. Rev. Lett., 102, 035002 (2009)[0pt] [2] J. E. Rice, et. al., Nucl. Fusion 49, 025004 (2009)[0pt] [3] Y. Lin, et.al., this meeting

  9. Penetration and scattering of lower hybrid waves by density fluctuations

    SciTech Connect

    Horton, W.; Goniche, M.; Peysson, Y.; Decker, J.; Ekedahl, A.; Litaudon, X.

    2014-02-12

    Lower Hybrid [LH] ray propagation in toroidal plasma is controlled by a combination of the azimuthal spectrum launched from the antenna, the poloidal variation of the magnetic field, and the scattering of the waves by the density fluctuations. The width of the poloidal and radial RF wave spectrum increases rapidly as the rays penetrate into higher density and scatter from the turbulence. The electron temperature gradient [ETG] spectrum is particularly effective in scattering the LH waves due to its comparable wavelengths and parallel phase velocities. ETG turbulence is also driven by the radial gradient of the electron current density giving rise to an anomalous viscosity spreading the LH-driven plasma currents. The scattered LH spectrum is derived from a Fokker-Planck equation for the distribution of the ray trajectories with a diffusivity proportional to the fluctuations. The LH ray diffusivity is large giving transport in the poloidal and radial wavenumber spectrum in one - or a few passes - of the rays through the core plasma.

  10. Recovery Act: Hybrid Geothermal Heat Pump Systems Research

    SciTech Connect

    Hackel, Scott Paul; Pertzborn, Amanda

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or geothermal systems is the hybrid GSHP (HyGSHP) system. A HyGSHP system can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. We monitored and analyzed three buildings employing HyGSHP systems (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. The buildings were monitored for a year and the measured data was used to validate models of each system. Additionally, we used the models to analyze further improvements to the hybrid approach and established that it has positive impacts, both economically and environmentally. We also documented the lessons learned by those who design and operate the three systems, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, we described the measured data sets and models from this work and have made them freely available for further study of hybrid systems.

  11. Dry sliding wear of heat treated hybrid metal matrix composites

    NASA Astrophysics Data System (ADS)

    Naveed, Mohammed; Khan, A. R. Anwar

    2016-09-01

    In recent years, there has been an ever-increasing demand for enhancing mechanical properties of Aluminum Matrix Composites (AMCs), which are finding wide applications in the field of aerospace, automobile, defence etc,. Among all available aluminium alloys, Al6061 is extensively used owing to its excellent wear resistance and ease of processing. Newer techniques of improving the hardness and wear resistance of Al6061 by dispersing an appropriate mixture of hard ceramic powder and whiskers in the aluminium alloy are gaining popularity. The conventional aluminium based composites possess only one type of reinforcements. Addition of hard reinforcements such as silicon carbide, alumina, titanium carbide, improves hardness, strength and wear resistance of the composites. However, these composites possessing hard reinforcement do posses several problems during their machining operation. AMCs reinforced with particles of Gr have been reported to be possessing better wear characteristics owing to the reduced wear because of formation of a thin layer of Gr particles, which prevents metal to metal contact of the sliding surfaces. Further, heat treatment has a profound influence on mechanical properties of heat treatable aluminium alloys and its composites. For a solutionising temperature of 5500C, solutionising duration of 1hr, ageing temperature of 1750C, quenching media and ageing duration significantly alters mechanical properties of both aluminium alloy and its composites. In the light of the above, the present paper aims at developing aluminium based hybrid metal matrix composites containing both silicon carbide and graphite and characterize their mechanical properties by subjecting it to heat treatment. Results indicate that increase of graphite content increases wear resistance of hybrid composites reinforced with constant SiC reinforcement. Further heat treatment has a profound influence on the wear resistance of the matrix alloy as well as its hybrid composites

  12. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  13. Hybrid Model of Inhomogeneous Solar Wind Plasma Heating by Alfven Wave Spectrum: Parametric Studies

    NASA Technical Reports Server (NTRS)

    Ofman, L.

    2010-01-01

    Observations of the solar wind plasma at 0.3 AU and beyond show that a turbulent spectrum of magnetic fluctuations is present. Remote sensing observations of the corona indicate that heavy ions are hotter than protons and their temperature is anisotropic (T(sub perpindicular / T(sub parallel) >> 1). We study the heating and the acceleration of multi-ion plasma in the solar wind by a turbulent spectrum of Alfvenic fluctuations using a 2-D hybrid numerical model. In the hybrid model the protons and heavy ions are treated kinetically as particles, while the electrons are included as neutralizing background fluid. This is the first two-dimensional hybrid parametric study of the solar wind plasma that includes an input turbulent wave spectrum guided by observation with inhomogeneous background density. We also investigate the effects of He++ ion beams in the inhomogeneous background plasma density on the heating of the solar wind plasma. The 2-D hybrid model treats parallel and oblique waves, together with cross-field inhomogeneity, self-consistently. We investigate the parametric dependence of the perpendicular heating, and the temperature anisotropy in the H+-He++ solar wind plasma. It was found that the scaling of the magnetic fluctuations power spectrum steepens in the higher-density regions, and the heating is channeled to these regions from the surrounding lower-density plasma due to wave refraction. The model parameters are applicable to the expected solar wind conditions at about 10 solar radii.

  14. Integrated Plasma Simulation of Ion Cyclotron and Lower Hybrid Range of Frequencies Actuators in Tokamaks

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Shiraiwa, S.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Chen, Jin; Poli, F.; Kessel, C. E.; Jardin, S. C.

    2012-10-01

    Recent upgrades to the ion cyclotron RF (ICRF) and lower hybrid RF (LHRF) components of the Integrated Plasma Simulator [1] have made it possible to simulate LH current drive in the presence of ICRF minority heating and mode conversion electron heating. The background plasma is evolved in these simulations using the TSC transport code [2]. The driven LH current density profiles are computed using advanced ray tracing (GENRAY) and Fokker Planck (CQL3D) [3] components and predictions from GENRAY/CQL3D are compared with a ``reduced'' model for LHCD (the LSC [4] code). The ICRF TORIC solver is used for minority heating with a simplified (bi-Maxwellian) model for the non-thermal ion tail. Simulation results will be presented for LHCD in the presence of ICRF heating in Alcator C-Mod. [4pt] [1] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008).[0pt] [2] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).[0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992).[0pt] [4] D. Ignat et al, Nucl. Fus. 34, 837 (1994).[0pt] [5] M. Brambilla, Plasma Phys. and Cont. Fusion 41,1 (1999).

  15. Conditions for Lower Hybrid Current Drive in ITER

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Ceccuzzi, S.; Napoli, F.; Tuccillo, A. A.; Galli, A.; Schettini, G.

    2012-12-01

    To control the plasma current profile represents one of the most important problems of the research of nuclear fusion energy based on the tokamak concept, as in the plasma column the necessary conditions of stability and confinement should be satisfied. This problem can be solved by using the lower hybrid current drive (LHCD) effect, which was demonstrated to occur also at reactor grade high plasma densities provided that a proper method should be utilised, as assessed on FTU (Frascati Tokamak Upgrade). This method, based on theoretical predictions confirmed by experiment, produces relatively high electron temperature at the plasma periphery and scrape-off layer (SOL), consequently reducing the broadening of the spectrum launched by the antenna produced by parasitic wave physics of the edge, namely parametric instability (PI). The new results presented here show that, for kinetic profiles now foreseen for the SOL of ITER, PI is expected to hugely broaden the antenna spectrum and prevent any penetration in the core of the coupled LH power. However, considering the FTU method and assuming higher electron temperature at the edge (which would be however reasonable for ITER) the PI-produced spectral broadening would be mitigated, and enable the penetration of the coupled LH power in the main plasma. By successful LHCD effect, the control of the plasma current profile at normalised minor radius of about 0.8 would be possible, with much higher efficiency than that obtainable by other tools. A very useful reinforce of bootstrap current effects would be thus possible by LHCD in ITER.

  16. Lower hybrid accessibility in a large, hot reversed field pinch

    SciTech Connect

    Dziubek, R.A.

    1995-02-01

    Recent theoretical and experimental results indicate that driving a current in the outer radius of an RPF suppresses sawtooth activity and increases particle and energy confinement times. One candidate for a form of steady state current drive is the slow wave at the lower hybrid frequency. Here, the accessibility of such a wave in an RFP plasma is investigated theoretically, with focus on the RFX machine of Padua, Italy. To drive current, the slow wave with frequency between 1.0--1.5 GHz is considered where optimal Landau damping is desired at r/a {approximately} 0.7. By numerically determining the values of the wave`s perpendicular index of refraction which satisfy the hot plasma dispersion relation, regions of propagation and evanescence can be found. The path of the wave can then be traced over a contour map of these regions so that accessibility can be clearly seen. The possibility of mode conversion events can be ascertained by plotting the values of the perpendicular index of refraction for the fast and slow wave and observing convergence points. To locate regions of maximum Landau damping, a technique developed by Stix was adapted for use with the slow wave in an RFP plasma. Results show that the slow wave is accessible to the target region without mode conversion so long as the value of the parallel index of refraction is correctly chosen at the edge of the plasma. Landau damping can also be optimized with this method. In an RFP, 2--20% of the electron population consists of fast electrons. Because this species alters the total electron distribution function and raises the effective temperature in the outer regions of the plasma, its presence is expected to shift the location of ideal Landau damping.

  17. Development of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  18. Development of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Grzyll, Lawrence R.; Silvestri, John J.; Scaringe, Robert P.

    1991-01-01

    The authors present the current development status of a hybrid chemical/mechanical heat pump for low-lift applications. The heat pump provides electronics cooling by evaporating a pure refrigerant from an absorbent/refrigerant mixture in a generator/cold plate. The current development focused on evaluation of absorbent/refrigerant pairs, corrosion testing, pump and compressor design, and electronic cold plate design. Two cycle configurations were considered. The first configuration utilized a standard mechanical compressor and pump. The second cycle configuration investigated pumps and compressors with non-moving parts. An innovative generator/cold plate design is also presented. The development to date shows that this cycle has about the same performance as standard vapor compression heat pumps with standard refrigerants but may have some performance and reliability advantages over vapor compression heat pumps.

  19. Evaluation of heat engines for hybrid vehicle application

    SciTech Connect

    Schneider, H.W.

    1984-08-31

    The status of ongoing heat-engine developments, including spark-ignition, compression-ignition, internal-combustion, and external-combustion engines is presented in this report. The potential of engine concepts under consideration for hybrid vehicle use is evaluated, using self-imposed criteria for selection. The deficiencies of the engines currently being evaluated in hybrid vehicles are discussed. The study focuses on recent research with two-stroke, rotary, and free-piston engines and concludes that these engine concepts have the most promising potential for future application in hybrid vehicles. Recommendations are made for analysis and experimentation to evaluate stop-start and transient emission behavior of recommended engine concepts.

  20. Lowering heat losses in heating systems by using effective forms of heat insulation

    SciTech Connect

    Krasheninnikov, A.N.

    1983-02-01

    The reduction of heat losses in power systems is necessary if fuel economy is to be achieved. The use of thermal insulation to reduce heat losses in power plant equipment is discussed. The types of thermal insulation considered in this study include reinforced foam concrete, bituminous perlite, mineral wool, and cellular plastics. The insulating properties of each of these materials are discussed.

  1. Advances in modeling of lower hybrid current drive

    NASA Astrophysics Data System (ADS)

    Peysson, Y.; Decker, J.; Nilsson, E.; Artaud, J.-F.; Ekedahl, A.; Goniche, M.; Hillairet, J.; Ding, B.; Li, M.; Bonoli, P. T.; Shiraiwa, S.; Madi, M.

    2016-04-01

    First principle modeling of the lower hybrid (LH) current drive in tokamak plasmas is a longstanding activity, which is gradually gaining in accuracy thanks to quantitative comparisons with experimental observations. The ability to reproduce simulatenously the plasma current and the non-thermal bremsstrahlung radial profiles in the hard x-ray (HXR) photon energy range represents in this context a significant achievement. Though subject to limitations, ray tracing calculations are commonly used for describing wave propagation in conjunction with Fokker-Planck codes, as it can capture prominent features of the LH wave dynamics in a tokamak plasma-like toroidal refraction. This tool has been validated on several machines when the full absorption of the LH wave requires the transfer of a small fraction of power from the main lobes of the launched power spectrum to a tail at a higher parallel refractive index. Conversely, standard modeling based on toroidal refraction only becomes more challenging when the spectral gap is large, except if other physical mechanisms may dominate to bridge it, like parametric instabilities, as suggested for JET LH discharges (Cesario et al 2004 Phys. Rev. Lett. 92 175002), or fast fluctuations of the launched power spectrum or ‘tail’ LH model, as shown for Tore Supra (Decker et al 2014 Phys. Plasma 21 092504). The applicability of the heuristic ‘tail’ LH model is investigated for a broader range of plasma parameters as compared to the Tore Supra study and with different LH wave characteristics. Discrepancies and agreements between simulations and experiments depending upon the different models used are discussed. The existence of a ‘tail’ in the launched power spectrum significantly improves the agreement between modeling and experiments in plasma conditions for which the spectral gap is large in EAST and Alcator C-Mod tokamaks. For the Alcator C-Mod tokamak, the experimental evolution of the HXR profiles with density suggests

  2. ITER equilibrium with bootstrap currents, lower hybrid current drive and fast wave current drive

    SciTech Connect

    Ehst, D.A.

    1989-03-01

    A current drive system is proposed for the technology phase of ITER which relies on rf power and bootstrap currents. The rf/bootstrap system permits operation at high safety factor, and we consider the axial value to be q/sub a/ approx. = 1.9, which minimizes the need for seed current near the magnetic axis. Lower hybrid power (/approximately/30 MW) provides current density near the surface, ICRF (/approximately/65 MHz, /approximately/30 MW) fast waves generate current near the axis, and high frequency fast waves (/approximately/250 MHz, /approximately/74 MW) supply the remaining current density. The system is not yet optimized but appears to offer great flexibility (ion heating for ignition, current rampup, etc.) with relatively inexpensive and well developed technology. 29 refs., 16 figs., 1 tab.

  3. Lower hybrid current drive in FTU high density shear reversed discharges

    NASA Astrophysics Data System (ADS)

    Tuccillo, A. A.; Barbato, E.; Crisanti, F.; Panaccione, L.; Pericoli, V.; Podda, S.; Cirant, S.; Acitelli, L.; Alladio, F.; Amadeo, P.; Angelini, B.; Apicella, M. L.; Apruzzese, G.; Bertocchi, A.; Borra, M.; Bracco, G.; Bruschi, A.; Buceti, G.; Buratti, P.; Cardinali, A.; Centioli, C.; Cesario, R.; Ciattaglia, S.; Ciotti, M.; Cocilovo, V.; De Angelis, R.; De Marco, F.; Esposito, B.; Frigione, D.; Gabellieri, L.; Gatti, G.; Giovannozzi, E.; Gourlan, C.; Granucci, G.; Grolli, M.; Imparato, A.; Kroegler, H.; Leigheb, M.; Lovisetto, L.; Maddaluno, G.; Maffia, G.; Mancuso, A.; Marinucci, M.; Mazzitelli, G.; Micozzi, P.; Mirizzi, F.; Orsitto, P.; Pacella, D.; Panella, M.; Pieroni, L.; Righetti, G. B.; Romanelli, F.; Santini, F.; Simonetto, A.; Sozzi, C.; Sternini, S.; Tudisco, O.; Valente, F.; Vitale, V.; Vlad, G.; Zanza, V.; Zerbini, M.

    1997-04-01

    Results are reported of the 8 GHz Lower Hybrid experiments on FTU after the installation of the new toroidal limiter. A figure of merit of the Current Drive efficiency ηCD≈0.11ṡ1020 A/Wm2 is estimated for plasma density n¯e=1020 m-3 and no appreciable broadening of the launched frequency is detected. In low density experiments sawteeth are stabilised and m=1 activity is present in the plasma. Shear reversed discharges with large reversal radius, rs/a≈0.5, are obtained at higher density, lower temperature, BT=4 T, qa≈5.5, by off-axis LH CD. The reversed configurations exhibit high central temperature coexisting with regular m=2, n=1 relaxations of large amplitude and are maintained up to LH switch off. At higher magnetic field, B=5.2 T, qa≈7, irregular DTM crashes are present during the whole LH pulse. Confinement time of radiofrequency heated discharges (PLH=0.5÷2ṡPOH) exhibits the same behaviour of FTU ohmic discharges following the ITER89-P scaling. Preliminary results of central 140 GHz Electron Cyclotron Resonant Heating (ECRH) during the plasma current ramp-up, aimed at obtaining shear reversed configurations are also reported.

  4. Performance of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  5. Performance of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  6. Ice Slurry Ingestion Leads to a Lower Net Heat Loss during Exercise in the Heat.

    PubMed

    Morris, Nathan B; Coombs, Geoff; Jay, Ollie

    2016-01-01

    To compare the reductions in evaporative heat loss from the skin (Esk) to internal heat loss (Hfluid) induced by ice slurry (ICE) ingestion relative to 37 °C fluid and the accompanying body temperature and local thermoeffector responses during exercise in warm, dry conditions (33.5 °C ± 1.4 °C; 23.7% ± 2.6% relative humidity [RH]). Nine men cycled at approximately 55% VO2peak for 75 min and ingested 3.2 mL · kg(-1) aliquots of 37 °C fluid or ICE after 15, 30, and 45 min of exercise. Metabolic heat production (M-W), rectal temperature (Tre), mean skin temperature (Tsk), whole-body sweat loss (WBSL), local sweat rate (LSR), and skin blood flow (SkBF) were measured throughout. Net heat loss (HLnet) and heat storage (S) were estimated using partitional calorimetry. Relative to the 37 °C trial, M-W was similar (P = 0.81) with ICE ingestion; however, the 200 ± 20 kJ greater Hfluid (P < 0.001) with ICE ingestion was overcompensated by a 381 ± 199-kJ lower Esk (P < 0.001). Net heat loss (HLnet) was consequently 131 ± 120 kJ lower (P = 0.01) and S was greater (P = 0.05) with ICE ingestion compared with 37 °C fluid ingestion. Concurrently, LSR and WBSL were lower by 0.16 ± 0.14 mg · min(-1) · cm(-2) (P < 0.01) and 191 ± 122 g (P < 0.001), respectively, and SkBF tended to be lower (P = 0.06) by 5.4%maxAU ± 13.4%maxAU in the ICE trial. Changes in Tre and Tsk were similar throughout exercise with ICE compared to 37 °C fluid ingestion. Relative to 37 °C, ICE ingestion caused disproportionately greater reductions in Esk relative to Hfluid, resulting in a lower HLnet and greater S. Mechanistically, LSR and possibly SkBF were suppressed independently of Tre or Tsk, reaffirming the concept of human abdominal thermoreception. From a heat balance perspective, recommendations for ICE ingestion during exercise in warm, dry conditions should be reconsidered.

  7. Corn hybrids display lower metabolite variability and complex metabolite inheritance patterns.

    PubMed

    Lisec, Jan; Römisch-Margl, Lilla; Nikoloski, Zoran; Piepho, Hans-Peter; Giavalisco, Patrick; Selbig, Joachim; Gierl, Alfons; Willmitzer, Lothar

    2011-10-01

    We conducted a comparative analysis of the root metabolome of six parental maize inbred lines and their 14 corresponding hybrids showing fresh weight heterosis. We demonstrated that the metabolic profiles not only exhibit distinct features for each hybrid line compared with its parental lines, but also separate reciprocal hybrids. Reconstructed metabolic networks, based on robust correlations between metabolic profiles, display a higher network density in most hybrids as compared with the corresponding inbred lines. With respect to metabolite level inheritance, additive, dominant and overdominant patterns are observed with no specific overrepresentation. Despite the observed complexity of the inheritance pattern, for the majority of metabolites the variance observed in all 14 hybrids is lower compared with inbred lines. Deviations of metabolite levels from the average levels of the hybrids correlate negatively with biomass, which could be applied for developing predictors of hybrid performance based on characteristics of metabolite patterns.

  8. Ion-beam driven lower hybrid waves in a magnetized dusty plasma

    SciTech Connect

    Prakash, Ved; Vijayshri; Sharma, Suresh C.; Gupta, Ruby

    2013-06-15

    An ion beam drives lower hybrid waves to instability in a magnetized dusty plasma via Cerenkov interaction. A dispersion relation and the growth rate of the lower hybrid waves have been derived taking into account the dust charge fluctuations. The frequency and the growth rate of the unstable wave instability increase with relative density of negatively charged dust grains. The lower hybrid modes with phase velocity comparable to the beam velocity possess a large growth rate. Moreover, the growth rate of the instability increases with beam density and scales as the one-third power of the beam density.

  9. Lower hybrid current drive experiments with different launched wave frequencies in the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Li, M. H.; Ding, B. J.; Liu, F. K.; Shan, J. F.; Wang, M.; Xu, H. D.; Liu, L.; Hu, H. C.; Zhang, X. J.; Li, Y. C.; Wei, W.; Wu, Z. G.; Ma, W. D.; Yang, Y.; Feng, J. Q.; Jia, H.; Wang, X. J.; Wu, D. J.; Chen, M.; Xu, L.; Wang, J.; Lin, S. Y.; Zhang, J. Z.; Qian, J. P.; Luo, Z. P.; Zang, Q.; Han, X. F.; Zhao, H. L.; Peysson, Y.; Decker, J.; Ekedahl, A.; Hillairet, J.; Goniche, M.

    2016-10-01

    EAST has been equipped with two high power lower hybrid current drive (LHCD) systems with operating frequencies of 2.45 GHz and 4.6 GHz. Comparative LHCD experiments with the two different frequencies were performed in the same conditions of plasma for the first time. It was found that current drive (CD) efficiency and plasma heating effect are much better for 4.6 GHz LH waves than for the one with 2.45 GHz. High confinement mode (H-mode) discharges with 4.6 GHz LHCD as the sole auxiliary heating source have been obtained in EAST and the confinement is higher with respect to that produced previously by 2.45 GHz. A combination of ray-tracing and Fokker-Planck calculations by using the C3PO/LUKE codes was performed in order to explain the different experimental observations between the two waves. In addition, the frequency spectral broadening of the two LH wave operating frequencies was surveyed by using a radio frequency probe.

  10. Irreversibility and Transport in the Lower Hybrid Drift Instablilty.

    DTIC Science & Technology

    1980-03-01

    described by an effective "anomolous" 2 resistivity, have been calculated in a quasilinear analvsis. Particle simu- lations of the instability in both...VB resonances). The quasilinear electron "heating" previously calculated simply results from the coherent sloshing of the electron distribution...studied. 1 0 The present calculation is actually somewhat simpler than the previous in- -1 -I vestigations. The existence of two disparate time scales

  11. Rectification of electronic heat current by a hybrid thermal diode

    NASA Astrophysics Data System (ADS)

    Martínez-Pérez, Maria José; Fornieri, Antonio; Giazotto, Francesco

    2015-05-01

    Thermal diodes—devices that allow heat to flow preferentially in one direction—are one of the key tools for the implementation of solid-state thermal circuits. These would find application in many fields of nanoscience, including cooling, energy harvesting, thermal isolation, radiation detection and quantum information, or in emerging fields such as phononics and coherent caloritronics. However, both in terms of phononic and electronic heat conduction (the latter being the focus of this work), their experimental realization remains very challenging. A highly efficient thermal diode should provide a difference of at least one order of magnitude between the heat current transmitted in the forward temperature (T) bias configuration (Jfw) and that generated with T-bias reversal (Jrev), leading to ℛ = Jfw/Jrev ≫ 1 or ≪ 1. So far, ℛ ≈ 1.07-1.4 has been reported in phononic devices, and ℛ ≈ 1.1 has been obtained with a quantum-dot electronic thermal rectifier at cryogenic temperatures. Here, we show that unprecedentedly high ratios of ℛ ≈ 140 can be achieved in a hybrid device combining normal metals tunnel-coupled to superconductors. Our approach provides a high-performance realization of a thermal diode for electronic heat current that could be successfully implemented in true low-temperature solid-state thermal circuits.

  12. Hybrid Solar Lighting Provides Energy Savings and Reduces Waste Heat

    SciTech Connect

    Lapsa, Melissa Voss; Maxey, L Curt; Earl, Dennis Duncan; Beshears, David L; Ward, Christina D; Parks, James Edgar

    2006-01-01

    ABSTRACT Artificial lighting is the largest component of electricity use in commercial U.S. buildings. Hybrid solar lighting (HSL) provides an exciting new means of reducing energy consumption while also delivering significant ancillary benefits associated with natural lighting in buildings. As more than half of all federal facilities are in the Sunbelt region (defined as having an average direct solar radiation of greater than 4 kWh/m2/day) and as more than half of all square footage available in federal buildings is also in the Sunbelt, HSL is an excellent technology fit for federal facilities. The HSL technology uses a rooftop, 4-ft-wide dish and secondary mirror that track the sun throughout the day (Fig. 1). The collector system focuses the sunlight onto 127 optical fibers. The fibers serve as flexible light pipes and are connected to hybrid light fixtures that have special diffusion rods that spread out the light in all directions. One collector powers about eight hybrid light fixtures-which can illuminate about 1,000 square feet. The system tracks at 0.1 accuracy, required by the two-mirror geometry to keep the focused beam on the fiber bundle. When sunlight is plentiful, the optical fibers in the luminaires provide all or most of the light needed in an area. During times of little or no sunlight, a sensor controls the intensity of the artificial lamps to maintain a desired illumination level. Unlike conventional electric lamps, the natural light produces little to no waste heat and is cool to the touch. This is because the system's solar collector removes the infrared light-the part of the spectrum that generates a lot of the heat in conventional bulbs-from the sunlight.

  13. Coupling of α-channeling to |k∥| upshift in lower hybrid current drive

    SciTech Connect

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2014-08-26

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors.

  14. Influence of collisions on parametric instabilities induced by lower hybrid waves in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Castaldo, C.; Di Siena, A.; Fedele, R.; Napoli, F.; Amicucci, L.; Cesario, R.; Schettini, G.

    2016-01-01

    Parametric instabilities induced at the plasma edge by lower hybrid wave power externally coupled to tokamak plasmas have, via broadening of the antenna spectrum, strong influence on the power deposition and current drive in the core. For modeling the parametric instabilities at the tokamak plasma edge in lower hybrid current drive experiments, the effect of the collisions has been neglected so far. In the present work, a specific collisional parametric dispersion relation, useful to analyze these nonlinear phenomena near the lower hybrid antenna mouth, is derived for the first time, based on a kinetic model. Numerical solutions show that in such cold plasma regions the collisions prevent the onset of the parametric instabilities. This result is important for present lower hybrid current drive experiments, as well as in fusion reactor scenarios.

  15. PVMirrors: Hybrid PV/CSP collectors that enable lower LCOEs

    NASA Astrophysics Data System (ADS)

    Fisher, Kate; Yu, Zhengshan Jason; Striling, Rob; Holman, Zachary

    2017-06-01

    The primary challenge with concentrating solar power (CSP) is that the conversion efficiency is low—and the cost high—compared to that of photovoltaics (PV), and the primary challenge with PV is that the energy generated cannot be stored cost effectively. We introduce a technology that hybridizes CSP and PV, resulting in power plants with high energy conversion efficiency and affordable storage. This is accomplished by replacing silvered troughs (or heliostat facets) with "PVMirrors" that and direct photons of each wavelength to the converter (PV or thermal) that may best use them. A PVMirror looks like a curved PV module that includes a spectrum-splitting dichroic mirror film; this film, which is the heart of the technology, transmits near-infrared light to the underlying silicon PV cells while reflecting both longer and shorter wavelengths to a thermal absorber tube. This paper investigates the optical performance of dichroic mirror film, the specularity of PVMirrors, and the anticipated levelized cost of energy (LCOE) from a PVMirror power plant. PVMirrors are found to decrease LCOE by more than 15% relative to CSP while retaining full dispatchability.

  16. Demand Response Performance of GE Hybrid Heat Pump Water Heater

    SciTech Connect

    Widder, Sarah H.; Parker, Graham B.; Petersen, Joseph M.; Baechler, Michael C.

    2013-07-01

    This report describes a project to evaluate and document the DR performance of HPWH as compared to ERWH for two primary types of DR events: peak curtailments and balancing reserves. The experiments were conducted with GE second-generation “Brillion”-enabled GeoSpring hybrid water heaters in the PNNL Lab Homes, with one GE GeoSpring water heater operating in “Standard” electric resistance mode to represent the baseline and one GE GeoSpring water heater operating in “Heat Pump” mode to provide the comparison to heat pump-only demand response. It is expected that “Hybrid” DR performance, which would engage both the heat pump and electric elements, could be interpolated from these two experimental extremes. Signals were sent simultaneously to the two water heaters in the side-by-side PNNL Lab Homes under highly controlled, simulated occupancy conditions. This report presents the results of the evaluation, which documents the demand-response capability of the GE GeoSpring HPWH for peak load reduction and regulation services. The sections describe the experimental protocol and test apparatus used to collect data, present the baselining procedure, discuss the results of the simulated DR events for the HPWH and ERWH, and synthesize key conclusions based on the collected data.

  17. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    NASA Astrophysics Data System (ADS)

    Shirley, J. W.; James, L. C.; Stevens, S.; Autry, A. N.; Nussbaum, M.; McQueen, S. V.

    1983-06-01

    A hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system was designed and monitored. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a microcomputer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Microcomputer hardware and computer programs were developed to make cost effective decisions between the various modes of operation.

  18. Integrated Plasma Simulation of Lower Hybrid Current Drive in Tokamaks

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Wright, J. C.; Harvey, R. W.; Batchelor, D. B.; Berry, L. A.; Kessel, C. E.; Jardin, S. C.

    2012-03-01

    It has been shown in Alcator C-Mod that the onset time for sawteeth can be delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through the injection of off-axis LH current drive power [1]. We are simulating these experiments using the Integrated Plasma Simulator (IPS) [2], where the driven LH current density profiles are computed using a ray tracing component (GENRAY) and Fokker Planck code (CQL3D) [3] that are run in a tightly coupled time advance. The background plasma is evolved using the TSC transport code with the Porcelli sawtooth model [4]. Predictions of the driven LH current profiles will be compared with simpler ``reduced'' models for LHCD such as the LSC code which is implemented in TSC and which is also invoked within the IPS. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Meeting on Simulation and Modeling of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, J. Comp. Phys. 66, 481 (1986).

  19. Resonant parametric excitations driven by lower-hybrid fields

    NASA Astrophysics Data System (ADS)

    Villalon, E.

    1980-11-01

    Three-wave parametric excitation in inhomogeneous plasmas is examined in a two-dimensional geometry relevant to supplementary rf heating of tokamaks. The stabilization of resonant parametric excitation due to a linear mismatch in wavenumbers and to the Landau-damping rates of the decay waves is analyzed, assuming that the magnitude of the pump field is constant in time and in the spatial region where the resonant interaction takes place. Both types of temporally growing modes and spatially amplified instabilities are studied, using a WKB analysis. It is shown that by increasing the strength of the mismatch K prime or the width of the pump L, the growth rate of the fastest growing normal mode will decrease. The amount of spatial amplification is also reduced by the mismatch in wavenumbers and by the damping rates of the excited waves. Because of the finite spatial extent of the pump electric field, the amplification length is smaller than or equal to L, depending on the strength of the mismatch and damping rates.

  20. Hybrid Heat Pumps Using Selective Water Sorbents (SWS)

    SciTech Connect

    Ally, M. R.

    2006-11-30

    The development of the ground-coupled and air-coupled Heating Ventilation and Air-Conditioning (HVAC) system is essential in meeting the goals of Zero Energy Houses (ZEH), a viable concept vigorously pursued under DOE sponsorship. ORNL has a large Habitat for Humanity complex in Lenoir City where modem buildings technology is incorporated on a continual basis. This house of the future is planned for lower and middle income families in the 21st century. The work undertaken in this CRADA is an integral part of meeting DOE's objectives in the Building America program. SWS technology is a prime candidate for reducing the footprint, cost and improve the performance of ground-coupled heat pumps. The efficacy of this technique to exchange energy with the ground is a topic of immense interest to DOE, builders and HVAC equipment manufacturers. If successful, the SWS concept will become part of a packaged ZEH kit for affordable and high-end houses. Lennox Industries entered into a CRADA with Oak Ridge National Laboratory in November 2004. Lennox, Inc. agreed to explore ways of using Selective Water Sorbent materials to boost the efficiency of air-coupled heat pumps whereas ORNL concentrated on ground-coupled applications. Lennox supplied ORNL with heat exchangers and heat pump equipment for use at ORNL's Habitat for Humanity site in Lenoir City, Tennessee. Lennox is focused upon air-coupled applications of SWS materials at the Product Development and Research Center in Carrollton, TX.

  1. Theory of runaway-current sustainment by lower-hybrid waves

    SciTech Connect

    Liu, C.S.; Chan, V.S.; Bhadra, D.K.; Harvey, R.W.

    1982-06-01

    A mechanism is proposed whereby high phase velocity lower hybrid waves can interact with lower parallel velocity electrons through nonlinearly excited plasma waves. Significant steady-state current can be sustained by the rf after the ohmic field is turned off in a tokamak provided the initial electron distribution is in the runaway regime with density below a critical value.

  2. Advances in multi-megawatt lower hybrid technology in support of steady-state tokamak operation

    NASA Astrophysics Data System (ADS)

    Delpech, L.; Achard, J.; Armitano, A.; Artaud, J. F.; Bae, Y. S.; Belo, J. H.; Berger-By, G.; Bouquey, F.; Cho, M. H.; Corbel, E.; Decker, J.; Do, H.; Dumont, R.; Ekedahl, A.; Garibaldi, P.; Goniche, M.; Guilhem, D.; Hillairet, J.; Hoang, G. T.; Kim, H. S.; Kim, J. H.; Kim, H.; Kwak, J. G.; Magne, R.; Mollard, P.; Na, Y. S.; Namkung, W.; Oh, Y. K.; Park, S.; Park, H.; Peysson, Y.; Poli, S.; Prou, M.; Samaille, F.; Yang, H. L.; The Tore Supra Team

    2014-10-01

    It has been demonstrated that lower hybrid current drive (LHCD) systems play a crucial role for steady-state tokamak operation, owing to their high current drive (CD) efficiency and hence their capability to reduce flux consumption. This paper describes the extensive technology programmes developed for the Tore Supra (France) and the KSTAR (Korea) tokamaks in order to bring continuous wave (CW) LHCD systems into operation. The Tore Supra LHCD generator at 3.7 GHz is fully CW compatible, with RF power PRF = 9.2 MW available at the generator to feed two actively water-cooled launchers. On Tore Supra, the most recent and novel passive active multijunction (PAM) launcher has sustained 2.7 MW (corresponding to its design value of 25 MW m-2 at the launcher mouth) for a 78 s flat-top discharge, with low reflected power even at large plasma-launcher gaps. The fully active multijunction (FAM) launcher has reached 3.8 MW of coupled power (24 MW m-2 at the launcher mouth) with the new TH2103C klystrons. By combining both the PAM and FAM launchers, 950 MJ of energy, using 5.2 MW of LHCD and 1 MW of ICRH (ion cyclotron resonance heating), was injected for 160 s in 2011. The 3.7 GHz CW LHCD system will be a key element within the W (for tungsten) environment in steady-state Tokamak (WEST) project, where the aim is to test ITER technologies for high heat flux components in relevant heat flux density and particle fluence conditions. On KSTAR, a 2 MW LHCD system operating at 5 GHz is under development. Recently the 5 GHz prototype klystron has reached 500 kW/600 s on a matched load, and studies are ongoing to design a PAM launcher. In addition to the studies of technology, a combination of ray-tracing and Fokker-Planck calculations have been performed to evaluate the driven current and the power deposition due to LH waves, and to optimize the N∥ spectrum for the future launcher design. Furthermore, an LHCD system at 5 GHz is being considered for a future upgrade of the ITER

  3. Experimental and modeling uncertainties in the validation of lower hybrid current drive

    SciTech Connect

    Poli, F. M.; Bonoli, P. T.; Chilenski, M.; Mumgaard, R.; Shiraiwa, S.; Wallace, G. M.; Andre, R.; Delgado-Aparicio, L.; Scott, S.; Wilson, J. R.; Harvey, R. W.; Petrov, Yu V.; Reinke, M.; Faust, I.; Granetz, R.; Hughes, J.; Rice, J.

    2016-07-28

    Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, which is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.

  4. An Analysis of Lower Hybrid Grill Coupling Using an Efficient Full Wave Code

    NASA Astrophysics Data System (ADS)

    Preinhaelter, Josef; Urban, Jakub; Vahala, Linda; Vahala, George

    2012-03-01

    Lower hybrid (LH) waves are very important for heating and current drive in tokamaks. A code is developed for 3D grills and the problem of efficient coupling: the power density spectrum, the power reflection coefficient, the power lost by the waves launched in the inaccessible region and the directivity of the waves. An efficient adaptive full wave solver is used to determine the wave propagation in a 1D plasma slab geometry. The very large number of 2D k-space infinite integrals for the coupling elements are solved using high order Gaussian quadratures combined with 2D B-splines in the accessible region. The code can handle large structures and many modes because the computational time is only weakly dependent on the size of the problem. An iterative evaluation of the integrands in the inaccessible region solves the currently overlooked near singular behavior of the integrands as well as the spectral power density associated with the eigenmodes. The role of collisions is clarified. We determine the 3D electric field in front of the grill and consider several COMPASS grills operating either at 1.3 GHz or 3.7 GHz with various waveguide phasing.

  5. Spectral broadening of parametric instability in lower hybrid current drive at a high density

    NASA Astrophysics Data System (ADS)

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Napoli, F.; Paoletti, F.; De Arcangelis, D.; Ferrari, M.; Galli, A.; Gallo, G.; Pullara, E.; Schettini, G.; Tuccillo, A. A.

    2014-04-01

    The important goal of adding to the bootstrap current a more flexible tool, capable of producing and controlling steady-state profiles with a high fraction of non-inductive plasma current, could be reached using the lower hybrid current drive (LHCD) effect. Experiments performed on FTU (Frascati Tokamak Upgrade) demonstrated that LHCD can occur at reactor-graded high plasma density, provided that the parametric instability (PI)-produced broadening of the spectrum launched by the antenna is reduced under proper operating conditions, capable of producing relatively high temperature in the outer region of plasma column. This condition was produced by operations that reduce particle recycling from the vessel walls, and enhance the gas fuelling in the core by means of fast pellet. New results of FTU experiments are presented documenting that the useful effect of temperature at the periphery, which reduces the LH spectral broadening and enhances the LH-induced hard-x ray emission level, occurs in a broader range of plasma parameters than in previous work. Modelling results show that a further tool for helping LHCD at a high density would be provided by electron cyclotron resonant heating of plasma periphery. New information is provided on the modelling, able determining frequencies, growth rates and LH spectral broadening produced by PI, which allowed assessing the new method for enabling LHCD at high densities. Further robustness is provided to theoretical and experimental fundaments of the method for LHCD at a high density.

  6. Experimental and modeling uncertainties in the validation of lower hybrid current drive

    DOE PAGES

    Poli, F. M.; Bonoli, P. T.; Chilenski, M.; ...

    2016-07-28

    Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, whichmore » is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.« less

  7. The role of the plasma current in turbulence decrease during lower hybrid current drive

    NASA Astrophysics Data System (ADS)

    Antar, G.; Ekedahl, A.; Goniche, M.; Asghar, A.; Žàček, F.

    2017-03-01

    The interaction of radio frequency (RF) waves with edge turbulence has resurfaced after the results obtained on many tokamaks showing that edge turbulence decreases when the ion cyclotron frequency heating (ICRH) is switched on. Using the lower hybrid (LH) waves to drive current into tokamak plasmas, this issue presented contradicting results with some tokamaks (FTU & HT-7) showing a net decrease, similar to the ICRH results, and others (Tore Supra) did not. In this article, these apparent discrepancies among tokamaks and RF wave frequencies are removed. It is found that turbulence large-scale structures in the scrape-off layer decrease at high enough plasma currents (Ip) on the Tore Supra tokamak. We distinguish three regimes: At low Ip's, no modification is detected with statistical properties of turbulence similar to ohmic plasmas even with PLH reaching 4.8 MW. At moderate plasma currents, turbulence properties are modified only at a high LH power. At high plasma currents, turbulent large scales are reduced to values smaller than 1 cm, and this is accompanied by a net decrease in the level of turbulence of about 30% even with a moderate LH power.

  8. Experimental and modeling uncertainties in the validation of lower hybrid current drive

    SciTech Connect

    Poli, F. M.; Bonoli, P. T.; Chilenski, M.; Mumgaard, R.; Shiraiwa, S.; Wallace, G. M.; Andre, R.; Delgado-Aparicio, L.; Scott, S.; Wilson, J. R.; Harvey, R. W.; Petrov, Yu V.; Reinke, M.; Faust, I.; Granetz, R.; Hughes, J.; Rice, J.

    2016-07-28

    Our work discusses sources of uncertainty in the validation of lower hybrid wave current drive simulations against experiments, by evolving self-consistently the magnetic equilibrium and the heating and current drive profiles, calculated with a combined toroidal ray tracing code and 3D Fokker–Planck solver. The simulations indicate a complex interplay of elements, where uncertainties in the input plasma parameters, in the models and in the transport solver combine and compensate each other, at times. It is concluded that ray-tracing calculations should include a realistic representation of the density and temperature in the region between the confined plasma and the wall, which is especially important in regimes where the LH waves are weakly damped and undergo multiple reflections from the plasma boundary. Uncertainties introduced in the processing of diagnostic data as well as uncertainties introduced by model approximations are assessed. We show that, by comparing the evolution of the plasma parameters in self-consistent simulations with available data, inconsistencies can be identified and limitations in the models or in the experimental data assessed.

  9. Interference patterns in the Spacelab 2 plasma wave data: Lower hybrid waves driven by pickup ions

    NASA Technical Reports Server (NTRS)

    Feng, Wei; Gurnett, Donald A.; Cairns, Iver H.

    1993-01-01

    During the Spacelab 2 mission the University of Iowa's Plasma Diagnostics Package (PDP) was released from the shuttle to explore the plasma environment around the shuttle. Wideband spectrograms were obtained from the PDP at frequencies from 0 to 30 kHz and distances up to 400 m from the shuttle. The wideband data frequently showed antenna interference patterns when the PDP was on the downstream side of the shuttle. Analysis of these interference patterns allows a determination of the wavelength, the plasma rest frame frequency, the direction of propagation, the power spectrum, and in some cases the location of the source. We concentrate our analysis on interference patterns due to lower hybrid waves: waves which have rest frame frequencies near the lower hybrid frequency and propagate perpendicular to the magnetic field. The waves have an almost flat dispersion relation with frequencies just above the lower hybrid frequency and relatively short wavelengths (1 - 4 m). The observed lower hybrid waves depend strongly on the position of the PDP relative to the shuttle and the magnetic field direction. Our results confirm previous suggestions that the lower hybrid waves are generated primarily in the vicinity of the shuttle and that they are driven by a charge exchange interaction between the ambient ionosphere and a H2O cloud around the shuttle.

  10. Electromagnetic Components of Auroral Hiss and Lower Hybrid Waves in the Polar Magnetosphere

    NASA Technical Reports Server (NTRS)

    Wong, H. K.

    1995-01-01

    DE-1 has frequently observed waves in the whistler and lower hybrid frequencies range. Besides the electrostatic components, these waves also exhibit electromagnetic components. It is generally believed that these waves are excited by the electron acoustic instability and the electron-beam-driven lower hybrid instability. Because the electron acoustic and the lower hybrid waves are predominately electrostatic waves, they cannot account for the observed electromagnetic components. In this work, it is suggested that these electromagnetic components can be explained by waves that are generated near the resonance cone and that propagate away from the source. The role that these electromagnetic waves can play in particle acceleration processes at low altitude is discussed.

  11. Interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening

    NASA Astrophysics Data System (ADS)

    Martín-Solís, J. R.; Sánchez, R.; Esposito, B.

    2002-05-01

    Due to the relativistic decrease of the electron cyclotron frequency, a cyclotron resonance may appear between runaway electrons and lower hybrid waves. A single particle description of the runaway dynamics [J. R. Martín-Solís et al., Phys. Plasmas 5, 2370 (1998)] is extended to analyze the effect of the interaction of runaway electrons with lower hybrid waves via anomalous Doppler broadening. The conditions under which the resonant interaction can play a role in limiting the runaway energy are established and it is shown that, under typical lower hybrid current drive operation parameters, an efficient wave-particle coupling may occur. Observations of a fast pitch angle scattering event during the current decay phase of Ohmic discharges in the Toroidal Experiment for Technically Oriented Research (TEXTOR) [R. J. E. Jaspers, Ph.D. thesis, Technical University Eindhoven (1995)] are interpreted in terms of such interaction.

  12. Investigation of possible lower hybrid emission from the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1977-01-01

    Radio frequency emission detected near the lower hybrid frequency of the NASA Lewis Bumpy Torus plasma is studied, using a simple detection system that consists of a spectrum analyzer and a 50-ohm miniature co-axial antenna concentrically located in a re-entrant quartz tube. The frequency shift of a broad emission peak is monitored as a function of the background pressure, electrode voltage, and the strength of the dc magnetic field. Simultaneous measurements of the average plasma density are made with a polarization diplexing microwave interferometer. Information from the experiment is discussed with particular reference to the role of atomic or molecular species of deuterium in the emissions, the strength of the dc magnetic field in the emitting region, the geometric location of the emitting region of the plasma, the lower hybrid plasma density as compared with the average plasma density, and the relation of the ion spoke geometry to the lower hybrid emission.

  13. Current ramp-up with lower hybrid current drive in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Fisch, N. J.; Qin, H.; Li, J. G.; Wilson, J. R.; Kong, E. H.; Zhang, L.; Wei, W.; Li, Y. C.; Wang, M.; Xu, H. D.; Gong, X. Z.; Shen, B.; Liu, F. K.; Shan, J. F.

    2012-12-01

    More economical fusion reactors might be enabled through the cyclic operation of lower hybrid current drive. The first stage of cyclic operation would be to ramp up the plasma current with lower hybrid waves alone in low-density plasma. Such a current ramp-up was carried out successfully on the EAST tokamak. The plasma current was ramped up with a time-averaged rate of 18 kA/s with lower hybrid (LH) power. The average conversion efficiency Pel/PLH was about 3%. Over a transient phase, faster ramp-up was obtained. These experiments feature a separate measurement of the L/R time at the time of current ramp up.

  14. Role of fast waves in the central deposition of lower hybrid power

    NASA Astrophysics Data System (ADS)

    Heikkinen, J. A.; Tala, T. J. J.; Pättikangas, T. J. H.; Piliya, A. D.; Saveliev, A. N.; Karttunen, S. J.

    1999-10-01

    In tokamaks, lower hybrid (LH) waves are routinely used for current drive and heating of plasmas. The LH waves have two modes of propagation that are called the slow and the fast wave. Usually, the lower hybrid waves are launched as slow waves into a tokamak, but during the propagation part of the wave power can be transformed to fast waves. General characteristics of the mode transformation of slow waves to fast waves are first investigated with a simple quasitoroidal ray-tracing model. Next, the effect of mode transformed LH power on the deposition profiles in a JET-like tokamak is analysed by using the fast ray-tracing code FRTC. When the launched spectrum is at small values of the toroidal refractive index (1.6 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 2.0), the contribution of the fast wave to the deposited power is found to be significant and responsible for most of the absorption at the centre. When nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 is large (nicons/Journals/Common/phi" ALT="phi" ALIGN="TOP"/>0 icons/Journals/Common/gtrsim" ALT="gtrsim" ALIGN="TOP"/> 2.2), the effect of the mode transformed fast waves is small or negligible. At modest central densities (ne0 ~ 0.5 × 1020 m-3), the contribution of the fast wave to the power deposition can be more than 50% in the plasma centre. In consequence, the significant amount of wave energy absorbed in the fast mode must be carefully taken into account in modelling LH current drive experiments in the future. At low central densities (ne0 icons/Journals/Common/lesssim" ALT="lesssim" ALIGN="TOP"/> 0.3 × 1020 m-3), practically no absorption of fast waves occurs.

  15. Current-drive by lower hybrid waves in the presence of energetic alpha-particles

    SciTech Connect

    Fisch, N.J.; Rax, J.M.

    1991-10-01

    Many experiments have now proved the effectiveness of lower hybrid waves for driving toroidal current in tokamaks. The use of these waves, however, to provide all the current in a reactor is thought to be uncertain because the waves may not penetrate the center of the more energetic reactor plasma, and, if they did, the wave power may be absorbed by alpha particles rather than by electrons. This paper explores the conditions under which lower-hybrid waves might actually drive all the current. 26 refs.

  16. Propagation of cylindrical lower hybrid drift solitary wave in an inhomogeneous plasma

    SciTech Connect

    Liu Haifeng; Wang Shiqing; Fazhan Yang; Li Kehua; Wang Zhanhe; Zhang Weibing; Wang Zhilong; Qiangxiang; Kaihuang; Yaoliu; Silili; Lanchang

    2013-04-15

    The nonlinear cylindrical lower hybrid drift solitary wave in an inhomogeneous, magnetized plasma with the combined effects of electron density inhomogeneity and electron temperature inhomogeneity is investigated in a two-fluid model. The amplitude and width of the solitary wave are found to decrease as the electronic density inhomogeneity increases. When the electron temperature inhomogeneity grows, the amplitude of the soliton decays and the width never changes. It is noted that the decrease of diamagnetic drift velocity will strengthen the cylindrical lower hybrid drift solitary wave height and width.

  17. The role of lower-hybrid-wave collapse in the auroral ionosphere.

    PubMed

    Schuck, P W; Ganguli, G I; Kintner, P M

    2002-08-05

    In regions where lower-hybrid solitary structures (LHSS) are observed, the character of auroral lower-hybrid turbulence (LHT) (0-20 kHz) is investigated using the amplitude probability distribution of the electric field. The observed probability distributions are accurately described by a Rayleigh distribution with two degrees of freedom. The statistics of the LHT exhibit no evidence of the global modulational instability or self-similar wave collapse. We conclude that nucleation and resonant scattering in preexisting density depletions are the processes responsible for LHSS in auroral LHT.

  18. Current profile modification during lower hybrid current drive in the Princeton Beta Experiment-Modification

    SciTech Connect

    Kaita, R.; Bell, R.; Batha, S.H.

    1996-02-01

    Current profile modification with lower hybrid waves has been demonstrated in the Princeton Beta Experiment-Modification tokamak. When the n{parallel} spectrum of the launched waves was varied, local changes in the current profile were observed according to equilibria reconstructed from motional Stark effect polarimetry measurements. Changes in the central safety factor (q) were also determined to be a function of the applied radio frequency (rf) power. These results have been modeled with the Tokamak Simulation Code/Lower Hybrid Simulation Code, which is able to duplicate the general trends seen in the data.

  19. Pluto's Polygonal Terrain Places Lower Limit on Planetary Heat Flow

    NASA Astrophysics Data System (ADS)

    Trowbridge, A.; Steckloff, J. K.; Melosh, H., IV; Freed, A. M.

    2015-12-01

    During its recent flyby of Pluto, New Horizons imaged an icy plains region (Sputnik Planum) whose surface is divided into polygonal blocks, ca. 20-30 km across, bordered by what appear to be shallow troughs. The lack of craters within these plains suggests they are relatively young, implying that the underlying material is recently active. The scale of these features argues against an origin by cooling and contraction. Here we investigate the alternative scenario that they are the surface manifestation of shallow convection in a thick layer of nitrogen ice. Typical Rayleigh-Bernard convective cells are approximately three times wider than the depth of the convecting layer, implying a layer depth of ca. 7-10 km. Our convection hypothesis requires that the Rayleigh number exceed a minimum of about 1000 in the nitrogen ice layer. We coupled a parameterized convection model with a temperature dependent rheology of nitrogen ice (Yamashita, 2008), finding a Rayleigh number 1500 to 7500 times critical for a plausible range of heat flows for Pluto's interior. The computed range of heat flow (3.5-5.2 mW/m2) is consistent with the radiogenic heat generated by a carbonaceous chondrite (CC) core implied by Pluto's bulk density. The minimum heat flow at the critical Rayleigh number is 0.13 mW/m2. Our model implies a core temperature of 44 K in the interior of the convecting layer. This is very close to the exothermic β-α phase transition in nitrogen ice at 35.6 K (for pure N2 ice; dissolved CO can increase this, depending on its concentration), suggesting that the warm cores of the rising convective cells may be β phase, whereas the cooler sinking limbs may be α phase. This transition may thus be observable due to the large difference in their spectral signature. Further applying our model to Pluto's putative water ice mantle, the heat flow from CC is consistent with convection in Pluto's mantle and the activity observed on its surface.

  20. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2016-12-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  1. Heat transfer performance characteristics of hybrid nanofluids as coolant in louvered fin automotive radiator

    NASA Astrophysics Data System (ADS)

    Sahoo, Rashmi R.; Sarkar, Jahar

    2017-06-01

    Present study deals with the enhancement of convective heat transfer performance of EG brine based various hybrid nanofluids i.e. Ag, Cu, SiC, CuO and TiO2 in 0-1% volume fraction of Al2O3 nanofluid, as coolants for louvered fin automobile radiator. The effects of nanoparticles combination and operating parameters on thermo physical properties, heat transfer, effectiveness, pumping power and performance index of hybrid nanofluids have been evaluated. Comparison of studied hybrid nanofluids based on radiator size and pumping power has been made as well. Among all studied hybrid nanofluids, 1% Ag hybrid nanofluid (0.5% Ag and 0.5% Al2O3) yields highest effectiveness and heat transfer rate as well as pumping power. However, SiC + Al2O3 dispersed hybrid nanofluid yields maximum performance index and hence this can be recommended for best coolant. For the same radiator size and heat transfer rate, pumping power increases by using Ag hybrid nanofluids leading to increase in engine thermal efficiency and hence reduction in engine fuel consumption. For same coolant flow rate and heat transfer rate, the radiator size reduces and pumping power increases by using Ag hybrid nanofluids leading to reduction in radiator size, weight and cost.

  2. Investigation of possible lower hybrid emission from the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Mallavarpu, R.; Roth, J. R.

    1977-01-01

    Radio frequency emission has been detected near the power hybrid frequency of a bumpy torus plasma by using a responsive detection system that consists of a spectrum analyzer and a 50 ohm miniature coaxial antenna concentrically located in a re-entrant quartz tube. The frequency shift of a broad emission peak was monitored as a function of background pressure, electrode voltage, and the strength of the dc magnetic field. Simultaneous measurements of the average plasma density were made with a polarization diplexing microwave interferometer. The information derived from the experiment is discussed with particular reference to the following: (1) whether the emissions are dominated by atomic or molecular species of deuterium; (2) the strength of the dc magnetic field in the emitting region; (3) the geometric location of the emitting region of the plasma; (4) comparison of the lower hybrid plasma density with the average plasma density; and (5) relation of ion spoke geometry to lower hybrid emission.

  3. "One-stop hybrid procedure" in the treatment of vascular injury of lower extremity.

    PubMed

    Tan, Hao; Zhang, Lian-Yang; Guo, Qing-Shan; Yao, Yuan-Zhang; Sun, Shi-Jin; Wang, Tao; Li, Ying-Cai; Xiong, Kun-Lin

    2015-02-01

    As a new surgical technique, "one-stop hybrid procedure" is rarely applied in trauma patients. This paper aims to explore its role in vascular injury of the lower extremity. Vascular intervention combined with open surgery was performed to treat three cases of vessel injuries of the lower extremity in our hybrid operating room. One patient with stab injury to the left femoral vein was treated by temporary artery blocking after excluding arterial injury by angiography, followed by blocking surgery and debridement and repair of the injured vein. The other two patients with drug addiction history, who were found to have pricking injuries to the femoral artery combined with local infection, were successfully treated by endovascular techniques and open debridement. One-stop hybrid procedure in treating vascular injury patients could simplify the operation procedure, reduce operative risk, and achieve good curative effect.

  4. Hybrid space heating/cooling system with Trombe wall, underground venting, and assisted heat pump

    SciTech Connect

    Shirley, J.W.; James, L.C.; Stevens, S.; Autry, A.N.; Nussbaum, M.; MacQueen, S.V.

    1983-06-22

    Our goal was to design and monitor a hybrid solar system/ground loop which automatically assists the standard, thermostatically controlled home heating/cooling system. The input from the homeowner was limited to normal thermostat operations. During the course of the project it was determined that to effectively gather data and control the various component interactions, a micro-computer based control system would also allow the HVAC system to be optimized by simple changes to software. This flexibility in an untested concept helped us to achieve optimum system performance. Control ranged from direct solar heating and direct ground loop cooling modes, to assistance of the heat pump by both solar space and ground loop. Sensors were strategically placed to provide data on response of the Trombe wall (surface, 4 in. deep, 8 in. deep), and the ground loop (inlet, 3/4 length, outlet). Micro-computer hardware and computer programs were developed to make cost effective decisions between the various modes of operation. Although recent advances in micro-computer hardware make similar control systems more readily achievable utilizing standard components, attention to the decision making criteria will always be required.

  5. Kalman Filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry.

    PubMed

    Zhang, Yuxin; Chen, Shuo; Deng, Kexin; Chen, Bingyao; Wei, Xing; Yang, Jiafei; Wang, Shi; Ying, Kui

    2017-01-01

    To develop a self-adaptive and fast thermometry method by combining the original hybrid magnetic resonance thermometry method and the bio heat transfer equation (BHTE) model. The proposed Kalman filtered Bio Heat Transfer Model Based Self-adaptive Hybrid Magnetic Resonance Thermometry, abbreviated as KalBHT hybrid method, introduced the BHTE model to synthesize a window on the regularization term of the hybrid algorithm, which leads to a self-adaptive regularization both spatially and temporally with change of temperature. Further, to decrease the sensitivity to accuracy of the BHTE model, Kalman filter is utilized to update the window at each iteration time. To investigate the effect of the proposed model, computer heating simulation, phantom microwave heating experiment and dynamic in-vivo model validation of liver and thoracic tumor were conducted in this study. The heating simulation indicates that the KalBHT hybrid algorithm achieves more accurate results without adjusting λ to a proper value in comparison to the hybrid algorithm. The results of the phantom heating experiment illustrate that the proposed model is able to follow temperature changes in the presence of motion and the temperature estimated also shows less noise in the background and surrounding the hot spot. The dynamic in-vivo model validation with heating simulation demonstrates that the proposed model has a higher convergence rate, more robustness to susceptibility problem surrounding the hot spot and more accuracy of temperature estimation. In the healthy liver experiment with heating simulation, the RMSE of the hot spot of the proposed model is reduced to about 50% compared to the RMSE of the original hybrid model and the convergence time becomes only about one fifth of the hybrid model. The proposed model is able to improve the accuracy of the original hybrid algorithm and accelerate the convergence rate of MR temperature estimation.

  6. Joint European Torus results with both fast and lower-hybrid wave consequences for future devices

    NASA Astrophysics Data System (ADS)

    Jacquinot, J.; Bures, M.

    1992-07-01

    Heating and current drive studies were performed during the JET [Phys Fluids B 3, 2209 (1991)] 1990/91 operation using two large systems capable of generating either fast waves in the ion cyclotron range of frequencies (ICRF) or slow waves at a frequency above the lower-hybrid resonance (LH). The maximum wave power coupled to the torus reached 22 MW for ICRH and 2.4 MW for LH. The results obtained in plasma heating experiments qualify ICRH as a prime candidate for heating reactor grade plasmas. A centrally localized deposition profile in the cyclotron damping regime was demonstrated in a wide range of plasma density resulting in (i) record value nd τE Ti0 ≂ 7.8 × 1020 m-3 sec keV in ``thermal'' conditions Ti = Te ≂ 11 keV at high central densities generated by pellet injection; (ii) large normalized confinement 2.5 ≤ τE/τGoldston≤4. The large values of τE/τGoldston are reached in H-mode discharges (I≤1.5 MA) with large bootstrap current fraction IBS/I ≤ 0.7 ± 0.2; (iii) the highest to date D-3He fusion power (140 kW) generated with 10-14 MW of ICRH in the L-mode regime at the 3He cyclotron frequency. All specific impurity generations have been reduced to negligible levels by proper antenna design and the generic difficulty of wave-plasma coupling has been greatly reduced using feedback loops controlling in real time the antenna circuits and the plasma position. Current drive efficiencies γ=ICDR/P ≂ 0.4 × 1020 m-2 A/W have been reached in 1.5 MA L-mode plasma with zero loop voltage by combining LHCD and ICRH. Fast electrons are driven by LHCD alone to tail temperatures of up to 70 keV. The fast electron density is peaked in the plasma center at lower densities (ne0 ≤ 2.6 × 1019 m-3) and high field (Bφ ˜ 3.1 T). In these conditions, the fast electrons are further accelerated (even at zero loop voltage) to tail temperatures above 150 keV by heating the plasma with ICRF in monopole phasing. Direct electron damping of the fast wave on the

  7. Suppression of lower hybrid wave coupling due to the ponderomotive force

    SciTech Connect

    Wilson, J.R.; Wong, K.L.

    1980-04-01

    The coupling efficiency from a slow-wave structure to lower hybrid waves is investigated experimentally. At moderate electric field strengths large edge density changes are observed. Wave trajectory modifications and departure from linear coupling are observed consistent with these changes and in good agreement with a simple nonlinear theory that includes the ponderomotive force.

  8. Saturation of the lower-hybrid-drift instability by mode coupling

    NASA Technical Reports Server (NTRS)

    Drake, J. F.; Guzdar, P. N.; Huba, J. D.

    1983-01-01

    A nonlinear mode-coupling theory of the lower-hybrid-drift instability is presented. It is found that the instability saturates by transferring energy from the growing, long wavelength modes to the damped, short wavelength modes. The saturation energy, mean square of the potential fluctuations, and diffusion coefficient are calculated self-consistently.

  9. Columbia: The first five flights entry heating data series. Volume 3: The lower windward surface centerline

    NASA Technical Reports Server (NTRS)

    Williams, S. D.

    1983-01-01

    Entry heating flight data and wind tunnel data on the lower surface centerline are presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and Normal Shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.

  10. An analysis of lower hybrid grill coupling using an efficient full wave code

    NASA Astrophysics Data System (ADS)

    Preinhaelter, Josef; Urban, Jakub; Vahala, Linda; Vahala, George

    2012-08-01

    Lower hybrid (LH) waves are very important for heating and current drive in tokamaks. Phased arrays of rectangular waveguides, generally called grills, are typically used as launchers. We develop a code which solves, in the 3D geometry of the grill structure, the problem of efficient coupling: the power density spectrum of the emitted waves, the power reflection coefficient, the power lost by the waves launched in the inaccessible region and the directivity of the waves transmitted into the accessible region. The code is also able to determine the 3D electric field in front of the grill. An efficient adaptive full wave solver is used to determine the wave propagation in a 1D plasma slab geometry. To evaluate the very large number of 2D k-space infinite integrals for the coupling elements, we have developed a method based on high order Gaussian quadratures combined with 2D B-splines in the accessible region for the plasma related part of the integrands. This method is well suited to handle large structures and many modes because the computational time is only weakly dependent on the size of the problem. An iterative evaluation of the integrands in the inaccessible region is adopted to handle the presently overlooked near singular behaviour of the integrands as well as the spectral power density associated with the eigenmodes. The role of collisions is clarified in this context. The code is applied to several COMPASS grills operating either at 1.3 GHz or at 3.7 GHz. First we thouroughly analyse the original 1.3 GHz, 8-waveguide conventional grill at various waveguide phasing. Then, the coupling of two grill designs for 3.7 GHz is solved. The suitability of all the grills is discussed, showing compatible grill and plasma parameter ranges.

  11. Fast electron flux driven by lower hybrid wave in the scrape-off layer

    SciTech Connect

    Li, Y. L.; Xu, G. S.; Wang, H. Q.; Wan, B. N.; Chen, R.; Wang, L.; Gan, K. F.; Yang, J. H.; Zhang, X. J.; Liu, S. C.; Li, M. H.; Ding, S.; Yan, N.; Zhang, W.; Hu, G. H.; Liu, Y. L.; Shao, L. M.; Li, J.; Chen, L.; Zhao, N.; and others

    2015-02-15

    The fast electron flux driven by Lower Hybrid Wave (LHW) in the scrape-off layer (SOL) in EAST is analyzed both theoretically and experimentally. The five bright belts flowing along the magnetic field lines in the SOL and hot spots at LHW guard limiters observed by charge coupled device and infrared cameras are attributed to the fast electron flux, which is directly measured by retarding field analyzers (RFA). The current carried by the fast electron flux, ranging from 400 to 6000 A/m{sup 2} and in the direction opposite to the plasma current, is scanned along the radial direction from the limiter surface to the position about 25 mm beyond the limiter. The measured fast electron flux is attributed to the high parallel wave refractive index n{sub ||} components of LHW. According to the antenna structure and the LHW power absorbed by plasma, a broad parallel electric field spectrum of incident wave from the antennas is estimated. The radial distribution of LHW-driven current density is analyzed in SOL based on Landau damping of the LHW. The analytical results support the RFA measurements, showing a certain level of consistency. In addition, the deposition profile of the LHW power density in SOL is also calculated utilizing this simple model. This study provides some fundamental insight into the heating and current drive effects induced by LHW in SOL, and should also help to interpret the observations and related numerical analyses of the behaviors of bright belts and hot spots induced by LHW.

  12. Relativistic Fermi-Ulam map: Application to WEGA stellarator lower hybrid power operationa)

    NASA Astrophysics Data System (ADS)

    Fuchs, V.; Laqua, H. P.; Seidl, J.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Urban, J.

    2014-06-01

    Analytical and numerical support is here provided in support of the explanation [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)] for the observation of ˜MeV electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [Otte et al., Nukleonika, 57, 171 (2012)]. In the quoted experiments, LH power from the WEGA TE11 circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B ≅ 0.5 T, n¯e ≅ 5 × 1017 1/m3 plasma at Te ≅ 10 eV bulk temperature with an EC-generated 50 keV population of electrons. In response, the fast electrons travel around flux or drift surfaces essentially without collisions, repeatedly interacting with the rf field close to the antenna mouth, and gaining energy in the process. Our WEGA antenna calculations indicate a predominantly standing electric field pattern at the antenna mouth. From a simple approximation of the corresponding Hamiltonian equations of motion, we derive here a relativistic generalization of the simplified area-preserving Fermi-Ulam (F-U) map [M. A. Lieberman and A. J. Lichtenberg, Phys. Rev. A 5, 1852 (1972), Lichtenberg et al., Physica D 1, 291 (1980)], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, and with correlated phases between electron-antenna electric field interaction events, the F-U map and supporting numerical simulations predict an absolute energy barrier in the range of 300 keV. In contrast, with random phases intervening between interaction events, the electron energy can reach ˜MeV values, compatible with the measurements on WEGA [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)].

  13. Full-wave Electromagnetic Field Simulations of Lower Hybrid Waves in Tokamaks

    SciTech Connect

    Wright, J.C.; Bonoli, P. T.; Brambilla, M.; D'Azevedo, E.; Berry, L.A.; Batchelor, D.B.; Jaeger, E.F.; Carter, M.D.; Phillips, C.K.; Okuda, H.; Harvey, R.W.; Myra, J.R.; D'Ippolito, D.A.; Smithe, D.N.

    2005-09-26

    The most common method for treating wave propagation in tokamaks in the lower hybrid range of frequencies (LHRF) has been toroidal ray tracing, owing to the short wavelengths (relative to the system size) found in this regime. Although this technique provides an accurate description of 2D and 3D plasma inhomogeneity effects on wave propagation, the approach neglects important effects related to focusing, diffraction, and finite extent of the RF launcher. Also, the method breaks down at plasma cutoffs and caustics. Recent adaptation of full-wave electromagnetic field solvers to massively parallel computers has made it possible to accurately resolve wave phenomena in the LHRF. One such solver, the TORIC code, has been modified to simulate LH waves by implementing boundary conditions appropriate for coupling the fast electromagnetic and the slow electrostatic waves in the LHRF. In this frequency regime the plasma conductivity operator can be formulated in the limits of unmagnetized ions and strongly magnetized electrons, resulting in a relatively simple and explicit form. Simulations have been done for parameters typical of the planned LHRF experiments on Alcator C-Mod, demonstrating fully resolved fast and slow LH wave fields using a Maxwellian non-relativistic plasma dielectric. Significant spectral broadening of the injected wave spectrum and focusing of the wave fields have been found, especially at caustic surfaces. Comparisons with toroidal ray tracing have also been done and differences between the approaches have been found, especially for cases where wave caustics form. The possible role of this diffraction-induced spectral broadening in filling the spectral gap in LH heating and current drive will be discussed.

  14. Relativistic Fermi-Ulam map: Application to WEGA stellarator lower hybrid power operation

    SciTech Connect

    Fuchs, V.; Seidl, J.; Krlín, L.; Pánek, R.; Preinhaelter, J.; Urban, J.; Laqua, H. P.

    2014-06-15

    Analytical and numerical support is here provided in support of the explanation [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)] for the observation of ∼MeV electrons during Lower Hybrid (LH) operation in EC pre-heated plasma at the WEGA stellarator [Otte et al., Nukleonika, 57, 171 (2012)]. In the quoted experiments, LH power from the WEGA TE{sub 11} circular waveguide, 9 cm diameter, un-phased, 2.45 GHz antenna, is radiated into a B ≅ 0.5 T, n{sup ¯}{sub e} ≅ 5 × 10{sup 17} 1/m{sup 3} plasma at T{sub e} ≅ 10 eV bulk temperature with an EC-generated 50 keV population of electrons. In response, the fast electrons travel around flux or drift surfaces essentially without collisions, repeatedly interacting with the rf field close to the antenna mouth, and gaining energy in the process. Our WEGA antenna calculations indicate a predominantly standing electric field pattern at the antenna mouth. From a simple approximation of the corresponding Hamiltonian equations of motion, we derive here a relativistic generalization of the simplified area-preserving Fermi-Ulam (F-U) map [M. A. Lieberman and A. J. Lichtenberg, Phys. Rev. A 5, 1852 (1972), Lichtenberg et al., Physica D 1, 291 (1980)], allowing phase-space global stochasticity analysis. At typical WEGA plasma and antenna conditions, and with correlated phases between electron–antenna electric field interaction events, the F-U map and supporting numerical simulations predict an absolute energy barrier in the range of 300 keV. In contrast, with random phases intervening between interaction events, the electron energy can reach ∼MeV values, compatible with the measurements on WEGA [Laqua et al., Plasma Phys. Controlled Fusion 56, 075022 (2014)].

  15. Applications of multifunctional polymer-matrix composites in hybrid heat sinks

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent

    2012-04-01

    Designers of electronic devices and telecommunications equipment have used three-dimensional chip architecture, comprised of a vertically integrated stack of chips, to increase the number of transistors on integrated circuits. These latest chips generate excessive amount of heat, and thus can reach unacceptably high temperatures. In this context, this research aims to develop thermally conductive liquid crystal polymer (LCP)/hexagonal boron nitride (hBN) composite films to replace the traditionally-used Kapton films that satisfy the electrical insulation requirements for the attachment of heat sinks to the chips without compromising the heat dissipation performance. Parametric study was conducted to elucidate the effects of hBN contents on the heat dissipation ability of the composite. The performance of the hybrid heat sinks were experimentally simulated by measuring the temperature distribution of the hybrid heat sinks attached to a 10 W square-faced (i.e., 10 cm by 10 cm) heater. Experimental simulation show that the maximum temperature of the heater mounted with a hybrid heat sink reduced with increased hBN content. It is believed the fibrillation of LCP matrix leads to highly ordered structure, promoting heat dissipation ability of the electrically insulating pad of the hybrid heat sink.

  16. Alpha channeling with high-field launch of lower hybrid waves

    SciTech Connect

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-04

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  17. Alpha channeling with high-field launch of lower hybrid waves

    SciTech Connect

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-15

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high-field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  18. Transverse ion acceleration by localized lower hybrid waves in the topside auroral ionosphere

    NASA Technical Reports Server (NTRS)

    Vago, J. L.; Kintner, P. M.; Chesney, S. W.; Arnoldy, R. L.; Lynch, K. A.; Moore, T. E.; Pollock, C. J.

    1992-01-01

    Up to now, observations had been unable to show conclusively a one-to-one correspondence between perpendicular ion acceleration and a particular type of plasma wave within the O(+) source region below 2000 km. In this paper we demonstrate that intense (100-300 mV/m) lower hybrid waves are responsible for transversely accelerating H(+) and O(+) ions to characteristic energies of up to 6 eV. This wave-particle interaction takes place in thin filamentary density cavities oriented along geomagnetic field lines. The measurements we discuss were conducted in the nightside auroral zone at latitudes between 500 km and 1100 km. Our results are consistent with theories of lower hybrid wave condensation and collapse.

  19. Alpha channeling with high-field launch of lower hybrid waves

    DOE PAGES

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-04

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high- field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and densitymore » regime consistent with a hot-ion-mode fusion reactor. As a result, these simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.« less

  20. Alpha channeling with high-field launch of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-11-01

    Although lower hybrid waves are effective at driving currents in present-day tokamaks, they are expected to interact strongly with high-energy particles in extrapolating to reactors. In the presence of a radial alpha particle birth gradient, this interaction can take the form of wave amplification rather than damping. While it is known that this amplification more easily occurs when launching from the tokamak high-field side, the extent of this amplification has not been made quantitative. Here, by tracing rays launched from the high-field-side of a tokamak, the required radial gradients to achieve amplification are calculated for a temperature and density regime consistent with a hot-ion-mode fusion reactor. These simulations, while valid only in the linear regime of wave amplification, nonetheless illustrate the possibilities for wave amplification using high-field launch of the lower hybrid wave.

  1. Collisional drag may lead to disappearance of wave-breaking phenomenon of lower hybrid oscillations

    SciTech Connect

    Maity, Chandan; Chakrabarti, Nikhil

    2013-01-15

    The inhomogeneity in the magnetic field in a cold electron-ion non-dissipative homogeneous plasma leads to the breaking of lower hybrid modes via phase mixing phenomenon [Maity et al. Phys. Plasmas 19, 102302 (2012)]. In this work, we show that an inclusion of collisional drag force in fluid equations may lead to the disappearance of the wave-breaking phenomenon of lower hybrid oscillations. The nonlinear analysis in Lagrangian variables provides an expression for a critical value of damping rate, above which spikes in the plasma density profile may disappear. The critical damping rate depends on the perturbation and magnetic field inhomogeneity amplitudes as well as the ratio of the magnetic field inhomogeneity and perturbation scale lengths.

  2. Lower limit on the heat capacity of the neutron star core

    NASA Astrophysics Data System (ADS)

    Cumming, Andrew; Brown, Edward F.; Fattoyev, Farrukh J.; Horowitz, C. J.; Page, Dany; Reddy, Sanjay

    2017-02-01

    We show that observations of the core temperature of transiently accreting neutron stars combined with observations of an accretion outburst give a lower limit to the neutron star core heat capacity. For the neutron stars in the low mass x-ray binaries KS 1731-260, MXB 1659-29, and XTE J1701-462, we show that the lower limit is a factor of a few below the core heat capacity expected if neutrons and protons in the core are paired, so that electrons provide the dominant contribution to the heat capacity. This limit rules out a core dominated by a quark color-flavor-locked phase, which would have a much lower heat capacity. Future observations of or limits on cooling during quiescence will further constrain the core heat capacity.

  3. Impact of heating and current drive mix on the ITER hybrid scenario

    NASA Astrophysics Data System (ADS)

    Citrin, J.; Artaud, J. F.; Garcia, J.; Hogeweij, G. M. D.; Imbeaux, F.

    2010-11-01

    Hybrid scenario performance in ITER is studied with the CRONOS integrated modelling suite, using the GLF23 anomalous transport model for heat transport prediction. GLF23 predicted core confinement is optimized through tailoring the q-profile shape by a careful choice of current drive actuators, affecting the transport due to the predicted dependence of the turbulence level on the absolute q-profile values and magnetic shear. A range of various heating and current drive choices are examined, as are different assumptions on the pedestal height. The optimum q-profile shape is predicted to be one that maximizes the ratio of s/q throughout the bulk of the plasma volume. Optimizing the confinement allows a minimization of the plasma density required in order to achieve a defined target fusion power of 350 MW. A lower density then allows a lower total current (Ip) at the same Greenwald fraction (fG), thus aiding in maintaining q > 1 as desired in a hybrid scenario, and in minimizing the flux consumption. The best performance is achieved with a combination of NBI and ECCD (e.g. 33/37 MW NBI/ECCD for a scenario with a pedestal height of 4 keV). The q-profile shape and plasma confinement properties are shown to be highly sensitive to the positioning of the ECCD deposition. Comparisons with the lower performing cases where some or all of the ECCD power is replaced with LHCD or ICRH are shown (e.g. 33/20/17 MW NBI/ECCD/LHCD or NBI/ECCD/ICRH). The inclusion of LHCD reduces confinement due to deleterious shaping of the q-profile, and the inclusion of ICRH, particularly in a stiff model, does not lead to significantly increased fusion power and furthermore does not contribute to the non-inductive current fraction. For the optimum NBI/ECCD current drive mix, the predictions show that a satisfactory ITER hybrid scenario (Pfus ~ 350 MW, Q >= 5, qmin close to 1) may be achieved with Tped >= 4 keV. In addition, predicted performance sensitivity analysis was carried out for several

  4. Applications of heat pipes to cool PWBS and hybrid microcircuits

    NASA Technical Reports Server (NTRS)

    Sekhon, K. S.

    1986-01-01

    Some of the advanced thermal management techniques used to reduce operating junction temperature under extreme environmental temperature conditions are discussed. Heat pipes in actual electronic packaging applications, and those under development, are discussed. Performance characteristics of heat pipes are given, and examples are described of how thermal problems in electronic packaging are solved through the use of heat pipes.

  5. Current ramp-up by lower hybrid waves in the PLT tokamak

    SciTech Connect

    Jobes, F.C.; Bernabei, S.; Chu, T.K.; Hooke, W.M.; Meservey, E.B.; Motley, R.W.; Stevens, J.E.; von Goeler, S.

    1985-03-01

    Recent lower hybrid current drive experiments have clearly demonstrated that the current in a tokamak discharge can be maintained by rf drive alone. We have extended the operating regime of such plasma to include ramping-up of the current. We find that at densities of approx. 2 x 10/sup 12/ cm/sup -3/ approximately 25% of the launched rf power is converted to magnetic field energy.

  6. A Model for Lower Hybrid Wave Excitation Compared with Observations by Viking

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.; Liemohn, M. W.; Krivorutsky, E. N.; Horwitz, J. L.

    1997-01-01

    The mechanism of lower hybrid wave (LHW) excitation due to the O+ relative drift in a plasma subjected to low-frequency waves (LFWs) is used for analysis of Viking satellite data for events in the cusp/cleft region. In some cases, such a mechanism leads to LHW energy densities and ion distribution functions close to those observed, suggesting the proposed mechanism is a plausible candidate to explain certain classes of LHW generation events in space plasmas.

  7. Lower-hybrid drift and Buneman instabilities in current sheets with guide field

    SciTech Connect

    Yoon, P. H.; Lui, A. T. Y.

    2008-11-15

    Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k{center_dot}B=0 and k{center_dot}{nabla}n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and {nabla}n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by kxB=0 and k{center_dot}{nabla}n=0, rather than being a beam-aligned instability.

  8. Excitation of lower hybrid waves by a spiraling ion beam in a magnetized dusty plasma cylinder

    SciTech Connect

    Sharma, Suresh C.; Walia, Ritu

    2008-09-15

    A spiraling ion beam propagating through a magnetized dusty plasma cylinder drives electrostatic lower hybrid waves to instability via cyclotron interaction. Numerical calculations of the growth rate and unstable mode frequencies have been carried out for the Princeton Q-1 device using the experimental dusty plasma parameters [e.g., Barkan et al., Planet. Space Sci. 43, 905 (1995)]. It is found that as the density ratio {delta}(=n{sub io}/n{sub eo}, where n{sub i0} is the ion plasma density and n{sub e0} is the electron density) of negatively charged dust grains to electrons increases, the unstable mode frequency of the lower hybrid waves increases. In addition, the growth rate of the instability also increases with the density ratio {delta}. In other words, the presence of negatively charged dust grains can further destabilize the lower hybrid wave instability. The growth rate has the largest value for the modes where J{sub l}(p{sub n}r{sub o}) is maximum [here p{sub n}=x{sub n}/r{sub 0}, where p{sub n} is the perpendicular wave number in cm{sup -1}, r{sub 0} is the plasma radius, and x{sub n} are the zeros of the Bessel function J{sub 1}(x)] i.e., whose eigenfunctions peak at the location of the beam. The growth rate scales as one third power of the beam current.

  9. Effect on plasma rotation of lower hybrid (LH) waves in Alcator C-Mod

    SciTech Connect

    Lee, J. P.; Barnes, M.; Parker, R. R.; Rice, J. E.; Parra, F. I.; Bonoli, P. T.; Reinke, M. L.

    2014-02-12

    The injection of LH waves for current drive into a tokamak changes the ion toroidal rotation. In Alcator C-Mod, the direction of the steady state rotation change due to LH waves depends on the plasma current and the density. The change in rotation can be estimated by balancing the external torque of lower hybrid waves with the turbulent radial transport of the momentum. For high plasma current, the turbulent pinch and diffusion of the injected counter-current momentum are sufficient to explain the rotation change. However, for low plasma current, the change in the the intrinsic momentum transport (residual stress) for a non-rotating state is required to explain the co-current rotation change. Accordingly, we investigate the intrinsic momentum transport for the non-rotating state when diamagnetic flow and ExB flow cancel each other. The change in the intrinsic momentum transport due to lower hybrid waves is significant when the plasma current is low, which may explain the rotation reversal for low plasma current. The effect of changed q (safety factor) profile by lower hybrid on the intrinsic momentum transport is estimated by gyrokinetics.

  10. The parametric decay of Alfven waves into shear Alfven waves and dust lower hybrid waves

    SciTech Connect

    Jamil, M.; Shah, H. A.; Zubia, K.; Zeba, I.; Uzma, Ch.; Salimullah, M.

    2010-07-15

    The parametric decay instability of Alfven wave into low-frequency electrostatic dust-lower-hybrid and electromagnetic shear Alfven waves has been investigated in detail in a dusty plasma in the presence of external/ambient uniform magnetic field. Magnetohydrodynamic fluid equations of plasmas have been employed to find the linear and nonlinear response of the plasma particles for this three-wave nonlinear coupling in a dusty magnetoplasma. Here, relatively high frequency electromagnetic Alfven wave has been taken as the pump wave. It couples with other two low-frequency internal possible modes of the dusty magnetoplasma, viz., the dust-lower-hybrid and shear Alfven waves. The nonlinear dispersion relation of the dust-lower-hybrid wave has been solved to obtain the growth rate of the parametric decay instability. The growth rate is maximum for small value of external magnetic field B{sub s}. It is noticed that the growth rate is proportional to the unperturbed electron number density n{sub oe}.

  11. Lower-hybrid drift and Buneman instabilities in current sheets with guide field

    NASA Astrophysics Data System (ADS)

    Yoon, P. H.; Lui, A. T. Y.

    2008-11-01

    Lower-hybrid drift and Buneman instabilities operate in current sheets with or without the guide field. The lower-hybrid drift instability is a universal instability in that it operates for all parameters. In contrast, the excitation of Buneman instability requires sufficiently thin current sheet. That is, the relative electron-ion drift speed must exceed the threshold in order for Buneman instability to operate. Traditionally, the two instabilities were treated separately with different mathematical formalisms. In a recent paper, an improved electrostatic dispersion relation was derived that is valid for both unstable modes [P. H. Yoon and A. T. Y. Lui, Phys. Plasmas 15, 072101 (2008)]. However, the actual numerical analysis was restricted to a one-dimensional situation. The present paper generalizes the previous analysis and investigates the two-dimensional nature of both instabilities. It is found that the lower-hybrid drift instability is a flute mode satisfying k ṡB=0 and k ṡ∇n=0, where k represents the wave number for the most unstable mode, B stands for the total local magnetic field, and ∇n is the density gradient. This finding is not totally unexpected. However, a somewhat surprising finding is that the Buneman instability is a field-aligned mode characterized by k ×B=0 and k ṡ∇n=0, rather than being a beam-aligned instability.

  12. Sensitivity of THOR and Hybrid III dummy lower neck loads to belt systems in frontal impact.

    PubMed

    Yoganandan, Narayan; Pintar, Frank A; Moore, Jason; Maiman, Dennis J

    2011-02-01

    To determine head-neck biomechanics with a focus on lower neck injury metrics in frontal impact. The mid- and large-size Hybrid III dummies and the mid-size Test device for Human Occupant Restraint (THOR) were positioned on a buck. Tests were conducted at low, medium, and high (3.3, 6.7, and 15.7 m/s) change in velocities using 3 restraint types: normal 3-point belt with no pretension (type A), 10-cm pretension (type B), and 200 N pretension (type C). Repeat tests were conducted. Measured vertical and shear forces and sagittal bending moments were evaluated at the upper and lower regions of the neck to different types of belt systems and at different change in velocities. Peak values normalized with respect to the belt type A were used in the comparative analysis. Metrics transformed to the occipital condyles and T1 were also evaluated. All dummies showed good repeatability. Peak measured and transformed upper and lower neck moments were greatest in the large-size dummy. The mid-size Hybrid III dummy responded with greater forces and moments than the THOR. Regardless of dummy type, anthropometry, and velocity, peak lower neck moments were more sensitive to belt types than peak lower neck forces. A similar pattern was apparent for upper neck data. Moments in the THOR were more sensitive than moments in the mid-size Hybrid III dummy. This study offers quantitative generic restraint-based data and addresses response differences between dummies and dummies of the same family. Because of increased sensitivity to belt types at the upper and lower necks for both forces and moments, the THOR appears to be an improvement to better assess injury potential to rear seat occupants wherein frontal impact air bags do not exist.

  13. Time-dependent simulation of lower hybrid current drive in JET discharges

    NASA Astrophysics Data System (ADS)

    Barbato, E.; Saveliev, A.; Voitsekhovitch, I.; Kirov, K.; Goniche, M.

    2014-12-01

    In this paper we report on simulations of lower hybrid current drive (LHCD) in JET closely comparing the simulation results to the available experimental data. The simulations are performed all over the relevant discharge duration by ASTRA. The LHCD module, FRTC, is based on a standard ray-tracing Fokker-Planck model. The purpose of the paper is to understand the present LHCD experiments issues within the limit of the LH linear propagation model. These issues are: (i) analysis of non-resonant collisional absorption (NRCA) of LH wave power in the main JET plasma during the current ramp-up phase and in steady-state (SS) scenarios, (ii) the lack of penetration of LHCD in high-density plasmas, (iii) current diffusion during the LHCD-assisted current ramp-up and (iv) assessment of the current profile alignment in JET SS discharges in the presence of LHCD. In recent experiments from FTU, JET and C_MOD, LHCD effects at high plasma density are either completely absent or less than expected. It has been shown, both in FTU and ALCATOR-C_MOD, that NRCA of LH wave power can be responsible for that. Indeed NRCA is estimated to be small in JET plasmas, at least in the main heating phase and therefore it is not expected to be responsible for the lack of penetration of LHW in high-density JET plasmas, however here we show for the first time that it can be effective during the early phase of the current ramp-up, when the plasma is still collisional. On the contrary it is suggested that the reduction of LHCD effects at high density may be attributed at least partially to the loss of accessibility of the n‖ spectrum effectively launched into the plasma. Furthermore it is shown that the linear propagation model provide very broad and stable LH current density profiles, with no need to include any non-linear spectral broadening. The current diffusion during the LHCD-assisted current ramp-up is investigated and a careful comparison between the simulated q-profiles and the measured

  14. Hybrid troctolites from mid-ocean ridges: inherited mantle in the lower crust

    NASA Astrophysics Data System (ADS)

    Sanfilippo, Alessio; Morishita, Tomoaki; Kumagai, Hidenori; Nakamura, Kentaro; Okino, Kyoko; Hara, Kaori; Tamura, Akihiro; Arai, Shoji

    2015-09-01

    Studies on olivine-rich troctolites from oceanic ridges propose that hybridized mantle rocks may locally constitute small portions of the lower oceanic crust. The exact reaction process by which they originate is still debated and their hybrid nature is controversial. We show that textural and chemical inheritances of the pre-existing mantle are preserved in olivine-rich troctolites recently sampled at the Central Indian Ridge. The occurrence of a large orthopyroxene of a probable mantle origin suggests that these rocks formed through the reactive overprint of a mantle peridotite. Combining our data with those of olivine-rich troctolites worldwide, we show that the clinopyroxenes from these rocks follow chemical trends slightly distinct to those of the oceanic gabbros. These chemical trends can be ascribed to crystallization from melts assimilating mantle peridotites, suggesting that a "mantle flavor" can be locally retained in these hybrid rocks. The present distribution of Ol-rich troctolites suggests that melt-mantle reaction processes by which these rocks originate is likely to be more diffuse at slower spreading environments, where extensive melt-rock reactions within a thick thermal boundary layer enhances the conversion of the shallow oceanic mantle into hybrid crustal rocks.

  15. Hybrid fixation in the bilateral sagittal split osteotomy for lower jaw advancement

    PubMed Central

    PEREIRA, Felipe Ladeira; JANSON, Marcos; SANT'ANA, Eduardo

    2010-01-01

    Miniplate and screw fixation has been widely used in bilateral sagittal split osteotomy, but some issues remain unclear concerning its lack of rigidity when compared to Spiessl's bicortical technique. This paper demonstrates the hybrid fixation technique in a case report. A 34-year-old female patient underwent a double jaw surgery with counter-clockwise rotation of the mandible fixed using the hybrid fixation technique. The patient evolved well in the postoperative period and is still under follow up after 14 months, reporting satisfaction with the results and no significant deviation from the treatment plan up to now. No damage to tooth roots was done, maxillomandibular range of motion was within normality and regression of the inferior alveolar nerve paresthesia was observed bilaterally. The hybrid mandibular fixation is clearly visible in the panoramic and cephalometric control radiographs. It seems that the hybrid fixation can sum the advantages of both monocortical and bicortical techniques in lower jaw advancement, increasing fixation stability without significant damage to the mandibular articulation and the inferior alveolar nerve. A statistical investigation seems necessary to prove its efficacy. PMID:20379687

  16. Recovery act. Development of design and simulation tool for hybrid geothermal heat pump system

    SciTech Connect

    Wang, Shaojie; Ellis, Dan

    2014-05-29

    The ground source heat pump (GSHP) system is one of the most energy efficient HVAC technologies in the current market. However, the heat imbalance may degrade the ability of the ground loop heat exchanger (GLHX) to absorb or reject heat. The hybrid GSHP system, which combines a geothermal well field with a supplemental boiler or cooling tower, can balance the loads imposed on the ground loop heat exchangers to minimize its size while retaining superior energy efficiency. This paper presents a recent simulation-based study with an intention to compare multiple common control strategies used in hybrid GSHP systems, including fixed setpoint, outside air reset, load reset, and wetbulb reset. A small office in Oklahoma City conditioned by a hybrid GSHP system was simulated with the latest version of eQUEST 3.7[1]. The simulation results reveal that the hybrid GSHP system has the excellent capability to meet the cooling and heating setpoints during the occupied hours, balance thermal loads on the ground loop, as well as improve the thermal comfort of the occupants with the undersized well field.

  17. Maximum equivalent power output and performance optimization analysis of an alkaline fuel cell/heat-driven cycle hybrid system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiuqin; Chen, Jincan

    A generic model of the hybrid system consisting of an alkaline fuel cell (AFC) and a heat-driven cycle, which may work as either a refrigerator or a heat pump, is originally established. On the basis of the models of AFCs and three-heat-reservoir cycles, the equivalent power output and efficiency of the hybrid system are obtained. The performance characteristic curves of the hybrid system are represented through numerical calculation. The maximum equivalent power output and efficiency of the hybrid system are determined. Problems concerning the optimal operation of the hybrid system are discussed. The effects of the main irreversible losses on the performance of the hybrid system are investigated in detail. It is important to note that the waste heat produced in the AFC can be readily used in such a hybrid cycle.

  18. Lower hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.; Brunner, D.; LaBombard, B.; Parker, R. R.; Terry, J. L.; Whyte, D. G.; Baek, S. G.; Edlund, E.; Hubbard, A. E.; Hughes, J. W.; Kuang, A. Q.; Reinke, M. L.; Shiraiwa, S.; Wallace, G. M.; Walk, J. R.

    2016-05-01

    For the first time, the power deposition of lower hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal, and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt ( t < τ E ) response of the scrape-off-layer (SOL) plasma to Lower Hybrid Radiofrequency (LHRF) power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be a key for the LHRF edge power deposition physics. These observations support the existence of a loss mechanism near the edge for LHRF at high density ( n e > 1.0 × 10 20 (m-3)). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivate the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch.

  19. Solar atrium: A hybrid solar heating and cooling system

    NASA Astrophysics Data System (ADS)

    Ueland, M.

    1980-06-01

    The atrium is designed to be constructed of materials and equipment that are economical and readily available. Cost effectiveness of installation and operation is a primary design objective. The solar atrium is a further development of efforts begun in the 1930's and 1940's to design houses that would obtain a major portion of their heating from the Sun. The early solar house experiments proved the benefits of large glazed areas for trapping solar energy. However, they were not equipped to collect and store surplus solar energy, nor were they equipped to control heat losses through glass areas at night or during cloudy days. The solar atrium incorporates the large glass areas of the earlier houses and adds facilities for heat storage and control of heat losses through glass. Progress and plans are outlined.

  20. Hybrid heat capacity-moving slab solid-state laser

    DOEpatents

    Stappaerts, Eddy A.

    2005-03-01

    Laser material is pumped and its stored energy is extracted in a heat capacity laser mode at a high duty factor. When the laser material reaches a maximum temperature, it is removed from the lasing region and a subsequent volume of laser material is positioned into the lasing region to repeat the lasing process. The heated laser material is cooled passively or actively outside the lasing region.

  1. Parametric upconversion of lower hybrid wave by runaway electrons in tokamak

    SciTech Connect

    Kuley, Animesh; Tripathi, V. K.

    2010-06-15

    A kinetic formalism of parametric decay of a large amplitude lower hybrid pump wave into runaway electron mode and an upper sideband mode is investigated. The pump and the sideband exert a ponderomotive force on runaway electrons, driving the runaway mode. The density perturbation associated with the latter beats with the oscillatory velocity due to the pump to produce the sideband. The finite parallel velocity spread of the runaway electrons turns the parametric instability into a stimulated Compton scattering process where growth rate scales as the square of the pump amplitude. The large phase velocity waves thus generated can potentially generate relativistic electrons.

  2. The interaction of energetic alpha-particles with intense lower hybrid waves

    SciTech Connect

    Fisch, N.J.; Rax, J.M.

    1992-06-01

    Lower hybrid waves are a demonstrated, continuous means of driving toroidal current in a tokamak. When these waves propagate in a tokamak fusion reactor, in which there are energetic {alpha}- particles, there are conditions under which the {alpha}-particles do not appreciably damp, and may even amplify, the wave, thereby enhancing the current-drive effect. Waves traveling in one poloidal direction, in addition to being directed in one toroidal direction, are shown to be the most efficient drivers of current in the presence of the energetic {alpha}-particles.

  3. Simulations of lower-hybrid coupling in the Madison Symmetric Torus

    SciTech Connect

    Carlsson, Johan; Smithe, David; Carter, Mark; Kaufman, Mike

    2009-11-26

    Simulations of Lower Hybrid (LH) coupling in the Madison Symmetric Torus (MST) Reversed Field Pinch (RFP) will be presented. Due to the special requirements of the RFP configuration (tight-fitting conducting shell in which only minimal portholes are acceptable), an unusual interdigital line slow-wave antenna is used, mounted below the mid plane on the inboard side. A number of codes are used, including VORPAL, RANT3D/AORSA1D-H and MWS, each solving different equations and using different algorithms. Output from the different codes will be presented and compared to verify the simulation results.

  4. Dust-lower-hybrid instability with fluctuating charge in quantum plasmas

    SciTech Connect

    Jamil, M.; Ali, M.; Rasheed, A.; Zubia, K.; Salimullah, M.

    2015-03-15

    The instability of Dust-Lower-Hybrid (DLH) wave is examined in detail in the uniform dusty magnetoplasmas. The time dependent charging effects on dust particles around its equilibrium charge Q{sub d0} are taken into account based on Orbit-Limited Probe theory. The quantum characteristics of the system like Bohm potential and Fermi degenerate pressure are dealt using the quantum hydrodynamic model of plasmas. The external magnetic field and size of the dust particles have new physical effects over the dissipative instability of DLH wave in the quantum plasma regime.

  5. Effects of Magnetic Shear on Toroidal Rotation in Tokamak Plasmas with Lower Hybrid Current Drive

    NASA Astrophysics Data System (ADS)

    Rice, J. E.; Podpaly, Y. A.; Reinke, M. L.; Mumgaard, R.; Scott, S. D.; Shiraiwa, S.; Wallace, G. M.; Chouli, B.; Fenzi-Bonizec, C.; Nave, M. F. F.; Diamond, P. H.; Gao, C.; Granetz, R. S.; Hughes, J. W.; Parker, R. R.; Bonoli, P. T.; Delgado-Aparicio, L.; Eriksson, L.-G.; Giroud, C.; Greenwald, M. J.; Hubbard, A. E.; Hutchinson, I. H.; Irby, J. H.; Kirov, K.; Mailloux, J.; Marmar, E. S.; Wolfe, S. M.

    2013-09-01

    Application of lower hybrid (LH) current drive in tokamak plasmas can induce both co- and countercurrent directed changes in toroidal rotation, depending on the core q profile. For discharges with q0<1, rotation increments in the countercurrent direction are observed. If the LH-driven current is sufficient to suppress sawteeth and increase q0 above unity, the core toroidal rotation change is in the cocurrent direction. This change in sign of the rotation increment is consistent with a change in sign of the residual stress (the divergence of which constitutes an intrinsic torque that drives the flow) through its dependence on magnetic shear.

  6. Observation of Cocurrent Toroidal Rotation in the EAST Tokamak with Lower-Hybrid Current Drive

    SciTech Connect

    Shi Yuejiang; Xu Guosheng; Wang Fudi; Wang Mao; Fu Jia; Li Yingying; Zhang Wei; Zhang Wei; Chang Jiafeng; Lv Bo; Qian Jinping; Shan Jiafang; Liu Fukun; Ding Siye; Wan Baonian; Lee, Sang-Gon; Bitter, Manfred; Hill, Kenneth

    2011-06-10

    Lower-hybrid waves have been shown to induce a cocurrent change in toroidal rotation of up to 40 km/s in the L-mode plasma core region and 20 km/s in the edge of the EAST tokamak. This modification of toroidal rotation develops on different time scales. For the edge, the time scale is no more than 100 ms, but for the core the time scale is around 1 s. A simple model based on turbulent equipartition and thermoelectric pinch predicts the experimental results.

  7. Particle Confinement Properties of Lower Hybrid Current Drive Plasma on the HL-1 Tokamak

    NASA Astrophysics Data System (ADS)

    Duan, Xuru; Yuan, Chengjie; Qian, Shangjie; Ding, Xuantong; Yuan, Bin; Yang, Guang; Diao, Guangyue

    1994-03-01

    The particle confinement property of LHCD (lower hybrid current drive) plasma on the HL-1 tokamak is mainly affected by the line-averaged density of electrons (ne). With ne < 2.0 × 1013 cm-3, the particle confinement time (τp) is improved with the suppression of Hα(Dα) fluctuation at the edge, and tends to increase with the power PLH. The peak of τp appears near the critical density (1.0×1013 cm-3). These results are not influenced by the current drive directions.

  8. Relative Contributions of Heating and Momentum Forcing to High-Latitude Lower Thermospheric Winds

    NASA Astrophysics Data System (ADS)

    Kwak, Y. S.; Richmond, A. D.

    2015-12-01

    At high latitudes the thermospheric dynamics are gov­erned by various heat and momentum sources. Recently several modeling studies have been attempt­ed to understand the physical process that control the high-latitude lower thermospheric dynamics. Kwak and Richmond [2007] and Kwak et al. [2007] studied the momentum forcing bal­ance that are mainly responsible for maintaining the high-latitude lower thermospheric wind system by using the National Center for Atmospheric Research Thermo­sphere Ionosphere Electrodynamics General Circulation Model (NCAR TIE-GCM). Kwak and Richmond [2014] analyzed the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the south­ern summertime. In this study, we extend previous works by Kwak and Rich­mond [2007, 2014] and Kwak et al. [2007], which helped to better understand the physical processes maintaining thermospheric dynamics at high latitudes, and here perform a "term analysis of the potential vorticity equation" for the high-latitude neu­tral wind field in the lower thermosphere, on the basis of numerical simulations using the NCAR TIE-GCM. These analyses can provide insight into the relative strength of the heating and the momentum forcing responsible for driving rotational winds at the high-latitude lower thermosphere. The heating is the net heat including the heat transfer by downward molecular and eddy heat conduction, the absorption of solar ultraviolet (UV) and extreme ultraviolet (EUV) ra­diation, auroral heating by particles, Joule dissipation of ionospheric currents, release of chemical energy by the atomic oxygen recombination, and radiative CO2, NO and O infrared emissions. The momentum forcing is associated with the viscous force and the frictional drag force from convecting ions.

  9. Heating the sun's lower transition region with fine-scale electric currents

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  10. Heating the sun's lower transition region with fine-scale electric currents

    NASA Technical Reports Server (NTRS)

    Rabin, D.; Moore, R.

    1984-01-01

    Analytical and observational data are presented to show that the lower transition zone, a 100 km thick region at 10,000-200,000 K between the solar chromosphere and corona, is heated by local electric currents. The study was spurred by correlations between the enhanced atmospheric heating and magnetospheric flux in the chromospheric network and active regions. Field aligned current heated flux loops are asserted to mainly reside in and make up most of the transition region. It is shown that thermal conduction from the sides of hot gas columns generated by the current dissipation is the source of the observed temperature distribution in the transition regions.

  11. Majority ion heating near the ion-ion hybrid layer in tokamaks

    SciTech Connect

    Phillips, C.K.; Hosea, J.C.; Ignat, D.; Majeski, R.; Rogers, J.H.; Schilling, G.; Wilson, J.R.

    1995-08-01

    Efficient direct majority ion heating in a deuterium-tritium (D-T) reactor-grade plasma via absorption of fast magnetosonic waves in the ion cyclotron range of frequencies (ICRF) is discussed. Majority ion heating results from resonance overlap between the cyclotron layers and the D-T ion-ion hybrid layer in hot, dense plasmas for fast waves launched with high parallel wavenumbers. Analytic and numerical models are used to explore the regime in ITER plasmas.

  12. Full-wave description of the lower hybrid reflection of whistler waves

    SciTech Connect

    Kuzichev, I. V. Shklyar, D. R.

    2013-10-15

    A quasi-electrostatic whistler wave propagating in the direction of increasing lower hybrid resonance (LHR) frequency experiences reflection from the region in which its frequency becomes lower than the LHR frequency. This phenomenon is usually described in the framework of geometrical optics. For a wave propagating along a magnetospheric trajectory, the LHR reflection frequently takes place in the ionospheric region in which electron-neutral collisions are essential and lead to wave attenuation. In this case, the wave approach to the description of the LHR reflection is most consistent. This work is aimed at developing such an approach. The coefficients of the wave reflection are calculated for different plasma parameters. The relation between the problem under consideration and the problem of exit of whistler-mode waves to the ground is considered.

  13. [Hybrid operative interventions in patients with multi-level atherosclerotic lesions of lower-limb arteries].

    PubMed

    Karpenko, A A; Starodubtsev, V B; Ignatenko, P V; Zoloev, D G

    2014-01-01

    The authors share their experience gained in hybrid surgical interventions for multi-level steno-occlusive lesions of the aortoiliac and infrainguinal segments in a total of 96 patients presenting with chronic ischaemia of the lower limbs. The postoperative-period complications included haematomas observed in 9 (9.4%) cases and 6 (6.3%) instances of lymphorrhea occurring in the area of the postoperative wound. There were no lethal outcomes in the immediate postoperative period. The remote results were assessed at follow-up terms varying from 6 to 53 months in 75 (79.7%) patients. Thrombosis of the bypass graft was registered in 6 cases and thrombosis of the stented iliac segment was encountered in 3 cases, which required amputation of the lower limb in 5 (6.7%) patients.

  14. Synergy effects during current drive by two lower-hybrid waves

    NASA Astrophysics Data System (ADS)

    Yang, Youlei; Xiang, Nong; Hu, Ye Min

    2017-03-01

    In recent lower-hybrid current drive experiments on the experimental advanced superconducting tokamak, two lower-hybrid waves are launched simultaneously from different locations with different phase velocities to drive the plasma current. To understand the synergy effects of the two LH waves, the analytical expression for the electron velocity distribution is obtained based on Fuchs' model [Fuchs et al., Phys. Fluids 28(12), 3619-3628 (1985)], which is in good agreement with that obtained by solving the quasi-linear equation numerically via the CQL3D code [R. W. Harvey and M. G. McCoy, in Proceedings of IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada (1992)]. The synergy factor is also obtained analytically. It is found that the existence of two resonant regions may bring more resonant electrons interacting with each wave and the perpendicular dynamics can further enhance the synergy effect by increasing the effective electron temperature, which in turn increases the number of electrons in the resonance with each wave.

  15. Characteristics of a novel lower hybrid wave antenna for the TST-2 spherical tokamak

    SciTech Connect

    Takase, Y.; Shinya, T.; Wakatsuki, T.; Ejiri, A.; Furui, H.; Hiratsuka, J.; Imamura, K.; Inada, T.; Kakuda, H.; Nakamura, K.; Nakanishi, A.; Oosako, T.; Sonehara, M.; Togashi, H.; Tsuda, S.; Tsujii, N.; Yamaguchi, T.; Moeller, C. P.

    2014-02-12

    A new type of traveling wave antenna which excites the lower hybrid wave directly was developed. This antenna is similar to the inductively-coupled combline antenna in that only the first element of the antenna array is excited externally, and subsequent elements are excited passively by mutual coupling between adjacent elements. The main difference is that whereas the inductively-coupled combline antenna makes use of mutual inductance, the presently proposed antenna makes use of mutual capacitance. The radiating elements are located at the voltage maximum, and the electric field induced in the plasma is in the toroidal direction rather than the poloidal direction, matching the polarization of the lower hybrid wave. Optimization studies were carried out to obtain a band-pass characteristic centered around 200 MHz, and a unidirectional wavenumber spectrum with the parallel index of refraction corresponding to approximately 5. Plasma current ramp-up to 2 kA has been achieved on the TST-2 spherical tokamak with 12 kW of RF power at 200 MHz during the initial experimental period using this antenna. Further optimization studies are being performed.

  16. Isotopic effect of parametric instabilities during lower hybrid waves injection into hydrogen/deuterium plasmas

    NASA Astrophysics Data System (ADS)

    Zhao, Aihui; Gao, Zhe

    2017-01-01

    Based on the local dispersion relation, the parametric instability (PI) was numerically investigated for the injection of lower hybrid waves (LHWs) into hydrogen and deuterium plasmas separately. Numerical calculations under typical scrape-off layer parameters in tokamak plasmas show that both the unstable regions of the PI and the values of growth rates are close for two cases, in spite of the decaying channel of the ion sound quasimode or ion cyclotron quasimode (ICQM). These numerical results could be understood by the analyses based on the fluid model. Parameter dependences are also similar for hydrogen and deuterium plasmas. For example, the ICQM growth rate increases with an increasing density, a decreasing temperature, and a decreasing magnetic field in deuterium plasmas as it does in hydrogen plasmas. The isotopic effect of the PI during the LHW injection is weak. As a result, the lower hybrid current drive efficiency at a high density in deuterium plasmas cannot be much improved over hydrogen plasmas if the PI process dominates the behavior of LHWs at the plasma edge.

  17. The generalized accessibility and spectral gap of lower hybrid waves in tokamaks

    SciTech Connect

    Takahashi, Hironori

    1994-03-01

    The generalized accessibility of lower hybrid waves, primarily in the current drive regime of tokamak plasmas, which may include shifting, either upward or downward, of the parallel refractive index (n{sub {parallel}}), is investigated, based upon a cold plasma dispersion relation and various geometrical constraint (G.C.) relations imposed on the behavior of n{sub {parallel}}. It is shown that n{sub {parallel}} upshifting can be bounded and insufficient to bridge a large spectral gap to cause wave damping, depending upon whether the G.C. relation allows the oblique resonance to occur. The traditional n{sub {parallel}} upshifting mechanism caused by the pitch angle of magnetic field lines is shown to lead to contradictions with experimental observations. An upshifting mechanism brought about by the density gradient along field lines is proposed, which is not inconsistent with experimental observations, and provides plausible explanations to some unresolved issues of lower hybrid wave theory, including generation of {open_quote}seed electrons.{close_quote}

  18. Role of the lower hybrid spectrum in the current drive modeling for DEMO scenarios

    NASA Astrophysics Data System (ADS)

    Cardinali, A.; Castaldo, C.; Cesario, R.; Santini, F.; Amicucci, L.; Ceccuzzi, S.; Galli, A.; Mirizzi, F.; Napoli, F.; Panaccione, L.; Schettini, G.; Tuccillo, A. A.

    2017-07-01

    The active control of the radial current density profile is one of the major issues of thermonuclear fusion energy research based on magnetic confinement. The lower hybrid current drive could in principle be used as an efficient tool. However, previous understanding considered the electron temperature envisaged in a reactor at the plasma periphery too large to allow penetration of the coupled radio frequency (RF) power due to strong Landau damping. In this work, we present new numerical results based on quasilinear theory, showing that the injection of power spectra with different {n}// widths of the main lobe produce an RF-driven current density profile spanning most of the outer radial half of the plasma ({n}// is the refractive index in a parallel direction to the confinement magnetic field). Plasma kinetic profiles envisaged for the DEMO reactor are used as references. We demonstrate the robustness of the modeling results concerning the key role of the spectral width in determining the lower hybrid-driven current density profile. Scans of plasma parameters are extensively carried out with the aim of excluding the possibility that any artefact of the utilised numerical modeling would produce any novelty. We neglect here the parasitic effect of spectral broadening produced by linear scattering due to plasma density fluctuations, which mainly occurs for low magnetic field devices. This effect will be analyzed in other work that completes the report on the present breakthrough.

  19. Effort of lower hybrid current drive experiments toward to H-mode in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Liu, F. K.; Shan, J. F.; Li, Y. C.; Wang, M.; Liu, L.; Zhao, L. M.; Yang, Y.; Wu, Z. G.; Feng, J. Q.; Hu, H. C.; Jia, H.; Cheng, M.; Zang, Q.; Lyu, B.; Duan, Y. M.; Lin, S. Y.; Wu, J. H.; Hillairet, J.; Ekedahl, A.; Peysson, Y.; Goniche, M.; Tuccillo, A. A.; Cesario, R.; Amicucci, L.; Shen, B.; Gong, X. Z.; Xu, G. S.; Zhao, H. L.; Hu, L. Q.; Li, J. G.; Wan, B. N.; EAST Team

    2017-02-01

    Lower hybrid current drive (LHCD) is an effective tool to achieve high confinement (H-mode) plasma in EAST. To utilize LHCD for accessing H-mode plasma, efforts have been made to improve LHW (lower hybrid wave)-plasma coupling and current drive capability at high density. Improved LHW-plasma coupling by means of local gas puffing and gas puffing from the electron side is routinely used during EAST operation with LHCD. High density experiments suggest that low recycling and high LH frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. The effect of LHCD on the current profile in EAST demonstrates that it is possible to control the plasma profile by optimizing the LHW spectrum. Repeatable H-mode plasma was obtained by LHCD and the maximum density during H-mode with the combination of 2.45 GHz and 4.6 GHz LH waves was up to 4.5  ×  1019 m-3.

  20. Results of lower hybrid wave experiments using a dielectric loaded waveguide array antenna on TST-2

    NASA Astrophysics Data System (ADS)

    Wakatsuki, T.; Ejiri, A.; Shinya, T.; Takase, Y.; Furui, H.; Hiratsuka, J.; Imamura, K.; Inada, T.; Kakuda, H.; Kasahara, H.; Nagashima, Y.; Nakamura, K.; Nakanishi, A.; Oosako, T.; Saito, K.; Seki, T.; Shimpo, F.; Sonehara, M.; Togashi, H.; Tsuda, S.; Tsujii, N.; Yamaguchi, T.

    2014-02-01

    Lower hybrid current drive experiments were performed on the TST-2 spherical tokamak (R = 0.38 m, a = 0.25 m, Bt = 0.3 T, Ip = 0.1 MA). A waveguide array antenna consisting of four dielectric (alumina, ɛr = 10.0) loaded waveguides was used. The coupling characteristics were investigated over a wide range of input power (0.1 W - 40 kW). The reflection coefficient of this antenna increased when the input power exceeded approximately 1 kW. This result was compared with a numerical simulation based on the finite element method (FEM). The ponderomotive effect was calculated for the wave field calculated by COMSOL [1]. This calculation also showed variation of the reflection coefficient with the input power. Non-inductive plasma current start-up to 10 kA was demonstrated using 40 kW of lower hybrid wave (LHW) power. The current drive figure of merit (ηCD = IpneR/PRF) of this antenna was higher than that obtained using the combline antenna, which is designed to excite a travelling fast wave. The best current drive efficiency was obtained in the case in which the n∥ (= ck∥/ω) spectrum of the excited LHW was peaked around 9 and the toroidal field was higher than in previous experiments.

  1. Hybrid joule heating/electro-osmosis process for extracting contaminants from soil layers

    SciTech Connect

    Carrigan, Charles R.; Nitao, John J.

    2003-06-10

    Joule (ohmic) heating and electro-osmosis are combined in a hybrid process for removal of both water-soluble contaminants and non-aqueous phase liquids from contaminated, low-permeability soil formations that are saturated. Central to this hybrid process is the partial desaturation of the formation or layer using electro-osmosis to remove a portion of the pore fluids by induction of a ground water flow to extraction wells. Joule heating is then performed on a partially desaturated formation. The joule heating and electro-osmosis operations can be carried out simultaneously or sequentially if the desaturation by electro-osmosis occurs initially. Joule heating of the desaturated formation results in a very effective transfer or partitioning of liquid state contaminants to the vapor phase. The heating also substantially increases the vapor phase pressure in the porous formation. As a result, the contaminant laden vapor phase is forced out into soil layers of a higher permeability where other conventional removal processes, such as steam stripping or ground water extraction can be used to capture the contaminants. This hybrid process is more energy efficient than joule heating or steam stripping for cleaning low permeability formations and can share electrodes to minimize facility costs.

  2. Novel Reactor Relevant RF Actuator Schemes for the Lower Hybrid and the Ion Cyclotron Range of Frequencies

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2014-10-01

    This paper presents a fresh physics perspective on the onerous problem of coupling and successfully utilizing ion cyclotron range of frequencies (ICRF) and lower hybrid range of frequencies (LHRF) actuators in the harsh environment of a nuclear fusion reactor. The ICRF and LH launchers are essentially first wall components in a fusion reactor and as such will be subjected to high heat fluxes. The high field side (HFS) of the plasma offers a region of reduced heat flux together with a quiescent scrape off layer (SOL). Placement of the ICRF and LHRF launchers on the tokamak HFS also offers distinct physics advantages: The higher toroidal magnetic field makes it possible to couple faster phase velocity LH waves that can penetrate farther into the plasma core and be absorbed by higher energy electrons, thereby increasing the current drive efficiency. In addition, re-location of the LH launcher off the mid-plane (i.e., poloidal ``steering'') allows further control of the deposition location. Also ICRF waves coupled from the HFS couple strongly to mode converted ion Bernstein waves and ion cyclotron waves waves as the minority density is increased, thus opening the possibility of using this scheme for flow drive and pressure control. Finally the quiescent nature of the HFS scrape off layer should minimize the effects of RF wave scattering from density fluctuations. Ray tracing / Fokker Planck simulations will be presented for LHRF applications in devices such as the proposed Advanced Divertor Experiment (ADX) and extending to ITER and beyond. Full-wave simulations will also be presented which demonstrate the possible combinations of electron and ion heating via ICRF mode conversion. Work supported by the US DoE under Contract Numbers DE-FC02-01ER54648 and DE-FC02-99ER54512.

  3. No influence of lower leg heating on central arterial pulse pressure in young men.

    PubMed

    Kosaki, Keisei; Sugawara, Jun; Akazawa, Nobuhiko; Tanahashi, Koichiro; Kumagai, Hiroshi; Ajisaka, Ryuichi; Maeda, Seiji

    2015-07-01

    Central arterial pulse pressure (PP), a strong predictor of cardiovascular disease, mainly consists of an incident wave generated by left ventricular ejection and a late-arriving reflected wave emanating from the lower body. We have tested the hypothesis that a reduction in leg vascular tone by heat treatment of the lower leg attenuates the central arterial PP. Pressure and wave properties of the peripheral and central arteries were measured in eight young men before and after heat treatment of the lower leg (temperature approx. 43 °C) for 30 and 60 min, respectively. Following the lower leg heat trial, leg (femoral-ankle) pulse wave velocity (PWV) was significantly decreased, but aortic (carotid-femoral) PWV and parameters of wave reflection and carotid arterial PP did not change significantly. No significant changes were observed in these parameters in the control trial. These results suggest that the reduction in leg vascular tone induced by heat treatment of the lower leg may not affect wave reflection and central arterial PP in young men.

  4. Nonlinear coupling of lower hybrid waves to the kinetic low-frequency plasma response in the auroral ionosphere

    NASA Astrophysics Data System (ADS)

    Sanbonmatsu, K. Y.; Goldman, M. V.; Newman, D. L.

    A hybrid kinetic-fluid model is developed which is relevant to lower hybrid spikelets observed in the topside auroral ionosphere [Vago et al., 1992; Eriksson et al., 1994]. In contrast to previous fluid models [Shapiro et al., 1995; Tam and Chang, 1995; Seyler, 1994; Shapiro et al., 1993] our linear low frequency plasma response is magnetized and kinetic. Fluid theory is used to incorporate the nonlinear wave coupling. Performing a linear stability analysis, we calculate the growth rate for the modulational instability, driven by a lower hybrid wave pump. We find that both the magnetic and kinetic effects inhibit the modulational instability.

  5. Hybrid heat exchange for the compression capture of CO2 from recirculated flue gas

    SciTech Connect

    Oryshchyn, Danylo B.; Ochs, Thomas L.; Summers, Cathy A.

    2004-01-01

    An approach proposed for removal of CO2 from flue gas cools and compresses a portion of a recirculated flue-gas stream, condensing its volatile materials for capture. Recirculating the flue gas concentrates SOx, H2O and CO2 while dramatically reducing N2 and NOx, enabling this approach, which uses readily available industrial components. A hybrid system of indirect and direct-contact heat exchange performs heat and mass transfer for pollutant removal and energy recovery. Computer modeling and experimentation combine to investigate the thermodynamics, heat and mass transfer, chemistry and engineering design of this integrated pollutant removal (IPR) system.

  6. Solar and chemical reaction-induced heating in the terrestrial mesosphere and lower thermosphere

    NASA Technical Reports Server (NTRS)

    Mlynczak, Martin G.

    1992-01-01

    Airglow and chemical processes in the terrestrial mesosphere and lower thermosphere are reviewed, and initial parameterizations of the processes applicable to multidimensional models are presented. The basic processes by which absorbed solar energy participates in middle atmosphere energetics for absorption events in which photolysis occurs are illustrated. An approach that permits the heating processes to be incorporated in numerical models is presented.

  7. Acceleration of electrons and ions by strong lower-hybrid turbulence in solar flares

    NASA Technical Reports Server (NTRS)

    Spicer, D. S.; Bingham, R.; Su, J. J.; Shapiro, V. D.; Shevchenko, V.; Ma, S.; Dawson, J. M.; Mcclements, K. G.

    1994-01-01

    One of the outstanding problems in solar flare theory is how to explain the 10-20 keV and greater hard x-ray emissions by a thick target bremsstrahlung model. The model requires the acceleration mechanism to accelerate approximately 10(exp 35) electrons sec(exp -l) with comparable energies, without producing a large return current which persists for long time scales after the beam ceases to exist due to Lenz's law, thereby, producing a self-magnetic field of order a few mega-Gauss. In this paper, we investigate particle acceleration resulting from the relaxation of unstable ion ring distributions, producing strong wave activity at the lower hybrid frequency. It is shown that strong lower hybrid wave turbulence collapses in configuration space producing density cavities containing intense electrostatic lower hybrid wave activity. The collapse of these intense nonlinear wave packets saturate by particle acceleration producing energetic electron and ion tails. There are several mechanisms whereby unstable ion distributions could be formed in the solar atmosphere, including reflection at perpendicular shocks, tearing modes, and loss cone depletion. Numerical simulations of ion ring relaxation processes, obtained using a 2 1/2-D fully electromagnetic, relativistic particle in cell code are discussed. We apply the results to the problem of explaining energetic particle production in solar flares. The results show the simultaneous acceleration of both electrons and ions to very high energies: electrons are accelerated to energies in the range 10-500 keV, while ions are accelerated to energies of the order of MeVs, giving rise to x-ray emission and gamma-ray emission respectively. Our simulations also show wave generation at the electron cyclotron frequency. We suggest that these waves are the solar millisecond radio spikes. The strong turbulence collapse process leads to a highly filamented plasma producing many localized regions for particle acceleration and resulting in

  8. The numerical simulation of heat transfer during a hybrid laser-MIG welding using equivalent heat source approach

    NASA Astrophysics Data System (ADS)

    Bendaoud, Issam; Matteï, Simone; Cicala, Eugen; Tomashchuk, Iryna; Andrzejewski, Henri; Sallamand, Pierre; Mathieu, Alexandre; Bouchaud, Fréderic

    2014-03-01

    The present study is dedicated to the numerical simulation of an industrial case of hybrid laser-MIG welding of high thickness duplex steel UR2507Cu with Y-shaped chamfer geometry. It consists in simulation of heat transfer phenomena using heat equivalent source approach and implementing in finite element software COMSOL Multiphysics. A numerical exploratory designs method is used to identify the heat sources parameters in order to obtain a minimal required difference between the numerical results and the experiment which are the shape of the welded zone and the temperature evolution in different locations. The obtained results were found in good correspondence with experiment, both for melted zone shape and thermal history.

  9. Electronic heat current rectification in hybrid superconducting devices

    SciTech Connect

    Fornieri, Antonio Giazotto, Francesco; Martínez-Pérez, María José

    2015-05-15

    In this work, we review and expand recent theoretical proposals for the realization of electronic thermal diodes based on tunnel-junctions of normal metal and superconducting thin films. Starting from the basic rectifying properties of a single hybrid tunnel junction, we will show how the rectification efficiency can be largely increased by combining multiple junctions in an asymmetric chain of tunnel-coupled islands. We propose three different designs, analyzing their performance and their potential advantages. Besides being relevant from a fundamental physics point of view, this kind of devices might find important technological application as fundamental building blocks in solid-state thermal nanocircuits and in general-purpose cryogenic electronic applications requiring energy management.

  10. On the application of Chimera/unstructured hybrid grids for conjugate heat transfer

    NASA Technical Reports Server (NTRS)

    Kao, Kai-Hsiung; Liou, Meng-Sing

    1995-01-01

    A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.

  11. Does attenuated skin blood flow lower sweat rate and the critical environmental limit for heat balance during severe heat exposure?

    PubMed

    Cramer, Matthew N; Gagnon, Daniel; Crandall, Craig G; Jay, Ollie

    2017-02-01

    What is the central question of this study? Does attenuated skin blood flow diminish sweating and reduce the critical environmental limit for heat balance, which indicates maximal heat loss potential, during severe heat stress? What is the main finding and its importance? Isosmotic hypovolaemia attenuated skin blood flow by ∼20% but did not result in different sweating rates, mean skin temperatures or critical environmental limits for heat balance compared with control and volume-infusion treatments, suggesting that the lower levels of skin blood flow commonly observed in aged and diseased populations may not diminish maximal whole-body heat dissipation. Attenuated skin blood flow (SkBF) is often assumed to impair core temperature (Tc ) regulation. Profound pharmacologically induced reductions in SkBF (∼85%) lead to impaired sweating, but whether the smaller attenuations in SkBF (∼20%) more often associated with ageing and certain diseases lead to decrements in sweating and maximal heat loss potential is unknown. Seven healthy men (28 ± 4 years old) completed a 30 min equilibration period at 41°C and a vapour pressure (Pa ) of 2.57 kPa followed by incremental steps in Pa of 0.17 kPa every 6 min to 5.95 kPa. Differences in heat loss potential were assessed by identifying the critical vapour pressure (Pcrit ) at which an upward inflection in Tc occurred. The following three separate treatments elicited changes in plasma volume to achieve three distinct levels of SkBF: control (CON); diuretic-induced isosmotic dehydration to lower SkBF (DEH); and continuous saline infusion to maintain SkBF (SAL). The Tc , mean skin temperature (Tsk ), heart rate, mean laser-Doppler flux (forearm and thigh; LDFmean ), mean local sweat rate (forearm and thigh; LSRmean ) and metabolic rate were measured. In DEH, a 14.2 ± 5.7% lower plasma volume resulted in a ∼20% lower LDFmean in perfusion units (PU) (DEH, 139 ± 23 PU; CON, 176 ± 22 PU; and SAL, 186 ± 22

  12. High Temperature Induced Glume Closure Resulted in Lower Fertility in Hybrid Rice Seed Production

    PubMed Central

    Yan, Haoliang; Zhang, Binglin; Zhang, Yunbo; Chen, Xinlan; Xiong, Hui; Matsui, Tsutomu; Tian, Xiaohai

    2017-01-01

    Predicted climate changes, in particular, the increased dimension and frequency of heat waves, are expected to affect crop growth in the future seriously. Hybrid rice relies on seed production from male sterile and restorer lines. Experiments were conducted over two consecutive years to compare the high temperature tolerance of parents of different hybrid rice combinations, in terms of fertility rate, flowering pattern, pollination and physiological parameters of the lodicule. Three male sterile lines and a broad compatibility restorer line (as pollen donor and conventional variety as well) were grown to heading stage and then treated with average daily temperatures of 26°C (range 23–30°C), 28°C (25–32°C), and 30°C (26–34°C), respectively, continued for 5–7 days each in a natural light phytotron which simulated the local typical high temperature weather in the field. The results indicated that male sterile lines were more sensitive to high temperature than the restorer line for fertility rate, and the sensitivity varied between varieties. The fertility rate of the restorer line was maintained at about 90% under the high temperature treatments, while it decreased in the male sterile lines by 23.3 and 48.1% at 28 and 30°C, respectively. The fertility rate of the most sensitive line declined by 70%, and the tolerant line declined by 34% at 30°C. Glume closure in the male sterile lines was a major reason for the reduced fertility rate under high temperature, which is closely correlated with carbohydrates content and the vascular bundle pattern in the lodicule. The present study identified a useful trait to select male sterile lines with high temperature tolerance for seed production. PMID:28105031

  13. Plasma heating and current drive by an obliquely propagating upper-hybrid cyclotron beat wave

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Cairns, R. A.

    1991-01-01

    Excitation of an obliquely propagating upper-hybrid cyclotron beat wave is considered for plasma heating and current drive in tokamaks. The beat wave is excited by the interaction of two intense free-electron laser (FEL) pulses at their difference frequency. The three-wave nonlinear interaction equations in a magnetized plasma are solved numerically in a steady-state two-dimensional (2-D) geometry for this purpose. The 2-D toroidal inhomogeneity effect and the effect of finite spatial width of the pump microwave pulses are taken into account for the beat wave excitation. To illustrate the principle, the microwave tokamak experiment (MTX) [Plasma Phys. Controlled Fusion 30, 57 (1988)] is considered. It has been found that the fraction of total input power of the pump microwaves deposited in the cyclotron beat wave is lower than the case of a Langmuir type beat wave considered by Amin and Cairns [Nucl. Fusion 30, 327 (1990)]. However, increasing the input powers of the pump microwaves, a substantial amount of input power can be deposited in the excited beat wave. The beat wave eventually transfers this power to the electrons by cyclotron damping. It has also been found that for the same input parameters, right-hand polarized pumps are more efficient than left-hand polarized pump microwaves for beat wave excitation.

  14. Hybrid fluid/kinetic model for parallel heat conduction

    SciTech Connect

    Callen, J.D.; Hegna, C.C.; Held, E.D.

    1998-12-31

    It is argued that in order to use fluid-like equations to model low frequency ({omega} < {nu}) phenomena such as neoclassical tearing modes in low collisionality ({nu} < {omega}{sub b}) tokamak plasmas, a Chapman-Enskog-like approach is most appropriate for developing an equation for the kinetic distortion (F) of the distribution function whose velocity-space moments lead to the needed fluid moment closure relations. Further, parallel heat conduction in a long collision mean free path regime can be described through a combination of a reduced phase space Chapman-Enskog-like approach for the kinetics and a multiple-time-scale analysis for the fluid and kinetic equations.

  15. Global particle simulation of lower hybrid wave propagation and mode conversion in tokamaks

    SciTech Connect

    Bao, J.; Lin, Z.; Kuley, A.

    2015-12-10

    Particle-in-cell simulation of lower hybrid (LH) waves in core plasmas is presented with a realistic electron-to-ion mass ratio in toroidal geometry. Due to the fact that LH waves mainly interact with electrons to drive the current, ion dynamic is described by cold fluid equations for simplicity, while electron dynamic is described by drift kinetic equations. This model could be considered as a new method to study LH waves in tokamak plasmas, which has advantages in nonlinear simulations. The mode conversion between slow and fast waves is observed in the simulation when the accessibility condition is not satisfied, which is consistent with the theory. The poloidal spectrum upshift and broadening effects are observed during LH wave propagation in the toroidal geometry.

  16. The Effects Of Finite Electron Temperature And Diffraction On Lowere Hybrid Wave Propagation

    SciTech Connect

    White, J. C.; Bertelli, M.

    2014-02-24

    In this paper we show that the commonly used cold plasma dispersion relation for plasma waves in the lower hybrid range of frequencies (LHRF) produces a wave trajectory that is notably different than when thermal corrections to the Hermitian part of the dielectric tensor are retained. This is in contrast to the common implementation in LH simulation codes in which thermal effects are retained only for the anti-Hermitian part of the dielectric tensor used for damping calculations. We show which term is the critical one to retain in the dielectric tensor and discuss implications for modeling of LHRF waves in present day and future devices. We conclude with some observations on the effects of diffraction that may be isolated once thermal effects are retained in both ray tracing and full-wave approaches.

  17. Direct detection of lower hybrid wave using a reflectometer on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Baek, S.; Dominguez, A.; Marmar, E.; Parker, R.; Kramer, G. J.

    2010-10-01

    The possibility of directly detecting a density perturbation produced by lower hybrid (LH) waves using a reflectometer is presented. We investigate the microwave scattering of reflectometer probe beams by a model density fluctuation produced by short wavelength LH waves in an Alcator C-Mod experimental condition. In the O-mode case, the maximum response of phase measurement is found to occur when the density perturbation is approximately centimeters in front of the antenna, where Bragg scattering condition is satisfied. In the X-mode case, the phase measurement is predicted to be more sensitive to the density fluctuation close to the cut-off layer. A feasibility test was carried out using a 50 GHz O-mode reflectometer on the Alcator C-Mod tokamak, and positive results including the detection of 4.6 GHz pump wave and parametric decay instabilities were obtained.

  18. The lower hybrid density drift instability with cold plasma. [in magnetosphere

    NASA Technical Reports Server (NTRS)

    Gary, S. P.; Ashour-Abdalla, M.

    1981-01-01

    The linear Vlasov dispersion relation for the lower hybrid density drift instability is studied in a four component (hot electrons and protons, cold electrons and protons) plasma. The introduction of a cold ion population monotonically reduces the maximum growth rate of the instability. Reduction of the ratio of temperatures of the cold and hot plasmas reduces both the real frequency and the growth rate of the instability. Near a ratio of the cold and hot plasma temperatures of 0.01 a higher frequency branch of this instability emerges and for a fixed ratio of cold and hot electron density exhibits an increasing maximum growth rate as the ratio of the cold and hot plasma temperatures decreases further. The ratio of the cold and hot plasma temperatures for the ions is the crucial parameter and deserves detailed magnetospheric studies.

  19. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  20. Theory and simulation of lower-hybrid drift instability for current sheet with guide field

    SciTech Connect

    Yoon, P. H.; Lin, Y.; Wang, X. Y.; Lui, A. T. Y.

    2008-11-15

    The stability of a thin current sheet with a finite guide field is investigated in the weak guide-field limit by means of linear theory and simulation. The emphasis is placed on the lower-hybrid drift instability (LHDI) propagating along the current flow direction. Linear theory is compared against the two-dimensional linear simulation based on the gyrokinetic electron/fully kinetic ion code. LHDI is a flute mode characterized by k{center_dot}B{sub total}=0; hence, it is stabilized by a finite guide field if one is confined to k vector strictly parallel to the cross-field current. Comparison of the theory and simulation shows qualitatively good agreement.

  1. Neurorobotic and hybrid management of lower limb motor disorders: a review.

    PubMed

    Moreno, Juan C; Del Ama, Antonio J; de Los Reyes-Guzmán, Ana; Gil-Agudo, Angel; Ceres, Ramón; Pons, José L

    2011-10-01

    A neurobot (NR) is a mechatronic wearable robot that can be applied to drive a paralyzed limb. Through the application of controllable forces, a NR can assist, replace, or retrain a certain motor function. Robotic intervention in rehabilitation of motor disorders has a potential to improve traditional therapeutic interventions. Because of its flexibility, repeatability and quantifiability, NRs have been more and more applied in neurorehabilitation. Furthermore, combination of NRs with functional electrical stimulation/therapy constitutes a trend to overcome a number of practical limitations to widespread the application of NRs in clinical settings and motor control studies. In this review, we examine the motor learning principles, robotic control approaches and novel developments from studies with NRs and hybrid systems, with a focus on rehabilitation of the lower limbs.

  2. Lower hybrid current drive at ITER-relevant high plasma densities

    SciTech Connect

    Cesario, R.; Amicucci, L.; Cardinali, A.; Castaldo, C.; Marinucci, M.; Panaccione, L.; Pericoli-Ridolfini, V.; Tuccillo, A. A.; Tudisco, O.

    2009-11-26

    Recent experiments indicated that a further non-inductive current, besides bootstrap, should be necessary for developing advanced scenario for ITER. The lower hybrid current drive (LHCD) should provide such tool, but its effectiveness was still not proved in operations with ITER-relevant density of the plasma column periphery. Progress of the LH deposition modelling is presented, performed considering the wave physics of the edge, and different ITER-relevant edge parameters. Operations with relatively high edge electron temperatures are expected to reduce the LH{sub ||} spectral broadening and, consequently, enabling the LH power to propagate also in high density plasmas ({sub ||} is the wavenumber component aligned to the confinement magnetic field). New results of FTU experiments are presented, performed by following the aforementioned modeling: they indicate that, for the first time, the LHCD conditions are established by operating at ITER-relevant high edge densities.

  3. High energy electron deposition within vertical ports, during lower hybrid current drive on Tore Supra

    NASA Astrophysics Data System (ADS)

    Saint-Laurent, F.; Martin, G.; Basiuk, V.; Faudot, E.; Grisolia, C.; Heuraux, S.; Lipa, M.

    2005-03-01

    Unexpected hot spots were observed around the edges of vertical ports on Tore-Supra, caused by fast electrons, accelerated by the lower hybrid waves used to drive the current, and trapped in the local ripple wells. Trajectory calculations, with the magnetic fields alone, show that no electrons should reach such locations. However, electrostatic potentials, at a kilovolt level, can induce a toroidal pinch of the trajectories, allowing particle deposition in these normally shadowed areas. Their origin is attributed first to a strong increase of the sheath potential at the port entrance, due to the fast electron flux itself, and second to its reduction within the port, when the sheath width becomes larger than the port width, due to the too low value of the local density. An increase of the capability of the cooling panels within the port, to cope with these additional fluxes, has been implemented.

  4. Coupling of alpha channeling to parallel wavenumber upshift in lower hybrid current drive

    NASA Astrophysics Data System (ADS)

    Ochs, I. E.; Bertelli, N.; Fisch, N. J.

    2015-08-01

    Although lower hybrid (LH) waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors. However, in the presence of the expected steep α particle birth gradient, this interaction can produce wave amplification rather than wave damping. Here, we identify the flexibilities and constraints in achieving this amplification effect through a consideration of symmetries in the channeling interaction, in the wave propagation, and in the tokamak field configuration. Interestingly, for standard LH current drive that supports the poloidal magnetic field, we find that wave amplification through α channeling is fundamentally coupled to the poorly understood | k ∥ | upshift. In so doing, we show that wave launch from the tokamak high-field side is favorable both for α-channeling and for achieving the | k ∥ | upshift.

  5. Ion cyclotron and lower hybrid arrays applicable to current drive in fusion reactors

    SciTech Connect

    Bosia, G.; Ragona, R.; Helou, W.; Goniche, M.; Hillaret, J.

    2014-02-12

    This paper presents concepts for Ion Cyclotron and Lower Hybrid Current Drive arrays applicable to fusion reactors and based on periodically loaded line power division. It is shown that, in large arrays, such as the ones proposed for fusion reactor applications, these schemes can offer, in principle, a number of practical advantages, compared with currently adopted ones, such as in-blanket operation at significantly reduced power density, lay out suitable for water cooling, single ended or balanced power feed, simple and load independent impedance matching In addition, a remote and accurate real time measurement of the complex impedance of all array elements as well as detection, location, and measurement of the complex admittance of a single arc occurring anywhere in the structure is possible.

  6. Electromagnetic loads on ion cyclotron and lower hybrid launchers for TPX

    SciTech Connect

    Yugo, J.J.; Fogelman, C.H.; Goranson, P.L.; Conner, D.L.; Swain, D.W.; Sayer, R.O.

    1995-12-31

    The ion cyclotron (IC) and lower hybrid (LH) launchers for the Tokamak Physics Experiment (TPX) will be subjected to significant forces resulting from eddy currents induced in the launchers from the rapid decay of the plasma current during plasma disruption events. The launchers are being designed to withstand the forces resulting from a peak plasma current decay rate of 1.2 MA/ms and an average current decay rate of 0.5 MA/ms from an initial plasma current of 2 MA. The desire for highly reliable and low cost fabrication techniques prompted the comparison of pure copper and dispersion-hardened copper for the LH launcher. Its low nuclear activation rate, high electrical resistance, and high strength motivated the evaluation of Titanium as an IC antenna material.

  7. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    SciTech Connect

    Singh, N.; Conrad, J.R.; Schunk, R.W.

    1985-06-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves. 39 references.

  8. Electrostatic ion cyclotron, beam-plasma, and lower hybrid waves excited by an electron beam

    NASA Technical Reports Server (NTRS)

    Singh, N.; Conrad, J. R.; Schunk, R. W.

    1985-01-01

    It is pointed out that electrostatic ion cyclotron (EIC) waves have been extensively investigated in connection with both space and laboratory plasmas. The present investigation has the objective to study the excitation of low-frequency waves in a multiion plasma by electron beams. The frequencies considered range from below the lowest gyrofrequency of the heaviest ion to about the lower hybrid frequency. It is shown that electron-beam instabilities can produce peaks in the growth rate below the cyclotron frequency of each ion species if nonzero perpendicular wave number effects are included in the ion dynamics. The dispersion relations for neutralized ion Bernstein (NIB) and pure ion Bernstein (PIB) waves are considered along with an instability analysis for a cold plasma and warm electron beam, the electron beam-plasma mode, banded ion cyclotron (EIC) waves with small perpendicular wavelengths, and the growth lengths of the waves.

  9. Electron concentrations calculated from the lower hybrid resonance noise band observed by Ogo 3.

    NASA Technical Reports Server (NTRS)

    Burtis, W. J.

    1973-01-01

    A noise band at the lower hybrid resonance (LHR) is often detected by the VLF and ELF receivers on Ogo 3, using the electric antenna. In some cases the noise band is at the geometric mean gyrofrequency as measured by the Goddard Space Flight Center (GSFC) magnetometer, and local LHR in a dense H(+) plasma is indicated; in such cases, electron concentration can be calculated, if it is assumed that heavy ions are negligible. Observations at midlatitudes and altitudes of a few earth radii show local concentrations as low as 1.4 electrons/cu cm. In one case the concentrations obtained from the LHR noise band agree with those measured simultaneously by the GSFC ion mass spectrometer within a factor of 2. In another case the concentration is observed to fall by a factor of 2 in 150 km and then to decrease roughly as R to the minus fourth power, in agreement with whistler measurements outside the plasmapause.

  10. Lower hybrid resonance acceleration of electrons and ions in solar flares and the associated microwave emission

    NASA Technical Reports Server (NTRS)

    Mcclements, K. G.; Bingham, R.; Su, J. J.; Dawson, J. M.; Spicer, D. S.

    1993-01-01

    The particle acceleration processes here studied are driven by the relaxation of unstable ion ring distributions; these produce strong wave activity at the lower hybrid resonance frequency which collapses, and forms energetic electron and ion tails. The results obtained are applied to the problem posed by the production of energetic particles by solar flares. The numerical simulation results thus obtained by a 2 1/2-dimensional particle-in-cell code show a simultaneous acceleration of electrons to 10-500 keV energies, and of ions to as much as the 1 MeV range; the energy of the latter is still insufficient to account for gamma-ray emission in the 4-6 MeV range, but furnish a seed population for further acceleration.

  11. Full wave effects on the lower hybrid wave spectrum and driven current profile in tokamak plasmas

    SciTech Connect

    Shiraiwa, S.; Ko, J.; Meneghini, O.; Parker, R.; Schmidt, A. E.; Greenwald, M.; Hubbard, A. E.; Hughes, J.; Ma, Y.; Podpaly, Y.; Rice, J. E.; Wallace, G.; Wolfe, S. M.; C-Mod Group, Alcator; Scott, S.; Wilson, J. R.

    2011-08-15

    A numerical modeling of current profile modification by lower hybrid current drive (LHCD) using a fullwave/Fokker-Planck simulation code is presented. A MHD stable LHCD discharge on Alcator C-Mod was analyzed, and the current profile from full wave simulations was found to show better agreement with the experiment than a ray-tracing code. Comparison of full wave and ray-tracing simulation shows that, although ray-tracing can reproduce the stochastic wave spectrum broadening, the full wave calculation predicts even wider spectrum broadening, and the wave spectrum fills all of the kinematically allowed domain. This is the first demonstration of LHCD current profile modeling using a full wave simulation code in a multi-pass absorption regime, showing the clear impact of full wave effects on the LHCD driven current profile.

  12. Observation of Co and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod

    SciTech Connect

    Parker, R. R.; Podpaly, Y.; Lee, J.; Reinke, M. L.; Rice, J. E.; Bonoli, P. T.; Meneghini, O.; Shiraiwa, S.; Wallace, G. M.; Wilson, J. R.

    2011-12-23

    Lower hybrid waves launched uni-directionally into tokamak plasmas impart momentum to the electrons. This momentum can be transferred to the ions, leading to substantial counter current rotation. Observations of LH-induced counter rotation have been previously reported [1], and the initial rate of increase has been found to be consistent with the calculated rate of wave momentum injection [2]. However, in recent experiments in Alcator C-Mod it has been found that application of LH waves to relatively low current (I{sub p}{approx}0.4-0.6 MA) plasmas can result in a co-current change of rotation, which implies a different mechanism than that described above. This appears to be linked to the so-called intrinsic rotation commonly observed in Alcator C-Mod and other tokamaks [3]. In addition to the change in direction at low current, some dependence on the magnetic configuration (USL vs. LSN) has been observed.

  13. Nonlinear electromagnetic formulation for particle-in-cell simulation of lower hybrid waves in toroidal geometry

    SciTech Connect

    Bao, J.; Lin, Z. Kuley, A.; Wang, Z. X.

    2016-06-15

    An electromagnetic particle simulation model has been formulated and verified for nonlinear processes of lower hybrid (LH) waves in fusion plasmas. Electron dynamics are described by the drift kinetic equation using either kinetic momentum or canonical momentum. Ion dynamics are treated as the fluid system or by the Vlasov equation. Compressible magnetic perturbation is retained to simulate both the fast and slow LH waves. Numerical properties are greatly improved by using the electron continuity equation to enforce the consistency between electrostatic potential and vector potential, and by using the importance sampling scheme. The simulation model has been implemented in the gyrokinetic toroidal code (GTC), and verified for the dispersion relation and nonlinear particle trapping of the electromagnetic LH waves.

  14. Isotopic effect in experiments on lower hybrid current drive in the FT-2 tokamak

    SciTech Connect

    Lashkul, S. I. Altukhov, A. B.; Gurchenko, A. D. Gusakov, E. Z.; D’yachenko, V. V.; Esipov, L. A.; Irzak, M. A. Kantor, M. Yu.; Kouprienko, D. V.; Saveliev, A. N.; Stepanov, A. Yu.; Shatalin, S. V.

    2015-12-15

    To analyze factors influencing the limiting value of the plasma density at which lower hybrid (LH) current drive terminates, the isotopic factor (the difference in the LH resonance densities in hydrogen and deuterium plasmas) was used for the first time in experiments carried out at the FT-2 tokamak. It is experimentally found that the efficiency of LH current drive in deuterium plasma is appreciably higher than that in hydrogen plasma. The significant role of the parametric decay of the LH pumping wave, which hampers the use of the LH range of RF waves for current drive at high plasma densities, is confirmed. It is demonstrated that the parameters characterizing LH current drive agree well with the earlier results obtained at large tokamaks.

  15. Coupling characteristics of the ITER relevant lower hybrid antenna in Tore Supra: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.

    2011-12-01

    A new concept of lower hybrid antenna for current drive has been proposed for ITER [Bibet et al, Nuclear Fusion 1995]: the Passive Active Multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has been recently installed on the tokamak Tore Supra. The paper summarizes the comprehensive experimental characterization of the linear coupling properties of the PAM antenna to the Tore Supra plasmas. These experimental results are systematically compared with the linear wave coupling theory via the linear ALOHA code. Good agreement between experimental results and ALOHA have been obtained. The detailed validation of the coupling modelling is an important step toward the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  16. Study of lower hybrid wave propagation in ionized gas by Hamiltonian theory

    SciTech Connect

    Casolari, A.; Cardinali, A.

    2014-02-12

    In order to find an approximate solution to the Vlasov-Maxwell equation system describing the lower hybrid wave propagation in magnetic confined plasmas, the use of the WKB method leads to the ray tracing equations. The Hamiltonian character of the ray tracing equations is investigated analytically and numerically in order to deduce the physical properties of the wave propagating without absorption in the confined plasma. The consequences of the Hamiltonian character of the equations on the travelling wave, in particular, on the evolution of the parallel wavenumber along the propagation path have been accounted and the chaotic diffusion of the timeaveraged parallel wave-number towards higher values has been evaluated. Numerical analysis by means of a Runge-Kutta based algorithm implemented in a ray tracing code supplies the analytical considerations. A numerical tool based on the symplectic integration of the ray trajectories has been developed.

  17. Analysis of the efficiency of lower hybrid current drive in the FT-2 tokamak

    SciTech Connect

    Lashkul, S. I.; Altukhov, A. B.; Gurchenko, A. D.; D'yachenko, V. V.; Esipov, L. A.; Kantor, M. Yu.; Kuprienko, D. V.; Irzak, M. A.; Savel'ev, A. N.; Sidorov, A. V.; Stepanov, A. Yu.; Shatalin, S. V.

    2010-09-15

    Results are presented from experimental studies of the efficiency of lower hybrid current drive (LHCD) in the FT-2 tokamak. The dependence of the LHCD efficiency on the grill phasing {Delta}{phi} and RF oscillator power was determined experimentally in a wide range of plasma densities. It is shown that, at high plasma currents (i.e., at sufficiently high electron temperatures), current drive is suppressed when the plasma density reaches its resonance value n{sub LH} for the pumping wave frequency, rather than when parametric decay comes into play (as was observed in regimes with lower plasma currents and, accordingly, lower electron temperatures T{sub e}). In order to analyze the experimentally observed effect of LHCD and its dependence on the value and sign of the antenna phasing, the spectra of the excited LH waves, P(N{sub z}), were calculated. Simulations using the FRTC code with allowance for the P(N{sub z}) spectrum and the measured plasma parameters made it possible to calculate the value and direction of the LH-driven current, which are determined by the spectrum of the excited LH waves. It is shown that the synergetic effect caused by the interaction between different spectral components of the excited RF wave plays a decisive role in the bridging of the gap in the wave spectrum.

  18. Investigation of lower hybrid physics through power modulation experiments on Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Bonoli, P. T.; Meneghini, O.; Parker, R. R.; Porkolab, M.; Shiraiwa, S.; Wallace, G.; Wright, J. C.; Harvey, R. W.; Wilson, J. R.

    2011-05-01

    Lower hybrid current drive (LHCD) is an attractive tool for off-axis current profile control in magnetically confined tokamak plasmas and burning plasmas (ITER), because of its high current drive efficiency. The LHCD system on Alcator C-Mod operates at 4.6 GHz, with ~ 1 MW of coupled power, and can produce a wide range of launched parallel refractive index (n||) spectra. A 32 chord, perpendicularly viewing hard x-ray camera has been used to measure the spatial and energy distribution of fast electrons generated by lower hybrid (LH) waves. Square-wave modulation of LH power on a time scale much faster than the current relaxation time does not significantly alter the poloidal magnetic field inside the plasma and thus allows for realistic modeling and consistent plasma conditions for different n|| spectra. Inverted hard x-ray profiles show clear changes in LH-driven fast electron location with differing n||. Boxcar binning of hard x-rays during LH power modulation allows for ~ 1 ms time resolution which is sufficient to resolve the build-up, steady-state, and slowing-down phases of fast electrons. Ray-tracing/Fokker-Planck modeling in combination with a synthetic hard x-ray diagnostic shows quantitative agreement with the x-ray data for high n|| cases. The time histories of hollow x-ray profiles have been used to measure off-axis fast electron transport in the outer half of the plasma, which is found to be small on a slowing down time scale.

  19. Quasi-linear modeling of lower hybrid current drive in ITER and DEMO

    SciTech Connect

    Cardinali, A. Cesario, R.; Panaccione, L.; Santini, F.; Amicucci, L.; Castaldo, C.; Ceccuzzi, S.; Mirizzi, F.; Tuccillo, A. A.

    2015-12-10

    First pass absorption of the Lower Hybrid waves in thermonuclear devices like ITER and DEMO is modeled by coupling the ray tracing equations with the quasi-linear evolution of the electron distribution function in 2D velocity space. As usually assumed, the Lower Hybrid Current Drive is not effective in a plasma of a tokamak fusion reactor, owing to the accessibility condition which, depending on the density, restricts the parallel wavenumber to values greater than n{sub ∥crit} and, at the same time, to the high electron temperature that would enhance the wave absorption and then restricts the RF power deposition to the very periphery of the plasma column (near the separatrix). In this work, by extensively using the “ray{sup star}” code, a parametric study of the propagation and absorption of the LH wave as function of the coupled wave spectrum (as its width, and peak value), has been performed very accurately. Such a careful investigation aims at controlling the power deposition layer possibly in the external half radius of the plasma, thus providing a valuable aid to the solution of how to control the plasma current profile in a toroidal magnetic configuration, and how to help the suppression of MHD mode that can develop in the outer part of the plasma. This analysis is useful not only for exploring the possibility of profile control of a pulsed operation reactor as well as the tearing mode stabilization, but also in order to reconsider the feasibility of steady state regime for DEMO.

  20. Experimental Study of Lower-hybrid Drift Turbulence in a Reconnecting Current Sheet

    SciTech Connect

    Carter, T. A.; Yamada, M.; Ji, H.; Kulsrud, R. M.; Trintchouck, F.

    2002-06-18

    The role of turbulence in the process of magnetic reconnection has been the subject of a great deal of study and debate in the theoretical literature. At issue in this debate is whether turbulence is essential for fast magnetic reconnection to occur in collisionless current sheets. Some theories claim it is necessary in order to provide anomalous resistivity, while others present a laminar fast reconnection mechanism based on the Hall term in the generalized Ohm's law. In this work, a thorough study of electrostatic potential fluctuations in the current sheet of the Magnetic Reconnection Experiment (MRX) [M. Yamada et al., Phys. Plasmas 4, 1936 (1997)] was performed in order to ascertain the importance of turbulence in a laboratory reconnection experiment. Using amplified floating Langmuir probes, broadband fluctuations in the lower hybrid frequency range (fLH approximately 5-15 MHz) were measured which arise with the formation of the current sheet in MRX. The frequency spectrum, spatial amplitude profile, and spatial correlation characteristics of the measured turbulence were examined carefully, finding consistency with theories of the lower-hybrid drift instability (LHDI). The LHDI and its role in magnetic reconnection has been studied theoretically for decades, but this work represents the first detection and detailed study of the LHDI in a laboratory current sheet. The observation of the LHDI in MRX has provided the unique opportunity to uncover the role of this instability in collisionless reconnection. It was found that: (1) the LHDI fluctuations are confined to the low-beta edge of current sheets in MRX; (2) the LHDI amplitude does not correlate well in time or space with the reconnection electric field, which is directly related to the rate of reconnection; and (3) significant LHDI amplitude persists in high collisionality current sheets where the reconnection rate is classical. These findings suggest that the measured LHDI fluctuations do not play an

  1. Advances in lower hybrid current drive technology on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Shiraiwa, S.; Hillairet, J.; Preynas, M.; Beck, W.; Casey, J. A.; Doody, J.; Faust, I. C.; Fitzgerald, E.; Johnson, D. K.; Kanojia, A. D.; Koert, P.; Lau, C.; Lin, Y.; Leccacorvi, R.; MacGibbon, P.; Meneghini, O.; Murray, R.; Parker, R. R.; Terry, D. R.; Vieira, R.; Wilson, J. R.; Wukitch, S.; Zhou, L.

    2013-07-01

    Lower hybrid current drive (LHCD) is an attractive option for non-inductive tokamak operation due to its high current drive efficiency and ability to drive current off axis. The parameters of the Alcator C-Mod LHCD system (f0 = 4.6 GHz, Bφ ≃ 5.5 T, \\bar{n}_\\rme \\simeq 10^{20}\\,m^{-3} ) are similar to the proposed LHCD system on ITER. This paper will describe improvements in LHCD technology on C-Mod designed to increase single-pass absorption at high \\bar{n}_\\rme , extend pulse length (to >3 s), and increase power delivered to the plasma (to ∼2 MW). Modelling of lower hybrid (LH) wave propagation indicates that the observed loss of LHCD efficiency at higher \\bar{n}_\\rme can be mitigated by enhancing the single pass power absorption through use of an off mid-plane launcher. The four rows of the launcher are located above the mid-plane (with Ip and Bφ both clockwise viewing from the top down) in order to exploit the poloidal upshift of n‖ as rays propagate from the antenna into the plasma. The transmitter protection system (TPS) was redesigned to model the coolant temperature in real time and shut off the klystron beam voltage if the coolant is close to boiling. The TPS upgrade has been installed and operated on C-Mod for pulses up to 4.5 s into dummy loads and 1.0 s into the plasma. A new movable local LH launcher protection limiter was designed to reduce reflection coefficients across a wide range of launcher positions. Finally, a high power waveguide double-stub tuner is under development to provide feedback controlled load matching to reduce power reflected from the antenna under poor coupling conditions.

  2. Hybrid Ground-Source Heat Pump Installations: Experiences, Improvements, and Tools

    SciTech Connect

    Scott Hackel; Amanda Pertzborn

    2011-06-30

    One innovation to ground-source heat pump (GSHP, or GHP) systems is the hybrid GSHP (HyGSHP) system, which can dramatically decrease the first cost of GSHP systems by using conventional technology (such as a cooling tower or a boiler) to meet a portion of the peak heating or cooling load. This work uses three case studies (two cooling-dominated, one heating-dominated) to demonstrate the performance of the hybrid approach. Three buildings were studied for a year; the measured data was used to validate models of each system. The models were used to analyze further improvements to the hybrid approach, and establish that this approach has positive impacts, both economically and environmentally. Lessons learned by those who design and operate the systems are also documented, including discussions of equipment sizing, pump operation, and cooling tower control. Finally, the measured data sets and models that were created during this work are described; these materials have been made freely available for further study of hybrid systems.

  3. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    NASA Astrophysics Data System (ADS)

    Gao, Q. D.; Budny, R. V.

    2015-03-01

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (Ti,e) and toroidal velocity (Vϕ) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  4. Lower hybrid current drive in experiments for transport barriers at high {beta}{sub N} of JET (Joint European Torus)

    SciTech Connect

    Cesario, R. C.; Castaldo, C.; De Angelis, R.; Smeulders, P.; Calabro, G.; Pericoli, V.; Ravera, G.

    2007-09-28

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas ({delta}{approx_equal}0.4) at high {beta}{sub N} (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B{sub 0} = 2.3 T, I{sub P} = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  5. Experimental observation of the RF-driven current by the lower-hybrid wave in a tokamak

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Imai, T.; Shimada, M.; Suzuki, N.; Maeno, M.; Konoshima, S.; Fujii, T.; Uehara, K.; Nagashima, T.; Funahashi, A.

    1980-09-01

    The coupling between RF waves and electrons in a tokamak at relatively high electron temperatures and with an applied RF field/plasma column center lower hybrid frequency ratio greater than 2 is investigated. Waves at a frequency of 750 MHz were launched from a phased array antenna consisting of four independently driven waveguides into a deuterium plasma. The RF pulse is found to produce marked decreases in the loop voltage and hard X-ray emission, a dramatic enhancement of the electron cyclotron emission and no effect on electron density and plasma current. The calculated power spectrum of the slow waves excited by the four-waveguide antenna as a function of the phase difference between adjacent waveguides indicates that the decrease in loop voltage results from the generation of current carried by the suprathermal electrons rather than from bulk electron heating, with an applied RF power of 125 kW resulting in an RF-driven current of 15 kA, in good agreement with theoretical calculations.

  6. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    SciTech Connect

    Figueiredo, J.

    2014-11-15

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  7. An arc control and protection system for the JET lower hybrid antenna based on an imaging system

    NASA Astrophysics Data System (ADS)

    Figueiredo, J.; Mailloux, J.; Kirov, K.; Kinna, D.; Stamp, M.; Devaux, S.; Arnoux, G.; Edwards, J. S.; Stephen, A. V.; McCullen, P.; Hogben, C.

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  8. An arc control and protection system for the JET lower hybrid antenna based on an imaging system.

    PubMed

    Figueiredo, J; Mailloux, J; Kirov, K; Kinna, D; Stamp, M; Devaux, S; Arnoux, G; Edwards, J S; Stephen, A V; McCullen, P; Hogben, C

    2014-11-01

    Arcs are the potentially most dangerous events related to Lower Hybrid (LH) antenna operation. If left uncontrolled they can produce damage and cause plasma disruption by impurity influx. To address this issue an arc real time control and protection imaging system for the Joint European Torus (JET) LH antenna has been implemented. The LH system is one of the additional heating systems at JET. It comprises 24 microwave generators (klystrons, operating at 3.7 GHz) providing up to 5 MW of heating and current drive to the JET plasma. This is done through an antenna composed of an array of waveguides facing the plasma. The protection system presented here is based primarily on an imaging arc detection and real time control system. It has adapted the ITER like wall hotspot protection system using an identical CCD camera and real time image processing unit. A filter has been installed to avoid saturation and spurious system triggers caused by ionization light. The antenna is divided in 24 Regions Of Interest (ROIs) each one corresponding to one klystron. If an arc precursor is detected in a ROI, power is reduced locally with subsequent potential damage and plasma disruption avoided. The power is subsequently reinstated if, during a defined interval of time, arcing is confirmed not to be present by image analysis. This system was successfully commissioned during the restart phase and beginning of the 2013 scientific campaign. Since its installation and commissioning, arcs and related phenomena have been prevented. In this contribution we briefly describe the camera, image processing, and real time control systems. Most importantly, we demonstrate that an LH antenna arc protection system based on CCD camera imaging systems works. Examples of both controlled and uncontrolled LH arc events and their consequences are shown.

  9. Performance Characteristics of Hybrid Cycle Combined Absorption Heat Transformer and Absorption Refrigerating Machine

    NASA Astrophysics Data System (ADS)

    Iyoki, Shigeki; Otsuka, Shin-Ichi; Uemura, Tadashi

    In this paper, four kinds of hybrid cycles which combined the single-stage absorption refrigerating machine and four kinds of absorption heat transformers were proposed. It is possible that each of these hybrid cycles gets high temperature and low temperature from one cycle, simultaneously. As basic cycle of absorption heat transformer, the following were chosen: two kinds of single-stage absorption heat transformer and two kinds of two-stage absorption heat transformer. As a working medium-absorbent system, H2O-LiBr system, H2O-LiBr-LiNO3 system, H2O-LiBr-LiNO3-LiCl system, H2O-LiBr-C2H6O2 system and H2O-LiNO3-LiCl system were adopted. Using these five kinds of working medium-absorbent system, the performance characteristics of four kinds of hybrid cycle were simulated. And the performance characteristics of these cycles were compared.

  10. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    SciTech Connect

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  11. Ray-tracing studies of fast waves in the lower hybrid range of frequencies

    NASA Astrophysics Data System (ADS)

    Dittman, A.; Pinsker, R. I.

    2016-10-01

    Fast waves in the lower-hybrid range of frequencies, also referred to as `whistlers' or `helicons', will be used in the DIII-D tokamak for off-axis non-inductive current drive. Ray-tracing studies have shown that the required off-axis deposition can be achieved in target plasmas that have been recently studied in DIII-D. We wish to characterize the sensitivity of the rf power deposition profile to details of the equilibrium, and are thereby motivated to re-examine the fundamentals of ray-tracing in this regime. We have studied ray-tracing in the vicinity of regular turning points (cut-offs) and mode-coupling points in simple geometries (slab, cylinder). Later phases of the work will use the GENRAY code to study the effect of strong magnetic shear in the outer region of the plasma on the shape of the ray trajectory in that region, and on wave accessibility to the core. The usual estimate of the accessibility limit on the parallel index of refraction of the wave (n∥), based on a slab model, is inaccurate under these conditions, which could lead to improved antenna/wave coupling by utilizing a lower n∥. Work supported in part by US DoE under the Science Undergraduate Laboratory Internship (SULI) program and under DE-FC02-04ER54698.

  12. Relative contributions of momentum forcing and heating to high-latitude lower thermospheric winds

    NASA Astrophysics Data System (ADS)

    Kwak, Young-Sil; Richmond, Arthur D.

    2017-01-01

    We discuss the significance of potential vorticity in the thermosphere and quantify the relative contributions of momentum forcing and heating to its total time derivative in the high-latitude lower thermosphere during the southern hemisphere summertime for negative interplanetary magnetic field (IMF) Bz conditions on the basis of numerical simulations. A term analysis of the potential vorticity equation for weak or strong southward IMF (Bz = -2.0 nT or -10.0 nT) gives the following results: the ratios of the momentum forcing term to the heating term at 142, 123, and 111 km altitudes for IMF Bz = -2.0 nT are roughly 6:1, 4:1, and 2:1, respectively, indicating that the momentum forcing term makes the larger contribution to the total time derivative of the potential vorticity, although the relative contribution of the momentum forcing weakens with descending altitude. The ratios of the momentum forcing term to the heating term at 142, 123, and 111 km altitudes for IMF Bz = -10.0 nT are roughly 3:1, 2:1, and 1:1, indicating that, at higher altitudes, the momentum forcing term makes the larger contribution to the total time derivative of the potential vorticity, but the relative contributions of momentum forcing and heating are comparable at lower altitudes. A comparison of the heating term and the momentum forcing term for IMF Bz = -2.0 nT and IMF Bz = -10.0 nT conditions indicates that the heating term increases more significantly than the momentum forcing term as IMF Bz becomes more negative.

  13. COMPARATIVE STUDY AMONG HYBRID GROUND SOURCE HEAT PUMP SYSTEM, COMPLETE GROUND SOURCE HEAT PUMP AND CONVENTIONAL HVAC SYSTEM

    SciTech Connect

    Jiang Zhu; Yong X. Tao

    2011-11-01

    In this paper, a hotel with hybrid geothermal heat pump system (HyGSHP) in the Pensacola is selected and simulated by the transient simulation software package TRNSYS [1]. To verify the simulation results, the validations are conducted by using the monthly average entering water temperature, monthly facility consumption data, and etc. And three types of HVAC systems are compared based on the same building model and HVAC system capacity. The results are presented to show the advantages and disadvantages of HyGSHP compared with the other two systems in terms of energy consumptions, life cycle cost analysis.

  14. Recovery of exhaust waste heat for a hybrid car using steam turbine

    NASA Astrophysics Data System (ADS)

    Ababatin, Yasser

    A number of car engines operate with an efficiency rate of approximately 22% to 25% [1]. The remainder of the energy these engines generate is wasted through heat escape out of the exhaust pipe. There is now an increasing desire to reuse this heat energy, which would improve the overall efficiency of car engines by reducing their consumption of fuel. Another benefit is that such reuse would minimize harmful greenhouse gases that are emitted into the environment. Therefore, the purpose of this project is to examine how the wasted heat energy can be reused and/or recovered by use of a heat recovery system that would store this energy in a hybrid car battery. Green turbines will be analyzed as a possible solution to recycle the lost energy in a way that will also improve the overall automotive energy efficiency.

  15. Development of the heat treatment system for the 40 T hybrid magnet superconducting outsert.

    PubMed

    Chen, W G; Chen, Z M; Chen, Z Y; Huang, P C; He, P; Zhu, J W

    2011-10-01

    The heat treatment of Nb(3)Sn coil with the glass fabric insulation is one of the key and critical processes for the outsert solenoids of the 40 T hybrid magnet, which could be wound with cable-in-conduit conductors using the insulation-wind-and-react technique. The manufacturing of the large vertical type vacuum/Ar atmosphere-protection heat treatment system has been completed and recently installed in the High Magnetic Filed Laboratory, Chinese Academy of Sciences. The heat treatment system composed mainly the furnace, the purging gas supply system, the control system, the gas impurities monitoring system, and so on. At present, the regulation and testing of the heat treatment system has been successfully finished, and all of technical parameters meet or exceed specifications.

  16. Nonlinear Phenomena Arising From Radio Wave Heating of the Lower Ionosphere.

    DTIC Science & Technology

    1981-08-01

    1973) also observed nonlinear mixing effects at Platteville. Utlaut (1975) has reported that during a solar flare sudden phase anomolies (SPA’s...heating, with the increase in electron density in the lower D-region due to the solar flare being cancelled by the decrease in electron density due to...approached from two different viewpoints; one macroscopic and the other microscopic. At the macroscopic level the effects on the fields due to charge motion

  17. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold.

    PubMed

    Cao, Xu; Ma, Linlin; Yang, Fan; Wang, Kewei; Zheng, Jie

    2014-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg(2+) and Ba(2+). Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg(2+) substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg(2+) also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg(2+) and Ba(2+) cause a Ca(2+)-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes.

  18. Divalent cations potentiate TRPV1 channel by lowering the heat activation threshold

    PubMed Central

    Cao, Xu; Ma, Linlin; Yang, Fan

    2014-01-01

    Transient receptor potential vanilloid type 1 (TRPV1) channel responds to a wide spectrum of physical and chemical stimuli. In doing so, it serves as a polymodal cellular sensor for temperature change and pain. Many chemicals are known to strongly potentiate TRPV1 activation, though how this is achieved remains unclear. In this study we investigated the molecular mechanism underlying the gating effects of divalent cations Mg2+ and Ba2+. Using a combination of fluorescence imaging and patch-clamp analysis, we found that these cations potentiate TRPV1 gating by most likely promoting the heat activation process. Mg2+ substantially lowers the activation threshold temperature; as a result, a significant fraction of channels are heat-activated at room temperature. Although Mg2+ also potentiates capsaicin- and voltage-dependent activation, these processes were found either to be not required (in the case of capsaicin) or insufficient (in the case of voltage) to mediate the activating effect. In support of a selective effect on heat activation, Mg2+ and Ba2+ cause a Ca2+-independent desensitization that specifically prevents heat-induced channel activation but does not prevent capsaicin-induced activation. These results can be satisfactorily explained within an allosteric gating framework in which divalent cations strongly promote the heat-dependent conformational change or its coupling to channel activation, which is further coupled to the voltage- and capsaicin-dependent processes. PMID:24344247

  19. The hybrid personal cooling system (PCS) could effectively reduce the heat strain while exercising in a hot and moderate humid environment.

    PubMed

    Song, Wenfang; Wang, Faming

    2016-08-01

    This study aimed to examine the effectiveness of a hybrid personal cooling system (PCS) in mitigating body heat stain while exercising in a hot environment. Eight subjects underwent two trials: PCS and CON (i.e. no cooling). All trials were conducted at an air temperature of 36 ± 0.5 °C and RH = 59 ± 5%. The key findings demonstrated that the PCS could significantly reduce the core temperature, mean skin temperature, heart rate and physiological strain index during both exercise and recovery periods (p < 0.05). Subjective perceptions were also significantly alleviated in PCS at the end of the exercise and during the recovery (p < 0.05). Besides, the PCS could also bring remarkable benefits in lowering local skin temperatures and in improving perceptual sensations in both upper and lower body during both exercise and recovery periods (p < 0.05). It was thus concluded that the hybrid PCS is effective in mitigating body heat strain while exercising in a hot environment. Practitioner Summary: In hot and humid environments, body heat dissipation through sweating is greatly restricted. Our newly developed hybrid PCS could effectively alleviate heat strain while exercising in hot environments. The findings contribute to the body of knowledge in improving the health and well-being of sportsmen while exercising in hot environments.

  20. A new hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    This paper describes new and recent advances in the development of a hybrid transfinite element computational methodology for applicability to conduction/convection/radiation heat transfer problems. The transfinite element methodology, while retaining the modeling versatility of contemporary finite element formulations, is based on application of transform techniques in conjunction with classical Galerkin schemes and is a hybrid approach. The purpose of this paper is to provide a viable hybrid computational methodology for applicability to general transient thermal analysis. Highlights and features of the methodology are described and developed via generalized formulations and applications to several test problems. The proposed transfinite element methodology successfully provides a viable computational approach and numerical test problems validate the proposed developments for conduction/convection/radiation thermal analysis.

  1. Forced magnetic reconnection in a plasma sheet with localized resistivity profile excited by lower hybrid drift type instability

    NASA Technical Reports Server (NTRS)

    Hoshino, M.

    1991-01-01

    A forced magnetic reconnection process with a temporal evolution of resistivity is studied for a plasma sheet with a nonuniform resistivity profile based on the nonlocal mode structure of the lower hybrid drift type instability. The growth rate of the mode found is almost independent of the resistivity at the neutral sheet, but depends on the resistivity of the region of maximum density gradient away from the neutral sheet. This is studied by using both a nonlinear numerical MHD simulation and a linear theory. The mode may be relevant to the prevalent theoretical concept of MHD reconnection and the localized anomalous resistivity profile based on the lower hybrid drift instability.

  2. Numerical and experimental analysis of heat transfer in injector plate of hydrogen peroxide hybrid rocket motor

    NASA Astrophysics Data System (ADS)

    Cai, Guobiao; Li, Chengen; Tian, Hui

    2016-11-01

    This paper is aimed to analyze heat transfer in injector plate of hydrogen peroxide hybrid rocket motor by two-dimensional axisymmetric numerical simulations and full-scale firing tests. Long-time working, which is an advantage of hybrid rocket motor over conventional solid rocket motor, puts forward new challenges for thermal protection. Thermal environments of full-scale hybrid rocket motors designed for long-time firing tests are studied through steady-state coupled numerical simulations of flow field and heat transfer in chamber head. The motor adopts 98% hydrogen peroxide (98HP) oxidizer and hydroxyl-terminated poly-butadiene (HTPB) based fuel as the propellants. Simulation results reveal that flowing liquid 98HP in head oxidizer chamber could cool the injector plate of the motor. The cooling of 98HP is similar to the regenerative cooling in liquid rocket engines. However, the temperature of the 98HP in periphery portion of the head oxidizer chamber is higher than its boiling point. In order to prevent the liquid 98HP from unexpected decomposition, a thermal protection method for chamber head utilizing silica-phenolics annular insulating board is proposed. The simulation results show that the annular insulating board could effectively decrease the temperature of the 98HP in head oxidizer chamber. Besides, the thermal protection method for long-time working hydrogen peroxide hybrid rocket motor is verified through full-scale firing tests. The ablation of the insulating board in oxygen-rich environment is also analyzed.

  3. Study of Lower Hybrid Frequency Turbulence in the Magnetic Reconnection Experiment (MRX)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Ji, H.; Roytershteyn, V.; Yamada, M.; Daughton, W. S.; Yoo, J.; Oz, E.; Tharp, T.; Lawrence, E. E.; Myers, C.

    2010-12-01

    One of the key open questions in magnetic reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. Comparisons between fully kinetic 2-D simulations of the Magnetic Reconnection Experiment (MRX) and experimental data indicate that three-dimensional dynamics, such as current layer disruptions recently observed in MRX, may play a key role in resolving an important discrepancy in the reconnection rate and layer width [1,2,3]. These disruptions are often associated with fluctuations in the lower hybrid frequency range and a rapid local reconnection rate. Fluctuations are observed not only in MRX [4], but also in space [5] and 3-D kinetic simulations. Comparison of fluctuation characteristics between the three domains may shed light on the underlying physics. In both the simulation and the experiments, the fluctuations are related to density gradients across the layer. The frequency range is similarly broadband up to the lower hybrid range, and the phase velocities are comparable in appropriately normalized units. However, while the electron drift speed is comparable to the phase velocity at the layer center in the experiment (consistent with previous MRX results [4]), the drift speed in the simulations is considerably larger. Furthermore, the fluctuations observed in the experiment are fully turbulent with correlation lengths the same order as the wavelength while those observed in the simulations and in space are more coherent. Some discharges also display "O-point" signatures consistent with magnetic island like structures. The present research explores the relationship between the disruptions and fluctuations in the context of the reconnection rate problem. Experiments are ongoing to determine what physics is responsible for the broader current layers (and correspondingly smaller drift speeds) observed in the experiment. [1] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [2] S. Dorfman, et al

  4. Lower Hybrid wave edge power loss quantification on the Alcator C-Mod tokamak

    NASA Astrophysics Data System (ADS)

    Faust, I. C.

    2015-11-01

    For the first time, the power deposition of Lower Hybrid RF waves into the edge plasma of a diverted tokamak has been systematically quantified. Edge deposition represents a parasitic loss of power that can greatly impact the use and efficiency of Lower Hybrid Current Drive (LHCD) at reactor-relevant densities. Through the use of a unique set of fast time resolution edge diagnostics, including innovative fast-thermocouples, an extensive set of Langmuir probes, and a Lyα ionization camera, the toroidal, poloidal and radial structure of the power deposition has been simultaneously determined. Power modulation was used to directly isolate the RF effects due to the prompt (t <τE) response of the scrape-off-layer (SOL) plasma to LHRF power. LHRF power was found to absorb more strongly in the edge at higher densities. It is found that a majority of this edge-deposited power is promptly conducted to the divertor. This correlates with the loss of current drive efficiency at high density previously observed on Alcator C-Mod, and displaying characteristics that contrast with the local RF edge absorption seen on other tokamaks. Measurements of ionization in the active divertor show dramatic changes due to LHRF power, implying that divertor region can be key for the LHRF edge power deposition physics. These observations support the existence a loss mechanism near the edge for LHRF at high density (ne > 1 . 0 .1020 [m-3]). Results will be shown addressing the distribution of power within the SOL, including the toroidal symmetry and radial distribution. These characteristics are important for deducing the cause of the reduced LHCD efficiency at high density and motivates the tailoring of wave propagation to minimize SOL interaction, for example, through the use of high-field-side launch. This work was performed on the Alcator C-Mod tokamak, a DoE Office of Science user facility, and is supported by USDoE award DE-FC02-99ER54512.

  5. Photothermally Activated Pyroelectric Polymer Films for Harvesting of Solar Heat with a Hybrid Energy Cell Structure.

    PubMed

    Park, Teahoon; Na, Jongbeom; Kim, Byeonggwan; Kim, Younghoon; Shin, Haijin; Kim, Eunkyoung

    2015-12-22

    Photothermal effects in poly(3,4-ethylenedioxythiophene)s (PEDOTs) were explored for pyroelectric conversion. A poled ferroelectric film was coated on both sides with PEDOT via solution casting polymerization of EDOT, to give highly conductive and effective photothermal thin films of PEDOT. The PEDOT films not only provided heat source upon light exposure but worked as electrodes for the output energy from the pyroelectric layer in an energy harvester hybridized with a thermoelectric layer. Compared to a bare thermoelectric system under NIR irradiation, the photothermal-pyro-thermoelectric device showed more than 6 times higher thermoelectric output with the additional pyroelectric output. The photothermally driven pyroelectric harvesting film provided a very fast electric output with a high voltage output (Vout) of 15 V. The pyroelectric effect was significant due to the transparent and high photothermal PEDOT film, which could also work as an electrode. A hybrid energy harvester was assembled to enhance photoconversion efficiency (PCE) of a solar cell with a thermoelectric device operated by the photothermally generated heat. The PCE was increased more than 20% under sunlight irradiation (AM 1.5G) utilizing the transmitted light through the photovoltaic cell as a heat source that was converted into pyroelectric and thermoelectric output simultaneously from the high photothermal PEDOT electrodes. Overall, this work provides a dynamic and static hybrid energy cell to harvest solar energy in full spectral range and thermal energy, to allow solar powered switching of an electrochromic display.

  6. Probing particle acceleration in lower hybrid turbulence via synthetic diagnostics produced by PIC simulations

    NASA Astrophysics Data System (ADS)

    Cruz, F.; Fonseca, R. A.; Silva, L. O.; Rigby, A.; Gregori, G.; Bamford, R. A.; Bingham, R.; Koenig, M.

    2016-10-01

    Efficient particle acceleration in astrophysical shocks can only be achieved in the presence of initial high energy particles. A candidate mechanism to provide an initial seed of energetic particles is lower hybrid turbulence (LHT). This type of turbulence is commonly excited in regions where space and astrophysical plasmas interact with large obstacles. Due to the nature of LH waves, energy can be resonantly transferred from ions (travelling perpendicular to the magnetic field) to electrons (travelling parallel to it) and the consequent motion of the latter in turbulent shock electromagnetic fields is believed to be responsible for the observed x-ray fluxes from non-thermal electrons produced in astrophysical shocks. Here we present PIC simulations of plasma flows colliding with magnetized obstacles showing the formation of a bow shock and the consequent development of LHT. The plasma and obstacle parameters are chosen in order to reproduce the results obtained in a recent experiment conducted at the LULI laser facility at Ecole Polytechnique (France) to study accelerated electrons via LHT. The wave and particle spectra are studied and used to produce synthetic diagnostics that show good qualitative agreement with experimental results. Work supported by the European Research Council (Accelerates ERC-2010-AdG 267841).

  7. Full-Wave Analysis of Lower Hybrid Wave Propagation in the Edge Plasma of a Tokamak

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Wallace, G. M.; Wright, J. C.; Meneghini, O.; Parker, R.; Porkolab, M.; Shiraiwa, S.; Harvey, R. W.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.

    2009-11-01

    Recent lower hybrid current drive (LHCD) experiments on Alcator C-Mod have revealed a transition density above which LHRF generated fast electrons are no longer detected [1]. This critical density is also well below the threshold density for parametric decay of the LH pump wave. Analysis of these plasmas using a ray tracing-Fokker Planck model shows that poorer wave penetration at higher density, accompanied by increased collisional damping in the Scrape off Layer (SOL) may possibly explain this transition [1]. We have used an electromagnetic field solver TORLH [2] to begin to assess the possible role of full-wave effects in this density limit. Results will be presented, including three-dimensional field reconstructions for varying edge plasma parameters such as SOL density, temperature, and density gradient scale length. [4pt] [1] G. Wallace et al, 18^th Topical Conf. on RF Power in Plasmas (Gent, Belgium, June, 2009) Paper B60. [0pt] [2] J. C. Wright et al, Physics of Plasmas 16, July (2009).

  8. Scattering from edge density fluctuations on the lower hybrid waves in FTU

    SciTech Connect

    Calabro, Giuseppe; Ridolfini, V. Pericoli

    2007-09-28

    Careful measurements of density fluctuations in the scrape-off layer (SOL) of Frascati Tokamak Upgrade (FTU) plasma have been carried out. The analytical model proposed by Andrews and Perkins for the scattering of lower hybrid (LH) waves by density fluctuations will constitute the basis of our discussion. The envelop of the scattering processes occurring on single points sampled along the poloidal profile of the launching antenna at fixed step {delta}{theta} is considered. The trajectories and N{sub parallel} (LH parallel refraction index) evolution of the corresponding ray bundles are followed using the fast ray tracing code (FRTC), coupled to the transport code ASTRA to infer the radial absorption profile on a given target plasma. Interpretative ASTRA simulations are presented to support the correctness of the scattering model assumed. The current drive (CD) efficiency calculated is then compared with that measured for the shot assumed as reference and with the scaling valid for FTU. Comparison of measured pump frequency spectral broadening on FTU and theoretical prediction is also presented.

  9. Control of the current density profile with lower hybrid current drive on PBX-M

    SciTech Connect

    Bell, R.E.; Bernabei, S.; Chu, T.K.; Gettelfinger, G.; Greenough, N.; Hatcher, R.; Ignat, D.; Jardin, S.; Kaita, R.; Kaye, S.; Kozub, T.; Kugel, H.; LeBlanc, B.; Okabayashi, M.; Paul, S.; Sauthoff, N.; Sesnic, S.; Sun, Y.; Takahashi, H.; Tighe, W.; Valeo, E.; von Goeler, S.; Blush, L.; Doerner, R.; Schmitz, L.; Tynan, G.; Dunlap, J.; England, A.; Harris, J.; Hirshman, S.; Isler, R.; Lee, D.; Jones, S.; Kesner, J.; Luckhardt, S.; Paoletti, F.; Levinton, F.; Timini, F.

    1993-07-01

    Lower hybrid current drive (LHCD) is being explored as a means to control the current density profile on PBX-M with the goal of raising the central safety factor q(O) to values of 1.5-2 to facilitate access to a full-volume second stable regime. Initial experiments have been conducted with up to 400 kW of 4.6 GHz LH power in circular and indented plasmas with modest parameters. A tangential-viewing two-dimensional hard x-ray imaging diagnostic has been used to observe the bremsstrahlung emission from the suprathermal electrons generated during LHCD. Hollow hard x-ray images have indicated off-axis localization of the driven current. A serious obstacle to the control of the current density profile with LHCD is the concomitant generation of MHD activity, which can seriously degrade the confinement of suprathermal electrons. By combining neutral beam injection with LHCD, an MHD-free condition has been obtained where q(O) is raised above 1.

  10. JET scrape-off-layer ionization at lower hybrid wave launching

    NASA Astrophysics Data System (ADS)

    Petrzilka, V.; Mailloux, J.; Ongena, J.; Corrigan, G.; Fuchs, V.; Goniche, M.; Parail, V.; Belo, P.; Ekedahl, A.; Jacquet, P.; Mayoral, M.-L.; Silva, C.; Stamp, M.; EFDA contributors, JET

    2012-07-01

    We present in this paper modelling of the JET scrape-off layer (SOL) including direct SOL ionization by launched lower hybrid (LH) waves. For that purpose, the two-dimensional fluid code EDGE2D-NIMBUS was modified in order to account for possible enhanced ionization in the SOL, due to the LH power absorbed by the electrons in a layer extending in the radial direction from the launcher. By taking the direct LH SOL ionization into account, the observed modification of the density in front of the LH antenna during a LH power and gas injection, can be explained. The JET grill private SOL limiters, acting as sinks for the particles, are also included in the model. We compare the efficiency of gas puffing from the top and the outer mid-plane for SOL density enhancement and improvement in LH coupling. The observed reduction of the temporal variation of the LH wave reflection coefficient and of measured saturated currents in the SOL during ELMs, is explained. The density depletion, by ponderomotive forces in front of the grill, is estimated.

  11. An Obliquely Propagating Electromagnetic Drift Instability in the Lower Hybrid Frequency Range

    SciTech Connect

    Hantao Ji; Russell Kulsrud; William Fox; Masaaki Yamada

    2005-06-10

    By employing a local two-fluid theory, we investigate an obliquely propagating electromagnetic instability in the lower hybrid frequency range driven by cross-field current or relative drifts between electrons and ions. The theory self-consistently takes into account local cross-field current and accompanying pressure gradients. It is found that the instability is caused by reactive coupling between the backward propagating whistler (fast) waves in the moving electron frame, and the forward propagating sound (slow) waves in the ion frame when the relative drifts are large. The unstable waves we consider propagate obliquely to the unperturbed magnetic field and have mixed polarization with significant electromagnetic components. A physical picture of the instability emerges in the limit of large wave number characteristic of the local approximation. The primary positive feedback mechanism is based on reinforcement of initial electron density perturbations by compression of electron fluid via induced Lorentz force. The resultant waves are qualitatively consistent with the measured electromagnetic fluctuations in reconnecting current sheet in a laboratory plasma.

  12. Propagation of the lower hybrid wave in a density fluctuating scrape-off layer (SOL)

    NASA Astrophysics Data System (ADS)

    Madi, M.; Peysson, Y.; Decker, J.; Kabalan, K. Y.

    2015-12-01

    The perturbation of the lower hybrid wave (LH) power spectrum by fluctuations of the plasma in the vicinity of the antenna is investigated by solving the full wave equation in a slab geometry using COMSOL Multiphysics®. The numerical model whose generality allows to study the effect of various types of fluctuations, including those with short characteristic wavelengths is validated against a coupling code in quiescent regimes. When electron density fluctuations along the toroidal direction are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the LH wave propagates. The diffraction effect by density fluctuations leads to the appearance of multiple satellite lobes with randomly varying positions and the averaged perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength. This highlights that fast toroidal inhomogeneities with short characteristics length scales in front of the grill may change significantly the initial LH power spectrum used in coupled ray-tracing and Fokker-Planck calculations.

  13. Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer

    NASA Astrophysics Data System (ADS)

    Peysson, Y.; Madi, M.; Decker, J.; Kabalan, K.

    2015-12-01

    In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.

  14. Particle-in-cell simulation study of a lower-hybrid shock

    SciTech Connect

    Dieckmann, M. E.; Ynnerman, A.; Sarri, G.; Doria, D.; Borghesi, M.

    2016-06-15

    The expansion of a magnetized high-pressure plasma into a low-pressure ambient medium is examined with particle-in-cell simulations. The magnetic field points perpendicular to the plasma's expansion direction and binary collisions between particles are absent. The expanding plasma steepens into a quasi-electrostatic shock that is sustained by the lower-hybrid (LH) wave. The ambipolar electric field points in the expansion direction and it induces together with the background magnetic field a fast E cross B drift of electrons. The drifting electrons modify the background magnetic field, resulting in its pile-up by the LH shock. The magnetic pressure gradient force accelerates the ambient ions ahead of the LH shock, reducing the relative velocity between the ambient plasma and the LH shock to about the phase speed of the shocked LH wave, transforming the LH shock into a nonlinear LH wave. The oscillations of the electrostatic potential have a larger amplitude and wavelength in the magnetized plasma than in an unmagnetized one with otherwise identical conditions. The energy loss to the drifting electrons leads to a noticeable slowdown of the LH shock compared to that in an unmagnetized plasma.

  15. An assessment of full wave effects on the propagation and absorption of lower hybrid wavesa)

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Bonoli, P. T.; Schmidt, A. E.; Phillips, C. K.; Valeo, E. J.; Harvey, R. W.; Brambilla, M. A.

    2009-07-01

    Lower hybrid (LH) waves (Ωci≪ω≪Ωce, where Ωi ,e≡Zi ,eeB/mi ,ec) have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons and consequently are well-suited to driving current. Established modeling techniques use Wentzel-Kramers-Brillouin (WKB) expansions with self-consistent non-Maxwellian distributions. Higher order WKB expansions have shown some effects on the parallel wave number evolution and consequently on the damping due to diffraction [G. Pereverzev, Nucl. Fusion 32, 1091 (1991)]. A massively parallel version of the TORIC full wave electromagnetic field solver valid in the LH range of frequencies has been developed [J. C. Wright et al., Comm. Comp. Phys. 4, 545 (2008)] and coupled to an electron Fokker-Planck solver CQL3D [R. W. Harvey and M. G. McCoy, in Proceedings of the IAEA Technical Committee Meeting, Montreal, 1992 (IAEA Institute of Physics Publishing, Vienna, 1993), USDOC/NTIS Document No. DE93002962, pp. 489-526] in order to self-consistently evolve nonthermal electron distributions characteristic of LH current drive (LHCD) experiments in devices such as Alcator C-Mod and ITER (B0≈5 T, ne0≈1×1020 m-3). These simulations represent the first ever self-consistent simulations of LHCD utilizing both a full wave and Fokker-Planck calculation in toroidal geometry.

  16. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    NASA Astrophysics Data System (ADS)

    Berger-By, G.; Decampy, J.; Antar, G. Y.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Tore Supra Team

    2014-02-01

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 1019 m-3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  17. High field side lower hybrid launch leads to wave amplification on alpha particles

    NASA Astrophysics Data System (ADS)

    Ochs, Ian; Bertelli, Nicola; Fisch, Nathaniel

    2015-11-01

    Although lower hybrid waves have been shown to be effective in driving plasma current in present-day tokamaks, they are predicted to strongly interact with the energetic α particles born from fusion reactions in eventual tokamak reactors. However, in the presence of the expected steep α particle birth gradient, this interaction can produce wave amplification rather than wave damping. Here, we identify the flexibilities in achieving this amplification effect through a consideration of symmetries in the channeling interaction, in the wave propagation, and in the tokamak field configuration. Interestingly, for current drive that supports the poloidal magnetic field, we find that wave amplification through α channeling is fundamentally coupled to the elusive | kl | upshift. In so doing, we show that wave launch from the tokamak high-field side is favorable both for α-channeling and for achieving the | kl | upshift. We then present a simple linear model to calculate the required radial gradients to achieve amplification. Combining this model with ray tracing simulations, we demonstrate the potential for substantial wave amplification in a regime consistent with a hot-ion-mode fusion reactor.

  18. Hard x-ray diagnostic for lower hybrid experiments on Alcator C-Mod

    SciTech Connect

    Liptac, J.; Parker, R.; Tang, V.; Peysson, Y.; Decker, J.

    2006-10-15

    Alcator C-Mod's lower hybrid current drive (LHCD) system allows the exploration of advanced tokamak (AT) regimes at densities relevant to ITER and fusion reactors. The location of the LHCD is critical to AT performance and may be inferred by measuring the nonthermal bremsstrahlung emission in the hard x-ray (HXR) region. A pinhole camera using an array of 32 CdZnTe detectors is used to image energies in the 20-200 keV range. Detectors and pulse processing electronics are integrated into a compact and modular package making extensive use of printed circuit board and surface mount technology. The system also makes use of fast digitization and software signal processing techniques. An ambient environment of neutrons, gammas, and high rf power requires careful shielding. Shielding is studied using the neutron and photon transport code MCNP. The design of the diagnostic is presented along with background measurements in lieu of LHCD fast electrons. Background measurements are then compared to advanced modeling results to predict the power threshold for meaningful HXR data for a H-mode target plasma.

  19. Full wave simulation of lower hybrid waves in Maxwellian plasma based on the finite element method

    SciTech Connect

    Meneghini, O.; Shiraiwa, S.; Parker, R.

    2009-09-15

    A full wave simulation of the lower-hybrid (LH) wave based on the finite element method is presented. For the LH wave, the most important terms of the dielectric tensor are the cold plasma contribution and the electron Landau damping (ELD) term, which depends only on the component of the wave vector parallel to the background magnetic field. The nonlocal hot plasma ELD effect was expressed as a convolution integral along the magnetic field lines and the resultant integro-differential Helmholtz equation was solved iteratively. The LH wave propagation in a Maxwellian tokamak plasma based on the Alcator C experiment was simulated for electron temperatures in the range of 2.5-10 keV. Comparison with ray tracing simulations showed good agreement when the single pass damping is strong. The advantages of the new approach include a significant reduction of computational requirements compared to full wave spectral methods and seamless treatment of the core, the scrape off layer and the launcher regions.

  20. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Tripathi, Shreekrishna Kp; Gekelman, Walter; Pribyl, Patrick; Colestock, Patrick

    2012-10-01

    The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ˜10^12 cm-3, B0 = 1000 G - 1800 G, fpe/fce˜1 - 5, Te= 0.25 eV, vtevA). The ion beam is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfv'en velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfv'en wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various plasma parameters, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles.

  1. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    van Compernolle, Bart; Tripathi, Shreekrishna; Gekelman, Walter; Pribyl, Patrick

    2013-10-01

    The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ~=1012cm-3 , B0 = 1000 G - 1800 G, fpe /fce ~= 1 - 5 , Te ~= 4eV , vte <lower hybrid frequency range. The wave generation was studied for various plasma parameters, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the 2D perpendicular mode structure will be shown. Progress on a theoretical framework of the wave generation by the ion beam will be presented along with comparisons to the measured wave properties. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  2. High Power Antenna Design for Lower Hybrid Current Drive in MST

    NASA Astrophysics Data System (ADS)

    Thomas, M. A.; Goetz, J. A.; Kaufman, M. C.; Oliva, S. P.; Caughman, J. B. O.; Ryan, P. M.

    2003-10-01

    RF current drive has been proposed as a method for reducing the tearing fluctuations that are responsible for anomalous energy transport in the RFP. A system for launching lower hybrid slow waves at 800 MHz and n_||= 7.5 is now in operation at up to 50 kW on MST. The antenna is an enclosed interdigital line using λ/4 resonators with an opening in the cavity through which the wave is coupled to the plasma. It has an untuned VSWR of ˜2, and is instrumented on 5 of its 23 elements to allow measurement of damping length. The antenna design is being optimized for higher power handling. Improvements include larger vacuum feedthroughs, better impedance matching, and RF instrumentation on all resonators. The new antenna will be modeled in Microwave Studio^TM. The goal is a design which can handle ˜250 kW and presents a VSWR of 1.4 or better without external tuning. Full instrumentation will allow more detailed power deposition measurements.

  3. The Nonlinear Coupling of Electromagnetic Ion Cyclotron and Lower Hybrid Waves in the Ring Current Region

    NASA Technical Reports Server (NTRS)

    Khazanov, G. V.

    2004-01-01

    The excitation of lower hybrid waves (LHWs) is a widely discussed mechanism of interaction between plasma species in space, and is one of the unresolved questions of magnetospheric multi-ion plasmas. In this paper we present the morphology, dynamics, and level of LHW activity generated by electromagnetic ion cyclotron (EMIC) waves during the May 2-7, 1998 storm period on the global scale. The LHWs were calculated based on a newly developed self-consistent model (Khazanov et. al., 2002, 2003) that couples the system of two kinetic equations: one equation describes the ring current (RC) ion dynamic, and another equation describes the evolution of EMIC waves. It is found that the LHWs are excited by helium ions due to their mass dependent drift in the electric field of EMIC waves. The level of LHW activity is calculated assuming that the induced scattering process is the main saturation mechanism for these waves. The calculated LHWs electric fields are consistent with the observational data.

  4. Lower hybrid wave resonance cone detection via CO/sub 2/ laser scattering

    SciTech Connect

    Wurden, G.A.; Wong, K.L.; Ono, M.

    1984-04-01

    Lower hybrid waves are studied in the Princeton ACT-I steady-state toroidal plasma device using a radially scanning CO/sub 2/ laser scattering system with both amplitude and phase sensitive detection techniques. Clearly defined resonance cones launched from external electrostatic antennas are seen to disappear as the plasma density is raised. Scaling of LHW laser signal with RF power in the presence of resonance cones shows nonlinearities associated with RF induced changes in the effective laser scattering volume. Absolute fluctuation level estimates suggest this occurs when e PHI/T/sub e/ greater than or equal to 1. Wavefront curvature effects can cause a complete loss of resonance cone laser signals, even though probes indicate that cones are still present. Measurements of the wave k/sub perpendicular/-spectrum in the plasma show direct evidence for electron Landau filtering of the original wave k/sub parallel/-spectrum launched from the antenna at the plasma edge, and strong dependence on antenna phasing. Finally, frequency shifts and loss of the resonance cone signal are associated with high levels of plasma density edge turbulence.

  5. Plasma current start-up using the lower hybrid wave on the TST-2 spherical tokamak

    NASA Astrophysics Data System (ADS)

    Takase, Y.; Ejiri, A.; Inada, T.; Moeller, C. P.; Shinya, T.; Tsujii, N.; Yajima, S.; Furui, H.; Homma, H.; Imamura, K.; Nakamura, K.; Nakamura, K.; Sonehara, M.; Takeuchi, T.; Togashi, H.; Tsuda, S.; Yoshida, Y.

    2015-12-01

    Non-inductive plasma current start-up, ramp-up and sustainment by waves in the lower hybrid wave (LHW) frequency range at 200 MHz were investigated on the TST-2 spherical tokamak (R0 ≤ 0.38 m, a ≤ 0.25 m, Bt0 ≤ 0.3T, Ip ≤ 0.14 MA). Experimental results obtained using three types of antenna were compared. Both the highest plasma current (Ip = 18 kA) and the highest current drive figure of merit ηCD≡n¯eIpR0/PRF=1.4 ×1017 A/W/m2 were achieved using the capacitively-coupled combline (CCC) antenna, designed to excite the LHW with a sharp and highly directional wavenumber spectrum. For Ip greater than about 5 kA, high energy electrons accelerated by the LHW become the dominant carrier of plasma current. The low value of ηCD observed so far are believed to be caused by a rapid loss of energetic electrons and parasitic losses of the LHW energy in the plasma periphery. ηCD is expected to improve by an order of magnitude by increasing the plasma current to improve energetic electron confinement. In addition, edge power losses are expected to be reduced by increasing the toroidal magnetic field to improve wave accessibility to the plasma core, and by launching the LHW from the inboard upper region of the torus to achieve better single-pass absorption.

  6. Magnetic perturbation effects on boundary plasmas during high power lower hybrid current drive in Tore Supra

    NASA Astrophysics Data System (ADS)

    Evans, T. E.; Goniche, M.; Grosman, A.; Guilhem, D.; Hess, W.; Vallet, J.-C.

    1992-12-01

    Small time-independent magnetic perturbations (δ br), produced with the Tore Supra ergodic divertor coils, have been used to control thermal loads on plasma facing components, current density profiles, the transport of non-Maxwellian particles, and the confinement properties of thermal plasmas during high power ( PLH≤3.3 MW) lower hybrid current drive (LHCD) discharges. MARFEs with 0.12 ≤ϱ m=π a2 < ne20> Ip-1≤0.22 (i.e., roughly a factor of 3 less than the smallest value of ϱ m previously reported) are obtained during the δ br pulse when PLH>2.0 MW and the edge safety factor is slightly less than 3. These MARFEs generally appear to have the same characteristics as high ϱ m MARFEs and are positionally stable throughout the LHCD+δ br pulse. Steady state conditions in which more than 90% of the total input power is radiated from a 0.15 m wide region near the high-field side wall were obtained.

  7. Lower hybrid current drive experiments on Alcator C-Mod: Comparison with theory and simulationa)

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Ko, J.; Parker, R.; Schmidt, A. E.; Wallace, G.; Wright, J. C.; Fiore, C. L.; Hubbard, A. E.; Irby, J.; Marmar, E.; Porkolab, M.; Terry, D.; Wolfe, S. M.; Wukitch, S. J.; Alcator C-Mod Team; Wilson, J. R.; Scott, S.; Valeo, E.; Phillips, C. K.; Harvey, R. W.

    2008-05-01

    Lower hybrid (LH) current drive experiments have been carried out on the Alcator C-Mod tokamak [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] using a radio-frequency system at 4.6GHz. Up to 900kW of LH power has been coupled and driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of neILHR0/PLH≈2.5±0.2×1019(A/W/m2). We have simulated the LH current drive in these discharges using the combined ray tracing/three-dimensional (r,v⊥,v∥) Fokker-Planck code GENRAY-CQL3D (R. W. Harvey and M. McCoy, in Proceedings of the IAEA Technical Committee Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992) and found similar current drive efficiencies. The simulated profiles of current density from CQL3D, including both ohmic plus LH drive have been found to be in good agreement with the measured current density from a motional Stark effect diagnostic. Measurements of nonthermal x-ray emission confirm the presence of a significant fast electron population and the three-dimensional (r,v⊥,v∥) electron distribution function from CQL3D has been used in a synthetic diagnostic code to simulate the measured hard x-ray data.

  8. Linear theory for fast collisionless magnetic reconnection in the lower-hybrid frequency range

    SciTech Connect

    Jovanovic, D.; Shukla, P.K.

    2005-05-15

    A linear theory is presented for the interplay between the fast collisionless magnetic reconnection and the lower-hybrid waves that has been observed in recent computer simulations [J. F. Drake, M. Swisdak, C. Cattell et al., Science 299, 873 (2003)]. In plasma configurations with a strong guide field and anisotropic electron temperature, the electron dynamics is described within the framework of standard electron magnetohydrodynamic equations, accounting also for the effects of the electron polarization and ion motions in the presence of perpendicular electric fields. In the linear phase, we find two types of instabilities of a thin current sheet with steep edges, corresponding to its filamentation (or tearing) and bending. Using a surface-wave formalism for the perturbations whose wavelength is larger than the thickness of the current sheet, the corresponding growth rates are calculated as the contributions of singularities in the plasma dispersion function. These are governed by the electron inertia and the linear coupling of the reconnecting magnetic field with local plasma modes propagating in the perpendicular direction that are subject to the Buneman instability. The linear surface wave instability may be particularly important as a secondary instability, dissipating the thin current sheets that develop in the course of the fast reconnection in the shear-Alfven and kinetic-Alfven regimes, and providing the anomalous resistivity for the growth of magnetic islands beyond the shear-Alfven and kinetic-Alfven scales.

  9. A non-rigid registration method for serial lower extremity hybrid SPECT/CT imaging

    PubMed Central

    Suh, Jung W.; Scheinost, Dustin; Dione, Donald P.; Dobrucki, Lawrence W.; Sinusas, Albert J.; Papademetris, Xenophon

    2010-01-01

    Small animal X-ray computed tomographic (microCT) imaging of the lower extremities permits evaluation of arterial growth in models of hindlimb ischemia, and when applied serially can provide quantitative information about disease progression and aid in the evaluation of therapeutic interventions. The quantification of changes in tissue perfusion and concentration of molecular markers concurrently obtained using nuclear imaging requires the ability to non-rigidly register the microCT images over time, a task made more challenging by the potentially large changes in the positions of the legs due to articulation. While non-rigid registration methods have been extensively used in the evaluation of individual organs, application in whole body imaging has been limited, primarily because the scale of possible displacements and deformations is large resulting in poor convergence of most methods. In this paper we present a new method based on the extended demons algorithm that uses a level-set representation of the body contour and skeletal structure as an input. The proposed serial registration method reflects the natural physical moving combination of mouse anatomy in which the movement of bones is the framework for body movements, and the movement of skin constrains the detailed movements of the specific segmented body regions. We applied our method to both the registration of serial microCT mouse images and the quantification of microSPECT component of the serially hybrid microCT-SPECT images demonstrating improved performance as compared to existing registration techniques. PMID:20869902

  10. Hard x-ray diagnostic for lower hybrid experiments on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Liptac, J.; Parker, R.; Tang, V.; Peysson, Y.; Decker, J.

    2006-10-01

    Alcator C-Mod's lower hybrid current drive (LHCD) system allows the exploration of advanced tokamak (AT) regimes at densities relevant to ITER and fusion reactors. The location of the LHCD is critical to AT performance and may be inferred by measuring the nonthermal bremsstrahlung emission in the hard x-ray (HXR) region. A pinhole camera using an array of 32 CdZnTe detectors is used to image energies in the 20-200keV range. Detectors and pulse processing electronics are integrated into a compact and modular package making extensive use of printed circuit board and surface mount technology. The system also makes use of fast digitization and software signal processing techniques. An ambient environment of neutrons, gammas, and high rf power requires careful shielding. Shielding is studied using the neutron and photon transport code MCNP. The design of the diagnostic is presented along with background measurements in lieu of LHCD fast electrons. Background measurements are then compared to advanced modeling results to predict the power threshold for meaningful HXR data for a H-mode target plasma.

  11. Gyrokinetic theory of electrostatic lower-hybrid drift instabilities in a current sheet with guide field

    SciTech Connect

    Tummel, K.; Chen, L.; Wang, Z.; Wang, X. Y.; Lin, Y.

    2014-05-15

    A kinetic electrostatic eigenvalue equation for the lower-hybrid drift instability (LHDI) in a thin Harris current sheet with a guide field is derived based on the gyrokinetic electron and fully kinetic ion(GeFi) description. Three-dimensional nonlocal analyses are carried out to investigate the influence of a guide field on the stabilization of the LHDI by finite parallel wavenumber, k{sub ∥}. Detailed stability properties are first analyzed locally, and then as a nonlocal eigenvalue problem. Our results indicate that at large equilibrium drift velocities, the LHDI is further destabilized by finite k{sub ∥} in the short-wavelength domain. This is demonstrated in a local stability analysis and confirmed by the peak in the eigenfunction amplitude. We find the most unstable modes localized at the current sheet edges, and our results agree well with simulations employing the GeFi code developed by Lin et al. [Plasma Phys. Controlled Fusion 47, 657 (2005); Plasma Phys. Controlled Fusion 53, 054013 (2011)].

  12. Plasma current ramp-up by lower hybrid wave using innovative antennas on TST-2

    NASA Astrophysics Data System (ADS)

    Takase, Yuichi; Ejiri, Akira; Moeller, Charles; Roidl, Benedikt; Shinya, Takahiro; Tsujii, Naoto; Yajima, Satoru; Yamazaki, Hibiki; Kitayama, Akichika; Matsumoto, Naoki; Sato, Akito; Sonehara, Masateru; Takahashi, Wataru; Tajiri, Yoshiyuki; Takei, Yuki; Togashi, Hiro; Toida, Kazuya; Yoshida, Yusuke

    2016-10-01

    Non-inductive plasma current (Ip) ramp-up by RF power in the lower hybrid frequency range is being studied on the TST-2 spherical tokamak (R = 0.36 m, a = 0.23 m, Bt = 0.3 T, Ip = 0.1 MA). Up to 400 kW of RF power is available at a frequency of 200 MHz. An innovative antenna called the capacitively-coupled combline (CCC) antenna was developed to excite a sharp, highly directional traveling wave with the electric field polarized in the toroidal direction. It is an array of resonant circuit elements made of capacitance and inductance, coupled to neighboring elements by mutual capacitance. Two CCC antennas are installed in TST-2, a 13-element outboard-launch antenna and a 6-element top-launch antenna. The latter was installed in March 2016 to improve accessibility to the core and to achieve single-pass damping. The suspected wave power loss in the scrape-off layer plasma should also be avoided. Ip ramp-up to 25 kA has been achieved so far. An upgrade of the Bt power supply is planned to take advantage of the observed improvement of Ip ramp-up with Bt. Higher Bt for longer pulses should improve the Ip ramp-up efficiency by improving wave accessibility and by reducing prompt orbit losses of energetic electrons.

  13. Ultrahigh resolution simulations of mode converted ion cyclotron waves and lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Wright, J. C.; Bonoli, P. T.; D'Azevedo, E.; Brambilla, M.

    2004-12-01

    Full wave studies of mode conversion (MC) processes in toroidal plasmas have required prohibitive amount of computer resources in the past because of the disparate spatial scales involved. The TORIC code [Brambilla, Nucl. Fusion 38 (1998) 1805] solves the linear sixth order reduced wave equation for the ion cyclotron range of frequencies (ICRF), in toroidal geometry using a Fourier representation for the poloidal dimension and finite elements in the flux dimension. The range of problems that TORIC can do has been extended through both new serial algorithms and parallelization of memory and processing. The implementation of out-of-core memory management, FFT convolutions, and improved memory management brought MC studies just into range of the serial version of the code running on a NERSC Cray SV1. Some simple tests and arguments show that more resolution than is possible on a single processor system is needed to fully resolve these scenarios. By distributing the large linear system across many processors in conjunction with the out-of-core technique, the resolution limitations are effectively removed. ScaLAPACK is used to do the linear algebra operations and message passing interface (MPI) is used to distribute the significant amount of post-processing. The new parallel version of the code can easily do the most difficult MC problems on present day tokamaks (Alcator C-Mod and Asdex-Upgrade), with only 32 pc from a local Beowulf cluster. Using 48 or more processors admits us to problems in the lower hybrid range of frequencies.

  14. Interaction between the lower hybrid wave and density fluctuations in the scrape-off layer

    SciTech Connect

    Peysson, Y.; Madi, M.; Kabalan, K.; Decker, J.

    2015-12-10

    In the present paper, the perturbation of the launched power spectrum of the Lower Hybrid wave at the separatrix by electron density fluctuations in the scrape-off layer is investigated. Considering a slab geometry with magnetic field lines parallel to the toroidal direction, the full wave equation is solved using Comsol Multiphysics® for a fully active multi-junction like LH antenna made of two modules. When electron density fluctuations are incorporated in the dielectric tensor over a thin perturbed layer in front of the grill, it is shown that the power spectrum may be strongly modified from the antenna mouth to the plasma separatrix as the wave propagates. The diffraction effect leads to the appearance of multiple satellite lobes with randomly varying positions, a feature consistent with the recently developed model that has been applied successfully to high density discharges on the Tokamak Tore Supra corresponding to the large spectral gap regime [Decker J. et al. Phys. Plasma 21 (2014) 092504]. The perturbation is found to be maximum for the Fourier components of the fluctuating spectrum in the vicinity of the launched LH wavelength.

  15. Study of the absorption coefficient of alpha particles to lower hybrid waves in tokamak

    SciTech Connect

    Wang, Jianbing Zhang, Xianmei Yu, Limin Zhao, Xiang

    2014-02-12

    Part of the energy of the Lower Hybrid (LH) waves may be absorbed by the α particles via the so-called perpendicular landau damping mechanism, which depends on various parameters of fusion reactors and the LH waves. In this article, we calculate the absorption coefficient γ{sub α} of LH waves due to α particles. Results show that, the γ{sub α} increases with the parallel refraction index n{sub ∥} while deceases with increasing the frequency of LH waves ω{sub LH} over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption, and there is a peak value of γ{sub α} when n{sub e}≈8×10{sup 19}m{sup −3} for ITER-like scenario. The thermal corrections to the cold plasma dispersion relation will change the damping rate to a certain extent under some specific conditions. We have also evaluated the fraction of LH power absorbed by the alpha particles, η ≈ 0.47% and 4.1% for an LH frequency of 5 GHz and 3.7 GHz respectively for ITER-like scenario. This work gives the effective reference for the choice of parameters of future fusion reactors.

  16. Absorption of lower hybrid waves in the scrape off layer of a diverted tokamak

    SciTech Connect

    Wallace, G. M.; Parker, R. R.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Meneghini, O.; Schmidt, A. E.; Shiraiwa, S.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Harvey, R. W.; Smirnov, A. P.; Wilson, J. R.

    2010-08-15

    The goal of the Lower Hybrid Current Drive (LHCD) system on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] is to investigate current profile control under plasma conditions relevant to future tokamak experiments. Experimental observations of a LHCD ''density limit'' for C-Mod are presented in this paper. Bremsstrahlung emission from relativistic fast electrons in the core plasma drops suddenly above line averaged densities of 10{sup 20} m{sup -3} ({omega}/{omega}{sub LH{approx}}3-4), well below the density limit previously observed on other experiments ({omega}/{omega}{sub LH{approx}}2). Electric currents flowing through the scrape off layer (SOL) between the inner and outer divertors increase dramatically across the same density range that the core bremsstrahlung emission drops precipitously. These experimental x-ray data are compared to both conventional modeling, which gives poor agreement with experiment above the density limit and a model including collisional absorption in the SOL, which dramatically improves agreement with experiment above the observed density limit. These results show that strong absorption of LH waves in the SOL is possible on a high density tokamak and the SOL must be included in simulations of LHCD at high density.

  17. Hybrid modeling of the lower corona using Faraday rotation observations and a MHD thermodynamic simulation

    NASA Astrophysics Data System (ADS)

    Wexler, David B.; Hollweg, Joseph V.; Jensen, Elizabeth; Lionello, Roberto; Macneice, Peter J.; Coster, Anthea J.

    2017-08-01

    simulations with transcoronal radio observations allows improved characterization of the lower corona. This hybrid approach potentially paves the way for more accurate use of Carrington rotation-specific coronal models.

  18. Repeatability testing of a new Hybrid III 6-year-old ATD lower extremity.

    PubMed

    Boucher, Laura C; Ryu, Yeonsu; Kang, Yun-Seok; Bolte, John H

    2017-05-29

    Vehicle safety is improving, thus decreasing the number of life-threatening injuries and increasing the need for research in other areas of the body. The current child anthropomorphic test device (ATD) does not have the capabilities or instrumentation to measure many of the potential interactions between the lower extremity and the vehicle interior. A prototype Hybrid III 6-year-old ATD lower extremity (ATD-LE) was developed and contains a tibia load cell and a more biofidelic ankle. The repeatability of the device has not yet been assessed; thus, the objective was to evaluate the repeatability of the ATD-LE. Additionally, a dynamic assessment was conducted to quantify injury threshold values. A pneumatic ram impactor was used at 2 velocities to evaluate repeatability. The ATD-LE was fixed to a table and impacted on the plantar aspect of the forefoot. Three repeated trials at 1.3 and 2.3 m/s without shoes and 2.3 m/s with shoes were conducted. The consistency of tibia force (N), bending moment (Nm), ankle range of motion (ROM, °), and stiffness (Nm/°) were quantified. A dynamic assessment using knee bolster airbag (KBA) tests was also conducted. The ATD-LE was positioned to mimic 3 worst-case scenarios: toes touching the mid-dashboard, touching the lower dashboard, and flat on the floor prior to airbag deployment. The impact responses in the femur and tibia were directly collected and compared with published injury threshold values. Ram impact testing indicated primarily excellent repeatability for the variables tested. For all 3 conditions the coefficients of variance (CV) were as follows: tibia force, 1.9-2.7%; tibia moment, 1.0-2.2%; ROM, 1.3-1.4%; ankle stiffness, 4.8-15.6%. The shoe-on condition resulted in a 25% reduction in tibia force and a 56% reduction in tibia bending moment. The KBA tests indicate that the highest injury risk may be when the toes touch the lower dashboard, due to the high bending moments recorded in the tibia at 76.2 Nm, which was

  19. Effect of posture on forces and moments measured in a Hybrid III ATD lower leg.

    PubMed

    Van Tuyl, John; Burkhart, Timothy A; Quenneville, Cheryl E

    2016-05-18

    Anthropomorphic test devices (ATDs) are used to assess real injury risk to occupants of vehicles during injurious events. In the lower leg, values from load cells are compared to injury criteria developed in cadaveric studies. These criteria are typically developed with the leg in a neutral posture, whereas the ATD may assume a wide range of postures during safety evaluation tests. The degree to which the initial posture of an ATD has an effect on the measured forces and moments in the lower leg is unknown. A Hybrid III ATD lower leg was impacted in a range of postures under conditions representing a crash test, and peak axial force and adjusted tibia index injury measures were evaluated. Ankle posture was varied in 5° increments using a custom-made footplate, and dorsi/plantarflexion (20° DF to 20° PF) and in/eversion (20° IV to 5° EV) were evaluated. Tibia angle was also varied (representing knee flexion/extension) by ±10° from neutral. Peak axial force was not affected by ankle flexion or tibia angulation. Adjusted tibia index was lowest for plantarflexion, as well as for tibia angles representative of knee extension. Both peak axial force and adjusted tibia index were lowest for postures of great inversion and were highest in neutral or near-neutral postures. The range of postures tested herein spanned published injury criteria and thus would have made the difference between pass and fail in a safety evaluation. In/eversion had the largest influence on injury metrics, likely due to the change in axial stiffness and altered impact durations in these postures. Results suggest increased injury risk at neutral or near-neutral postures, whereas previous cadaveric studies have suggested that in/eversion does not influence injury risk. It is unclear whether the ATD appropriately represents the natural lower leg for impacts in out-of-position testing. Great care must be taken when initially positioning ATDs for safety evaluations, because small perturbations in

  20. Formation of a 100-kA tokamak discharge in the Princeton large torus by lower hybrid waves

    SciTech Connect

    Jobes, F.; Stevens, J.; Bell, R.; Bernabei, S.; Cavallo, A.; Chu, T.K.; Cohen, S.; Denne, B.; Efthimion, P.; Hinnov, E.

    1984-03-01

    The development of non-inductive current drive is of great importance in establishing the tokamak as a long-pulse or steady-state fusion reactor. Lower hybrid waves, carrying 200 kW of power at 800 MHz, have been launched into the PLT tokamak to initiate and drive the discharge current to a level in excess of 100 kA.

  1. Lower hybrid instability driven by mono-energy {alpha}-particles with finite pitch angle spread in a plasma

    SciTech Connect

    Kumar, Pawan; Singh, Vishwesh; Tripathi, V. K.

    2013-02-15

    A kinetic formalism of lower hybrid wave instability, driven by mono-energy {alpha}-particles with finite pitch angle spread, is developed. The instability arises through cyclotron resonance interaction with high cyclotron harmonics of {alpha}-particles. The {alpha}-particles produced in D-T fusion reactions have huge Larmor radii ({approx}10 cm) as compared to the wavelength of the lower hybrid wave, whereas their speed is an order of magnitude smaller than the speed of light in vacuum. As a result, large parallel phase velocity lower hybrid waves, suitable for current drive in tokamak, are driven unstable via coupling to high cyclotron harmonics. The growth rate decreases with increase in pitch angle spread of the beam. At typical electron density of {approx}10{sup 19} m{sup -3}, magnetic field {approx}4 Tesla and {alpha}-particle concentration {approx}0.1%, the large parallel phase velocity lower hybrid wave grows on the time scale of 20 ion cyclotron periods. The growth rate decreases with plasma density.

  2. Three-Dimensional Kinetic Simulation of the Nonlinear Evolution of Lower-Hybrid Waves in the Auroral Plasma

    NASA Technical Reports Server (NTRS)

    Singh, Nagendra

    2000-01-01

    Under this grant we have done research on the following topics. 1) Development of Parallel PIC Codes (PPIC); 2) Evolution of Lower-Hybrid Pump Waves; 3) Electron-beam Driven Plasma Electrodynamics; and 4) Studies on Inertial and Kinetic Alfven Waves. A brief summary of our findings and resulting publications are given.

  3. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  4. Hybrid transfinite element modeling/analysis of nonlinear heat conduction problems involving phase change

    NASA Technical Reports Server (NTRS)

    Tamma, Kumar K.; Railkar, Sudhir B.

    1988-01-01

    The present paper describes the applicability of hybrid transfinite element modeling/analysis formulations for nonlinear heat conduction problems involving phase change. The methodology is based on application of transform approaches and classical Galerkin schemes with finite element formulations to maintain the modeling versatility and numerical features for computational analysis. In addition, in conjunction with the above, the effects due to latent heat are modeled using enthalpy formulations to enable a physically realistic approximation to be dealt computationally for materials exhibiting phase change within a narrow band of temperatures. Pertinent details of the approach and computational scheme adapted are described in technical detail. Numerical test cases of comparative nature are presented to demonstrate the applicability of the proposed formulations for numerical modeling/analysis of nonlinear heat conduction problems involving phase change.

  5. Lattice thermal conductivity of lower mantle minerals and heat flux from Earth’s core

    PubMed Central

    Manthilake, Geeth M.; de Koker, Nico; Frost, Dan J.; McCammon, Catherine A.

    2011-01-01

    The amount of heat flowing from Earth’s core critically determines the thermo-chemical evolution of both the core and the lower mantle. Consisting primarily of a polycrystalline aggregate of silicate perovskite and ferropericlase, the thermal boundary layer at the very base of Earth’s lower mantle regulates the heat flow from the core, so that the thermal conductivity (k) of these mineral phases controls the amount of heat entering the lowermost mantle. Here we report measurements of the lattice thermal conductivity of pure, Al-, and Fe-bearing MgSiO3 perovskite at 26 GPa up to 1,073 K, and of ferropericlase containing 0, 5, and 20% Fe, at 8 and 14 GPa up to 1,273 K. We find the incorporation of these elements in silicate perovskite and ferropericlase to result in a ∼50% decrease of lattice thermal conductivity relative to the end member compositions. A model of thermal conductivity constrained from our results indicates that a peridotitic mantle would have k = 9.1 ± 1.2 W/m K at the top of the thermal boundary layer and k = 8.4 ± 1.2 W/m K at its base. These values translate into a heat flux of 11.0 ± 1.4 terawatts (TW) from Earth’s core, a range of values consistent with a variety of geophysical estimates. PMID:22021444

  6. Internal transport barrier triggered by non-linear lower hybrid wave deposition under condition of beam-driven toroidal rotation

    SciTech Connect

    Gao, Q. D.; Budny, R. V.

    2015-03-15

    By using gyro-Landau fluid transport model (GLF23), time-dependent integrated modeling is carried out using TRANSP to explore the dynamic process of internal transport barrier (ITB) formation in the neutral beam heating discharges. When the current profile is controlled by LHCD (lower hybrid current drive), with appropriate neutral beam injection, the nonlinear interplay between the transport determined gradients in the plasma temperature (T{sub i,e}) and toroidal velocity (V{sub ϕ}) and the E×B flow shear (including q-profile) produces transport bifurcations, generating spontaneously a stepwise growing ITB. In the discharge, the constraints imposed by the wave propagation condition causes interplay of the LH driven current distribution with the plasma configuration modification, which constitutes non-linearity in the LH wave deposition. The non-linear effects cause bifurcation in LHCD, generating two distinct quasi-stationary reversed magnetic shear configurations. The change of current profile during the transition period between the two quasi-stationary states results in increase of the E×B shearing flow arising from toroidal rotation. The turbulence transport suppression by sheared E×B flow during the ITB development is analysed, and the temporal evolution of some parameters characterized the plasma confinement is examined. Ample evidence shows that onset of the ITB development is correlated with the enhancement of E×B shearing rate caused by the bifurcation in LHCD. It is suggested that the ITB triggering is associated with the non-linear effects of the LH power deposition.

  7. Interaction effects of a lower heated tube on pool boiling of R-124 from an upper horizontal tube. Master's thesis

    SciTech Connect

    Yusician, J.E.

    1993-12-01

    An investigation of the interaction effects of a lower heated tube on pool boiling of pure R-124 from an upper horizontal tube was conducted at a saturation temperature of 2.2 deg C. The test tubes used were: (1) smooth tubes and (2) deformed surface (TURBO-B) enhanced tubes. The effects of tube spacing/configuration and lower tube heat flux on the heat transfer performance of the upper tube were investigated. For both tube arrays, the enhancing effect of bubbles from a lower tube was dramatic. This enhancement increased as lower tube heat flux increased. However, when upper tube heat fluxes were greater than 20 kW/sq. meters all enhancement disappeared. For a smooth tube array in natural convection, the effect of a lower heated tube on the heat transfer from an upper tube was small. In nucleate boiling, a P/D of 1.8 gave the best upper tube heat transfer performance and a vigorously nucleating lower tube eliminated upper tube hysteresis. With the lower tube unheated and an upper tube heat flux of greater than 3 kW/sq m, the performance using R-124 was generally better than for R-114. With a nucleating lower tube (at lO kW/sq. meters), again the performance of R-124 was better, but only for upper tube heat fluxes of greater than 40 kW/sq. meters. For a TURBO-B tube array, a 30 degree offset of the upper tube reduced the upper tube heat transfer performance (compared to the in-line configurations). This may indicate bubbles depart TURBO-B tubes differently than smooth tubes.

  8. Effects of Electron Pressure Tensor and Heat Flux on Magnetic Reconnection from PIC and Hybrid Simulations

    NASA Astrophysics Data System (ADS)

    Main, D. S.; Yin, L.; Winske, D.

    2007-05-01

    Thin current sheets lead to rapid magnetic reconnection and conversion of magnetic energy to particle energy. Two-dimensional (2D) simulations performed with different physical models and an initial planar current sheet (the GEM and Newton challenge studies) showed similar fast reconnection rates. In this paper, we discuss in detail simulations of 2D reconnection carried out with a full particle-in-cell (PIC) code and a hybrid (particle ions, massless fluid electrons) code that was part of the Challenge study (Birn et al., GRL, 32, L06105, 2005). In the hybrid code, the electron model contains the full electron pressure tensor in the electron momentum equation to break the frozen-in condition. We compare quantitatively the effects of the electron pressure tensor in the two types of simulations and show both how they evolve in time and where in the thin current sheet the electron off-diagonal pressure tensor terms become important. In addition, we make quantitative comparisons between reconnection rates and flow velocities obtained from the two codes. It is still an open question how best to evolve the pressure tensor and include the effects of electron heat flux in the hybrid model. The evolution equation for the pressure tensor has several terms and the effects of some of these terms on the reconnection dynamics will be examined. In particular, PIC simulations will be used to examine the role of heat flux in reconnection events in the absence of a guide field.

  9. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  10. Lower hybrid current drive at high density in the multi-pass regime

    SciTech Connect

    Wallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Schmidt, A. E.; Harvey, R. W.; Smirnov, A. P.; and others

    2012-06-15

    Assessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation ({eta}=2.0-2.5 Multiplication-Sign 10{sup 19} AW{sup -1}m{sup -2} at n{sub e}=0.5 Multiplication-Sign 10{sup 20} m{sup -3}) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under conditions (n{sub e}, magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase n{sub e} to 1.0-1.5 Multiplication-Sign 10{sup 20} m{sup -3}. However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL) ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL. Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing T{sub e} in high density LH discharges results in higher non-thermal electron emission, as predicted by the models.

  11. An assessment of full wave effects on the propagation and absorption of lower hybrid waves

    SciTech Connect

    Wright, J. C.; Bonoli, P. T.; Schmidt, A. E.; Phillips, C. K.; Valeo, E. J.; Harvey, R. W.; Brambilla, M. A.

    2009-07-15

    Lower hybrid (LH) waves ({omega}{sub ci}<<{omega}<<{omega}{sub ce}, where {omega}{sub i,e}{identical_to}Z{sub i,e}eB/m{sub i,e}c) have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons and consequently are well-suited to driving current. Established modeling techniques use Wentzel-Kramers-Brillouin (WKB) expansions with self-consistent non-Maxwellian distributions. Higher order WKB expansions have shown some effects on the parallel wave number evolution and consequently on the damping due to diffraction [G. Pereverzev, Nucl. Fusion 32, 1091 (1991)]. A massively parallel version of the TORIC full wave electromagnetic field solver valid in the LH range of frequencies has been developed [J. C. Wright et al., Comm. Comp. Phys. 4, 545 (2008)] and coupled to an electron Fokker-Planck solver CQL3D[R. W. Harvey and M. G. McCoy, in Proceedings of the IAEA Technical Committee Meeting, Montreal, 1992 (IAEA Institute of Physics Publishing, Vienna, 1993), USDOC/NTIS Document No. DE93002962, pp. 489-526] in order to self-consistently evolve nonthermal electron distributions characteristic of LH current drive (LHCD) experiments in devices such as Alcator C-Mod and ITER (B{sub 0}{approx_equal}5 T, n{sub e0}{approx_equal}1x10{sup 20} m{sup -3}). These simulations represent the first ever self-consistent simulations of LHCD utilizing both a full wave and Fokker-Planck calculation in toroidal geometry.

  12. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    SciTech Connect

    Amicucci, L. Castaldo, C.; Cesario, R.; Giovannozzi, E.; Tuccillo, A. A.; Ding, B. J.; Li, M. H.

    2015-12-10

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  13. Ion beam generated modes in the lower hybrid frequency range in a laboratory magnetoplasma

    NASA Astrophysics Data System (ADS)

    Van Compernolle, B.; Tripathi, S.; Gekelman, W. N.; Colestock, P. L.; Pribyl, P.

    2012-12-01

    The generation of waves by ion ring distributions is of great importance in many instances in space plasmas. They occur naturally in the magnetosphere through the interaction with substorms, or they can be man-made in ionospheric experiments by photo-ionization of neutral atoms injected perpendicular to the earth's magnetic field. The interaction of a fast ion beam with a low β plasma has been studied in the laboratory. Experiments were performed at the LArge Plasma Device (LAPD) at UCLA. The experiments were done in a Helium plasma (n ≃ 1012 \\ cm-3, B0 = 1000 G - 1800 G, fpe}/f{ce ≃ 1 - 5, Te = 0.25\\ eV, vte ≤ vA). The ion beam \\cite{Tripathi_ionbeam} is a Helium beam with energies ranging from 5 keV to 18 keV. The fast ion velocity is on the order of the Alfvén velocity. The beam is injected from the end of the machine, and spirals down the linear device. Waves were observed below fci in the shear Alfvén wave regime, and in a broad spectrum above fci in the lower hybrid frequency range, the focus of this paper. The wave spectra have distinct peaks close to ion cyclotron harmonics, extending out to the 100th harmonic in some cases. The wave generation was studied for various magnetic fields and background plasma densities, as well as for different beam energies and pitch angles. The waves were measured with 3-axis electric and magnetic probes. Detailed measurements of the perpendicular mode structure will be shown. Langmuir probes were used to measure density and temperature evolution due to the beam-plasma interaction. Retarding field energy analyzers captured the ion beam profiles. The work was performed at the LArge Plasma Device at the Basic Plasma Science Facility (BaPSF) at UCLA, funded by DOE/NSF.

  14. Coupling characteristics of the ITER-relevant lower hybrid antenna in Tore Supra: experiments and modelling

    NASA Astrophysics Data System (ADS)

    Preynas, M.; Ekedahl, A.; Fedorczak, N.; Goniche, M.; Guilhem, D.; Gunn, J. P.; Hillairet, J.; Litaudon, X.; Achard, J.; Berger-By, G.; Belo, J.; Corbel, E.; Delpech, L.; Ohsako, T.; Prou, M.

    2011-02-01

    A new concept of lower hybrid antenna for current drive has been proposed for ITER (Bibet et al 1995 Nucl. Fusion 35 1213-23): the passive active multijunction (PAM) antenna that relies on a periodic combination of active and passive waveguides. An actively cooled PAM antenna at 3.7 GHz has recently been installed on the tokamak Tore Supra. This paper summarizes the comprehensive experimental characterization of the coupling properties of the PAM antenna to the Tore Supra plasmas. In this paper, the electromagnetic properties of the antenna are measured at a reduced power (<1 MW) to allow a systematic comparison with linear wave coupling theory and the associated modelling based on the linear ALOHA code. In a wide range of edge electron densities at the antenna aperture (spanning a factor 20 from 0.5 × nc to 10 × nc where nc is the slow wave density cut-off, nc = 1.7 × 1017 m-3 at 3.7 GHz) and antenna phasing, the ALOHA simulations reproduce the experimental results observed on Tore Supra. In addition, reduced power reflection coefficients (<5%) are measured at a low edge density, close to nc, i.e. in the range 0.5-3 × nc. Measurement and analysis with ALOHA of the antenna-plasma scattering matrices provide explanation of the good coupling properties of the PAM antenna close to nc by highlighting the crucial role of the slow wave intercoupling between active and passive waveguides through the plasma edge. This detailed validation of the coupling modelling is an important step towards the validation of the PAM concept in view of further optimizing the electromagnetic properties of the future ITER antenna.

  15. Spectral broadening measurement of the lower hybrid waves during long pulse operation in Tore Supra

    SciTech Connect

    Berger-By, G.; Decampy, J.; Goniche, M.; Ekedahl, A.; Delpech, L.; Leroux, F.; Antar, G. Y.; Collaboration: Tore Supra Team

    2014-02-12

    On many tokamaks (C-Mod, EAST, FTU, JET, HT-7, TS), a decrease in current drive efficiency of the Lower Hybrid (LH) waves is observed in high electron density plasmas. The cause of this behaviour is believed to be: Parametric Instabilities (PI) and Scattering from Density Fluctuations (SDF). For the ITER LH system, our knowledge must be improved to avoid such effects and to maintain the LH current drive efficiency at high density. The ITPA IOS group coordinates this effort [1] and all experimental data are essential to validate the numerical codes in progress. Usually the broadening of the LH wave frequency spectrum is measured by a probe located in the plasma edge. For this study, the frequency spectrum of a reflected power signal from the LH antenna was used. In addition, the spectrum measurements are compared with the density fluctuations observed on RF probes located at the antenna mouth. Several plasma currents (0.6 to 1.4 MA) and densities up to 5.2 × 10{sup 19} m−3 have been realised on Tore Supra (TS) long pulses and with high injected RF power, up to 5.4 MW-30s. This allowed using a spectrum analyser to make several measurements during the plasma pulse. The side lobe amplitude, shifted by 20-30MHz with respect to the main peak, grows with increasing density. Furthermore, for an increase of plasma current at the same density, the spectra broaden and become asymmetric. Some parametric dependencies are shown in this paper.

  16. Lower hybrid current drive at high density in the multi-pass regimea)

    NASA Astrophysics Data System (ADS)

    Wallace, G. M.; Faust, I. C.; Meneghini, O.; Parker, R. R.; Shiraiwa, S.; Baek, S. G.; Bonoli, P. T.; Hubbard, A. E.; Hughes, J. W.; LaBombard, B. L.; Lau, C.; Ma, Y.; Reinke, M. L.; Terry, J. L.; Whyte, D. G.; Wright, J. C.; Wukitch, S. J.; Harvey, R. W.; Schmidt, A. E.; Smirnov, A. P.; Wilson, J. R.

    2012-06-01

    Assessing the performance of lower hybrid current drive (LHCD) at high density is critical for developing non-inductive current drive systems on future steady-state experiments. Excellent LHCD efficiency has been observed during fully non-inductive operation (η =2.0-2.5×1019 AW-1m-2 at n¯e=0.5×1020 m-3) on Alcator C-Mod [I. H. Hutchinson et al., Phys. Plasmas 1, 1511 (1994)] under conditions (ne, magnetic field and topology, and LHCD frequency) relevant to ITER [S. Shiraiwa et al., Nucl. Fusion 51, 103024 (2011)]. To extend these results to advanced tokamak regimes with higher bootstrap current fractions on C-Mod, it is necessary to increase n ¯e to 1.0-1.5×1020 m-3. However, the number of current-carrying, non-thermal electrons generated by LHCD drops sharply in diverted configurations at densities that are well below the density limit previously observed on limited tokamaks. In these cases, changes in scrape off layer (SOL) ionization and density profiles are observed during LHCD, indicating that significant power is transferred from the LH waves to the SOL. Fokker-Planck simulations of these discharges utilizing ray tracing and full wave propagation codes indicate that LH waves in the high density, multi-pass absorption regime linger in the plasma edge, and SOL region, where absorption near or outside the LCFS results in the loss of current drive efficiency. Modeling predicts that non-thermal emission increases with stronger single-pass absorption. Experimental data show that increasing Te in high density LH discharges results in higher non-thermal electron emission, as predicted by the models.

  17. An assessment of full-wave effects on the propagation and absorption of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Wright, John

    2008-11-01

    Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively fast tail electrons. Consequently these waves are well-suited to driving current in the plasma periphery where the electron temperature is lower, making LH current drive (LHCD) a promising technique for off--axis (r/a˜0.60) current profile control in reactor grade plasmas. Established modeling techniques use WKB expansions with non-Maxwellian self-consistent distributions. Higher order WKB expansions have shown some effects on the parallel wavenumber evolution and consequently on the damping due to diffraction [1]. A massively parallel version of the TORIC full-wave electromagnetic field solver valid in the LH range of frequencies has been developed [2] and applied to scenarios at the density and magnetic field characteristic of devices such as Alcator C-Mod and ITER [B0 5 T, ne 1x10^20 m-3]. We find that retaining full wave effects due to diffraction and focusing has a strong effect on the location of wave absorption. Diffraction occurs at caustic surfaces and in resonance cones resulting in a large upshift of the parallel wavenumber and localized power deposition. For some values of density and magnetic field when the waves are fully accessible to the center of the plasma, the full wave description predicts all power being damped at larger radii (r/a ˜ 0.7) in contrast to ray tracing which shows more central power absorption. By incorporating a Fokker-Planck code for self-consistent treatment of the electron distribution and using an synthetic hard X-ray diagnostic we compare the code predictions by both full wave and ray tracing methods with recent Alcator C-Mod experiments. We will compare full-wave and ray tracing for low and high single pass damping regimes. [0pt] [1] G. Pereverzev, Nucl. Fusion 32 1091 (1991). [0pt] [2] J. C. Wright, E. J. Valeo, C. K. Phillips and P. T. Bonoli, Comm. in Comput. Physics 4 545 (2008).

  18. Nonlinear phenomena arising from radio wave heating of the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Tomko, A. A.

    1981-08-01

    This document describes a theoretical and experimental study of the interaction of high power, high frequency radio waves with the lower ionosphere. The theoretical calculations presented here show that the electron temperature of the ionospheric plasma can be greatly enhanced when the plasma is irradiated by a powerful groundbased HF transmitter with an effective radiated power of the order of 100 MW. If this plasma heating is maintained for times exceeding a few seconds, the composition of the plasma can also be altered. These temperature and composition modifications cause significant changes in the plasma conductivity and wave absorption in the medium. Two experiments were conducted in order to test for the predicted absorption and conductivity modifications: a vertical incidence plus absorption experiment and a nonlinear demodulation experiment. Data from the absorption experiment clearly show a large (9 dB) increase in wave absorption at 2.4 MHz due to a high power (60 MW ERP) HF heating of the ionosphere. The nonlinear demodulation experiment generated strong VLF radiation when the ionosphere was irradiated by a powerful modulated HF wave. These VLF signals are believed to be due to HF heating induced conductivity modulation of the dynamo current system.

  19. On the Dirichlet Problem of Mixed Type for Lower Hybrid Waves in Axisymmetric Cold Plasmas

    NASA Astrophysics Data System (ADS)

    Lupo, Daniela; Monticelli, Dario D.; Payne, Kevin R.

    2015-07-01

    For a class of linear second order partial differential equations of mixed elliptic-hyperbolic type, which includes a well known model for analyzing possible heating in axisymmetric cold plasmas, we give results on the weak well-posedness of the Dirichlet problem and show that such solutions are characterized by a variational principle. The weak solutions are shown to be saddle points of natural functionals suggested by the divergence form of the PDEs. Moreover, the natural domains of the functionals are the weighted Sobolev spaces to which the solutions belong. In addition, all critical levels will be characterized in terms of global extrema of the functionals restricted to suitable infinite dimensional linear subspaces. These subspaces are defined in terms of a robust spectral theory with weights which is associated to the linear operator and is developed herein. Similar characterizations for the weighted eigenvalue problem and nonlinear variants will also be given. Finally, topological methods are employed to obtain existence results for nonlinear problems including perturbations in the gradient which are then applied to the well-posedness of the linear problem with lower order terms.

  20. Design of wearable hybrid generator for harvesting heat energy from human body depending on physiological activity

    NASA Astrophysics Data System (ADS)

    Kim, Myoung-Soo; Kim, Min-Ki; Kim, Kyongtae; Kim, Yong-Jun

    2017-09-01

    We developed a prototype of a wearable hybrid generator (WHG) that is used for harvesting the heat energy of the human body. This WHG is constructed by integrating a thermoelectric generator (TEG) in a circular mesh polyester knit fabric, circular-shaped pyroelectric generator (PEG), and quick sweat-pickup/dry-fabric. The fabric packaging enables the TEG part of the WHG to generate energy steadily while maintaining a temperature difference in extreme temperature environments. Moreover, when the body sweats, the evaporation heat of the sweat leads to thermal fluctuations in the WHG. This phenomenon further leads to an increase in the output power of the WHG. These characteristics of the WHG make it possible to produce electrical energy steadily without reduction in the conversion efficiency, as both TEG and PEG use the same energy source of the human skin and the ambient temperature. Under a temperature difference of ˜6.5 °C and temperature change rate of ˜0.62 °C s-1, the output power and output power density of the WHG, respectively, are ˜4.5 nW and ˜1.5 μW m-2. Our hybrid approach will provide a framework to enhance the output power of the wearable generators that harvest heat energy from human body in various environments.

  1. The development of a lower heat concrete mixture for mass concrete placement conditions

    NASA Astrophysics Data System (ADS)

    Crowley, Aaron Martin

    The hydration process of portland cement (PC) is exothermic; therefore, the thermal behavior of concrete has to be taken into consideration when placed in a large mass. The research presented involves a Tennessee Department of Transportation (TDOT) Class S (seal) portland cement concrete (PCC) which is used as a foundation seal during construction of bridge abutments and piers. A Class S PCC mixture meeting the 2006 TDOT specifications has the potential to generate excessive amounts of heat and induce thermal cracking in structural elements. The purpose of the study is to reduce the heat generation of a Class S PCC while maintaining adequate values of other engineering properties. Due to the possibility of underwater placement of a Class S PCC, reduction in the total cementing materials content were not considered in this study. Five candidate mixtures were used to compare against a typical TDOT Class S mixture. The five candidate Class S-LH (lower heat) mixtures were 45, 60, 70% Grade 120 slag substitutions for PC as well as two ternary mixtures containing Grade 120 slag and Class F fly ash. Ten batches of each mixture were produced. All plastic and hardened properties met TDOT 604.03 Class S requirements for analytical comparison. The 70% Grade 120 slag Class S-LH mixture was analytically superior for all hardened properties and at reducing heat generation. Since the 70% Grade 120 slag Class S-LH mixture proved to be superior in laboratory conditions; it was selected for further evaluation in the field testing portion of the research. The 70% Grade 120 slag mixture produced a significantly lower maximum temperature as well as a significantly lower maximum differential temperature than a TDOT Class S mixture with 20% Class C fly ash in side-by-side 18 cubic yard cube field placements. Research results and literature recommend that engineers should decide when mass concrete conditions are appropriate during construction practices. When mass concrete conditions are

  2. Novel Zero-Heat-Flux Deep Body Temperature Measurement in Lower Extremity Vascular and Cardiac Surgery.

    PubMed

    Mäkinen, Marja-Tellervo; Pesonen, Anne; Jousela, Irma; Päivärinta, Janne; Poikajärvi, Satu; Albäck, Anders; Salminen, Ulla-Stina; Pesonen, Eero

    2016-08-01

    The aim of this study was to compare deep body temperature obtained using a novel noninvasive continuous zero-heat-flux temperature measurement system with core temperatures obtained using conventional methods. A prospective, observational study. Operating room of a university hospital. The study comprised 15 patients undergoing vascular surgery of the lower extremities and 15 patients undergoing cardiac surgery with cardiopulmonary bypass. Zero-heat-flux thermometry on the forehead and standard core temperature measurements. Body temperature was measured using a new thermometry system (SpotOn; 3M, St. Paul, MN) on the forehead and with conventional methods in the esophagus during vascular surgery (n = 15), and in the nasopharynx and pulmonary artery during cardiac surgery (n = 15). The agreement between SpotOn and the conventional methods was assessed using the Bland-Altman random-effects approach for repeated measures. The mean difference between SpotOn and the esophageal temperature during vascular surgery was+0.08°C (95% limit of agreement -0.25 to+0.40°C). During cardiac surgery, during off CPB, the mean difference between SpotOn and the pulmonary arterial temperature was -0.05°C (95% limits of agreement -0.56 to+0.47°C). Throughout cardiac surgery (on and off CPB), the mean difference between SpotOn and the nasopharyngeal temperature was -0.12°C (95% limits of agreement -0.94 to+0.71°C). Poor agreement between the SpotOn and nasopharyngeal temperatures was detected in hypothermia below approximately 32°C. According to this preliminary study, the deep body temperature measured using the zero-heat-flux system was in good agreement with standard core temperatures during lower extremity vascular and cardiac surgery. However, agreement was questionable during hypothermia below 32°C. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Heat Capacity Anomaly Near the Lower Critical Consolute Point of Triethylamine-Water

    NASA Technical Reports Server (NTRS)

    Flewelling, Anne C.; DeFonseka, Rohan J.; Khaleeli, Nikfar; Partee, J.; Jacobs, D. T.

    1996-01-01

    The heat capacity of the binary liquid mixture triethylamine-water has been measured near its lower critical consolute point using a scanning, adiabatic calorimeter. Two data runs are analyzed to provide heat capacity and enthalpy data that are fitted by equations with background terms and a critical term that includes correction to scaling. The critical exponent a was determined to be 0.107 +/- 0.006, consistent with theoretical predictions. When alpha was fixed at 0.11 to determine various amplitudes consistently, our values of A(+) and A(-) agreed with a previous heat capacity measurement, but the value of A(-) was inconsistent with values determined by density or refractive index measurements. While our value for the amplitude ratio A(+)/ A(-) = 0.56 +/- 0.02 was consistent with other recent experimental determinations in binary liquid mixtures, it was slightly larger than either theoretical predictions or recent experimental values in liquid-vapor systems. The correction to scaling amplitude ratio D(+)/D(-) = 0.5 +/- 0.1 was half of that predicted. As a result of several more precise theoretical calculations and experimental determinations, the two-scale-factor universality ratio X, which we found to be 0.019 +/- 0.003, now is consistent among experiments and theories. A new 'universal' amplitude ratio R(sup +/-)(sub Bcr) involving the amplitudes for the specific heat was tested. Our determination of R(sup +/-)(sub Bcr) = -0.5 +/- 0.1 and R(sup -)(sub Bcr) = 1.1 +/- 0.1 is smaller in magnitude than predicted and is the first such determination in a binary fluid mixture.

  4. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    NASA Technical Reports Server (NTRS)

    Woods, D. Tod; Holzer, Thomas E.; Macgregor, Keith B.

    1990-01-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  5. Lower solar chromosphere-corona transition region. II - Wave pressure effects for a specific form of the heating function

    NASA Astrophysics Data System (ADS)

    Woods, D. Tod; Holzer, Thomas E.; MacGregor, Keith B.

    1990-07-01

    Lower transition region models with a balance between mechanical heating and radiative losses are expanded to include wave pressure effects. The models are used to study the simple damping length form of the heating function. The results are compared to the results obtained by Woods et al. (1990) for solutions in the lower transition region. The results suggest that a mixture of fast-mode and slow-mode waves may provide the appropriate heating mechanism in the lower transition region, with the decline in effective vertical wave speed caused by the refraction and eventual total reflection of the fast-mode wave resulting from the decreasing atmospheric density.

  6. Temperature analysis of induction motors using a hybrid thermal model with distributed heat sources

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S. C.; Pal, S. K.

    1998-06-01

    The article presents a hybrid thermal model for the accurate estimation of temperature distribution of induction motors. The developed model is a combination of lumped and distributed thermal parameters which are obtained from motor dimensions and other constants such as material density, specific heats, thermal conductivity, etc. The model is especially suited for the derating of induction motors operating under distorted and unbalanced supply condition. The model have been applied to a small (2hp, 415 V, 3-phase) cage rotor induction motor. The performance of the model is confirmed by experimental temperature data from the body and the conductor inside the slots of the motor.

  7. Spectral radiative heat transfer in coal furnaces using a hybrid technique

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1994-03-01

    A hybrid technique has been developed to solve three-dimensional spectral radiation transport equations for absorbing, emitting and anisotropically scattering media. An optimal mix of computational speed and accuracy is obtained by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P{sub 1} approximation for use in different range of optical thicknesses. The technique is used in conjunction with a char burnout model and spectroscopic data for H{sub 2}O, CO{sub 2}, CO, char, soot and ash to determine the influence of ash composition, ash content and coal preparation on furnace heat absorption.

  8. Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

    NASA Astrophysics Data System (ADS)

    Bonoli, Paul

    2007-11-01

    Recently, lower hybrid current drive (LHCD) experiments have been carried out on Alcator C-Mod using an RF system consisting of 12 klystrons at 4.6 GHz, feeding a 4 x 22 waveguide array. Up to 900 kW of LH power has been coupled in the range1.6 <= n//<= 4), where n// is the parallel refractive index. Driven LH currents have been inferred from magnetic measurements by extrapolating to zero loop voltage, yielding an efficiency of n20ILHR/PLH 0.3 [1]. We have simulated the LH current drive in these discharges using the combined ray tracing / 3D (r, v, v//) Fokker Planck code GENRAY -- CQL3D [2] and found similar current drive efficiencies. Measurements of nonthermal x-ray emission and electron cyclotron emission (ECE) confirm the presence of a significant fast electron population that varies with waveguide phasing and plasma density. Studies are currently underway to investigate the role of fast electron diffusion and full-wave effects such as diffractional broadening in determining the spatial and velocity space structure of the nonthermal electrons. The 3D (r, v, v//) electron distribution function from CQL3D has been used in synthetic diagnostic codes to simulate the measured hard x-ray and ECE emissions. Fast electron diffusion times have been inferred from x-ray data by employing a radial diffusion operator in CQL3D and determining the fast electron diffusivities that are required to reproduce the experimentally observed profiles of hard x-ray emission. Finally, we have been performing full-wave LH field simulations using the massively parallel TORIC --LH solver [3] in order to assess spatial and spectral broadening of the incident wave front that can result from diffraction and wave focusing effects. [1] R. Parker, Bull. Am. Phys. Soc. 51, 20 (2006). [2] R.W. Harvey and M. McCoy, ``The CQL3D Fokker Planck Code,'' Proc. IAEA Tech. Comm. Meeting on Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada, 1992. [3] J. C. Wright et al., Nucl. Fusion 45

  9. Study of lower hybrid current drive efficiency over a wide range of FTU plasma parameters

    NASA Astrophysics Data System (ADS)

    Pericoli Ridolfini, V.; Calabrò, G.; Panaccione, L.; FTU Team; ECH Team

    2005-11-01

    The key quantities affecting the efficiency of Lower Hybrid (LH) radiofrequency waves in driving non-inductively the toroidal current in a tokamak have been recognized by means of a linear regression analysis over all the data available for the Frascati Tokamak Upgrade. The parameter space is bounded within the following ranges: line averaged plasma density 0.29\\times 10^{20} \\leq \\bar {n}_{\\rme} \\leq 1.29\\times 10^{20}\\,m^{-3} , central electron temperatures 1.1 <= Te0 <= 7.4 keV, corresponding to volume averaged temperatures 0.27 <= langTerang <= 1.2 keV, plasma current 0.3 <= Ip <= 0.7 MA, magnetic field 4 <= BT0 <= 7.2 T, with a safety factor between 4.7 <= qa <= 10.7, LH power 0.4 <= PLH <= 2.1 MW and LH parallel refraction index 1.32 <= Npar0 <= 2.42. The experimental current drive (CD) efficiency, reduced to the effective ion charge state Zeff = 1, varies for this data set within 0.12 \\leq \\eta ^{\\ast }_CD \\leq 0.34\\,A\\,W^{-1} \\times 10^{20}\\,m^{-2} . A linear regression analysis gives a reliable scaling law for \\eta ^{\\ast }_CD with a correlation coefficient close to 0.9 that points out the importance of the various quantities. The CD efficiency is a significantly increasing function of langTerang and BT, and a decreasing one of qa and PLH, while Npar and \\bar{n}_{\\rme} have limited influence. The physical reasons for the observed trend related to the variation of each parameter are recognized and discussed. The main causes are identified in the modification suffered by the Npar spectrum along the ray trajectory before the power can be absorbed by the electrons and in the interaction with the edge plasma density fluctuations. The analysis also allows putting into evidence the synergy between the LH and electron cyclotron waves, when the latter are absorbed directly on the LH generated suprathermal electron tails and produce the highest values of \\eta ^{\\ast }_CD .

  10. A hybrid computational model for ultrasound phased-array heating in presence of strongly scattering obstacles.

    PubMed

    Botros, Y Y; Volakis, J L; VanBaren, P; Ebbini, E S

    1997-11-01

    A computationally efficient hybrid ray-physical optics (HRPO) model is presented for the analysis and synthesis of multiple-focus ultrasound heating patterns through the human rib cage. In particular, a ray method is used to propagate the ultrasound fields from the source to the frontal plane of the rib cage. The physical-optics integration method is then employed to obtain the intensity pattern inside the rib cage. The solution of the matrix system is carried out by using the pseudo inverse technique to synthesize the desired heating pattern. The proposed technique guides the fields through the intercostal spacings between the solid ribs and, thus, minimal intensity levels are observed over the solid ribs. This simulation model allows for the design and optimization of large-aperture phased-array applicator systems for noninvasive ablative thermal surgery in the heart and liver through the rib cage.

  11. Characterization of bulk stainless steel joints developed through microwave hybrid heating

    SciTech Connect

    Bansal, Amit; Sharma, Apurbba Kumar; Kumar, Pradeep; Das, Shantanu

    2014-05-01

    Processing of metallic materials through microwave heating is a challenging area of research. In the present work, joining of stainless steel-316 to stainless steel-316 in the bulk form has been carried out by placing stainless steel-316 powder at the interface and through targeted heating using microwave hybrid heating. The trials were carried out in a multimode microwave applicator at a frequency of 2.45 GHz and power 900 W. The developed joints were characterized using X-ray diffraction, field emission scanning electron microscopy equipped with energy dispersive X-ray spectroscope and measurement of Vicker's microhardness, porosity and tensile strength. The X-ray diffraction spectrum of the developed joint shows the presence of chromium carbide, iron carbide and iron silicide phases that eventually contribute to enhancement of the microhardness of the joint. The scanning electron microscope micrographs confirm classical metallurgical bonding between the substrate and the interface (molten powder) layer; the epitaxial growth rate was observed adjacent to the fusion zone. The average observed Vicker's microhardness in the joint zone on the grain boundary was significantly higher than that inside the grains due to the presence of various hard phases at the grain boundaries. Evaluation of the tensile strength of the joints showed an average ultimate tensile strength of 425.0 MPa with an average elongation of 9.44%. - Highlights: • Joining of stainless steel (SS-316) plates using microwave hybrid heating • Epitaxial growth rate observed adjacent to the fusion zone of welded joint • The ultimate tensile strength of the order of 425.0 MPa with 9.44% elongation.

  12. Heat and extension at mid- and lower crustal levels of the Rio Grande rift

    NASA Technical Reports Server (NTRS)

    Olsen, K. H.; Baldridge, W. S.; Callender, J. F.

    1985-01-01

    The process by which large amounts (50 to 200 percent) of crustal extension are produced was concisely described by W. Hamilton in 1982 and 1983. More recently, England, Sawyer, P. Morgan and others have moved toward quantifying models of lithospheric thinning by incorporating laboratory and theoretical data on rock rheology as a function of composition, temperature, and strain rate. Hamilton's description identifies three main crustal layers, each with a distinctive mechanical behavior; brittle fracturing and rotation in the upper crust, discontinuous ductile flow in the middle crust and laminar ductile flow in the lower crust. The temperature and composition dependent brittle-ductile transition essentially defines the diffuse boundary between upper and middle crust. It was concluded that the heat responsible for the highly ductile nature of the lower crust and the lensoidal and magma body structures at mid-crustal depths in the rift was infused into the crust by relatively modest ( 10 percent by mass) magmatic upwelling (feeder dikes) from Moho levels. Seismic velocity-versus-depth data, supported by gravity modeling and the fact that volumes of rift related volcanics are relatively modest ( 6000 cubic km) for the Rio Grande system, all imply velocities and densities too small to be consistent with a massive, composite, mafic intrusion in the lower crust.

  13. Effects of magnetic shear on lower hybrid waves in the suprauroral region. Final report, 1 April 1983-31 March 1984

    SciTech Connect

    Bakshi, P.

    1985-01-01

    Effects of magnetic shear on lower hybrid modes are investigated. It is shown that due to non-local effects, even a small shear can significantly affect the instability, leading to stabilization for some parameter ranges. These results are of importance in the context of the recently proposed mechanism of lower hybrid acceleration and ion evolution in the suprauroral region.

  14. Modification of ordinary-mode reflectometry system to detect lower-hybrid waves in Alcator C-Moda)

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Shiraiwa, S.; Parker, R. R.; Dominguez, A.; Kramer, G. J.; Marmar, E. S.

    2012-10-01

    Backscattering experiments to detect lower-hybrid (LH) waves have been performed in Alcator C-Mod, using the two modified channels (60 GHz and 75 GHz) of an ordinary-mode reflectometry system with newly developed spectral recorders that can continuously monitor spectral power at a target frequency. The change in the baseline of the spectral recorder during the LH wave injection is highly correlated to the strength of the X-mode non-thermal electron cyclotron emission. In high density plasmas where an anomalous drop in the lower hybrid current drive efficiency is observed, the observed backscattered signals are expected to be generated near the last closed flux surface, demonstrating the presence of LH waves within the plasma. This experimental technique can be useful in identifying spatially localized LH electric fields in the periphery of high-density plasmas.

  15. Small scale turbulence in the Crab Nebula: Evidence of lower hybrid parametric instabilities driven by the pulsar wave

    NASA Technical Reports Server (NTRS)

    Lee, L. C.

    1977-01-01

    Strong small scale turbulence is observed in the Crab Nebula from the temporal pulse broadening data. It is shown that the strong 30 Hz pulsar wave can parametrically excite instabilities near the lower hybrid frequency in the thermal plasma of the Crab Nebula with a characteristic wavelength of the order of the scale size a of the turbulence observed. These instabilities provided a coupling mechanism between the pulsar wave and the Nebula plasma.

  16. Full-wave theory of a quasi-optical launching system for lower-hybrid waves: Preliminary results

    SciTech Connect

    Cincotti, G.; Gori, F.; Santarsiero, M.; Serrecchia, R. ); Frezza, F.; Schettini, G. ); Santini, F. )

    1994-10-15

    Numerical studies on the use of an advanced launcher to couple lower-hybrid waves to a plasma, for current drive in tokamaks, are currently under development. The study of the coupling has been carried out in a rigorous way, through the solution of the scattering from cylinders with parallel axes in the presence of a plane of discontinuity for electromagnetic constants. We present the general features of the proposed method together with preliminary results on launched spectra and coupled power.

  17. Fast-wave heating in the two-ion hybrid regime on PLT

    SciTech Connect

    Hwang, D.Q.; Chrien, R.E.; Colestock, P.

    1981-01-01

    Plasma heating using the fast magnetosonic wave in the ion cyclotron range of frequencies is being studied both experimentally and theoretically in order to evaluate its potential for heating reactor plasmas. RF pulses at power levels up to 800 kW and length >130 ms have been delivered to a set of two parallel 1/2 turn loop antennae with 80% of the power coupled to the plasma. The parallel antennae have been driven both in and out-of-place so that the k/sub phi/ dependence of the antenna coupling and plasma heating can be determined. The heating experiments were conducted in the two-ion hybrid regime where the deuterium plasma contained a small component of a second ion species (hydrogen or /sup 3/He). A bulk ion temperature increase of up to 1.2 keV has been achieved at the 620 kW power level with /sup 3/He as the minority species and anti n/sub e/ = 2.9 x 10/sup 13/ cm/sup -3/. Energetic minority distributions have been detected consistent with theory.

  18. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen

    PubMed Central

    Niinemets, Ülo

    2013-01-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol−1 and elevated [CO2] of 780 μmol mol−1 were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future. PMID:24153419

  19. Elevated [CO2] magnifies isoprene emissions under heat and improves thermal resistance in hybrid aspen.

    PubMed

    Sun, Zhihong; Hüve, Katja; Vislap, Vivian; Niinemets, Ülo

    2013-12-01

    Isoprene emissions importantly protect plants from heat stress, but the emissions become inhibited by instantaneous increase of [CO2], and it is currently unclear how isoprene-emitting plants cope with future more frequent and severe heat episodes under high [CO2]. Hybrid aspen (Populus tremula x Populus tremuloides) saplings grown under ambient [CO2] of 380 μmol mol(-1) and elevated [CO2] of 780 μmol mol(-1) were used to test the hypothesis that acclimation to elevated [CO2] reduces the inhibitory effect of high [CO2] on emissions. Elevated-[CO2]-grown plants had greater isoprene emission capacity and a stronger increase of isoprene emissions with increasing temperature. High temperatures abolished the instantaneous [CO2] sensitivity of isoprene emission, possibly due to removing the substrate limitation resulting from curbed cycling of inorganic phosphate. As a result, isoprene emissions were highest in elevated-[CO2]-grown plants under high measurement [CO2]. Overall, elevated growth [CO2] improved heat resistance of photosynthesis, in particular, when assessed under high ambient [CO2] and the improved heat resistance was associated with greater cellular sugar and isoprene concentrations. Thus, contrary to expectations, these results suggest that isoprene emissions might increase in the future.

  20. Superficial heat reduction technique for a hybrid microwave-optical device.

    PubMed

    Al-Armaghany, A; Tong, K; Leung, T S

    2013-01-01

    Microwave applicator in the form of a circularly polarized microstrip patch antenna is proposed to provide localized deep heating in biological tissue, which causes blood vessels to dilate leading to changes in tissue oxygenation. These changes are monitored by an integrated optical system for studying thermoregulation in different parts of the human body. Using computer simulations, this paper compares circularly and linearly polarized antennas in terms of the efficiency of depositing electromagnetic (EM) energy and the heating patterns. The biological model composes of the skin, fat and muscle layers with appropriate dielectric and thermal properties. The results show that for the same specific absorption rate (SAR) in the muscle, the circularly polarized antenna results in a lower SAR in the skin-fat interface than the linearly polarized antenna. The thermal distribution is also presented based on the biological heat equation. The proposed circularly polarized antenna shows heat reduction in the superficial layers in comparison to the linearly polarized antenna.

  1. CME-Sheath and Shock Heating by Surface Alfven Wave Dissipation in the Lower Corona

    NASA Astrophysics Data System (ADS)

    Evans, R.; Opher, M.; van der Holst, B.

    2011-12-01

    We use the new solar corona component of the Space Weather Modeling Framework (van der Holst et al. 2010), in which the Alfven wave energy evolution is coupled self-consistently to the magnetohydrodynamic equations, to study the evolution of a coronal mass ejection (CME) and the shock it drives in the lower corona (2-8Rs). In this solar wind model, the wave pressure gradient accelerates the wind, and wave dissipation heats the wind. Kolmogorov-like dissipation and surface Alfven wave damping are considered for the dissipation of the waves (Evans et al. 2011). We use a modified Titov-Demoulin flux rope to initiate an eruption, and include magnetogram data from CR2029 (May 2005) as a boundary condition for the coronal magnetic field. Synthetic white light images from the simulation are used to determine the lateral expansion. We show that the expansion of the flux rope leads to the concentration of wave energy at the shock and in the sheath region. The expansion also creates a piled-up compression (PUC) region of plasma density at the back of the sheath, strongest at the flanks of the CME. The wave energy concentrated at the shock and sheath is dissipated by surface Alfven wave damping due to the density gradients, which heats the sheath. We present analysis of the momentum exchange between the solar wind and the waves, and discuss the effect of wave dissipation on the CME evolution.

  2. Development and Testing of a Miniaturized Multi-Evaporator Hybrid Loop Heat Pipe

    NASA Astrophysics Data System (ADS)

    Bugby, David C.; Kroliczek, Edward J.; Yun, James S.

    2005-02-01

    This paper describes the development and testing of a miniaturized multi-evaporator hybrid loop heat pipe (ME-HLHP), a centralized thermal bus architecture proposed as the next-generation thermal management system for future small spacecraft. The ME-HLHP maximizes the advantages of capillary pumped loops (CPLs) and loop heat pipes (LHPs) and mitigates their shortcomings via the use of a secondary LHP-type evaporator that supplies a small amount of excess liquid flow ("core sweepage") to each evaporator within a multi-evaporator parallel network. To validate ME-HLHP technology, single, dual, and quad-evaporator breadboard test loops were designed, fabricated, and tested. Breadboard components included miniaturized, cylindrical Teflon wick evaporators for low control power, counter-flow condensers for freeze tolerance, a back pressure regulator for heat load sharing, a co-located flow regulator for radiator switching, a cold-biased heat exchanger for temperature control, and a secondary evaporator/reservoir for core sweepage. With ammonia as the working fluid, a total of 21 tests were carried out with the quad-evaporator test loop. The results indicated quad-evaporator transport from 8-280 W, single-evaporator transport from 2-100 W, maximum heat flux of 30 W/cm2 evaporator conductance of 5-8 W/K, heat load sharing greater than 95%, condenser switching, condenser freeze tolerant design, temperature control of +/- 0.25 K with a variable set-point, rapid start-up, control power of 2-3 W, and Teflon evaporator (233-353 K) temperature cycling for durability. This paper will detail all aspects of the study.

  3. Studies of challenge in lower hybrid current drive capability at high density regime in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Liu, F. K.; Shan, J. F.; Li, J. G.; Wan, B. N.

    2017-02-01

    Aiming at a fusion reactor, two issues must be solved for the lower hybrid current drive (LHCD), namely good lower hybrid wave (LHW)-plasma coupling and effective current drive at high density. For this goal, efforts have been made to improve LHW-plasma coupling and current drive capability at high density in experimental advanced superconducting tokamak (EAST). LHW-plasma coupling is improved by means of local gas puffing and gas puffing from the electron side is taken as a routine way for EAST to operate with LHCD. Studies of high density experiments suggest that low recycling and high lower hybrid (LH) frequency are preferred for LHCD experiments at high density, consistent with previous results in other machines. With the combination of 2.45 GHz and 4.6 GHz LH waves, a repeatable high confinement mode plasma with maximum density up to 19~\\text{m}-3$ was obtained by LHCD in EAST. In addition, in the first stage of LHCD cyclic operation, an alternative candidate for more economical fusion reactors has been demonstrated in EAST and further work will be continued.

  4. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  5. Lower fitness of hatchery and hybrid rainbow trout compared to naturalized populations in Lake Superior tributaries.

    PubMed

    Miller, L M; Close, T; Kapuscinski, A R

    2004-11-01

    We have documented an early life survival advantage by naturalized populations of anadromous rainbow trout Oncorhynchus mykiss over a more recently introduced hatchery population and outbreeding depression resulting from interbreeding between the two strains. We tested the hypothesis that offspring of naturalized and hatchery trout, and reciprocal hybrid crosses, survive equally from fry to age 1+ in isolated reaches of Lake Superior tributary streams in Minnesota. Over the first summer, offspring of naturalized females had significantly greater survival than offspring of hatchery females in three of four comparisons (two streams and 2 years of stocking). Having an entire naturalized genome, not just a naturalized mother, was important for survival over the first winter. Naturalized offspring outperformed all others in survival to age 1+ and hybrids had reduced, but intermediate, survival relative to the two pure crosses. Averaging over years and streams, survival relative to naturalized offspring was 0.59 for hybrids with naturalized females, 0.37 for the reciprocal hybrids, and 0.21 for hatchery offspring. Our results indicate that naturalized rainbow trout are better adapted to the conditions of Minnesota's tributaries to Lake Superior so that they outperform the hatchery-propagated strain in the same manner that many native populations of salmonids outperform hatchery or transplanted fish. Continued stocking of the hatchery fish may conflict with a management goal of sustaining the naturalized populations.

  6. Hybrid heating systems optimization of residential environment to have thermal comfort conditions by numerical simulation.

    PubMed

    Jahantigh, Nabi; Keshavarz, Ali; Mirzaei, Masoud

    2015-01-01

    The aim of this study is to determine optimum hybrid heating systems parameters, such as temperature, surface area of a radiant heater and vent area to have thermal comfort conditions. DOE, Factorial design method is used to determine the optimum values for input parameters. A 3D model of a virtual standing thermal manikin with real dimensions is considered in this study. Continuity, momentum, energy, species equations for turbulent flow and physiological equation for thermal comfort are numerically solved to study heat, moisture and flow field. K - ɛRNG Model is used for turbulence modeling and DO method is used for radiation effects. Numerical results have a good agreement with the experimental data reported in the literature. The effect of various combinations of inlet parameters on thermal comfort is considered. According to Pareto graph, some of these combinations that have significant effect on the thermal comfort require no more energy can be used as useful tools. A better symmetrical velocity distribution around the manikin is also presented in the hybrid system.

  7. Mafic enclave-bearing tonalites as hybrids generated in the lower crust: Examples from the north Cascades

    SciTech Connect

    Dawes, R.L. . Dept. of Geological Sciences)

    1993-04-01

    Late Cretaceous tonalites, trondhjemites and granodiorites of the North Cascades of Washington State completed igneous crystallization at mid-crustal depths and contain magmatic epidote, garnet, and muscovite-rich white mica. Whole-rock geochemical and isotopic characteristics, combined with field, petrographic, and mineralogic data, disallow a fractional crystallization relationship between synplutonic mafic, intermediate, and felsic rocks, and also argue against an origin of the mafic and intermediate rocks solely by melting of the lower crust. The petrogenetic model that best accounts for the evidence is that the intermediate, enclave-bearing tonalites are hybrids created by mixing of modified, mantle-derived mafic magmas with lower crustal melt.

  8. Numerical analysis of the forced convective heat transfer on Al2O3-Cu/water hybrid nanofluid

    NASA Astrophysics Data System (ADS)

    Rahman, Mohd Rosdzimin Abdul; Leong, Kin Yuen; Idris, Azam Che; Saad, Mohd Rashdan; Anwar, Mahmood

    2017-05-01

    A numerical investigation to elucidate thermal behavior of hybrid nanofluids consisting of Al2O3 and Cu nanoparticles at ratio of 90:10 was conducted. Numerical domain of a two-dimensional axisymmetric copper tube with a length of 1000 and 10 mm in diameter is used. A uniform axial velocity is assigned at the velocity inlet based on the Reynolds number. The outer wall of the tube consists of non-slip wall condition with a constant heat flux. The assumptions of this numerical analysis are; (1) there is a steady state analysis, (2) effective thermo-physical properties of the nanofluid are depend on the volume concentration, and (3) fluid is continuum. It is found that the dominant nanoparticle in the hybrid nanofluids strongly influences the thermal behavior of the hybrid nanofluids. It was also found that the heat transfer coefficient increases as the volume concentration of the hybrid nanoparticle increases in base fluids and the Reynolds number.

  9. A hybrid surface modification method on copper wire braids for enhancing thermal performance of ultra-thin heat pipes

    NASA Astrophysics Data System (ADS)

    Sheng, W. K.; Lin, H. T.; Wu, C. H.; Kuo, L. S.; Chen, P. H.

    2017-02-01

    Copper is the most widely used material in heat pipe manufacturing. Since the capability of wick structures inside a heat pipe will dominate its thermal performance, in this study, we introduce a hybrid surface modification method on the copper wire braids being inserted as wick structure into an ultra-thin heat pipe. The hybrid method is the combination of a chemical-oxidation-based method and a sol-gel method with nanoparticles being dip-coated onto the braid. The experimental data show that braids under hybrid treatment perform higher water rising speed than the oxidized braids while owning higher water net weight than those braids being only dip-coated with nanoparticle.

  10. A new endovascular strategy utilizing a hybrid procedure for long segmental occlusion by acute arterial thromboembolism in the lower extremity.

    PubMed

    Kwak, JungWon; Chung, HwanHoon; Lee, SeungHwa; Kim, YunHwan; Cho, SungBum; Seo, TaeSuk; Jo, Wonmin; Shin, JaeSeung

    2016-07-01

    To evaluate a new endovascular strategy utilizing a hybrid procedure for long segmental arterial thromboembolism in a lower extremity by historical comparison with conventional endovascular strategy. In a new endovascular strategy, a hybrid procedure was performed for long segmental thromboembolism (longer than 15 cm) and an endovascular procedure for short segmental thromboembolism. The new strategy group (Group A) consisted of 24 procedures (13 hybrid procedures, 11 endovascular procedures) in 19 patients. Data were retrospectively collected from 24 consecutive procedures in 23 patients treated with the conventional strategy (Group B). The technical success of Groups A and B was 24/24 and 20/24, respectively (p = 0.11). Major amputation or mortality was not observed in Group A, whereas 3 major amputations and 4 deaths occurred in Group B. Clinical failure in Groups A and B was 0/24 and 7/24, respectively (p < 0.05). Continuous urokinase (UK) infusion was needed in 1/24 in Group A and 14/24 in Group B (p < 0.05). Mean procedure time was 4 h 17 min for Group A and 21 h 30 min for Group B (p < 0.05). The hybrid procedure may be faster and more effective than the conventional treatment in long segmental arterial thromboembolisms, while the conventional treatment is still effective for short segmental occlusions.

  11. Multifunctional Hybrid Fe2O3-Au Nanoparticles for Efficient Plasmonic Heating.

    PubMed

    Murph, Simona E Hunyadi; Larsen, George K; Lascola, Robert J

    2016-02-20

    One of the most widely used methods for manufacturing colloidal gold nanospherical particles involves the reduction of chloroauric acid (HAuCl4) to neutral gold Au(0) by reducing agents, such as sodium citrate or sodium borohydride. The extension of this method to decorate iron oxide or similar nanoparticles with gold nanoparticles to create multifunctional hybrid Fe2O3-Au nanoparticles is straightforward. This approach yields fairly good control over Au nanoparticle dimensions and loading onto Fe2O3. Additionally, the Au metal size, shape, and loading can easily be tuned by changing experimental parameters (e.g., reactant concentrations, reducing agents, surfactants, etc.). An advantage of this procedure is that the reaction can be done in air or water, and, in principle, is amenable to scaling up. The use of such optically tunable Fe2O3-Au nanoparticles for hyperthermia studies is an attractive option as it capitalizes on plasmonic heating of gold nanoparticles tuned to absorb light strongly in the VIS-NIR region. In addition to its plasmonic effects, nanoscale Au provides a unique surface for interesting chemistries and catalysis. The Fe2O3 material provides additional functionality due to its magnetic property. For example, an external magnetic field could be used to collect and recycle the hybrid Fe2O3-Au nanoparticles after a catalytic experiment, or alternatively, the magnetic Fe2O3 can be used for hyperthermia studies through magnetic heat induction. The photothermal experiment described in this report measures bulk temperature change and nanoparticle solution mass loss as functions of time using infrared thermocouples and a balance, respectively. The ease of sample preparation and the use of readily available equipment are distinct advantages of this technique. A caveat is that these photothermal measurements assess the bulk solution temperature and not the surface of the nanoparticle where the heat is transduced and the temperature is likely to be higher.

  12. Heating mode transition in a hybrid direct current/dual-frequency capacitively coupled CF{sub 4} discharge

    SciTech Connect

    Zhang, Quan-Zhi; Wang, You-Nian; Bogaerts, Annemie

    2014-06-14

    Computer simulations based on the particle-in-cell/Monte Carlo collision method are performed to study the plasma characteristics and especially the transition in electron heating mechanisms in a hybrid direct current (dc)/dual-frequency (DF) capacitively coupled CF{sub 4} discharge. When applying a superposed dc voltage, the plasma density first increases, then decreases, and finally increases again, which is in good agreement with experiments. This trend can be explained by the transition between the four main heating modes, i.e., DF coupling, dc and DF coupling, dc source dominant heating, and secondary electron dominant heating.

  13. Gasoline-powered serial hybrid cars cause lower life cycle carbon emissions than battery cars

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph J.; Lackner, Klaus S.

    2011-04-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available serial hybrid technology achieves the well known efficiency gains from regenerative breaking, lack of gearbox, and light weighting - even if the electricity is generated onboard, from conventional fuels. Here, we analyze emissions for commercially available, state-of the-art battery cars (e.g. Nissan Leaf) and those of commercially available serial hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that serial hybrid cars driven on (fossil) gasoline cause fewer life cycle GHG emissions (126g CO2e per km) than battery cars driven on current US grid electricity (142g CO2e per km). We attribute this novel finding to the significant incremental life cycle emissions from battery cars from losses during grid transmission, battery dis-/charging, and larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  14. Gasoline-powered series hybrid cars cause lower life cycle carbon emissions than battery cars

    NASA Astrophysics Data System (ADS)

    Meinrenken, Christoph; Lackner, Klaus S.

    2012-02-01

    Battery cars powered by grid electricity promise reduced life cycle green house gas (GHG) emissions from the automotive sector. Such scenarios usually point to the much higher emissions from conventional, internal combustion engine cars. However, today's commercially available series hybrid technology achieves the well known efficiency gains in electric drivetrains (regenerative breaking, lack of gearbox) even if the electricity is generated onboard, from conventional fuels. Here, we analyze life cycle GHG emissions for commercially available, state-of the-art plug-in battery cars (e.g. Nissan Leaf) and those of commercially available series hybrid cars (e.g., GM Volt, at same size and performance). Crucially, we find that series hybrid cars driven on (fossil) gasoline cause fewer emissions (126g CO2eq per km) than battery cars driven on current US grid electricity (142g CO2eq per km). We attribute this novel finding to the significant incremental emissions from plug-in battery cars due to losses during grid transmission and battery dis-/charging, and manufacturing larger batteries. We discuss crucial implications for strategic policy decisions towards a low carbon automotive sector as well as relative land intensity when powering cars by biofuel vs. bioelectricity.

  15. Ultra-wideband coaxial hybrid coupler for load resilient ion cyclotron range of frequency heating at fusion plasmas

    SciTech Connect

    Kim, H. J.; Bae, Y. S.; Yang, H. L.; Kwak, J.-G.; Wang, S. J.; Kim, B. K.; Choi, J. J.

    2012-06-25

    We designed a high power and ultra-wideband two-section 3 dB coaxial hybrid coupler for load resilient ion cyclotron range of frequency heating by configuring asymmetric impedance matching using a three-dimensional simulation code, hfss. By adjusting the characteristic impedances of main and coupled lines of the hybrid coupler, we realized that the bandwidth of the proposed circuit is not only wider than that of a conventional three-section coupler, but also that the bandwidth is almost twice as wide compared to the conventional two-section hybrid coupler while maintaining the identical overall size.

  16. Nonlinear variations of the reflexion coefficient for lower-hybrid heating

    NASA Astrophysics Data System (ADS)

    Petržílka, V. A.; Klíma, R.; Pavlo, P.

    1983-10-01

    The effect of the ponderomotive depression of the plasma density on the power reflexion coefficient is calculated in the first space harmonic approximation. Numerical results demonstrate a considerable growth of the reflexion coefficient when increasing the RF power. Exceptionally, the reflexion coefficient can be almost invariable up to high RF power densities ( 10kW cm-2), if the unperturbed plasma density gradient is high ( 5 × 1012 cm-4). The relation of the present theory to experiments is discussed.

  17. Enhanced thermal conductivity of novel multifunctional polyphenylene sulfide composites embedded with heat transfer networks of hybrid fillers

    NASA Astrophysics Data System (ADS)

    Leung, Siu N.; Khan, Omer M.; Chan, Ellen; Naguib, Hani E.; Dawson, Francis; Adinkrah, Vincent; Lakatos-Hayward, Laszlo

    2011-04-01

    Today's smaller, more powerful electronic devices, communications equipment, and lighting apparatus required optimum heat dissipation solutions. Traditionally, metals are widely known for their superior thermal conductivity; however, their good electrical conductivity has limited their applications in heat management components for microelectronic applications. This prompts the requirement to develop novel plastic composites that satisfy multifunctional requirements thermally, electrically, and mechanically. Furthermore, the moldability of polymer composites would make them ideal for manufacturing three-dimensional, net-shape enclosures and/or heat management assembly. Using polyphenylene sulfide (PPS) as the matrix, heat transfer networks were developed and structured by embedding hexagonal boron nitride (BN) alone, blending BN fillers of different shapes and sizes, as well as hybridizing BN fillers with carbonaceous nano- and micro-fillers. Parametric studies were conducted to elucidate the effects of types, shapes, sizes, and hybridization of fillers on the composite's thermal and electrical properties. The use of hybrid fillers, with optimized material formulations, was found to effectively promote a composite's thermal conductivity. This was achieved by optimizing the development of an interconnected thermal conductive network through structuring hybrid fillers with appropriate shapes and sizes. The thermal conductive composite affords unique opportunities to injection mold three-dimensional, net-shape microelectronic enclosures with superior heat dissipation performance.

  18. DEVELOPMENT OF A SOFTWARE DESIGN TOOL FOR HYBRID SOLAR-GEOTHERMAL HEAT PUMP SYSTEMS IN HEATING- AND COOLING-DOMINATED BUILDINGS

    SciTech Connect

    Yavuzturk, C. C.; Chiasson, A. D.; Filburn, T. P.

    2012-11-29

    This project provides an easy-to-use, menu-driven, software tool for designing hybrid solar-geothermal heat pump systems (GHP) for both heating- and cooling-dominated buildings. No such design tool currently exists. In heating-dominated buildings, the design approach takes advantage of glazed solar collectors to effectively balance the annual thermal loads on the ground with renewable solar energy. In cooling-dominated climates, the design approach takes advantage of relatively low-cost, unglazed solar collectors as the heat rejecting component. The primary benefit of hybrid GHPs is the reduced initial cost of the ground heat exchanger (GHX). Furthermore, solar thermal collectors can be used to balance the ground loads over the annual cycle, thus making the GHX fully sustainable; in heating-dominated buildings, the hybrid energy source (i.e., solar) is renewable, in contrast to a typical fossil fuel boiler or electric resistance as the hybrid component; in cooling-dominated buildings, use of unglazed solar collectors as a heat rejecter allows for passive heat rejection, in contrast to a cooling tower that consumes a significant amount of energy to operate, and hybrid GHPs can expand the market by allowing reduced GHX footprint in both heating- and cooling-dominated climates. The design tool allows for the straight-forward design of innovative GHP systems that currently pose a significant design challenge. The project lays the foundations for proper and reliable design of hybrid GHP systems, overcoming a series of difficult and cumbersome steps without the use of a system simulation approach, and without an automated optimization scheme. As new technologies and design concepts emerge, sophisticated design tools and methodologies must accompany them and be made usable for practitioners. Lack of reliable design tools results in reluctance of practitioners to implement more complex systems. A menu-driven software tool for the design of hybrid solar GHP systems is

  19. Spatial and temporal variation of the surface temperature and heat flux for saturated pool nucleate boiling at lower heat fluxes

    SciTech Connect

    Unal, C.; Pasamehmetoglu, K.O.

    1993-10-01

    The spatial and temporal variations of local surface temperature and heat flux for saturated pool nucleate boiling are investigated parametrically using a numerical model. The numerical model consisted of solving the three-dimensional transient heat conduction equation within the heater subjected to nucleate boiling over its upper surface. The surface topography model to distribute the cavities over the boiling surface used a Monte Carlo scheme. All cavities were assumed to be conical in shape. The cavity radii are obtained using an exponential probability density function with a known mean value. Local surface temperatures showed significant spatial and temporal variations, depending upon the surface topography and the heater material and thickness. However, the surface-averaged temperature showed practically no temporal variation. The temporal variations in local temperatures caused the surface-averaged heat flux to vary significantly. The temporal variations in the surface-averaged heat flux were similar for smooth and rough and thick and thin copper and nickel plates. Results indicated that the use of a classical energy balance equation to evaluate the surface heat flux must consider the spatial variation of the temperature. Results also showed that any thermocouple embedded beneath the surface of the heater does not follow the temporal variations at the surface.

  20. Next-Generation in Situ Hybridization Chain Reaction: Higher Gain, Lower Cost, Greater Durability

    PubMed Central

    2014-01-01

    Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability. PMID:24712299

  1. Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability.

    PubMed

    Choi, Harry M T; Beck, Victor A; Pierce, Niles A

    2014-05-27

    Hybridization chain reaction (HCR) provides multiplexed, isothermal, enzyme-free, molecular signal amplification in diverse settings. Within intact vertebrate embryos, where signal-to-background is at a premium, HCR in situ amplification enables simultaneous mapping of multiple target mRNAs, addressing a longstanding challenge in the biological sciences. With this approach, RNA probes complementary to mRNA targets trigger chain reactions in which metastable fluorophore-labeled RNA hairpins self-assemble into tethered fluorescent amplification polymers. The properties of HCR lead to straightforward multiplexing, deep sample penetration, high signal-to-background, and sharp subcellular signal localization within fixed whole-mount zebrafish embryos, a standard model system for the study of vertebrate development. However, RNA reagents are expensive and vulnerable to enzymatic degradation. Moreover, the stringent hybridization conditions used to destabilize nonspecific hairpin binding also reduce the energetic driving force for HCR polymerization, creating a trade-off between minimization of background and maximization of signal. Here, we eliminate this trade-off by demonstrating that low background levels can be achieved using permissive in situ amplification conditions (0% formamide, room temperature) and engineer next-generation DNA HCR amplifiers that maximize the free energy benefit per polymerization step while preserving the kinetic trapping property that underlies conditional polymerization, dramatically increasing signal gain, reducing reagent cost, and improving reagent durability.

  2. Biofidelity Evaluation of a Prototype Hybrid III 6 Year-Old ATD Lower Extremity.

    PubMed

    Boucher, Laura C; Bing, Julie; Bolte, John H

    2016-09-01

    Incomplete instrumentation and a lack of biofidelity in the extremities of the 6 year-old anthropomorphic test device (ATD) pose challenges when studying regions of the body known to interact with the vehicle interior. This study sought to compare a prototype Hybrid III 6 year-old ATD leg (ATD-LE), with a more biofidelic ankle and tibia load cell, to previously collected child volunteer data and to the current Hybrid III 6 year-old ATD (HIII). Anthropometry, range of motion (ROM), and stiffness measurements were taken, along with a dynamic evaluation of the ATD-LE using knee-bolster airbag (KBA) test scenarios. Anthropometry values were similar in eight of twelve measurements. Total ankle ROM was improved in the ATD-LE with no bumper compared to the HIII. The highest tibia moments and tibia index values were recorded in KBA scenarios when the toes were positioned in contact with the dashboard prior to airbag deployment, forcing the ankle into axial loading and dorsiflexion. While improvements in the biofidelity of the ATD-LE are still necessary, the results of this study are encouraging. Continued advancement of the 6 year-old ATD ankle is necessary to provide a tool to directly study the behavior of the leg during a motor vehicle crash.

  3. Heat transfer and loss by whole-body hyperthermia during severe lower-body heating are impaired in healthy older men.

    PubMed

    Brazaitis, Marius; Paulauskas, Henrikas; Eimantas, Nerijus; Obelieniene, Diana; Baranauskiene, Neringa; Skurvydas, Albertas

    2017-10-01

    Most studies demonstrate that aging is associated with a weakened thermoregulation. However, it remains unclear whether heat transfer (for heat loss) from the lower (uncompensable) to the upper (compensable) body during passively-induced severe lower-body heating is delayed or attenuated with aging. Therefore, the main purpose of this study was to investigate heat transfer from uncompensable to compensable body areas in young men and healthy older men during passively-induced whole-body hyperthermia with a demonstrated post-heating change in core body (rectal; Tre) temperature. Nine healthy older men and eleven healthy young men (69±6 vs. 21±1 years old, mean±SD, P<0.05) participated in passively-induced severe lower-body heating in water at approximately 43°C. Despite a similar increment in Tre (approximately 2.5°C) in both groups, the heating rate was significantly lower in older men than in young men (1.69±0.12 vs. 2.47±0.29°C/h, respectively; P<0.05). The temperature increase in calf muscle and calf skin (uncompensable areas) was significantly higher in older men than in young men (5.10±0.18 vs. 3.99±0.14°C; P<0.05 and 9.92±0.22 vs. 7.65±0.33°C; P<0.05, respectively). However, the temperature increase in back skin and forearm skin (compensable areas) was significantly lower in older men than in young men (0.76±0.63 vs. 2.83±0.68°C; P<0.05 and 0.39±0.76 vs. 2.73±0.5°C; P<0.05, respectively). Furthermore, a post-warming increase in Tre of approximately 0.2°C was observed only in older men (P<0.05). In conclusion, older men whose lower extremities were immersed showed greater accumulation and storage of heat in the skin and deep muscles than young men, and this was associated with a greater heat-transfer delay and subsequent inertia in the increased core body (Tre) temperature. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Hybrid intelligent control scheme for air heating system using fuzzy logic and genetic algorithm

    SciTech Connect

    Thyagarajan, T.; Shanmugam, J.; Ponnavaikko, M.; Panda, R.C.

    2000-01-01

    Fuzzy logic provides a means for converting a linguistic control strategy, based on expert knowledge, into an automatic control strategy. Its performance depends on membership function and rule sets. In the traditional Fuzzy Logic Control (FLC) approach, the optimal membership is formed by trial-and-error method. In this paper, Genetic Algorithm (GA) is applied to generate the optimal membership function of FLC. The membership function thus obtained is utilized in the design of the Hybrid Intelligent Control (HIC) scheme. The investigation is carried out for an Air Heat System (AHS), an important component of drying process. The knowledge of the optimum PID controller designed, is used to develop the traditional FLC scheme. The computational difficulties in finding optimal membership function of traditional FLC is alleviated using GA In the design of HIC scheme. The qualitative performance indices are evaluated for the three control strategies, namely, PID, FLC and HIC. The comparison reveals that the HIC scheme designed based on the hybridization of FLC with GA performs better. Moreover, GA is found to be an effective tool for designing the FLC, eliminating the human interface required to generate the membership functions.

  5. Dynamics of nonlinear wave interactions between upper and lower hybrid waves in an HF pumped ionospheric plasma

    NASA Astrophysics Data System (ADS)

    Norin, Lars; Grach, Savely; Thide, Bo

    During the past thirty years it has been experimentally verified that the ionosphere responds nonlinearly when subjected to strong high-frequency radio waves such as those from modern high-power broadcasting stations. This response gives rise to plasma turbulence that can be probed by external scatter radars. In addition, the ionospheric plasma turbulence emits secondary electromagnetic radiation on its own, today commonly known as stimulated electromagnetic emission. This intrinsically generated radiation can be easily observed and analysed remotely, even on the ground. By systematic experimentation it has been possible to discover and study a number of new ionospheric wave-plasma processes. In particular, a family of prominent narrow frequency peaks have been attributed to nonlinear wave interactions between upper and lower hybrid waves. Here we analyse this theoretical model in the nonlinear stage by numerically solving a system of differential equations, describing the dynamics of the participating upper and lower hybrid waves within the two-fluid approximation, driven by an external source. Using parameters typical for the ionospheric F-region the solution of the system in the nonlinear stage shows an overshoot of the wave amplitudes within the first 15—20 ms after turning on the external source. The system reaches a steady state after approximately 30—40 ms. We show that the model predicts a dynamical evolution very similar to the one observed in experiments. Our results demonstrate that the theoretical model for the interaction of upper and lower hybrid waves in the nonlinear stage can describe the dynamical evolution observed in experiments.

  6. Turbulent heat transfer and pressure drop characteristics of dilute water based Al2O3-Cu hybrid nanofluids.

    PubMed

    Suresh, S; Venkitaraj, K P; Hameed, M Shahul; Sarangan, J

    2014-03-01

    A study on fully developed turbulent convective heat transfer and pressure drop characteristics of Al2O3-Cu/water hybrid nanofluid flowing through a uniformly heated circular tube is presented in this paper. For this, Al2O3-Cu nanocomposite powder was synthesized in a thermo chemical route using hydrogen reduction technique and dispersed the hybrid nano powder in deionised water to form a stable hybrid nanofluid of 0.1% volume concentration. The prepared powder was characterized by X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM) to confirm the chemical composition, determine the particle size and study the surface morphology. Stability of the nanofluid was ensured by pH and zeta potential measurements. The average heat transfer enhancement for Al2O3-Cu/water hybrid nanofluid is 8.02% when compared to pure water. The experimental results also showed that 0.1% Al2O3-Cu/water hybrid nanofluids have slightly higher friction factor compared to 0.1% Al2O3/water nanofluid. The empirical correlations proposed for Nusselt number and friction factor were well agreed with the experimental data.

  7. Hybrid pressure retarded osmosis-membrane distillation system for power generation from low-grade heat: thermodynamic analysis and energy efficiency.

    PubMed

    Lin, Shihong; Yip, Ngai Yin; Cath, Tzahi Y; Osuji, Chinedum O; Elimelech, Menachem

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 °C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 °C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for performance

  8. Hybrid Pressure Retarded Osmosis-Membrane Distillation System for Power Generation from Low-Grade Heat: Thermodynamic Analysis and Energy Efficiency

    SciTech Connect

    Lin, SH; Yip, NY; Cath, TY; Osuji, CO; Elimelech, M

    2014-05-06

    We present a novel hybrid membrane system that operates as a heat engine capable of utilizing low-grade thermal energy, which is not readily recoverable with existing technologies. The closed-loop system combines membrane distillation (MD), which generates concentrated and pure water streams by thermal separation, and pressure retarded osmosis (PRO), which converts the energy of mixing to electricity by a hydro-turbine. The PRO-MD system was modeled by coupling the mass and energy flows between the thermal separation (MD) and power generation (PRO) stages for heat source temperatures ranging from 40 to 80 degrees C and working concentrations of 1.0, 2.0, and 4.0 mol/kg NaCl. The factors controlling the energy efficiency of the heat engine were evaluated for both limited and unlimited mass and heat transfer kinetics in the thermal separation stage. In both cases, the relative flow rate between the MD permeate (distillate) and feed streams is identified as an important operation parameter. There is an optimal relative flow rate that maximizes the overall energy efficiency of the PRO-MD system for given working temperatures and concentration. In the case of unlimited mass and heat transfer kinetics, the energy efficiency of the system can be analytically determined based on thermodynamics. Our assessment indicates that the hybrid PRO-MD system can theoretically achieve an energy efficiency of 9.8% (81.6% of the Carnot efficiency) with hot and cold working temperatures of 60 and 20 degrees C, respectively, and a working solution of 1.0 M NaCl. When mass and heat transfer kinetics are limited, conditions that more closely represent actual operations, the practical energy efficiency will be lower than the theoretically achievable efficiency. In such practical operations, utilizing a higher working concentration will yield greater energy efficiency. Overall, our study demonstrates the theoretical viability of the PRO-MD system and identifies the key factors for

  9. Electromagnetic dust-lower-hybrid and dust-magnetosonic waves and their instabilities in a dusty magnetoplasma

    SciTech Connect

    Salimullah, M.; Rahman, M. M.; Zeba, I.; Shah, H. A.; Murtaza, G.; Shukla, P. K.

    2006-12-15

    The electromagnetic waves below the ion-cyclotron frequency have been examined in a collisionless and homogeneous dusty plasma in the presence of a dust beam parallel to the direction of the external magnetic field. The low-frequency mixed electromagnetic dust-lower-hybrid and purely transverse magnetosonic waves become unstable for the sheared flow of dust grains and grow in amplitude when the drift velocity of the dust grains exceeds the parallel phase velocity of the waves. The growth rate depends dominantly upon the thermal velocity and density of the electrons.

  10. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    SciTech Connect

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W. . Plasma Physics Lab.); Jones, S.; Paoletti, F. . Plasma Fusion Center); Petravich, G. . Central Research Inst. for Physics); Rimini,

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 [times] 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  11. A camera for imaging hard x-rays from suprathermal electrons during lower hybrid current drive on PBX-M

    SciTech Connect

    von Goeler, S.; Kaita, R.; Bernabei, S.; Davis, W.; Fishman, H.; Gettelfinger, G.; Ignat, D.; Roney, P.; Stevens, J.; Stodiek, W.; Jones, S.; Paoletti, F.; Petravich, G.; Rimini, F.

    1993-05-01

    During lower hybrid current drive (LHCD), suprathermal electrons are generated that emit hard X-ray bremsstrahlung. A pinhole camera has been installed on the PBX-M tokamak that records 128 {times} 128 pixel images of the bremsstrahlung with a 3 ms time resolution. This camera has identified hollow radiation profiles on PBX-M, indicating off-axis current drive. The detector is a 9in. dia. intensifier. A detailed account of the construction of the Hard X-ray Camera, its operation, and its performance is given.

  12. Modification of Current Profile, Toroidal Rotation and Pedestal by Lower Hybrid Waves in Alcator C-Mod

    SciTech Connect

    Parker, R.; Bonoli, P. T.; Meneghini, O.; Porkolab, M.; Schmidt, A. E.; Shiraiwa, S.; Wallace, G.; Hubbard, A. E.; Hughes, J. W.; Ko, J.-S.; McDermott, R. M.; Reinke, M. L.; Rice, J. E.; Wilson, J. R.; Scott, S.

    2009-11-26

    Recent results from the lower hybrid current drive experiments on Alcator C-Mod are presented. These include i) MSE measurements of broadened LHCD current profiles; ii) development of counter rotation comparable to the rate of injected wave momentum; iii) modification of pedestals and rotation in H-mode; and iv) development of a new FEM-based code that models LH wave propagation from the RF source to absorption in the plasma. An improved antenna concept that will be used in the upcoming C-Mod campaigns is also briefly described.

  13. A complete geothermal energy cycle with heat pumps and hybrid HVAC systems for the city of Denizli, Turkey

    SciTech Connect

    Eltez, M.; Kilkis, I.B. |

    1995-12-31

    This paper discusses general aspects of maximizing geofluid effectiveness by employing hybrid cycle plants coupled to district HVAC systems. Alternative and new techniques in space heating and cooling are also discussed. A case study is presented for the district HVAC system for the city of Denizli in Turkey. Results are compared with an open-cycle, open-loop system.

  14. Investigation of lower hybrid wave coupling and current drive experiments at different configurations in experimental advanced superconducting tokamak

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Qin, Y. L.; Li, W. K.; Li, M. H.; Kong, E. H.; Zhang, L.; Ekedahl, A.; Peysson, Y.; Decker, J.; Wang, M.; Xu, H. D.; Hu, H. C.; Xu, G. S.; Shan, J. F.; Liu, F. K.; Zhao, Y. P.; Wan, B. N.; Li, J. G.; Group, EAST

    2011-08-01

    Using a 2 MW 2.45 GHz lower hybrid wave (LHW) system installed in experimental advanced superconducting tokamak, we have systematically carried out LHW-plasma coupling and lower hybrid current drive experiments in both divertor (double null and lower single null) and limiter plasma configuration with plasma current (Ip) ˜ 250 kA and central line averaged density (ne) ˜ 1.0-1.3 × 1019 m-3 recently. Results show that the reflection coefficient (RC) first is flat up to some distance between plasma and LHW grill, and then increases with the distance. Studies indicate that with the same plasma parameters, the best coupling is obtained in the limiter case (with plasma leaning on the inner wall), followed by the lower single null, and the one with the worst coupling is the double null configuration, explained by different magnetic connection length. The RCs in the different poloidal rows show that they have different coupling characteristics, possibly due to local magnetic connection length. Current drive efficiency has been investigated by a least squares fit with N//peak=2.1, where N//peak is the peak value of parallel refractive index of the launched wave. Results show that there is no obvious difference in the current drive efficiency between double null and lower single null cases, whereas the efficiency is somewhat small in the limiter configuration. This is in agreement with the ray tracing/Fokker-Planck code simulation by LUKE/C3PO and can be interpreted by the power spectrum up-shift factor in different plasma configurations. A transformer recharge is realized with ˜0.8 MW LHW power and the energy conversion efficiency from LHW to poloidal field energy is about 2%.

  15. In vivo phosphorus-31 nuclear magnetic resonance reveals lowered ATP during heat shock of Tetrahymena

    SciTech Connect

    Findly, R.C.; Gillies, R.J.; Shulman, R.G.

    1983-03-11

    Cells synthesize a characteristic set of proteins--heat shock proteins--in response to a rapid temperature jump or certain other stress treatments. The technique of phosphorus-31 nuclear magnetic resonance spectroscopy was used to examine in vivo the effects of temperature jump on two species of Tetrahymena that initiate the heat shock response at different temperatures. An immediate 50 percent decrease in cellular adenosine triphosphate was observed when either species was jumped to a temperature that strongly induces synthesis of heat shock proteins. This new adenosine triphosphate concentration was maintained at the heat shock temperature.

  16. Induction of cambial reactivation by localized heating in a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata).

    PubMed

    Begum, Shahanara; Nakaba, Satoshi; Oribe, Yuichiro; Kubo, Takafumi; Funada, Ryo

    2007-09-01

    The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.

  17. Body heat storage during physical activity is lower with hot fluid ingestion under conditions that permit full evaporation.

    PubMed

    Bain, A R; Lesperance, N C; Jay, O

    2012-10-01

    To assess whether, under conditions permitting full evaporation, body heat storage during physical activity measured by partitional calorimetry would be lower with warm relative to cold fluid ingestion because of a disproportionate increase in evaporative heat loss potential relative to internal heat transfer with the ingested fluid. Nine males cycled at 50% VO(2max) for 75 min at 23.6 ± 0.6 °C and 23 ± 11% RH while consuming water of either 1.5 °C, 10 °C, 37 °C or 50 °C in four 3.2 mL kg(-1) boluses. The water was administered 5 min before and 15, 30 and 45 min following the onset of exercise. No differences in metabolic heat production, sensible or respiratory heat losses (all P > 0.05) were observed between fluid temperatures. However, while the increased internal heat loss with cold fluid ingestion was paralleled by similar reductions in evaporative heat loss potential at the skin (E(sk) ) with 10 °C (P = 0.08) and 1.5 °C (P = 0.55) fluid, the increased heat load with warm (50 °C) fluid ingestion was accompanied by a significantly greater E(sk) (P = 0.04). The resultant calorimetric heat storage was lower with 50 °C water ingestion in comparison to 1.5 °C, 10 °C and 37 °C (all P < 0.05). In contrast, heat storage derived conventionally using thermometry yielded higher values following 50 °C fluid ingestion compared to 1.5 °C (P = 0.025). Under conditions permitting full sweat evaporation, body heat storage is lower with warm water ingestion, likely because of disproportionate modulations in sweat output arising from warm-sensitive thermosensors in the esophagus/stomach. Local temperature changes of the rectum following fluid ingestion exacerbate the previously identified error of thermometric heat storage estimations. © 2012 The Authors Acta Physiologica © 2012 Scandinavian Physiological Society.

  18. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere

    SciTech Connect

    Pasko, V.P.; Inan, U.S.; Bell, T.F.; Taranenko, Y.N.

    1997-03-01

    Quasi-electrostatic (QE) fields that temporarily exist at high altitudes following the sudden removal (e.g., by a lightning discharge) of thundercloud charge at low altitudes lead to ambient electron heating (up to {approximately}5eV average energy), ionization of neutrals, and excitation of optical emissions in the mesosphere/lower ionosphere. Model calculations predict the possibility of significant (several orders of magnitude) modification of the lower ionospheric conductivity in the form of depletions of electron density due to dissociative attachment to O{sub 2} molecules and/or in the form of enhancements of electron density due to breakdown ionization. Results indicate that the optical emission intensities of the 1st positive band of N{sub 2} corresponding to fast ({approximately}1ms) removal of 100{endash}300 C of thundercloud charge from 10 km altitude are in good agreement with observations of the upper part ({open_quotes}head{close_quotes} and {open_quotes}hair{close_quotes} [{ital Sentman} {ital et al.}, 1995]) of the sprites. The typical region of brightest optical emission has horizontal and vertical dimensions {approximately}10km, centered at altitudes 70 km and is interpreted as the head of the sprite. The model also shows the formation of low intensity glow ({open_quotes}hair{close_quotes}) above this region due to the excitation of optical emissions at altitudes {approximately}85km during {approximately}500{mu}s at the initial stage of the lightning discharge. Comparison of the optical emission intensities of the 1st and 2nd positive bands of N{sub 2}, Meinel and 1st negative bands of N{sub 2}{sup +}, and 1st negative band of O{sub 2}{sup +} demonstrates that the 1st positive band of N{sub 2} is the dominating optical emission in the altitude range around {approximately}70km, which accounts for the observed red color of sprites, in excellent agreement with recent spectroscopic observations of sprites. (Abstract Truncated)

  19. Sensitivity analysis of hydraulic and thermal parameters inducing anomalous heat flow in the Lower Yarmouk Gorge

    NASA Astrophysics Data System (ADS)

    Goretzki, Nora; Inbar, Nimrod; Kühn, Michael; Möller, Peter; Rosenthal, Eliyahu; Schneider, Michael; Siebert, Christian; Magri, Fabien

    2016-04-01

    The Lower Yarmouk Gorge, at the border between Israel and Jordan, is characterized by an anomalous temperature gradient of 46 °C/km. Numerical simulations of thermally-driven flow show that ascending thermal waters are the result of mixed convection, i.e. the interaction between the regional flow from the surrounding heights and buoyant flow within permeable faults [1]. Those models were calibrated against available temperature logs by running several forward problems (FP), with a classic "trial and error" method. In the present study, inverse problems (IP) are applied to find alternative parameter distributions that also lead to the observed thermal anomalies. The investigated physical parameters are hydraulic conductivity and thermal conductivity. To solve the IP, the PEST® code [2] is applied via the graphical interface FEPEST® in FEFLOW® [3]. The results show that both hydraulic and thermal conductivity are consistent with the values determined with the trial and error calibrations, which precede this study. However, the IP indicates that the hydraulic conductivity of the Senonian Paleocene aquitard can be 8.54*10-3 m/d, which is three times lower than the originally estimated value in [1]. Moreover, the IP suggests that the hydraulic conductivity in the faults can increase locally up to 0.17 m/d. These highly permeable areas can be interpreted as local damage zones at the faults/units intersections. They can act as lateral pathways in the deep aquifers that allow deep outflow of thermal water. This presentation provides an example about the application of FP and IP to infer a wide range of parameter values that reproduce observed environmental issues. [1] Magri F, Inbar N, Siebert C, Rosenthal E, Guttman J, Möller P (2015) Transient simulations of large-scale hydrogeological processes causing temperature and salinity anomalies in the Tiberias Basin. Journal of Hydrology, 520, 342-355 [2] Doherty J (2010) PEST: Model-Independent Parameter Estimation. user

  20. Lower-Energy Energy Storage System (LEESS) Evaluation in a Full-Hybrid Electric Vehicle (HEV) (Presentation)

    SciTech Connect

    Cosgrove, J.; Gonder, J.; Pesaran, A.

    2013-11-01

    The cost of hybrid electric vehicles (HEVs) (e.g., Toyota Prius or Ford Fusion Hybrid) remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can improve the vehicle-level cost-benefit relationship, which would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The National Renewable Energy Laboratory (NREL) collaborated with a United States Advanced Battery Consortium (USABC) Workgroup to analyze trade-offs between vehicle fuel economy and reducing the minimum energy requirement for power-assist HEVs. NREL's analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than previous targets, which prompted the United States Advanced Battery Consortium (USABC) to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies, including high-power batteries or ultracapacitors. NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform and in-vehicle evaluation results using a lithium-ion capacitor ESS-an asymmetric electrochemical energy storage device possessing one electrode with battery-type characteristics (lithiated graphite) and one with ultracapacitor-type characteristics (carbon). Further efforts include testing other ultracapacitor technologies in the HEV test platform.

  1. A Wind-Driven, Hybrid Latent and Sensible Heat Coastal Polynya at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Hirano, D.; Fukamachi, Y.; Watanabe, E.; Iwamoto, K.; Mahoney, A. R.; Eicken, H.; Shimizu, D.; Ohshima, K. I.; Tamura, T.

    2014-12-01

    The nature of the Barrow Coastal Polynya (BCP) formed off the Alaska Coast in winter is examined using mooring data (temperature, salinity, and ocean current), atmospheric re-analysis data (ERA-Interim), and AMSR-E-derived sea-ice concentration and production data (Iwamoto et al., 2014). Previously, the BCP has been considered to be a latent heat polynya formed by predominantly offshore winds resulting in sea-ice divergence. Recently, it has been suggested that the sea-ice production rate in the BCP is suppressed by warm Pacific- or Atlantic-origin waters distributed beneath the BCP (e.g. Itoh et al., 2012). In this study, we focus on the oceanographic conditions such as water mass distribution and ocean current structure beneath the BCP, which have not been fully documented. A mooring was deployed off Barrow, Alaska in the northeast Chukchi Sea (71.23°N, 157.65°W, water depth 55 m) from August 2009 to July 2010. During the freeze-up period from December to May, five BCP events occurred in the same manner; 1) dominant wind parallel to Barrow Canyon, with an offshore component near Barrow, 2) high sea-ice production followed by sudden cessation of ice growth, 3) upwelling of warm (>2 K above freezing point) and saline (>34) Atlantic Water (AW) beneath the BCP, 4) strong up-canyon flow (>100cm/s) associated with density fluctuations. A baroclinic current structure, established after the upwelling, resulted in enhanced vertical shear, promoting vertical mixing. The mixing event and open water formation occurred simultaneously, once sea-ice production had stopped. Thus, mixing events accompanied by ocean heat flux from AW into the surface layer were likely to form/maintain the open water area that is a sensible heat polynya. The transition from a latent to a sensible heat polynya was well reproduced by a pan-Arctic ice-ocean model (COCO). We propose that the BCP is a hybrid latent and sensible heat polynya, with both processes driven by the same offshore wind.

  2. A hybrid active force control of a lower limb exoskeleton for gait rehabilitation.

    PubMed

    Taha, Zahari; Abdul Majeed, Anwar P P; Zainal Abidin, Amar Faiz; Hashem Ali, Mohammed A; Khairuddin, Ismail Mohd; Deboucha, Abdelhakim; Wong Paul Tze, Mohd Yashim

    2017-08-15

    Owing to the increasing demand for rehabilitation services, robotics have been engaged in addressing the drawbacks of conventional rehabilitation therapy. This paper focuses on the modelling and control of a three-link lower limb exoskeleton for gait rehabilitation that is restricted to the sagittal plane. The exoskeleton that is modelled together with a human lower limb model is subjected to a number of excitations at its joints while performing a joint space trajectory tracking, to investigate the effectiveness of the proposed controller in compensating disturbances. A particle swarm optimised active force control strategy is proposed to facilitate disturbance rejection of a conventional proportional-derivative (PD) control algorithm. The simulation study provides considerable insight into the robustness of the proposed method in attenuating the disturbance effect as compared to the conventional PD counterpart without compromising its tracking performance. The findings from the study further suggest its potential employment on a lower limb exoskeleton.

  3. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-01

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me . In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me . The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where k →.B → =0 , consistent with previous analytical and simulation studies. Here, B → is the equilibrium magnetic field and k → is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at k →.B → ≠0 . In addition, the simulation results indicate that varying mi/me , the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  4. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    DOE PAGES

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; ...

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location wheremore » $$\\vec{k}$$• $$\\vec{B}$$ =0, consistent with previous analytical and simulation studies. Here, $$\\vec{B}$$ is the equilibrium magnetic field and $$\\vec{k}$$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $$\\vec{k}$$ •$$\\vec{B}$$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.« less

  5. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    NASA Astrophysics Data System (ADS)

    Jia, Guozhang; Xiang, Nong; Wang, Xueyi; Huang, Yueheng; Lin, Yu

    2016-01-01

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ˜ 3ωLH, where ωLH represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ˜ 1.3ωLH), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  6. Experimental Measurements of the Lower Hybrid Electric Field on Alcator C-Mod by Stark Effect Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hillis, D. L.; Mumgaard, R.; Lau, C.; Wallace, G.; Shiraiwa, S.

    2016-10-01

    A new diagnostic was installed on Alcator C-Mod capable of determining both the magnitude and direction of the lower hybrid wave electric field, ELH . The diagnostic, named SELHF (Stark Effect Lower Hybrid Field), simultaneously measures the two orthogonal polarization states of the Dβ spectra by passive optical emission spectroscopy. The ELH vector is then determined by systematically fitting the spectrum to the EZSSS (Explicit Zeeman-Stark Spectra Simulator) code which incorporates a fully quantum mechanical model comprising of the appropriate dynamic electric field and magnetic field operators. The SELHF diagnostic has 27 unique views of the LH launcher and surrounding space, each integrating over a 3 cm in diameter sightline, which is comparable to the waveguide dimension. Two sightlines are simultaneously viewed, yielding four spectra per discharge. In this presentation the diagnostic setup will be given. The methodology behind the spectral modeling and the results of the associated error analysis, yielding the accuracy of the ELH vector information, will be presented. The initial experimental results compared against a 2D cold-plasma model in COMSOL will be discussed. Work supported by DoE Contract No. DE-FC02-99ER54512 on Alcator C-Mod, a Department of Energy Office of Science user facility.

  7. Optimized calculation of the synergy conditions between electron cyclotron current drive and lower hybrid current drive on EAST

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Bo-Jiang, Ding; Y, Peysson; J, Decker; Miao-Hui, Li; Xin-Jun, Zhang; Xiao-Jie, Wang; Lei, Zhang

    2016-01-01

    The optimized synergy conditions between electron cyclotron current drive (ECCD) and lower hybrid current drive (LHCD) with normal parameters of the EAST tokamak are studied by using the C3PO/LUKE code based on the understanding of the synergy mechanisms so as to obtain a higher synergistic current and provide theoretical reference for the synergistic effect in the EAST experiment. The dependences of the synergistic effect on the parameters of two waves (lower hybrid wave (LHW) and electron cyclotron wave (ECW)), including the radial position of the power deposition, the power value of the LH and EC waves, and the parallel refractive indices of the LHW (N∥) are presented and discussed. Project supported by the National Magnetic Confinement Fusion Science Program of China (Grant Nos. 2011GB102000, 2012GB103000, and 2013GB106001), the National Natural Science Foundation of China (Grant Nos. 11175206 and 11305211), the JSPS-NRF-NSFC A3 Foresight Program in the Field of Plasma Physics (Grant No. 11261140328), and the Fundamental Research Funds for the Central Universities of China (Grant No. JZ2015HGBZ0472).

  8. Particle simulations of mode conversion between slow mode and fast mode in lower hybrid range of frequencies

    SciTech Connect

    Jia, Guozhang; Xiang, Nong; Huang, Yueheng; Wang, Xueyi; Lin, Yu

    2016-01-15

    The propagation and mode conversion of lower hybrid waves in an inhomogeneous plasma are investigated by using the nonlinear δf algorithm in a two-dimensional particle-in-cell simulation code based on the gyrokinetic electron and fully kinetic ion (GeFi) scheme [Lin et al., Plasma Phys. Controlled Fusion 47, 657 (2005)]. The characteristics of the simulated waves, such as wavelength, frequency, phase, and group velocities, agree well with the linear theoretical analysis. It is shown that a significant reflection component emerges in the conversion process between the slow mode and the fast mode when the scale length of the density variation is comparable to the local wavelength. The dependences of the reflection coefficient on the scale length of the density variation are compared with the results based on the linear full wave model for cold plasmas. It is indicated that the mode conversion for the waves with a frequency of 2.45 GHz (ω ∼ 3ω{sub LH}, where ω{sub LH} represents the lower hybrid resonance) and within Tokamak relevant amplitudes can be well described in the linear scheme. As the frequency decreases, the modification due to the nonlinear term becomes important. For the low-frequency waves (ω ∼ 1.3ω{sub LH}), the generations of the high harmonic modes and sidebands through nonlinear mode-mode coupling provide new power channels and thus could reduce the reflection significantly.

  9. Medium-energy electrons and heavy ions in Jupiter's magnetosphere - Effects of lower hybrid wave-particle interactions

    NASA Technical Reports Server (NTRS)

    Barbosa, D. D.

    1986-01-01

    A theory of medium-energy (about keV) electrons and heavy ions in Jupiter's magnetosphere is presented. Lower hybrid waves are generated by the combined effects of a ring instability of neutral wind pickup ions and the modified two-stream instability associated with transport of cool Iogenic plasma. The quasi-linear energy diffusion coefficient for lower hybrid wave-particle interactions is evaluated, and several solutions to the diffusion equation are given. Calculations based on measured wave properties show that the noise substantially modifies the particle distribution functions. The effects are to accelerate superthermal ions and electrons to keV energies and to thermalize the pickup ions on time scales comparable to the particle residence time. The S(2+)/S(+) ratio at medium energies is a measure of the relative contribution from Iogenic thermal plasma and neutral wind ions, and this important quantity should be determined from future measurements. The theory also predicts a preferential acceleration of heavy ions with an accleration time that scales inversely with the root of the ion mass. Electrons accelerated by the process contribute to further reionization of the neutral wind by electron impact, thus providing a possible confirmation of Alfven's critical velocity effect in the Jovian magnetosphere.

  10. Sprites produced by quasi-electrostatic heating and ionization in the lower ionosphere

    NASA Astrophysics Data System (ADS)

    Pasko, V. P.; Inan, U. S.; Bell, T. F.; Taranenko, Y. N.

    1997-03-01

    Quasi-electrostatic (QE) fields that temporarily exist at high altitudes following the sudden removal (e.g., by a lightning discharge) of thundercloud charge at low altitudes lead to ambient electron heating (up to ~5eV average energy), ionization of neutrals, and excitation of optical emissions in the mesosphere/lower ionosphere. Model calculations predict the possibility of significant (several orders of magnitude) modification of the lower ionospheric conductivity in the form of depletions of electron density due to dissociative attachment to O2 molecules and/or in the form of enhancements of electron density due to breakdown ionization. Results indicate that the optical emission intensities of the 1st positive band of N2 corresponding to fast (~1ms) removal of 100-300 C of thundercloud charge from 10 km altitude are in good agreement with observations of the upper part (``head'' and ``hair'' [Sentman et al., 1995]) of the sprites. The typical region of brightest optical emission has horizontal and vertical dimensions ~10km, centered at altitudes 70 km and is interpreted as the head of the sprite. The model also shows the formation of low intensity glow (``hair'') above this region due to the excitation of optical emissions at altitudes ~85km during ~500μs at the initial stage of the lightning discharge. Comparison of the optical emission intensities of the 1st and 2nd positive bands of N2, Meinel and 1st negative bands of N2+, and 1st negative band of O2+ demonstrates that the 1st positive band of N2 is the dominating optical emission in the altitude range around ~70km, which accounts for the observed red color of sprites, in excellent agreement with recent spectroscopic observations of sprites. Results indicate that the optical emission levels are predominantly defined by the lightning discharge duration and the conductivity properties of the atmosphere/lower ionosphere (i.e., relaxation time of electric field in the conducting medium). The model demonstrates

  11. Refinement of the Upper and Lower Bounds of Effective Heat Conductivity Coefficients of Rib-Reinforced Composite Media

    NASA Astrophysics Data System (ADS)

    Yankovskii, A. P.

    2016-07-01

    We propose two refined structural models of the thermal behavior of a rib-reinforced composite medium at general anisotropy of the materials of compound components. For the criterion of equivalence of the rib-reinforced composite to the fictitious homogeneous anisotropic material, equality of the specific heat dissipation in them was used, which permits determining the upper and lower bounds of the effective heat conductivity coefficients of the composite material. The design values of the effective heat conductivity coefficients of a honeycomb structure with cavities filled and not filled with foam plastic have been determined. It has been shown that the refinement of certain thermal characteristics of 12%, and the refined "fork" of values of these quantities, does not exceed 2.5%. Indirect comparison has been made between the calculated and experimental values of the effective heat conductivity coefficients of such compounds, which has shown that the results obtained in the work are qualitatively reliable.

  12. Impact of SOL plasma profiles on lower hybrid current drive: Experimental evidence, mitigation and modeling approaches

    NASA Astrophysics Data System (ADS)

    Shiraiwa, S.; Baek, S. G.; Faust, I.; Wallace, G.; Bonoli, P.; Meneghini, O.; Mumgaard, R.; Parker, R.; Scott, S.; Harvey, R. W.; Ding, B. J.; Li, M. H.; Lin, S. Y.; Yang, C.

    2015-12-01

    Recent progress in understanding and mitigating parasitic wave absorption in edge plasmas is presented. Experimental observations collected on Alcator C-Mod suggest multiple physics mechanisms are involved in such losses. Localized measurement of parametric decay instabilities (PDIs) has been performed using RF Langmuir probes. The divertor heat flux due to LH and ionization power loss have been evaluated quantitatively. We observe that the LHCD efficiency can be recovered when the SOL density profile is controlled by operating the tokamak at high current. The experimental progresses motivated a re-examination of the LHCD simulation model based on the ray-tracing/Fokker-Planck code (GENRAY/CQL3D). The effect of introducing a relatively small wave number broadening in the launched power spectrum and using 2D SOL density and temperature profiles was investigated. Comparison with C-Mod experiment indicates that the new model can explain the experimental trend over a wider density range including the density regime where disagreement was seen previously, suggesting that including realistic SOL geometry is a key to improve the simulation accuracy.

  13. Integrated Plasma Simulation of Lower Hybrid Current Drive Modification of Sawtooth in Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Bonoli, P. T.; Hubbard, A. E.; Schmidt, A. E.; Wright, J. C.; Kessel, C. E.; Batchelor, D. B.; Berry, L. A.; Harvey, R. W.

    2010-11-01

    Experiments were performed in Alcator C-Mod, where the onset time for sawteeth was delayed significantly (up to 0.5 s) relative to ohmically heated plasmas, through injection of off-axis LH current drive power [1]. In this poster we discuss simulations of these experiments using the Integrated Plasma Simulator (IPS) [2], through which driven current density profiles and hard x-ray spectra are computed using a ray tracing code (GENRAY) and Fokker Planck code (CQL3D) [3], that are executed repeatedly in time. The background plasma is evolved in these simulations using the TSC transport code with the Porcelli sawtooth model [4]. [4pt] [1] C. E. Kessel et al, Bull. of the Am. Phys. Soc. 53, Poster PP6.00074 (2008). [0pt] [2] D. Batchelor et al, Journal of Physics: Conf. Series 125, 012039 (2008). [0pt] [3] R. W. Harvey and M. G. McCoy, Proc. of the IAEA Tech. Comm. Mtg. on Sim. and Mod. of Therm. Plasmas, Montreal, Canada (1992). [0pt] [4] S. C. Jardin et al, Journal Comp. Phys. 66, 481 (1986).

  14. Ion heating and energy partition at the heliospheric termination shock: hybrid simulations and analytical model

    SciTech Connect

    Gary, S Peter; Winske, Dan; Wu, Pin; Schwadron, N A; Lee, M

    2009-01-01

    The Los Alamos hybrid simulation code is used to examine heating and the partition of dissipation energy at the perpendicular heliospheric termination shock in the presence of pickup ions. The simulations are one-dimensional in space but three-dimensional in field and velocity components, and are carried out for a range of values of pickup ion relative density. Results from the simulations show that because the solar wind ions are relatively cold upstream, the temperature of these ions is raised by a relatively larger factor than the temperature of the pickup ions. An analytic model for energy partition is developed on the basis of the Rankine-Hugoniot relations and a polytropic energy equation. The polytropic index {gamma} used in the Rankine-Hugoniot relations is varied to improve agreement between the model and the simulations concerning the fraction of downstream heating in the pickup ions as well as the compression ratio at the shock. When the pickup ion density is less than 20%, the polytropic index is about 5/3, whereas for pickup ion densities greater than 20%, the polytropic index tends toward 2.2, suggesting a fundamental change in the character of the shock, as seen in the simulations, when the pickup ion density is large. The model and the simulations both indicate for the upstream parameters chosen for Voyager 2 conditions that the pickup ion density is about 25% and the pickup ions gain the larger share (approximately 90%) of the downstream thermal pressure, consistent with Voyager 2 observations near the shock.

  15. Electromagnetic particle simulation of the effect of toroidicity on linear mode conversion and absorption of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Bao, J.; Lin, Z.; Kuley, A.; Wang, Z. X.

    2016-06-01

    Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in fusion plasmas have been studied using electromagnetic particle simulation. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance.

  16. Estimation of the ion toroidal rotation source due to momentum transfer from Lower Hybrid waves in Alcator C-Mod

    SciTech Connect

    Lee, J. P.; Wright, J. C.; Bonoli, P. T.; Parker, R. R.; Catto, P. J.; Podpaly, Y. A.; Rice, J. E.; Reinke, M. L.

    2011-12-23

    Significant ion toroidal rotation (50km/s) has been measured by X-Ray spectroscopy for impurities in Alcator C-Mod during lower hybrid (LH) RF power injection. We investigate the relation between the computed toroidal momentum input from LH waves and the measured INITIAL change of ion toroidal rotation when the LH power is turned on. The relation may depend on the plasma current and magnetic configuration. Because of the fast build up time of the electron quasilinear plateau (<1 millisecond), the electron distribution function rapidly reaches steady state in which the electrons transfer momentum to the ions. The LH wave momentum input is computed from the self consistent steady state electron distribution function and a bounce-averaged quasilinear diffusion coefficient that are obtained by iterating a full wave code (TORLH) with a Fokker Plank code (CQL3D)

  17. A parameter study of mode conversion at ion-ion hybrid resonances for ICRF-heating

    NASA Astrophysics Data System (ADS)

    Alava, M. J.; Heikkinen, J. A.

    1992-04-01

    By solving the wave equation for the radial electric field with constant poloidal electric field around the resonance layer of the fast Alfvén wave, various complex characteristics of mode conversion physics can be elucidated and analyzed for ion cyclotron heating of tokamaks. The validity of the Budden and tunnelling model [Ngan, Y. C. and Swanson, D. G., Phys. Fluids 20, 1920 (1977)] for the conversion studies is explored, and the conversion coefficient for the ion-ion hybrid resonance in the presence of cyclotron damping is found in closed form. The analytical results are compared with the numerical solution of the full wave equations expanded to second order in ion Larmor radius. It is found that the standard tunnelling solutions can be erroneous, not only in the case of strong damping, but also when the linearization of the plasma parameters around the resonance, peculiar to the tunnelling model, becomes inaccurate. The effects of the damping and cavity resonances on the conversion are separated in the derived analytical estimates, and the limits of the local theory of conversion are determined.

  18. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    SciTech Connect

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where $\\vec{k}$• $\\vec{B}$ =0, consistent with previous analytical and simulation studies. Here, $\\vec{B}$ is the equilibrium magnetic field and $\\vec{k}$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $\\vec{k}$ •$\\vec{B}$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  19. Study of lower hybrid current drive efficiency and its correlation with photon temperatures in the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Younis, J.; Wan, B. N.; Lin, S. Y.; Shi, Y. J.; Ding, B. J.; Gong, X.; HT-7 Team

    2009-07-01

    Lower hybrid current drive (LHCD) efficiency is a very important parameter. The experimental current drive efficiency is defined as η = IrfneR/PLH, where Irf is the current driven by the lower hybrid waves (LHWs), ne is the central line-average density, R is the major radius of the plasma and PLH is the injected LH wave power absorbed by the plasma through Landau damping. A study of current drive efficiency of LHWs in the HT-7 tokamak has been carried out in the parameter ranges: ne = (1.2-2.5) × 1019 m-3, Ip = (80-200) kA, Bt = 1.8 T, PLH = (188-532) kW in the limiter configuration. Current drive efficiency is investigated through a simple correlation with photon temperature and normalized intensity of fast electron bremstrahlung emission, which is, in the first approximation, proportional to the averaged velocity and population of the fast electrons. The plasma current scanning experiment shows that CD efficiency increase is due to the increase in both the photon temperature and the population of the fast electrons generated by LHWs. The density scanning experiment shows that as the plasma density is increased, an increment in CD efficiency along with the increase in the population of fast electrons is observed. The slowing down through the collisions with bulk electrons is mainly responsible for the decreased photon temperature during the plasma density scan. These experiments strongly suggest the dominant role of the population of fast electrons generated by LHCD and the generation of the current carried by fast electrons.

  20. 3D electrostatic gyrokinetic electron and fully kinetic ion simulation of lower-hybrid drift instability of Harris current sheet

    SciTech Connect

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2016-07-07

    The eigenmode stability properties of three-dimensional lower-hybrid-drift-instabilities (LHDI) in a Harris current sheet with a small but finite guide magnetic field have been systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle-in-cell (PIC) simulation model with a realistic ion-to-electron mass ratio mi/me. In contrast to the fully kinetic PIC simulation scheme, the fast electron cyclotron motion and plasma oscillations are systematically removed in the GeFi model, and hence one can employ the realistic mi/me. The GeFi simulations are benchmarked against and show excellent agreement with both the fully kinetic PIC simulation and the analytical eigenmode theory. Our studies indicate that, for small wavenumbers, ky, along the current direction, the most unstable eigenmodes are peaked at the location where $\\vec{k}$• $\\vec{B}$ =0, consistent with previous analytical and simulation studies. Here, $\\vec{B}$ is the equilibrium magnetic field and $\\vec{k}$ is the wavevector perpendicular to the nonuniformity direction. As ky increases, however, the most unstable eigenmodes are found to be peaked at $\\vec{k}$ •$\\vec{B}$ ≠0. Additionally, the simulation results indicate that varying mi/me, the current sheet width, and the guide magnetic field can affect the stability of LHDI. Simulations with the varying mass ratio confirm the lower hybrid frequency and wave number scalings.

  1. Performance Evaluation of Lower-Energy Energy Storage Alternatives for Full-Hybrid Vehicles; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Gonder, J.; Cosgrove, J.; Pesaran, A.

    2014-02-11

    Automakers have been mass producing hybrid electric vehicles (HEVs) for well over a decade, and the technology has proven to be very effective at reducing per-vehicle fuel use. However, the incremental cost of HEVs such as the Toyota Prius or Ford Fusion Hybrid remains several thousand dollars higher than the cost of comparable conventional vehicles, which has limited HEV market penetration. The b b b b battery energy storage device is typically the component with the greatest contribution toward this cost increment, so significant cost reductions/performance improvements to the energy storage system (ESS) can correspondingly improve the vehicle-level cost/benefit relationship. Such an improvement would in turn lead to larger HEV market penetration and greater aggregate fuel savings. The United States Advanced Battery Consortium (USABC) and the U.S. Department of Energy (DOE) Energy Storage Program managers asked the National Renewable Energy Laboratory (NREL) to collaborate with a USABC Workgroup and analyze the trade-offs between vehicle fuel economy and reducing the decade-old minimum energy requirement for power-assist HEVs. NREL’s analysis showed that significant fuel savings could still be delivered from an ESS with much lower energy storage than the previous targets, which prompted USABC to issue a new set of lower-energy ESS (LEESS) targets that could be satisfied by a variety of technologies. With support from DOE, NREL has developed an HEV test platform for in-vehicle performance and fuel economy validation testing of the hybrid system using such LEESS devices. This presentation describes development of the vehicle test platform, and laboratory as well as in-vehicle evaluation results with alternate energy storage configurations as compared to the production battery system. The alternate energy storage technologies considered include lithium-ion capacitors -- i.e., asymmetric electrochemical energy storage devices possessing one electrode with battery

  2. The role of graphene in enhancing electrical heating and mechanical performances of graphene-aligned silver nanowire hybrid transparent heaters

    NASA Astrophysics Data System (ADS)

    Li, P.; Ma, J. G.; Xu, H. Y.; Zhu, H. C.; Liu, Y. C.

    2017-04-01

    In this work, flexible and energy-efficient transparent heaters based on graphene and aligned silver nanowire (G-ASNW) hybrid structures are fabricated by thermal evaporation of silver on the aligned electrospun nanofiber templates and subsequent transfer of monolayer graphene onto the ASNWs. The G-ASNW films exhibit few wire-wire junctions and low resistance along the aligned direction, which are favorable for low-voltage transparent heater applications. Coating the ASNW network with monolayer graphene increases the saturated temperature of the hybrid heater due to the high thermal conductivity and low convective heat-transfer coefficient of graphene. Meanwhile, G-ASNW films show excellent electromechanical stability under cyclic bending because the graphene anchoring on the top surface of ASNWs could share tensile stress and serve as local conducting pathways at break-points even if small cracks were generated. The G-ASNW hybrid structures present a perspective on wearable transparent heaters.

  3. Electron heating and control of electron energy distribution in hybrid plasma source for the enhancement of the plasma ashing processing

    NASA Astrophysics Data System (ADS)

    Lee, Hyo-Chang; Chung, Chin-Wook

    2015-09-01

    In this study, control of the electron energy distribution function (EEDF) is investigated in hybrid plasma source with inductive and capacitive fields. With the addition of a small amount of antenna coil power to the capacitive discharge, low energy electrons are effectively heated and the EEDF is controlled. This method is applied to the ashing process of the photoresistor (PR). It is revealed that the ashing rate of the PR is significantly increased due to O radicals produced by the controlled EEDF, even though the ion density/energy flux is not increased. The roles of the power transfer mode, the electron heating, and the discharge parameters are also presented in the hybrid plasma source. This work can be used to an inter-ashing method during etching process.

  4. VFL-HF heating of the lower ionosphere and ELF wave generation

    SciTech Connect

    Taranenko, Y.N.; Inan, U.S.; Bell, T.F. )

    1992-01-03

    For incident wave power densities of 10{sup {minus}6} {minus} 10{sup {minus}2} W/m{sup 2} (at 30 km altitude), VLF heating of the D-region (< 90 km) is found to be 2-10 times more effective (depending on power) than HF heating, resulting in comparable perturbations of subionospheric VLF probe waves in spite of up to 10{sup 3} times larger power density utilized in HF heating and at least as efficient in ELF wave generation. In view of generally larger (100 {times} 100 km) area of the ionosphere illuminated by VLF transmitters, ELF wave generation by modulated VLF heating is estimated to produce ELF power levels of {approximately}100 mW, comparable with or larger than those produced in typical midlatitude ambient ionosphere occurs primarily via the modulation of Pedersen current whereas in a typical auroral ionosphere Hall current is dominant for pump wave frequencies up to {approximately}6 MHz. For 10-30 MHz and power densities > 10{sup {minus}4} W/m{sup 2}, Pedersen current modulation is again dominant, potentially providing up to 2-15 times higher ELF dipole moment than those found in recent experiments using 3-5 MHz heaters.

  5. Sperm in poor quality semen from bulls during heat stress have a lower affinity for binding hydrogen-3 heparin

    SciTech Connect

    Ax, R.L.; Gilbert, G.R.; Shook, G.E.

    1987-01-01

    Binding assays with (/sup 3/H) heparin were performed using spermatozoa collected prior to, during, and following summer heat stress to dairy bulls. Ejaculates collected in August 1983 after a period of ambient temperatures exceeding 29.4/sup 0/C exhibited a high frequency of abnormal sperm, and motility was reduced in some samples. Sperm in samples collected during heat stress possessed dissociation constants for binding (/sup 3/H) heparin ranging from 134.5 to 163.2 nmol. In contrast, sperm in semen collected prior to and after heat stress had significantly lower dissociation constants (higher affinity) for (/sup 3/H)heparin, 12.9 to 56.4 nmol. The number of binding sites for (/sup 3/H) heparin on sperm did not change among collection periods. It was concluded that the binding affinity for (/sup 3/H) heparin may reflect membrane integrity of bull sperm.

  6. Kinetic Space Weather: Toward a Global Hybrid Model of the Polar Ionosphere-Lower Magnetosphere Plasma Transport

    NASA Technical Reports Server (NTRS)

    Horwitz, James L.

    1996-01-01

    During the indicated period of performance, we had a number of publications concerned with kinetic polar ionosphere-lower magnetosphere plasma transport. For the IUGG 1991-4 Quadrennial Report, we reviewed aspects of U.S. accomplishments concerned with polar plasma transport, among other issues. In another review, we examined the computer simulations of multiple-scale processes in space plasmas, including polar plasma outflow and transport. We also examined specifically multiscale processes in ionospheric outflows. We developed a Generalized Semi-Kinetic(GSK) model for the topside-lower magnetosphere which explored the synergistic action of wave heating and electric potentials in the formation of auroral Ion conics, in particular the "pressure cooker" mechanism. We extended the GSK model all the way down to 120 km and applied this code to illustrate the response of the ionosphere- magnetosphere to soft-electron precipitation and convection-driven frictional ion heating, respectively. Later, the convection-driven heating work was extended to a paper for the Journal of Geophysical Research. In addition to the above full published papers, we also presented the first developments of the coupled fluid-semikinetic model for polar plasma transport during this period. The results from a steady-state treatment were presented, with the second presentation being concerned with the effects of photo-electrons on the polar wind, and the first garnering an outstanding student paper award from the American Geophysical Union. We presented the first results from a time-dependent version of this coupled fluid-semikinetic model.

  7. Ion temperature anisotropy and heat flow in the Venus lower ionosphere

    NASA Technical Reports Server (NTRS)

    Schunk, R. W.; St-Maurice, J.-P.

    1981-01-01

    Motivated by the recent observations of supersonic ion flow in the Venus ionosphere near the terminator, the paper studies the extent to which such a flow can induce an ion temperature anisotropy and a diffusion-thermal heat flow. Calculations indicate that appreciable ion temperature anisotropies can be induced at altitudes below about 220 km. The temperature anisotropy is with respect to the ion-neutral relative drift velocity vector, with the ion temperature parallel to the relative drift velocity greater than the perpendicular ion temperature. The parallel to perpendicular ion temperature ratio is likely to be in the range of from 2 to 4, depending on the ionospheric conditions. It is also found that in the same ionospheric region the ion neutral relative drift induces a diffusion-thermal heat flow that is considerably more important than ordinary ion thermal conduction.

  8. On the efficiency of plasma heating by Pedersen current dissipation from the photosphere to the lower corona

    NASA Astrophysics Data System (ADS)

    Goodman, M. L.

    2004-03-01

    A model is presented that uses the electrical conductivity tensor of a multi-species plasma to estimate the efficiency Q of plasma heating by Pedersen current dissipation as a function of height from the photosphere to the lower corona. The particle densities and temperature are given by FAL model CM. Q is the efficiency with which the electric field generates thermal energy by transferring energy to the current density J⊥ perpendicular to the magnetic field. The energy is then thermalized by collisions. The projection of J⊥ on the driving electric field is the Pedersen current density. Q is the ratio of the actual heating rate due to Pedersen current dissipation to the heating rate when J⊥ is entirely a Pedersen current, which is the maximum possible heating rate for given J⊥. It is found that Pedersen current dissipation is highly efficient throughout the chromosphere, but is highly inefficient in the transition region and corona on the spatial scales of FAL CM. In the photosphere, the electron magnetization, which is the product of the cyclotron frequency and the collision time is so small compared to unity that the conductivity tensor is almost isotropic, implying there is no essential difference between Pedersen current dissipation and magnetic field aligned current dissipation. It is the rapid increase with height of the magnetizations of electrons, protons and metallic ions from ≲ 1 to ≫ 1 beginning near the height of the FAL CM temperature minimum that causes Pedersen current dissipation to become essentially different from magnetic field aligned current dissipation, and that causes Q to rapidly increase from minimum values ˜ 0.1 near the temperature minimum to ˜ 1 in the lower chromosphere. Q remains ˜ 1 up to the transition region in which it precipitously decreases with height to values ≲ 10-10 in the corona. It is proposed that the rapidly increasing magnetization triggers the onset of heating by Pedersen current dissipation that causes

  9. Hybrid cooling vest for cooling between exercise bouts in the heat: Effects and practical considerations.

    PubMed

    Chan, Albert P C; Yang, Yang; Song, Wen-Fang; Wong, Del P

    2017-01-01

    While continuous cooling strategies may induce some ergonomic problems to occupational workers, cooling between work bouts may be an alternative for cooling them down in hot environments. The purpose of this study was to assess the effects of wearing a newly designed hybrid cooling vest (HCV) between two bouts of exercise. Inside a climatic chamber set at an air temperature of 37°C and a relative humidity of 60%, twelve male participants underwent two bouts of intermittent exercise interspersed with a 30min between-bout recovery session, during which HCV or a passive rest without any cooling (PAS) was administered. The results indicated that thermoregulatory, physiological, and perceptual strains were significantly lower in HCV than those in PAS during the recovery session (p≤0.022), which were accompanied with a large effect of cooling (Cohen's d=0.84-2.11). For the second exercise bout, the exercise time following HCV (22.13±12.27min) was significantly longer than that following PAS (11.04±3.40min, p=0.005, d=1.23) During this period, core temperature Tc was significantly lower by 0.14±0.0.15°C in HCV than that in PAS. The heart rate drift over time was declined by 2±2bpmmin(-1) (p=0.001, d=1.00) and the rise in physiological strain index was reduced by 0.11±0.12unitmin(-1) (p=0.010, d=0.96) following the use of HCV. These findings suggested that using HCV could accelerate between-bout recovery and improve subsequent exercise performance by the enlarged body core temperature margin and blunted cardiovascular drift.

  10. Lower pressure heating steam is practical for the distributed dry dilute sulfuric acid pretreatment.

    PubMed

    Shao, Shuai; Zhang, Jian; Hou, Weiliang; Qureshi, Abdul Sattar; Bao, Jie

    2017-08-01

    Most studies paid more attention to the pretreatment temperature and the resulted pretreatment efficiency, while ignored the heating media and their scalability to an industry scale. This study aimed to use a relative low pressure heating steam easily provided by steam boiler to meet the requirement of distributed dry dilute acid pretreatment. The results showed that the physical properties of the pretreated corn stover were maintained stable using the steam pressure varying from 1.5, 1.7, 1.9 to 2.1MPa. Enzymatic hydrolysis and high solids loading simultaneous saccharification and fermentation (SSF) results were also satisfying. CFD simulation indicated that the high injection velocity of the low pressure steam resulted in a high steam holdup and made the mixing time of steam and solid corn stover during pretreatment much shorter in comparison with the higher pressure steam. This study provides a design basis for the boiler requirement in distributed pretreatment concept. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Nano materials for efficiently lowering the freezing point of heat transfer nanofluids

    NASA Astrophysics Data System (ADS)

    Hong, Haiping; Roy, Walter

    2007-09-01

    In this paper, we report, for the first time, the effect of the lowered freezing point in a 50% water / 50% antifreeze coolant (PAC) or 50% water / 50% ethylene glycol (EG) solution by the addition of carbon nanotubes and other particles. The experimental results indicated that the nano materials are much more efficient (hundreds fold) in lowering the freezing point than the regular ionic materials (e.g. NaCl). The possible explanation for this interesting phenomenon is the colligative property of fluid and relative small size of nano material. It is quite certain that the carbon nanotubes and metal oxide nano particles could be a wonderful candidate for the nano coolant application because they could not only increase the thermal conductivity, but also efficiently lower the freezing point of traditional coolants.

  12. Electrically heated particulate filter regeneration methods and systems for hybrid vehicles

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2010-10-12

    A control system for controlling regeneration of a particulate filter for a hybrid vehicle is provided. The system generally includes a regeneration module that controls current to the particulate filter to initiate regeneration. An engine control module controls operation of an engine of the hybrid vehicle based on the control of the current to the particulate filter.

  13. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... credits for hybrid powertrains that include energy storage systems and regenerative braking (including regenerative engine braking) and for engines that include Rankine-cycle (or other bottoming cycle) exhaust energy recovery systems. (a) Hybrid powertrains. The following provisions apply for pre-transmission...

  14. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... credits for hybrid powertrains that include energy storage systems and regenerative braking (including regenerative engine braking) and for engines that include Rankine-cycle (or other bottoming cycle) exhaust energy recovery systems. (a) Pre-transmission hybrid powertrains. Test pre-transmission...

  15. Influence of plasma parameters on the absorption coefficient of alpha particles to lower hybrid waves in tokamaks

    SciTech Connect

    Wang, J.; Zhang, X. Yu, L.; Zhao, X.

    2014-12-15

    In tokamaks, fusion generated α particles may absorb lower hybrid (LH) wave energy, thus reducing the LH current drive efficiency. The absorption coefficient γ{sub α} of LH waves due to α particles changing with some typical parameters is calculated in this paper. Results show that γ{sub α} increases with the parallel refraction index n{sub ‖}, while decreases with the frequency of LH waves ω over a wide range. Higher background plasma temperature and toroidal magnetic field will increase the absorption. The absorption coefficient γ{sub α} increases with n{sub e} when n{sub e} ≤ 8 × 10{sup 19} m{sup −3}, while decreases with n{sub e} when n{sub e} becomes larger, and there is a peak value of γ{sub α} when n{sub e} ≈ 8 × 10{sup 19} m{sup −1} for the ITER-like scenario. The influence of spectral broadening in parametric decay instabilities on the absorption coefficient is evaluated. The value of γ{sub α} with n{sub ‖} being 2.5 is almost two times larger than that with n{sub ‖} being 2.0 and is even lager in the case of 2.9, which will obviously increase the absorption of the LH power by alpha particles.

  16. Lower Hybrid Wave Induced SOL Emissivity Variation at High Density on the Alcator C-Mod Tokamak

    SciTech Connect

    Faust, I.; Terry, J. L.; Reinke, M. L.; Meneghini, O.; Shiraiwa, S.; Wallace, G. M.; Parker, R. R.; Schmidt, A. E.; Wilson, J. R.

    2011-12-23

    Lower Hybrid Current Drive (LHCD) in the Alcator C-Mod tokamak provides current profile control for the generation of Advanced Tokamak (AT) plasmas. Non-thermal electron bremsstrahlung emission decreases dramatically at n-bar{sub e}>1{center_dot}10{sup 20}[m{sup -3}] for diverted discharges, indicating low current drive efficiency. It is suggested that Scrape-Off-Layer (SOL) collisional absorption of LH waves is the cause for the absence of non-thermal electrons at high density. VUV and visible spectroscopy in the SOL provide direct information on collision excitation processes. Deuterium Balmer-, Lyman- and He-I transition emission measurements were used for initial characterization of SOL electron-neutral collisional absorption. Data from Helium and Deuterium LHCD discharges were characterized by an overall increase in the emissivity as well as an outward radial shift in the emissivity profile with increasing plasma density and applied LHCD power. High-temperature, high-field (T{sub e} = 5keV,B{sub t} = 8T) helium discharges at high density display increased non-thermal signatures as well as reduced SOL emissivity. Variations in emissivity due to LHCD were seen in SOL regions not magnetically connected to the LH Launcher, indicating global SOL effects due to LHCD.

  17. Hodogram Analysis of Magnetic Fluctuations in the Lower-Hybrid Frequency Range in the Magnetic Reconnection Experiment (MRX)

    NASA Astrophysics Data System (ADS)

    Shen, Ken; Ji, Hantao; Yamada, Masaaki

    2002-11-01

    Magnetic reconnection, a topological change of magnetic field lines, is thought to play an important role in governing the processes of solar flares as well as the particle dynamics of the Earth's magnetopause. Studies have shown the Sweet-Parker model's rate of reconnection to be too slow to describe the fast reconnection rate observed experimentally. Several theories have been proposed to explain this discrepancy, among them a modified Sweet-Parker model involving anomalous resistivity caused by electromagnetic microinstabilities. Recently, magnetic fluctuations in the lower-hybrid frequency range ( ˜10 MHz) have been detected in the current sheet in MRX. A 3-component magnetic probe is being built in order to measure the direction of propogation of these fluctuations using hodograms. Hodograms are constructed by mapping the time evolution of the magnetic field vector at one point in space. A perfectly coherent wave will form a plane; the normal vector of this plane is the direction of propogation of the wave. Detailed results of the hodogram analysis will be presented.

  18. Experimental characterization of the lower hybrid wave field on the first pass using a magnetic probe array

    NASA Astrophysics Data System (ADS)

    Shinya, T.; Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Takase, Y.

    2016-10-01

    Experimental characterization of the lower hybrid (LH) wave propagation from the launcher to the core plasma is important to validate an antenna spectrum model and to identify parasitic wave-edge plasma interactions occurring in front of the launcher. On Alcator C-Mod, the wave frequency spectrum and dominant parallel wavenumber are characterized with two probe arrays installed near the edge plasma. The first one is mounted on a radially movable structure that is about 108 deg toroidally away from the launcher. A phasing scan experiment at moderate density suggests a resonance-cone propagation of the launched slow LH wave with a finite spectral width. As plasma density is raised, the measured power decreases, correlated with the observed loss of efficiency. Recently, the second probe array with an increased number of probes has been installed on a limiter that is 54 deg. toroidally away from the launcher, which is expected to be dominantly sensitive to the wave-field directly leaving the launcher. An initial measurement shows that the probe array detects a coherent wave field. A full-wave model to evaluate the wave electric-field pattern in front of the probe array is under development. If available, further experimental and modeling results will be presented. Supported by USDoE Award(s) DE-FC02-99ER54512 and Japan/U.S. Cooperation in Fusion Research and Development.

  19. Influence of gas puff location on the coupling of lower hybrid waves in JET ELMy H-mode plasmas

    SciTech Connect

    Ekedahl, A.; Petrzilka, V.; Baranov, Y.; Goniche, M.; Jacquet, P.; Klepper, C Christopher; Mailloux, J.

    2012-01-01

    Reliable coupling of the lower hybrid current drive (LHCD) to H-mode plasmas in JET is made feasible through a dedicated gas injection system, located at the outer wall and magnetically connected to the antenna (Pericoli Ridolfini et al 2004 Plasma Phys. Control. Fusion 46 349, Ekedahl et al 2005 Nucl. Fusion 45 351, Ekedahl et al 2009 Plasma Phys. Control. Fusion 51 044001). An experiment was carried out in JET in order to investigate whether a gas injection from the top of the torus, as is foreseen for the main gas injection in ITER, could also provide good coupling of the LH waves if magnetically connected to the antenna. The results show that a top gas injection was not efficient for providing a reliable LHCD power injection, in spite of being magnetically connected and in spite of using almost twice the amount of gas flow compared with the dedicated outer mid-plane gas puffing system. A dedicated gas injection system, set in the outer wall and magnetically connected to the LHCD antenna, is therefore recommended in order to provide the reliable coupling conditions for an LHCD antenna in ITER.

  20. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    PubMed

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  1. The simulation of hard x-ray images obtained during lower hybrid current drive on PBX-M

    SciTech Connect

    Goeler, S. von; Fishman, H.; Ignat, D.

    1994-10-01

    During lower hybrid current drive on PBX-M suprathermal electrons in the 30 to 150 keV range are generated. These electrons emit hard X-ray bremsstrahlung in collisions with plasma ions; the radiation creates images in a hard X-ray pinhole camera. In order to interpret the hard X-ray images, a computer simulation code has been written, the PBXRAY code. It represents an extension of the STEVENS code that calculates the free-free and free-bound radiation for non-Maxwellian relativistic electron tail distributions. The PBXRAY code provides the chord integration in the bean-shaped plasma geometry on PBX-M and integrates over photon energy. The simulations show that the location of the suprathermal electrons can be determined with an accuracy of approximately two centimeters in the plasma. In particular, the authors analyzed discharges whose characteristic ``hollow`` images indicate off-axis LH current drive. A comparison of images taken with different absorber foils reveals that the suprathermal electrons have less than 150 keV parallel energy for the hollow discharges.

  2. Excitation of whistler waves below the lower hybrid frequency by a loop antenna located in an enhanced density duct

    NASA Astrophysics Data System (ADS)

    Kudrin, Alexander V.; Ostafiychuk, Oleg M.; Zaboronkova, Tatyana M.

    2017-08-01

    Whistler wave radiation from a loop antenna located in a cylindrical duct with enhanced plasma density is considered in the case where the wave frequency is less than the lower hybrid frequency. Using the full-wave formulation, the total radiation resistance and the partial radiation resistances corresponding to guided eigenmodes of such a duct and unguided waves radiating to the background magnetoplasma are calculated and analyzed as functions of the plasma and source parameters. The emphasis is placed on the radiation characteristics of the considered source in the presence of an artificial near-antenna duct that can be created during active experiments in the ionosphere. Conditions are revealed under which the total radiation resistance is predominantly determined by the excitation of the eigenmodes of the duct. It is shown that the presence of an enhanced density duct can lead to a notable increase in the radiation resistance of a loop antenna in the discussed frequency range even if the duct is rather narrow and capable of guiding only a single low-order eigenmode. The results obtained can be helpful in understanding the basic features of excitation of the ducted whistlers and planning the related ionospheric and laboratory experiments.

  3. Electromagnetic particle simulation of the effect of toroidicity on linear mode conversion and absorption of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Bao, Jian; Lin, Zhihong; Kuley, Animesh; Wang, Zhixuan

    2016-10-01

    Effects of toroidicity on linear mode conversion and absorption of lower hybrid (LH) waves in tokamak have been studied by electromagnetic particle simulation using GTC. The simulation confirms that the toroidicity induces an upshift of parallel refractive index when LH waves propagate from the tokamak edge toward the core, which affects the radial position for the mode conversion between slow and fast LH waves. Furthermore, moving LH antenna launch position from low field side toward high field side leads to a larger upshift of the parallel refractive index, which helps the slow LH wave penetration into the tokamak core. The broadening of the poloidal spectrum of the wave-packet due to wave diffraction is also verified in the simulation. Both the upshift and broadening effects of the parallel spectrum of the wave-packet modify the parallel phase velocity and thus the linear absorption of LH waves by electron Landau resonance. In the nonlinear electromagnetic simulation, nonlinear wave trapping of electrons is verified and a plasma current is nonlinearly driven. Preliminary results of the nonlinear parametric decay of LH waves will be presented.

  4. Improved confinement mode induced by a MARFE during lower hybrid current drive in the HT-7 tokamak

    NASA Astrophysics Data System (ADS)

    Asif, M.; Gao, X.; HT-7 Team

    2006-04-01

    Lower hybrid current drive (LHCD) experiments have been carried out to achieve high performance for long pulse operation in the Hefei tokamak-7 (HT-7) superconducting tokamak. Multifaceted asymmetric radiation from the edge (MARFE) phenomena and an improved confinement mode induced by a MARFE are observed in LHCD plasmas when PLH>160 kW and the edge safety factor q(a) is slightly less than 6.5. It is found that an improved confinement mode induced by a MARFE, characterized by Hα line emissions drops and the line-averaged density increase is triggered in the MARFE discharges. The MARFE event occurs at t=1120 ms following the L H transition, and the improved confinement phase exists for about 65 ms from t=1140 ms after the L H transition. The LHCD plasma results basically are typical with MARFEs and it is an improved confinement mode; they are unique in that they appear at very low \\bar {n}_e values in the HT -7 tokamak.

  5. Review of recent experimental and modeling progress in the lower hybrid range of frequencies at ITER relevant parameters

    SciTech Connect

    Bonoli, Paul T.

    2014-02-12

    Progress in experiment and simulation capability in the lower hybrid range of frequencies (LHRF) at ITER relevant parameters is reviewed. Use of LH power in reactor devices is motivated in terms of its potential for efficient off-axis current profile control. Recent improvements in simulation capability including the development of full-wave field solvers, inclusion of the scrape off layer (SOL) in wave propagation codes, the use of coupled ray tracing / full-wave / 3D (r v{sub ⊥}, v{sub ∥}) Fokker Planck models, and the inclusion of nonlinear broadening effects in ray tracing / Fokker Planck codes are discussed. Experimental and modeling results are reviewed which are aimed at understanding the spectral gap problem in LH current drive (LHCD) and the density limit that has been observed in LHCD experiments. Physics mechanisms that could be operative in these experiments are discussed, including toroidally induced variations in the parallel wavenumber, nonlinear broadening of the pump wave, scattering of LH waves from density fluctuations in the SOL, and spectral broadening at the plasma edge via full-wave effects.

  6. A Lower Bound on Adiabatic Heating of Compressed Turbulence for Simulation and Model Validation

    NASA Astrophysics Data System (ADS)

    Davidovits, Seth; Fisch, Nathaniel J.

    2017-04-01

    The energy in turbulent flow can be amplified by compression, when the compression occurs on a timescale shorter than the turbulent dissipation time. This mechanism may play a part in sustaining turbulence in various astrophysical systems, including molecular clouds. The amount of turbulent amplification depends on the net effect of the compressive forcing and turbulent dissipation. By giving an argument for a bound on this dissipation, we give a lower bound for the scaling of the turbulent velocity with the compression ratio in compressed turbulence. That is, turbulence undergoing compression will be enhanced at least as much as the bound given here, subject to a set of caveats that will be outlined. Used as a validation check, this lower bound suggests that some models of compressing astrophysical turbulence are too dissipative. The technique used highlights the relationship between compressed turbulence and decaying turbulence.

  7. Use of Body Surface Heat Patterns for Predicting and Evaluating Acute Lower Extremity Pain among Soldiers

    DTIC Science & Technology

    1992-01-31

    reducing the incidence of injury and pain in these areas among fully trained soldiers treated at Army Podiatry clinics in Germany and FAMC. Method: We are...innersoles: A prospective study. American Journal of Sports Medicine, In Press, 1991. (c) Frederick EC: Impact testing of insoles. Exeter Research...the type proposed to soldiers seen in the Podiatry Clinic at FAMC who are experiencing several types of lower limb pain (caused by such problems as

  8. Use of Body Surface Heat Patterns for Predicting and Evaluating Acute Lower Extremity Pain Among Soldiers

    DTIC Science & Technology

    1992-01-31

    for plantar fasciitis . Both produced abnormal thermograms. One had been abnormal during the baseline period. One subject was seen for heel blisters...nerve damage (sciatic, peroneal, sural, mixed with lower limb weakness), two ankle pain, two plantar warts, and two generalized leg pain with no know...diabetic clinic. Applied Radiology 1975:1-4. Devereaux, M.; Parr, G.; Lachmann, S.; Page-Thomas, P.; and Hazleman, B.: The diagnosis of stress

  9. Heat Distribution in the Lower Leg from Pulsed Short-Wave Diathermy and Ultrasound Treatments

    PubMed Central

    Garrett, Candi L.; Draper, David O.; Knight, Kenneth L.

    2000-01-01

    Objective: To compare tissue temperature rise and decay after 20-minute diathermy and ultrasound treatments. Design and Setting: We inserted 3 26-gauge thermistor microprobes into the medial aspect of the anesthetized triceps surae muscle at a depth of 3 cm and spaced 5 cm apart. Eight subjects received the diathermy treatment first, followed by the ultrasound treatment. This sequence was reversed for the remaining 8 subjects. The diathermy was applied at a frequency of 27.12 MHz at the following settings: 800 bursts per second, 400-microsecond burst duration, 850-microsecond interburst interval, peak root mean square amplitude of 150 W per burst, and an average root mean square output of 48 W per burst. The ultrasound was delivered at a frequency of 1 MHz and an intensity of 1.5 W/cm2 in the continuous mode for 20 minutes over an area of 40 times the effective radiating area. The study was performed in a ventilated research laboratory. Subjects: Sixteen (11 men, 5 women) healthy subjects (mean age = 23.56 ± 4.73 years) volunteered to participate in this study. Measurements: We recorded baseline, final, and decay temperatures for each of the 3 sites. Results: The average temperature increases over baseline temperature after pulsed short-wave diathermy were 3.02°C ± 1.02°C in site 1, 4.58°C ± 0.87°C in site 2, and 3.28°C ± 1.64°C in site 3. The average temperature increases over baseline temperature after ultrasound were only 0.17°C ± 0.40°C, 0.09°C ± 0.56°C, and -0.43°C ± 0.41°C in sites 1, 2, and 3, respectively. The temperature dropped only 1°C in 7.65 ± 4.96 minutes after pulsed short-wave diathermy. Conclusions: We conclude that pulsed short-wave diathermy was more effective than 1-MHz ultrasound in heating a large muscle mass and resulted in the muscles' retaining heat longer. ImagesFigure 1.Figure 2.Figure 3.Figure 4.Figure 5. PMID:16558608

  10. Super energy saver heat pump with dynamic hybrid phase change material

    DOEpatents

    Ally, Moonis Raza [Oak Ridge, TN; Tomlinson, John Jager [Knoxville, TN; Rice, Clifford Keith [Clinton, TN

    2010-07-20

    A heat pump has a refrigerant loop, a compressor in fluid communication with the refrigerant loop, at least one indoor heat exchanger in fluid communication with the refrigerant loop, and at least one outdoor heat exchanger in fluid communication with the refrigerant loop. The at least one outdoor heat exchanger has a phase change material in thermal communication with the refrigerant loop and in fluid communication with an outdoor environment. Other systems, devices, and methods are described.

  11. The Influence of a Lower Heated Tube on Nucleate Pool Boiling from a Horizontal Tube

    DTIC Science & Technology

    1992-06-01

    AD-A256 833 NAVAL POSTGRADUATE SCHOOL Monterey, California (,-A So Ic THESIS TIlE INFLUENCE OF A LOWER IIEATED TUBE ON NUCLEATE POOL BOILING FROM A...HORIZONTAL TUBE by Lannic R. Lake June 1992 Thesis Advisor Paul J. Marto Co-Advisor Stephen B. Memory Approved for public rclcase; distribution is...day) 15 Page • nt Master’s Thesis From . To June 1992 16 Supplementary Notation The views expressed in this thesis are those of the author and do

  12. Numerical study of the synergy effects of electron cyclotron wave and two lower-hybrid waves in the current drive process

    NASA Astrophysics Data System (ADS)

    Yang, Youlei; Xiang, Nong; Hu, Ye Min

    2017-08-01

    In recent experiments on the experimental advanced superconducting tokamak, the electron cyclotron wave and the two lower-hybrid waves at different frequencies, i.e., 4.6 GHz and 2.45 GHz, are applied simultaneously to sustain and control the plasma current. To investigate the synergy effects of the three waves, the Fokker-Planck equation with the quasi-linear diffusions induced by the three waves is solved numerically with the CQL3D code [R. W. Harvey and M. G. McCoy, in Proceedings of IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, Canada (1992)]. It is found that there might be strong synergy effects between the three waves. The electrons in the low velocity region in the velocity space can be accelerated perpendicularly by the electron cyclotron wave, and their parallel velocities can be increased due to scattering and fall into the resonance regions of the lower-hybrid waves. Therefore, such processes may bring more electrons to resonate with the lower-hybrid waves and enhance the current drive of the lower-hybrid waves. The synergy effects strongly depend on the distance between the resonance regions in the velocity space of the three waves.

  13. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

    PubMed

    Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman

    2013-01-01

    A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.

  14. The theory of the quasi-optical grill: A lower hybrid wave launcher in the 4 - 10 GHz range for high field tokamaks

    SciTech Connect

    Preinhaelter, J.; Vahala, L.; Vahala, G.

    1996-12-31

    Lower hybrid (LH) waves have been utilized for plasma heating and current drive in tokamaks. LH current drive has good efficiency in low to moderate plasma temperatures and is an excellent tool for attaining the reversed shear regions of much interest in advanced steady state tokamak scenarios. For high field tokamaks, the waveguides of the standard multifunction grills would become very narrow and the walls separating the waveguides would need to be very thin. As a result, the cooling of such structures becomes very difficult. Moreover, there are concerns that the classical grill launcher could not withstand the conditions at the reactor first wall. The Quasi-Optical Grill (QOG) was first proposed by Petelin & Suvorov to overcome some of these difficulties. QOG attempts to couple the RF power to the plasma slow wave by means of the diffraction of the incident wave on an array of rods. However, these original calculations are based on certain idealized assumptions and lead to poor coupling to the plasma. Preinhaelter has suggested a new QOG in which the rods are placed in one oversized waveguide ({open_quotes}hyperguide{close_quotes}) and irradiated obliquely by the wave emerging as a higher order mode from an auxiliary oversized waveguide. The confining walls are now an intrinsic part of the structure and thus one avoids the need for mirrors and the introduction of {open_quote}point-like{close_quote} structures. This new QOG is compact - with several orders of magnitude less construction elements than the classical LH launcher - and the problem of wave diffraction can be readily solved using the full wave method. Here we consider the optimization of a large scale QOG at a given frequency. The irradiation of either a single row or double set of rows of rods are considered as well as their optimal separation. One can achieve transmissivity and directivity comparable to those of the multifunction grill. Design of a QOG for TORE-SUPRA will also be discussed.

  15. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    NASA Astrophysics Data System (ADS)

    Covele, B.; Kotschenreuther, M.; Mahajan, S.; Valanju, P.; Leonard, A.; Watkins, J.; Makowski, M.; Fenstermacher, M.; Si, H.

    2017-08-01

    The X-divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at 10-20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. However, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. The model also points to carbon radiation as the primary driver of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency for core operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.

  16. Synthesis of Peptide-Based Hybrid Nanobelts with Enhanced Color Emission by Heat Treatment or Water Induction.

    PubMed

    Liu, Xingcen; Zhu, Pengli; Fei, Jinbo; Zhao, Jie; Yan, Xuehai; Li, Junbai

    2015-06-22

    We demonstrate that an inorganic lanthanide ion (Tb(3+)) or organic dye molecules were encapsulated in situ into diphenylalanine (FF) organogels by a general, simple, and efficient co-assembly process, which generated peptide-based hybrid nanobelts with a range of colored emissions. In the presence of a photosensitizer (salicylic acid), the organogel can serve as an excellent molecular-donor scaffold to investigate FRET to Tb(3+). More importantly, heat treatment or water induction instigated a morphology transition from nanofibers to nanobelts, after which the participation of guest molecules in the FF assembly was promoted and the stability and photoluminescence emission of the composite organogels were enhanced.

  17. Characterization of the onset of ion cyclotron parametric decay instability of lower hybrid waves in a diverted tokamak

    SciTech Connect

    Baek, S. G. Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Bonoli, P. T.; Porkolab, M.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B.; Lau, C.; Takase, Y.

    2014-06-15

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize reactor-relevant steady-state plasmas by controlling current density profile. However, current drive efficiency precipitously decreases as the line averaged density (n{sup ¯}{sub e}) increases above ∼1 × 10{sup 20} m{sup −3}. Previous simulations show that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer plasmas [Wallace et al., Phys. Plasmas 19, 062505 (2012)]. A recent observation [Baek et al., Plasma Phys. Controlled Fusion 55, 052001 (2013)] shows that the configuration dependent ion cyclotron parametric decay instability (PDI) is excited in the density range where the discrepancy between the experiments and simulations remains. Comparing the observed spectra with the homogeneous growth rate spectra indicates that the observed ion cyclotron PDI can be excited not only at the low-field-side but also at the high-field-side (HFS) edge of the tokamak. The model analysis shows that a relevant PDI process to Alcator C-Mod LHCD experiments is decay into ion cyclotron quasi-mode driven by parallel coupling. The underlying cause of the observed onset of ion cyclotron PDI is likely due to the weaker radial penetration of the LH wave in high density plasmas, which can lead to enhanced convective growth. Configuration-dependent PDIs are found to be correlated with different edge density profiles in different magnetic configurations. While the HFS edge of the tokamak can be potentially susceptible to PDI, as evidenced by experimental observations and ray-tracing analyses, enhancing single-pass absorption is expected to help recover the LHCD efficiency at reactor-relevant densities because it could suppress several parasitic loss mechanisms that are exacerbated in multi-pass regimes.

  18. Long Distance Coupling of Lower Hybrid Waves in ITER Relevant Edge Conditions in JET Reversed Shear Plasmas

    NASA Astrophysics Data System (ADS)

    Ekedahl, A.; Granucci, G.; Mailloux, J.; Petrzilka, V.; Rantamäki, K.; Baranov, Y.; Erents, K.; Goniche, M.; Joffrin, E.; Lomas, P. J.; Mantsinen, M.; McDonald, D.; Noterdaeme, J.-M.; Pericoli, V.; Sartori, R.; Silva, C.; Stamp, M.; Tuccillo, A. A.; Efda-Jet Contributors

    2003-12-01

    A significant step towards demonstrating the feasibility of coupling Lower Hybrid (LH) waves in ITER has been achieved in the latest LH current drive experiments in JET. The local electron density in front of the LH launcher was increased by injecting gas (D2 or CD4) from a dedicated gas injection module magnetically connected to the launcher. PLHCD=3MW was coupled with an average reflection coefficient of 5%, at a distance between the last closed flux surface and the launcher of 10cm, in plasmas with an internal transport barrier (ITB) and H-mode edge, with type I and type III ELMs. Following a modification of the gas injection system, in order to optimise the gas localisation with respect to the LH launcher, injection of D2 proved to be more efficient than CD4. A D2 flux of 5-8×1021el/s provided good coupling conditions at a clearance of 10cm, while when using CD4, a flux of 12×1021el/s was required at 9cm. The plasma performance (neutron rate, H-factor, ion temperature) was similar with D2 and CD4. An additional advantage with D2 injection was found, as it reduced the amplitude of the ELMs, which further facilitated the LH coupling. Furthermore, preliminary results of the study of the behaviour of electron density profile in the scrape-off layer during injection of C2H6 and C3H8 are reported. Finally, the appearance of hot spots, resulting from parasitic absorption of LHCD power in front of the launcher mouth, was studied in the long distance discharges with near gas injection.

  19. Improved confinement in high-density H-modes via modification of the plasma boundary with lower hybrid wavesa)

    NASA Astrophysics Data System (ADS)

    Terry, J. L.; Reinke, M. L.; Hughes, J. W.; LaBombard, B.; Theiler, C.; Wallace, G. M.; Baek, S. G.; Brunner, D.; Churchill, R. M.; Edlund, E.; Ennever, P.; Faust, I.; Golfinopoulos, T.; Greenwald, M.; Hubbard, A. E.; Irby, J.; Lin, Y.; Parker, R. R.; Rice, J. E.; Shiraiwa, S.; Walk, J. R.; Wukitch, S. J.; Xu, P.

    2015-05-01

    Injecting Lower Hybrid Range of Frequency (LHRF) waves into Alcator C-Mod's high-density H-mode plasmas has led to enhanced global energy confinement by increasing pedestal temperature and pressure gradients, decreasing the separatrix density, modifying the pedestal radial electric field and rotation, and decreasing edge turbulence. These experiments indicate that edge LHRF can be used as an actuator to increase energy confinement via modification of boundary quantities. H98-factor increases of up to ˜35% (e.g., H98 from 0.75 to 1.0) are seen when moderate amounts of LH power (PLH/Ptot ˜ 0.15) are applied to H-modes of densities n ¯ e ˜ 3 × 1020 m-3, corresponding to values ˜0.5 of the Greenwald density. However, the magnitude of the improvement is reduced if the confinement quality of the target H-mode plasma is already good (i.e., H98target ˜ 1). Ray-tracing modeling and accessibility calculations for the LH waves indicate that they do not penetrate to the core. The LHRF power appears to be deposited in plasma boundary region, with a large fraction of the injected power increment appearing promptly on the outer divertor target. There is no evidence that the LH waves are driving current in these plasmas. The LHRF-actuated improvements are well correlated with suppressed pedestal density fluctuations in the 100-300 kHz range. There is also a correlation between the improved confinement and a drop in separatrix density, a correlation that is consistent with previous H-mode results with no LHRF.

  20. Bifurcation in lower hybrid wave absorption induced by modification of electron temperature and formation of steady internal transport barrier

    NASA Astrophysics Data System (ADS)

    Gao, Q. D.

    2017-06-01

    As the constraint imposed by the wave propagation condition limits the maximum allowed k //-upshift (k // is the component of the wave vector parallel to the magnetic field), the lower hybrid wave (LHW) absorption is bounded in the region defined by the strong Landau-damping limit and the boundary of wave propagation domain. This absorption mechanism causes interplay of the distribution of the absorbed LH power with the modification of plasma configuration, which constitutes nonlinearity in the LHW propagation and absorption. The HL-2A discharge with LHW and neutral beam injected is modeled using the gyro-Landau fluid transport model, in which radiation is deliberately enhanced to modify the electron temperature. Because of the nonlinearity of the LHW propagation and absorption, the LH power deposition jumps from one stationary state to another through an intermediate unstable state, generating bifurcation in the LHW absorption. Onset of the LHW bifurcation closely correlates with the modification of electron temperature, showing that the change of the electron temperature is an essential ingredient in producing the bifurcation. The change of the current profile during the transition period between the two stationary LHW absorption states results in enhancement of the E × B shearing flow arising from toroidal rotation, which causes the shearing rate of E × B flow to exceed the growth rate of drift ballooning instability, triggering transport barrier development and achieving a steady internal transport barrier in the 2nd stationary LHW phase. It is suggested that a modification of electron temperature can be a plausible way to control the plasma confinement in the tokamak discharge with LHW injection.

  1. Status of diagnostic development to measure parallel wavenumber of lower hybrid waves on Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Shiraiwa, S.; Parker, R. R.; Takase, Y.; Brunner, D.

    2015-12-01

    Recent lower hybrid (LH) current drive experiments on Alcator C-Mod have motivated measurement of the parallel wavenumber of LH waves with an aim to understand the significance of the k|| up-shift mechanisms such as scattering by turbulence or parametric decay instabilities. To this end, a new diagnostic system is under development, consisting of two rows of three RF magnetic loop probes (one row sensitive to B||, the other row B⊥) and three Langmuir probes. These will be mounted on a radially movable probe system on the low field side of the tokamak, which is magnetically mapped to the LH launcher but toroidally separated by about 110 deg from the launcher. This location is expected to be ideal for detecting the parallel wavenumber spectrum of the pump and sideband LH waves up to n|| of 6.5. The use of the loop probes will help unambiguously resolve the polarization of these waves. These loop probes have been developed under the collaboration with the University of Tokyo, and vacuum-compatible versions have recently been fabricated and tested on the bench. To evaluate the phase of the detected waves, the signals at 4.6 GHz will be frequency down-converted to 25 MHz in an intermediate frequency stage, and directly digitized at a sampling rate of 100 MS/sec. This system will output the dominant parallel wavenumber for each frequency, selected by controlling the frequency of a local oscillator in the IF stage. In addition to these loop probes, the Langmuir probes will be used to provide the density and temperature information at the measurement location to perform instability analyses. The Langmuir probes will be also used to examine the sensitivity of the radial measurement location on the strength of the sideband LH waves. Details of this proposed diagnostic system and the latest status will be presented.

  2. Columbia: The first five flights entry heating data series. Volume 4: The lower windward wing 50 percent and 80 percent semispans

    NASA Technical Reports Server (NTRS)

    Williams, S. D.

    1983-01-01

    Entry heating flight data and wind tunnel data on the lower wing 50% and 80% Semi-Spans are presented for the first five flights of the Space Shuttle Orbiter. The heating rate data is presented in terms of normalized film heat transfer coefficients as a function of angle-of-attack, Mach number, and Normal Shock Reynolds number. The surface heating rates and temperatures were obtained via the JSC NONLIN/INVERSE computer program. Time history plots of the surface heating rates and temperatures are also presented.

  3. Conductive and evaporative precooling lowers mean skin temperature and improves time trial performance in the heat.

    PubMed

    Faulkner, S H; Hupperets, M; Hodder, S G; Havenith, G

    2015-06-01

    Self-paced endurance performance is compromised by moderate-to-high ambient temperatures that are evident in many competitive settings. It has become common place to implement precooling prior to competition in an attempt to alleviate perceived thermal load and performance decline. The present study aimed to investigate precooling incorporating different cooling avenues via either evaporative cooling alone or in combination with conductive cooling on cycling time trial performance. Ten trained male cyclists completed a time trial on three occasions in hot (35 °C) ambient conditions with the cooling garment prepared by (a) immersion in water (COOL, evaporative); (b) immersion in water and frozen (COLD, evaporative and conductive); or (c) no precooling (CONT). COLD improved time trial performance by 5.8% and 2.6% vs CONT and COOL, respectively (both P < 0.05). Power output was 4.5% higher for COLD vs CONT (P < 0.05). Mean skin temperature was lower at the onset of the time trial following COLD compared with COOL and CONT (both P < 0.05) and lasted for the first 20% of the time trial. Thermal sensation was perceived cooler following COOL and COLD. The combination of evaporative and conductive cooling (COLD) had the greatest benefit to performance, which is suggested to be driven by reduced skin temperature following cooling.

  4. [Effects of exogenous silicon on the pollination and fertility characteristics of hybrid rice under heat stress during anthesis].

    PubMed

    Wu, Chen-Yang; Chen, Dan; Luo, Hai-Wei; Yao, Yi-min; Wang, Zhi-Wei; Tsutomu, Matsui; Tian, Xiao-Hai

    2013-11-01

    Taking two medium-maturing indica rice hybrids Jinyou 63 and Shanyou 63 as test materials, this paper studied the effects of applying silicon fertilizer on the flag leaf chlorophyll content, photosynthetic properties, antioxidant enzyme activities, malondialdehyde (MDA) content, pollen vigor, anther acid invertase activity, pollination, and seed-setting of hybrid rice under the heat stress during anthesis. This study was conducted in pots and under growth chamber. Soluble solution of silicon fertilizer applied as Na2SiO3 x 9H2O was sprayed on the growing plants after early jointing stage, with three times successively and at an interval of one week. The pots were then moved into growth chamber to subject to normal temperature vs. high temperature (termed as heat stress) for five days. In treatment normal temperature, the average daily temperature was set at 26.6 degrees C, and the maximum daily temperature was set at 29.4 degres C; in treatment high temperature, the average and the maximum daily temperature were set at 33.2 degrees C and 40.1 degrees C, respectively. As compared with the control, applying silicon increased the flag leaf chlorophyll content significantly, improved the net photosynthetic rate and stomatal conductance, decreased the accumulative inter- cellular CO2 concentration, improved the leaf photosynthesis, reduced the MDA content, and improved the activities of SOD, POD and CAT under heat stress. In addition, applying silicon improved the anther acid invertase activity and the pollen vigor, increased the anther basal dehiscence width, total number of pollination per stigma, germinated number, germination rate of pollen, and percentage of florets with more than 10 germinated pollen grains, decreased the percentage of florets with fewer than 20 germinated pollen grains, and thus, alleviated the fertility loss of Jinyou 63 and Shanyou 63 under heat stress by 13.4% and 14.1%, respectively. It was suggested that spraying exogenous silicon in the

  5. Digital-analog hybrid control model for eukaryotic heat shock response illustrating the dynamics of heat shock protein 70 on exposure to thermal stress.

    PubMed

    Dwivedi, Anjana; Karan, Bhuwan Mohan; Das, Barda Nand; Sinha, Rakesh Kumar

    2008-04-01

    We are introducing in this paper a digital-analog hybrid model approach for the study of a complete gene regulatory network; the heat shock response (HSR) network of eukaryotes. HSR is a crucial and widely studied cellular phenomenon occurring due to various stresses on the cell, and is characterised by the induction of heat shock genes resulting in the production of heat shock proteins (HSPs) which restores cellular homeostasis by maintaining protein integrity. We are proposing a model which incorporates simple digital and analog components which mimic the functioning of biological molecules involved in HSR and model their dynamics and behaviour. The simulation result of the circuit for the production of HSP70 has been found to be consistent with published experimental results. The qualitative behaviour of the HSR is expressed through a truth table. Through this novel approach, the authors have tried to develop a level of understanding of the interactions of the parts of the HSR system and of this system as a whole.

  6. Particle size distribution and morphological changes in activated carbon-metal oxide hybrid catalysts prepared under different heating conditions.

    PubMed

    Barroso-Bogeat, A; Alexandre-Franco, M; Fernández-González, C; Gómez-Serrano, V

    2016-03-01

    In catalysis processes, activated carbon (AC) and metal oxides (MOs) are widely used either as catalysts or as catalyst supports because of their unique properties. A combination of AC and a MO in a single hybrid material entails changes not only in the composition, microstructure and texture but also in the morphology, which may largely influence the catalytic behaviour of the resulting product. This work is aimed at investigating the modifications in the morphology and particle size distribution (PSD) for AC-MO hybrid catalysts as a result of their preparation under markedly different heating conditions. From a commercial AC and six MO (Al2O3, Fe2O3, ZnO, SnO2, TiO2 and WO3) precursors, two series of such catalysts are prepared by wet impregnation, oven-drying at 120 ºC, and subsequent heat treatment at 200 ºC or 850 ºC in inert atmosphere. The resulting samples are characterized in terms of their morphology and PSD by scanning electron microscopy and ImageJ processing program. Obtained results indicate that the morphology, PSD and degree of dispersion of the supported catalysts are strongly dependent both on the MO precursor and the heat treatment temperature. With the temperature rise, trends are towards the improvement of crystallinity, the broadening of the PSD and the increase in the average particle size, thus suggesting the involvement of sintering mechanisms. Such effects are more pronounced for the Fe, Sn and W catalysts due to the reduction of the corresponding MOs by AC during the heat treatment at 850 ºC. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  7. Performance of a hybrid solar heating system of the solar laboratory at the JRC-ISPRA

    NASA Astrophysics Data System (ADS)

    van Hattem, D.; Aranovitch, E.; Actis-Dato, P.

    System features and the three year performance data from the solar laboratory at Ispra, which is heated by a heat pump, flat plate collectors, and storage unit are summarized. The heating system has 41 sq m of collector surface, a 50 cu m concrete hot water storage tank, a heat pump with a 17 kW capacity, a floor heating system, and a 2 cu m heat storage as a buffer for the collectors. The building requires 300 W/ deg C for heating and has a peak demand of 9 kW. Chilled water is stored in the underground large tank during the summer for cooling purposes, and one month is alotted to thermally charge the tank before the winter. The addition of the heat pump and storage to the solar flat plate collector system has increased the effective energy gain of the collectors to 1190 MJ/sq m, or 2.5 times the effectiveness without the storage and heat pump.

  8. Influence of heat treatment on hole transfer dynamics in core-shell quantum dot/organic hole conductor hybrid films

    NASA Astrophysics Data System (ADS)

    Sun, Mingye; Zheng, Youjin; Zhang, Lei; Zhao, Liping; Zhang, Bing

    2017-08-01

    The influence of heat treatment on hole transfer (HT) processes from the CdSe/ZnS and CdSe/CdS/ZnS quantum dots (QDs) to 4,4‧,4″-Tris(carbazol-9-yl)-triphenylamine (TCTA) in QD/TCTA hybrid films has been researched with time-resolved photoluminescence (PL) spectroscopy. The PL dynamic results demonstrated a heat-treatment-temperature-dependent HT process from the core-shell CdSe QDs to TCTA. The HT rates and efficiencies can be effectively increased due to reduced distance between core-shell CdSe QDs and TCTA after heat treatment. The CdS shell exhibited a more obvious effect on HT from the core-shell CdSe QDs to TCTA than on electron transfer to TiO2, due to higher barrier for holes to tunnel through CdS shell and larger effective mass of holes in CdS than electrons. These results indicate that heat treatment would be an effective means to further optimize solid-state QD sensitized solar cells and rational design of CdS shell is significant.

  9. Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations

    NASA Astrophysics Data System (ADS)

    Haus, R.; Kappel, D.; Arnold, G.

    2015-11-01

    A sophisticated radiative transfer model that considers absorption, emission, and multiple scattering by gaseous and particulate constituents over the broad spectral range 0.125-1000 μm is applied to calculate radiative fluxes and temperature change rates in the middle and lower atmosphere of Venus (0-100 km). Responses of these quantities to spectroscopic and atmospheric parameter variations are examined in great detail. Spectroscopic parameter studies include the definition of an optimum spectral grid for monochromatic calculations as well as comparisons for different input data with respect to spectral line databases, continuum absorption, line shape factors, and solar irradiance spectra. Atmospheric parameter studies are based on distinct variations of an initial model data set. Analyses of actual variations of the radiative energy budget using atmospheric features that have been recently retrieved from Venus Express data will be subject of a subsequent paper. The calculated cooling (heating) rates are very reliable at altitudes below 95 (85) km with maximum uncertainties of about 0.25 K/day. Heating uncertainties may reach 3-5 K/day at 100 km. Using equivalent Planck radiation as solar insolation source in place of measured spectra is not recommended. Cooling rates strongly respond to variations of atmospheric thermal structure, while heating rates are less sensitive. The influence of mesospheric minor gas variations is small, but may become more important near the cloud base and in case of episodic SO2 boosts. Responses to cloud mode 1 particle abundance changes are weak, but variations of other mode parameters (abundances, cloud top and base altitudes) may significantly alter radiative temperature change rates up to 50% in Venus' lower mesosphere and upper troposphere. A new model for the unknown UV absorber for two altitude domains is proposed. It is not directly linked to cloud particle modes and permits an investigation of radiative effects regardless of

  10. OligoHeatMap (OHM): an online tool to estimate and display hybridizations of oligonucleotides onto DNA sequences.

    PubMed

    Croce, Olivier; Chevenet, François; Christen, Richard

    2008-07-01

    The efficiency of molecular methods involving DNA/DNA hybridizations depends on the accurate prediction of the melting temperature (T(m)) of the duplex. Many softwares are available for T(m) calculations, but difficulties arise when one wishes to check if a given oligomer (PCR primer or probe) hybridizes well or not on more than a single sequence. Moreover, the presence of mismatches within the duplex is not sufficient to estimate specificity as it does not always significantly decrease the T(m). OHM (OligoHeatMap) is an online tool able to provide estimates of T(m) for a set of oligomers and a set of aligned sequences, not only as text files of complete results but also in a graphical way: T(m) values are translated into colors and displayed as a heat map image, either stand alone or to be used by softwares such as TreeDyn to be included in a phylogenetic tree. OHM is freely available at http://bioinfo.unice.fr/ohm/, with links to the full source code and online help.

  11. Implications of Thermal Diffusity being Inversely Proportional to Temperature Times Thermal Expansivity on Lower Mantle Heat Transport

    NASA Astrophysics Data System (ADS)

    Hofmeister, A.

    2010-12-01

    Many measurements and models of heat transport in lower mantle candidate phases contain systematic errors: (1) conventional methods of insulators involve thermal losses that are pressure (P) and temperature (T) dependent due to physical contact with metal thermocouples, (2) measurements frequently contain unwanted ballistic radiative transfer which hugely increases with T, (3) spectroscopic measurements of dense samples in diamond anvil cells involve strong refraction by which has not been accounted for in analyzing transmission data, (4) the role of grain boundary scattering in impeding heat and light transfer has largely been overlooked, and (5) essentially harmonic physical properties have been used to predict anharmonic behavior. Improving our understanding of the physics of heat transport requires accurate data, especially as a function of temperature, where anharmonicity is the key factor. My laboratory provides thermal diffusivity (D) at T from laser flash analysis, which lacks the above experimental errors. Measuring a plethora of chemical compositions in diverse dense structures (most recently, perovskites, B1, B2, and glasses) as a function of temperature provides a firm basis for understanding microscopic behavior. Given accurate measurements for all quantities: (1) D is inversely proportional to [T x alpha(T)] from ~0 K to melting, where alpha is thermal expansivity, and (2) the damped harmonic oscillator model matches measured D(T), using only two parameters (average infrared dielectric peak width and compressional velocity), both acquired at temperature. These discoveries pertain to the anharmonic aspects of heat transport. I have previously discussed the easily understood quasi-harmonic pressure dependence of D. Universal behavior makes application to the Earth straightforward: due to the stiffness and slow motions of the plates and interior, and present-day, slow planetary cooling rates, Earth can be approximated as being in quasi

  12. Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh

    PubMed Central

    Johura, Fatema-Tuz; Parveen, Rozina; Islam, Atiqul; Sadique, Abdus; Rahim, Md Niaz; Monira, Shirajum; Khan, Anisur R.; Ahsan, Sunjukta; Ohnishi, Makoto; Watanabe, Haruo; Chakraborty, Subhra; George, Christine M.; Cravioto, Alejandro; Navarro, Armando; Hasan, Badrul; Alam, Munirul

    2017-01-01

    Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) are important causes of diarrhea in humans and animals worldwide. Although ruminant animals are the main source of STEC, diarrhea due to this pathotype is very low in Bangladesh where ETEC remains the predominant group associated with childhood diarrhea. In the present study, E. coli strains (n = 35) isolated from Bangladesh livestock (goats, sheep, and cattle) and poultry (chicken and ducks) were analyzed for the presence of major virulence factors, such as Shiga toxins (STX-1 and STX-2), heat-labile toxin, and heat-stable toxins (STa and STb). Multiplex polymerase chain reaction results revealed 23 (66%) E. coli strains to be virulent possessing either sta (n = 5), stx (stx1, n = 8; stx2, n = 2), or both (n = 8) genes in varying combinations. Thirty-four percent (8/23) of strains from livestock were hybrid type that carried both stx (either stx1 or stx2) and ETEC-specific enterotoxin gene sta. Serotyping results revealed that the ETEC strains belonged to five serotypes, namely O36:H5, O174:H−, O152:H8, O109:H51, and O8:H21, while the STEC-producing strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16 (n = 2), OR:H2 (n = 1), O110:H16 (n = 1), and O152:H8 (n = 1). The STEC–ETEC hybrid strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16, OR:H2, and O152:H8. Forty percent (2/5) of the ETEC and 20% (2/10) of the STEC strains were multidrug resistant with the highest drug resistance (50%) being found in the hybrid strains. Molecular fingerprinting determined by pulsed-field gel electrophoresis and cluster analyses by dendrogram revealed that, genetically, STEC–ETEC hybrid strains were highly heterogeneous. Multidrug-resistant E. coli STEC–ETEC hybrid strains in domesticated animals pose a public health threat for humans in Bangladesh. PMID:28119905

  13. Occurrence of Hybrid Escherichia coli Strains Carrying Shiga Toxin and Heat-Stable Toxin in Livestock of Bangladesh.

    PubMed

    Johura, Fatema-Tuz; Parveen, Rozina; Islam, Atiqul; Sadique, Abdus; Rahim, Md Niaz; Monira, Shirajum; Khan, Anisur R; Ahsan, Sunjukta; Ohnishi, Makoto; Watanabe, Haruo; Chakraborty, Subhra; George, Christine M; Cravioto, Alejandro; Navarro, Armando; Hasan, Badrul; Alam, Munirul

    2016-01-01

    Shiga toxin-producing Escherichia coli (STEC) and enterotoxigenic E. coli (ETEC) are important causes of diarrhea in humans and animals worldwide. Although ruminant animals are the main source of STEC, diarrhea due to this pathotype is very low in Bangladesh where ETEC remains the predominant group associated with childhood diarrhea. In the present study, E. coli strains (n = 35) isolated from Bangladesh livestock (goats, sheep, and cattle) and poultry (chicken and ducks) were analyzed for the presence of major virulence factors, such as Shiga toxins (STX-1 and STX-2), heat-labile toxin, and heat-stable toxins (STa and STb). Multiplex polymerase chain reaction results revealed 23 (66%) E. coli strains to be virulent possessing either sta (n = 5), stx (stx1, n = 8; stx2, n = 2), or both (n = 8) genes in varying combinations. Thirty-four percent (8/23) of strains from livestock were hybrid type that carried both stx (either stx1 or stx2) and ETEC-specific enterotoxin gene sta. Serotyping results revealed that the ETEC strains belonged to five serotypes, namely O36:H5, O174:H-, O152:H8, O109:H51, and O8:H21, while the STEC-producing strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16 (n = 2), OR:H2 (n = 1), O110:H16 (n = 1), and O152:H8 (n = 1). The STEC-ETEC hybrid strains belonged to serotypes O76:H19 (n = 3), O43:H2 (n = 2), O87:H16, OR:H2, and O152:H8. Forty percent (2/5) of the ETEC and 20% (2/10) of the STEC strains were multidrug resistant with the highest drug resistance (50%) being found in the hybrid strains. Molecular fingerprinting determined by pulsed-field gel electrophoresis and cluster analyses by dendrogram revealed that, genetically, STEC-ETEC hybrid strains were highly heterogeneous. Multidrug-resistant E. coli STEC-ETEC hybrid strains in domesticated animals pose a public health threat for humans in Bangladesh.

  14. Effects of the radial dependence of the fast electron diffusion coefficient on the current driven by lower-hybrid waves in tokamak

    NASA Astrophysics Data System (ADS)

    Zhang, Xianmei; Wang, Yanhui; Yu, Limin; Shen, Xin; Wang, Jianbin

    2012-07-01

    The lower hybrid current drive (LHCD) is one of the promising methods not only for driving the non-inductive current required for steady-state tokamak operation, but also for controlling the plasma current profile to improve confinement in tokamak experiments. A direct consequence of experimental imperfection is difficult to obtain reliable estimate of the radial diffusion coefficient (Dst) of the lower hybrid driven current. In this paper, the radial profile of Dst is estimated to investigate its effect on the current driven by lower hybrid wave (LHW) in Experimental Advanced Superconducting Tokamak. Compared with the case of the constant radial diffusion coefficient, the efficiency of LHW driven current with the radial dependent diffusion coefficient Dst (ρ) becomes either higher or lower with respect to the plasma parameters, such as the density and the magnetic fluctuation. It is also found that the profiles of the LHW driven current are different. Therefore, it is necessary to consider the radial dependence of Dst in order to get an accurate and reliable result in the numerical simulation of LHCD.

  15. 40 CFR 1036.615 - Engines with Rankine cycle waste heat recovery and hybrid powertrains.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... credits for hybrid powertrains that include energy storage systems and regenerative braking (including regenerative engine braking) and for engines that include Rankine-cycle (or other bottoming cycle) exhaust... powertrains are those powertrains that include features that recover and store energy from braking but...

  16. A simple method for predicting the lower heating value of municipal solid waste in China based on wet physical composition.

    PubMed

    Lin, Xuebin; Wang, Fei; Chi, Yong; Huang, Qunxing; Yan, Jianhua

    2015-02-01

    A rapid and cost-effective prediction method based on wet physical composition has been developed to determine the lower heating value (LHV) of municipal solid waste (MSW) for practical applications in China. The heating values (HVs) of clean combustibles were measured in detail, and the effect of combustibles, food waste, and ash content on HV was studied to develop the model. The weighted average HV can be used to predict the MSW HV with high accuracy. Based on the moisture measurements of each major real combustible and the HV of clean solid waste, a predictive model of the LHV of real MSW was developed. To assess the prediction performance, information was collected on 103 MSW samples from 31 major cities in China from 1994 to 2012. Compared with five predictive models based on the wet physical composition from different regions in the world, the predictive result of the developed model is the most accurate. The prediction performance can be improved further if the MSW is sorted better and if more information is collected on the individual moisture contents of the waste. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Heat transfer to a heavy liquid metal in curved geometry: Code validation and CFD simulation for the MEGAPIE lower target

    NASA Astrophysics Data System (ADS)

    Dury, Trevor V.

    2006-06-01

    The ESS and SINQ Heat Emitting Temperature Sensing Surface (HETSS) mercury experiments have been used to validate the Computational Fluid Dynamics (CFD) code CFX-4 employed in designing the lower region of the international liquid metal cooled MEGAPIE target, to be installed at SINQ, PSI, in 2006. Conclusions were drawn on the best turbulence models and degrees of mesh refinement to apply, and a new CFD model of the MEGAPIE geometry was made, based on the CATIA CAD design of the exact geometry constructed. This model contained the fill and drain tubes as well as the bypass feed duct, with the differences in relative vertical length due to thermal expansion being considered between these tubes and the window. Results of the mercury experiments showed that CFD calculations can be trusted to give peak target window temperature under normal operational conditions to within about ±10%. The target nozzle actually constructed varied from the theoretical design model used for CFD due to the need to apply more generous separation distances between the nozzle and the window. In addition, the bypass duct contraction approaching the nozzle exit was less sharp compared with earlier designs. Both of these changes modified the bypass jet penetration and coverage of the heated window zone. Peak external window temperature with a 1.4 mA proton beam and steady-state operation is now predicted to be 375 °C, with internal temperature 354.0 °C (about 32 °C above earlier predictions). Increasing bypass flow from 2.5 to 3.0 kg/s lowers these peak temperatures by about 12 °C. Stress analysis still needs to be made, based on these thermal data.

  18. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    SciTech Connect

    Pinsker, Robert I.

    2015-09-24

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the lower hybrid range of frequencies (LHRF) are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. Here, the character of the ray paths of these waves in the LHRF is illustrated in slab and toroidal geometries. An upcoming experiment on one of these two wave modes, the “helicon” or “whistler”, to be carried out on the DIII-D tokamak, is described.

  19. Whistlers, helicons, and lower hybrid waves: The physics of radio frequency wave propagation and absorption for current drive via Landau damping

    DOE PAGES

    Pinsker, Robert I.

    2015-09-24

    This introductory-level tutorial article describes the application of plasma waves in the lower hybrid range of frequencies for current drive in tokamaks. Wave damping mechanisms in a nearly collisionless hot magnetized plasma are briefly described, and the connections between the properties of the damping mechanisms and the optimal choices of wave properties (mode, frequency, wavelength) are explored. The two wave modes available for current drive in the lower hybrid range of frequencies (LHRF) are described and compared. The terms applied to these waves in different applications of plasma physics are elucidated. Here, the character of the ray paths of thesemore » waves in the LHRF is illustrated in slab and toroidal geometries. An upcoming experiment on one of these two wave modes, the “helicon” or “whistler”, to be carried out on the DIII-D tokamak, is described.« less

  20. Fusion heating technology

    SciTech Connect

    Cole, A.J.

    1982-06-01

    John Lawson established the criterion that in order to produce more energy from fusion than is necessary to heat the plasma and replenish the radiation losses, a minimum value for both the product of plasma density and confinement time t, and the temperature must be achieved. There are two types of plasma heating: neutral beam and electromagnetic wave heating. A neutral beam system is shown. Main development work on negative ion beamlines has focused on the difficult problem of the production of high current sources. The development of a 30 keV-1 ampere multisecond source module is close to being accomplished. In electromagnetic heating, the launcher, which provides the means of coupling the power to the plasma, is most important. The status of heating development is reviewed. Electron cyclotron resonance heating (ECRH), lower hybrid heating (HHH), and ion cyclotron resonance heating (ICRH) are reviewed.

  1. High Efficiency Water Heating Technology Development Final Report. Part I, Lab/Field Performance Evaluation and Accelerated Life Testing of a Hybrid Electric Heat Pump Water Heater (HPWH)

    SciTech Connect

    Baxter, Van D.; Murphy, Richard W.; Rice, C. Keith; Linkous, Randall Lee

    2016-04-01

    DOE has supported efforts for many years with the objective of getting a water heater that uses heat pump technology (aka a heat pump water heater or HPWH) successfully on the residential equipment market. The most recent previous effort (1999-2002) produced a product that performed very well in ORNL-led accelerated durability and field tests. The commercial partner for this effort, Enviromaster International (EMI), introduced the product to the market under the trade name Watter$aver in 2002 but ceased production in 2005 due to low sales. A combination of high sales price and lack of any significant infrastructure for service after the sale were the principal reasons for the failure of this effort. What was needed for market success was a commercial partner with the manufacturing and market distribution capability necessary to allow economies of scale to lead to a viable unit price together with a strong customer service infrastructure. General Electric certainly meets these requirements, and knowing of ORNL s expertise in this area, approached ORNL with the proposal to partner in a CRADA to produce a high efficiency electric water heater. A CRADA with GE was initiated early in Fiscal Year, 2008. GE initially named its product the Hybrid Electric Water Heater (HEWH).

  2. Proton Heating by Pick-up Ion Driven Cyclotron Waves in the Outer Heliosphere: Hybrid Expanding Box Simulations

    NASA Astrophysics Data System (ADS)

    Hellinger, Petr; Trávníček, Pavel M.

    2016-11-01

    Using a one-dimensional hybrid expanding box model, we investigate properties of the solar wind in the outer heliosphere. We assume a proton-electron plasma with a strictly transverse ambient magnetic field and, aside from the expansion, we take into account the influence of a continuous injection of cold pick-up protons through the charge-exchange process between the solar wind protons and hydrogen of interstellar origin. The injected cold pick-up protons form a ring distribution function, which rapidly becomes unstable, and generate Alfvén cyclotron waves. The Alfvén cyclotron waves scatter pick-up protons to a spherical shell distribution function that thickens over that time owing to the expansion-driven cooling. The Alfvén cyclotron waves heat solar wind protons in the perpendicular direction (with respect to the ambient magnetic field) through cyclotron resonance. At later times, the Alfvén cyclotron waves become parametrically unstable and the generated ion-acoustic waves heat protons in the parallel direction through Landau resonance. The resulting heating of the solar wind protons is efficient on the expansion timescale.

  3. Patchable, flexible heat-sensing hybrid ionic gate nanochannel modified with a wax-composite

    NASA Astrophysics Data System (ADS)

    Chun, Kyoung-Yong; Choi, Wook; Roh, Sung-Cheoul; Han, Chang-Soo

    2015-07-01

    Heat-driven ionic gate nanochannels have been recently demonstrated, which exploit temperature-responsive polymer brushes based on wettability. These heat-sensing artificial nanochannels operate in a broad temperature-response boundary and fixed liquid cell environment, thereby experiencing limited system operation in the flat and solid state. Here we have developed a patchable and flexible heat-sensing artificial ionic gate nanochannel, which can operate in the range of the human body temperature. A wax-elastic copolymer, coated onto a commercial nanopore membrane by a controlled-vacuum filtration method, was used for the construction of temperature-responsive nanopores. The robust and flexible nanochannel heat sensor, which is combined with an agarose gel electrolyte, can sustain reversible thermo-responsive ionic gating based on the volumetric work of the wax-composite layers in a selective temperature range. The ionic current is also effectively distinguished in the patchable bandage-type nanochannel for human heat-sensing.Heat-driven ionic gate nanochannels have been recently demonstrated, which exploit temperature-responsive polymer brushes based on wettability. These heat-sensing artificial nanochannels operate in a broad temperature-response boundary and fixed liquid cell environment, thereby experiencing limited system operation in the flat and solid state. Here we have developed a patchable and flexible heat-sensing artificial ionic gate nanochannel, which can operate in the range of the human body temperature. A wax-elastic copolymer, coated onto a commercial nanopore membrane by a controlled-vacuum filtration method, was used for the construction of temperature-responsive nanopores. The robust and flexible nanochannel heat sensor, which is combined with an agarose gel electrolyte, can sustain reversible thermo-responsive ionic gating based on the volumetric work of the wax-composite layers in a selective temperature range. The ionic current is also

  4. Increased heat dissipation with the X-divertor geometry facilitating detachment onset at lower density in DIII-D

    DOE PAGES

    Covele, Brent; Kotschenreuther, M.; Mahajan, S.; ...

    2017-06-23

    The X-Divertor geometry on DIII-D has demonstrated reduced particle and heat fluxes to the target, facilitating detachment onset at ~20% lower upstream density and higher H-mode pedestal pressure than a standard divertor. SOLPS modeling suggests that this effect cannot be explained by an increase in total connection length alone, but rather by the addition of connection length specifically in the power-dissipating volume near the target, via poloidal flux expansion and flaring. But, poloidal flaring must work synergistically with divertor closure to most effectively reduce the detachment density threshold. Furthermore, the model also points to carbon radiation as the primary drivermore » of power dissipation in divertors on the DIII-D floor, which is consistent with experimental observations. Sustainable divertor detachment at lower density has beneficial consequences for energy confinement and current drive efficiency in the core for advanced tokamak (AT) operation, while simultaneously satisfying the exhaust requirements of the plasma-facing components.« less

  5. Gyrokinetic Theory of the Lower-Hybrid Drift Instability in a Current Sheet with a Guide Field

    NASA Astrophysics Data System (ADS)

    Tummel, Kurt

    This thesis presents an investigation of the lower-hybrid drift instability(LHDI) in a thin Harris current sheet with a guide field. This includes three-dimensional analytical and numerical analyses using the gyrokinetic electron, fully-kinetic ion(GeFi) description, which are compared with results from the Vlasov approach and simulations. Previous fully-kinetic studies solve the electron Valsov equation by integrating along the unperturbed phase-space orbits, including the complete electron-cyclotron motion. The LHDI satisfies o << o ce and kperprho e ˜ 1, where oce and rho e are the electron cyclotron frequency and Larmor radius, respectively, and kperp& is the wavevector perpendicular to the equilibrium magnetic field. By treating the electron response with gyrokinetic theory, the fast cyclotron motion is removed which greatly simplifies the derivation of the LHDI eigenvalue equations. This allows a more comprehensive LHDI analysis, which is carried out over the entire domain of unstable wavevectors. To our knowledge, an extensive scan of the operative domain of the LHDI in current sheets with a guide field has never been done. The results will show that two types of electromagnetic LHDIs are active in the current sheet. The Type A LHDI is generally consistent with the existing theoretical descriptions of the LHDI, namely, quasi-electrostatic modes localized near the current sheet edges with k rho e ˜ 1, k||=0, and o 2 ˜ o pi2/(1+ope2 / o ce2), where ope and opi are the electron and ion plasma frequencies, respectively. However, we will show that in sufficiently thin current sheets, i.e. strong equilibrium drifts, the Type A LHDI is destabilized by finite k|| in the short wavelength domain, krho ce > 0.5. This destabilization increases the range of propagation angles, k ||/kperp, for which the modes are operative, which reduces the localizing and stabilizing effects of magnetic shear. The dominant Type A modes are localized near the current sheet edge, z ˜ 1

  6. Control synthesis of PbS-TiO₂ hollow hybrid structures through ion adsorption-heating progress and their photocatalytic activity.

    PubMed

    Xia, Hongbo; Wu, Suli; Zhang, Shufen

    2017-08-31

    Hollow hybrid nanostructure has received significant attention because of its unique structural features. This study reports a facile "ion adsorption-heating" method to fabricate PbS-TiO₂ hybrid hollow particles. In this method, the TiO₂ spheres used as substrate material to grow PbS are aggregates of many small amorphous TiO₂ particles, and each of the small particles is covered by thioglycollic acid ligands through Ti4+-carboxyl coordination. When the Pb2+ ions were added into the TiO₂ spheres colloidal solution, these ions can be adsorbed by sulfydryl (-SH) groups to form metal thiolate, and the C-S bond will be dissociated by heating to release S2-. Then, the S2- will react with Pb2+ ions to form PbS without additives as sulfur sources. Meanwhile, the amorphous TiO₂ spheres were transformed into anatase phase during the heating process. As a result, the crystallization of TiO₂ spheres along with the formation of PbS was simultaneously carried out by heating. During the heating process, owing to the Kirkendall effect of S2- diffusion and Ostwald ripening effect of the crystallization of amorphous TiO₂ spheres, PbS-TiO₂ hollow hybrid structure can be obtained. The XRD and XPS characterizations proved the formation of anatase TiO₂ and PbS. The characterization of TEM confirmed the formation of the hollow structure of PbS-TiO₂ hybrid sample. The photocatalytic activity of the PbS-TiO₂ hollow hybrid spheres have been investigated by the degradation of Cr6+ under visible light. The results show that PbS-TiO₂ hollow hybrid spheres exhibited highest photocatalytic activity, in which almost all the Cr6+ were degraded after 140 min. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of Hybrid Fillers for Improving the Through-Plane Heat Transport in Graphite Nanoplatelet-Based Thermal Interface Layers

    PubMed Central

    Tian, Xiaojuan; Itkis, Mikhail E.; Haddon, Robert C.

    2015-01-01

    The in-plane alignment of graphite nanoplatelets (GNPs) in thin thermal interface material (TIM) layers suppresses the though-plane heat transport thus limiting the performance of GNPs in the geometry normally required for thermal management applications. Here we report a disruption of the GNP in-plane alignment by addition of spherical microparticles. The degree of GNP alignment was monitored by measurement of the anisotropy of electrical conductivity which is extremely sensitive to the orientation of high aspect ratio filler particles. Scanning Electron Microscopy images of TIM layer cross-sections confirmed the suppression of the in-plane alignment. The hybrid filler formulations reported herein resulted in a synergistic enhancement of the through-plane thermal conductivity of GNP/Al2O3 and GNP/Al filled TIM layers confirming that the control of GNP alignment is an important parameter in the development of highly efficient GNP and graphene-based TIMs. PMID:26279183

  8. Negative differential thermal conductance and heat amplification in superconducting hybrid devices

    NASA Astrophysics Data System (ADS)

    Fornieri, Antonio; Timossi, Giuliano; Bosisio, Riccardo; Solinas, Paolo; Giazotto, Francesco

    2016-04-01

    We investigate the thermal transport properties of a temperature-biased Josephson tunnel junction composed of two different superconductors. We show that this simple system can provide a large negative differential thermal conductance (NDTC) with a peak-to-valley ratio of ˜3 in the transmitted electronic heat current. The NDTC is then exploited to outline the caloritronic analog of the tunnel diode, which can exhibit a modulation of the output temperature as large as 80 mK at a bath temperature of 50 mK. Moreover, this device may work in a regime of thermal hysteresis that can be used to store information as a thermal memory. On the other hand, the NDTC effect offers the opportunity to conceive two different designs of a thermal transistor, which might operate as a thermal switch or as an amplifier/modulator. The latter shows a heat amplification factor >1 in a 500-mK-wide working region of the gate temperature. After the successful realization of heat interferometers and thermal diodes, this kind of structures would complete the conversion of the most important electronic devices in their thermal counterparts, breaking ground for coherent caloritronics nanocircuits where heat currents can be manipulated at will.

  9. (Use of rainwater and greywater and hybrid passive/wood fire water heating). Final report

    SciTech Connect

    Pritchard, D.C.

    1985-01-01

    The work reported involves three phases. The first addresses water heating using a woodstove and a passive solar hot water system. The second deals with recycling greywater. The purpose of the third phase is to use rainwater to fulfill all hot water needs. (LEW)

  10. Feasibility of Thermoelectrics for Waste Heat Recovery in Hybrid Vehicles: Preprint

    SciTech Connect

    Smith, K.; Thornton, M.

    2007-12-01

    Using advanced materials, thermoelectric conversion of efficiencies on the order of 20% may be possible in the near future. Thermoelectric generators offer potential to increase vehicle fuel economy by recapturing a portion of the waste heat from the engine exhaust and generating electricity to power vehicle accessory or traction loads.

  11. Heat Stress Impedes Development and Lowers Fecundity of the Brown Planthopper Nilaparvata lugens (Stål)

    PubMed Central

    Piyaphongkul, Jiranan; Pritchard, Jeremy; Bale, Jeff

    2012-01-01

    This study investigated the effects of sub-lethal high temperatures on the development and reproduction of the brown plant hopper Nilaparvata lugens (Stål). When first instar nymphs were exposed at their ULT50 (41.8°C) mean development time to adult was increased in both males and females, from 15.2±0.3 and 18.2±0.3 days respectively in the control to 18.7±0.2 and 19±0.2 days in the treated insects. These differences in development arising from heat stress experienced in the first instar nymph did not persist into the adult stage (adult longevity of 23.5±1.1 and 24.4±1.1 days for treated males and females compared with 25.7±1.0 and 20.6±1.1 days in the control groups), although untreated males lived longer than untreated females. Total mean longevity was increased from 38.8±0.1 to 43.4±1.0 days in treated females, but male longevity was not affected (40.9±0.9 and 42.2±1.1 days respectively). When male and female first instar nymphs were exposed at their ULT50 of 41.8°C and allowed to mate on reaching adult, mean fecundity was reduced from 403.8±13.7 to 128.0±16.6 eggs per female in the treated insects. Following exposure of adult insects at their equivalent ULT50 (42.5°C), the three mating combinations of treated male x treated female, treated male x untreated female, and untreated male x treated female produced 169.3±14.7, 249.6±21.3 and 233.4±17.2 eggs per female respectively, all significantly lower than the control. Exposure of nymphs and adults at their respective ULT50 temperatures also significantly extended the time required for their progeny to complete egg development for all mating combinations compared with control. Overall, sub-lethal heat stress inhibited nymphal development, lowered fecundity and extended egg development time. PMID:23071803

  12. A comparison of whole body vibration and moist heat on lower extremity skin temperature and skin blood flow in healthy older individuals.

    PubMed

    Lohman, Everett B; Sackiriyas, Kanikkai Steni Balan; Bains, Gurinder S; Calandra, Giovanni; Lobo, Crystal; Nakhro, Daniel; Malthankar, Gauri; Paul, Sherwine

    2012-07-01

    Tissue healing is an intricate process that is regulated by circulation. Heat modalities have been shown to improve skin circulation. Recent research supports that passive vibration increases circulation without risk of burns. Study purpose is to compare and determine effects of short duration vibration, moist heat, and a combination of the two on skin blood flow (SBF) and skin temperature (ST) in elderly, non-diabetic individuals following short-term exposure. Ten subjects, 3 female and 7 male (55-73 years of age), received two interventions over three days: 1--Active vibration, 2--passive vibration, 3--moist heat, 4--moist heat combined with passive vibration (MHPV), 5--a commercial massaging heating pad, and 6--no intervention. SBF and ST were measured using a MOOR Laser Doppler before and after the intervention and the third measurement were taken 10 minutes following. Mean SBF following a ten-minute intervention were significantly different in the combination of moist heat and passive vibration from the control, active vibration, and the commercial massaging heating pad. Compared to baseline measurements, this resulted in mean SBF elevation to 450% (at conclusion of 10 minutes of intervention) and 379% (10 minutes post). MHPV (p=0.02) showed significant changes in ST from the commercial massaging heating pad, passive vibration, and active vibration interventions. SBF in the lower legs showed greatest increase with MHPV. Interventions should be selected that are low risk while increasing lower extremity skin blood flow.

  13. Heat engine and electric motor torque distribution strategy for a hybrid electric vehicle

    DOEpatents

    Boberg, Evan S.; Gebby, Brian P.

    1999-09-28

    A method is provided for controlling a power train system for a hybrid electric vehicle. The method includes a torque distribution strategy for controlling the engine and the electric motor. The engine and motor commands are determined based upon the accelerator position, the battery state of charge and the amount of engine and motor torque available. The amount of torque requested for the engine is restricted by a limited rate of rise in order to reduce the emissions from the engine. The limited engine torque is supplemented by motor torque in order to meet a torque request determined based upon the accelerator position.

  14. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Wallace, G. M.; Shinya, T.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Takase, Y.; Wukitch, S.

    2016-05-01

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k|| increases for the fixed launched k||, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k|| are observed in the spectrally broadened wave components, as compared to the measured k|| at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k|| resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  15. Measurements of the parallel wavenumber of lower hybrid waves in the scrape-off layer of a high-density tokamak

    SciTech Connect

    Baek, S. G.; Wallace, G. M.; Parker, R. R.; Shiraiwa, S.; Bonoli, P. T.; Brunner, D.; Faust, I.; LaBombard, B. L.; Wukitch, S.; Shinya, T.; Takase, Y.

    2016-05-15

    In lower hybrid current drive (LHCD) experiments on tokamaks, the parallel wavenumber of lower hybrid waves is an important physics parameter that governs the wave propagation and absorption physics. However, this parameter has not been experimentally well-characterized in the present-day high density tokamaks, despite the advances in the wave physics modeling. In this paper, we present the first measurement of the dominant parallel wavenumber of lower hybrid waves in the scrape-off layer (SOL) of the Alcator C-Mod tokamak with an array of magnetic loop probes. The electric field strength measured with the probe in typical C-Mod plasmas is about one-fifth of that of the electric field at the mouth of the grill antenna. The amplitude and phase responses of the measured signals on the applied power spectrum are consistent with the expected wave energy propagation. At higher density, the observed k{sub ||} increases for the fixed launched k{sub ||}, and the wave amplitude decreases rapidly. This decrease is correlated with the loss of LHCD efficiency at high density, suggesting the presence of loss mechanisms. Evidence of the spectral broadening mechanisms is observed in the frequency spectra. However, no clear modifications in the dominant k{sub ||} are observed in the spectrally broadened wave components, as compared to the measured k{sub ||} at the applied frequency. It could be due to (1) the probe being in the SOL and (2) the limited k{sub ||} resolution of the diagnostic. Future experiments are planned to investigate the roles of the observed spectral broadening mechanisms on the LH density limit problem in the strong single pass damping regime.

  16. A Heat Transfer Model for a Stratified Corium-metal Pool in the Lower Plenum of a Nuclear Reactor

    SciTech Connect

    Sohal, Manohar Singh; Siefken, Larry James

    1999-08-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems.

  17. A Heat Transfer Model for a Stratified Corium-Metal Pool in the Lower Plenum of a Nuclear Reactor

    SciTech Connect

    M. S. Sohal; L. J. Siefken

    1999-08-01

    This preliminary design report describes a model for heat transfer in a corium-metal stratified pool. It was decided to make use of the existing COUPLE model. Currently available correlations for natural convection heat transfer in a pool with and without internal heat generation were obtained. The appropriate correlations will be incorporated in the existing COUPLE model. Heat conduction and solidification modeling will be done with existing algorithms in the COUPLE. Assessment of the new model will be done by simple energy conservation problems.

  18. Identification of waves in the lower-hybrid frequency range in the scrape-off layer plasma of Alcator C-Mod

    NASA Astrophysics Data System (ADS)

    Shinya, Takahiro; Gyou Baek, Seung; Wallace, Gregory M.; Shiraiwa, Syun'ichi; Takase, Yuichi; Parker, Ronald R.; Bonoli, Paul T.; Brunner, Dan; Faust, Ian; LaBombard, Brian L.; Wukitch, Steve

    2017-03-01

    Polarization resolved measurements of the parallel refractive index {{N}\\parallel}\\equiv c{{k}\\parallel}/ω of the driven RF waves in the lower hybrid (LH) range of frequencies are performed using arrays of RF magnetic probes in the scrape-off layer plasma of Alcator C-Mod. The measured {{N}\\parallel} of the RF magnetic field component parallel to the background magnetic field is about  -1.6, which corresponds to the peak of the launched LH {{N}\\parallel} spectrum. Based on the wave dispersion relationship, this wave is identified as the LH slow wave. On the other hand, the RF magnetic field component perpendicular to the magnetic field is found to have a lower {{N}\\parallel} of  -1.2, and is detected only near the last closed flux surface. This wave is identified as the LH fast wave generated by slow-fast wave mode conversion.

  19. Lower-hybrid breakdown of gas in the field of a current-carrying loop in a plasma-filled magnetic confinement system

    SciTech Connect

    Golubyatnikov, G.Y.; Egorov, S.V.; Eremin, B.G.

    1995-02-01

    Experiments have been carried out on the breakdown dynamics and the formation of an ionized region in the field of a current-carrying loop in a large magnetic confinement system filled with background plasma. The loop radiates in the lower-hybrid frequency range. Breakdown is observed to generate a strong local perturbation of plasma: {Delta}N/N{approx_equal} 10{sup 2}, {Delta}T{sub e}/T{sub e} {approx_equal} 50. The perturbed region has a transverse dimension roughly equal to the antenna diameter. Along the direction of the magnetic field, this region is localized between the magnetic mirrors. The density begins to increase throughout the volume of this magnetic tube at the instant at which the field arises at the antenna. Analysis of experimental data leads to the conclusion that the primary cause of the fast ionization along the magnetic force tube is the excitation of an intense beam of lower-hybrid plasma waves. 10 refs., 5 figs., 2 tabs.

  20. Investigation of runaway electrons in the current ramp-up by a fully non-inductive lower hybrid current drive on the EAST tokamak

    NASA Astrophysics Data System (ADS)

    Lu, H. W.; Zha, X. J.; Zhong, F. C.; Hu, L. Q.; Zhou, R. J.; EAST Team

    2013-05-01

    The possibility of using a lower hybrid wave (LHW) to ramp up the plasma current (Ip) from a low level to a high enough level required for fusion burn in the EAST (experimental advanced superconducting tokamak) tokamak is examined experimentally. The focus in this paper is on investigating how the relevant plasma parameters evolve during the current ramp-up (CRU) phase driving by a lower hybrid current drive (LHCD) with poloidal field (PF) coil cut-off, especially the behaviors of runaway electrons generated during the CRU phase. It is found that the intensity of runaway electron emission increases first, and then decreases gradually as the discharge goes on under conditions of PF coil cut-off before LHW was launched into plasma, PF coil cut-off at the same time as LHW was launched into plasma, as well as PF coil cut-off after LHW was launched into plasma. The relevant plasma parameters, including Hα line emission (Ha), impurity line emission (UV), soft x-ray emission and electron density n_{\\rm{e}} , increase to a high level. The loop voltage decreases from positive to negative, and then becomes zero because of the cut-off of PF coils. Also, the magnetohydrodynamic activity takes place during the CRU driving by LHCD.